4,699 Matching Annotations
  1. Last 7 days
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02879 Corresponding author(s): Matteo Allegretti; Alia dos Santos

      1. General Statements

      In this study, we investigated the effects of paclitaxel on both healthy and cancerous cells, focusing on alterations in nuclear architecture. Our novel findings show that:

      • Paclitaxel-induced microtubule reorganisation during interphase alters the perinuclear distribution of actin and vimentin. The formation of extensive microtubule bundles, in paclitaxel or following GFP-Tau overexpression, coincides with nuclear shape deformation, loss of regulation of nuclear envelope spacing, and alteration of the nuclear lamina.

      • Paclitaxel treatment reduces Lamin A/C protein levels via a SUN2-dependent mechanism. SUN2, which links the lamina to the cytoskeleton, undergoes ubiquitination and consequent degradation following paclitaxel exposure.

      • Lamin A/C expression, frequently dysregulated in cancer cells, is a key determinant of cellular sensitivity to, and recovery from, paclitaxel treatment.

      Collectively, our data support a model in which paclitaxel disrupts nuclear architecture through two mechanisms: (i) aberrant nuclear-cytoskeletal coupling during interphase, and (ii) multimicronucleation following defective mitotic exit. This represents an additional mode of action for paclitaxel beyond its well-established mechanism of mitotic arrest.

      We thank the reviewers for their time and constructive feedback. We have carefully considered all comments and have carried out a full revision. The updated manuscript now includes additional data showing:

      • Overexpression of microtubule-associated protein Tau causes similar nuclear aberration phenotypes to paclitaxel. This supports our hypothesis that increased microtubule bundling directly leads to nuclear disruption in paclitaxel during interphase.

      • Paclitaxel's effects on nuclear shape and Lamin A/C and SUN2 expression levels occur independently of cell division.

      • Reduced levels of Lamin A/C and SUN2 upon paclitaxel treatment occur at the protein level via ubiquitination of SUN2.

      • The effects of paclitaxel on the nucleus are conserved in breast cancer cells.

      Full Revision

      We have also edited our text and added further detail to clarify points raised by the reviewers. We believe that our revised manuscript is overall more complete, solid and compelling thanks to the reviewers' comments.

      1. Point-by-point description of the revisions

      Reviewer #1 Evidence, reproducibility and clarity

      This description of the down-regulation of the expression of lamin A/C upon treatment with paclitaxel and its sensitivity to SUN2 is quite interesting but still somehow preliminary. It is unclear whether this effect involves the regulation of gene expression, or of the stability of the proteins. How SUN2 mediates this effect is still unknown.

      We thank the reviewer for this valuable comment. To elucidate the mechanism behind the decrease in Lamin A/C and SUN2 levels, we have now performed several additional experiments. First, we performed RT-qPCR to quantify mRNA levels of these genes, relative to the housekeeping gene GAPDH (Supplementary Figure 3B and O). The levels of SUN2 and LMNA mRNA remained the same between control and paclitaxel-treated cells, indicating that this effect instead occurs at the protein level. We have also tested post-translational modifications as a potential regulatory mechanism for Lamin A/C and SUN2. In addition to the phosphorylation of Ser404 which we had already tested (Supplementary Figure 3C), we have now included additional Phos-tag gel and Western blotting data showing that the overall phosphorylation status of Lamin A/C is not affected by paclitaxel (Supplementary Figure 3E and F). We also pulled-down Lamin A/C from cell lysates and then Western blotted for polyubiquitin and acetyl-lysine, which showed that the ubiquitination and acetylation states of Lamin A/C are also not affected by paclitaxel (Supplementary Figure 3G-I). However, Western blots for polyubiquitin of SUN2 pulled down from cell lysates showed that paclitaxel treatment results in significant SUN2 ubiquitination (Figure 3M and N). Therefore, we propose that the downregulation of SUN2 following paclitaxel treatment occurs by ubiquitin-mediated proteolysis.

      The roles of free tubulins and polymerized microtubules, and thus the potential role of paclitaxel, need to be uncovered.

      We addressed this important point by using an alternative method to stabilise/bundle microtubules in interphase, namely by overexpressing GFP-Tau, as suggested by reviewer 2. Following GFP- Tau overexpression, large microtubule bundles were observed throughout the cytoplasm (Figure 4A), and this resulted in a significant decrease in nuclear solidity (Figure 4B). Furthermore, in cells where microtubule bundles extensively contacted the nucleus, the nuclear lamina became unevenly distributed and appeared patchy (Figure 4C). This supports our hypothesis that the aberrations to nuclear shape and Lamin A/C localisation in paclitaxel-treated cells are due to the presence of microtubules bundles surrounding the nucleus.

      The doses of paclitaxel at which occur the effects described in the paper are not fully consistent with all the conclusions. Most experiments have been done at 5 nM. However, at this dose the effect of lamin A/C over or down expression on the growth (differences in the slopes of the curves in Figure 4A) are not fully convincing and not fully consistent with the clear effect on viability as well (in addition, duration of treatments before assessing vialbility are not specified). At 1 nM, cell growth is reduced and the rescuing effect of lamin over-expression is much more clear (Fig 4A), and the nucleus deformation clear (Fig 2A) but this dose has no effect on lamin A/C expression (Fig 3C), which questions how lamins impact nucleus shape and cell survival. Cytoskeleton reorganisation in these conditions is not described although it could clarify the respective role of force production (suggested in figure 1) and nuclei resistance (shown in figure 2) in paclitaxel sensitivity.

      We thank the reviewer for raising this important point. We have addressed this by conducting additional repeats for the cell confluency measurements to increase the statistical power of our experiments (Figure 5A). Our data now show that GFP-lamin A/C had a statistically significant effect on rescuing cell growth at both 1 nM and 5 nM paclitaxel, while Lamin A/C knockdown exacerbated the inhibition of cell growth at 5 nM paclitaxel but not 1 nM paclitaxel (Figure 5A). In addition, we note that the duration of paclitaxel treatment before assessing viability was specified in the figure legend: "Bar graph comparing cell viability between wild-type (red), GFP-Lamin A/C overexpression (green), and Lamin A/C knockdown (blue) cells following 20 h incubation in 0, 1, 5, or 10 nM paclitaxel." We also repeated cell viability analysis after 48 h incubation in paclitaxel instead of 20 h to allow for a longer time for differences to take effect (Figure 5B).

      We also added figures showing the cytoskeletal reorganisation at both 1 and 10 nM in addition to 0 and 5 nM (Supplementary Figure 1A) showing that microtubule bundling and condensation of actin into puncta correlated with increased paclitaxel concentration. Vimentin colocalised well with microtubules at all concentrations.

      We have also included in our results section further clarification for the use of 5nM paclitaxel in this study. The new section reads as follows: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Finally, although the absence of role of mitotic arrest is clear from the data, the defective reorganisation of the nucleus after mitosis still suggest that the effect of paclitaxel is not independent of mitosis.

      We thank the reviewer for pointing out the need for clarification in the wording of our manuscript. We have reworded the title and relevant sections of our abstract, introduction, and discussion to make it clearer that the effects of paclitaxel on the nucleus are due to a combination of aberrant nuclear cytoskeletal coupling during interphase and multimicronucleation following mitotic slippage. We have also added additional data in support of the effect of paclitaxel on nuclear architecture during interphase. For this, we used serum-starved cells (which divide only very slowly such that the majority of cells do not pass through mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data confirmed that paclitaxel's effects on nuclear solidity, and Lamin A/C and SUN2 proteins levels can occur independently of cell division (Figure 2C; Figure 3H-J). Finally, when we overexpressed GFP-Tau (as discussed above) we observed similar aberrations to nuclear solidity and Lamin A/C localisation. This indicates that these effects occur due to microtubule bundling in interphase, especially as in our study GFP-Tau did not lead to multimicronucleation or appear to affect mitosis (Figure 4).

      Below are the main changes to the text regarding the interphase effect of paclitaxel:

      • Title: "Paclitaxel compromises nuclear integrity in interphase through SUN2-mediated cytoskeletal coupling"

      • Abstract: "Overall, our data supports nuclear architecture disruption, caused by both aberrant nuclear-cytoskeletal coupling during interphase and exit from defective mitosis, as an additional mechanism for paclitaxel beyond mitotic arrest."

      • Introduction: "Here we propose that cancer cells have increased vulnerability to paclitaxel both during interphase and following aberrant mitosis due to pre-existing defects in their NE and nuclear lamina."

      • Discussion: "Overall, our work builds on previous studies investigating loss of nuclear integrity as an anti-cancer mechanism of paclitaxel separate from mitotic arrest14,20,21. We propose that cancer cells show increased sensitivity to nuclear deformation induced by aberrant nuclear-cytoskeletal coupling and multimicronucleation following mitotic slippage. Therefore, we conclude that paclitaxel functions in interphase as well as mitosis, elucidating how slowly growing tumours are targeted."

      minor: a more thorough introduction of known data about dose response of cells in culture and in vivo would help understanding the range of concentrations used in this study.

      As mentioned above, we have now included additional information in our Results section to clarify our paclitaxel dose range: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Significance

      In this manuscript, Hale and colleagues describe the effect of paclitaxel on nucleus deformation and cell survival. They showed that 5nM of paclitaxel induces nucleus fragmentation, cytoskeleton reorganisation, reduced expression of LaminA/C and SUN2, and reduced cell growth and viability. They also showed that these effects could be at least partly compensated by the over-expression of lamin A/C. As fairly acknowledged by the authors, the induction of nuclear deformation in paclitaxel-treated cells, and the increased sensitivity to paclitaxel of cells expressing low level of lamin A/C are not novel (reference #14). Here the authors provided more details on the cytoskeleton changes and nuclear membrane deformation upon paclitaxel treatment. The effect of lamin A/C over and down expression on cell growth and survival are not fully convincing, as further discussed below. The most novel part is the observation that paclitaxel can induce the down-regulation of the expression of lamin A/C and that this effect is mediated by SUN2.

      We appreciate the reviewer's summary and thank them for their time. We believe our comprehensive revisions have addressed all comments, strengthening the manuscript and making it more robust and compelling.

      Reviewer #2 Evidence, reproducibility and clarity This study investigates the effects of the chemotherapeutic drug paclitaxel on nuclear-cytoskeletal coupling during interphase, claiming a novel mechanism for its anti-cancer activity. The study uses hTERT-immortalized human fibroblasts. After paclitaxel exposure, a suite of state- of-the-art imaging modalities visualizes changes in the cytoskeleton and nuclear architecture. These include STORM imaging and a large number of FIB-SEM tomograms.

      We thank the reviewer for the summary and for highlighting our efforts in using the latest imaging technical advances.

      Major comments:

      The authors make a major claim that in addition to the somewhat well-described mechanism of paclitaxel on mitosis, they have discovered 'an alternative, poorly characterised mechanism in interphase'.

      However, none of the data proves that the effects shown are independent of mitosis. To the contrary, measurements are presented 48 hours after paclitaxel treatment starts, after which it can be assumed that 100% of cells have completed at least one mitotic event. The appearance of micronuclei evidences this, as discussed by the authors shortly. It looks like most of the results shown are based on botched mitosis or, more specifically, errors on nuclear assembly upon exit from mitosis rather than a specific effect of paclitaxel on interphase. The readouts the authors show just happen to be measurements while the cells are in interphase.

      Alternative hypotheses are missing throughout the manuscript, and so are critical controls and interpretations.

      We thank the reviewer for highlighting the lack of clarity in our wording. We have revised the title, abstract and relevant sections of the introduction and discussion to clarify our message that the effects of paclitaxel on the nucleus arise from a combination of aberrant nuclear-cytoskeletal coupling during interphase and multimicronucleation following exit from defective mitosis. We have also included additional data where we used slow-dividing, serum-starved cells (under these conditions, the majority of cells do not undergo mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data show that even in these cells there is a clear effect of paclitaxel on nuclear solidity, and Lamin A/C and SUN2 protein levels, further supporting our hypothesis that these phenotypes can occur independently of cell division (Figure 2C; Figure 3H-J). Furthermore, we performed additional experiments where we used overexpression of GFP-Tau as an alternative method of stabilising microtubules in interphase and observed similar aberrations to nuclear solidity and Lamin A/C localisation. As GFP-Tau overexpression did not lead to micronucleation or appear to affect mitosis, these data support the hypothesis that nuclear aberrations occur due to microtubule bundling in interphase (Figure 4). We discuss these experiments in more detail below. Finally, we have reworded the introduction to better introduce alternative hypotheses and mechanisms for paclitaxel's activity.

      The authors claim that 'Previously, the anti-cancer activity of paclitaxel was thought to rely mostly on the activation of the mitotic checkpoint through disruption of microtubule dynamics, ultimately resulting in apoptosis.' The authors may have overlooked much of the existing literature on the topic, including many recent manuscripts from Xiang-Xi Xu's and another lab.

      We would like to note that the paper from Xiang-Xi Xu's lab (Smith et al, 2021) was cited in our original manuscript (reference 14 in both the original and revised manuscripts). We have now also included additional review articles from the Xiang-Xi Xu lab (PMID:36368286 20 and PMID: 35048083 21). Furthermore, we have clarified the wording in both the introduction and discussion to better reflect the current understanding of paclitaxel's mechanism and alternative hypotheses.

      The data, e.g. in Figure 1, does not hold up to the first alternative hypothesis, e.g. that paclitaxel stabilizes microtubules and that excessive mechanical bundling of microtubules induces major changes to cell shape and mechanical stress on the nucleus. Even the simplest controls for this effect (the application of an alternative MT stabilizing drug or the overexpression of an MT stabilizer, e.g., tau).

      We thank the reviewer for suggesting this control experiment using the microtubule stabiliser Tau. We have now included these experiments in the revised version of the manuscript (Figure 4). The overexpression of GFP-Tau supports our hypothesis that cytoskeletal reorganisation in paclitaxel exerts mechanical stress on the nucleus during interphase, resulting in nuclear deformation and aberrations to the nuclear lamina. In particular, GFP-Tau overexpression resulted in large microtubule bundles throughout the cytoplasm (Figure 4A). Notably, in cells where these bundles extensively contacted the nucleus, we observed a significant decrease in nuclear solidity (Figure 4B) accompanied by changes in nuclear lamina organisation, including a patchy lamina phenotype, similar to that induced by paclitaxel (Figure 4C).

      The focus on nuclear lamina seems somewhat arbitrary and adjacent to previously published work by other groups. What would happen if the authors stained for focal adhesion markers? There would probably be a major change in number and distribution. Would the authors conclude that paclitaxel exerts a specific effect on focal adhesions? Or would the conclusion be that microtubule stabilization and the following mechanical disruption induce pleiotropic effects in cells? Which effects are significant for paclitaxel function on cancer cells?

      We thank the reviewer for raising important points regarding the specificity of paclitaxel's effects. We agree that microtubule stabilisation can induce myriad cellular changes, including alterations to focal adhesions and other cytoskeletal components. Our focus on Lamin A/C and nuclear morphology is grounded both in the established clinical relevance of nuclear mechanics in cancer and builds on mechanistic work from other groups.

      Lamin A/C expression is commonly altered in cancer, and nuclear morphology is frequently used in cancer diagnosis35. Lamin A/C also plays a crucial role in regulating nuclear mechanics32 and, importantly, determines cell sensitivity to paclitaxel14. However, the mechanism by which Lamin A/C determines sensitivity of cancer cells to paclitaxel is unclear.

      Our data are consistent with Lamin A/C being a determinant of paclitaxel survival sensitivity. We also provide evidence that paclitaxel itself reduces Lamin A/C protein levels and disrupts its organisation at the nuclear envelope. We directly link these effects to microtubule bundling around the nucleus and degradation of force-sensing LINC component SUN2, highlighting the importance of nuclear architecture and mechanics to overall cellular function. Furthermore, we show that recovery from paclitaxel treatment depends on Lamin A/C expression levels. This has clinical relevance, as unlike cancer cells, healthy tissue with non-aberrant lamina would be able to selectively recover from paclitaxel treatment.

      Minor comments:

      While I understand the difficulty of the experiments and the effort the authors have put into producing FIB-SEM tomograms, I am not sure they are helping their study or adding anything beyond the light microscopy images. Some of the images may even be in the way, such as supplementary Figure 6, which lacks in quality, controls, and interpretation. Do I see a lot of mitochondria in that slice?

      We agree with the reviewer that Supplementary Figure 6 does not add significant value to the manuscript and thank the reviewer for pointing this out. We have removed it from the manuscript accordingly.

      I may have overlooked it, but has the number of cells from which lamellae have been produced been stated?

      We thank the reviewer for pointing out the missing information. For our cryo-ET experiments, we collected data from 9 lamellae from paclitaxel-treated cells and 6 lamellae from control cells, with each lamella derived from a single cell. This information has now been added to the figure legend (Figure 2F).

      Significance

      The significance of studying the effect of paclitaxel, the most successful chemotherapy drug, should be broad and of interest to basic researchers and clinicians.

      As outlined above, I believe that major concerns about the design and interpretation of the study hamper its significance and advancements.

      We appreciate the reviewer's concerns and have performed major revisions to strengthen the significance of our study. Specifically, we conducted two key sets of experiments to validate our original conclusions: serum starvation to control for the effects of cell division, and overexpression of the microtubule stabiliser Tau to demonstrate that paclitaxel can affect the nucleus via its microtubule bundling activity in interphase.

      By elucidating the mechanistic link between microtubule stabilisation and nuclear-cytoskeletal coupling, our findings contribute to our understanding of paclitaxel's multifaceted actions in cancer cells.

      My areas of expertise could be broadly defined as Cell Biology, Cytoskeleton, Microtubules, and Structural Biology.

      Reviewer #3 Evidence, reproducibility and clarity The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      We thank the reviewer for the positive feedback.

      Although similar ideas are published, which may be suitable to be cited? • Paclitaxel resistance related to nuclear envelope structural sturdiness. Smith ER, Wang JQ, Yang DH, Xu XX. Drug Resist Updat. 2022 Dec;65:100881. doi: 10.1016/j.drup.2022.100881. Epub 2022 Oct 15. PMID: 36368286 Review. • Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. Smith ER, Xu XX. J Cancer Biol. 2021;2(4):86-93. doi: 10.46439/cancerbiology.2.031. PMID: 35048083 Free PMC article.

      We thank the reviewer for bringing to our attention these important review articles. In our initial manuscript, we only cited the original paper (14, also reference 14 in the original manuscript). We have now included citations to the suggested publications (20,21).

      We would also like to emphasise how our manuscript distinguishes itself from the work of Smith et al.14,20,21:

      • Cell-type focus: In their study 14, Smith et al. examined the effect of paclitaxel on malignant ovarian cancer cells and proposed that paclitaxel's effects on the nucleus are limited to cancer cells. However, our data extends these findings by demonstrating paclitaxel's effects in both cancerous and non-cancerous backgrounds.

      • Cytoskeletal reorganisation: Smith et al. show reorganisation of microtubules in paclitaxel-treated cells14. Our data show re-organisation of other cytoskeletal components, including F-actin and vimentin.

      • Multimicronucleation: Smith et al. propose that paclitaxel-induced multimicronucleation occurs independently of cell division14. Although we observe progressive nuclear abnormalities during interphase over the course of paclitaxel treatment, our data do not support this conclusion; we find that multimicronucleation occurs only following mitosis.

      • Direct link between microtubule bundling and nuclear aberrations: We show that nuclear aberrations caused by paclitaxel during interphase (distinct from multimicronucleation) are directly linked to microtubule bundling around the nucleus, suggesting they result from mechanical disruption and altered force propagation.

      • Lamin A/C regulation: Consistent with Smith et al.14, we show that Lamin A/C depletion leads to increased sensitivity to paclitaxel treatment. However, we further demonstrate that paclitaxel itself leads to reduced levels of Lamin A/C and that this effect occurs independently of mitosis and is mediated via force-sensing LINC component SUN2. Upon SUN2 knockdown, Lamin A/C levels are no longer affected by paclitaxel treatment.

      • Recovery: Finally, our work reveals that cells expressing low levels of Lamin A/C recover less efficiently after paclitaxel removal. This might help explain how cancer cells could be more susceptible to paclitaxel.

      Only one cell line was used in all the experiments? "Human telomerase reverse transcriptase (hTERT) immortalised human fibroblasts" ? The cells used are not very relevant to cancer cells (carcinomas) that are treated with paclitaxel. It is not clear if the observations and conclusions will be able to be generalized to cancer cells.

      We thank the reviewer for this comment. Our initial study aimed to understand the effects of paclitaxel on nuclear architecture in non-aberrant backgrounds. To show that the observed effects of paclitaxel are also applicable to cancer cells, we have now repeated our main experiments using MDA-MB-231 human breast cancer cells (Supplementary Figure 1B; Supplementary Figure 3P-T). Similar to our findings in human fibroblasts, paclitaxel treatment of MDA-MB-231 led to cytoskeletal reorganisation (Supplementary Figure 1B), a decrease in nuclear solidity (Supplementary Figure 3P), aberrant (patchy) localisation of Lamin A/C (Supplementary Figure 3Q), and a reduction in Lamin A/C and SUN2 levels (Supplementary Figure 3R-T).

      "Fig. 1. (B) STORM imaging of α-tubulin immunofluorescence in cells fixed after 16 h incubation in control media or 5 nM paclitaxel. Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Scale bars = 10 μm." It needs explanation of what is meaning of the different color lines in the lower panels, just different filaments?

      We have added further detail to the figure legend for clarification: "Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Different colours distinguish individual α-tubulin clusters, representing individual microtubule filaments or filament bundles."

      Generally, the figures need additional description to be clear.

      We have added further clarification and detail to our figure legends.

      "Figure 3 - Paclitaxel results in aberrations to the nuclear lamina." The sentence seems not to be well constructed. "Paclitaxel treatment causes ..."?

      We changed this sentence to: "Figure 3 - Paclitaxel treatment results in aberrant organisation of the nuclear lamina and decreased Lamin A/C levels via SUN2."

      Lamin A and C levels are different in different images (Fig. 3B, H): some Lamin A is higher, and sometime Lamin C is higher? This may possibly due to culture condition or subtle difference in sample handling?.

      We thank the reviewer for pointing this out and we agree that the ratio of Lamin A to Lamin C can vary with culture conditions. To confirm that paclitaxel treatment reduces total Lamin A/C levels regardless of this ratio, we repeated the Western blot analysis in three additional biological replicates using cells in which Lamin C levels exceeded Lamin A levels. These experiments confirmed a comparable decrease in total Lamin A/C levels. Figure 3B and 3C have been updated accordingly.

      Also, the effect on Lamin A/C and SUN2 levels are not significant of robust.

      Decreased Lamin A/C and SUN2 levels following paclitaxel treatment were consistently seen across three or more biological repeats (Figure 3B-C), and this could be replicated in a different cell type (MDA-MB-231) (Supplementary Figure 3R-T). Furthermore, Western blotting results are consistent with the patchy Lamin A/C distribution observed using confocal and STORM following paclitaxel treatment (Figure 3A; Supplementary Figure 3A), where Lamin A/C appears to be absent from discrete areas of the lamina.

      Any mechanisms are speculated for the reason for the reduction?

      We have now included additional data which aims to shed light on the mechanism behind the decrease in Lamin A/C and SUN2 levels following paclitaxel treatment. We found that SUN2 is selectively degraded during paclitaxel treatment. Immunoprecipitation of SUN2 followed by Western blotting against Polyubiquitin C showed increased SUN2 ubiquitination in paclitaxel (Figure 3M and N). Furthermore, in our original manuscript, we showed that Lamina A/C levels remained unaltered during paclitaxel treatment in cells where SUN2 had been knocked down. We propose that changes in microtubule organisation affect force propagation to Lamin A/C specifically via SUN2 and that this leads to Lamina A/C removal and depletion. Future work will be needed to fully understand this mechanism.

      In addition to the findings described above, we report no significant changes in mRNA levels for LMNA or SUN2 in paclitaxel (Supplementary Figure 3B and O). Phos-tag gels followed by Western blotting analysis for Lamin A/C also did not detect changes to the overall phosphorylation status of Lamin A/C due to paclitaxel treatment. This is in agreement with our initial data showing no changes to Lamin A/C Ser 404 phosphorylation levels (Supplementary Figure 3E and F). Finally, Lamin A/C immunoprecipitation experiments followed by Western blotting for Polyubiquitin C and acetyl-lysine showed no significant changes in the ubiquitination and acetylation state of Lamin A/C in paclitaxel-treated cells (Supplementary Figure 3G-I).

      Also, the about 50% reduction in protein level is difficult to be convincing as an explanation of nuclear disruption.

      The nuclear lamina and LINC complex proteins play a critical role in regulating nuclear integrity, stiffness and mechanical responsiveness to external forces28,31-33,54,75, as well as in maintaining the nuclear intermembrane distance69,74. In particular, SUN-domain proteins physically bridge the nuclear lamina to the cytoskeleton through interactions with Nesprins, thereby preserving the perinuclear space distance30,69,74. Mutations in Lamins have been shown to disrupt chromatin organization, alter gene expression, and compromise nuclear structural integrity, and experiments with LMNA knockout cells reveal that nuclear mechanical fragility is closely coupled to nuclear deformation47. Furthermore, nuclear-cytoskeletal coupling is essential during processes such as cell migration, where cells undergo stretching and compression of the nucleus; weakening or loss of the lamina in such cases compromises cell movement47,73. In our work, we show that alterations to nuclear Lamin A/C and SUN2 by paclitaxel treatment coincide with nuclear deformations (Figure 2A-D, F, G; Figure 3A-D, F, G; Supplementary Figure 3A, P-T) and that these deformations are reversible following paclitaxel removal (Supplementary Figure 4B-D). Our experiments also demonstrate that Lamin A/C expression levels significantly influence cell growth, cell viability, and cell recovery in paclitaxel (Figure 5). Therefore, drawing on current literature and our results, we propose that, during interphase, paclitaxel induces severe nuclear aberrations through the combined effects of: i) increased cytoskeletal forces on the NE caused by microtubule bundling; ii) loss of ~50% Lamin A/C and SUN2; iii) reorganisation of nucleo-cytoskeletal components.

      Significance

      The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      The data may be improved to provide stronger support.

      Additional cell lines (of cancer or epithelial origin) may be repeated to confirm the generality of the observation and conclusions.?

      We thank the reviewer for the feedback and valuable suggestions. In response, we have included experiments using human breast cancer cell line MDA-MB-231 to further corroborate our findings and interpretations. We believe these additions have improved the clarity, robustness and impact of our manuscript, and we are grateful for the reviewer's contributions to its improvement.

    1. Author response:

      We thank the reviewers for their thoughtful and thorough consideration of the work. We appreciate the positive reception they give the work, and plan to address several of the comments with further experiments. To outline that work (and ensure that we are on the right track to addressing those concerns), we summarize the core concerns that prompt new experiments:

      (1) Does the YFP tag on the ACRs interfere with simultaneous GCaMP imaging of RubyACR-expressing cells and could bleaching of the YFP complicate interpretation of the experiments here?

      We will test whether 920 nm (2p) and 650 nm (1p) excitation cause YFP bleaching that interferes with interpretation of inhibitory calcium (i.e. GCaMP) signals. Because the YFP tag enhances opsin sensitivity, we prioritized these tagged RubyACRs for initial characterization. FLAG-tagged ACRs are in progress, but will take time to fully characterize. Considering that the RubyACR-EYFP versions work very well, and in many cases people will want the YFP tag, either for visualizing expression or to maximize sensitivity, we feel the current work is a valuable contribution on its own. Indeed several labs have already requested these lines.

      (2) Are the ACRs activated by two-photon illumination?

      We will examine GCaMP signals at increasing 2p intensities to determine whether imaging unintentionally activates RubyACRs, as well as whether 2p illumination could be used for intentional opsin activation.

      (3) How toxic is the expression of these opsins?

      We will update the quantification of toxicity in Table 1 to include all the drivers we used in this study. In fact the toxicity we observed was primarily with the vGlut driver, which was why that was the only information in the table. The other drivers we used did not appreciably reduce survival rate, but showing the one case where it did have a big effect left a strong and understandably inaccurate impression that toxicity was a big pitfall. We note that the widely used CSChrimson has similar % survival to the RubyACRs when expressed with these vGlut drivers.

      We also plan to examine whether ACR expression leads to cell-autonomous perturbations. We will determine whether expression leads to some frequency of neuronal cell death, and we will evaluate whether any morphological effects occur.

      We will also clarify in the Discussion that potential toxicity may be driver-specific (as it is here) and should be evaluated case-by-case by investigators using the tool.

      (4) Use functional imaging to confirm inhibition of the neurons used only for behavioral experiments (pIP10 & PPL1-γ1pedc)

      We will perform these imaging experiments. One caveat is that inhibition may not be readily detectable with GCaMP, as the resting calcium levels in pIP10 and PPL1-γ1pedc neurons may already be quite low. This differs from the non-spiking Mi1 neurons, where inhibition was clearly observed with GCaMP. For this reason, we consider the behavioral results stronger evidence of efficacy, but we agree that imaging could provide useful supporting evidence, recognizing that a negative result would be difficult to interpret.

      (5) Confirm that the GtACR1 will inhibit locomotion in the flybowl when activated with green light, its spectral peak.

      We will perform this benchmark experiment. Please note that our intention with this study was to find an effective red-light activated opto-inhibitor because these wavelengths are much less perturbing to behavior. In that respect, regardless of GtACR1’s performance with green light, the RubyACRs clearly provide important new tools for Drosophila behavioral neuroscience.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Review of the manuscript titled " Mycobacterial Metallophosphatase MmpE acts as a nucleomodulin to regulate host gene expression and promotes intracellular survival".

      The study provides an insightful characterization of the mycobacterial secreted effector protein MmpE, which translocates to the host nucleus and exhibits phosphatase activity. The study characterizes the nuclear localization signal sequences and residues critical for the phosphatase activity, both of which are required for intracellular survival.

      Strengths:

      (1) The study addresses the role of nucleomodulins, an understudied aspect in mycobacterial infections.

      (2) The authors employ a combination of biochemical and computational analyses along with in vitro and in vivo validations to characterize the role of MmpE.

      Weaknesses:

      (1) While the study establishes that the phosphatase activity of MmpE operates independently of its NLS, there is a clear gap in understanding how this phosphatase activity supports mycobacterial infection. The investigation lacks experimental data on specific substrates of MmpE or pathways influenced by this virulence factor.

      We thank the reviewer for this insightful comment and agree that identification of the substrate of MmpE is important to fully understand its role in mycobacterial infection.

      MmpE is a putative purple acid phosphatase (PAP) and a member of the metallophosphoesterase (MPE) superfamily. Enzymes in this family are known for their catalytic promiscuity and broad substrate specificity, acting on phosphomonoesters, phosphodiesters, and phosphotriesters (Matange et al., Biochem J., 2015). In bacteria, several characterized MPEs have been shown to hydrolyze substrates such as cyclic nucleotides (e.g., cAMP) (Keppetipola et al., J Biol Chem, 2008; Shenoy et al., J Mol Biol, 2007), nucleotide derivatives (e.g., AMP, UDP-glucose) (Innokentev et al., mBio, 2025), and pyrophosphate-containing compounds (e.g., Ap4A, UDP-DAGn) (Matange et al., Biochem J., 2015). Although the binding motif of MmpE has been identified, determining its physiological substrates remains challenging due to the low abundance and instability of potential metabolites, as well as the limited sensitivity and coverage of current metabolomic technologies in mycobacteria.

      (2) The study does not explore whether the phosphatase activity of MmpE is dependent on the NLS within macrophages, which would provide critical insights into its biological relevance in host cells. Conducting experiments with double knockout/mutant strains and comparing their intracellular survival with single mutants could elucidate these dependencies and further validate the significance of MmpE's dual functions.

      We thank the reviewer for the comment. In our study, we demonstrate that both the nuclear localization and phosphatase activity of MmpE are required for full virulence (Figure 3D–E). Importantly, deletion of the NLS motifs did not impair MmpE’s phosphatase activity in vitro (Figure 2F), indicating that its enzymatic function is structurally independent of its nuclear localization. These findings suggest that MmpE functions as a bifunctional protein, with distinct and non-overlapping roles for its nuclear trafficking and phosphatase activity. We have expanded on this point in the Discussion section “MmpE Functions as a Bifunctional Protein with Nuclear Localization and Phosphatase Activity”.

      (3) The study does not provide direct experimental validation of the MmpE deletion on lysosomal trafficking of the bacteria.

      We thank the reviewer for the comment. The role of Rv2577/MmpE in phagosome maturation has been demonstrated in M. tuberculosis, where its deletion increases colocalization with lysosomal markers such as LAMP-2 and LAMP-3 (Forrellad et al., Front Microbiol, 2020). In our study, we found that mmpE deletion in M. bovis BCG led to upregulation of lysosomal genes, including TFEB, LAMP1, LAMP2, and v-ATPase subunits, compared to the wild-type strain. These results suggest that MmpE may regulate lysosomal trafficking by interfering with phagosome–lysosome fusion.

      To further validate MmpE’s role in phagosome maturation, we will perform fluorescence colocalization assays in THP-1 macrophages infected with BCG/wt, ∆mmpE, complemented, and NLS-mutant strains. Co-staining with LAMP1 and LysoTracker will allow us to assess whether the ∆mmpE mutant is more efficiently trafficked to lysosomes.

      (4) The role of MmpE as a mycobacterial effector would be more relevant using virulent mycobacterial strains such as H37Rv.

      We thank the reviewer for the comment. Previously, the role of Rv2577/MmpE as a virulence factor has been demonstrated in M. tuberculosis CDC 1551, where its deletion significantly reduced bacterial replication in mouse lungs at 30 days post-infection (Forrellad et al., Front Microbiol, 2020). However, that study did not explore the underlying mechanism of MmpE function. In our work, we found that MmpE enhances M. bovis BCG survival in both macrophages (THP-1 and RAW264.7) and mice (Figure 2A-B, Figure 6A), consistent with its proposed role in virulence. To investigate the molecular mechanism by which MmpE promotes intracellular survival, we used M. bovis BCG as a biosafe surrogate and this model is widely accepted for studying mycobacterial pathogenesis (Wang et al., Nat Immunol, 2025; Wang et al., Nat Commun, 2017; Péan et al., Nat Commun, 2017).

      Reviewer #2 (Public review):

      Summary:

      In this paper, the authors have characterized Rv2577 as a Fe3+/Zn2+ -dependent metallophosphatase and a nucleomodulin protein. The authors have also identified His348 and Asn359 as critical residues for Fe3+ coordination. The authors show that the proteins encode for two nuclease localization signals. Using C-terminal Flag expression constructs, the authors have shown that the MmpE protein is secretory. The authors have prepared genetic deletion strains and show that MmpE is essential for intracellular survival of M. bovis BCG in THP-1 macrophages, RAW264.7 macrophages, and a mouse model of infection. The authors have also performed RNA-seq analysis to compare the transcriptional profiles of macrophages infected with wild-type and MmpE mutant strains. The relative levels of ~ 175 transcripts were altered in MmpE mutant-infected macrophages and the majority of these were associated with various immune and inflammatory signalling pathways. Using these deletion strains, the authors proposed that MmpE inhibits inflammatory gene expression by binding to the promoter region of a vitamin D receptor. The authors also showed that MmpE arrests phagosome maturation by regulating the expression of several lysosome-associated genes such as TFEB, LAMP1, LAMP2, etc. These findings reveal a sophisticated mechanism by which a bacterial effector protein manipulates gene transcription and promotes intracellular survival.

      Strength:

      The authors have used a combination of cell biology, microbiology, and transcriptomics to elucidate the mechanisms by which Rv2577 contributes to intracellular survival.

      Weakness:

      The authors should thoroughly check the mice data and show individual replicate values in bar graphs.

      We kindly appreciate the reviewer for the advice. We will update the relevant mice data in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript titled "Mycobacterial Metallophosphatase MmpE Acts as a Nucleomodulin to Regulate Host Gene Expression and Promote Intracellular Survival", Chen et al describe biochemical characterisation, localisation and potential functions of the gene using a genetic approach in M. bovis BCG and perform macrophage and mice infections to understand the roles of this potentially secreted protein in the host cell nucleus. The findings demonstrate the role of a secreted phosphatase of M. bovis BCG in shaping the transcriptional profile of infected macrophages, potentially through nuclear localisation and direct binding to transcriptional start sites, thereby regulating the inflammatory response to infection.

      Strengths:

      The authors demonstrate using a transient transfection method that MmpE when expressed as a GFP-tagged protein in HEK293T cells, exhibits nuclear localisation. The authors identify two NLS motifs that together are required for nuclear localisation of the protein. A deletion of the gene in M. bovis BCG results in poorer survival compared to the wild-type parent strain, which is also killed by macrophages. Relative to the WT strain-infected macrophages, macrophages infected with the ∆mmpE strain exhibited differential gene expression. Overexpression of the gene in HEK293T led to occupancy of the transcription start site of several genes, including the Vitamin D Receptor. Expression of VDR in THP1 macrophages was lower in the case of ∆mmpE infection compared to WT infection. This data supports the utility of the overexpression system in identifying potential target loci of MmpE using the HEK293T transfection model. The authors also demonstrate that the protein is a phosphatase, and the phosphatase activity of the protein is partially required for bacterial survival but not for the regulation of the VDR gene expression.

      Weaknesses:

      (1)   While the motifs can most certainly behave as NLSs, the overexpression of a mycobacterial protein in HEK293T cells can also result in artefacts of nuclear localisation. This is not unprecedented. Therefore, to prove that the protein is indeed secreted from BCG, and is able to elicit transcriptional changes during infection, I recommend that the authors (i) establish that the protein is indeed secreted into the host cell nucleus, and (ii) the NLS mutation prevents its localisation to the nucleus without disrupting its secretion.

      We kindly appreciate the reviewer for the advice and will include the relevant experiments in the revised manuscript. The localization of WT MmpE and the NLS mutated MmpE will be tested in the BCG infected macrophages.

      Demonstration that the protein is secreted: Supplementary Figure 3 - Immunoblotting should be performed for a cytosolic protein, also to rule out detection of proteins from lysis of dead cells. Also, for detecting proteins in the secreted fraction, it would be better to use Sauton's media without detergent, and grow the cultures without agitation or with gentle agitation. The method used by the authors is not a recommended protocol for obtaining the secreted fraction of mycobacteria.

      We agree with the reviewer and we will further validate the secretion of MmpE using the tested protocol.

      Demonstration that the protein localises to the host cell nucleus upon infection: Perform an infection followed by immunofluorescence to demonstrate that the endogenous protein of BCG can translocate to the host cell nucleus. This should be done for an NLS1-2 mutant expressing cell also.

      We will add this experiment in the revised manuscript.

      (2) In the RNA-seq analysis, the directionality of change of each of the reported pathways is not apparent in the way the data have been presented. For example, are genes in the cytokine-cytokine receptor interaction or TNF signalling pathway expressed more, or less in the ∆mmpE strain?

      We thank the reviewer for pointing this out and fully agree that conventional KEGG pathway enrichment diagrams do not convey the directionality of individual gene expression changes within each pathway. While KEGG enrichment analysis identifies pathways that are statistically overrepresented among differentially expressed genes, it does not indicate whether individual genes within those pathways are upregulated or downregulated.

      To address this, we re-analyzed the expression trends of DEGs within each significantly enriched KEGG pathway. The results show that key immune-related pathways, including cytokine–cytokine receptor interaction, TNF signaling, NF-κB signaling, and chemokine signaling, are collectively upregulated in THP-1 macrophages infected with ∆mmpE strain compared to those infected with the wild-type BCG strain. The full list of DEGs will be provided in the supplementary materials. The complete RNA-seq dataset has been deposited in the GEO database, and the accession number will be included in the revised manuscript.

      (3) Several of these pathways are affected as a result of infection, while others are not induced by BCG infection. For example, BCG infection does not, on its own, produce changes in IL1β levels. As the author s did not compare the uninfected macrophages as a control, it is difficult to interpret whether ∆mmpE induced higher expression than the WT strain, or simply did not induce a gene while the WT strain suppressed expression of a gene. This is particularly important because the strain is attenuated. Does the attenuation have anything to do with the ability of the protein to induce lysosomal pathway genes? Does induction of this pathway lead to attenuation of the strain? Similarly, for pathways that seem to be downregulated in the ∆mmpE strain compared to the WT strain, these might have been induced upon infection with the WT strain but not sufficiently by the ∆mmpE strain due to its attenuation/ lower bacterial burden.

      We thank the reviewer for the comment. We will update qRT-PCR data with the uninfected macrophages as a control in the revised manuscript.

      Wild-type Mycobacterium bovis BCG strain still has the function of inhibiting phagosome maturation (Branzk et al., Nat Immunol, 2014; Weng et al., Nat Commun, 2022). Forrellad et al. previously identified Rv2577/MmpE as a virulence factor in M. tuberculosis and disruption of the MmpE gene impairs the ability of M. tuberculosis to arrest phagosome maturation (Forrellad et al., Front Microbiol, 2020). In our study, transcriptomic and qRTPCR data (Figures 4C and G, S4C) show that deletion of mmpE in M. bovis BCG leads to upregulation of lysosomal biogenesis and acidification genes, including TFEB, LAMP1, and vATPase. To further validate MmpE’s role in phagosome maturation, we will perform fluorescence colocalization assays in THP-1 macrophages infected with BCG/wt, ∆mmpE, complemented, and NLS-mutant strains. Co-staining with LAMP1 and LysoTracker will assess whether the ∆mmpE mutant is more efficiently trafficked to lysosomes.

      Furthermore, CFU assays demonstrated that the ∆mmpE strain exhibits markedly reduced bacterial survival in both human THP-1 and murine RAW264.7 macrophages, as well as in mice, compared to the wild-type strain (Figures 4A and C, 6A). These findings suggest that the loss of MmpE compromises bacterial survival, likely due to enhanced lysosomal trafficking and acidification. This supports previous studies showing that increased lysosomal activity promotes mycobacterial clearance (Gutierrez et al., Cell, 2004; Pilli et al., Immunity, 2012).

      (4) CHIP-seq should be performed in THP1 macrophages, and not in HEK293T. Overexpression of a nuclear-localised protein in a non-relevant line is likely to lead to several transcriptional changes that do not inform us of the role of the gene as a transcriptional regulator during infection.

      We thank the reviewer for the comment. We performed ChIP-seq in HEK293T cells is based on the fact that this cell line is widely used in ChIP-based assays due to its high transfection efficiency, robust nuclear protein expression, and well-annotated genome (Lampe et al., Nat Biotechnol, 2024; Marasco et al., Cell, 2022). These features make HEK293T an ideal system for the initial identification of genome wide chromatin binding profiles of novel nuclear effectors such as MmpE.

      Furthermore, we validated the major observations in THP-1 macrophages, including (i) RNAseq of THP-1 cells infected with either WT BCG or ∆mmpE strains revealed significant transcriptional changes in immune and lysosomal pathways (Figure 4A); (ii) Integrated analysis of CUT&Tag and RNA-seq data identified 298 genes in infected THP-1 cells that exhibited both MmpE binding and corresponding expression changes. Among these, VDR was validated as a direct transcriptional target of MmpE using EMSA and ChIP-PCR (Figures 5E-J, S5D-F). Notably, the signaling pathways associated with MmpE-bound genes, including PI3K-Akt-mTOR signaling and lysosomal function, substantially overlap with those transcriptionally modulated in infected THP-1 macrophages (Figures 4B-G, S4B-C, S5C-D), further supporting the biological relevance of the ChIP-seq data obtained from HEK293T cells.

      (5) I would not expect to see such large inflammatory reactions persisting 56 days postinfection with M. bovis BCG. Is this something peculiar for an intratracheal infection with 1x107 bacilli? For images of animal tissue, the authors should provide images of the entire lung lobe with the zoomed-in image indicated as an inset.

      We thank the reviewer for the comment. The lung inflammation peaked at days 21–28 and had clearly subsided by day 56 across all groups (Figure 6B), consistent with the expected resolution of immune responses to an attenuated strain like M. bovis BCG. This temporal pattern is in line with previous studies using intravenous or intratracheal BCG vaccination in mice and macaques, which also demonstrated robust early immune activation followed by resolution over time (Smith et al., Nat Microbiol, 2025; Darrah et al., Nature, 2020).

      In this study, the infectious dose (1×10⁷ CFU intratracheally) was selected based on previous studies in which intratracheal delivery of 1×10⁷CFU produced consistent and measurable lung immune responses and pathology without causing overt illness or mortality (Xu et al., Sci Rep, 2017; Niroula et al., Sci Rep, 2025). We will provide whole-lung lobe images with zoomed-in insets in the revised manuscript.

      (6) For the qRT-PCR based validation, infections should be performed with the MmpEcomplemented strain in the same experiments as those for the WT and ∆mmpE strain so that they can be on the same graph, in the main manuscript file. Supplementary Figure 4 has three complementary strains. Again, the absence of the uninfected, WT, and∆mmpE infected condition makes interpretation of these data very difficult.

      We thank the reviewer for the comment. As suggested, we will conduct the qRT-PCR experiment including the uninfected, WT, ∆mmpE, Comp-MmpE, and the three complementary strains infecting THP-1 cells. The updated data will be provided in the revised manuscript.

      (7) The abstract mentions that MmpE represses the PI3K-Akt-mTOR pathway, which arrests phagosome maturation. There is not enough data in this manuscript in support of this claim. Supplementary Figure 5 does provide qRT-PCR validation of genes of this pathway, but the data do not indicate that higher expression of these pathways, whether by VDR repression or otherwise, is driving the growth restriction of the ∆mmpE strain.

      We thank the reviewer for the comment. The role of MmpE in phagosome maturation was previously characterized. Disruption of mmpE impairs the ability of M. tuberculosis to arrest lysosomal trafficking (Forrellad et al., Front Microbiol, 2020). In this study, we further found that MmpE suppresses the expression of key lysosomal genes, including TFEB, LAMP1, LAMP2, and ATPase subunits (Figure 4G), suggesting MmpE is involved in arresting phagosome maturation. As noted, the genes in the PI3K–Akt–mTOR pathway are upregulated in ∆mmpE-infected macrophages (Figure S5C).

      To functionally validate this, we will conduct two complementary experimental approaches:

      (i) Immunofluorescence assays: We will assess phagosome maturation and lysosomal fusion in THP-1 cells infected with BCG/wt, ∆mmpE, Comp-MmpE, and NLS mutant strains. Colocalization of intracellular bacteria with LAMP1 and LysoTracker will be quantified to determine whether the ∆mmpE strain is more efficiently trafficked to lysosomes.

      (ii) CFU assays: We will perform CFU assays in THP-1 cells infected with BCG/wt or ∆mmpE in the presence or absence of PI3K-Akt-mTOR pathway inhibitors (e.g., Dactolisib), to assess whether activation of this pathway contributes to the intracellular growth restriction observed in the ∆mmpE strain.

      (8) The relevance of the NLS and the phosphatase activity is not completely clear in the CFU assays and in the gene expression data. Firstly, there needs to be immunoblot data provided for the expression and secretion of the NLS-deficient and phosphatase mutants. Secondly, CFU data in Figure 3A, C, and E must consistently include both the WT and ∆mmpE strain.

      We thank the reviewer for the comment. We will provide immunoblot data for the expression and secretion of the NLS-deficient and phosphatase mutants. Additionally, we will revise Figure 3A, 3C, and 3E to consistently include both the WT and ΔmmpE strains in the CFU assays.

      Reference

      Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, Papayannopoulos V (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens Nat Immunol 15:1017-25.

      Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH 2nd, Hughes TK, Pokkali S, Swanson PA 2nd, Grant NL, Rodgers MA, Kamath M, Causgrove CM, Laddy DJ, Bonavia A, Casimiro D, Lin PL, Klein E, White AG, Scanga CA, Shalek AK, Roederer M, Flynn JL, Seder RA (2020) Prevention of tuberculosis in macaques after intravenous BCG immunization Nature 577:95-102.

      Forrellad MA, Blanco FC, Marrero Diaz de Villegas R, Vázquez CL, Yaneff A, García EA, Gutierrez MG, Durán R, Villarino A, Bigi F (2020) Rv2577 of Mycobacterium tuberculosis Is a virulence factor with dual phosphatase and phosphodiesterase functions Front Microbiol 11:570794.

      Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages Cell 119:753-66.

      Innokentev A, Sanchez AM, Monetti M, Schwer B, Shuman S (2025) Efn1 and Efn2 are extracellular 5'-nucleotidases induced during the fission yeast response to phosphate starvation mBio 16: e0299224.

      Keppetipola N, Shuman S (2008) A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity J Biol Chem 283:30942-9.

      Lampe GD, King RT, Halpin-Healy TS, Klompe SE, Hogan MI, Vo PLH, Tang S, Chavez A, Sternberg SH (2024) Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases Nat Biotechnol 42:87-98.

      Marasco LE, Dujardin G, Sousa-Luís R, Liu YH, Stigliano JN, Nomakuchi T, Proudfoot NJ, Krainer AR, Kornblihtt AR (2022) Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy Cell 185:2057-2070.e15.

      Matange N, Podobnik M, Visweswariah SS (2015) Metallophosphoesterases: structural fidelity with functional promiscuity Biochem J 467:201-16.

      Niroula N, Ghodasara P, Marreros N, Fuller B, Sanderson H, Zriba S, Walker S, Shury TK, Chen JM (2025) Orally administered live BCG and heat-inactivated Mycobacterium bovis protect bison against experimental bovine tuberculosis Sci Rep 15:3764.

      Péan CB, Schiebler M, Tan SW, Sharrock JA, Kierdorf K, Brown KP, Maserumule MC,

      Menezes S, Pilátová M, Bronda K, Guermonprez P, Stramer BM, Andres Floto R, Dionne MS (2017) Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection Nat Commun 8:14642.

      Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation Immunity 37:223-34.

      Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M (2007) Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis J Mol Biol 365:211-25.

      Smith AA, Su H, Wallach J, Liu Y, Maiello P, Borish HJ, Winchell C, Simonson AW, Lin PL, Rodgers M, Fillmore D, Sakal J, Lin K, Vinette V, Schnappinger D, Ehrt S, Flynn JL (2025) A BCG kill switch strain protects against Mycobacterium tuberculosis in mice and non-human primates with improved safety and immunogenicity Nat Microbiol 10:468-481.

      Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH (2017) The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation Nat Commun 8:244.

      Wang J, Li BX, Ge PP, Li J, Wang Q, Gao GF, Qiu XB, Liu CH (2015) Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system Nat Immunol 16:237–245

      Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM (2022) Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria Nat Commun 13:5320.

      Xu X, Lu X, Dong X, Luo Y, Wang Q, Liu X, Fu J, Zhang Y, Zhu B, Ma X (2017) Effects of hMASP2 on the formation of BCG infection-induced granuloma in the lungs of BALB/c mice Sci Rep 7:2300.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work by Govorunova et al. identified three naturally blue-shifted channelrhodopsins (ChRs) from ancyromonads, namely AnsACR, FtACR, and NlCCR. The phylogenetic analysis places the ancyromonad ChRs in a distinct branch, highlighting their unique evolutionary origin and potential for novel applications in optogenetics. Further characterization revealed the spectral sensitivity, ionic selectivity, and kinetics of the newly discovered AnsACR, FtACR, and NlCCR. This study also offers valuable insights into the molecular mechanism underlying the function of these ChRs, including the roles of specific residues in the retinal-binding pocket. Finally, this study validated the functionality of these ChRs in both mouse brain slices (for AnsACR and FtACR) and in vivo in Caenorhabditis elegans (for AnsACR), demonstrating the versatility of these tools across different experimental systems.

      In summary, this work provides a potentially valuable addition to the optogenetic toolkit by identifying and characterizing novel blue-shifted ChRs with unique properties.

      Strengths:

      This study provides a thorough characterization of the biophysical properties of the ChRs and demonstrates the versatility of these tools in different ex vivo and in vivo experimental systems. The mutagenesis experiments also revealed the roles of key residues in the photoactive site that can affect the spectral and kinetic properties of the channel.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      While the novel ChRs identified in this work are spectrally blue-shifted, there still seems to be some spectral overlap with other optogenetic tools. The authors should provide more evidence to support the claim that they can be used for multiplex optogenetics and help potential end-users assess if they can be used together with other commonly applied ChRs. Additionally, further engineering or combination with other tools may be required to achieve truly orthogonal control in multiplexed experiments.

      To demonstrate the usefulness of ancyromonad ChRs for multiplex optogenetics as a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting ChR Chrimson and measured net photocurrent generated by this combination as a function of the wavelength. We found that it is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      In the C. elegans experiments, partial recovery of pharyngeal pumping was observed after prolonged illumination, indicating potential adaptation. This suggests that the effectiveness of these ChRs may be limited by cellular adaptation mechanisms, which could be a drawback in long-term experiments. A thorough discussion of this challenge in the application of optogenetics tools would prove very valuable to the readership.

      We added the following paragraph to the revised Discussion:

      “One possible explanation of the partial recovery of pharyngeal pumping that we observed after 15-s illumination, even at the highest tested irradiance, is continued attenuation of photocurrent during prolonged illumination (desensitization). However, the rate of AnsACR desensitization (Figure 1 – figure supplement 4A and Figure 1 – figure supplement 5A) is much faster than the rate of the pumping recovery, reducing the likelihood that desensitization is driving this phenomenon. Another possible reason for the observed adaptation is an increase in the cytoplasmic Cl<sup>-</sup> concentration owing to AnsACR activity and hence a breakdown of the Cl<sup>-</sup> gradient on the neuronal membrane. The C. elegans pharynx is innervated by 20 neurons, 10 of which are cholinergic (Pereira, Kratsios et al. 2015). A pair of MC neurons is the most important for regulation of pharyngeal pumping, but other pharyngeal cholinergic neurons, including I1, M2, and M4, also play a role (Trojanowski, Padovan-Merhar et al. 2014). Moreover, the pharyngeal muscles generate autonomous contractions in the presence of acetylcholine tonically released from the pharyngeal neurons (Trojanowski, Raizen et al. 2016). Given this complexity, further elucidation of pharyngeal pumping adaptation mechanisms is beyond the scope of this study.”

      Reviewer #2 (Public review):

      Summary:

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. They identify new opsins by scanning numerous databases for sequence homology to known opsins, focusing on anion opsins. The three opsins identified are uncommonly fast, potent, and are able to silence neuronal activity. The authors characterize numerous parameters of the opsins.

      Strengths:

      This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. The opsins AnsACR and FtACR are particularly notable, having extraordinarily fast onset kinetics that could have utility in many domains. Furthermore, the authors show that AnsACR is usable in multiphoton experiments having a peak photocurrent in a commonly used wavelength. Overall, the author's detailed measurements and characterization make for an important resource, both presenting new opsins that may be important for future experiments, and providing characterizations to expand our understanding of opsin biophysics in general.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      First, while the authors frequently reference GtACR1, a well-used anion opsin, there is no side-by-side data comparing these new opsins to the existing state-of-the-art. Such comparisons are very useful to adopt new opsins.

      GtACR1 exhibits the peak sensitivity at 515 nm and therefore is poorly suited for combination with red-shifted CCRs or fluorescent sensors, unlike blue-light-absorbing ancyromonad ACRs. Nevertheless, we conducted side-by-side comparison of ancyromonad ChRs, GtACR1 and GtACR2, the latter of which has the spectral maximum at 470 nm. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Next, multiphoton optogenetics is a promising emerging field in neuroscience, and I appreciate that the authors began to evaluate this approach with these opsins. However, a few additional comparisons are needed to establish the user viability of this approach, principally the photocurrent evoked using the 2p process, for given power densities. Comparison across the presented opsins and GtACR1 would allow readers to asses if these opsins are meaningfully activated by 2P.

      We carried out additional 2P experiments in ancyromonad ChRs, GtACR1 and GtACR2 and added their results to a new main-text Figure 6 and Figure 6 – figure supplement 1. We added the new section describing these results, “Two-photon excitation”, to the main text in the revision:

      “To determine the 2P activation range of AnsACR, FtACR, and NlCCR, we conducted raster scanning using a conventional 2P laser, varying the excitation wavelength between 800 and 1,080 nm (Figure 6 – figure supplement 1). All three ChRs generated detectable photocurrents with action spectra showing maximal responses at ~925 nm for AnsACR, 945 nm for FtACR, and 890 nm for NlCCR (Figure 6A). These wavelengths fall within the excitation range of common Ti:Sapphire lasers, which are widely used in neuroscience laboratories and can be tuned between ~700 nm and 1,020-1,300 nm. To assess desensitization, cells expressing AnsACR, FtACR, or NlCCR were illuminated at the respective peak wavelength of each ChR at 15 mW for 5 seconds. GtACR1 and GtACR2, previously used in 2P experiments (Forli, Vecchia et al. 2018, Mardinly, Oldenburg et al. 2018), were included for comparison. The normalized photocurrent traces recorded under these conditions are shown in Figure 6B-F. The absolute amplitudes of 2P photocurrents at the peak time and at the end of illumination are shown in Figure 6G and H, respectively. All five tested variants exhibited comparable levels of desensitization at the end of illumination (Figure 6I).”

      Reviewer #3 (Public review):

      Summary:

      The authors aimed to develop Channelrhodopsins (ChRs), light-gated ion channels, with high potency and blue action spectra for use in multicolor (multiplex) optogenetics applications. To achieve this, they performed a bioinformatics analysis to identify ChR homologues in several protist species, focusing on ChRs from ancyromonads, which exhibited the highest photocurrents and the most blue-shifted action spectra among the tested candidates. Within the ancyromonad clade, the authors identified two new anion-conducting ChRs and one cation-conducting ChR. These were characterized in detail using a combination of manual and automated patch-clamp electrophysiology, absorption spectroscopy, and flash photolysis. The authors also explored sequence features that may explain the blue-shifted action spectra and differences in ion selectivity among closely related ChRs.

      Strengths:

      A key strength of this study is the high-quality experimental data, which were obtained using well-established techniques such as manual patch-clamp and absorption spectroscopy, complemented by modern automated patch-clamp approaches. These data convincingly support most of the claims. The newly characterized ChRs expand the optogenetics toolkit and will be of significant interest to researchers working with microbial rhodopsins, those developing new optogenetic tools, as well as neuro- and cardioscientists employing optogenetic methods.

      We thank the Reviewer for his/her positive evaluation of our work.

      Weaknesses:

      This study does not exhibit major methodological weaknesses. The primary limitation of the study is that it includes only a limited number of comparisons to known ChRs, which makes it difficult to assess whether these newly discovered tools offer significant advantages over currently available options.

      We conducted side-by-side comparison of ancyromonad ChRs and GtACRs, wildly used for optical inhibition of neuronal activity. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 added in the revision. We also added the following text, describing these results, to the revised Results section:

      “Figures 1E and F show the dependence of the peak photocurrent amplitude and reciprocal peak time, respectively, on the photon flux density for ancyromonad ChRs and GtACRs. The current amplitude saturated earlier than the time-to-peak for all tested ChRs. Figure 1 – figure supplement 4A-E shows normalized photocurrent traces recorded at different photon densities. Quantitation of desensitization at the end of 1-s illumination revealed a complex light dependence (Figure 1, Figure Supplement 4F). Figure 1 – figure supplement 5 shows normalized photocurrent traces recorded in response to a 5-s light pulse of the maximal available intensity and the magnitude of desensitization at its end.”

      Additionally, although the study aims to present ChRs suitable for multiplex optogenetics, the new ChRs were not tested in combination with other tools. A key requirement for multiplexed applications is not just spectral separation of the blue-shifted ChR from the red-shifted tool of interest but also sufficient sensitivity and potency under low blue-light conditions to avoid cross-activation of the respective red-shifted tool. Future work directly comparing these new ChRs with existing tools in optogenetic applications and further evaluating their multiplexing potential would help clarify their impact.

      As a proof of principle, we co-expressed AnsACR with the red-shifted cation-conducting CCR Chrimson and demonstrated that the net photocurrent generated by this combination is hyperpolarizing in the blue region of the spectrum, and depolarizing at the red region. In the revision, we added a new panel (Figure 1D) showing these results and the following paragraph to the main text:

      “To test the possibility of using AnsACR in multiplex optogenetics, we co-expressed it with the red-shifted CCR Chrimson (Klapoetke et al., 2014) fused to an EYFP tag in HEK293 cells. We measured the action spectrum of the net photocurrents with 4 mM Cl<sup>-</sup> in the pipette, matching the conditions in the neuronal cytoplasm (Doyon, Vinay et al. 2016). Figure 1D, black shows that the direction of photocurrents was hyperpolarizing upon illumination with λ<500 nm and depolarizing at longer wavelengths. A shoulder near 520 nm revealed a FRET contribution from EYFP (Govorunova, Sineshchekov et al. 2020), which was also observed upon expression of the Chrimson construct alone (Figure 1D, red)”.

      Reviewing Editor Comments:

      The reviewers suggest that direct comparison to GtACR1 is the most important step to make this work more useful to the community.

      We followed the Reviewers’ recommendations and carried out side-by-side comparison of ancyromonad ChRs and GtACR1 as well as GtACR2 (Figure 1E and F, Figure 1 – figure supplement 4, Figure 1 – figure supplement 5, and Figure 6). Note, however, that GtACR1’s spectral maximum is at 515 nm, which makes it poorly suitable for blue light excitation. Also, ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      Reviewer #1 (Recommendations for the authors):

      (1) The figure legend for Figure 2D-I appears to be incomplete. Please provide a detailed explanation of the panels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      (2) The meaning of the Vr shift (Y-axis in Figure 2H-I) should be clarified in the main text to aid reader understanding.

      In the revision, we added the phrase “which indicated higher relative permeability to NO<sub>3</sub> than to Cl<sup>-“</sup> to explain the meaning of the Vr shift upon replacement of Cl<sup>-</sup> with NO<sub>3</sub>-.

      (3) Adding statistical analysis for the peak and end photocurrent values in Figure 2D-F would strengthen the claim that there is minimal change in relative permeability during illumination.

      In the revision, we added the V<sub>r</sub> values for the peak photocurrent to Figure 2H-I, which already contained the V<sub>r</sub> values for the end photocurrent, and carried out a statistical analysis of their comparison. The following sentence was added to the text in the revision:

      “The V<sub>r</sub> values of the peak current and that at the end of illumination were not significantly different by the two-tailed Wilcoxon signed-rank test (Fig. 2G), indicating no change in the relative permeability during illumination.”

      (4) Figure 4H and I seem out of place in Figure 4, as the title suggests a focus on wild-proteins and AnsACR mutants. The authors could consider moving these panels to Figure 3 for better alignment with the content.

      As noted below, we changed the panel order in Figure 4 upon the Reviewer’s request. In particular, former Figure 4I is Figure 4C in the revision, and former Figure 4H is now panel C in Figure 3 – figure supplement 1 in the revision. We rearranged the corresponding section of the text (highlighted yellow in the manuscript).

      (5) The characterization section could be strengthened by including data on the pH sensitivity of FtACR, which is currently missing from the main figures.

      Upon the Reviewer’s request, we carried out pH titration of FtACR absorbance and added the results as Figure 4B in the revision.

      (6) The logic in Figure 4A-G appears somewhat disjointed. For example, Figure 4A shows pH sensitivity for WT AnsACR and the G86E mutant, while Figure 4 B-D shifts to WT AnsACR and the D226N mutant, and Figure 4E returns to the G86E mutant. Reorganizing or clarifying the flow would improve readability.

      We followed the Reviewer’s advice and changed the panel order in Figure 4. In the revised version, the upper row (panels A-C) shows the pH titration data of the three WTs, the middle row (panels D-F) shows analysis of the AnsACR_D226N mutant, and the lower row (panels G-I) shows analysis of the AnsACR_G88E mutant. We also rearranged accordingly the description of these panels in the text.

      (7) In Figure 5A, "NIACR" should likely be corrected to "NlCCR".

      We corrected the typo in the revision.

      (8) The statistical significance in Figure 6C and D is somewhat confusing. Clarifying which groups are being compared and using consistent symbols would improve interoperability.

      In the revision, we improved the figure panels and legend to clarify that the comparisons are between the dark and light stimulation groups within the same current injection.

      (9) The authors pointed out that at rest or when a small negative current was injected, the neurons expressing Cl- permeable ChRs could generate a single action potential at the beginning of photostimulation, as has been reported before. The authors could help by further discussing if and how this phenomenon would affect the applicability of such tools.

      We mentioned in the revised Discussion section that activation of ACRs in the axons could depolarize the axons and trigger synaptic transmission at the onset of light stimulation, and this undesired excitatory effect need to be taken into consideration when using ACRs.

      Reviewer #2 (Recommendations for the authors):

      Govorunova et al present three new anion opsins that have potential applications in silencing neurons. This paper follows the tradition of the Spudich lab, presenting and rigorously characterizing potentially valuable opsins. Furthermore, they explore several mutations of the identified opsin that may make these opsins even more useful for the broader community. In general, I feel positively about this manuscript. It presents new potentially useful opsins and provides characterization that would enable its use. I have a few recommendations below, mostly centered around side-by-side comparisons to existing opsins.

      (1) My primary concern is that while there is a reference to GtACR1, a highly used opsin first described by this team, they do not present any of this data side by side.

      When evaluating opsins to use, it is important to compare them to the existing state of the art. As a potential user, I need to know where these opsins differ. Citing other papers does not solve this as, even within the same lab, subtle methodological differences or data plotting decisions can obscure important differences.

      As we explained in the response to the public comments, we carried out side-by-side comparison of ancyromonad ChRs and GtACRs as requested by the Reviewer. The results are shown in the new Figures 1E and F, and the new multipanel Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5, added in the revision. However, we would like to emphasize a limited usefulness of such comparative analysis, as ChRs are known to perform very differently in different cell types and upon expression of their genes in different vector backbones, so our results cannot be generalized for all experimental systems. Each ChR user needs to select the most appropriate tool for his/her purpose by testing several candidates in his/her own experimental setting.

      (2) Multiphoton optogenetics is an emerging field of optogenetics, and it is admirable that the authors address it here. The authors should present more 2p characterization, so that it can be established if these new opsins are viable for use with 2P methods, the way GtACR1 is. The following would be very useful for 2P characterization:

      Photocurrents for a given power density, compared to GtACR1 and GtACR2.

      The new Figure 6 (B-F) added in the revision shows photocurrent traces recorded from the three ancyromonad ChRs and  two GtACRs upon 2P excitation of a given power density.

      Comparing NICCR and FtACR's wavelength specificity and photocurrent. If these opsins are too weak to create reasonable 2P spectra, this difference should be discussed.

      The new Figure 6A shows the 2P action spectra of all three ancyromonad ChRs.

      A Trace and calculated photocurrent kinetics to compare 1P and 2P. This need not be the flash-based absorption characterization of Figure 3, but a side-by-side photocurrent as in Figure 2.

      As mentioned above, photocurrent traces recorded from ancyromonad ChRs and GtACRs upon 2P excitation are shown in the new Figure 6 (B-F). However, direct comparison of the 2P data with the 1P data is not possible, as we used laser scanning illumination for the former and wild-field illumination for the latter.

      Characterization of desensitization. As the authors mention, many opsins undergo desensitization, presenting the ratio of peak photocurrent vs that at multiple time points (probably up to a few seconds) would provide evidence for how effectively these constructs could be used in different scenarios.

      We conducted a detailed analysis of desensitization under both 1P and 2P excitation. The new Figure 1 – figure supplement 4 and Figure 1 – figure supplement 5 show the data obtained under 1P excitation, and the new Figure 6 shows the data for 2P conditions.

      I have to admit, that by the end of the paper, I was getting confused as to which of the three original constructs had which property, and how that was changing with each mutation. I would suggest that a table summarizing each opsin and mutation with its onset and offset kinetics, peak wavelength, photocurrent, and ion selectivity would greatly increase the ability to select and use opsins in the future.

      In the revision, we added a table of the spectroscopic properties of all tested mutants as Supplementary File 2. This study did not aim to analyze other parameters listed by the Reviewer. We added the following sentence referring to this table to the main text:

      “Supplementary File 2 contains the λ values of the half-maximal amplitude of the long-wavelength slope of the spectrum, which can be estimated more accurately from the action spectra than the λ of the maximum.”

      It may be out of the scope of this manuscript, but if a soma localization sequence can be shown to remove the 'axonal spiking' (as described in line 441), this would be a significant addition to the paper.

      Our previous study (Messier et al., 2018, doi: 10.7554/eLife.38506) showed that a soma localization sequence can reduce, but not eliminate, the axonal spiking. We plan to test these new ACRs with the trafficking motifs in the future.

      NICCR appears to have the best photocurrents of all tested opsins in this paper. It seems odd that it was omitted from the mouse cortical neurons experiments.

      We have not included analysis of NlCCR behavior in neurons because we are preparing a separate manuscript on this ChR.

      Figure 6 would benefit from more gradation in the light powers used to silence and would benefit from comparison to GtACR. I suggest using a fixed current with a series of illumination intensities to see which of the three opsins (or GtACR) is most effective at silencing. At present, it looks binary, and a user cannot evaluate if any of these opsins would be better than what is already available.

      In the revision, we added the data comparing the light sensitivity of AnsACR and FtACR with previously identified GtACR1 and GtACR2 (new Figure 1E and F) to help users compare these ACRs. Although they are less sensitive to light comparing to GtACR1 and GtACR2, they could still be activated by commercially available light sources if the expression levels are similar. Less sensitive ACRs may have less unwanted activation when using with other optogenetic tools.

      Reviewer #3 (Recommendations for the authors):

      Suggested Improvements to Experiments, Data, or Analyses:

      (1) Line 25: "significantly exceeding those by previously known tools" and Line 408: "NlCCR is the most blue-shifted among ancyromonad ChRs and generates larger photocurrents than the earlier known CCRs with a similar absorption maximum." As noted in the public review, this statement applies only to a very specific subgroup of ChRs with spectral maxima below 450 nm. If the goal was to claim that NlCCR is a superior tool among a broader range of blue-light-activated ChRs, direct comparisons with state-of-the-art ChRs such as ChR2 T159C (Berndt et al., 2011), CatCh (Kleinlogel et al., 2014), CoChR (Klapoetke et al., 2014), CoChR-3M (Ganjawala et al., 2019), or XXM 2.0 (Ding et al., 2022) would be beneficial. If the goal was to demonstrate superiority among tools with spectra below 450 nm, I suggest explicitly stating this in the paper.

      The Reviewer correctly inferred that we emphasized the superiority of NlCCR among tools with similar spectral maxima, not all blue-light-activated ChRs available for neuronal photoexcitation, most of which exhibit absorption maxima at longer wavelengths. To clarify this, we added “with similar spectral maxima” to the sentence in the original Line 25. The sentence in Line 408 already contains this clarification: “with a similar absorption maximum”.

      (2) Lines 111-113: "The absorption spectra of the purified proteins were slightly blue-shifted from the respective photocurrent action spectra (Figure 1D), likely due to the presence of non-electrogenic cis-retinal-bound forms." I would be skeptical of this statement. The spectral shifts in NlCCR and AnsACR are small and may fall within the range of experimental error. The shift in FtACR is more apparent; however, if two forms coexist in purified protein, this should be reflected as two Gaussian peaks in the absorption spectrum (or at least as a broader total peak reflecting two states with close maxima and similar populations). On the contrary, the action spectrum appears to have two peaks, one potentially below 465 nm. Generally, neither spectrum appears significantly broader than a typical microbial rhodopsin spectrum. This question could be clarified by quantifying the widths of the absorption and action spectra or by overlaying them on the same axis. In my opinion, the two spectra seem very similar, and just appearance of the "bump" in the action spectum shifts the apparent maximum of the action spectrum to the red. If there were two states, then they should both be electrogenic, and the slight difference in spectra might be explained by something else (e.g. by a slight difference in the quantum yields of the two states).

      As the Reviewer suggested, in the revision we added a new figure (Figure 1 – figure supplement 2), showing the overlay of the absorption and action spectra of each ancyromonad ChR. This figure shows that the absorption spectra are wider than the action spectra (especially in AnsACR and FtACR), which confirms our interpretation (contribution of the non-electrogenic blue-shifted cis-retinal-bound forms to the absorption spectrum). Note that the presence of such forms explaining a blue shift of the absorption spectrum has been experimentally verified in HcKCR1 (doi: 10.1016/j.cell.2023.08.009; 10.1038/s41467-025-56491-9). Therefore, we revised the text as follows:

      “The absorption spectra of the purified proteins (Figure 1C) were slightly blue-shifted from the respective photocurrent action spectra (Figure 1 – figure supplement 3), likely due to the presence of non-electrogenic cis-retinal-bound forms. The presence of such forms, explaining the discrepancy between the absorption and the action spectra, was verified by HPLC in KCRs (Tajima et al. 2023, Morizumi et al., 2025).”

      (3) Lines 135-136: "The SyncroPatch enables unbiased estimation of the photocurrent amplitude because the cells are drawn into the wells without considering their tag fluorescence." While SyncroPatch does allow unbiased selection of patched cells, it does not account for the fraction of transfected cells. Without a method to exclude non-transfected cells, which are always present in transient transfections, the comparison of photocurrents may be affected by the proportion of untransfected cells, which could vary between constructs. To clarify whether the statistically significant difference in the Kolmogorov-Smirnov test could indicate that the fraction of transfected cells after 48-72h differs between constructs, I suggest analyzing only transfected cells or reporting fractions of transfected cells by each construct.

      The Reviewer correctly states that non-transfected cells are always present in transiently transfected cell populations. However, his/her suggestion to “exclude non-transfected cells” is not feasible in the absence of a criterion for such exclusion. As it is evident from our data, transient transfection results in a continuum of the amplitude values, and it is not possible to distinguish a small photocurrent from no photocurrent, considering the noise level. We would like, however, to emphasize that not excluding any cells provides an estimate of the overall potency of each ChR variant, which depends on both the fraction of transfected cells and their photocurrents. This approach mimics the conditions of in vivo experiments, when non-expressing cells also cannot be excluded.

      (4) Line 176: "AnsACR and FtACR photocurrents exhibited biphasic rise." The fastest characteristic time is very close to the typical resolution of a patch-clamp experiment (RC = 50 μs for a 10 pF cell with a 5 MΩ series resistance). Thus, I am skeptical that the faster time constant of the biphasic opening represents a protein-specific characteristic time. It may not be fully resolved by patch-clamp and could simply result from low-pass filtering of a specific cell. I suggest clarifying this for the reader.

      The Reviewer is right that the patch clamp setup acts as a lowpass filter. Earlier, we directly measured its time resolution (~15 μs) by recording the ultrafast (occurring on the ps time scale) charge movements related to the trans-cis isomerization (doi: 10.1111/php.12558). However, the lowpass filter of the setup can only slow the entire signal, but cannot lead to the appearance of a separate kinetic component (i.e. a monophasic process cannot become biphasic). Therefore, we believe that the biphasic photocurrent rise reflects biphasic channel opening rather than a measurement artifact. Two phases in the channel opening have also been detected in GtACR1 (doi: 10.1073/pnas.1513602112) and CrChR2 (10.1073/pnas.1818707116).

      (5) Line 516: "The forward LED current was 900 mA." It would be more informative to report the light intensity rather than the forward current, as many readers may not be familiar with the specific light output of the used LED modules at this forward current.

      We have added the light intensity value in the revision:

      “The forward LED current was 900 mA (which corresponded to the irradiance of ~2 mW mm<sup>-2</sup>)…”

      (6) Lines 402-403: "The NlCCR ... contains a neutral residue in the counterion position (Asp85 in BR), which is typical of all ACRs. Yet, NlCCR does not conduct anions, instead showing permeability to Na+." This is not atypical for CCRs and has been demonstrated in previous works of the authors (CtCCR in Govorunova et al. 2021, ChvCCR1 in Govorunova et al. 2022). What is unique is the absence of negatively charged residues in TM2, as noted later in the current study. However, the absence of negatively charged residues in TM2 appears to be rare for ACRs as well. Not as a strong point of criticism, but to enhance clarity, I suggest analyzing the frequency of carboxylate residues in TM2 of ACRs to determine whether the unique finding is relevant to ion selectivity or to another property.

      The Reviewer is correct that some CCRs lack a carboxylate residue in the D85 position, so this feature alone cannot be considered as a differentiating criterion. However, the complete absence of glutamates in TM2 is not rare in ACRs and is found, for example, in HfACR1 and CarACR2. We have discussed this issue in our earlier review (doi: 10.3389/fncel.2021.800313) and do not think that repeating this discussion in this manuscript is appropriate.

      Recommendations for Writing and Presentation:

      (1) Some figures contain incomplete or missing labels:

      Figure 2: Panels D to I lack labels.

      In the revision, we have expanded the legend of Figure 2 to explain all individual panels.

      Figure 3 - Figure Supplement 1: Missing explanations for each panel.

      In the revision, we changed the order of panes and explained all individual panels in the legend.

      Figure 5 - Figure Supplement 1: Missing explanations for each panel.

      No further explanation for individual panels in this Figure is needed because all panels show the action spectra of various mutants, the names of which are provided in the panels themselves. Repeating this information in the figure legend would be redundant.

      (2) In Figure 2, "sem" is written in lowercase, whereas "SEM" is capitalized in other figures. Standardizing the format would improve consistency.

      In the revision, we changed the font of the SEM abbreviation to the uppercase in all instances.

      (3) Line 20: "spectrally separated molecules must be found in nature." There is no proof that they cannot be developed synthetically; rather, it is just difficult. I suggest softening this statement, as the findings of this study, together with others, will probably allow designing molecules with specified spectral properties in the future.

      In the revision, we changed the cited sentence to the following:

      “Multiplex optogenetic applications require spectrally separated molecules, which are difficult to engineer without disrupting channel function”.

      (4) Line 216-219: "Acidification increased the amplitude of the fast current ~10-fold (Figure 4F) and shifted its Vr ~100 mV (Figure 3 - figure supplement 1D), as expected of passive proton transport. The number of charges transferred during the fast peak current was >2,000 times smaller than during the channel opening, from which we concluded that the fast current reflects the movement of the RSB proton." The claim about passive transport of the RSB proton should be clarified, as typically, passive transport is not limited to exactly one proton per photocycle, and the authors observe the increase in the fast photocurrents upon acidification.

      We thank the Reviewer for pointing out the confusing character of our description. To clarify the matter, we added a new photocurrent trace to Figure 4I in the revision recorded from AnsACR_G86E at 0 mV and pH 7.4. We have rewritten the corresponding section of Results as follows:

      “Its rise and decay τ corresponded to the rise and decay τ of the fast positive current recorded from AnsACR_G86E at 0 mV and neutral pH, superimposed on the fast negative current reflecting the chromophore isomerization (Figure 4I, upper black trace). We interpret this positive current as an intramolecular proton transfer to the mutagenetically introduced primary acceptor (Glu86), which was suppressed by negative voltage (Figure 4I, lower black trace). Acidification increased the amplitude of the fast negative current ~10-fold (Figure 4I, black arrow) and shifted its V<sub>r</sub> ~100 mV to more depolarized values (Figure 4 – figure supplement 2A). This can be explained by passive inward movement of the RSB proton along the large electrochemical gradient.”

      Minor Corrections:

      (1) Line 204: Missing bracket in "phases in the WT (Figure 4D."

      The quoted sentence was deleted during the revision.

      (2) Line 288: Typo-"This Ala is conserved" should probably be "This Met is conserved."

      We mean here the Ala four residues downstream from the first Ala. To avoid confusion, we changed the cited sentence to the following:

      “The Ala corresponding to BR’s Gly122 is also found in AnsACR and NlCCR (Figure 5A)…”

      (3) Lines 702-704: Missing Addgene plasmid IDs in "(plasmids #XXX and #YYY, respectively)."

      In the revision, we added the missing plasmid IDs.

  2. Aug 2025
    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Recommendations For The Authors):

      Comment 1: The authors need to do more to cite the prior work of others. CCL2 allelic expression imbalance tied to the rs13900 alleles was first reported by Johnson et al. (Pharmacogenet Genomics. 2008 Sep; 18(9): 781-791) and should be cited in the Introduction on line 128 next to the Pham 2012 reference. Also, in the Results section, line 142, please provide references for the statement "We and others have previously reported a perfect linkage disequilibrium between rs1024611 in the CCL2 cis-regulatory region and rs13900 in its 3′ UTR" since the linkage disequilibrium for these 2 SNPs is not reported in the ENSEMBL server for the 1000 genomes dataset. #

      We thank the reviewer for pointing out the omission regarding the citation of prior work. We acknowledge that Johnson et al. (2008) reported the association between rs13900 and CCL2 allelic expression imbalance based on Snapshot methodology while examining _cis-_acting variants of 42 candidate genes. To acknowledge these prior studies, we have cited the previous works of Johnson et al. (Johnson et al., 2008) along with Pham et al. (Pham et al., 2012) that linked rs13900 to CCL2 allelic expression imbalance. The text in the introduction section (Lines 128-130) has been updated to reflect the above-mentioned changes.

      “We and others have demonstrated AEI in CCL2 using rs13900 as a marker with the T allele showing a higher expression level relative to C allele (Johnson et al., 2008; Pham et al., 2012).”

      We have cited some previous studies that suggested strong linkage disequilibrium between rs1024611 and rs13900 within CCL2 gene, with D’=1 and R<sup>2</sup>=0.96 (Hubal et al., 2010; Intemann et al., 2011; Kasztelewicz et al., 2017; Pham et al., 2012) on Line 144. To address the concern regarding unreported linkage disequilibrium between rs1024611 and rs13900, we reviewed the pairwise linkage disequilibrium data by population in the ENSEMBL server for 1000 Genome dataset and confirm that the linkage disequilibrium (LD) between rs1024611 and rs13900 has been observed, with D’=1 and R<sup>2</sup>=0.92 to 1.0 in specific populations. We have included a table (Author response table 1) depicting pairwise LD between rs13900 and rs1024611 as reported in the ENSEMBL server for the 1000 genome dataset, a URL reference to the ENSEMBL server data.

      Author response table 1.

      Pairwise linkage disequilibrium data between rs13900 and rs1024611 by population reported in the ENSEMBL server for the 1000 genome dataset

      F. Variant, Focus Variant; R<sup>2</sup>, correlation between the pair loci; D’, difference between the observed and expected frequency of a given haplotype.

      URL: https://www.ensembl.org/Homo_sapiens/Variation/HighLD?db=core;r=17:34252269-34253269;v=rs1024611;vdb=variation;vf=959559590;second_variant_name=rs13900

      Comment 2: Certain details of the experimental protocols need to be further elaborated or clarified to contextualize the significance of the findings. For example, in the results line 184 the authors state "Using nascent RNA allows accurate determination of mRNA decay by eliminating the effects of preexisting mRNA." How does measuring nascent RNA enable the accurate determination of mRNA decay? Doesn't it measure allele-specific mRNA synthesis? Please elaborate, as this is a key result of the study. Can the authors provide a reference supporting this statement?

      It is worthwhile to mention that mRNA decay can be precisely measured by eliminating the effect of any preexisting mRNA. Metabolic labeling with 4-thiouridine allows exclusive capture of newly synthesized RNA which will allow quantification of RNA decay eliminating any interference from preexisting RNA. We agree that nascent RNA measurement primarily reflects synthesis rate rather than degradation. However, in conjugation with actinomycin-D based inhibition studies it can be exploited for accurate mRNA decay determination of the newly synthesized RNA (Russo et al., 2017). Therefore, our aim was to use the nascent RNA to study decay kinetics. The imbalance in the CCL2 allele expression does occur at the transcriptional level as seen in non-actinomycin-D treatment group (Figure 2C) although the impact of post-transcriptional mechanisms that alter transcripts stability cannot be ruled out. Therefore, we employed a novel approach that could assess both the synthesis and the degradation by combining actinomycin-D inhibition and nascent RNA capture in the same experimental setup. In the presence of actinomycin-D, we could detect much greater allelic difference in the expression levels of the rs13900T and C allele four-hour post-treatment, suggesting a role for post-transcriptional mechanisms in CCL2 AEI.

      “We have expanded the method section in the revised draft to include experimental details on capture of nascent RNA and subsequent downstream analysis” (Lines 553-563).

      Newly synthesized RNA was isolated using the Click-It Nascent RNA Capture Kit (Invitrogen, Cat No: C10365) following the manufacturer’s protocol. Peripheral blood mononuclear cells (PBMCs) or monocyte-derived macrophages (MDMs) obtained from heterozygous individuals were stimulated with lipopolysaccharide (LPS) for 3 hours in presence of 0.2 mM 5-ethynyl uridine (EU) (Jao and Salic, 2008; Paulsen et al., 2013). After the pulse, the culture medium was replaced with fresh growth medium devoid of EU. To assess RNA stability, actinomycin-D (5 µg/mL) was added, and samples were collected at 0, 1, 2, and 4 h post-treatment. The EU RNA was subjected to a click reaction that adds a biotin handle which was then captured by streptavidin beads. The captured RNA was used for cDNA synthesis (Superscript Vilo kit, Cat No: 11754250), PCR amplification, and allelic quantification.”

      Comment 3: Also, they next state that the assay was carried out using cells treated with actinomycin D (line 186). Doesn't actinomycin D block transcription? The original study by Jia et al 2008 in PNAS reported that low concentration of ActD (100 nM) blocked RNA pol I and higher concentration (2 uM) blocked RNA pol II. This or the study on which the InVitrogen kit is based should be cited. The concentration of actinomycin D used to treat the cells should be given. They report that the T allele transcript was more abundant than the C allele transcript in nascent RNA. Why doesn't that argue for a transcriptional mechanism rather than an RNA-stability mechanism? This result should be discussed in the Discussion.

      In our study, we used a concentration of 5 µg/mL (3.98 µM), which as noted by the reviewer can effectively inhibit RNA polymerase II (Pl II) activity. We have updated our manuscript to include details and cited the original work of (Jao and Salic, 2008; Paulsen et al., 2013), which thoroughly investigate the effect of various concentrations of ActD on RNA polymerase I and II (Line no 557). A discussion of the RNA stability mechanism is provided in the Result section (Lines 196-198).

      Comment 4: In their bioinformatics analysis of the allele-specific CCL2 mRNAs, they reported that the analysis obtained a score of 1e (line 214). What does that mean? Is it significant?

      We acknowledge that the notation “a score of 1e” was unclear and thank the reviewer for pointing it out. We have clarified its significance in the revised manuscript. The following text has been included in the result section (Line no 223)

      “The score of 1e was obtained using RBP-Var, a bioinformatics tool that scores variants involved in posttranscriptional interaction and regulation (Mao et al., 2016). Here, the annotation system rates the functional confidence of variants from category 1 to 6. While Category 1 is the most significant category and includes variants that are known to be expression quantitative trait loci (eQTLs), likely affecting RBP binding site, RNA secondary structure and expression, category 6 is assigned to minimal possibility to affect RBP binding. Additionally, subcategories provide further annotation ranging from the most informational variants (a) to the least informational variant (e). Reported 1e denotes that the variant has a motif for RBP binding. Although the employed scoring system is hierarchical from 1a to 1e, with decreasing confidence in the variant’s function. However, all the variants in category 1 are considered potentially functional to some degree.”

      Comment 5: In Figure 3A, why is the rare SNP rs181021073 shown? This SNP does not comeup anywhere else in the paper. For clarity, it should be removed from Figure 3A.

      We thank the reviewer for pointing out the error in Figure 3A and apologize for the oversight. We agree that the SNP rs1810210732 is not mentioned anywhere in the manuscript and its inclusion in Figure 3A may have caused confusion. We have removed this SNP from the revised figure.

      Comment 6: For the RNA EMSA results presented in Fig. 4C with recombinant ELAVL1 (HuR), there is clearly a loss of unbound T allele probe with increasing concentrations of the recombinant protein (without a concomitant increase in shifted complex). This suggests that the T allele probe is degraded or loses its fluorescent tag in the presence of recombinant HuR, whereas the C allele probe does not. The quantitation of the shifted complex presented in Fig. 4D as a percentage of bound and unbound probe is therefore artificially elevated for the T allele compared to the C allele. In fact, there seems to be little difference between the shifted complexes with the T and C allele probes. The authors should explain this difference in free probe levels.

      We appreciate the constructive critique of the reviewer regarding the RNA EMSA results in Fig. 4C. To address this, we repeated the experiments to analyze the differential binding of rs13900T/C allele bearing probes with increasing concentration of the recombinant HuR. No degradation/ loss of fluorescence tag for T allele was noted in presence of recombinant HuR in three independent experiments (Author response image 1). This indicates that both the probes with C or T allele show comparable stability and are not affected by increasing concentration of recombinant HuR. The apparent reduction in the unbound T allele probe in Figure 4C may be due to saturation at higher HuR concentration rather than degradation.

      Author response image 1.

      Differential binding and stability of oligoribonucleotide probes containing rs13900C or T alleles with recombinant HuR. (A) REMSA with labeled oligoribonucleotides containing either rs13900C or rs13900T and recombinant HuR at indicated concentrations. (B&C) Representative quantitative densitometric analysis of HuR binding to the oligoribonucleotides bearing rs13900 T or C. The signal in the bound fractions were normalized with the free probe. The figure represents data from three independent experiments (mean ± SEM).

      Comment 7: In the Methods section, concentrations and source of reagents should be given. For example, what was the bacterial origin of LPS and concentration? What concentration of actinomycin D? What was the source? Was it provided with the nascent RNA kit? In describing the riboprobes used for REMSA, please underline the allele in the sequences (lines 549 and 550).

      Thank you for your detailed feedback and suggestions regarding the Materials and Methods Section. We regret the oversight in providing detailed information on reagent concentrations and sources in the method section. We have now rectified this omission and have provided the necessary details and a summary of material/reagents used is presented as a supplementary table (Supplementary Table 4) to enable others to replicate our experiments accurately. Regarding the description of riboprobes for RNA Electrophoretic Mobility Shift Assay, we underlined and bold the allele in the sequences as suggested (Lines 603-604).

      Comment 8: For polysome profiling on line 603, please provide a protocol for the differentiation of primary macrophages from monocytes (please cite an original protocol, not a prior paper that does not give a detailed protocol).

      We agree with the reviewer’s comment and have included the following text for primary macrophage differentiation from monocytes in the method section cited the original protocol (Line 668).

      “Human monocytes were isolated from fresh blood as described earlier (Gavrilin et al., 2009) with slight modification. Briefly, peripheral blood mononuclear cells were isolated by density gradient centrifugation using Histopaque, followed by immunomagnetic negative selection using EasySep Human Monocyte isolation kit. A high purity level for CD14+ cells was consistently achieved (≥90%) through this procedure, as confirmed by flowcytometry. The purified monocytes were immediately used for macrophage differentiation by treating them with 50 ng/mL M-CSF (PeproTech) for 72 h and flow cytometric measurement of surface markers CD64+,

      CD206+, CD44 was used to confirm the differentiation”. This data is now shown in the new Supplementary Figure S6.

      Comment 9: In the legend of Figure 2, please replace "5 ug of actinomycin D" with the actual concentration used.

      We appreciate your attention to detail and thank you for pointing out the error in the legend of Figure 2. We regret the oversight and have made the suggested change (Line 739).

      Comment 10: In the Discussion, the authors cite the study of CCL2 mRNA stabilization by HuR in mice by Sasaki et al (lines 407-9). Is regulation of CCL2 mRNA by HuR in the mouse relevant to human studies?

      How conserved is the 3'UTR of mouse and human CCL2? Is the rs13900 variant located in a conserved region? How many putative HuR sites are found in the 3'UTR of human and mouse CCL2 3'UTR? Does HuR dimerize (see Pabis et al 2019, NAR)? This information could be added to the Discussion.

      Thank you for your valuable comment. We appreciate your suggestion to include information on the dimerization of HuR in our discussion. While reporting the overall structure and domain arrangement of HuR, Pabis et al. (2019) deciphered dimerization involving Trp261 in RRM3 as key requirement for functional activity of HuR in vitro. This finding provides additional context for understanding HuR’s role in regulating CCL2 expression. We have added the following few lines in the discussion (Lines 421-428) acknowledging HuR’s ability to dimerize and cite the relevant references.

      “HuR consists of three RNA recognition motifs (RRMs) that are highly conserved and canonical in nature (Ripin et al., 2019). In absence of RNA the three RRMs are flexibly linked but upon RNA binding they transition to a more compact arrangement. Mutational analysis revealed that HuR function is inseparably linked to RRM3 dimerization and RNA binding. Dimerization enables recognition of tandem AREs by dimeric HuR (Pabis et al., 2019) and explains how this protein family can regulate numerous targets found in pre-mRNAs, mature mRNAs, miRNAs and long noncoding RNAs.”

      We aligned the CCL2 3’UTR from five different mammalian species and found that the region flanking rs13900/ HuR binding site is relatively conserved (Author response image 2). Based on PAR-CLIP datasets there are four HuR binding regions in human CCL2 3’ UTR (Lebedeva et al., 2011). However, the region overlapping rs13900 seems to be predominantly involved in the CCL2 regulation (Fan et al., 2011). This information has been included in the discussion.

      Author response image 2.

      Cross-species alignment of the CCL2 3’UTR region flanking the rs13900 using homologous regions from 5 different mammals. (Hu, Human; CH, Chimps; MO, Mouse; RA, Rat; DO, Dog, rs13900 is shown within the brackets Y, pyrimidine)

      Reviewer #2 (Recommendations For The Authors):

      Comment 1: The supplemental figures need appropriate figure legends.

      We regret the oversight and thank the reviewer for bringing it to our attention. We have now included the figure legend for the supplemental figures in the revised manuscript.

      Comment 2: The data on LPS-induced CCL2 expression in PBMCs should be represented as a scatter plot with statistical significance to enhance clarity and interpretability.

      We thank the reviewer for this constructive suggestion. In the revised Figure 2A the induction of CCL2 expression by LPS in PBMCs obtained from 6 volunteers is represented as a scatter plot. We have also included individual data points in the updated figure and statistical significance to improve clarity and interpretability.

      Comment 3: The stability of CCL2 mRNA in control cells needs comparison with treated cells for context. The stability of a housekeeping gene (such as GAPDH or ACTB) should always be included as a control in actinomycin D experiments. Clarify the differential stability of rs13900C vs. rs13900T alleles.

      We used 18S to normalize data for the mRNA stability studies, as it is abundant and has been recommended for such studies, as it is relatively unaltered when compared to other housekeeping genes following Act D treatment in well-controlled studies (Barta et al., 2023). We also compared Ct values between the Act D-treated samples and the Act D-untreated samples in this study and found them to be comparable (Author response image 3).

      Author response image 3.

      Ct values of 18s rRNA in ACT-D and control samples in Fig 2.

      Comment 4: In the main text and the methods, the authors state that nascent RNA was obtained in the presence of actinomycin D and EU. However, actinomycin D blocks the transcription of nascent RNAs, therefore the findings in Figure 2C do not reflect nascent RNA

      Please see our response to Reviewer 1 Comment 2. We would like to emphasize that to assess the differential role of the rs13900 in nascent RNA decay we integrated nascent RNA labeling and transcriptional inhibition. Briefly, PBMC from a heterozygous individual were either unstimulated or stimulated with LPS and pulsed with 5-ethynyl uridine (0.2 mM) for 3 h and the media was replaced with EU free growth medium. RNA was obtained at 0,1, 2 and 4 h following actinomycin-D treatment (5 µg/mL) to assess the stability of nascent RNA.

      Comment 5: Figure 4A is not clearly described or labeled. What are lanes 2 and 6?

      Figure 4 has now been updated to clearly describe all the lanes. Lanes 2 and 6 represent the mobility shift seen following the incubation by whole cell extracts and oligonucleotide bearing rs13900C and rs13900T probes respectively.

      Comment 6: Figure 4C and Figure 4D: the charts in Figure 4D do not seem to reflect the changes in Figure 4C. How was the mean variant calculated? How do the authors explain the different quantities in unbound/free RNA in rs13900C compared to rs13900T?

      We appreciate the constructive critique of the reviewer regarding the RNA EMSA results in Fig. 4C. To address this, we repeated the experiments to analyze the differential binding of rs13900T/C probes with increasing concentration of the recombinant HuR. No degradation/ loss of fluorescence tag in presence of HuR was noted in case of T allele (Author response image 1). This indicates that both the C and T allele probes exhibit comparable stability and are not affected by increasing the concentration of recombinant HuR. The apparent reduction in the unbound T allele probe in Figure 4C may be due to saturation due to higher HuR concentration rather than degradation. Also please note under limiting HuR concentration (50µM) there is more binding of purified HuR by the T bearing oligoribonucleotide (compare lanes 2 & 6 in Author response image 1).

      Comment 7: Figure 5A does not look like an IP. The authors should show the heavy and light chains and clarify why there is co-precipitation of beta-actin with IgG and HuR. Also, they should include input samples. Figure 5B: given that in a traditional RIP the mRNA is not cross-linked and fragmented, any region of CCL2 mRNA would be amplified, not just the 3'UTR. In other words, Figure 5B can be valuable to show the enrichment of CCL2 mRNA in general, but not the enrichment of a specific region.

      We understand the reviewer’s concern on Figure 5A and 5B. Due to sample limitations we are unable to confirm these results using heavy and light chains antibodies. However, it is important to note that co-precipitation of β-actin with IgG and HuR can be due to its non-specific binding with protein G. In a recent study non-specific precipitation by protein G or A was reported for proteins such as p53, p65 and β-actin (Zeng et al., 2022). We are including a figure provided by MBL Life Sciences as the quality check document for their RIP Assay Kit (RN 1001) that was used in our study. It is evident from Author response image 4 that even pre-clearing the lysate may not remove the ubiquitously expressed proteins such as β-actin or GAPDH and they will persist as contaminants in pull-down samples. Hence the presence of β-actin in the IgG and HuR IP fractions may be due to non-specific interactions with the agarose beads.

      Author response image 4.

      MBL RIP-Assay Kit’s Quality Check. Quality check of immunoprecipitated endogenous PTBP1 expressed in Jurkat cells. Lane 1: Jurkat (WB positive cells), Lane 2: Jurkat + normal Rabbit IgG, Lane 3: Jurkat+ anti-PTBP1.

      We agree with the reviewer’s comments that traditional RIP without cross-linking and fragmentation allows amplification of any region of CCL2 mRNA. However, the upregulation of CCL2 gene expression in α-HuR immunoprecipitated samples indirectly reflects the enrichment of CCL2 mRNA associated with HuR. Moreover, 3’-UTR targeting primers were used for amplification to examine HuR binding at this region. We believe this approach ensures that the above enrichment specifically reflects HuR association with the 3’-UTR rather than other parts of the transcript.

      Comment 8: Construct Validation in Luciferase Assays (Figure 6): The authors need to confirm equal transfection amounts of constructs and show changes in luciferase mRNA levels. It would be better to use a dual luciferase construct for internal normalization.

      We would like to thank the reviewer for his concern and comments related to the luciferase reporter assay. As mentioned in the Methods equal transfection amount (0.5 µg) were used in our study (Line 658). We chose to normalize the reporter activity using total protein concentration instead of using a dual-reporter system to avoid crosstalk with co-transfected control plasmids. This is now included in the Materials and Method section (Lines 662-664). The optimized design of the LightSwitch Assay system used in our study allows a single assay design when a highly efficient transfection system is used (as recommended by the manufacturer). We verified the presence of the correct insert in the CCL2 Light Switch 3’UTR reporter constructs (Author response image 5). We also sequenced the vector backbone of both constructs to rule out any inadvertently added mutations.

      Author response image 5.

      Schematic of the Lightswitch 3’UTR vector. (A) Vector information. The vector contains a multiple cloning site (MCS) upstream of the Renilla Luciferase gene (RenSP). Human 3’UTR CCL2 is cloned into MCS downstream of the reporter gene and it becomes a part of a hybrid transcript that contains the luciferase coding sequence used to the UTR sequence of CCL2. Constructs containing rs13900C or rs13900T allele were generated using site-specific mutagenesis on CCL2 LightSwitch 3’UTR reporter. The constructs were validated by Sanger sequencing. (B&C) Sequence chromatograph of the constructs containing CCL2-3’UTR insert showing rs13900C and rs13900T respectively. The result confirms the fidelity of the constructs used in the reporter assay.

      Comment 9: Polysome Data Presentation: The authors should present the distribution of luciferase mRNA (rs13900T and rs13900C) in all fractions separately and include data on the translation of a control like ACTB or GAPDH.

      Since our assessment of CCL2 allele-specific enrichment in the polysome fractions from MDMs of heterozygous donors did not yield a consistent pattern for differential loading (Supplementary Table3), we used a 3’UTR reporter-based assays that estimated the impact of rs13900 T and C alleles on overall translational output (translatability). The translatability was calculated as luciferase activity normalized by luciferase mRNA levels after adjusting for protein and 18S rRNA using a previously reported method (Zhang et al., 2017). As the measurement of relative allele enrichment in polysome fractions was not included in our invitro reporter assays, it is not possible to present the distribution of luciferase mRNA in various fractions separately. Author response image 6 shows the proportion of CCL2 mRNA in different fractions corresponding to cytosolic, monosome and polysome fractions obtained from MDM lysates from heterozygous donors along with 18S rRNA quantification.

      Author response image 6.

      Determination of rs13900C/T allelic enrichment in polysome fractions and its effect on polysome loading. Polysome profile obtained by sucrose gradient centrifugation of macrophages before and after stimulation with LPS (1 µg/mL) for 3 h. (A&B) The CCL2 mRNA shifts from monosome-associated fractions to heavier polysomes following LPS stimulation, indicating increased translation efficiency. (C&D) In contrast, the distribution of 18S shows no significant shift due to LPS treatment. (mean ± SEM, n=4). The percentage of mRNA loading on polysome was calculated using ΔCT method (mean ± SEM, n=4). (E&F) CCL2 AEI measurement in polysomes of macrophages from heterozygous donors (n=2). Genomic and cDNA were subjected to Sanger sequencing and the peak height of both the alleles were used to determine the relative abundance of each allele.

      Comment 10: Please explain in detail how primary monocytes were transfected with siRNAs for more than 72 hours. Typically, primary monocytes are very hard to transfect, have a very limited lifespan in culture (around 48 hours), and show a high level of cell death upon transfection. If monocytes were differentiated from macrophages, explain in detail how it was done and provide supporting citations from the literature.

      We agree with the challenges associated with transfecting primary monocytes, including their limited lifespan in culture and susceptibility to cell death following transfection and apologize for not elaborating the method section on lentiviral transduction of primary macrophages. To overcome these limitations, we utilized monocytes undergoing differentiation into macrophages rather than fully differentiated macrophages for our experiments. Cells were transfected by slightly modifying the method described by Plaisance-Bonstaff et.al 2019 (Plaisance-Bonstaff et al., 2019). Briefly, monocytes were purified from PBMCs obtained from homozygous donors for rs13900 C or rs13900T by negative selection. Upon purification cells were resuspended in 24 well plates at a seeding density of 0.5 x10<sup>6</sup> cells per well and were further cultured in the medium supplemented with 50 ng/mL M-CSF (Fig S7 and Fig. S6). After 24 h, ready to use GFP-tagged pCMV6-HuR or CMV-null lentiviral particles (Amsbio, Cambridge, M.A) were transduced into 0.5 x10<sup>6</sup> cells in presence of polybrene (60 µg/mL) at a MOI of 1. The cells were processed for HuR and CCL2 expression 72 h after transduction after stimulation with LPS for 3 h. This data is now shown in new Supplementary Figure S7.

      Comment 11: The authors should prove the binding of HuR to the 3'UTR of CCL2 not only in vitro but also in cells. For this aim, a CLIP including RNA fragmentation followed by RT-PCR or sequencing would be more informative than a RIP. It would be helpful also to demonstrate the different binding to the 3'UTR variants (rs13900C vs. rs13900T).

      We thank the reviewer for his valuable suggestion on validating binding of HuR to the 3’UTR in cells. It is important to highlight that several independent datasets including CLIP have already demonstrated that HuR binds to the 3’UTR of CCL2 including the region spanning the rs13900 locus. We have summarized the relevant studies in a tabular form (Supplementary Table-2). We are unable to confirm these results in new experiments due to sample limitation. The already existing data and experimental evidence provided in this manuscript strongly suggest that HuR binds within the 3’UTR. Also, a previously published study (Fan et al, 2011) showed that only the first 125 bp of the CCL2 3’UTR that flanks rs13900 showed strong binding to HuR but not the CCL2 coding region or other regions of 3’UTR. This further suggests that the HuR binding to the CCL2 is localized to the 3’UTR that flanks rs13900. Please note that the primers used for amplification of the RIP material were 3’-UTR specific.

      Comment 12: To quantify nascent RNA, Figure 2C should be replaced by new experiments. To label nascent RNA, authors can perform a run on/run-off experiments only with EU, without actinomycin D. As aforementioned, ActD blocks the transcription of new RNA, therefore is not useful for studying nascent RNA.

      We thank the reviewer for the suggestion and would like to emphasize that while measuring the rs13900C/T allelic ratio in nascent RNA, the experimental setup included evaluating the AEI both in presence and absence of the transcriptional inhibitor actinomycin D. The data presented in Figure 2C shows that the AEI in presence of actinomycin D is amplified in comparison to non-actinomycin D treatment. This provides definitive evidence to our hypothesis that rs13900T confers greater stability to the CCL2 message. We apologize for the oversight of not mentioning non-ACT D treatment in the methods. Necessary changes have been made to the revised manuscript (Lines 553-63).

      Comment 13: The authors should also investigate the role of TIA1 as a potential RBP and explore the possibility that TIA1 may interact more with the C allele to suppress translation.

      Based on the existing studies, we highlighted the importance of RNA-binding proteins such as TIA1 and U2AF56 that may interact with CCL2 transcript (Lines 408-09). However, exploring TIA1 binding and its functional consequences are beyond the scope of the current study. We thank the reviewer for this comment and this aspect will be pursued in future studies.

      Comment 14: It would be informative if the authors included study limitations and potential clinical implications of these findings, particularly regarding therapeutic approaches targeting CCL2.

      We would like to inform the reviewer that the submitted manuscript included the limitations of our study. They were discussed at appropriate places and were not included as a separate section. For instance, Line 398 emphasizes the need for in-depth studies for association of rs13900 and canonical CCL2 transcript. The need for additional studies regarding SNP-induced structural changes in RNA and its implication for RBP accessibility was highlighted at Lines 417-419. The inconclusive results of differential loading of polysomes and the need to conduct further research on the impact of rs13900 on CCL2 translatability in primary cells (Lines 457-459). We noted at Lines 484-485 about our further studies exploring the differential binding of HuR to the other regions of CCL2 3’UTR.

      Multiple studies have indicated that functional interference of HuR as a novel therapeutic strategy, particularly in the context of cancer, inflammation, neurodegeneration, and autoimmune disorders. These approaches include inhibitors such as MS-444, KH-3, and CMLD-2 that disrupt the interaction between HuR and ARE elements or mRNAs of target genes involved in disease pathology (Chaudhary et al., 2023; Fattahi et al., 2022; Lang et al., 2017; Liu et al., 2020; Wang et al., 2019; Wei et al., 2024), offering a potential new avenue for disease treatment. Findings from our studies provide unique insights on regulation of CCL2 expression by both rs13900 and HuR. We strongly believe that the SNP rs13900 and HuR represent a new druggable target for M/M-mediated disorders such as inflammatory diseases, cancer, and cardiovascular diseases. The potential clinical implications have been discussed in the revised manuscript (Lines 487-494)

      References

      Barta, N., Ordog, N., Pantazi, V., Berzsenyi, I., Borsos, B.N., Majoros, H., Pahi, Z.G., Ujfaludi, Z., Pankotai, T., 2023. Identifying Suitable Reference Gene Candidates for Quantification of DNA Damage-Induced Cellular Responses in Human U2OS Cell Culture System. Biomolecules 13.

      Chaudhary, S., Appadurai, M.I., Maurya, S.K., Nallasamy, P., Marimuthu, S., Shah, A., Atri, P., Ramakanth, C.V., Lele, S.M., Seshacharyulu, P., Ponnusamy, M.P., Nasser, M.W., Ganti, A.K., Batra, S.K., Lakshmanan, I., 2023. MUC16 promotes triple-negative breast cancer lung metastasis by modulating RNA-binding protein ELAVL1/HUR. Breast Cancer Res 25, 25.

      Fan, J., Ishmael, F.T., Fang, X., Myers, A., Cheadle, C., Huang, S.K., Atasoy, U., Gorospe, M., Stellato, C., 2011. Chemokine transcripts as targets of the RNA-binding protein HuR in human airway epithelium. J Immunol 186, 2482-2494.

      Fattahi, F., Ellis, J.S., Sylvester, M., Bahleda, K., Hietanen, S., Correa, L., Lugogo, N.L., Atasoy, U., 2022. HuR-Targeted Inhibition Impairs Th2 Proinflammatory Responses in Asthmatic CD4(+) T Cells. J Immunol 208, 38-48.

      Hubal, M.J., Devaney, J.M., Hoffman, E.P., Zambraski, E.J., Gordish-Dressman, H., Kearns, A.K., Larkin, J.S., Adham, K., Patel, R.R., Clarkson, P.M., 2010. CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. J Appl Physiol (1985) 108, 1651-1658.

      Intemann, C.D., Thye, T., Forster, B., Owusu-Dabo, E., Gyapong, J., Horstmann, R.D., Meyer, C.G., 2011. MCP1 haplotypes associated with protection from pulmonary tuberculosis. BMC Genet 12, 34.

      Jao, C.Y., Salic, A., 2008. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci U S A 105, 15779-15784.

      Johnson, A.D., Zhang, Y., Papp, A.C., Pinsonneault, J.K., Lim, J.E., Saffen, D., Dai, Z., Wang, D., Sadee, W., 2008. Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: detection through allelic expression imbalance in human target tissues. Pharmacogenet Genomics 18, 781791.

      Kasztelewicz, B., Czech-Kowalska, J., Lipka, B., Milewska-Bobula, B., Borszewska-Kornacka, M.K., Romanska, J., Dzierzanowska-Fangrat, K., 2017. Cytokine gene polymorphism associations with congenital cytomegalovirus infection and sensorineural hearing loss. Eur J Clin Microbiol Infect Dis 36, 1811-1818. Lang, M., Berry, D., Passecker, K., Mesteri, I., Bhuju, S., Ebner, F., Sedlyarov, V., Evstatiev, R., Dammann, K., Loy, A., Kuzyk, O., Kovarik, P., Khare, V., Beibel, M., Roma, G., Meisner-Kober, N., Gasche, C., 2017. HuR Small-Molecule Inhibitor Elicits Differential Effects in Adenomatosis Polyposis and Colorectal Carcinogenesis. Cancer Res 77, 2424-2438.

      Lebedeva, S., Jens, M., Theil, K., Schwanhausser, B., Selbach, M., Landthaler, M., Rajewsky, N., 2011. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43, 340-352.

      Liu, S., Huang, Z., Tang, A., Wu, X., Aube, J., Xu, L., Xing, C., Huang, Y., 2020. Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis. Clin Sci (Lond) 134, 1433-1448.

      Mao, F., Xiao, L., Li, X., Liang, J., Teng, H., Cai, W., Sun, Z.S., 2016. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res 44, D154-163.

      Pabis, M., Popowicz, G.M., Stehle, R., Fernandez-Ramos, D., Asami, S., Warner, L., Garcia-Maurino, S.M., Schlundt, A., Martinez-Chantar, M.L., Diaz-Moreno, I., Sattler, M., 2019. HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. Nucleic Acids Res 47, 1011-1029.

      Paulsen, M.T., Veloso, A., Prasad, J., Bedi, K., Ljungman, E.A., Tsan, Y.C., Chang, C.W., Tarrier, B., Washburn, J.G., Lyons, R., Robinson, D.R., Kumar-Sinha, C., Wilson, T.E., Ljungman, M., 2013. Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response. Proc Natl Acad Sci U S A 110, 2240-2245.

      Pham, M.H., Bonello, G.B., Castiblanco, J., Le, T., Sigala, J., He, W., Mummidi, S., 2012. The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance. PLoS One 7, e49498.

      Plaisance-Bonstaff, K., Faia, C., Wyczechowska, D., Jeansonne, D., Vittori, C., Peruzzi, F., 2019. Isolation, Transfection, and Culture of Primary Human Monocytes. J Vis Exp.

      Ripin, N., Boudet, J., Duszczyk, M.M., Hinniger, A., Faller, M., Krepl, M., Gadi, A., Schneider, R.J., Sponer, J., Meisner-Kober, N.C., Allain, F.H., 2019. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc Natl Acad Sci U S A 116, 2935-2944.

      Russo, J., Heck, A.M., Wilusz, J., Wilusz, C.J., 2017. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods 120, 39-48.

      Wang, J., Hjelmeland, A.B., Nabors, L.B., King, P.H., 2019. Anti-cancer effects of the HuR inhibitor, MS-444, in malignant glioma cells. Cancer Biol Ther 20, 979-988.

      Wei, L., Kim, S.H., Armaly, A.M., Aube, J., Xu, L., Wu, X., 2024. RNA-binding protein HuR inhibition induces multiple programmed cell death in breast and prostate cancer. Cell Commun Signal 22, 580.

      Zeng, X., Zeng, W.H., Zhou, J., Liu, X.M., Huang, G., Zhu, H., Xiao, S., Zeng, Y., Cao, D., 2022. Removal of nonspecific binding proteins is required in co-immunoprecipitation with nuclear proteins. Biotechniques 73, 289-296.

      Zhang, X., Chen, X., Liu, Q., Zhang, S., Hu, W., 2017. Translation repression via modulation of the cytoplasmic poly(A)-binding protein in the inflammatory response. Elife 6.

    1. Author response:

      General Statements:

      The formation of three-dimensional tubes is a fundamental process in the development of organs and aberrant tube size leads to common diseases and congenital disorders, such as polycystic kidney disease, asthma, and lung hypoplasia. The apical (luminal) extracellular matrix (ECM) plays a critical role in epithelial tube morphogenesis during organ formation, but its composition and organization remain poorly understood. Using the Drosophila embryonic salivary gland as a model, we reveal a critical role for the PAPS Synthetase (Papss), an enzyme that synthesizes the universal sulfate donor PAPS, as a critical regulator of tube lumen expansion. Additionally, we identify two zona pellucida (ZP) domain proteins, Piopio (Pio) and Dumpy (Dpy) as key apical ECM components that provide mechanical support to maintain a uniform tube diameter.

      The apical ECM has a distinct composition compared to the basal ECM, featuring a diverse array of components. Many studies of the apical ECM have focused on the role of chitin and its modification, but the composition of the non-chitinous apical ECM and its role, and how modification of the apical ECM affects organogenesis remain elusive. The main findings of this manuscript are listed below.

      (1) Through a deficiency screen targeting ECM-modifying enzymes, we identify Papss as a key enzyme regulating luminal expansion during salivary gland morphogenesis. 

      (2) Our confocal and transmission electron microscopy analyses reveal that Papss mutants exhibit a disorganized apical membrane and condensed aECM, which are at least partially linked to disruptions in Golgi structures and intracellular trafficking. Papss is also essential for cell survival and basal ECM integrity, highlighting the role of sulfation in regulating both apical and basal ECM.

      (3) Salivary gland-specific overexpression of wild-type Papss rescues all defects in Papss mutants, but the catalytically inactive mutant form does not, suggesting that defects in sulfation are the underlying cause of the phenotypes.

      (4) We identify two ZP domain proteins, Piopio (Pio) and Dumpy (Dpy), as key components of the salivary gland aECM. In the absence of Papss, Pio is progressively lost from the aECM, while the Dpy-positive aECM structure is condensed and detaches from the apical membrane, resulting in a narrowed lumen. 

      (5) Mutations in pio or dpy, or in Notopleural (Np), which encodes a matriptase that cleaves Pio, cause the salivary gland lumen to develop alternating bulges and constrictions. Additionally, loss of pio results in loss of Dpy in the salivary gland lumen, suggesting that the Dpycontaining filamentous structures of the aECM is critical for maintaining luminal diameter, with Pio playing an essential role in organizing this structure.

      (6) We further reveal that the cleavage of the ZP domain of Pio by Np is critical for the role of Pio in organizing the aECM structure.

      Overall, our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining tube diameter. Mammals have two isoforms of Papss, Papss1 and Papss2. Papss1 shows ubiquitous expression, with higher levels in glandular cells and salivary duct cells, suggesting a high requirement for sulfation in these cell types. Papss2 shows a more restricted expression, such as in cartilage, and mutations in Papss2 have been associated with skeletal dysplasia in humans. Our analysis of the Drosophila Papss gene, a single ortholog of human Papss1 and Papss2, reveals its multiple roles during salivary gland development. We expect that these findings will provide valuable insights into the function of these enzymes in normal development and disease in humans. Our findings on the key role of two ZP proteins, Pio and Dpy, as major components of the salivary gland aECM also provide valuable information on the organization of the non-chitinous aECM during organ formation.

      We believe that our results will be of broad interest to many cell and developmental biologists studying organogenesis and the ECM, as well as those investigating the mechanisms underlying human diseases associated with conserved mutations.

      Point-by-point description of the revisions:

      We are delighted that all three reviewers were enthusiastic about the work. Their comments and suggestions have improved the paper. The details of the changes we have made in response to each reviewer’s comments are included in italicized text below.

      Reviewer #1 (Evidence, reproducibility and clarity):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      (1) The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K’). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      (2) The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed “normal, fully expanded” lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system. 

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E). 

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I’), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.  

      (3) Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      (4) A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy. 

      (5) Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I’). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      (6) A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManIIGFP signals. Standard colocalization analysis methods, such as Pearson’s correlation coefficient or Mander’s overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L’). 

      (7) I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed “filled” electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      (8) The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology. 

      (9) Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to “defective sulfation affects Golgi structures and multiple routes of intracellular trafficking”. 

      (10) DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      (11) WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. DpyYFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5figure supplement 2C. 

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly. 

      (12) Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to “constrictions” to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      (13) The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes? 

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H). 

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np. 

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT. 

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      (14) Minor:

      Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error.  It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      Minor comments

      (1) Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsm<sup>MI07716</sup> line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.  

      (2) The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      (3) TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      (4) The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.  

      Reviewer #2 (Significance):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      - This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I’) and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.  

      - A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed).

      This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila.

      Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130. 

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants–although this line was very sick and difficult to grow–showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss. 

      - A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a

      product recognized by WGA?

      For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We’re also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism’s proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant. 

      - Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly. 

      After cleavages by Np and furin, the Pio protein should have three fragments. The Nterminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals. 

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1’s comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals. 

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I. 

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      -  What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That’s probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      - The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3. 

      - The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      - It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.   

      - The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a “C-terminal ZP domain”, which is a middle piece after furin + Np cleavages. 

      - The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. ☑️ peer.gos.ck-editor needs to set title so that annotations can show it

      currently it is done by manually adding a title tag in the source code for the document that is saved in Peergos

      where all the html and javascript encluses the source of the HTML document so the editor/capbiity gets loaded wwith the saved HTML content

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2025-03073

      Corresponding author(s): Shaul Yogev

      1. General Statements [optional]

      We kindly thank our reviewers for their enthusiasm, thoughtful feedback, and constructive suggestions on how to strengthen our manuscript. Below, we provide a point-by-point response to reviewer comments and outline the experiments we will do to address every concern that has been raised.

      2. Description of the planned revisions

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This interesting study uses an unbiased genetic screen in C. elegans to identify SAX-1/NDR kinase as a regulator of dendritic branch elimination. Loss of SAX-1 results in an excess branching phenotype that is striking and highly penetrant. The authors identify several additional regulators of branch elimination (SAX-2, MOB-1, RABI-1, RAB-11.2) by using a candidate genetic screen aimed at factors that interact physically or genetically with SAX-1. They propose that SAX-1 acts by promoting membrane retrieval based on the nature of these interactors and the results of an imaging-based in vivo assay for endocytic puncta.

      Major comments.

      1. My biggest concern is that the phenotypes are only observed in temperature-sensitive dauer-constitutive mutant backgrounds, and not in wild-type dauers. That is, wild-type animals exiting dauer do not require SAX-1 for dendrite elimination. While this does not undermine the importance of the results, it does require more explanation. The authors write that "the requirement for sax-1... relies on specific physiological states of the dauer stage," but I do not understand what this means. Are they saying that daf-7 and daf-2 dauers are in a different "physiological state" than wild-type dauers? In what way? What is the evidence for this? A more rigorous explanation is needed. We agree that this is puzzling, and we thank the reviewer for recognizing that this does not undermine the importance of the results. There is ample evidence that daf-2 and daf-7 differ from starvation-induced dauers. For example, a recent preprint finds that the transcriptomes of these two mutants at dauer cluster much closer to each other than to starvation-induced dauers (Corchado et al. 2024). Older work has noted other differences, such as the time the dauer entry decision is made (Swanson and Riddle 1981), the synchronicity of dauer exit, the ability to force dauer entry in daf-d mutants, as well as additional dauer-unrelated phenotypes (reviewed in Karp 2018). We agree with the reviewer that this merits further clarifications and will perform the experiments suggested by the reviewer below:

      To me, the simplest genetic explanation is that daf-7 and daf-2 are partially required for branch retraction in a manner redundant with sax-1, and the ts mutants are not fully wild-type at 15C. Thus, the sax-1 requirement is revealed only in these mutant backgrounds. Can the authors examine starvation-induced dauers of daf-7 or daf-2 raised continuously at 15C?

      We will do this experiment.

      daf-7 and daf-2 ts strains can form "partial dauers" that have a dauer-like appearance but are not SDS resistant. Could the difference between partial dauers and full dauers account for the difference in sax-1-dependence? The authors could use SDS selection of the daf-7 strain at 25C to ensure they are examining full dauers.

      We tested daf-7 mutants with 1% SDS when we set up the system – they are fully dauer at 25°C and are SDS sensitive after exit. We will repeat this important control with daf-7; sax-1 double mutants.

      The Bargmann lab has created a daf-2 FLP-OUT strain (ky1095ky1087) that allows cell-type-specific removal of daf-2. Could this be used to test for a cell-autonomous role of daf-2 in IL2Q related to branch elimination?

      We can attempt this experiment. However, since IL2 promoters turn on prior to dauer, the interpretation would not be straightforward – it would be hard to exclude that a cell autonomous defect in dauer entry does not account for the IL2 dauer exit phenotype, even if branching appears normal.

      These ideas are not a list of specific experiments the authors need to complete, rather they are meant to illustrate some possible approaches to the question. Whatever approach they use, it is important for them to more rigorously explain why SAX-1 is not required for branch removal in wild-type animals.

      We completely agree. We will carry out the 15°C experiment, examine morphological characteristics and test SDS resistance. In addition, we will test neuronal markers that differ between dauers and non-dauers to determine whether the mutants are full or partial dauers at the relevant timepoints.

      The SAX-2 localization (Fig. 4) and endocytosis assay (Fig. 6) results were not clear to me from the data shown. Overall a more rigorous analysis and presentation of the data would be important to make these conclusions convincing. This may involve refining the data presentation in the figures, modifying the claims (e.g., "we propose" vs "we find"), or saving some of the data to be more fully explored in a future paper. In my view, these figures are the biggest weak point of the manuscript and also are not important for the central conclusions (which are well supported and convincing), indeed these results are barely mentioned in the Abstract or last paragraph of Introduction.

      We agree that the analysis and presentation of Figures 4 and 6 need to be improved. The presentation has already been updated, and the figures are clearer now. In the revision, we will increase sample size to provide stronger conclusions, consolidate some of the analysis and further improve presentation. While we agree with the reviewer that conclusions from these figures are not as strong as those drawn from genetic experiments, they do complement and support the conclusions of those other figures.

      • In Fig. 4D, why is SAX-2 visible throughout the entire neuron and why is the "punctum" marked with an arrow also seen in the tagRFP channel? One gets the impression that some of the puncta may be background, bleed-through, or artifacts due to cell varicosities.

      There is no bleed-through: this is most evident by looking at the brightest signals in the cell body (now labelled with an asterisk in a zoomed-out image) and noting that they do not bleed between channels. In sax-1 mutants, the SAX-2::GFP puncta are very obvious and distinguishable from the tagRFP channel. In control, SAX-2::GFP is very faint in the dendrite, so we increased the contrast to allow visualization. The reviewer is correct that under these conditions, some puncta look like the cytosolic fill. In the revision, we will re-analyze the data and will not consider these as bona-fide SAX-2 puncta, but rather cytosolic SAX-2 that accumulates due to constrictions and varicosities in the dendrite.

      • Related to both Fig. 4 and Fig. 6, where does SAX-1 localize in IL2Q in dauer and post-dauer? Does its expression or localization change during branch retraction? Does it co-localize with SAX-2 or endocytic puncta?

      We generated an endogenously tagged sax-1 with a 7xspGFP11 tag; however, this was below detection in the IL2s. For the revisions, we can test an overexpressed cDNA construct.

      **Referee cross-commenting**

      I think we all touched on similar points. I wanted to follow up on Reviewer 3's comment, "Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults." I thought this was an excellent point. It made me wonder if that might explain why the defect is only seen in daf-7 and daf-2 mutant backgrounds - maybe these strains retain partial dauer traits even after exit. Is there a specific experiment that they could do? Did you have specific characteristics of dauer morphology in mind for them to check? (Ideally something in the nervous system that can be scored quantitatively.)

      Please see response to point #1 regarding experiments we will do to confirm the “dauer state” of daf-7 and daf-7; sax-1 double mutants.

      Reviewer #1 (Significance (Required)):

      A major strength of this work is the pioneering use of a novel system to study neuronal branch retraction. C. elegans has provided a powerful model for studying how dendrite branches form, but much less attention has been paid to how excess neuronal branches are removed. The post-dauer remodeling of IL2Q neurons provides an exciting and dramatic physiological example to explore this question.

      This paper is notable for taking the first steps towards developing this innovative model. It does exactly what is needed at the outset of a new exploration - a forward genetic screen to discover the main regulators of the process. Using a combination of classical and modern genetic approaches, the authors bootstrap their way to a sizeable list of factors and a solid understanding of the properties of this system, for example that retraction of higher vs lower order dendrites show different genetic requirements.

      We thank the reviewer for recognizing the novelty and significance of our work.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors establish C. elegans IL2 neurons as a system in which to study dendrite pruning. They use the system to perform a genetic screen for pruning regulators and find an allele of sax-1. Unexpectedly sax-1 is only required for post-dauer pruning in two different genetic backgrounds that induce dauer formation, but not starvation-induced dauer formation. Sax-1/NDR kinase reduction has previously been associated with increased outgrowth and branching in other systems, so this is a new role for this protein. However, the authors show that proteins that work with Sax-1 in other systems, like sax-2/fry, also play a role in this pathway. The genetic experiments are beautiful and the findings are all clearly explained and strongly supported. The authors also examine sax-2 localization, which localizes sax-1 in other systems, and show it in puncta in dendrites that increase with dauer exit, consistent with function at the time of pruning. They also show that membrane trafficking regulators associated with NDR kinases function in the same pathway here, hinting that endocytosis may play a role during pruning as in Drosophila. The link to endocytosis was a little weak (see Major point below). Overall, this study describes a new system to study pruning and identifies NDR/fry/Rabs as regulators of pruning during dauer exit. The work is very high quality and both the imaging and genetics are extremely well done.

      We thank the reviewer for their positive assessment of the manuscript.

      Major points

      1. The only place where there were any questions about the data was the last figure (6G and I). Here they use uptake of GFP secreted from muscle as a readout of endocytosis in IL2 neurons. They nicely show that more internalized puncta accumulate as animals exit dauer. The claim that this is reduced in sax-1 mutants doesn't seem to match the images shown well. In the image there are many more puncta in the GFP channel and much more accumulation of the RFP-tagged receptor everywhere. It seems like some additional analysis of this data is important to fully capture what is going on and whether this really represents an endocytic defect. We agree and will provide additional data in Figure 6. The specific discrepancy between the image and the quantification is because we showed a single focal plane rather than a projection. This does not capture all the puncta in a neurite. The current version shows a projection, making it evident that the mutants has fewer puncta compared to the control.

      Reviewer #2 (Significance (Required)):

      Neurite pruning is important in all animals with neurons. Genetic approaches have primarily been applied to the problem using Drosophila, so identifying a new model system in which to study it is an important step. Using this system, a pathway known to function in a different context is linked to pruning. Thus the study provides new insights into both pruning and this pathway.

      We thank the reviewer for the positive assessment of our study’s significance.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Summary: Figueroa-Delgado et al. use a C. elegans neuro plasticity model to examine how dendrites are eliminated upon recovery from the stress induced larval stage, dauer. The authors performed a mutagenesis screen to identify novel regulators of dendrite elimination and revealed some surprising results. Branch elimination mechanism varies between 2{degree sign}, 3{degree sign}, and 4{degree sign} branches. The NDR kinase, SAX-1 and it's interactors (SAX-2 and MOB-2) are required for elimination of second and third order branches but not fourth order branches. Interestingly they showed that branch elimination varies depending on the stimulus of dendrite outgrowth such that the NDR kinase is required for branch elimination after genetically inducing the dauer stage but is not required if dauers are produced through food deprivation. The authors go a step further to include a small candidate screen looking at various pathways of membrane remodeling and identify additional regulators of dendrite elimination related to membrane trafficking including RABI-1, RAB-8, RAB-10, and RAB-11.2.

      We thank the reviewer for their time and suggestions below

      Major comments:

      • While I find the data promising and exciting, several of the experiments have concerningly low sample sizes. Fig 3G, Fig 4G, Fig 5J and L, and Fig 6I all contain data sets that are fewer than 10 animals. Sample sizes should be stated specifically in the figure legends for all data represented in the graphs. We thank the reviewer for finding the data exciting. We agree that the sample sizes in some panels is low and will increase it in the revised version. Sample sizes are now specifically listed in the figure legends.

      • All statements based on data not shown should be amended to include the data as a supplemental figure or edited to omit the statement based on withheld data. We agree. Some “not shown” data are already added to the current version of the manuscript and the rest will be added to the fully revised version, or the statements will be omitted.

      • Rescue experiments (Fig 2J) should demonstrate failure to rescue from neighboring tissue types (hypodermis and muscle) to conclude cell autonomous rescue rather than a broadly acting factor. Thank you for the suggestion. We will use a hypodermal promoter and a muscle promoter driving SAX-1 cDNA expression to strengthen the claim of cell autonomy.

      • Fig 4 needs quantification of higher order branches and SAX-2 proximity to branch nodes as these are discussed in the text. We will add this quantification.

      Minor comments:

      • Fig 1C-F, It appears like the shy87 allele produces animals of significantly different body sizes. It would improve rigor to normalize the dendrite coverage to body size in the quantification. We do not see a biologically meaningful size difference between shy87 and control, it may be the specific image shown. We will confirm this by measuring animal size for the final revision.

      • Is the failure to eliminate branches an indication of incomplete dauer recovery? Do sax-1 mutants retain additional characteristics of dauer morphology in post dauer adults. This important point was also raised by Reviewer 1. We will test SDS sensitivity, morphological markers, and molecular markers to determine the dauer “state” of the mutants used in this study. The results will be included in the final revision.

      • The text references multiple transgenic lines tested in Fig 2I-J but only one line is shown. Additional lines were visually examined under a fluorescent compound microscope but not imaged or quantified. We will add this quantification to the final revision.

      • Fig 4F, Additional timepoints would enhance the sax-1 localization result and might provide insight into mechanism of action for sax-1. We will add the localization in post-dauer adults.

      • Fig 6I Control and sax-1(ky491) example images should be provided in the supplement. We will add these images to the final revision.

      **Referee cross-commenting**

      I agree that we shared many of the same concerns.

      There are several general assays for dauer characteristics that could be used here to determine if the post-dauer animals retain other characteristics of the dauer stage in addition to IL2 branches (SDS resistance, alae remodeling, pharyngeal bulb morphology, nictation behavior). The nictation behavior has been connected very nicely with IL2 neurons (Junho Lee's group). Additionally, FLP dendrites occupy the same space as the IL2 branches and outgrowth in post-dauers occurs in coordination with IL2 branch elimination - this might be another optional experiment, to check if FLP growth is impeded by persistent IL2 branches. All of these could be quantified similar to how the authors have already established with their IL2 model (FLP dendrite branches) or with a binary statistic.

      Please see responses to Reviewer 1 and 3 above for the list of experiments to determine whether the animals fail to completely enter or exit dauer.

      Reviewer #3 (Significance (Required)):

      SIGNIFICANCE ============ These results describe a new role for the NDR kinase complex in dendrite pruning that has clinical significance to our understanding of human brain development and human health concerns in which pruning is dysregulated, such as observed in the case of autism. The authors use an established neuro-plasticity, C. elegans model (Schroeder et al. 2013) which provides a tractable and reproduceable platform for discovering the mechanism of dendrite pruning. These results would influence future work in the fields of cell biology of the neuron and disease models of brain development.

      My expertise is in the field of C. elegans neuroscience and stress biology and have sufficient expertise to evaluate all aspects of this work.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1

      • In Fig. 4C, the distinction between puncta in the primary or higher-order dendrites is not clear to me, and several puncta that I would have scored as primary are marked as higher-order.

      We apologize for a mistake in the arrowhead color and overall presentation of this figure. It has been fixed in the current version.

      • Related to this, in Fig. 4B are the two arrows meant to be white as in the top panel, or yellow as in the bottom panel?

      We thank Reviewer #1 for their observation, and we apologize for our oversight. We fixed this in the current version.

      • In Fig. 4, where in the head are we looking? It would help to show a more low-magnification view of the entire cell.

      We added zoomed-out images and indicated where the zoomed in insets are taken from. We thank the reviewer for helping us improve the clarity of the data.

      • The main sax-1 phenotype is increased SAX-2 puncta in dauer, but the branch retraction defect is in post-dauers. How is this relevant to the phenotype?

      This is a very good point. The increase in SAX-2 puncta in sax-1 mutants is stronger during dauer-exit than in dauer, consistent with this being the time when SAX-1 functions. We agree that some earlier activity of SAX-1 cannot be excluded, and we do not assume that the effect on SAX-2 completely accounts for the pruning defects. This is now acknowledged in the text. However, given that both proteins function together in pruning, and given that the effect is strongest during dauer exit, we do believe that this data is informative and worth showing.


      • The number of SAX-2 puncta in sax-1 mutants decreases almost to normal in post dauers. Is there a correlation between the number of remaining branches and the number of SAX-2 puncta? That is, do the many wild-type animals with "excess" SAX-2 puncta also fail to retract branches?

      There is no correlation. In other words, the number of SAX-2 puncta does not instruct the extent of pruning. Please note the quantifications underestimate the number of SAX-2 puncta in the mutants, since they were only done on the primary dendrite. This is necessary because the mutant and control have different arbor size, so only branch order that can be appropriately compared are primary dendrites.

      • The control post-dauer data in Fig. 4F and 4H are identical (re-used data) but the corresponding control dauer data in Fig. 4F and 4G are different. What is going on here?

      We thank the reviewer for raising this point and apologize for the oversight in data presentation. In the revised manuscript, we now show all control and experimental data integrated into a single graph, ensuring that each dataset is represented accurately to provide a comparison between dauer and post dauer recovery conditions.


      • Why are sample sizes so small for both strains in Fig. 4G compared to Fig. 4F and 4H?

      We sincerely apologize for this mistake, some of the data was erroneously grouped in the original submission. The revised version contains an updated number of neurons, presented on the same graph, and in the final revision we will further increase sample size. We apologize again for this error.

      • In Fig. 6C, why are the tagRFP (blue) puncta larger than the neurite? Aren't these meant to represent vesicles inside the surrounding neurite? One gets the impression that this is bleed-through from the GFP channel.

      Based on EM, both an endocytic punctum and the diameter of the neuron are smaller than a single pixel. The apparent difference in size in fluorescence microscopy is because the puncta are brighter (they contain more membrane) and thus appear larger. In the current version, the improved presentation of the figure contains zoomed out images that clearly show that there is no bleed-through.

      • In Fig. 6E and 6F, why are there no tagRFP (blue) puncta? Is CD8 not endocytosed at all if it lacks the nanobody sequence? One would expect the tagRFP (blue) signal to be the same in both strains and simply to lack yellow if the nanobody is not present.

      CD8 lacks clear endocytosis motifs, which is why it is advantageous for labelling neurites and testing endocytosis when paired with an endocytic signal (Lee and Luo 1999; Kozik et al. 2010). Conversely, extracellular GFP binding to a membrane GFP antibody can induce endocytosis (for example, see (Tang et al., 2020)), likely by inducing clustering, although we are not familiar with work that explored the mechanism. In the updated version we included a rare example of an mCD8 punctum.

      • The authors report a decrease in endocytic events in sax-1, but qualitatively it looks like there are vastly more puncta inside the neuron in Fig. 6H than in 6G.

      We apologize for the presentation in the original version of Figure 6. This impression was because we showed single focal planes that only captured some of the signal. In the revised version we show projections, which makes it evident that there are fewer endocytic events in the mutant.

      • In Fig. 6E and 6H, why are there so many GFP (yellow) puncta outside the neuron? What are these structures and why are they absent in the strain with the nanobody?

      These puncta are secreted or muscle-associated GFP that has not been internalized by IL2Q neurons. They are present in all strains in this figure, this can be clearly seen in the zoomed-out images that have been added to the updated figure.

      • What is the large central blue structure in Fig. 6H - is this the soma? - and why are puncta in this region not counted?

      This is indeed the soma. In the updated version this can be clearly seen in the zoom-out. The large puncta in the soma were not counted because they may arise from the fusion of an unknown number of smaller puncta, and their precise number cannot be determined at the resolution of fluorescence microscopy.

      • minor: there is text reading "40-" in the bottom panel of Fig. 6H. It is visible when printed but not on screen - adjust levels in Photoshop to reveal it.

      We thank the reviewer for catching this oversight, it is now fixed.

      Minor points:

      1. At several points the authors emphasize the relationship of neurite remodeling to stress, e.g. Abstract and Discussion: "we adapted C. elegans IL2 sensory dendrites as a model [of...] stress-mediated dendrite pruning". It seems unnecessary and potentially misleading to treat this as a neuronal stress response. First, it conflates organismal and cellular stress - there is no reason to think that IL2 neurons are under cellular stress in dauer. In fact parasitic nematodes go through dauer-like stages as part of healthy development and probably have similar remodeling of IL2. Second, dendrite pruning occurs during dauer exit, which is the opposite of a stress response - it reflects a return to favorable conditions. We agree. We modified the abstract and discussion to avoid conflating organismal stress (the alleviation of which is relevant for triggering pruning) and cellular stress. Thank you for pointing this out.

      In Fig. 1A, C. elegans is shown going directly from L1 to dauer in response to unfavorable conditions, which is incorrect. Animals proceed through L2 (in many cases actually an alternative L2d pre-dauer) and then molt into dauer (an alternative L3 stage) after completing L2.

      We updated the schematic to include the L2d stage where commitment to dauer entry or resumption to reproductive development is made.

      In Fig. 1B, please check if it is correct that hypodermis contacts the pharynx basement membrane as drawn. The schematic in the top panel makes it look like there is a single secondary branch and the quaternary branches are similar in length to the primary dendrite. The schematic in the bottom panel makes it look like the entire neuron is a small fraction of the length of the pharynx. Could these be drawn closer to scale?

      The hypodermis does contact the pharynx basement membrane. We redrew the schematic for clarity.

      Reviewer #2

      For context, it might be helpful to know whether branching of other dendrites is increased in sax-1 mutants (as expected based on phenotypes in other animals) or decreased like IL2 neurons.

      We examined the branching pattern of PVD, a polymodal nociceptive neuron (new Supplemental Figure 3). We find no significant difference between control and sax-1 or sax-2 mutants, suggesting that these genes function in the context of pruning. Recent work (Zhao et al. 2022) confirms that sax-1 is not required for PVD branching.

      Minor:

      "shy87 mutant dauers showed a minor reduction in secondary and tertiary branches compared to control (Figure 1G). These results indicate that shy87 is specifically required for the elimination of dauer-generated dendrite branches." Maybe temper the specificity claim some as the reduction in branches is definitely there.

      We agree, the claim was tempered.

      "three complimentary approaches" should be complementary

      Thank you for noticing. We fixed this.

      "In control animals, SAX-2 was mostly concentrated in the cell body (data not shown)" It might be nice to include some overview images that show the cell body for completeness.

      We added zoomed-out images to the revised figure, thank you for the suggestion.

      Reviewer #3


      Minor comments:


      • Fig 1G-H, are shy87 second and third order branch counts statistically different between dauer and post dauer adults? This comparison would strengthen the claim that these order branches fail to eliminate all together rather than undergo a partial elimination. We added this to Figure S2. The shy87 mutants show a complete failure in eliminating secondary branches (i.e. no difference between dauer and post-dauer) and a strong but incomplete defect in eliminating tertiary branches.

      • Fig 4B-E Indicate branch order in the images, this is unclear and a point that is focused on in the text. Done.

      • Discussion of Fig 1G from the text claims that shy87 is specifically required for branch elimination yet the data shows significant defects in branch outgrowth as well. This raises the question, are the branches abnormally stabilized that results in early underdevelopment and late atrophy? Authors should acknowledge alternative hypotheses. We agree and will revise the text accordingly. The difference between shy87 and control dauers, while statistically significant, is relatively minor and can only be detected by careful quantification, it is not apparent from looking at the images (in contrast for example to rab-8 and rab-10 mutants, where we acknowledge in the text that their branching defects might affect subsequent pruning.

      • Authors reference a branch elimination process but don't outline what this would entail and where their results fit in. We apologize for being unclear. Given that sax-1 and sax-2 function together, one would intuitively expect to see SAX-2 being reduced in sax-1 mutants, yet the opposite is observed. On potential explanation is that SAX-1 does not directly control SAX-2 abundance, but that clearance of SAX-2 is part of the pruning process that both proteins regulate. This would explain the enrichment of SAX-2 in sax-1 mutants. However, additional models cannot be excluded, and we acknowledge this in the revised text.

      References:

      Corchado, Johnny Cruz, Abhishiktha Godthi, Kavinila Selvarasu, and Veena Prahlad. 2024. “Robustness and Variability in Caenorhabditis Elegans Dauer Gene Expression.” Preprint, bioRxiv, August 26. https://doi.org/10.1101/2024.08.15.608164.

      Karp, Xantha. 2018. “Working with Dauer Larvae.” WormBook, August 9, 1–19. https://doi.org/10.1895/wormbook.1.180.1.

      Kozik, Patrycja, Richard W Francis, Matthew N J Seaman, and Margaret S Robinson. 2010. “A Screen for Endocytic Motifs.” Traffic (Copenhagen, Denmark) 11 (6): 843–55. https://doi.org/10.1111/j.1600-0854.2010.01056.x.

      Lee, T., and L. Luo. 1999. “Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis.” Neuron 22 (3): 451–61.

      Swanson, M. M., and D. L. Riddle. 1981. “Critical Periods in the Development of the Caenorhabditis Elegans Dauer Larva.” Developmental Biology 84 (1): 27–40. https://doi.org/10.1016/0012-1606(81)90367-5.

      Tang, Rui, Christopher W Murray, Ian L Linde, et al. n.d. “A Versatile System to Record Cell-Cell Interactions.” eLife 9: e61080. https://doi.org/10.7554/eLife.61080.

      Zhao, Ting, Liying Guan, Xuehua Ma, Baohui Chen, Mei Ding, and Wei Zou. 2022. “The Cell Cortex-Localized Protein CHDP-1 Is Required for Dendritic Development and Transport in C. Elegans Neurons.” PLOS Genetics 18 (9): e1010381. https://doi.org/10.1371/journal.pgen.1010381.


      4. Description of analyses that authors prefer not to carry out

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The investigators undertook detailed characterization of a previously proposed membrane targeting sequence (MTS), a short N-terminal peptide, of the bactofilin BacA in Caulobacter crescentus. Using light microscopy, single molecule tracking, liposome binding assays, and molecular dynamics simulations, they provide data to suggest that this sequence indeed does function in membrane targeting and further conclude that membrane targeting is required for polymerization. While the membrane association data are reasonably convincing, there are no direct assays to assess polymerization and some assays used lack proper controls as detailed below. Since the MTS isn't required for bactofilin polymerization in other bacterial homologues, showing that membrane binding facilitates polymerization would be a significant advance for the field.

      We agree that additional experiments were required to consolidate our results and conclusions. Please see below for a description of the new data included in the revised version of the manuscript.

      Major concerns

      (1) This work claims that the N-termina MTS domain of BacA is required for polymerization, but they do not provide sufficient evidence that the ∆2-8 mutant or any of the other MTS variants actually do not polymerize (or form higher order structures). Bactofilins are known to form filaments, bundles of filaments, and lattice sheets in vitro and bundles of filaments have been observed in cells. Whether puncta or diffuse labeling represents different polymerized states or filaments vs. monomers has not been established. Microscopy shows mis-localization away from the stalk, but resolution is limited. Further experiments using higher resolution microscopy and TEM of purified protein would prove that the MTS is required for polymerization.

      We do not propose that the MTS is directly involved in the polymerization process and state this more clearly now in the Results and Discussion sections of the revised manuscript. To address this point, we performed transmission electron microscopy studies comparing the polymerization behavior of wild-type and mutant BacA variants. The results clearly show that the MTS-free BacA variant (∆2-8) forms polymers that are indistinguishable from those formed by the wild-type protein, when purified from an E. coli overproduction strain (new Figure 1–figure supplement 1). This finding is consistent with structural work showing that bactofilin polymerization is exclusively mediated by the conserved bactofilin domain (Deng et al, Nat Microbiol, 2019). However, at native expression levels, BacA only accumulates to ~200 molecules per cell (Kühn et al, EMBO J, 2006). Under these conditions, the MTS-mediated increase in the local concentration of BacA at the membrane surface and, potentially, steric constraints imposed by membrane curvature, may facilitate the polymerization process. This hypothesis has now been stated more clearly in the Results and Discussion sections.

      For polymer-forming proteins, defined localized signals are typically interpreted as slow-moving or stationary polymeric complexes. A diffuse localization, by contrast, suggests that a protein exists in a monomeric or, at most, (small) oligomeric state in which it diffuses rapidly within the cell and is thus no longer detected as distinct foci by widefield microscopy. Our single-molecule data show that BacA variants that are no longer able to interact with the membrane (as verified by cell fractionation studies and in vitro liposome binding assays) have a high diffusion rate, similar to that measured for the non-polymerizing and non-membrane-bound F130R variant. These results demonstrate that a defect in membrane binding strongly reduces the ability of BacA to form polymeric assemblies. To support this hypothesis, we have now repeated all single-particle tracking experiments and included mVenus as a freely diffusible reference protein. Our data confirm that the mobilities of the ∆2-8 and F130R variants are similar and approach those of free mVenus, supporting the idea that the deficiency to interact with the membrane prevents the formation of extended polymeric structures (which should show much lower mobilities). To underscore the relevance of membrane binding for BacA assembly, we have now included a new experiment, in which we used the PbpC membrane anchor (PbpC<sub>1-132</sub>-mcherry) to restore the recruitment of the ∆2-8 variant to the membrane (Figure 9 and Figure 9–figure supplement 1). The results obtained show that the ∆2-8 variant transitions from a diffuse localization to polar foci upon overproduction of PbpC<sub>1-132</sub>-mcherry. The polymerization-impaired F130R variant, by contrast, remains evenly distributed throughout the cytoplasm under all conditions. These findings further support the idea that polymerization and membrane-association are mutually interdependent processes.

      (2) Liposome binding data would be strengthened with TEM images to show BacA binding to liposomes. From this experiment, gross polymerization structures of MTS variants could also be characterized.

      We do not have the possibility to perform cryo-electron microscopy studies of liposomes bound to BacA. However, the results of the cell fractionation and liposome sedimentation assays clearly support a critical role of the MTS in membrane binding.

      (3) The use of the BacA F130R mutant throughout the study to probe the effect of polymerization on membrane binding is concerning as there is no evidence showing that this variant cannot polymerize. Looking through the papers the authors referenced, there was no evidence of an identical mutation in BacA that was shown to be depolymerized or any discussion in this study of how the F130R mutation might to analogous to polymerization-deficient variants in other bactofilins mentioned in these references.

      Residue F130 in the C-terminal polymerization interface of BacA is conserved among bactofilin homologs, although its absolute position in the protein sequence may vary, depending on the length of the N-terminal unstructured tail. The papers cited in our manuscript show that an exchange of this conserved phenylalanine residue abolishes polymer formation. Nevertheless, we agree that it is important to verify the polymerization defect of the F130R variant in the system under study. We have now included size-exclusion chromatography data showing that BacA-F130R forms a low-molecular-weight complex, whereas the wild-type protein largely elutes in the exclusion volume, indicating the formation of large, polymeric species (new Figure 1–figure supplement 1). In addition, we performed transmission electron microscopy analyses of BacA-F130R, which verified the absence of larger oligomers (new Figure 1–figure supplement 2).

      (4) Microscopy shows that a BacA variant lacking the native MTS regains the ability to form puncta, albeit mis-localized, in the cell when fused to a heterologous MTS from MreB. While this swap suggests a link between puncta formation and membrane binding the relationship between puncta and polymerization has not been established (see comment 1).

      We show that a BacA variant lacking the MTS (∆2-8) regains the ability to form membrane-associated foci when fused to the MTS of MreB. By contrast, a similar variant that additionally carries the F130R exchange (preventing its polymerization) shows a diffuse cytoplasmic localization. In addition, we show that the F130R exchange leads to a loss of membrane binding and to a considerable increase in the mobility of the variants carrying the MTS of E. coli MreB. As described above, we now provide additional data demonstrating that elevated levels of the PbpC membrane anchor can reinstate polar localization for the ∆2-8 variant, whereas it fails to do so for the polymerization-deficient F130R variant (Figure 9 and Figure 9–figure supplement 1). Together, these results support the hypothesis that membrane association and polymerization act synergistically to establish localized bactofilin assemblies at the stalked cell pole.

      (5) The authors provide no primary data for single molecule tracking. There is no tracking mapped onto microscopy images to show membrane localization or lack of localization in MTS deletion/ variants. A known soluble protein (e.g. unfused mVenus) and a known membrane bound protein would serve as valuable controls to interpret the data presented. It also is unclear why the authors chose to report molecular dynamics as mean squared displacement rather than mean squared displacement per unit time, and the number of localizations is not indicated. Extrapolating from the graph in figure 4 D for example, it looks like WT BacA-mVenus would have a mobility of 0.5 (0.02/0.04) micrometers squared per second which is approaching diffusive behavior. Further justification/details of their analysis method is needed. It's also not clear how one should interpret the finding that several of the double point mutants show higher displacement than deleting the entire MTS. These experiments as they stand don't account for any other cause of molecular behavior change and assume that a decrease in movement is synonymous with membrane binding.

      We now provide additional information on the single-particle analysis. A new supplemental figure now shows a mapping of single-particle tracks onto the cells in which they were recorded for all proteins analyzed (Figure 2–figure supplement 1). Due to the small size of C. crescentus, it is difficult to clearly differentiate between membrane-associated and cytoplasmic protein species. However, overall, slow-diffusing particles tend to be localized to the cell periphery, supporting the idea that membrane-associated particles form larger assemblies (apart from diffusing more slowly due to their membrane association). In addition, we have included a movie that shows the single-particle diffusion dynamics of all proteins in representative cells (Figure 2-video 1). Finally, we have included a table that gives an overview of the number of cells and tracks analyzed for all proteins investigated (Supplementary file 1). Figure 2A and 4D show the mean squared displacement as a function of time, which makes it possible to assess whether the particles observed move by normal, Brownian diffusion (which is the case here). We repeated the entire single-particle tracking analysis to verify the data obtained previously and obtained very similar results. Among the different mutant proteins, only the K4E-K7E variant consistently shows a higher mobility than the MTS-free ∆2-8 variant, with MSD values similar to that of free mVenus. The underlying reason remains unclear. However, we believe that an in-depth analysis of this phenomenon is beyond the scope of this paper. We re-confirmed the integrity of the construct encoding the K4E/K7E variant by DNA sequencing and once again verified the size and stability of the fusion protein by Western blot analysis, excluding artifacts due to errors during cloning and strain construction.

      We agree that the single-molecule tracking data alone are certainly not sufficient to draw firm conclusions on the relationship between membrane binding and protein mobility. However, they are consistent with the results of our other in vivo and in vitro analyses, which together indicate a clear correlation between the mobility of BacA and its ability to interact with the membrane and polymerize (processes that promote each other synergistically).

      (6) The experiments that map the interaction surface between the N-terminal unstructured region of PbpC and a specific part of the BacA bactofilin domain seem distinct from the main focus of the paper and the data somewhat preliminary. While the PbpC side has been probed by orthogonal approaches (mutation with localization in cells and affinity in vitro), the BacA region side has only been suggested by the deuterium exchange experiment and needs some kind of validation.

      The results of the HDX analysis per se are not preliminary and clearly show a change in the solvent accessibility of backbone amides in the C-terminal region in the bactofilin domain in the presence of the PbpC<sub>1-13</sub> peptide. However, we agree that additional experiments would be required to verify the binding site suggested by these data. We agree that further research is required to precisely map and verify the PbpC binding site. However, as this is not the main focus of the paper, we would like to proceed without conducting further experiments in this area.

      We now provide additional data showing that elevated levels of the PbpC membrane anchor are able to recruit the MTS-free BacA variant (∆2-8) to the cytoplasmic membrane and stimulate its assembly at the stalked pole (Figure 9). These results now integrate Figure 8 more effectively into the overall theme of the paper.

      Reviewer #2 (Public review):

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a common property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Strengths:

      These data significantly advance the understanding of the membrane binding determinants of bactofilins and thus their function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

      Thank you for this positive feedback.

      Weaknesses:

      The results are limited to protein localization and interaction, as there is no data on phenotypic effects. Therefore, the cell biological significance remains somewhat underrepresented.

      We agree that it is interesting to investigate the phenotypic effects caused by the reduced membrane binding activity of BacA variants with defects in the MTS. We have now included phenotypic analyses that shed light on the role of region C1 in the localization of PbpC and its function in stalk elongation under phosphate-limiting conditions (see below).

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      To address the missing estimation of biological relevance, some additional experiments may be carried out.

      For example, given that BacA localizes PbpC by direct interaction, one might expect an effect on stalk formation if BacA is unable to bind the membrane or to polymerize. The same applies to PbpC variants lacking the C1 region. As the mutant strains are available, these data are not difficult to obtain but would help to compare the effect of the deletions with previous data (e.g. Kühn et al.) even if the differences are small.

      We have now analyzed the effect of the removal of region C1 on the ability of mVenus-PbpC to promote stalk elongation in C. crescentus under phosphate starvation. Interestingly, our results show that the lack of the BacA-interaction motif impairs the recruitment of the fusion protein to the stalked pole, but it does not interfere with its stimulatory effect on stalk biogenesis. Thus, the polar localization of PbpC does not appear to be critical for its function in localized peptidoglycan synthesis at the stalk base. These results are now shown in Figure 8–Figure supplement 4. The results obtained may be explained by residual transient interactions of mVenus-PbpC with proteins other than BacA at the stalked pole. Notably, PbpC has also been implicated in the attachment of the stalk-specific protein StpX to components of the outer membrane at the stalk base. The polar localization of PbpC may therefore be primarily required to ensure proper StpX localization, consistent with previous work by Hughes et al. (Mol Microbiol, 2013) showing that StpX is partially mislocalized in a strain producing an N-terminally truncated PbpC variant that no longer localizes to the stalk base.

      We have also attempted to investigate the ability of the Δ2-8 and F130R variants of BacA-mVenus to promote stalk elongation under phosphate starvation. However, the levels of the WT, Δ2-8 and F130R proteins and their stabilities were dramatically different after prolonged incubation of the cells in phosphate-limited medium, so that it was not possible to draw any firm conclusions from the results obtained (not shown).

      In addition, the M23-like endopeptidase LdpA is proposed to be a client protein of BacA (in C. crescentus, Billini et al. 2018, and H. neptunium or R. rubrum, Pöhl et al. 2024). In H. neptunium, it is suggested that the interaction is mediated by a cytoplasmic peptide of LmdC reminiscent of PbpC. This should at least be commented on. It would be interesting to see, if LpdA in C. crescentus is also delocalized and if so, this could identify another client protein of BacA.

      We agree that it would be interesting to study the role of BacA in LdpA function. However, we have not yet succeeded in generating a stable fluorescent protein fusion to LdpA, which currently makes it impossible to study the interplay between these two proteins in vivo. The focus of the present paper is on the mode of interaction between bactofilins and the cytoplasmic membrane and on the mutual interdependence of membrane binding and bactofilin polymerization. Given that PbpC is so far the only verified interaction partner of BacA in C. crescentus, we would like to limit our analysis to this client protein.

      Further comments:

      L105: analyze --> analyzed

      Done.

      L169: Is there any reason why the MTS of E. coli MreB was doubled?

      Previous work has shown that two tandem copies of the N-terminal amphiphilic helix of E. coli MreB were required to partially target a heterologous fusion partner protein (GFP) to the cytoplasmic membrane of E. coli cells (Salje et al, 2011).

      Fig. S3:

      a) Please decide which tag was used (mNG or mVenus) and adapt the figure or legend accordingly.<br /> b) In the legend for panel (C), please describe how the relative amounts were calculated, as the fractions arithmetically cannot add to > 100%. I guess each band was densiometrically rated and independently normalized to the whole-cell signal?

      The fluorescent tag used was mNeonGreen, as indicated in the figure. We have now corrected the legend accordingly. Thank you for making us aware of the wrong labeling of the y-axis. We have now corrected the figure and describe the method used to calculate the plotted values in the legend.

      Legend of Fig 1b: It is not clear to me, to which part of panel B the somewhat cryptic LY... strain names belong. I suggest putting them either next to the images, to delete them, or at least to unify the layout (compare, e.g. to Fig S7). (I would delete the LY numbers and stay with the genes/mutations throughout. This is just a suggestion).

      These names indicate the strains analyzed in panel B, and we have now clarified this in the legend. It is more straightforward to label the images according to the mutations carried by the different strains. Nevertheless, we would like to keep the strain names in the legend, so that the material used for the analysis can be clearly identified.

      Fig. 2a: As some of the colors are difficult to distinguish, I suggest sorting the names in the legend within the graph according to the slope of the curves (e.g. K4E K7E (?) on top and WT being at the bottom).

      Thank you for this suggestion. We have now rearranged the labels as proposed.

      In the legend (L924), correct typo "panel C" to "panel B".

      Done.

      Fig. 3: In the legend, I suggest deleting the abbreviations "S" and "P" as they do not show up in the image. In line 929, I suggest adding: average "relative" amount... or even more precisely: "average relative signal intensities obtained..."

      We have removed the abbreviations and now state that the bars indicate the “average relative signal intensities” obtained for the different fractions.

      Fig 4d: same suggestion as for Fig. 2a.

      Done.

      Fig 8: In the legend (L978), delete 1x "the"

      Done.

      L258 and Fig. S5: The expression "To account for biases in the coverage of bacterial species" seems somewhat unclear. I suggest rephrasing and adding information from the M+M section here (e.g. from L593, if this is meant).

      We now state that this step in the analysis pipeline was performed “To avoid biases arising from the over-representation of certain bacterial species in UniProt”.

      I appreciate the outline of the workflow in panel (a) of Fig. S5. It would be even more useful when some more details about the applied criteria for filtering would be provided (e.g. concerning what is meant with "detailed taxonomic information" or "filter out closely related sequences". Does the latter mean that only one bactofilin sequence per species was used? (As quite many bacteria have more than one but similar bactofilins.)

      We removed sequences from species with unclear phylogeny (e.g. candidate species whose precise taxonomic position has not yet been determined). For many pathogenic species, numerous strains have been sequenced. To account for this bias, only one sequence from clusters of highly similar bactofilin sequences (>90% identity) was retained per species. This information has now been included in the diagram. It is true that many bacteria have more than one bactofilin homolog. However, the sequences of these proteins are typically quite different. For instance, the BacA and BacB from C. crescentus only share 52% identity. Therefore, our analysis does not systematically eliminate bactofilin paralogs that coexist in the same species.

      L281: Although likely, I am not sure if membrane binding has ever been shown for a bactofilin from these phyla. (See also L 380.) Is there an example? Otherwise, membrane binding may not be a property of these bactofilins.

      To our knowledge, the ability of bactofilins from these clades to interact with membranes has not been investigated to date. We agree that the absence of an MTS-like motif may indicate that they lack membrane binding activity, and we have now stated this possibility in the Results and Discussion.

      L285: See comment above concerning the M23-like peptidase LpdA. Although not yet directly shown for C. crescentus, it seems likely that BacACc does also localize this peptidase in addition to PbpC. I suggest rephrasing, e.g. "known" --> "shown"

      We now use the word “reported”.

      L295 and Fig S8: PbpC is ubiquitous. Which criteria/filters have been applied to select the shown sequences?

      C. crescentus PbpC is different from E. coli Pbp1C. It is characterized by distinctive, conserved N- and C-terminal tails and only found in C. crescentus and close relatives. The C. crescentus homolog of E. coli PbpC is called PbpZ (Yakhnina et al, J Bacteriol, 2013; Strobel et al, J Bacterol, 2014), whereas C. crescentus PbpC is related to E. coli PBP1A. We have now added this information to the text to avoid confusion.

      L311: may replace "assembly" by "polymerization"

      Done.

      L320: bactofilin --> bactofilin domain?

      Yes, this was supposed to read “bactofilin domain”. Thank you for spotting this issue.

      L324: The HDX analysis of BacA suggests that the exchange is slowed down in the presence of the PbpC peptide, which is indicative of a physical interaction between these two molecules. To corroborate the claim that BacA polymerization is critical for interaction with the peptide (resp. PbpC), this experiment should be carried out with the polymerization defective BacA version F130R.

      (Or tone this statement down, e.g. show --> suggest.)

      “suggest”

      L386: undergoes --> undergo

      Done.

      L391-400: This idea is tempting but the suggested mechanism then would be restricted to bactofilins of C. crescentus and close relatives. The bactofilin of Rhodomicrobium, for example, was shown to localize dynamically and not to stick to a positively curved membrane.

      In the vast majority of species investigated so far, bactofilins were found to associate with specifically curved membrane regions and to contribute to the establishment of membrane curvature. Unfortu­nately, the sequences of the three co-polymerizing bactofilin paralogs of R. vannielii DSM 166 studied by Richter et al (2023) have not been reported and the genome sequence of this strain is not publicly available. However, in related species with three bactofilin paralogs, only one paralog shows an MTS-like N-terminal peptide and another paralog typically contains an unusual cadherin-like domain of unknown function, as also reported for R. vannielii DSM 166. Therefore, the mechanism controlling the localization dynamics of bactofilins may be complex in the Rhodomicrobium lineage. Nevertheless, at native expression levels, the major bactofilin (BacA) of R. vannielii DSM 166 was shown to localize predominantly to the hyphal tips and the (incipient) bud necks, suggesting that regions of distinct membrane curvature could also play a role in its recruitment. We do not claim that all bactofilins recognize positive membrane curvature, which is clearly not the case. It rather appears as though the curvature preference of bactofilins varies depending on their specific function.

      L405-406: I agree that localization of BacA has been shown to be independent of PbpC. However, this does not generally preclude an effect on BacA localization by other "client" or interacting proteins. (See also comment above about the putative BacA interactor LpdA). I suggest either to corroborate or to change this statement from "client binding" to "PbpC binding".

      Thank you for pointing out the imprecision of this statement. We now conclude that “PbpC binding” is not critical for BacA assembly and positioning.

      Suppl. Fig. S11: In the legend, please correct the copy-paste mismatch (...VirB...).

      Done.

      L482: delete 1x "at"

      Done.

      L484: may be better "soluble and insoluble fractions"?

      We now describe the two fractions as “soluble and membrane-containing insoluble fractions” to make clear to all readers that membrane vesicles are found in the pellet after ultracentrifugation.

      L489-490: check spelling immunoglobulin – immuneglobulin

      Done.

      L500 and 504: º_C --> ºC

      Done.

      Suppl. file X (HDX data): please check the table headline, table should be included in Suppl. file 1

      We have now included a headline in this file (now Supplementary file 3).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      *The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community. *

      Thank you for your positive feedback.

      *There are several single-cell methodologies all claim to co-profile chromatin modifications and gene expression from the same individual cell, such as CoTECH, Paired-tag and others. Although T-ChIC employs pA-Mnase and IVT to obtain these modalities from single cells which are different, could the author provide some direct comparisons among all these technologies to see whether T-ChIC outperforms? *

      In a separate technical manuscript describing the application of T-ChIC in mouse cells (Zeller, Blotenburg et al 2024, bioRxiv, 2024.05. 09.593364), we have provided a direct comparison of data quality between T-ChIC and other single-cell methods for chromatin-RNA co-profiling (Please refer to Fig. 1C,D and Fig. S1D, E, of the preprint). We show that compared to other methods, T-ChIC is able to better preserve the expected biological relationship between the histone modifications and gene expression in single cells.

      *In current study, T-ChIC profiled H3K27me3 and H3K4me1 modifications, these data look great. How about other histone modifications (eg H3K9me3 and H3K36me3) and transcription factors? *

      While we haven't profiled these other modifications using T-ChIC in Zebrafish, we have previously published high quality data on these histone modifications using the sortChIC method, on which T-ChIC is based (Zeller, Yeung et al 2023). In our comparison, we find that histone modification profiles between T-ChIC and sortChIC are very similar (Fig. S1C in Zeller, Blotenburg et al 2024). Therefore the method is expected to work as well for the other histone marks.

      *T-ChIC can detect full length transcription from the same single cells, but in FigS3, the authors still used other published single cell transcriptomics to annotate the cell types, this seems unnecessary? *

      We used the published scRNA-seq dataset with a larger number of cells to homogenize our cell type labels with these datasets, but we also cross-referenced our cluster-specific marker genes with ZFIN and homogenized the cell type labels with ZFIN ontology. This way our annotation is in line with previous datasets but not biased by it. Due the relatively smaller size of our data, we didn't expect to identify unique, rare cell types, but our full-length total RNA assay helps us identify non-coding RNAs such as miRNA previously undetected in scRNA assays, which we have now highlighted in new figure S1c .

      *Throughout the manuscript, the authors found some interesting dynamics between chromatin state and gene expression during embryogenesis, independent approaches should be used to validate these findings, such as IHC staining or RNA ISH? *

      We appreciate that the ISH staining could be useful to validate the expression pattern of genes identified in this study. But to validate the relationships between the histone marks and gene expression, we need to combine these stainings with functional genomics experiments, such as PRC2-related knockouts. Due to their complexity, such experiments are beyond the scope of this manuscript (see also reply to reviewer #3, comment #4 for details).

      *In Fig2 and FigS4, the authors showed H3K27me3 cis spreading during development, this looks really interesting. Is this zebrafish specific? H3K27me3 ChIP-seq or CutTag data from mouse and/or human embryos should be reanalyzed and used to compare. The authors could speculate some possible mechanisms to explain this spreading pattern? *

      Thanks for the suggestion. In this revision, we have reanalysed a dataset of mouse ChIP-seq of H3K27me3 during mouse embryonic development by Xiang et al (Nature Genetics 2019) and find similar evidence of spreading of H3K27me3 signal from their pre-marked promoter regions at E5.5 epiblast upon differentiation (new Figure S4i). This observation, combined with the fact that the mechanism of pre-marking of promoters by PRC1-PRC2 interaction seems to be conserved between the two species (see (Hickey et al., 2022), (Mei et al., 2021) & (Chen et al., 2021)), suggests that the dynamics of H3K27me3 pattern establishment is conserved across vertebrates. But we think a high-resolution profiling via a method like T-ChIC would be more useful to demonstrate the dynamics of signal spreading during mouse embryonic development in the future. We have discussed this further in our revised manuscript.

      Reviewer #1 (Significance (Required)):

      *The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community. *

      Thank you very much for your supportive remarks.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      *Joint analysis of multiple modalities in single cells will provide a comprehensive view of cell fate states. In this manuscript, Bhardwaj et al developed a single-cell multi-omics assay, T-ChIC, to simultaneously capture histone modifications and full-length transcriptome and applied the method on early embryos of zebrafish. The authors observed a decoupled relationship between the chromatin modifications and gene expression at early developmental stages. The correlation becomes stronger as development proceeds, as genes are silenced by the cis-spreading of the repressive marker H3k27me3. Overall, the work is well performed, and the results are meaningful and interesting to readers in the epigenomic and embryonic development fields. There are some concerns before the manuscript is considered for publication. *

      We thank the reviewer for appreciating the quality of our study.

      *Major concerns: *

        • A major point of this study is to understand embryo development, especially gastrulation, with the power of scMulti-Omics assay. However, the current analysis didn't focus on deciphering the biology of gastrulation, i.e., lineage-specific pioneer factors that help to reform the chromatin landscape. The majority of the data analysis is based on the temporal dimension, but not the cell-type-specific dimension, which reduces the value of the single-cell assay. *

      We focused on the lineage-specific transcription factor activity during gastrulation in Figure 4 and S8 of the manuscript and discovered several interesting regulators active at this stage. During our analysis of the temporal dimension for the rest of the manuscript, we also classified the cells by their germ layer and "latent" developmental time by taking the full advantage of the single-cell nature of our data. Additionally, we have now added the cell-type-specific H3K27-demethylation results for 24hpf in response to your comment below. We hope that these results, together with our openly available dataset would demonstrate the advantage of the single-cell aspect of our dataset.

      1. *The cis-spreading of H3K27me3 with developmental time is interesting. Considering H3k27me3 could mark bivalent regions, especially in pluripotent cells, there must be some regions that have lost H3k27me3 signals during development. Therefore, it's confusing that the authors didn't find these regions (30% spreading, 70% stable). The authors should explain and discuss this issue. *

      Indeed we see that ~30% of the bins enriched in the pluripotent stage spread, while 70% do not seem to spread. In line with earlier observations(Hickey et al., 2022; Vastenhouw et al., 2010), we find that H3K27me3 is almost absent in the zygote and is still being accumulated until 24hpf and beyond. Therefore the majority of the sites in the genome still seem to be in the process of gaining H3K27me3 until 24hpf, explaining why we see mostly "spreading" and "stable" states. Considering most of these sites are at promoters and show signs of bivalency, we think that these sites are marked for activation or silencing at later stages. We have discussed this in the manuscript ("discussion"). However, in response to this and earlier comment, we went back and searched for genes that show H3K27-demethylation in the most mature cell types (at 24 hpf) in our data, and found a subset of genes that show K27 demethylation after acquiring them earlier. Interestingly, most of the top genes in this list are well-known as developmentally important for their corresponding cell types. We have added this new result and discussed it further in the manuscript (Fig. 2d,e, , Supplementary table 3).

      *Minors: *

        • The authors cited two scMulti-omics studies in the introduction, but there have been lots of single-cell multi-omics studies published recently. The authors should cite and consider them. *

      We have cited more single-cell chromatin and multiome studies focussed on early embryogenesis in the introduction now.

      *2. T-ChIC seems to have been presented in a previous paper (ref 15). Therefore, Fig. 1a is unnecessary to show. *

      Figure 1a. shows a summary of our Zebrafish TChIC workflow, which contains the unique sample multiplexing and sorting strategy to reduce batch effects, which was not applied in the original TChIC workflow. We have now clarified this in "Results".

      1. *It's better to show the percentage of cell numbers (30% vs 70%) for each heatmap in Figure 2C. *

      We have added the numbers to the corresponding legends.

      1. *Please double-check the citation of Fig. S4C, which may not relate to the conclusion of signal differences between lineages. *

      The citation seems to be correct (Fig. S4C supplements Fig. 2C, but shows mesodermal lineage cells) but the description of the legend was a bit misleading. We have clarified this now.

      *5. Figure 4C has not been cited or mentioned in the main text. Please check. *

      Thanks for pointing it out. We have cited it in Results now.

      Reviewer #2 (Significance (Required)):

      *Strengths: This work utilized a new single-cell multi-omics method and generated abundant epigenomics and transcriptomics datasets for cells covering multiple key developmental stages of zebrafish. *

      *Limitations: The data analysis was superficial and mainly focused on the correspondence between the two modalities. The discussion of developmental biology was limited. *

      *Advance: The zebrafish single-cell datasets are valuable. The T-ChIC method is new and interesting. *

      *The audience will be specialized and from basic research fields, such as developmental biology, epigenomics, bioinformatics, etc. *

      *I'm more specialized in the direction of single-cell epigenomics, gene regulation, 3D genomics, etc. *

      Thank you for your remarks.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      *This manuscript introduces T‑ChIC, a single‑cell multi‑omics workflow that jointly profiles full‑length transcripts and histone modifications (H3K27me3 and H3K4me1) and applies it to early zebrafish embryos (4-24 hpf). The study convincingly demonstrates that chromatin-transcription coupling strengthens during gastrulation and somitogenesis, that promoter‑anchored H3K27me3 spreads in cis to enforce developmental gene silencing, and that integrating TF chromatin status with expression can predict lineage‑specific activators and repressors. *

      *Major concerns *

      1. *Independent biological replicates are absent, so the authors should process at least one additional clutch of embryos for key stages (e.g., 6 hpf and 12 hpf) with T‑ChIC and demonstrate that the resulting data match the current dataset. *

      Thanks for pointing this out. We had, in fact, performed T-ChIC experiments in four rounds of biological replicates (independent clutch of embryos) and merged the data to create our resource. Although not all timepoints were profiled in each replicate, two timepoints (10 and 24hpf) are present in all four, and the celltype composition of these replicates from these 2 timepoints are very similar. We have added new plots in figure S2f and added (new) supplementary table (#1) to highlight the presence of biological replicates.

      2. *The TF‑activity regression model uses an arbitrary R² {greater than or equal to} 0.6 threshold; cross‑validated R² distributions, permutation‑based FDR control, and effect‑size confidence intervals are needed to justify this cut‑off. *

      Thank you for this suggestion. We did use 10-fold cross validation during training and obtained the R2 values of TF motifs from the independent test set as an unbiased estimate. However, the cutoff of R2 > 0.6 to select the TFs for classification was indeed arbitrary. In the revised version, we now report the FDR-adjusted p-values for these R2 estimates based on permutation tests, and select TFs with a cutoff of padj supplementary table #4 to include the p-values for all tested TFs. However, we see that our arbitrary cutoff of 0.6 was in fact, too stringent, and we can classify many more TFs based on the FDR cutoffs. We also updated our reported numbers in Fig. 4c to reflect this. Moreover, supplementary table #4 contains the complete list of TFs used in the analysis to allow others to choose their own cutoff.

      3. *Predicted TF functions lack empirical support, making it essential to test representative activators (e.g., Tbx16) and repressors (e.g., Zbtb16a) via CRISPRi or morpholino knock‑down and to measure target‑gene expression and H3K4me1 changes. *

      We agree that independent validation of the functions of our predicted TFs on target gene activity would be important. During this revision, we analysed recently published scRNA-seq data of Saunders et al. (2023) (Saunders et al., 2023), which includes CRISPR-mediated F0 knockouts of a couple of our predicted TFs, but the scRNAseq was performed at later stages (24hpf onward) compared to our H3K4me1 analysis (which was 4-12 hpf). Therefore, we saw off-target genes being affected in lineages where these TFs are clearly not expressed (attached Fig 1). We therefore didn't include these results in the manuscript. In future, we aim to systematically test the TFs predicted in our study with CRISPRi or similar experiments.

      4. *The study does not prove that H3K27me3 spreading causes silencing; embryos treated with an Ezh2 inhibitor or prc2 mutants should be re‑profiled by T‑ChIC to show loss of spreading along with gene re‑expression. *

      We appreciate the suggestion that indeed PRC2-disruption followed by T-ChIC or other forms of validation would be needed to confirm whether the H3K27me3 spreading is indeed causally linked to the silencing of the identified target genes. But performing this validation is complicated because of multiple reasons: 1) due to the EZH2 contribution from maternal RNA and the contradicting effects of various EZH2 zygotic mutations (depending on where the mutation occurs), the only properly validated PRC2-related mutant seems to be the maternal-zygotic mutant MZezh2, which requires germ cell transplantation (see Rougeot et al. 2019 (Rougeot et al., 2019)) , and San et al. 2019 (San et al., 2019) for details). The use of inhibitors have been described in other studies (den Broeder et al., 2020; Huang et al., 2021), but they do not show a validation of the H3K27me3 loss or a similar phenotype as the MZezh2 mutants, and can present unwanted side effects and toxicity at a high dose, affecting gene expression results. Moreover, in an attempt to validate, we performed our own trials with the EZH2 inhibitor (GSK123) and saw that this time window might be too short to see the effect within 24hpf (attached Fig. 2). Therefore, this validation is a more complex endeavor beyond the scope of this study. Nevertheless, our further analysis of H3K27me3 de-methylation on developmentally important genes (new Fig. 2e-f, Sup. table 3) adds more confidence that the polycomb repression plays an important role, and provides enough ground for future follow up studies.

      *Minor concerns *

      1. *Repressive chromatin coverage is limited, so profiling an additional silencing mark such as H3K9me3 or DNA methylation would clarify cooperation with H3K27me3 during development. *

      We agree that H3K27me3 alone would not be sufficient to fully understand the repressive chromatin state. Extension to other chromatin marks and DNA methylation would be the focus of our follow up works.

      *2. Computational transparency is incomplete; a supplementary table listing all trimming, mapping, and peak‑calling parameters (cutadapt, STAR/hisat2, MACS2, histoneHMM, etc.) should be provided. *

      As mentioned in the manuscript, we provide an open-source pre-processing pipeline "scChICflow" to perform all these steps (github.com/bhardwaj-lab/scChICflow). We have now also provided the configuration files on our zenodo repository (see below), which can simply be plugged into this pipeline together with the fastq files from GEO to obtain the processed dataset that we describe in the manuscript. Additionally, we have also clarified the peak calling and post-processing steps in the manuscript now.

      *3. Data‑ and code‑availability statements lack detail; the exact GEO accession release date, loom‑file contents, and a DOI‑tagged Zenodo archive of analysis scripts should be added. *

      We have now publicly released the .h5ad files with raw counts, normalized counts, and complete gene and cell-level metadata, along with signal tracks (bigwigs) and peaks on GEO. Additionally, we now also released the source datasets and notebooks (.Rmarkdown format) on Zenodo that can be used to replicate the figures in the manuscript, and updated our statements on "Data and code availability".

      *4. Minor editorial issues remain, such as replacing "critical" with "crucial" in the Abstract, adding software version numbers to figure legends, and correcting the SAMtools reference. *

      Thank you for spotting them. We have fixed these issues.

      Reviewer #3 (Significance (Required)):

      The method is technically innovative and the biological insights are valuable; however, several issues-mainly concerning experimental design, statistical rigor, and functional validation-must be addressed to solidify the conclusions.

      Thank you for your comments. We hope to have addressed your concerns in this revised version of our manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community.

      There are several single-cell methodologies all claim to co-profile chromatin modifications and gene expression from the same individual cell, such as CoTECH, Paired-tag and others. Although T-ChIC employs pA-Mnase and IVT to obtain these modalities from single cells which are different, could the author provide some direct comparisons among all these technologies to see whether T-ChIC outperforms?

      In current study, T-ChIC profiled H3K27me3 and H3K4me1 modifications, these data look great. How about other histone modifications (eg H3K9me3 and H3K36me3) and transcription factors?

      T-ChIC can detect full length transcription from the same single cells, but in FigS3, the authors still used other published single cell transcriptomics to annotate the cell types, this seems unnecessary?

      Throughout the manuscript, the authors found some interesting dynamics between chromatin state and gene expression during embryogenesis, independent approaches should be used to validate these findings, such as IHC staining or RNA ISH?

      In Fig2 and FigS4, the authors showed H3K27me3 cis spreading during development, this looks really interesting. Is this zebrafish specific? H3K27me3 ChIP-seq or CutTag data from mouse and/or human embryos should be reanalyzed and used to compare. The authors could speculate some possible mechanisms to explain this spreading pattern?

      Significance

      The authors have a longstanding focus and reputation on single cell sequencing technology development and application. In this current study, the authors developed a novel single-cell multi-omic assay termed "T-ChIC" so that to jointly profile the histone modifications along with the full-length transcriptome from the same single cells, analyzed the dynamic relationship between chromatin state and gene expression during zebrafish development and cell fate determination. In general, the assay works well, the data look convincing and conclusions are beneficial to the community.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02879 Corresponding author(s): Matteo Allegretti; Alia dos Santos

      1. General Statements

      In this study, we investigated the effects of paclitaxel on both healthy and cancerous cells, focusing on alterations in nuclear architecture. Our novel findings show that:

      • Paclitaxel-induced microtubule reorganisation during interphase alters the perinuclear distribution of actin and vimentin. The formation of extensive microtubule bundles, in paclitaxel or following GFP-Tau overexpression, coincides with nuclear shape deformation, loss of regulation of nuclear envelope spacing, and alteration of the nuclear lamina.

      • Paclitaxel treatment reduces Lamin A/C protein levels via a SUN2-dependent mechanism. SUN2, which links the lamina to the cytoskeleton, undergoes ubiquitination and consequent degradation following paclitaxel exposure.

      • Lamin A/C expression, frequently dysregulated in cancer cells, is a key determinant of cellular sensitivity to, and recovery from, paclitaxel treatment.

      Collectively, our data support a model in which paclitaxel disrupts nuclear architecture through two mechanisms: (i) aberrant nuclear-cytoskeletal coupling during interphase, and (ii) multimicronucleation following defective mitotic exit. This represents an additional mode of action for paclitaxel beyond its well-established mechanism of mitotic arrest.

      We thank the reviewers for their time and constructive feedback. We have carefully considered all comments and have carried out a full revision. The updated manuscript now includes additional data showing:

      • Overexpression of microtubule-associated protein Tau causes similar nuclear aberration phenotypes to paclitaxel. This supports our hypothesis that increased microtubule bundling directly leads to nuclear disruption in paclitaxel during interphase.

      • Paclitaxel's effects on nuclear shape and Lamin A/C and SUN2 expression levels occur independently of cell division.

      • Reduced levels of Lamin A/C and SUN2 upon paclitaxel treatment occur at the protein level via ubiquitination of SUN2.

      • The effects of paclitaxel on the nucleus are conserved in breast cancer cells.

      Full Revision

      We have also edited our text and added further detail to clarify points raised by the reviewers. We believe that our revised manuscript is overall more complete, solid and compelling thanks to the reviewers' comments.

      1. Point-by-point description of the revisions

      Reviewer #1 Evidence, reproducibility and clarity

      This description of the down-regulation of the expression of lamin A/C upon treatment with paclitaxel and its sensitivity to SUN2 is quite interesting but still somehow preliminary. It is unclear whether this effect involves the regulation of gene expression, or of the stability of the proteins. How SUN2 mediates this effect is still unknown.

      We thank the reviewer for this valuable comment. To elucidate the mechanism behind the decrease in Lamin A/C and SUN2 levels, we have now performed several additional experiments. First, we performed RT-qPCR to quantify mRNA levels of these genes, relative to the housekeeping gene GAPDH (Supplementary Figure 3B and O). The levels of SUN2 and LMNA mRNA remained the same between control and paclitaxel-treated cells, indicating that this effect instead occurs at the protein level. We have also tested post-translational modifications as a potential regulatory mechanism for Lamin A/C and SUN2. In addition to the phosphorylation of Ser404 which we had already tested (Supplementary Figure 3C), we have now included additional Phos-tag gel and Western blotting data showing that the overall phosphorylation status of Lamin A/C is not affected by paclitaxel (Supplementary Figure 3E and F). We also pulled-down Lamin A/C from cell lysates and then Western blotted for polyubiquitin and acetyl-lysine, which showed that the ubiquitination and acetylation states of Lamin A/C are also not affected by paclitaxel (Supplementary Figure 3G-I). However, Western blots for polyubiquitin of SUN2 pulled down from cell lysates showed that paclitaxel treatment results in significant SUN2 ubiquitination (Figure 3M and N). Therefore, we propose that the downregulation of SUN2 following paclitaxel treatment occurs by ubiquitin-mediated proteolysis.

      The roles of free tubulins and polymerized microtubules, and thus the potential role of paclitaxel, need to be uncovered.

      We addressed this important point by using an alternative method to stabilise/bundle microtubules in interphase, namely by overexpressing GFP-Tau, as suggested by reviewer 2. Following GFP- Tau overexpression, large microtubule bundles were observed throughout the cytoplasm (Figure 4A), and this resulted in a significant decrease in nuclear solidity (Figure 4B). Furthermore, in cells where microtubule bundles extensively contacted the nucleus, the nuclear lamina became unevenly distributed and appeared patchy (Figure 4C). This supports our hypothesis that the aberrations to nuclear shape and Lamin A/C localisation in paclitaxel-treated cells are due to the presence of microtubules bundles surrounding the nucleus.

      The doses of paclitaxel at which occur the effects described in the paper are not fully consistent with all the conclusions. Most experiments have been done at 5 nM. However, at this dose the effect of lamin A/C over or down expression on the growth (differences in the slopes of the curves in Figure 4A) are not fully convincing and not fully consistent with the clear effect on viability as well (in addition, duration of treatments before assessing vialbility are not specified). At 1 nM, cell growth is reduced and the rescuing effect of lamin over-expression is much more clear (Fig 4A), and the nucleus deformation clear (Fig 2A) but this dose has no effect on lamin A/C expression (Fig 3C), which questions how lamins impact nucleus shape and cell survival. Cytoskeleton reorganisation in these conditions is not described although it could clarify the respective role of force production (suggested in figure 1) and nuclei resistance (shown in figure 2) in paclitaxel sensitivity.

      We thank the reviewer for raising this important point. We have addressed this by conducting additional repeats for the cell confluency measurements to increase the statistical power of our experiments (Figure 5A). Our data now show that GFP-lamin A/C had a statistically significant effect on rescuing cell growth at both 1 nM and 5 nM paclitaxel, while Lamin A/C knockdown exacerbated the inhibition of cell growth at 5 nM paclitaxel but not 1 nM paclitaxel (Figure 5A). In addition, we note that the duration of paclitaxel treatment before assessing viability was specified in the figure legend: "Bar graph comparing cell viability between wild-type (red), GFP-Lamin A/C overexpression (green), and Lamin A/C knockdown (blue) cells following 20 h incubation in 0, 1, 5, or 10 nM paclitaxel." We also repeated cell viability analysis after 48 h incubation in paclitaxel instead of 20 h to allow for a longer time for differences to take effect (Figure 5B).

      We also added figures showing the cytoskeletal reorganisation at both 1 and 10 nM in addition to 0 and 5 nM (Supplementary Figure 1A) showing that microtubule bundling and condensation of actin into puncta correlated with increased paclitaxel concentration. Vimentin colocalised well with microtubules at all concentrations.

      We have also included in our results section further clarification for the use of 5nM paclitaxel in this study. The new section reads as follows: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Finally, although the absence of role of mitotic arrest is clear from the data, the defective reorganisation of the nucleus after mitosis still suggest that the effect of paclitaxel is not independent of mitosis.

      We thank the reviewer for pointing out the need for clarification in the wording of our manuscript. We have reworded the title and relevant sections of our abstract, introduction, and discussion to make it clearer that the effects of paclitaxel on the nucleus are due to a combination of aberrant nuclear cytoskeletal coupling during interphase and multimicronucleation following mitotic slippage. We have also added additional data in support of the effect of paclitaxel on nuclear architecture during interphase. For this, we used serum-starved cells (which divide only very slowly such that the majority of cells do not pass through mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data confirmed that paclitaxel's effects on nuclear solidity, and Lamin A/C and SUN2 proteins levels can occur independently of cell division (Figure 2C; Figure 3H-J). Finally, when we overexpressed GFP-Tau (as discussed above) we observed similar aberrations to nuclear solidity and Lamin A/C localisation. This indicates that these effects occur due to microtubule bundling in interphase, especially as in our study GFP-Tau did not lead to multimicronucleation or appear to affect mitosis (Figure 4).

      Below are the main changes to the text regarding the interphase effect of paclitaxel:

      • Title: "Paclitaxel compromises nuclear integrity in interphase through SUN2-mediated cytoskeletal coupling"

      • Abstract: "Overall, our data supports nuclear architecture disruption, caused by both aberrant nuclear-cytoskeletal coupling during interphase and exit from defective mitosis, as an additional mechanism for paclitaxel beyond mitotic arrest."

      • Introduction: "Here we propose that cancer cells have increased vulnerability to paclitaxel both during interphase and following aberrant mitosis due to pre-existing defects in their NE and nuclear lamina."

      • Discussion: "Overall, our work builds on previous studies investigating loss of nuclear integrity as an anti-cancer mechanism of paclitaxel separate from mitotic arrest14,20,21. We propose that cancer cells show increased sensitivity to nuclear deformation induced by aberrant nuclear-cytoskeletal coupling and multimicronucleation following mitotic slippage. Therefore, we conclude that paclitaxel functions in interphase as well as mitosis, elucidating how slowly growing tumours are targeted."

      minor: a more thorough introduction of known data about dose response of cells in culture and in vivo would help understanding the range of concentrations used in this study.

      As mentioned above, we have now included additional information in our Results section to clarify our paclitaxel dose range: "Experiments were performed at 5 nM paclitaxel (with additional experiments to determine dose relationships at 1 and 10 nM) because this aligns with previous studies7,14,24. Furthermore, previous analysis of patient plasma reveals that typical concentrations are within the low nanomolar range8, and concentrations of 5-10 nM are required in cell culture to reach the same intracellular concentrations observed in vivo in patient tumours9. This aligns with in vitro cytotoxic studies of paclitaxel in eight human tumour cell lines which show that paclitaxel's IC50 ranges between 2.5 and 7.5 nM41."

      Significance

      In this manuscript, Hale and colleagues describe the effect of paclitaxel on nucleus deformation and cell survival. They showed that 5nM of paclitaxel induces nucleus fragmentation, cytoskeleton reorganisation, reduced expression of LaminA/C and SUN2, and reduced cell growth and viability. They also showed that these effects could be at least partly compensated by the over-expression of lamin A/C. As fairly acknowledged by the authors, the induction of nuclear deformation in paclitaxel-treated cells, and the increased sensitivity to paclitaxel of cells expressing low level of lamin A/C are not novel (reference #14). Here the authors provided more details on the cytoskeleton changes and nuclear membrane deformation upon paclitaxel treatment. The effect of lamin A/C over and down expression on cell growth and survival are not fully convincing, as further discussed below. The most novel part is the observation that paclitaxel can induce the down-regulation of the expression of lamin A/C and that this effect is mediated by SUN2.

      We appreciate the reviewer's summary and thank them for their time. We believe our comprehensive revisions have addressed all comments, strengthening the manuscript and making it more robust and compelling.

      Reviewer #2 Evidence, reproducibility and clarity This study investigates the effects of the chemotherapeutic drug paclitaxel on nuclear-cytoskeletal coupling during interphase, claiming a novel mechanism for its anti-cancer activity. The study uses hTERT-immortalized human fibroblasts. After paclitaxel exposure, a suite of state- of-the-art imaging modalities visualizes changes in the cytoskeleton and nuclear architecture. These include STORM imaging and a large number of FIB-SEM tomograms.

      We thank the reviewer for the summary and for highlighting our efforts in using the latest imaging technical advances.

      Major comments:

      The authors make a major claim that in addition to the somewhat well-described mechanism of paclitaxel on mitosis, they have discovered 'an alternative, poorly characterised mechanism in interphase'.

      However, none of the data proves that the effects shown are independent of mitosis. To the contrary, measurements are presented 48 hours after paclitaxel treatment starts, after which it can be assumed that 100% of cells have completed at least one mitotic event. The appearance of micronuclei evidences this, as discussed by the authors shortly. It looks like most of the results shown are based on botched mitosis or, more specifically, errors on nuclear assembly upon exit from mitosis rather than a specific effect of paclitaxel on interphase. The readouts the authors show just happen to be measurements while the cells are in interphase.

      Alternative hypotheses are missing throughout the manuscript, and so are critical controls and interpretations.

      We thank the reviewer for highlighting the lack of clarity in our wording. We have revised the title, abstract and relevant sections of the introduction and discussion to clarify our message that the effects of paclitaxel on the nucleus arise from a combination of aberrant nuclear-cytoskeletal coupling during interphase and multimicronucleation following exit from defective mitosis. We have also included additional data where we used slow-dividing, serum-starved cells (under these conditions, the majority of cells do not undergo mitosis during the 16 h incubation in paclitaxel [Supplementary Figure 2D]). Our new data show that even in these cells there is a clear effect of paclitaxel on nuclear solidity, and Lamin A/C and SUN2 protein levels, further supporting our hypothesis that these phenotypes can occur independently of cell division (Figure 2C; Figure 3H-J). Furthermore, we performed additional experiments where we used overexpression of GFP-Tau as an alternative method of stabilising microtubules in interphase and observed similar aberrations to nuclear solidity and Lamin A/C localisation. As GFP-Tau overexpression did not lead to micronucleation or appear to affect mitosis, these data support the hypothesis that nuclear aberrations occur due to microtubule bundling in interphase (Figure 4). We discuss these experiments in more detail below. Finally, we have reworded the introduction to better introduce alternative hypotheses and mechanisms for paclitaxel's activity.

      The authors claim that 'Previously, the anti-cancer activity of paclitaxel was thought to rely mostly on the activation of the mitotic checkpoint through disruption of microtubule dynamics, ultimately resulting in apoptosis.' The authors may have overlooked much of the existing literature on the topic, including many recent manuscripts from Xiang-Xi Xu's and another lab.

      We would like to note that the paper from Xiang-Xi Xu's lab (Smith et al, 2021) was cited in our original manuscript (reference 14 in both the original and revised manuscripts). We have now also included additional review articles from the Xiang-Xi Xu lab (PMID:36368286 20 and PMID: 35048083 21). Furthermore, we have clarified the wording in both the introduction and discussion to better reflect the current understanding of paclitaxel's mechanism and alternative hypotheses.

      The data, e.g. in Figure 1, does not hold up to the first alternative hypothesis, e.g. that paclitaxel stabilizes microtubules and that excessive mechanical bundling of microtubules induces major changes to cell shape and mechanical stress on the nucleus. Even the simplest controls for this effect (the application of an alternative MT stabilizing drug or the overexpression of an MT stabilizer, e.g., tau).

      We thank the reviewer for suggesting this control experiment using the microtubule stabiliser Tau. We have now included these experiments in the revised version of the manuscript (Figure 4). The overexpression of GFP-Tau supports our hypothesis that cytoskeletal reorganisation in paclitaxel exerts mechanical stress on the nucleus during interphase, resulting in nuclear deformation and aberrations to the nuclear lamina. In particular, GFP-Tau overexpression resulted in large microtubule bundles throughout the cytoplasm (Figure 4A). Notably, in cells where these bundles extensively contacted the nucleus, we observed a significant decrease in nuclear solidity (Figure 4B) accompanied by changes in nuclear lamina organisation, including a patchy lamina phenotype, similar to that induced by paclitaxel (Figure 4C).

      The focus on nuclear lamina seems somewhat arbitrary and adjacent to previously published work by other groups. What would happen if the authors stained for focal adhesion markers? There would probably be a major change in number and distribution. Would the authors conclude that paclitaxel exerts a specific effect on focal adhesions? Or would the conclusion be that microtubule stabilization and the following mechanical disruption induce pleiotropic effects in cells? Which effects are significant for paclitaxel function on cancer cells?

      We thank the reviewer for raising important points regarding the specificity of paclitaxel's effects. We agree that microtubule stabilisation can induce myriad cellular changes, including alterations to focal adhesions and other cytoskeletal components. Our focus on Lamin A/C and nuclear morphology is grounded both in the established clinical relevance of nuclear mechanics in cancer and builds on mechanistic work from other groups.

      Lamin A/C expression is commonly altered in cancer, and nuclear morphology is frequently used in cancer diagnosis35. Lamin A/C also plays a crucial role in regulating nuclear mechanics32 and, importantly, determines cell sensitivity to paclitaxel14. However, the mechanism by which Lamin A/C determines sensitivity of cancer cells to paclitaxel is unclear.

      Our data are consistent with Lamin A/C being a determinant of paclitaxel survival sensitivity. We also provide evidence that paclitaxel itself reduces Lamin A/C protein levels and disrupts its organisation at the nuclear envelope. We directly link these effects to microtubule bundling around the nucleus and degradation of force-sensing LINC component SUN2, highlighting the importance of nuclear architecture and mechanics to overall cellular function. Furthermore, we show that recovery from paclitaxel treatment depends on Lamin A/C expression levels. This has clinical relevance, as unlike cancer cells, healthy tissue with non-aberrant lamina would be able to selectively recover from paclitaxel treatment.

      Minor comments:

      While I understand the difficulty of the experiments and the effort the authors have put into producing FIB-SEM tomograms, I am not sure they are helping their study or adding anything beyond the light microscopy images. Some of the images may even be in the way, such as supplementary Figure 6, which lacks in quality, controls, and interpretation. Do I see a lot of mitochondria in that slice?

      We agree with the reviewer that Supplementary Figure 6 does not add significant value to the manuscript and thank the reviewer for pointing this out. We have removed it from the manuscript accordingly.

      I may have overlooked it, but has the number of cells from which lamellae have been produced been stated?

      We thank the reviewer for pointing out the missing information. For our cryo-ET experiments, we collected data from 9 lamellae from paclitaxel-treated cells and 6 lamellae from control cells, with each lamella derived from a single cell. This information has now been added to the figure legend (Figure 2F).

      Significance

      The significance of studying the effect of paclitaxel, the most successful chemotherapy drug, should be broad and of interest to basic researchers and clinicians.

      As outlined above, I believe that major concerns about the design and interpretation of the study hamper its significance and advancements.

      We appreciate the reviewer's concerns and have performed major revisions to strengthen the significance of our study. Specifically, we conducted two key sets of experiments to validate our original conclusions: serum starvation to control for the effects of cell division, and overexpression of the microtubule stabiliser Tau to demonstrate that paclitaxel can affect the nucleus via its microtubule bundling activity in interphase.

      By elucidating the mechanistic link between microtubule stabilisation and nuclear-cytoskeletal coupling, our findings contribute to our understanding of paclitaxel's multifaceted actions in cancer cells.

      My areas of expertise could be broadly defined as Cell Biology, Cytoskeleton, Microtubules, and Structural Biology.

      Reviewer #3 Evidence, reproducibility and clarity The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      We thank the reviewer for the positive feedback.

      Although similar ideas are published, which may be suitable to be cited? • Paclitaxel resistance related to nuclear envelope structural sturdiness. Smith ER, Wang JQ, Yang DH, Xu XX. Drug Resist Updat. 2022 Dec;65:100881. doi: 10.1016/j.drup.2022.100881. Epub 2022 Oct 15. PMID: 36368286 Review. • Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. Smith ER, Xu XX. J Cancer Biol. 2021;2(4):86-93. doi: 10.46439/cancerbiology.2.031. PMID: 35048083 Free PMC article.

      We thank the reviewer for bringing to our attention these important review articles. In our initial manuscript, we only cited the original paper (14, also reference 14 in the original manuscript). We have now included citations to the suggested publications (20,21).

      We would also like to emphasise how our manuscript distinguishes itself from the work of Smith et al.14,20,21:

      • Cell-type focus: In their study 14, Smith et al. examined the effect of paclitaxel on malignant ovarian cancer cells and proposed that paclitaxel's effects on the nucleus are limited to cancer cells. However, our data extends these findings by demonstrating paclitaxel's effects in both cancerous and non-cancerous backgrounds.

      • Cytoskeletal reorganisation: Smith et al. show reorganisation of microtubules in paclitaxel-treated cells14. Our data show re-organisation of other cytoskeletal components, including F-actin and vimentin.

      • Multimicronucleation: Smith et al. propose that paclitaxel-induced multimicronucleation occurs independently of cell division14. Although we observe progressive nuclear abnormalities during interphase over the course of paclitaxel treatment, our data do not support this conclusion; we find that multimicronucleation occurs only following mitosis.

      • Direct link between microtubule bundling and nuclear aberrations: We show that nuclear aberrations caused by paclitaxel during interphase (distinct from multimicronucleation) are directly linked to microtubule bundling around the nucleus, suggesting they result from mechanical disruption and altered force propagation.

      • Lamin A/C regulation: Consistent with Smith et al.14, we show that Lamin A/C depletion leads to increased sensitivity to paclitaxel treatment. However, we further demonstrate that paclitaxel itself leads to reduced levels of Lamin A/C and that this effect occurs independently of mitosis and is mediated via force-sensing LINC component SUN2. Upon SUN2 knockdown, Lamin A/C levels are no longer affected by paclitaxel treatment.

      • Recovery: Finally, our work reveals that cells expressing low levels of Lamin A/C recover less efficiently after paclitaxel removal. This might help explain how cancer cells could be more susceptible to paclitaxel.

      Only one cell line was used in all the experiments? "Human telomerase reverse transcriptase (hTERT) immortalised human fibroblasts" ? The cells used are not very relevant to cancer cells (carcinomas) that are treated with paclitaxel. It is not clear if the observations and conclusions will be able to be generalized to cancer cells.

      We thank the reviewer for this comment. Our initial study aimed to understand the effects of paclitaxel on nuclear architecture in non-aberrant backgrounds. To show that the observed effects of paclitaxel are also applicable to cancer cells, we have now repeated our main experiments using MDA-MB-231 human breast cancer cells (Supplementary Figure 1B; Supplementary Figure 3P-T). Similar to our findings in human fibroblasts, paclitaxel treatment of MDA-MB-231 led to cytoskeletal reorganisation (Supplementary Figure 1B), a decrease in nuclear solidity (Supplementary Figure 3P), aberrant (patchy) localisation of Lamin A/C (Supplementary Figure 3Q), and a reduction in Lamin A/C and SUN2 levels (Supplementary Figure 3R-T).

      "Fig. 1. (B) STORM imaging of α-tubulin immunofluorescence in cells fixed after 16 h incubation in control media or 5 nM paclitaxel. Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Scale bars = 10 μm." It needs explanation of what is meaning of the different color lines in the lower panels, just different filaments?

      We have added further detail to the figure legend for clarification: "Lower panels show α-tubulin clusters generated with HDBSCAN analysis. Different colours distinguish individual α-tubulin clusters, representing individual microtubule filaments or filament bundles."

      Generally, the figures need additional description to be clear.

      We have added further clarification and detail to our figure legends.

      "Figure 3 - Paclitaxel results in aberrations to the nuclear lamina." The sentence seems not to be well constructed. "Paclitaxel treatment causes ..."?

      We changed this sentence to: "Figure 3 - Paclitaxel treatment results in aberrant organisation of the nuclear lamina and decreased Lamin A/C levels via SUN2."

      Lamin A and C levels are different in different images (Fig. 3B, H): some Lamin A is higher, and sometime Lamin C is higher? This may possibly due to culture condition or subtle difference in sample handling?.

      We thank the reviewer for pointing this out and we agree that the ratio of Lamin A to Lamin C can vary with culture conditions. To confirm that paclitaxel treatment reduces total Lamin A/C levels regardless of this ratio, we repeated the Western blot analysis in three additional biological replicates using cells in which Lamin C levels exceeded Lamin A levels. These experiments confirmed a comparable decrease in total Lamin A/C levels. Figure 3B and 3C have been updated accordingly.

      Also, the effect on Lamin A/C and SUN2 levels are not significant of robust.

      Decreased Lamin A/C and SUN2 levels following paclitaxel treatment were consistently seen across three or more biological repeats (Figure 3B-C), and this could be replicated in a different cell type (MDA-MB-231) (Supplementary Figure 3R-T). Furthermore, Western blotting results are consistent with the patchy Lamin A/C distribution observed using confocal and STORM following paclitaxel treatment (Figure 3A; Supplementary Figure 3A), where Lamin A/C appears to be absent from discrete areas of the lamina.

      Any mechanisms are speculated for the reason for the reduction?

      We have now included additional data which aims to shed light on the mechanism behind the decrease in Lamin A/C and SUN2 levels following paclitaxel treatment. We found that SUN2 is selectively degraded during paclitaxel treatment. Immunoprecipitation of SUN2 followed by Western blotting against Polyubiquitin C showed increased SUN2 ubiquitination in paclitaxel (Figure 3M and N). Furthermore, in our original manuscript, we showed that Lamina A/C levels remained unaltered during paclitaxel treatment in cells where SUN2 had been knocked down. We propose that changes in microtubule organisation affect force propagation to Lamin A/C specifically via SUN2 and that this leads to Lamina A/C removal and depletion. Future work will be needed to fully understand this mechanism.

      In addition to the findings described above, we report no significant changes in mRNA levels for LMNA or SUN2 in paclitaxel (Supplementary Figure 3B and O). Phos-tag gels followed by Western blotting analysis for Lamin A/C also did not detect changes to the overall phosphorylation status of Lamin A/C due to paclitaxel treatment. This is in agreement with our initial data showing no changes to Lamin A/C Ser 404 phosphorylation levels (Supplementary Figure 3E and F). Finally, Lamin A/C immunoprecipitation experiments followed by Western blotting for Polyubiquitin C and acetyl-lysine showed no significant changes in the ubiquitination and acetylation state of Lamin A/C in paclitaxel-treated cells (Supplementary Figure 3G-I).

      Also, the about 50% reduction in protein level is difficult to be convincing as an explanation of nuclear disruption.

      The nuclear lamina and LINC complex proteins play a critical role in regulating nuclear integrity, stiffness and mechanical responsiveness to external forces28,31-33,54,75, as well as in maintaining the nuclear intermembrane distance69,74. In particular, SUN-domain proteins physically bridge the nuclear lamina to the cytoskeleton through interactions with Nesprins, thereby preserving the perinuclear space distance30,69,74. Mutations in Lamins have been shown to disrupt chromatin organization, alter gene expression, and compromise nuclear structural integrity, and experiments with LMNA knockout cells reveal that nuclear mechanical fragility is closely coupled to nuclear deformation47. Furthermore, nuclear-cytoskeletal coupling is essential during processes such as cell migration, where cells undergo stretching and compression of the nucleus; weakening or loss of the lamina in such cases compromises cell movement47,73. In our work, we show that alterations to nuclear Lamin A/C and SUN2 by paclitaxel treatment coincide with nuclear deformations (Figure 2A-D, F, G; Figure 3A-D, F, G; Supplementary Figure 3A, P-T) and that these deformations are reversible following paclitaxel removal (Supplementary Figure 4B-D). Our experiments also demonstrate that Lamin A/C expression levels significantly influence cell growth, cell viability, and cell recovery in paclitaxel (Figure 5). Therefore, drawing on current literature and our results, we propose that, during interphase, paclitaxel induces severe nuclear aberrations through the combined effects of: i) increased cytoskeletal forces on the NE caused by microtubule bundling; ii) loss of ~50% Lamin A/C and SUN2; iii) reorganisation of nucleo-cytoskeletal components.

      Significance

      The manuscript presents interesting new ideas for the mechanism of an old drug, taxol, which has been studied for the last 40 years.

      The data may be improved to provide stronger support.

      Additional cell lines (of cancer or epithelial origin) may be repeated to confirm the generality of the observation and conclusions.?

      We thank the reviewer for the feedback and valuable suggestions. In response, we have included experiments using human breast cancer cell line MDA-MB-231 to further corroborate our findings and interpretations. We believe these additions have improved the clarity, robustness and impact of our manuscript, and we are grateful for the reviewer's contributions to its improvement.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Major concerns:

      (1) Is the direct binding of MCAK to the microtubule cap important for its in vivo function?

      a.The authors claim that their "study provides mechanistic insights into understanding the end-binding mechanism of MCAK". I respectfully disagree. My concern is that the paper offers limited insights into the physiological significance of direct end-binding for MCAK activity, even in vitro. The authors estimate that in the absence of other proteins in vitro, ~95% of MCAK molecules arrive at the tip by direct binding in the presence of ~ physiological ATP concentration (1 mM). In cells, however, the major end-binding pathway may be mediated by EB, with the direct binding pathway contributing little to none. This is a reasonable concern because the apparent dissociation constant measured by the authors shows that MCAK binding to microtubules in the presence of ATP is very weak (69 uM). This concern should be addressed by 1) calculating relative contributions of direct and EB-dependent pathways based on the affinities measured in this and other published papers and estimated intracellular concentrations. Although there are many unknowns about these interactions in cells, a modeling-based analysis may be revealing. 2) the recapitulation of these pathways using purifying proteins in vitro is also feasible. Ideally, some direct evidence should be provided, e.g. based on MCAK function-separating mutants (GDP-Pi tubulin binding vs. catalytic activity at the curled protofilaments) that contribution from the direct binding of MCAK to microtubule cap in EB presence is significant.

      We thank the reviewer for the thoughtful comments.

      (1) We think that the end-binding affinity of MCAK makes a significant contribution for its cellular functions. To elucidate this concept, we now use a simple model shown in Supplementary Appendix-2 (see pages 49-51, lines 1246-1316). In this model, we simplified MCAK and EB1 binding to microtubule ends by considering only these two proteins while neglecting other factors (e.g. XMAP215). Specifically, we considered two scenarios: one in which both proteins freely diffuse in the cytoplasm and another where MCAK is localized to specific cellular structures, such as the centrosome or centromere. Based on the modeling results, we argue that MCAK's functional impact at microtubule ends derives both from its intrinsic end-binding capacity and its ability to strengthen the EB1-mediated end association pathway.

      (2) We agree with the reviewer that MCAK exhibiting a lower end-binding affinity (69 µM) is indeed intriguing, as one might intuitively expect a stronger affinity, e.g. in the nanomolar range. Several factors may contribute to this observation. First, this could be partly due to the in vitro system employed, which may not perfectly replicate in vivo conditions, especially when considering cellular processes quantitatively. Variations in medium composition can significantly influence the binding state. For example, reducing salt concentration leads to a marked increase in MCAK’s binding affinity (Helenius et al., 2006; Maurer et al., 2011; McHugh et al., 2019). Additionally, while numerous binding events with short durations were detected, we excluded transient interactions from our analysis to facilitate quantification. This likely leads to an underestimation of the on-rate and, consequently, the binding affinity. Moreover, to minimize the interference of purification tags (His-tag), we ensured their complete removal during protein sample preparation. Previous studies reported that retaining the His-tag of MAPs affects the binding affinity to microtubules (Maurer et al., 2011; Zhu et al., 2009). Finally, a low affinity is not necessarily unexpected. Considering the microtubule end as a receptor with multiple binding sites for MCAK, the overall binding affinity is in the nanomolar range (260 nM). This does not necessarily contradict MCAK being a microtubule dynamics regulator as only a few MCAK molecules may suffice to induce microtubule catastrophe (as discussed on page 13, lines 408-441).

      (3) Ideally, we would search for mutants that specifically interfere with the binding of GDP-Pi-tubulin or the curled protofilaments. However, the mutant we tested significantly impacts the overall affinity of MCAK to microtubules (both end and lattice), making it challenging to isolate and discuss the function of MCAK with respect to the binding to GDP-Pi-tubulin alone. Additionally, we also think that the GDP-Pi-tubulin in the EB cap and the tubulin in the curved protofilaments may share structural similarities. For instance, the tubulin dimers in both states may be less compact compared to those in the lattice, which could explain why MCAK recognizes both simultaneously (Manka and Moores, 2018). However, this remains a conjecture, as there is currently no direct evidence to support it.

      b. As mentioned in the Discussion, preferential MCAK binding to tubulins near the MT tip may enhance MCAK targeting of terminal tubulins AFTER the MCAK has been "delivered" to the distal cap via the EB-dependent mechanism. This is a different targeting mechanism than the direct MCAK-binding. However, the measured binding affinity between MCAK and GMPCPP tubulins is so weak (69 uM), that this effect is also unlikely to have any impact because the binding events between MCAK and microtubule should be extremely rare. Without hard evidence, the arguments for this enhancement are very speculative.

      Please see our response to the comment No. 1. Additionally, we have revised our discussion to discuss the end-binding affinity of MCAK as well as its physiological relevance (please see page 13, lines 408-441; and see Supplementary Appendix-2 in pages 49-51, lines 1246-1316).

      (2) The authors do not provide sufficient justification and explanation for their investigation of the effects of different nucleotides in MCAK binding affinity. A clear summary of the nucleotide-dependent function of MCAK (introduction with references to prior affinity measurements and corresponding MCAK affinities), the justifications for this investigation, and what has been learned from using different nucleotides (discussion) should be provided. My take on these results is that by far the strongest effect on microtubule wall and tip binding is achieved by adding any adenosine, whereas differences between different nucleotides are relatively minor. Was this expected? What can be learned from the apparent similarity between ATP and AMPPNP effects in some assays (Fig 1E, 4C, etc) but not others (Fig 1D,F, etc)?

      We thank the reviewer for this suggestion. We have revised the manuscript accordingly, and below are the main points of our response

      (1) The experiment investigating the effects of different nucleotides on MCAK binding affinity was inspired by the previous studies demonstrating that kinesin-13 interactions with microtubules are highly dependent on their adenosine-bound states. For example, kinesin-13s tightly bind microtubules and prefer to form protofilament curls or rings with tubulin in the AMPPNP state, whereas kinesin-13s are considered to move along the microtubule lattice via one-dimensional diffusion in the ADP·Pi state (Asenjo et al., 2013; Benoit et al., 2018; Friel and Howard, 2011; Helenius et al., 2006). Based on these observations, we wondered whether MCAK's adenosine-bound states might similarly affect its binding preference for growing microtubule ends. We have made the motivation clear in the revised manuscript (please see page 7, lines 199-209).

      (2) Our main finding regarding the effects of nucleotides is that MCAK shows differential end-binding affinity and preference based on its nucleotide state. First, MCAK shows the greatest preference for growing microtubule ends in the ATP state, supporting the idea that diffusive MCAK (MCAK·ATP) can directly bind to growing microtubule ends. Second, MCAK·ATP also demonstrates a binding preference for GTPγS microtubules and the ends of GMPCPP microtubules. The similar trends in binding preference suggest that the affinity for GDP·Pi-tubulin and GTP-tubulin likely underpins MCAK’s preference for growing microtubule ends. To clarify these points, we have added further discussions in the manuscript (please see page 8, lines 230-233; page9, lines 258-270 and pages 13-14, lines 443-458).

      (3) It is not clear why the authors decided to use these specific mutant MCAK proteins to advance their arguments about the importance of direct tip binding. Both mutants are enzymatically inactive. Both show roughly similar tip interactions, with some (minor) differences. Without a clear understanding of what these mutants represent, the provided interpretations of the corresponding results are not convincing.

      We thank the reviewer for this comment. In the revised manuscript, we no longer draw conclusions about the importance of end-binding based on the mutant data. Instead, we think that the mutant data provide insights into the structural basis of the end-binding preference. Therefore, we have rewritten the results in this section to more accurately reflect these findings (please see page 10, lines 295-327).

      (4) GMPCPP microtubules are used in the current study to represent normal dynamic microtubule ends, based on some published studies. However, there is no consensus in the field regarding the structure of growing vs. GMPCPP-stabilized microtubule ends, which additionally may be sensitive to specific experimental conditions (buffers, temperature, age of microtubules, etc). To strengthen the authors' argument, Taxol-stabilized microtubules should be used as a control to test if the effects are specific. Additionally, the authors should consider the possibility that stronger MCAK binding to the ends of different types of microtubules may reflect MCAK-dependent depolymerization events on a very small scale (several tubulin rows). These nano-scale changes to tubulins and the microtubule end may lead to the accumulation of small tubulin-MCAK aggregates, as is seen with other MAPs and slowly depolymerizing microtubules. These effects for MCAK may also depend on specific nucleotides, further complicating the interpretation. This possibility should be addressed because it provides a different interpretation than presented in the manuscript.

      Regarding the two points raised here, our thoughts are as following

      (1) The end of GMPCPP-stabilized microtubules differs from that of growing microtubules, with the most obvious known difference being the absence of the region enriched in GDP-Pi-tubulin. We consider the end of GMPCPP microtubules as an analogue of the distal tip of growing microtubules, based on two key features: (1) curled protofilaments and (2) GMPCPP-tubulin, a close analogue of GTP-tubulin. Notably, both features are present at the ends of both GMPCPP-stabilized and growing microtubules. Moreover, we agree with the suggestion to use taxol-stabilized microtubules as a control. This would eliminate the second feature (absence of GTP-tubulin), allowing us to isolate the effect of the first feature. Therefore, we conducted this experiment, and our data showed that MCAK exhibits only a mild binding preference for the ends of taxol-stabilized microtubules, which is much less pronounced than for the ends of GMPCPP microtubules. This observation supports the idea that GMPCPP-stabilized ends closely resemble the growing ends of microtubules.

      (2) The reviewer suggested that stronger MCAK binding to the ends of different types of microtubules might reflect MCAK-dependent depolymerization events on a very small scale. This is an insightful possibility, which we had overlooked in the original manuscript. Fortunately, we performed the experiments at the single-molecule concentrations. Upon reviewing the raw data, we found that under ATP conditions, the binding events of MCAK were not cumulative (see Fig. X1 below) and showed no evidence of local accumulation of MCAK-tubulin aggregates.

      Author response image 1.

      The representative kymograph showing GFP-MCAK binding at the ends and lattice of GMPCPP microtubules in the presence of 1 mM ATP (10 nM GFP-MCAK), which corresponded to Fig. 5A. The arrow: the end-binding of MCAK. Vertical bar: 1 s; horizontal bar: 2 mm.

      (5) It would be helpful if the authors provided microtubule polymerization rates and catastrophe frequencies for assays with dynamic microtubules and MCAK in the presence of different nucleotides. The video recordings of microtubules under these conditions are already available to the authors, so it should not be difficult to provide these quantifications. They may reveal that microtubule ends are different (or not) under the examined conditions. It would also help to increase the overall credibility of this study by providing data that are easy to compare between different labs.

      We thank the reviewer for this suggestion. In the revised manuscript, we have provided data on the growth rates, which are similar across the different nucleotide states (Fig. s1). However, due to the short duration of our recordings (usually 5 minutes, but with a high frame rate, 10 fps), we did not observe many catastrophe events, which prevented us from quantifying catastrophe frequency using the current dataset. Since we measured the binding kinetics of MCAK during the growing phase of microtubules, the similar growth rates and microtubule end morphologies suggest that the microtubule ends are comparable across the different conditions.

      Reviewer #1 (Recommendations For The Authors):

      a. Please provide more details about how the microtubule-bound molecules were selected for analysis (include a description of scripts, selection criteria, and filters, if any). Fig 1A arrows do not provide sufficient information.

      We first measured the fluorescence intensity of each binding event. A probability distribution of these intensities was then constructed and fitted with a Gaussian function. A binding event was considered to correspond to a single molecule if its intensity fell within μ±2σ of the distribution. The details of the single-molecule screening process are now provided in the revised manuscript (see page17, lines 574-583).

      b. Evidence that MCAK is dimeric in solution should be provided (gel filtration results, controls for Figs1A - bleaching, or comparison with single GFP fluorophore).

      In the revised manuscript, we provide the gel filtration results of purified MCAK and other proteins used in this study. The elution volume of the peak for GFP-MCAK corresponded to a molecular weight range between 120 kDa (EB1-GFP dimer) and 260 kDa (XMAP215-GFP-his6), suggesting that GFP-MCAK exists as a dimer (~220 kDa) under experimental condition (please see Fig.s1 and page 5, lines 104-105). In addition, we also measured the fluorescence intensity of both MCAK<sup>sN+M</sup> and MCAK. MCAK<sup>sN+M</sup> is a monomeric mutant that contains the neck domain and motor domain (Wang et al., 2012). The average intensity of MCAK<sup>sN+M</sup> is 196 A.U., about 65% of that of MCAK (300 A.U.). These two measurements suggest that the purified MCAK used in this study exists dimers (see Fig. s1).

      c. Evidence that MCAK on microtubules represents single molecules should be provided (distribution of GFP brightness with controls - GFP imaged under identical conditions). Since assay buffers include detergent, which is not desirable, all controls should be done using the same assay conditions. The authors should rule out that their main results are detergent-sensitive.

      (1) Regarding if MCAK on microtubules represent single molecules: please refer to our responses to the two points above.

      (2) To rule out the effect of tween-20 (0.0001%, v/v), we performed additional control experiments. The results showed that it has no significant effect on microtubule-binding affinity of MCAK (see Figure below).

      Author response image 2.

      Tween-20 (0.0001%, v/v) has no significant effect on microtubule-binding affinity of MCAK. (A) The representative projection images of GFP-MCAK (5 nM) binding to taxol-stabled GDP microtubules in the presence of 1 mM AMPPNP with or without tween-20. The upper panel showed the results of the control experiments performed without MCAK. Scale bar: 5 mm. (B) Statistical quantification of the binding intensity of GFP-MCAK binding to GDP microtubules with or without tween-20 (53 microtubules from 3 assays and 70 microtubules from 3 assays, respectively). Data were presented as mean ± SEM. Statistical comparisons were performed using the two-tailed Mann-Whitney U test with Bonferroni correction, n.s., no significance.

      d. How did the authors plot single-molecule intensity distributions? I am confused as to why the intensity distribution for single molecules in Fig 1D and 2A looks so perfectly smooth, non-pixelated, and broader than expected for GFP wavelength. Please provide unprocessed original distributions, pixel size, and more details about how the distributions were processed.

      In the revised manuscript, we provided unprocessed original data in Fig. 1B and Fig. 2A. We thank the reviewer for pointing out this problem.

      e. Many quantifications are based on a limited number of microtubules and the number of molecules is not provided, starting from Fig 1D and down. Please provide detailed statistics and explain what is plotted (mean with SEM?) on each graph.

      We performed a thorough inspection of the manuscript and corrected the identified issues.

      f. Plots with averaged data should be supplemented with error bars and N should be provided in the legend. E.g. Fig 1C - average position of MT and peak positions.

      We agree with the reviewer. In the revised manuscript, we have made the changes accordingly (e.g. Fig. 2C).

      g. Detailed information should be provided about protein constructs used in this work including all tags. The use of truncated proteins or charged/bulky tags can modify protein-microtubule interactions.

      We agree with the reviewer. In the revised manuscript, we provide the information of all constructs (see Fig. s1 and the related descriptions in Methods, pages 15-16, lines 476-534).

      h. Line 515: We estimated that the accuracy of microtubule end tracking was ~6 nm by measuring the standard error of the distribution of the estimated error in the microtubule end position. - evidence should be provided using the conditions of this study, not the reference to the prior work by others.

      i. Line 520: We estimated that the accuracy of the measured position was ~2 nm by measuring the standard error of the fitting peak location". Please provide evidence.

      Point h-i: we now provide detailed descriptions of how to estimate tracking and measurement accuracy and error in our work. Please see pages 18-19, lines 626-645.

      j. Kymographs in Fig 5G are barely visible. Please provide single-channel greyscale images. What are the dim molecules diffusing on this microtubule?

      We have incorporated the changes suggested by the reviewer. We think that some of the dim signals may result from stochastic background noise, while others likely represent transient bindings of MCAK. The exposure time in our experiments was approximately 0.05 seconds; if the binding duration were shorter than this, the signal would be lower (i.e. the “dim” signals). It is important to note that in this study, we selected binding events lasting at least 2 consecutive frames, meaning transient binding events were not included. This point has been clarified in the Methods section (see page17, lines 573-583).

      k. Please provide a methods description for Fig 6. Did the buffer include 1 mM ATP? The presence of ATP would make these conditions more physiological. ATP concentration should be stated clearly in the main text or figure legend.

      The buffer contains ATP. In the revised manuscript, we have provided the methods for the experiments of microtubule dynamics assay, as well as the analysis of microtubule lifetimes and catastrophe frequency (see page 17, lines 561-572 and page 20, lines 685-690).

      l. Line 104: experiment was performed in BRB80 supplemented with 50 mM KCl and 1 mM ATP, providing a nearly physiological ion strength. Please provide a reference or add your calculations in Methods.

      We have provided references on page 5, lines 101-104 of our manuscript.

      m. What was the MCAK concentration in Figure 4? Did the microtubule shorten under any of these conditions?

      In these experiments, we used a very low concentration of MCAK and taxol-stabilized microtubules, so there’s no microtubule shortening observed here. ATP: 10 nM GFP-MCAK; AMPPNP: 1 nM GFP-MCAK; ADP: 10 nM GFP-MCAK; APO state: 0.1 nM GFP-MCAK.

      Other criticism:

      Text improvements are recommended in the Discussion. For example, line 348: Fourth, the loss of the binding preference.. suggests that the binding preference .. is required for the optimal .. preference.

      We thank the reviewer for pointing out this. In the revised manuscript, we conducted a thorough revision and review of the text.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Chen et al. investigate the localization of microtubule kinesin-13 MCAK to the microtubule ends. MCAK is a prominent microtubule depolymerase whose molecular mechanisms of action have been extensively studied by a number of labs over the last ~twenty years. Here, the authors use single-molecule approaches to investigate the precise localization of MCAK on growing microtubules and conclude that MCAK preferentially binds to a GDP-Pi-tubulin portion of the microtubule end. The conclusions are speculative and not well substantiated by the data, making the impact of the study in its current form rather limited. Specifically, greater effort should be made to define the region of MCAK binding on microtubule ends, as well as its structural characteristics. Given that MCAK has been previously shown to effectively tip-track growing microtubule ends through an established interaction with EB proteins, the physiological relevance of the present study is unclear. Finally, the manuscript does not cite or properly discuss a number of relevant literature references, the results of which should be directly compared and contrasted to those presented here.

      We thank the reviewer for the comments. As these suggestions are more thoroughly expressed in the following comments for authors, we will provide the responses in the corresponding sections, as shown below.

      Reviewer #2 (Recommendations For The Authors):

      Significant concerns:

      (1) Establishing the precise localization of MCAK wrt microtubule end is highly non-trivial. More details should be provided, including substantial supplementary data. In particular, the authors claim ~6 nm accuracy in microtubule end positioning - this should be substantiated by data showing individual overlaid microtubule end intensity profiles as well as fits with standard deviations etc. Furthermore, to conclude that MCAK binds behind XMAP215, the authors should look at the localization of the two proteins simultaneously, on the same microtubule end. Notably, EB binding profiles are well known to exponentially decay along the microtubule lattice - this is not very apparent from the presented data. If MCAK's autonomous binding pattern matches that of EB, we should be seeing an exponentially-decaying localization for MCAK as well? However, averaged MCAK signals seem to only be fitted to Gaussian. Note that the EB binding region (i.e. position and size of the EB comet) can be substantially modulated by increasing the microtubule growth rate - this can be easily accomplished by increasing tubulin concentrations or the addition of XMAP215 (e.g. see Maurer et al. Cur Bio 2014). Thus to establish that MCAK on its own binds the same region as EB, experiments that directly modulate the size and the position of this region should be added.

      (1) We thank the reviewer for this comment. Regarding the accuracy in microtubule end positioning, we now provide more details, and please see pages 18-19, lines 625-645 in the revised manuscript.

      (2) Regarding the relative localization of XMAP215 and MCAK, we performed additional experiments to record their colocalizations simultaneously, on the same microtubule end. Our results showed that MCAK predominantly binds behind XMAP215, with 14.5% appearing within the XMAP215’s binding region. Please see Fig. 2.D-E and lines 184-197 in the revised manuscript.

      (3) Regarding the exponential decay of the EB1 signal along microtubules, we observed that the position probability distribution measured in the present study follows a Gaussian distribution, and the expected exponential decay was not apparent. Since the exponential decay is thought to result from the time delay between tubulin polymerization and GTP hydrolysis, slower polymerization is expected to reduce this latency (Maurer et al., 2014). In our experiments, the growth rate was relatively low (~0.7 mm/min), much slower than the rate observed in cells, where the comet-shaped EB1 signal is most pronounced. The previous study has shown that the exponential decay of EB1 is more pronounced at growth rates exceeding 3 mm/min in vitro (Maurer et al., 2014). Therefore, we think that the relatively slow growth may account for the observed non-exponential decay distribution of the EB1 signals. The same reason may also explain the distribution of MCAK.

      (4) We agree with the reviewer’s suggestion that altering microtubule growth rate is a valid and effective approach to regulate the EB cap length. However, the conclusion that MCAK binds to the EB region is supported by three lines of evidence: (1) the localization of MCAK at the ends of microtubules, (2) new experimental data showing that MCAK binds to the proximal end of the XMAP215 site, and (3) the tendency of MCAK to bind GTPγS microtubules, similar to EB1. Based on these findings, we did not pursue additional experiments to modify the length of the EB cap.

      (2) Even if MCAK indeed binds behind XMAP215, there is no evidence that this region is defined by the GDP-Pi nucleotide state; it could still be curved protofilaments. GTPyS is an analogue of GTP - to what extent GTPyS microtubules exactly mimic the GDP-Pi-tubulin state remains controversial. Furthermore, nucleotide sensing for EB is thought to be achieved through its binding at the interface of four tubulin dimers. However MCAK's binding site is distinct, and it has been shown to recognize intradimer tubulin curvature. Thus it is not clear how MCAK would sense the nucleotide state. On the other hand, there is mounting evidence that the morphology of the growing microtubule end can be highly variable, and that curved protofilaments may be protruding off the growing ends for tens of nanometers or more, previously observed both by EM as well as by fluorescence (e.g. Mcintosh, Moores, Chretien, Odde, Gardner, Akhmanova, Hancock, Zanic labs). Thus, to establish that MCAK indeed localizes along the closed lattice, EM approaches should be used.

      First, we conducted additional experiments that demonstrate MCAK indeed binds behind XMAP215, supporting the conclusion that MCAK interacts with the EB cap (please see Fig. 2 in the revised manuscript). Second, our argument that MCAK preferentially binds to GDP-Pi tubulin is based on two observations: (1) the binding regions of MCAK overlap with those of EB1, and (2) MCAK preferentially binds to GTPγS microtubules, which are considered a close analogue of GDP-Pi tubulin. Third, understanding the structural basis of how MCAK senses the nucleotide state of tubulin is beyond the scope of the present study. However, inspired by the reviewer’s suggestion, we looked into the structure of the MCAK-tubulin complex. The L2 loop of MCAK makes direct contact with the interdimer interface (Trofimova et al., 2018; Wang et al., 2017), which could provide a structural basis for recognizing the changes induced by GTP hydrolysis. While this remains a hypothesis, it is certainly a promising direction for future research. Forth, we agree with the reviewer that an EM approach would be ideal for establishing that MCAK localizes along the closed lattice. However, this is not the focus of the current study. Instead, we argue that MCAK binds to the EB cap, where at least some lateral interactions are likely to have formed.

      (3) The physiological relevance of the study is rather questionable: MCAK has been previously established to be able to both diffuse along the microtubule lattice (e.g. Helenius et al.) as well as hitchhike on EBs (Gouveia et al.). Given the established localization of EBs to growing microtubule ends in cells, and apparently higher affinity of MCAK for EB vs. the microtubule end itself (although direct comparisons with the literature have not been reported here), the relevance of MCAK's autonomous binding to dynamic microtubule ends is dubious.

      We thank the reviewer for raising the importance of physiological relevance. Please refer to our response to the comment No.1 of reviewer 1. Briefly, we think that the end-binding affinity of MCAK makes a significant contribution for its cellular functions. To elucidate this concept, we now use a simple model shown in Supplementary Appendix-2 (see pages 49-51, lines 1246-1316). In this model, we simplified MCAK and EB1 binding to microtubule ends by considering only these two proteins while neglecting other factors (e.g. XMAP215). Specifically, we considered two scenarios: one in which both proteins freely diffuse in the cytoplasm and another where MCAK is localized to specific cellular structures, such as the centrosome or centromere. Based on the modeling results, we argue that MCAK's functional impact at microtubule ends derives both from its intrinsic end-binding capacity and its ability to strengthen the EB1-mediated end association pathway.

      (4) Finally, the study seriously lacks discussion of and comparison with the existing literature on this topic. There are major omissions in citing relevant literature, such as e.g. landmark study by Kinoshita et al. Science 2001. Several findings reported here directly contradict previous findings in the literature. Direct comparison with e.g. Gouveia et al findings, Helenius et al. findings, and others need to be included. For example, Gouveia et al reported that EB is necessary for MCAK plus-end-tracking in vitro (please see Figure 1 of their manuscript). The authors should discuss how they reconcile the differences in their findings when compared to this earlier study.

      We thank the reviewer for this helpful suggestion. In the revised manuscript, we have updated the text description and included comparative discussions with other relevant studies in the Discussion section. Specifically, we added comparisons with the research on XMAP215 in page 14, lines 459-472 (Barr and Gergely, 2008; Kinoshita et al., 2001; Tournebize et al., 2000). Additionally, we have compared our findings with those of Gouveia et al. and Helenius et al. regarding MCAK's preference for binding microtubule ends in page 6, lines 145-157 and page 13, 408-441, respectively (Gouveia et al., 2010; Helenius et al., 2006).

      Additional specific comments:

      Figure 1

      Gouveia et al. (Figure 1) reported that MCAK does not autonomously preferentially localize to growing tips. Specifically, Gouveia et al. found equal association rates of MCAK to both the lattice and the tip in the presence of EB3delT, an EB3 construct that does not directly interact with MCAK. How can these findings be reconciled with the results presented here?

      We are uncertain why there was no observed difference in the on-rates to the lattice and the end in the study by Gouveia et al. Even when considering only the known affinity of MCAK for curved protofilaments at the distal tip of growing microtubules, we would still expect to observe an end-binding preference. After carefully comparing the experimental conditions, we nevertheless identified some differences. First, we used a 160 nm tip size to calculate the on-rate (k<sub>on</sub>), whereas Gouveia et al. used a 450 nm tip. Using a longer tip size would naturally lead to a smaller(k<sub>on</sub>) value. Note that we chose 160 nm for several reasons: (i) a previous cryo-electron tomography study has elucidated that the sheet structures of dynamic microtubule ends have an average length of around 180 nm (Guesdon et al., 2016); (ii) Analysis of fluorescence signals at dynamic microtubule ends has demonstrated that the taper length at the microtubule end is less than 180 nm (Maurer et al., 2014); (iii) in the present study, we estimated that the length of MCAK's end-binding region is approximately 160 nm. Second, in Gouveia et al., single-molecule binding events were recorded in the presence of 75 nM EB3ΔT, which could potentially create a crowded environment at the tip, reducing MCAK binding. Third, as mentioned in our response to Reviewer 1, we took great care to minimize the interference from purification tags (e.g., His-tag) by ensuring their complete removal during protein preparation. Previous studies reported that retaining the His-tag of MAPs led to a significant increase in binding for microtubules (Maurer et al., 2011; Zhu et al., 2009). We believe that some of the factors mentioned above, or their combined effects, may account for the differences in these two observations.

      1C shows the decay of tubulin signal over several hundred nm - should show individual traces? How aligned? Doesn't this long decay suggest protruding protofilaments? (E.g. Odde/Gardner work).

      (1) In the revised manuscript, we now show individual traces (e.g. in Fig. 1B and Fig. 2A). The average trace for tubulin signal with standard deviation was shown in Fig. 2C.

      (2) The microtubule lattice was considered as a Gaussian wall and its end as a half-Gaussian in every frame. Use the peak position of the half-Gaussian of every frame to align and average microtubule end signals, during the dwell time. The average microtubule ends' half-Gaussion peak used as a reference to measure the intensity profile of individual single-molecule binding event in every frame (see page18, lines 607-624).

      (3) We think that the decay of tubulin signal results from the convolution of the tapered end structure and the point spread function. In the revised manuscript, we have updated the Figures to provide unprocessed original data in Fig. 1B and Fig. 2A.

      Please show absolute numbers of measurements in 1C (rather than normalized distribution only).

      In the revised manuscript, we have included the raw data for both tubulin and MCAK signals as part of the methods description. In Fig. 1, using normalized values allows for the simultaneous representation of microtubule and protein signals on a unified graph.

      How do the results in 1D-G compare with the previous literature? Particularly comparison of on-rates between this study and the Gouveia et al? Assuming 1 um = 1625 dimers, it appears that in the presence of EB3, the on-rate of MCAK to the tips reported in Gouveia et al. is an order of magnitude higher than reported here in the absence of EB3 (4.3 x 10E-4 vs. 2 x 10E-5). If so, and given the robust presence of EB proteins at growing microtubule ends in cells, this would invalidate the potential physiological relevance of the current study. Note that the dwell times measured in Gouveia et al. are also longer than those measured here.

      Note that in Gouveia et al, the concentration of mCherry-EB3 was 75 nM, about 187.5 times higher than that of MCAK (0.4 nM). The relative concentrations of these two proteins are not always the case in cells. Regarding the physiological relevance of the end-binding affinity of MCAK itself, please refer to our response to the point No.1 of Reviewer 1.

      Notably, Helenius et al reported a diffusion constant for MCAK of 0.38 um^2/s, which is more than an order of magnitude higher than reported here. The authors should comment on this!

      In the revised manuscript, we have provided an explanation for the difference in diffusion coefficient. Please see page 6, line 142-157. In short, low salt condition facilitates rapid diffusion of MCAK.

      Figure 2:

      This figure is critical and really depends on the analysis of the tubulin signal. Note significant variability in tubulin signal between presented examples in 2A. Also, while 2C looks qualitatively similar, there appears to be significant variability over the several hundred nm from the tip along the lattice. This is the crucial region; statistical significance testing should be presented. More detailed info, including SDs etc. is necessary.

      In the revised manuscript, we have provided raw data in Fig. 1B and Fig. 2A. Additionally, we have provided statistical analysis on the tubulin signals (Fig. 2C) and performed significance test. Please see page 5, lines 111-116 and page 7, lines 179-183 for detailed descriptions.

      Insights into the morphology of microtubule ends based on TIRF imaging have been previously gained in the literature, with reports of extended tip structures/protruding protofilaments (see e.g. Coombes et al. Cur Bio 2013, based on the methods of Demchouk et al. 2011). Such analysis should be performed here as well, if we are to conclude that nucleotide state alone, as opposed to the end morphology, specifies MCAK's tip localization.

      We appreciate the reviewer’s suggestion and agree that it provides a valid optical microscopy-based approach for estimating microtubule end morphology. However, this method did not establish a direct correlation between microtubule end morphology and tubulin nucleotide status. Therefore, we think that refining the measurement of microtubule end morphology will not necessarily provide more information to the understanding of tubulin nucleotide status at MCAK binding sites. Based on the available data in the present study, there are two main pieces of evidence supporting the idea that MCAK can sense tubulin nucleotide status: (1) the binding regions of MCAK and EB overlap significantly, and (2) MCAK shows a clear preference for binding to GTPγS microtubules, similar to EB1 (we provide a new control to support this, Fig. s4). Of course, we do not consider this to be a perfect set of evidence. As the reviewer has pointed out here and in other suggestions, future work should aim to further distinguish the nucleotide status of tubulin in the dynamic versus non-dynamic regions at the ends of microtubules, and to investigate the structural basis by which MCAK recognizes tubulin nucleotide status.

      EB comet profile should be clearly reproduced. MCAK should follow the comet profile.

      Please see our 3<sup>rd</sup> response to the point 1 of this reviewer.

      The conclusion that the MCAK binding region is larger than XMAP215 is not firm, based on the data presented. The authors state that 'the binding region of MCAK was longer than that of XMAP215'. What is the exact width of the region of the XMAP215 localization and how much longer is the MCAK end-binding region? Is this statistically significant?

      We have revised this part in the revised manuscript (page 6, lines 167-172). The position probability distributions of MCAK and XMAP215 were significantly different (K-S test, p< 10<sup>-5</sup>), and the binding region of MCAK (FWHM=185 nm) was significantly longer than that of XMAP215 (FWHM=123 nm).

      MCAK localization with AMPPNP should also be performed here. Even low concentrations of MCAK have been shown to induce microtubule catastrophe/end depolymerization. This will dramatically affect microtubule end morphology, and thus apparent positioning of MCAK at the end.

      In the end positioning experiment, we used a low concentration of MCAK (1 nM). Under this condition, microtubule dynamics remained unchanged, and the morphology of the microtubule ends was comparable across different conditions (with EB1, MCAK or XMAP215). Additionally, in the revised manuscript, we present a new experiment in which we recorded the localization of both MCAK and XMAP215 on the same microtubule. The results support the conclusion regarding their relative localization: most MCAK is found at the proximal end of the XMAP215 binding region, while approximately 15% of MCAK is located within the XMAP215 binding region. Please see Fig. 2D-E and page 7, lines 184-197 for the corresponding descriptions.

      Figure 3:

      For clearer presentation, projections showing two microtubule lattice types on the same image (in e.g. two different colors) should be shown first without MCAK, and then with MCAK.

      We thank the reviewer for this suggestion. We have adjusted the figure accordingly. Please see Fig. 4 in the revised manuscript.

      Please comment on absolute intensity values - scales seem to be incredibly variable.

      The fluorescence value presented here is the result of multiple images being summed. Therefore, the difference in absolute values is influenced not only by the binding affinity of MCAK in different states to microtubules, but also by the number of images used. In this analysis, we are not comparing MCAK in different states, but rather evaluating the binding ability of MCAK in the same state on different types of microtubules.

      Given that the authors conclude that MCAK binding mimics that of EB, EB intensity measurements and ratios on different lattice substrates should be performed as a positive control.

      We performed additional experiments with EB1, in the revised manuscript, we provide the data as a positive control (please see Fig. s4).

      Figure 4:

      MCAK-nucleotide dependence of GMPCPP microtubule-end binding has been previously established (see e.g. Helenius et al, others?) - what is new here? Need to discuss the literature. This would be more appropriate as a supplemental figure?

      In the present study, we reproduced the GMPCPP microtubule-end binding of MCAK in the AMPPNP state, as shown in several previous reports (Desai et al., 1999; Hertzer et al., 2006). Here, we also quantified the end to lattice binding preference, and our results showed that the nucleotide state-dependence shows the same trend as the binding preference of MCAK to the growing microtubule ends. Therefore, we prefer to keep this figure in the main text (Fig. 5).

      Figure 5:

      Please note that both MCAK mutants show an additional two orders of magnitude lower microtubule binding on-rates when compared to wt MCAK. This makes the analysis of preferential binding substrate for these mutants dubious.

      We agreed with this point. We have rewritten this part. Please see page 10, lines 295-327, in the revised manuscript.

      Figure 6:

      Combined effects of XMAP215 and XKCM1 (MCAK) have been previously explored in the landmark study by Kinoshita et al. Science 2001, which should be cited and discussed. Also note that Moriwaki et al. JCB 2016 explored the combined effects of XMA215 and MCAK - which should be discussed here and compared to the current results.

      We agree with the reviewer. We have revised the discussion on this part. Please see page 11, lines 329-342 and page 14, lines 459-472 in the revised manuscript.

      Please report quantification for growth rate and lifetime.

      In the revised manuscript, we provide all these data. Please see pages 11-12, lines 343-374.

      To obtain any new quantitative information on the combined effects of the two proteins, at the very minimum, the authors should perform a titration in protein concentration.

      We agree with the reviewer on this point. In our pilot experiments, we performed titration experiments to determine the appropriate concentrations of MCAK and XMAP215, respectively. We selected 50 nM for XMAP215, as it clearly enhances the growth rate and exhibits a mild promoting effect on catastrophe—two key effects of XMAP215 reported in previous studies (Brouhard et al., 2008; Farmer et al., 2021). Reducing the XMAP215 concentration eliminates the catastrophe-promoting effect, while increasing it would not much enhance the growth rate. For MCAK, we chose 20 nM, as it effectively promotes catastrophe; increasing the concentration beyond this point leads to no microtubule growth, at least in the MCAK-only condition. If there’s no microtubule growth, it would be difficult to quantify the parameters of microtubule dynamics, hindering a clear comparison of the combined versus individual effects. Therefore, we think that the concentrations used in this study are appropriate and representative. In the revised manuscript, we make this point clearer (see pages 11 and lines 329-342).

      Finally, the writing could be improved for overall clarity.

      We thank the reviewer for pointing out this. In the revised manuscript, we conducted a thorough revision and review of the text.

      Reviewer #3 (Public Review):

      The authors revisit an old question of how MCAK goes to microtubule ends, partially answered by many groups over the years. The authors seem to have omitted the literature on MCAK in the past 10-15 years. The novelty is limited due to what has previously been done on the question. Previous work showed MCAK targets to microtubule plus-ends in cells through association with EB proteins and Kif18b (work from Wordeman, Medema, Walczak, Welburn, Akhmanova) but none of their work is cited.

      We thank the reviewer for the suggestion. Some of the referenced work has already been cited in our manuscript, such as studies on the interaction between MCAK and EB1. However, other relevant literature had not been properly cited. In the revised manuscript, we have added further discussion on this topic in the context of existing findings. Please refer to pages 3-4, lines 68-85, and pages 13, lines 425-441.

      It is not obvious in the paper that these in vitro studies only reveal microtubule end targeting, rather than plus end targeting. MCAK diffuses on the lattice to both ends and its conformation and association with the lattice and ends has also been addressed by other groups-not cited here. I want to particularly highlight the work from Friel's lab where they identified a CDK phosphomimetic mutant close to helix4 which reduces the end preference of MCAK. This residue is very close to the one mutated in this study and is highly relevant because it is a site that is phosphorylated in vivo. This study and the mutant produced here suggest a charge-based recognition of the end of microtubules.

      Here the authors analyze this MCAK recognition of the lattice and microtubule ends, with different nucleotide states of MCAK and in the presence of different nucleotide states for the microtubule lattice. The main conclusion is that MCAK affinity for microtubules varies in the presence of different nucleotides (ATP and analogs) which was partially known already. How different nucleotide states of the microtubule lattice influence MCAK binding is novel. This information will be interesting to researchers working on the mechanism of motors and microtubules. However, there are some issues with some experiments. In the paper, the authors say they measure MCAK residency of growing end microtubules, but in the kymographs, the microtubules don't appear dynamic - in addition, in Figure 1A, MCAK is at microtubule ends and does not cause depolymerization. I would have expected to see depolymerization of the microtubule after MCAK targeting. The MCAK mutants are not well characterized. Do they still have ATPase activity? Are they folded? Can the authors also highlight T537 and discuss this?

      Finally, a few experiments are done with MCAK and XMAP215, after the authors say they have demonstrated the binding sites overlap. The data supporting this statement were not obvious and the conclusions that the effect of the two molecules are additive would argue against competing binding sites. Overall, while there are some interesting quantitative measurements of MCAK on microtubules - in particular in relation to the nucleotide state of the microtubule lattice - the insights into end-recognition are modest and do not address or discuss how it might happen in cells. Often the number of events is not recorded. Histograms with large SEM bars are presented, so it is hard to get a good idea of data distribution and robustness. Figures lack annotations. This compromises therefore their quantifications and conclusions. The discussion was hard to follow and needs streamlining, as well as putting their work in the context of what is known from other groups who produced work on this in the past few years.

      We thank the reviewer for the comments. Regarding the physiological relevance of the end-binding of MCAK itself, please refer to our response to the point No.1 of reviewer 1. Moreover, as we feel that other suggestions are more thoroughly expressed in the following comments for authors, we will provide the responses in the corresponding sections, as shown below.

      Reviewer #3 (Recommendations For The Authors):

      Why, on dynamic microtubules, is MCAK at microtubule plus ends and does not cause a catastrophe?

      At this concentration (10 nM MCAK with 16 mM tubulin in Fig. 1; 1 nM MCAK with 12 mM tubulin in Fig. 2), MCAK has little effect on microtubule dynamics in our experiments. Using TIRFM, we were able to observe individual MCAK binding events. Based on these observations, we think that in the current experimental condition, a single binding event of MCAK is insufficient to induce microtubule catastrophe; rather, it likely requires cumulative changes resulting from multiple binding events.

      Do the MCAK mutants still have ATPase activity?

      The ATPase activities of MCAK<sup>K525A</sup> and MCAK<sup>V298S</sup> are both reduced to about 1/3 of the wild-type (Fig. s6).

      The intensities of GFP are not all the same on the microtubule lattice (eg 1A). See blue and white arrowheads. The authors could be looking at multiple molecules of GFP-MCAK instead of single dimers. How do they account for this possibility?

      In the revised manuscript, we provide the gel filtration result of the purified MCAK, and the position of the peak corresponds to ~220 kDa, demonstrating that the purified MCAK in solution is dimeric (please see Fig.s1 and page 5, lines 101-103). We measured the fluorescence intensity of each binding event. A probability distribution of these intensities was then constructed and fitted with a Gaussian function. A binding event was considered to correspond to a single molecule if its intensity fell within μ±2σ of the distribution. The details of the single-molecule screening process are provided in the revised manuscript (see page 17, lines 574-583).

      In addition, we also measured the fluorescence intensity of both MCAK<sup>sN+M</sup> and MCAK. MCAK<sup>sN+M</sup> is a monomeric mutant that contains the neck domain and motor domain (Wang et al., 2012). The average intensity of MCAK<sup>sN+M</sup> is 196 A.U., about 65 % of that of MCAK (300 A.U.), suggesting that MCAK is a dimer (see Fig. s1). Moreover, we think that some of the dim signals may result from stochastic background noise, while others likely represent transient bindings of MCAK. The exposure time in our experiments was approximately 0.05 seconds; if the binding duration were shorter than this, the signal would be lower. It is important to note that in this study, we specifically selected binding events lasting at least 2 consecutive frames, meaning transient binding events were not included. This point has been clarified in the Methods section (see page 17, lines 568-569 and lines 574-583).

      Could the authors provide a kymograph of an MT growing, in the presence of MCAK+AMPPNP? Can MCAK track the cap?

      Under single-molecule conditions, we observed a single MCAK molecule briefly binding to the end of the microtubule. However, we did not record if MCAK at high concentrations could track microtubule ends under AMPPNP conditions.

      In the experiments in Figure 6, the authors should also show the localization of MCAK and XMAP215 at microtubule plus ends in their kymographs to show the two molecules overlap.

      Regarding the relative localization of XMAP215 and MCAK, we conducted additional experiments to record their colocalization simultaneously at the same microtubule end. Our results show that MCAK predominantly binds behind XMAP215, with 14.5% of MCAK binding within the XMAP215 binding region. Please see Fig. 2.D-E and page 7, lines 184-197 in the revised manuscript. However, we argue that the effects of XMAP215 and MCAK are additive, and their binding sites do not necessarily need to overlap for these effects to occur.

      The authors do not report what statistical tests are done in their graphs, and one concern is over error propagation of their data. Instead of bar graphs, showing the data points would be helpful.

      We have now shown all data points in the revised manuscript.

      MCAK+AMPPNP accumulates at microtubule ends. Appropriate quotes from previous work should be provided.

      We have made the revisions accordingly. Please see page 9, lines 273-276.

      Controls are missing. An SEC profile for all purified proteins should be presented. Also, the authors need to explain if they report the dimeric or monomeric concentration of MCAK, XMAP215, etc...

      We have provided the gel filtration result for all purified proteins in the revised manuscript (Fig.s1). Moreover, we now make it clear that the concentrations of MCAK and EB1 are monomeric concentration. Please see the legend for Fig. 1, line 893 in the revised manuscript.

      Figure 1: the microtubules don't look dynamic at all. This is also why the authors can record MCAK at microtubule ends, because their structure is not changing.

      The microtubules are dynamic, but they may appear non-dynamic due to the relatively slow growth rate and the high frame rate at which we are recording. We propose that individual binding events of MCAK induce structural changes at the nanoscopic or molecular scale, which are not detectable using TIRFM.

      I recommend the authors measure the Kon and Koff for single GFP-MCAK mutant molecules and provide the information alongside their normalized and averaged binding intensities of GFP-MCAK in Fig 5. Showing data points instead of bar graphs would be better.

      (1) We measured k<sub>on</sub> and dwell time for mutants at growing microtubule end. However, we did not perform single-molecule tracking for MCAK’s binding on stabilized microtubules. This is mainly because the superimposed signal on the stable microtubule already indicates the changes in the mutant's binding affinity to different microtubule structures, and moreover, the binding of the mutants is highly transient, making accurate single-molecule tracking and calculations difficult.

      (2) In the revised figure, we have included the data points in all plots.

      When discussing how Kinesin-13 interacts with the lattice, the authors should quote the papers that report the organization of full-length Kinesin-13 on tubulin heterodimers: Trofimova et al, 2018; McHugh et al 2019; Benoit et al, 2018. It would reinforce their model and account for the full-length protein, rather than just the motor domain.

      We thank the suggestion for the reviewer. In our manuscript, we have cited papers on full-length Kinesin-13 to discuss the interaction between MCAK and microtubule end-curved structure. Additionally, we have utilized the MCAK-tubulin crystal structure (PDB ID: 5MIO) in Fig. 6, as it depicts a human MCAK, which is consistent with the protein used in our study. This structure illustrates the interaction sites between MCAK and tubulin dimer, guiding our mutation studies on specific residues. Thus, we prefer to use the structure (PDB ID: 5MIO) in Fig.6.

      Figure 5A. What type of model is this? A PDB code is mentioned. Is this from an X-ray structure? If so, mention it.

      We have now included the structural information in the Figure legend (see page 37, lines 1045).

      Figure 5B. It is not possible to distinguish the different microtubule lattices (GTPyS, GDP, and GMPCPP). The experiment needs to be better labelled.

      We thank the reviewer for this comment. We have now rearranged the figure for better clarity (see Fig. 6).

      "Figure 5D: what are the statistical tests? I don't understand " The statistical comparisons were made versus the corresponding value of 848 GFP-MCAK".

      We have made this point clearer in the revised manuscript (see pages 38, line 1078-1080).

      What is the "EB cap"? This needs explaining.

      We provide this explanation for this, please see page 4, lines 87-89 in the revised manuscript.

      Work from Friel and co-workers showed MCAK T537E did not have depolymerizing activity and a reduced affinity for microtubule ends. The work of the authors should be discussed with respect to this previously published work.

      We thank the reviewer for this suggestion. In the revised manuscript, we have added discussions on this (see page 10, lines 303-307).

      The concentration of protein used in the assays is not always described.

      We have checked throughout the manuscript and made revisions accordingly.

      "Having revealed the novel binding sites of MCAK in dynamic microtubule ends " should be on "we wondered how MCAK may work ..with EB1". This is not addressed so should be removed. Instead, they can quote the work from Akhmanova's lab. Realistically this section should be rephrased as there are other plus-end targeting molecules that compete with MCAK, not just XMAP215 and EB1.

      We have rephrased this section as suggested by this reviewer to be more specific. Please see page 11, lines 329-342.

      What is AMPCPP?

      It should be “AMPPNP”

      Typos in Figure 5.

      Corrected

    1. The title of the article makes a simple striking claim about the state of the scientific literature with a numerical estimate of the proportion of “fake” articles. Yet, by contrast to this title, in the text of the article, Heathers is highly critical of his own work.

      James’ peer review of Heathers’ article

      James Heathers often mentions the limitations of his research thus “peer-reviewing” his own article to the extent that he admits that this work is “incomplete”, “unsystematic” and “far flung”.

      This work is too incomplete to support responsible meta-analysis, and research that could more accurately define this figure does not exist yet. ~1 in 7 papers being fake represents an existential threat to the scientific enterprise.”

      While this is highly unsystematic, it produced a substantially higher figure. Correspondents reliably estimated 1-5% of all papers contain fabricated data, and 2-10% contain falsified results.”

      These values are too disparate to meta-analyze responsibly, and support only the briefest form of numerical summary: n=12 papers return n=16 individual estimates; these have a median of 13.95%, and 9 out of 16 of these estimates are between 13.4% and 16.9%. Given this, a rough approximation is that for any given corpus of papers, 1 in 7 (i.e. 14.3%) contain errors consistent with faking in at least one identifiable element.”

      “The accumulation of papers collected here is, frankly, haphazard. It does not represent a mature body of literature. The papers use different methods of analyzing figures, data, or other features of scientific publications. They do not distinguish well between papers that have small problematic elements which are fake, or fake in their entirety. They analyze both small and large corpora of papers, which are in different areas of study and in journals of different scientific quality – and this greatly changes base rates;…”

      “As a consequence, it would be prudent to immediately reproduce the result presented here as a formal systematic review. It is possible further figures are available after an exhaustive search, and also that pre registered analytical assumptions would modify the estimations presented.”

      Heathers has also in an interview published in Retraction Watch (Chawla 2024) acknowledged pitfalls in this article such as:

      “Heathers said he decided to conduct his study as a meta-analysis because his figures are “far flung.””

      “They are a little bit from everywhere; it’s wildly nonsystematic as a piece of work,” he said.”

      “Heathers acknowledged those limitations but argued that he had to conduct the analysis with the data that exist. “If we waited for the resources necessary to be able to do really big systematic treatments of a problem like this within a specific area, I think we’d be waiting far too long,” he said. “This is crucially underfunded.”

      Built in opposition to Fanelli 2009, but it’s illogical

      Heathers states in the abstract that his article is “in opposition” to Fanelli’s 2009 PloS One article (Fanelli 2009), yet that opposition is illogical and artificially constructed since there is no contradiction between 2% of scientists self-reporting having taking part in fabrication or falsification and an eventual much higher proportion of “fake scientific outputs”. Like most of what is wrong with Heather’s article, this is in fact acknowledged by the author who notes that the 2% figure “leaves us with no estimate of how much scientific output is fake” (bias in self-reporting, possibility of prolific authors, etc).

      Fanelli 2009 is not cited in the way JH says it is cited

      Whilst the opposition discussed above is illogical, it could be that the 2% figure is mis-cited by others as representing an estimate of fake scientific outputs thus probably underestimating the extent of fraud. Heathers suggests that this may indeed be the case, but also contradicts himself about how (Fanelli 2009), or the 2% figure coming from that publication, is typically used.

      In one sentence, he writes that “the figure is overwhelmingly the salient cited fact in its 1513 citations” and that “this generally appears as some variant ofabout 2% of scientists admitted to have fabricated, falsified or modified data or results at least once” (Frank et al. 2023)

      whilst and in another sentence, he writes that “the typical phraseology used to express it – e.g. “the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare” (George 2016).

      Those two sentences cited by Heathers are fundamentally different, the first one accurately reports that the 2% figure relates to individuals self-reporting, whilst the second one appears to relate to the prevalence of misconducts in the literature itself. How Fanelli 2009 is cited in the literature is an empirical question that can be studied by looking at citation contexts beyond the two examples given by Heathers. Given that a central justification for Heathers’ piece appears to be the misuse of this 2% figure, we sought to test whether this was the case.

      A first surprise was that whilst the sentence attributed to (George 2016) can indeed be found in that publication (in the abstract), first it is not in a sentence citing (Fanelli 2009) nor the 2% figure, and, second, it is quoted selectively omitting a part of the sentence that nuances it considerably: “The evidence on prevalence is unreliable and fraught with definitional problems and with study design issues. Nevertheless, the evidence taken as a whole seems to suggest that cases of the most serious types of misconduct, fabrication and falsification (i.e., data fraud), are relatively rare but that other types of questionable research practices are quite common.” (Fanelli 2009) is discussed extensively by (George 2016), and some of the caveats, e.g. on self-reporting, are highlighted.

      To go beyond those two examples, we constructed a comprehensive corpus of citation contexts, defined as the textual environment surrounding a paper's citation, including several words or sentences before and after the citation (see Methods section below). 737 citation contexts could be analysed. Out of those, the vast majority (533, or 72%) did not cite the 2% figure. Instead, they often referred to this article as a general reference together with other articles to make a broad point, or, focused on other numbers in particular those related to questionable research practices (Bordignon, Said, and Levy 2024). The 28% (204) citation contexts that did mention the 2% figure did so accurately in the majority of cases: 83% (170) of those did mention that it was self-reporting by scientists whilst 17% (34) of those, or 5% of the total citation contexts analysed were either ambiguous or misleading in that they suggested or claimed that the 2% figure related to scientific outputs.

      Although the analysis above does not include all citation contexts, it is possible to conclude unambiguously that the 2% figure is not overwhelmingly the salient cited fact in relation to Fanelli 2009, and that when it is cited it is often accurately, i.e. as representing self-reporting by scientists. Whilst an exhaustive analysis is beyond the scope of this peer review, it is not uncommon to find in this corpus citations contexts that have an alarming tone about the seriousness of the problem of FFPs, e.g. “…a meta-analysis (Fanelli 2009) suggest that the few cases that do surface represent only the tip of a large iceberg." [DOI: 10.1177/0022034510384627]

      Thus, the rationale for Heathers’ study appears to be misguided. The supposed lack of attention for the very serious problem of FFPs is not due to a minimisation of the situation fueled by a misinterpretation of Fanelli 2009. Importantly, even if that was the case, an attempt to draw attention by claiming that 1 in 7 papers are fake, a claim which according to the author himself is not grounded in solid facts, is not how the scientific literature should be used.

      Methods for the construction of the corpus of citation contexts

      We used Semantic Scholar, an academic database encompassing over 200 million scholarly documents from diverse sources including publishers, data providers, and web crawlers. Using the specific paper identifier for Fanelli's 2009 publication (d9db67acc223c9bd9b8c1d4969dc105409c6dfef), we queried the Semantic Scholar API to retrieve available citation contexts. Citation contexts were extracted from the "contexts" field within the JSON response pages, (see technical specifications).

      The query looks like this: semanticscholar.org

      The broad coverage of Semantic Scholar does not imply that citation contexts are always retrieved. The Semantic Scholar API provided citation contexts for only 48% of the 1452 documents citing the paper. To get more, we identified open access papers among the remaining 52% citing papers, retrieved their PDF location and downloaded the files. We used Unpaywall API, which is a database to be queried with a DOI in order to get open access information about a document. The query looks like this.

      We downloaded 266 PDF files and converted them to text format using an online bulk PDF-to-text converter. These files were then processed using TXM, a specialized textual analysis tool. We used its concordancer function to identify the term "Fanelli" as a pivot term and check the reference being the good one (the 2009 paper in PlosOne). We did manual cleaning and appended the citation contexts to the previous corpus.

      Through this comprehensive methodology, we ultimately identified 824 citation contexts, representing 54% (784) of all documents citing Fanelli's 2009 paper. This corpus comprised 48% of contexts retrieved from Semantic Scholar and an additional 6% obtained through semi-manual extraction from open access documents. 87 of those contexts were excluded from the analysis for a range of reasons including: context too short to conclude, language neither English nor French (shared languages of the authors of this review), duplicate documents (e.g. preprints), etc, leaving us with 737 contexts. They were first classified manually in two categories, those mentioning the 2% figure and those which did not. Then, for the first category, they were further classified manually in two categories depending on whether the figure was appropriately assigned to self-reporting of researchers or rather misleadingly suggesting that the 2% applied to research outputs.

      Contributions

      Investigation: FB collected the citation contexts.<br /> Data curation and formal analysis: RL and MS<br /> Writing – review & editing: RL, MS and FB

      References

      Bordignon, Frederique, Maha Said, and Raphael Levy. 2024. “Citation Contexts of [How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data, DOI: 10.1371/Journal.Pone.0005738].” Zenodo. https://doi.org/10.5281/zenodo.14417422.

      Chawla, Dalmeet Singh. 2024. “1 in 7 Scientific Papers Is Fake, Suggests Study That Author Calls ‘Wildly Nonsystematic.’” Retraction Watch (blog). September 24, 2024. https://retractionwatch.com/2024/09/24/1-in-7-scientific-papers-is-fake-suggests-study-that-author-calls-wildly-nonsystematic/.

      Fanelli, Daniele. 2009. “How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data.” PLOS ONE 4 (5): e5738. https://doi.org/10.1371/journal.pone.0005738.

      Frank, Fabrice, Nans Florens, Gideon Meyerowitz-Katz, Jérôme Barriere, Éric Billy, Véronique Saada, Alexander Samuel, Jacques Robert, and Lonni Besançon. 2023. “Raising Concerns on Questionable Ethics Approvals - a Case Study of 456 Trials from the Institut Hospitalo-Universitaire Méditerranée Infection.” Research Integrity and Peer Review 8 (1): 9. https://doi.org/10.1186/s41073-023-00134-4.

      George, Stephen L. 2016. “Research Misconduct and Data Fraud in Clinical Trials: Prevalence and Causal Factors.” International Journal of Clinical Oncology 21 (1): 15–21. https://doi.org/10.1007/s10147-015-0887-3.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function. 

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on behavioral outcomes were not yet fully resolved. 

      We appreciate the reviewer’s thoughtful understanding and acknowledgment that the conceptual conclusion of asymmetric projections from the cortex to the striatum is well supported by our data. We also recognize the importance of further elucidating the extent of afferent overlap and the causal contributions of asymmetric corticostriatal inputs to behavioral outcomes. However, we respectfully note that current technical limitations pose significant challenges to addressing these questions with high precision.

      In response to the reviewer’s comments, we have now clarified the sample size, added proper analysis and elaborated on the experimental design to ensure that our conclusions are presented more transparently and are more accessible to the reader.

      After virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic. 

      Thank you for highlighting this point. As it lies at the core of our manuscript, we agree that it is essential to present it clearly and convincingly. As shown by the statistics (Fig. 2B-F), non-starter D1- and D2-SPNs appear to receive fewer projections from D1-projecting cortical neurons (Input D1-record D1, 0.63; Input D1-record D2, 0.40) compared to D2-projecting cortical neurons (Input D2 - record D1, 0.73; Input D2 -record D2, 0.79).

      While it is not technically feasible to quantify the number of infected cells in brain slices following electrophysiological recordings, we addressed this limitation by collecting data from multiple animals and restricting recordings to cells located within the injection sites. In Figure 2D, we used 7 mice in the D1-projecting to D1 EGFP(+) group, 8 mice in the D1-projecting to D2 EGFP(-) group, 10 mice in the D2-projecting to D2 EGFP(+) group, and 8 mice in the D2-projecting to D1 EGFP(-) group. In Figure 2G, the group sizes were as follows: 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group. In both panels, connection ratios were compared using Fisher’s exact test. Comparisons were then made across experimental groups. Furthermore, as detailed in our Methods section (page 20, line 399-401), we assessed cortical expression levels prior to performing whole-cell recordings. Taken together, these precautions help ensure that the calculated connection ratios are unlikely to be confounded by differences in infection efficiency.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences? 

      Thank you for bringing this concern to our attention. While optogenetic manipulation has become a widely adopted tool in functional studies of neural circuits, it remains subject to several technical limitations due to the nature of its implementation. Factors such as opsin expression efficiency, optic fiber placement, light intensity, stimulation spread, and other variables can all influence the specificity and extent of neuronal activation or inhibition. As such, rigorous experimental controls are essential when interpreting the outcomes of optogenetic experiments.

      In our study, we verified both the expression of channelrhodopsin in D1- or D2-projecting cortical neurons and the placement of the optic fiber following the completion of behavioral testing. To account for variability, we compared the behavioral effects of optogenetic stimulation within the same animals, stimulated versus non-stimulated conditions, as shown in Figures 3 and 4. Moreover, Figure S3 includes important controls that rule out the possibility that the behavioral effects observed were due to direct activation of D1- or D2-SPNs in striatum or to light alone in the cortex.

      An additional point worth emphasizing is that the behavioral effects observed in the open field and ICSS tests cannot be attributed to differences in the number of neurons activated. Specifically, activation of D1-projecting cortical neurons promoted locomotion in the open field, whereas activation of D2-projecting cortical neurons did not. However, in the ICSS test, activation of both D1- and D2-projecting cortical neurons reinforced lever pressing. Given that only D1-SPN activation, but not D2-SPN activation, supports ICSS behavior, these effects are unlikely to result merely from differences in the number of neurons recruited.

      This rationale underlies our use of multiple behavioral paradigms to examine the functions of D1- and D2-projecting cortical neurons. By assessing behavior across distinct tasks, we aimed to approach the question from multiple angles and reduce the likelihood of spurious or confounding effects influencing our interpretation.

      In general, the manuscript would also benefit from more clarity about the statistical comparisons that were made and sample sizes used to reach their conclusions.

      We thank the reviewer for the valuable suggestion to improve the manuscript. In response, we have made the following changes and provided additional clarification:

      (1) In Figure 2D, we used 7 mice in the D1-projecting to D1 EGFP(+) group, 8 mice in the D1-projecting to D2 EGFP(-) group, 10 mice in the D2-projecting to D2 EGFP(+) group, and 8 mice in the D2-projecting to D1 EGFP(-) group. In Figure 2G, the group sizes were as follows: 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group. In both panels, connection ratios were compared using Fisher’s exact test.

      (2) In Figure 3, we reanalyzed the data in panels O, P, R, and S using permutation tests to assess whether each individual group exhibited a significant ICSS learning effect. The figure legend has been revised accordingly as follows:

      (O-P) D1-SPN (red) but not D2-SPN stimulation (black) drives ICSS behavior in both the DMS (O: D1, n = 6, permutation test, slope = 1.5060, P = 0.0378; D2, n = 5, permutation test, slope = -0.2214, P = 0.1021; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0130) and the DLS (P: D1, n = 6, permutation test, slope = 28.1429, P = 0.0082; D2, n = 5, permutation test, slope = -0.3429, P = 0.0463; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0390). *, P < 0.05. (Q) Timeline of helper virus injections, rabies-ChR2 injections and optogenetic stimulation for ICSS behavior. (R-S) Optogenetic stimulation of the cortical neurons projecting to either D1- or D2-SPNs induces ICSS behavior in both the MCC (R: MCC-D1, n = 5, permutation test, Day1-Day7, slope = 2.5857, P = 0.0034; MCC-D2, n = 5, Day2-Day7, permutation test, slope = 1.4229, P = 0.0344; no significant effect on Day7, MCC-D1 vs. MCC-D2,  two-tailed Mann Whitney test, P = 0.9999) and the M1 (S: M1-D1, n = 5, permutation test, Day1-Day7, slope = 1.8214, P = 0.0259; M1-D2, n = 5, Day1-Day7, permutation test, slope = 1.8214, P = 0.0025; no significant effect on Day7, M1-D1 vs. M1-D2, two-tailed Mann Whitney test, P = 0.3810). n.s., not statistically significant.

      (3) In Figure 4, we have added a comparison against a theoretical percentage change of zero to better evaluate the net effect of each manipulation. The results showed that in Figure 4D, optogenetic stimulation of D1-projecting MCC neurons significantly increased the pressing rate, whereas stimulation of D2-projecting MCC neurons did not (MCC-D1: n = 8, one-sample two-tailed t-test, t = 2.814, P = 0.0131; MCC-D2: n = 7, t = 0.8481, P = 0.4117). In contrast, in Figure 4H, optogenetic stimulation of both D1- and D2-projecting M1 neurons significantly increased the sequence press rate (M1-D1: n = 6, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0046; M1-D2: n = 7, P = 0.0479).

      Reviewer #2 (Public Review):

      Summary: 

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs). 

      Strengths: 

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum.

      Thank you for your profound understanding and appreciation of our manuscript’s design and the methodologies employed. In the realm of neuroscience, quantifying synaptic connections is a formidable challenge. While the roles of the direct and indirect pathways in motor control have long been explored, the mechanism by which upstream cortical inputs govern these pathways remains shrouded in mystery at the circuitry level.

      In the ‘Go/No-Go’ model, the direct and indirect pathways operate antagonistically; in contrast, the ‘Co-activation’ model suggests that they work cooperatively to orchestrate movement. These distinct theories raise a compelling question: Do these two pathways receive inputs from the same upstream cortical neurons, or are they modulated by distinct subpopulations? Answering this question could provide vital clues as to whether these pathways collaborate or operate independently.

      Previous studies have revealed both differences and similarities in the cortical inputs to direct and indirect pathways at population level. However, our investigation delves deeper to understand how a singular cortical input simultaneously drives these pathways, or might it regulate one pathway through distinct subpopulations? To address this, we employed rabies virus–mediated retrograde tracing from D1- or D2-SPNs and recorded non-starter SPNs to determine if they receive the same inputs as the starter SPNs. This approach allowed us to calculate the connection ratio and estimate the probable connection properties.

      Weaknesses: 

      One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not.

      Thank you for raising this thoughtful concern. It is indeed not feasible to restrict ChR2 expression to a specific cortical region using the first-generation rabies-ChR2 system alone. A more refined approach would involve injecting Cre-dependent TVA and RG into the striatum of D1- or A2A-Cre mice, followed by rabies-Flp infection. Subsequently, a Flp-dependent ChR2 virus could be injected into the MCC or M1 to selectively label D1- or D2-projecting cortical neurons. This strategy would allow for more precise targeting and address many of the current limitations.

      However, a significant challenge lies in the cytotoxicity associated with rabies virus infection. Neuronal health begins to deteriorate substantially around 10 days post-infection, which provides an insufficient window for robust Flp-dependent ChR2 expression. We have tested several new rabies virus variants with extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, they did not perform effectively or suitably in the corticostriatal systems we examined.

      In our experimental design, the aim is to delineate the connectivity probabilities to D1 or D2-SPNs from cortical neurons. Our hypothesis considered includes the possibility that similar innervation patterns could occur across multiple cortical subregions, or that some subregions might show preferential input to D1-SPNs while others do not, or a combination of both scenarios. This leads us to perform a series behavior test that using optogenetic activation of the D1- or D2-projecting cortical populations to see which could be the case.

      In the cortical areas we examined, MCC and M1, during behavioral testing, there is consistency with our electrophysiological results. Specifically, when we stimulated the D1-projecting cortical neurons either in MCC or in M1, mice exhibited facilitated local motion in open field test, which is the same to the activation of D1 SPNs in the striatum along (MCC: Fig 3C & D vs. I; M1: Fig 3F & G vs. L). Conversely, stimulation of D2-projecting MCC or M1 cortical neurons resulted in behavioral effects that appeared to combine characteristics of both D1- and D2-SPNs activation in the striatum (MCC: Fig 3C & D vs. J; M1: Fig 3F & G vs. M). The similar results were observed in the ICSS test. Our interpretation of these results is that the activation of D1-projecting neurons in the cortex induces behavior changes akin to D1 neuron activation, while activation of D2-projecting neurons in the cortex leads to a combined effect of both D1 and D2 neuron activation. This suggests that at least some cortical regions, the ones we tested, follow the hypothesis we proposed.

      There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021).

      This is a valid concern regarding anatomical studies. Investigating cortico-striatal connectivity at the single-cell level remains technically challenging due to current methodological limitations. At present, we rely on rabies virus-mediated trans-synaptic retrograde tracing to identify D1- or D2-projecting cortical populations. This anatomical approach is coupled with ex vivo slice electrophysiology to assess the functional connectivity between these projection-defined cortical neurons and striatal SPNs. This enables us to quantify connection ratios, for example, the proportion of D1-projecting cortical neurons that functionally synapse onto non-starter D1-SPNs.

      To ensure the robustness of our conclusions, it is essential that both the starter cells and the recorded non-starter SPNs receive comparable topographical input from the cortex and other brain regions. Therefore, we carefully designed our experiments so that all recorded cells were located within the injection site, were mCherry-negative (i.e., non-starter cells), and were surrounded by ChR2-mCherry-positive neurons. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.

      These methodological details are also described in the section on ex vivo brain slice electrophysiology, specifically in the Methods section, lines 396–399:

      “D1-SPNs (eGFP-positive in D1-eGFP mice, or eGFP-negative in D2-eGFP mice) or D2-SPNs (eGFP-positive in D2-eGFP mice, or eGFP-negative in D1-eGFP mice) that were ChR2-mCherry-negative, but in the injection site and surrounded by cells expressing ChR2-mCherry were targeted for recording.”

      This experimental strategy was implemented to control for potential spatial biases and to enhance the interpretability of our connectivity measurements.

      A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls.

      Thank you for bringing this to our attention. A fluorophore-only control is indeed a valuable negative control, commonly used to rule out effects caused by light exposure independent of optogenetic manipulation. In this study, however, comparisons were made between light-on and light-off conditions within the same animal. This within-subject design, as employed in recent studies (Geddes et al., 2018; Zhu et al., 2025), is considered sufficient to isolate the effects of optogenetic manipulation.

      Furthermore, as shown in Figure S3, we conducted an additional control experiment in which optogenetic stimulation was applied to M1, while ensuring that ChR2 expression was restricted to the striatum via targeted viral infection. This approach serves as a functional equivalent to the control you suggested. Importantly, we observed no effects that could be attributed solely to light exposure, further supporting the conclusion that the observed outcomes in our main experiments are due to targeted optogenetic manipulation, rather than confounding effects of illumination.

      Lastly, by employing an in-animal comparison, measuring changes between stimulated and non-stimulated trials, we account for subject-specific variability and strengthen the interpretability of our findings.

      Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement.

      Thank you for bringing the study by Cui and colleagues to our attention. While that study has generated some controversy, other independent investigations have demonstrated that activation of D1-SPNs in DLS facilitates local motion and lever-press behaviors (Dong et al., 2025; Geddes et al., 2018; Kravitz et al., 2010).

      It is still worth to clarify. The differences in behavioral outcomes observed between our study and that of Cui et al. may be attributable to several methodological factors, including differences in both the stereotaxic targeting coordinates and the optical fiber specifications used for stimulation.

      Specifically, in our experiments, the dorsomedial striatum (DMS) was targeted at coordinates AP +0.5 mm, ML ±1.5 mm, DV –2.2 mm, and the DLS at AP +0.5 mm, ML ±2.5 mm, DV –2.2 mm. In contrast, Cui et al. targeted the DMS at AP +0.9 mm, ML ±1.4 mm, DV –3.0 mm and the DLS at AP +0.7 mm, ML ±2.3 mm, DV –3.0 mm. These coordinates correspond to sites that are slightly more rostral and ventral compared to our own. Even subtle differences in anatomical targeting can result in activation of distinct neuronal subpopulations, which may account for the differing behavioral effects observed during optogenetic stimulation.

      In addition, the optical fibers used in the two studies varied considerably. We employed fibers with a 200 µm core diameter and a numerical aperture (NA) of 0.37, whereas Cui et al. used fibers with a 250 µm core diameter and a higher NA of 0.66. The combination of a larger core and higher NA in their setup implies a broader spatial spread and deeper tissue penetration of light, likely resulting in activation of a larger neural volume. This expanded volume of stimulation may have engaged additional neural circuits not recruited in our experiments, further contributing to the divergent behavioral outcomes. Taken together, these differences in targeting and photostimulation parameters are likely key contributors to the distinct effects reported between the two studies.

      Reviewer #3 (Public Review): 

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points.

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below.

      Major:

      There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results.

      We thank the reviewer for raising these questions, which merit further discussion.

      Firstly, the primary aim of our study is to investigate the connectivity of the corticostriatal pathway. Given the current technical limitations, it is not feasible to trace all the striatal SPNs connected to a single cortical neuron. Therefore, we approached this from the opposite direction, starting from D1- or D2-SPNs to retrogradely label upstream cortical neurons, and then identifying their connected SPNs via functional synaptic recordings. To achieve this, we employed the only available transsynaptic retrograde method: rabies virus-mediated tracing. Because we crossed D1- or D2-GFP mice with D1- or A2A-Cre mice to identify SPN subtypes during electrophysiological recordings, the conventional rabies-GFP system could not be used to distinguish starter cells without conflicting with the GFP labeling of SPNs. To overcome this, we tagged ChR2 expression with mCherry. In this setup, we recorded from mCherry-negative D1- or D2-SPNs within the injection site and surrounded by mCherry-positive neurons. This ensures that the recorded neurons are topographically matched to the starter cell population and receive input from the same cortical regions. We acknowledge that TVA-only and ChR2-expressing cells are both mCherry-positive and therefore indistinguishable in our system. As such, mCherry-positive cells likely comprise a mixture of starter cells and TVA-only cells, representing a somewhat broader population than starter cells alone. Nevertheless, by restricting recordings to mCherry-negative SPNs within the injection site, it is ensured that our conclusions about functional connectivity remain valid and aligned with the primary objective of this study.

      Secondly, if rabies virus replication were significantly more efficient in D1-SPNs than in D2-SPNs, this would likely result in a higher observed connection probability in the D1-projecting group. However, we used consistent genetic strategies across all groups: D1-SPNs were defined as GFP-positive in D1-GFP mice and GFP-negative in D2-GFP mice, with D2-SPNs defined analogously. Recordings from both D1- and D2-SPNs were performed using the same methodology and under the same injection conditions within the same animals. This internal control helps mitigate the possibility that differential rabies infection efficiency biased our results.

      With these experimental safeguards in place, we found that 40% of D2-SPNs received input from D1-SPN-projecting cortical neurons, while 73% of D1-SPNs received input from D2-SPN-projecting cortical neurons. Although the ideal scenario would involve an even larger sample size to refine these estimates, the technical demands of post-rabies-infection electrophysiological recordings inherently limit throughput. Nonetheless, our approach represents the most feasible and accurate method currently available, and provides a significant advance in characterizing the functional connectivity within corticostriatal circuits.

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. The health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included.

      We understand and appreciate the reviewer’s concern regarding the potential cytotoxicity of rabies virus infection. Indeed, this is a critical consideration when interpreting functional connectivity data. We have tested several newer rabies virus variants reported to support extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, these variants did not perform reliably in the corticostriatal circuits we examined.

      Given these limitations, we relied on the rabies virus approach originally developed by Osakada et al. (Osakada et al., 2011), which demonstrated that neurons infected with rabies virus expressing ChR2 remain both viable and functional up to at least 10 days post-infection (Fig. 3, cited below). In our own experiments, we further validated the health and viability of cortical neurons, the presynaptic partners of SPNs, particularly around day 7 post-infection.

      To minimize the risk of viral toxicity, we performed ex vivo slice recordings within a conservative time window, between 4 and 8 days after infection, when the health of labeled neurons is well maintained. Moreover, the recorded SPNs were consistently mCherry-negative, indicating they were not directly infected by rabies virus, thus further reducing the likelihood of recording from compromised cells.

      Taken together, these steps help ensure that our synaptic recordings reflect genuine functional connectivity, rather than artifacts of viral toxicity. We hope this clarifies the rationale behind our experimental design.

      For the behavioral tests, including a naïve uninfected group and an AAV helper virus-only group as negative controls could be beneficial to isolate the specific impact of rabies virus infection. However, our primary focus is on the activation of selected presynaptic inputs to D1- or D2-SPNs by optogenetic method. Therefore, comparing stimulated versus non-stimulated trials within the same animal offers more direct and relevant results for our study objectives.

      It is also important to note that the ICSS test is particularly susceptible to the potential cytotoxic effects of rabies virus, as it spans a relatively extended period, from Day 4 to Day 12 post-infection. To mitigate this issue, we focused our analysis on the first 7 days of ICSS testing, thereby keeping the behavioral observations within 10 days post-rabies injection. This approach minimizes potential confounds from rabies-induced neurotoxicity while still capturing the relevant behavioral dynamics. Accordingly, we have revised Figure 3 and updated the statistical analyses to reflect this adjustment.

      The overall purity (e.g., EnvA-pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity.

      We agree that anatomical specificity is crucial for accurately labeling inputs to defined SPN populations in our study. The rabies virus strain employed here has been rigorously validated for its specificity in numerous previous studies from our group and others (Aoki et al., 2019; Klug et al., 2018; Osakada et al., 2011; Smith et al., 2016; Wall et al., 2013; Wickersham et al., 2007). For example, in a recent study by Aoki et al. (Aoki et al., 2019), we tested the same rabies virus strain by co-injecting the glycoprotein-deleted rabies virus and the TVA-expressing helper virus, without glycoprotein expressing AAV, into the SNr. As shown in Figure S1 (related to Figure 2), GFP expression was restricted to starter cells within the SNr, with no evidence of transsynaptic labeling in upstream regions such as the striatum, EPN, GPe, or STN (see panels F–H). These findings provide strong evidence that the rabies virus used in our experiments is properly pseudotyped and exhibits high specificity for starter cell labeling without off-target spread.

      We appreciate the reviewer’s emphasis on specificity, and we hope this clarification further supports the reliability of our anatomical tracing approach.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down.

      We agree with the reviewer that the thalamus is also a significant source of excitatory input to the striatum. However, current techniques do not allow for precise and exclusive labeling of upstream neurons in a given brain region, such as the cortex or thalamus. This technical limitation indeed makes it difficult to definitively determine whether inputs from these regions follow the same projection rules. Despite this, our findings show that stimulation of defined cortical populations, specifically, D1- or D2-projecting neurons in MCC and M1, elicits behavioral outcomes that closely mirror those observed in our ex vivo slice recordings, providing strong support for the cortical origin of the effects we observed.

      In our in vivo optogenetic experiments, we acknowledge that stimulating a specific cortical region may also activate axonal terminals from rabies-infected cortical or thalamic neurons. While somatic stimulation is generally more effective than terminal stimulation, we recognize the possibility that terminals on non-rabies-traced cortical neurons could be activated through presynaptic connections. To address this, we considered the finding of a previous study (Cruikshank et al., 2010), which demonstrated that while brief optogenetic stimulation (0.05 ms) of thalamo-cortical terminals can elicit few action potentials in postsynaptic cortical neurons, sustained terminal stimulation (500 ms) also results in only transient postsynaptic firing rather than prolonged activation (Fig. 3C, cited below). This suggests that cortical neurons exhibit only short-lived responses to continuous presynaptic stimulation of thalamic origin.

      In comparison, our behavioral paradigms employed prolonged optogenetic stimulation protocols- 20 Hz, 10 ms pulses for 15 s (open-field test), 1 s (ICSS), and 8 s (FR4/8)—which more closely resemble sustained stimulation conditions. Given these parameters, and the robust behavioral responses observed, it means that the effects are primarily mediated by activation of rabies-labeled, ChR2-expressing D1- or D2-projecting cortical neurons rather than indirect activation through thalamic input.

      We appreciate the reviewer’s valuable comment, and we have now incorporated this point into the revised manuscript (page 13, line 265 to 275) to more clearly address the potential contribution of thalamic inputs in our experimental design.

      The statements about specificity of connectivity are not well-founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results. 

      We sincerely thank the reviewer for the thoughtful comments and critical insights into our interpretation of connectivity data. These concerns are valid and provide an important opportunity to clarify and reinforce our experimental design and conclusions.

      Firstly, as described in our previous response, all patched neurons were carefully selected to be within the injection site and in close proximity to ChR2-mCherry-positive cells. Specifically, the estimated distance from each recorded neuron to the nearest starter cells did not exceed 100 µm. This design choice was made to minimize variability associated with spatial distance or heterogeneity in viral expression, thereby allowing for a more consistent sampling of putatively connected neurons.

      Secondly, quantifying both the number of starter and input neurons would, in principle, provide a more comprehensive picture of connectivity. However, given the technical limitations of the current approach particularly when combining rabies tracing with functional recordings it is not feasible to obtain such precise cell counts. Instead, we focused on connection ratios derived from targeted electrophysiological recordings, which offer a reliable and practical means of estimating connectivity within these defined circuits.

      Thirdly, regarding the potential influence of rabies-labeled neurons beyond the immediate recording site: while we acknowledge that rabies tracing labels a broad set of upstream neurons, our analysis was confined to a well-defined and localized area. The analogy we find helpful here is that of a spotlight - our recordings were restricted to the illuminated region directly under the beam, where the projection pattern is fixed and interpretable, regardless of what lies outside that area. Although we cannot fully account for all possible upstream connections, our methodology was designed to minimize variability and maintain consistency in the region of interest, which we believe supports the robustness of our conclusions in the ex vivo slice recording experiment.

      We hope this additional explanation addresses the reviewer’s concerns and helps clarify the rationale of our experimental strategy.

      The results in figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret.

      We apologize for any confusion and appreciate the opportunity to clarify this point. Our electrophysiological recordings demonstrated that D1-projecting cortical neurons preferentially innervate D1-SPNs in the striatum, whereas D2-projecting cortical neurons provide input to both D1- and D2-SPNs, without a clear preference. These synaptic connectivity patterns are further supported by our behavioral experiments: optogenetic stimulation of D1-projecting neurons in cortical areas such as MCC and M1 led to behavioral effects consistent with direct D1-SPN activation. In contrast, stimulation of D2-projecting cortical neurons produced behavioral outcomes that appeared to reflect a mixture of both D1- and D2-SPN activation.

      We acknowledge that interpreting negative behavioral findings poses inherent challenges, as it is difficult to distinguish between a true lack of effect and insufficient experimental manipulation. To mitigate this, we ensured that all animals included in the analysis exhibited appropriate viral expression and correctly placed optic fibers in the targeted regions. These controls help to confirm that the observed behavioral effects - or lack thereof - are indeed due to the activation of the intended neuronal populations rather than technical artifacts such as weak expression or fiber misplacement.

      As shown in Author response image 1 below, our verification of virus expression and fiber positioning confirms effective targeting in MCC and M1 of A2A-Cre mice. Therefore, we interpret the negative behavioral outcomes as meaningful consequences of specific neural circuit activation.

      Author response image 1.

      Confocal image from A2A-Cre mouse showing targeted optogenetic stimulation of D2-projecting cortical neurons in MCC or M1. ChR2-mCherry expression highlights D2-projecting neurons, selectively labeled via rabies-mediated tracing. Optic fiber placement is confirmed above the cortical region of interest. Image illustrates robust expression and anatomical specificity necessary for pathway-selective stimulation in behavioral assays.

      In light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in figure 4 - the inputs and putative downstream cells do not have the same effects. Given the potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments.

      We apologize for any confusion in our previous explanation. In our behavioral experiments, the primary objective was to determine whether activation of D1- or D2-projecting cortical neurons would produce behavioral outcomes distinct from those observed with pure D1 or D2 activation.

      Our findings show that stimulation of D1-projecting cortical neurons produced behavioral effects closely resembling those of selective D1 activation in both open field and ICSS tests. This is consistent with our slice recording data, which revealed that D1-projecting cortical neurons exhibit a higher connection probability with D1-SPNs than with D2-SPNs.

      In contrast, interpreting the effects of D2-projecting cortical neuron stimulation is inherently more nuanced. In the open field test, activation of these neurons did not significantly modulate local motion. This could reflect a balanced influence of D1 activation, which facilitates movement, and D2 activation, which suppresses it - resulting in a net neutral behavioral outcome. In the ICSS test, the absence of a strong reinforcement effect typically associated with D2 activation, combined with partial reinforcement likely due to concurrent D1 activation, suggests that stimulation of D2-projecting neurons produces a mixed behavioral signal. This outcome supports the interpretation that these neurons synapse onto both D1- and D2-SPNs, leading to a blended behavioral response that differs from selective D1 or D2 activation alone.

      Together, these two behavioral assays offer complementary perspectives, providing a more complete view of how projection-specific cortical inputs influence striatal output and behavior.

      In Figure 4 of the current manuscript (as cited below), we show that optogenetic activation of MCC neurons projecting to D1-SPNs facilitates sequence lever pressing, whereas activation of MCC neurons projecting to D2-SPNs does not induce significant behavioral changes. Conversely, activation of M1 neurons projecting to either D1- or D2-SPNs enhances lever pressing sequences. These observations align with our prior findings (Geddes et al., 2018; Jin et al., 2014), where we demonstrated that in the striatum, D1-SPN activation facilitates ongoing lever pressing, whereas D2-SPN activation is more involved in suppressing ongoing actions and promoting transitions between sub-sequences, shown in Fig. 4 from (Geddes et al., 2018; Jin et al., 2014) and Fig. 5K from (Jin et al., 2014) . Taken together, the facilitation of lever pressing by D1-projecting MCC and M1 neurons is consistent with their preferential connectivity to D1-SPNs and their established behavioral role.

      What is particularly intriguing, though admittedly more complex, is the behavioral divergence observed upon activation of D2-SPN-projecting cortical neurons. Activation of D2-projecting MCC neurons does not alter lever pressing, possibly reflecting a counterbalancing effect from concurrent D1- and D2-SPN activation. In contrast, stimulation of D2-projecting M1 neurons facilitates lever pressing, albeit less robustly than their D1-projecting counterparts. This discrepancy may reflect regional differences in striatal targets, DMS for MCC versus DLS for M1, as also supported by our open field test results. Furthermore, our recent findings (Zhang et al., 2025) show that synaptic strength from Cg to D2-SPNs is stronger than to D1-SPNs, whereas the M1 pathway exhibits the opposite pattern. These data suggest that beyond projection ratios, synaptic strength also shapes cortico-striatal functional output. Thus, stronger D2-SPN synapses in the DMS may offset D1-SPN activation during MCC-D2 stimulation, dampening lever pressing increase. Conversely, weaker D2 synapses in the DLS may permit M1-D2 projections to facilitate behavior more readily.

      In summary, the behavioral outcomes of our optogenetic manipulations support the proposed asymmetric cortico-striatal connectivity model. While the effects of D2-projecting neurons are not uniform, they reflect varying balances of D1 and D2-SPN influence, which further underscores the asymmetrical connections of cortical inputs to the striatum.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors): 

      (1) What are the sample sizes for Fig S2? Some trends that are listed as nonsignificant look like they may just be underpowered. Related to this point, S2C indicates that PPR is statistically similar in all conditions. The traces shown in Figure 2 suggest that PPR is quite different in "Input D1"- vs "Input D2" projections. If there is indeed no difference, the exemplar traces should be replaced with more representative ones to avoid confusion. 

      Thank you for your suggestion. The sample size reported in Figure S2 corresponds to the neurons identified as connected in Figure 2. The representative traces shown in Figure 2 were selected based on their close alignment with the amplitude statistics and are intended to reflect typical responses. Given this, it is appropriate to retain the current examples as they accurately illustrate the underlying data.

      (2) Previous studies have described that SPN-SPN collateral inhibition is also asymmetric, with D2->D1 SPN connectivity stronger than the other direction. While cortical inputs to D2-SPNs may also strongly innervate D1-SPNs, it would be helpful to speculate on how collateral inhibition may further shape the biases (or lack thereof) reported here. 

      This would indeed be an interesting topic to explore. SPN-SPN mutual inhibition and/or interneuron inhibition may also play a role in the functional organization and output of the striatum. In the present study, we focused on the primary layer of cortico-striatal connectivity to examine how cortical neurons selectively connect to the striatal direct and indirect pathways, as these pathways have been shown to have distinct yet cooperative functions. To achieve this, we applied a GABAA receptor inhibitor to isolate only excitatory synaptic currents in SPNs, yielding the relevant results.

      To investigate additional circuit organization involving SPN-SPN mutual inhibition, the current available technique would involve single-cell initiated rabies tracing. This approach would help identify the starter SPN and the upstream SPNs that provide input to the starter cell, thereby offering a clearer understanding of the local circuit.

      (3) In Fig 3N-S there are no stats confirming that optogenetic stimulation does indeed increase lever pressing in each group (though it obviously looks like it does). It would be helpful to add statistics for this comparison, in addition to the between-group comparisons that are shown. 

      We thank the reviewer for this thoughtful suggestion. To assess whether optogenetic stimulation increases lever pressing in each group shown in Figures 3O, 3P, 3R, and 3S, we employed a permutation test (10,000 permutations). This non-parametric statistical method does not rely on assumptions about the underlying data distribution and is particularly appropriate for our analysis given the relatively small sample sizes.

      Additionally, in response to Reviewer 3’s concern regarding the potential cytotoxicity of rabies virus affecting behavioral outcomes during in vivo optogenetic stimulation experiments, we focused our analysis on Days 1 through 7 of the ICSS test. This time window remains within 10 days post-rabies infection, a period during which previous studies have reported minimal cytopathic effects (Osakada et al., 2011).

      Accordingly, we have updated Figure 3N-S and revised the associated statistical analyses in the figure legend as follows:

      (O-P) D1-SPN (red) but not D2-SPN stimulation (black) drives ICSS behavior in both the DMS (O: D1, n = 6, permutation test, slope = 1.5060, P = 0.0378; D2, n = 5, permutation test, slope = -0.2214, P = 0.1021; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0130) and the DLS (P: D1, n = 6, permutation test, slope = 28.1429, P = 0.0082; D2, n = 5, permutation test, slope = -0.3429, P = 0.0463; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0390). *, P < 0.05. (Q) Timeline of helper virus injections, rabies-ChR2 injections and optogenetic stimulation for ICSS behavior. (R-S) Optogenetic stimulation of the cortical neurons projecting to either D1- or D2-SPNs induces ICSS behavior in both the MCC (R: MCC-D1, n = 5, permutation test, Day1-Day7, slope = 2.5857, P = 0.0034; MCC-D2, n = 5, Day2-Day7, permutation test, slope = 1.4229, P = 0.0344; no significant effect on Day7, MCC-D1 vs. MCC-D2,  two-tailed Mann Whitney test, P = 0.9999) and the M1 (S: M1-D1, n = 5, permutation test, Day1-Day7, slope = 1.8214, P = 0.0259; M1-D2, n = 5, Day1-Day7, permutation test, slope = 1.8214, P = 0.0025; no significant effect on Day7, M1-D1 vs. M1-D2, two-tailed Mann Whitney test, P = 0.3810). n.s., not statistically significant.

      We believe this updated analysis and additional context further strengthen the validity of our conclusions regarding the reinforcement effects.

      (4) Line 206: mice were trained for "a few more days" is not a very rigorous description. It would be helpful to state the range of additional days of training. 

      We thank the reviewer for the suggestion. In accordance with the Methods section, we have now specified the number of days, which is 4 days, in the main text (line 207).

      (5) In Fig 4D,H, the statistical comparison is relative modulation (% change) by stimulation of D1- vs D2- projecting inputs. Please show statistics comparing the effect of stimulation on lever presses for each individual condition. For example, is the effect of MCC-D2 stimulation in panel D negative or not significant? 

      Thank you for your suggestion. Below are the statistical results, which we have also incorporated into the figure legend for clarity. To assess the net effects of each manipulation, we compared the observed percentage changes with a theoretical value of zero.

      In Figure 4D, optogenetic stimulation of D1-projecting MCC neurons significantly increased the pressing rate (MCC-D1, n = 8, one-sample two-tailed t-test, t = 2.814, P = 0.0131), whereas stimulation of D2-projecting MCC neurons did not produce a significant effect (MCC-D2, n = 7, one-sample two-tailed t-test, t = 0.8481, P = 0.4117).

      In contrast, Figure 4H shows that optogenetic stimulation of both D1- and D2-projecting M1 neurons significantly increased the sequence press rate (M1-D1, n = 6, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0046; M1-D2, n = 7, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0479).

      These analyses help clarify the distinct behavioral effects of manipulating different corticostriatal projections.

      (6) Are data in Fig 1G-H from a D1- or A2a- cre mouse? 

      The data in Fig 1G-H are from a D1-Cre mouse.

      (7) In Fig S3 it looks like there may actually be an effect of 20Hz simulation of D2-SPNs. Though it probably doesn't affect the interpretation. 

      As indicated by the statistics, there is a slight, but not statistically significant, decrease in local motion when 20 Hz stimulation is delivered to the motor cortex with ChR2 expression in D2-SPNs in the striatum.

      Reviewer #2 (Recommendations For The Authors): 

      The rabies tracing is referred to on several occasions as "new" but the reference papers are from 2011, 2013, and 2018. It is unclear what is new about the system used in the paper and what new feature is relevant to the experiments that were performed. Either clarify or remove "new" terminology. 

      Thank you for bringing this to our attention. We have revised the relevant text accordingly at line 20 in the Abstract, line 31 in the In Brief, line 69 in the Introduction, line 83 in the Results, and line 226 in the Discussion to improve clarity and accuracy.

      In Figure 2 D and G, D1 eGFP (+) and D2 eGFP(-) are plotted separately. These are the same cell type; therefore it may work best to combine that data. This could also be done for 'input to D2- Record D2' in panel D as well as 'input D1-Record D2' and 'input D2-Record D1' in panel G. Combining the information in panel D and G and comparing all 4 conditions to each other would give a better understanding of the comparison of functional connectivity between cortical neurons and D1 and D2 SPNs. 

      We thank the reviewer for the thoughtful suggestion. While presenting single bars for each condition (e.g., ‘input D1 - record D1’) might improve visual simplicity, it would obscure an important aspect of our experimental design. Specifically, we aimed to highlight that the comparisons between D1- and D2-projecting neurons to D1 and D2 SPNs were counterbalanced within the same animals - not just across different groups. By showing both D1-eGFP(+) and D2-eGFP(-), or vice versa, within each group and at similar proportions, we provide a more complete picture of the internal control built into our design. This format helps ensure the audience that our conclusions are not biased by group-level differences, but are supported by within-subject comparisons. Therefore, that the current presentation better could serve to communicate the rigor and balance of our experimental approach.

      The findings in Figure 2 are stated as D1 projecting excitatory inputs have a higher probability of targeting D1 SPNs while D2 projecting excitatory inputs target both D1 SPNs and D2 SPNs. It may be more clear to say that some cortical neurons project specifically to D1 SPNs while other cortical neurons project to both D1 and D2 SPNs equally. A better summary diagram could also help with clarity. 

      Thank you for bringing this up. The data we present reflect the connection probabilities of D1- or D2-projecting cortical neurons to D1 or D2 SPNs. One possible interpretation is like the reviewer said that a subset of cortical neurons preferentially target D1 SPNs, while others exhibit more balanced projections to both D1 and D2 SPNs. However, we cannot rule out alternative explanations - for example, that some D2-projecting neurons preferentially target D2 SPNs, or that the observed differences arise from the overall proportions of D1- and D2-projecting cortical neurons connecting to each striatal subtype.

      There are multiple possible patterns of connectivity that could give rise to the observed differences in connection ratios. Based on our current data, we can confidently conclude the existence of asymmetric cortico-striatal projections to the direct and indirect pathways, but the precise nature of this asymmetry will require further investigation.

      Figure 4 introduces the FR8 task, but there are similar takeaways to the findings from Figure 3. Is there another justification for the FR8 task or interesting way of interpreting that data that could add richness to the manuscript?

      The FR8 task is a self-initiated operant sequence task that relies on motor learning mechanisms, whereas the open field test solely assesses spontaneous locomotion. Furthermore, the sequence task enables us to dissect the functional role of specific neuronal populations in the initiation, maintenance, and termination of sequential movements through closed-loop optogenetic manipulations integrated into the task design. These methodological advantages underscore the rationale for including Figure 4 in the manuscript, as it highlights the unique insights afforded by this experimental paradigm.

      I am somewhat surprised to see that D1-SPN stimulation in DLS gave the results in Figure 3 F and P, as mentioned in the public review. These contrast with some previous results (Cui et al, J Neurosci, 2021). Any explanation? Would be useful to speculate or compare parameters as this could have important implications for DLS function.

      Thank you for raising this point. While Cui’s study has generated some debate, several independent investigations have consistently demonstrated that stimulation of D1-SPNs in the dorsolateral striatum (DLS) facilitates local motion and lever-press behaviors (Dong et al., 2025; Geddes et al., 2018; Kravitz et al., 2010). These findings support the functional role of D1-SPNs in promoting movement and motivated actions.

      The differences in behavioral outcomes observed between our study and that of Cui et al. may stem from several methodological factors, particularly related to anatomical targeting and optical stimulation parameters.

      Specifically, our experiments targeted the DMS at AP +0.5 mm, ML ±1.5 mm, DV –2.2 mm, and the DLS at AP +0.5 mm, ML ±2.5 mm, DV –2.2 mm. In contrast, Cui’s study targeted the DMS at AP +0.9 mm, ML ±1.4 mm, DV –3.0 mm, and the DLS at AP +0.7 mm, ML ±2.3 mm, DV –3.0 mm. These differences indicate that their targeting was slightly more rostral and more ventral than ours, which could have led to stimulation of distinct neuronal populations within the striatum, potentially accounting for variations in behavioral effects observed during optogenetic activation.

      In addition, the optical fibers used in the two studies differed markedly. We employed optical fibers with a 200 µm core diameter and a numerical aperture (NA) of 0.37. Cui’s study used fibers with a larger core diameter (250 µm) and a higher NA (0.66), which would produce a broader spread and deeper penetration of light. This increased photostimulation volume may have recruited a more extensive network of neurons, possibly including off-target circuits, thus influencing the behavioral outcomes in a manner not seen in our more spatially constrained stimulation paradigm.

      Taken together, these methodological differences, both in anatomical targeting and optical stimulation parameters, likely contribute to the discrepancies in behavioral results observed between the two studies. Our findings, consistent with other independent reports, support the role of D1-SPNs in facilitating movement and reinforcement behaviors under more controlled and localized stimulation conditions.

      Reviewer #3 (Recommendations For The Authors): 

      Minor: 

      The authors repeatedly state that they are using a new rabies virus system, but the system has been in widespread use for 16 years, including in the exact circuits the authors are studying, for over a decade. I would not consider this new. 

      Thank you for bringing this to our attention. We have revised the relevant text accordingly at line 20 in the Abstract, line 31 in the In Brief, line 69 in the Introduction, line 83 in the Results, and line 226 in the Discussion to improve clarity and accuracy.

      Figure 2G, how many mice were used for recordings?

      In Fig. 2G, we used 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group.

      The amplitude of inputs was not reported in figure 2. This is important, as the strength of the connection matters. This is reported in Figure S2, but how exactly this relates to the presence or absence of connections should be made clearer.

      The amplitude data presented in Figure S2 summarize all recorded currents from confirmed connections, as detailed in the Methods section. A connection is defined by the presence of a detectable and reliable postsynaptic current with an onset latency of less than 10 ms following laser stimulation.

      Reference in the reply-to-review comments:

      Aoki, S., Smith, J.B., Li, H., Yen, X.Y., Igarashi, M., Coulon, P., Wickens, J.R., Ruigrok, T.J.H., and Jin, X. (2019). An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. Elife 8, e49995.

      Chatterjee, S., Sullivan, H.A., MacLennan, B.J., Xu, R., Hou, Y.Y., Lavin, T.K., Lea, N.E., Michalski, J.E., Babcock, K.R., Dietrich, S., et al. (2018). Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 21, 638-646.

      Cruikshank, S.J., Urabe, H., Nurmikko, A.V., and Connors, B.W. (2010). Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons. Neuron 65, 230-245.

      Dong, J., Wang, L.P., Sullivan, B.T., Sun, L.X., Smith, V.M.M., Chang, L.S., Ding, J.H., Le, W.D., Gerfen, C.R., and Cai, H.B. (2025). Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion. Nat Commun 16, 2710.

      Geddes, C.E., Li, H., and Jin, X. (2018). Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences. Cell 174, 32-43.

      Jin, L., Sullivan, H.A., Zhu, M., Lavin, T.K., Matsuyama, M., Fu, X., Lea, N.E., Xu, R., Hou, Y.Y., Rutigliani, L., et al. (2024). Long-term labeling and imaging of synaptically connected neuronal networks in vivo using double-deletion-mutant rabies viruses. Nat Neurosci 27, 373-383.

      Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17, 423-430.

      Klug, J.R., Engelhardt, M.D., Cadman, C.N., Li, H., Smith, J.B., Ayala, S., Williams, E.W., Hoffman, H., and Jin, X. (2018). Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. Elife 7, e35657.

      Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622-626.

      Osakada, F., Mori, T., Cetin, A.H., Marshel, J.H., Virgen, B., and Callaway, E.M. (2011). New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits. Neuron 71, 617-631.

      Smith, J.B., Klug, J.R., Ross, D.L., Howard, C.D., Hollon, N.G., Ko, V.I., Hoffman, H., Callaway, E.M., Gerfen, C.R., and Jin, X. (2016). Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix Compartments. Neuron 91, 1069-1084.

      Wall, N.R., De La Parra, M., Callaway, E.M., and Kreitzer, A.C. (2013). Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons. Neuron 79, 347-360.

      Wickersham, I.R., Lyon, D.C., Barnard, R.J.O., Mori, T., Finke, S., Conzelmann, K.K., Young, J.A.T., and Callaway, E.M. (2007). Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639-647.

      Zhang, B.B., Geddes, C.E., and Jin, X. (2025) Complementary corticostriatal circuits orchestrate action repetition and switching. Sci Adv, in press.

      Zhu, Z.G., Gong, R., Rodriguez, V., Quach, K.T., Chen, X.Y., and Sternson, S.M. (2025). Hedonic eating is controlled by dopamine neurons that oppose GLP-1R satiety. Science 387, eadt0773.

    2. Reviewer #1 (Public review):

      Summary:

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function.

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on some behavioral outcomes may be a bit overstated given technical limitations of the experiments.

      For example, after virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in some of the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences?

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      This is a revision of a manuscript previously submitted to Review Commons. The authors have partially addressed my comments, mainly by expanding the introduction and discussion sections. Sandy Schmid, a leading expert on the AP2 adaptor and CME, has been added as a co-corresponding author. The main message of the manuscript remains unchanged. Through overexpression of fluorescently tagged CCDC32, the authors propose that, in addition to its established role in AP2 assembly, CCDC32 also follows AP2 to the plasma membrane and regulates CCP maturation. The manuscript presents some interesting ideas, but there are still concerns regarding data inconsistencies and gaps in the evidence.

      With due respect, we would argue that a role for CCDC32 in AP2 assembly is hardly ‘established’.  Rather a single publication reporting its role as a co-chaperone for AAGAP appeared while our manuscript was under review.  We find some similar and some conflicting results, which are described in our revised manuscript.  However, in combination our two papers clearly show that CCDC32, a previously unrecognized endocytic accessory protein, deserves further study.

      (1) eGFP-CCDC32 was expressed at 5-10 times higher levels than endogenous CCDC32. This high expression can artificially drive CCDC32 to the cell surface via binding to the alpha appendage domain (AD)-an interaction that may not occur under physiological conditions.

      While we acknowledge that overexpression of eGFP-CCDC32 could result in artificially driving it to CCPs, we do not believe this is the case for the following reasons:

      i. The bulk of our studies (Figures 2-4) demonstrate the effects of siRNA knockdown on CCDC32 on CCP early stages of CME, and so it is likely that these functions require the presence of endogenous CCDC32 at nascent CCPs as detected with overexpressed eGFP-CCDC32 by TIRF imaging.

      ii. At these levels of overexpression eGFP-CCDC32 fully rescues the effects of siRNA KD of endogenous CCCDC32 of Tfn uptake and CCP dynamics (Figure 6F,G). If the protein was artificially recruited to the AP2 appendage domain, one would expect it to compete with the recruitment of other EAPS to CCPs and hence exhibit defects in CCP dynamics. Indeed, we see the opposite: CCPs that are positive for eGFP-CCDC32 show normal dynamics and maturation rates, while CCPs lacking eGFP-CCDC32 are short-lived and more likely to be aborted (Figure 1C).

      iii. We have identified two modes of binding of CCDC32 to AP2 adaptors: one is through canonical AP2-AD binding motifs, the second is through an a-helix in CCDC32 that, by modeling, docks only to the open conformation of AP2.  Overexpressed CCDC32 lacking this a-helix is not recruited to CCPs (Fig. 6 D,E), indicating that the canonical AP2 binding motifs are not sufficient to recruit CCDC32 to CCPs, even when overexpressed.

      (2) Which region of CCDC32 mediates alpha AD binding? Strangely, the only mutant tested in this work, Δ78-98, still binds AP2, but shifts to binding only mu and beta. If the authors claim that CCDC32 is recruited to mature AP2 via the alpha AD, then a mutant deficient in alpha AD binding should not bind AP2 at all. Such a mutant is critical for establish the model proposed in this work.

      We understand the reviewer’s confusion and thus devoted a paragraph in the discussion to this issue.  As revealed by AlphaFold 3.0 modeling (Figure S6) binding of CCDC32 to the alpha AD likely occurs via the 2 canonical AP2-AD binding motifs encoded in CCDC32. Given the highly divergent nature of AP2-AD binding motifs, we did not identify these motifs without the AlphaFold 3.0 modeling. While these interactions could be detected by GST-pull downs, they are apparently not of sufficient affinity to recruit CCDC32 to CCPs in cells. In the text, we now describe the a-helix we identified as being essential of CCP recruitment as ‘a’ AP2 binding site on CCDC32 rather than ‘the’ AP2 binding site.  Interestingly, and also discussed, Alphafold 3.0 identifies a highly predicted docking site on a-adaptin that is only accessible in the open, cargo-bound conformation of intact AP2.  This is also consistent with the inability of CCDC32(D78-99) to bind the a:µ2 hemi-complex in cell lysates.

      We agree that further structural studies on CCDC32’s interactions with AP2 and its targeting to CCPs will be of interest for future work.

      (3) The concept of hemicomplexes is introduced abruptly. What is the evidence that such hemicomplexes exist? If CCDC32 binds to hemicomplexes, this must occur in the cytosol, as only mature AP2 tetramers are recruited to the plasma membrane. The authors state that CCDC32 binds the AD of alpha but not beta, so how can the Δ78-98 mutant bind mu and beta?

      We introduced the concept of hemicomplexes based on our unexpected (and now explicitly stated as such) finding that the CCDC32(D78-99) mutant efficiently co-IPs with a b2:µ2 hemicomplex.  As stated, the efficiency of this pulldown suggests that the presumed stable AP2 heterotetramer must indeed exist in equilibrium between the two a:s2 and b2:µ2 hemicomplexes, such that CCDC32(D78-99) can sequester and efficiently co-IP with the b2:µ2 hemicomplex.  A previous study, now cited, had shown that the b2:µ2 hemicomplex could partially rescue null mutations of a in C. elegans (PMID: 23482940).  We do not know how CCDC32 binds to the b2:µ2 hemicomplex and we did not detect these interactions using AlphaFold 3.0. However, these interactions could be indirect and involve the AAGAB chaperone.  It is also likely, based on the results of Wan et al. (PMID: 39145939), that the binding is through the µ2 subunit rather than b2. As mentioned above, and in our Discussion, further studies are needed to define the complex and multi-faceted nature of CCDC32-AP2 interactions.

      (4) The reported ability of CCDC32 to pull down AP2 beta is puzzling. Beta is not found in the CCDC32 interactome in two independent studies using 293 and HCT116 cells (BioPlex). In addition, clathrin is also absent in the interactome of CCDC32, which is difficult to reconcile with a proposed role in CCPs. Can the authors detect CCDC32 binding to clathrin?

      Based on the studies of Wan et al. (PMID: 39145939), it is likely that CCDC32 binds to µ2, rather than to the b2 in the b2:µ2 hemicomplex.  As to clathrin being absent from the CCDC32 pull down, this is as expected since the interactions of clathrin even with AP2 are weak in solution (as shown in Figure 5C, clathrin is not detected in our AP2 pull down) so as not to have spontaneous assembly of clathrin coats in the cytosol. Rather these interactions are strengthened by both the reduction in dimensionality that occurs on the membrane and by avidity of multivalent interactions.  For example, Kirchausen reported that 2 AP2 complexes are required to recruit one clathrin triskelion to the PM.

      (5) Figure 5B appears unusual-is this a chimera?

      Figure 5B shows an internal insertion of the eGFP tag into an unstructured region in the AP2 hinge. As we have previously shown (PMID: 32657003), this construct, unique among other commonly used AP2 tags, is fully functional.  We have rearranged the text in the Figure legend to make this clearer.

      Figure 5C likely reflects a mixture of immature and mature AP2 adaptor complexes.

      This is possible, but mature heterotetramers are by far the dominant species, otherwise the 4 subunits would not be immuno-precipitated at near stoichiometric levels with the a subunit.  Near stoichiometric IP with antibodies to the a-AD have been shown by many others in many cell types. 

      (6) CCDC32 is reduced by about half in siRNA knockdown. Why not use CRISPR to completely eliminate CCDC32 expression?

      Fortuitously, partial knockdown was essential to reveal this second function of CCDC32, as we have emphasized in our Discussion.  Wan et al, used CRISPR to knockout CCDC32 and reveal its essential role as a AAGAB co-chaperone.  In the complete absence of CCDC32 mature AP2 complexes fail to form.  However, under our conditions of partial CCDC32 depletion, the expression of AP2 heterotetramers is unaffected revealing a second function of CCDC32 at early stages of CME.  We expect that the co-chaperone function of CCDC32 is catalytic, while its role in CME is more structural; hence the different concentration dependencies, the former being less sensitive to KD than the latter.  This is one reason that many researchers are turning to CRISPRi for whole genome perturbation studies as many proteins play multiple roles that can be masked in KO studies.

      Reviewer #2 (Public review):

      Yang et al. describes CCDC32 as a new clathrin mediated endocytosis (CME) accessory protein. The authors show that CCDC32 binds directly to AP2 via a small alpha helical region and cells depleted for this protein show defective CME. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome (CFNDS) disrupt the interaction of this protein to the AP2 complex. The results presented suggest that CCDC32 may act as both a chaperone (as recently published) and a structural component of the AP2 complex.

      Strengths:

      The conclusions presented are generally well supported by experimental data and the authors carefully point out the differences between their results and the results by Wan et al. (PNAS 2024).

      Weaknesses:

      The experiments regarding the role of CCDC32 in CFNDS still require some clarifications to make them clearer to scientists working on this disease. The authors fail to describe that the CCDC32 isoform they use in their studies is different from the one used when CFNDS patient mutations were described. This may create some confusion. Also, the authors did not discuss that the frame-shift mutations in patients may be leading to nonsense mediated decay.

      As requested we have more clearly described our construct with regard to the human mutations and added the possibility of NMD in the context of the human mutations.

      Reviewer #3 (Public review):

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. While interaction between CCDC32 and the alpha appendage domain of AP2 is clearly described, a discussion of potential association with other AP2 domains would be beneficial to understand the impact of CCDC32 in endocytosis.

      The reviewer is correct. That CCDC32 also interacts with other subunits of AP2, is evident from the findings of Wan et al. and by the fact that the CCDC32(D78-99) mutant efficiently co-IPs with the b2:µ2 hemicomplex.  We expanded our discussion around this point. CCDC32 remains an, as yet, poorly characterized, but we now believe very interesting EAP worth further study.

      Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, mimicking CFNDS mutations, is also addressed in this study and shown to have endocytic defects.

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) The authors must be clear about the differences between the CCDC32 isoform they used in their manuscript and the one used to describe the patient mutations. This could be done, for example, in the methods. This is essential for the capacity of other labs to reproduce, follow up and correctly cite these results.

      We have added this information to the Methods. 

      (2) I believe the authors have misunderstood what nonsense mediated decay is. NMD occurs at the mRNA level and requires a full genome context to occur (introns and exons). The fact that a mutant protein is expressed normally from a construct by no means prove that it does not happen. I believe that adding the possibility of NMD occurring would enrich the discussion.

      Thank you, we have now done more homework and have added this possibility into our discussion of the mutant phenotype.  However, if a robust NMD mechanism resulted in a complete loss of CCDC42 protein, then the essential co-chaperone function reported by Wan et al, would result in complete loss of AP2.  A more detailed characterization of the cellular phenotype of these mutations, including assessing the expression levels of AP2 would be informative.

      Reviewer #3 (Recommendations for the authors):

      - It is not clear what the authors mean by '~30s lifetime cohort' (line 159). They refer to Figure 2H, which shows the % of CCPs. Can the authors explain exactly what kind of tracks they used for this analysis, for example which lifetime variations were accepted? Do they refer to the cohorts in Figure S4? In Figure S4, the most frequent tracks have lifetimes < 20 s (in contrast to what is stated in the main text). Why was this cohort not used?

      The ‘30s cohort’ refers to CCPs with lifetimes between 25-35s which encompasses the most abundant species in control cells and CCDC32 KD cells, as shown by the probability curves in Figure 2H. Given the large number of CCPs analyzed we still have large numbers for our analyses n=5998 and 4418, for control and siRNA treated conditions, respectively.  Figure 2H shows the frequency of CCPs in cells treated with CCDC32 siRNA are shifted to shorter lifetimes. We have clarified this in the text.

      - Figure S1: It is now clear, why the mutant versions of CCDC32 are not detected in this western blot. However, data that show the resistance of these proteins to siCCDC32 is still missing (S1 A is in the absence of siCCSC32 I assume, as the legend suggests). A western blot using an anti-GFP antibody, as the one used in Figure S1, after siRNA knock-known would provide clarity.

      That these constructs all contain the same mutation in the siRNA target sequence gives us confidence that they are indeed resistant to siRNA.

      - Note that the anti-CCDC32 antibody does not detect the eGFP-CCDC32(∆78-98) as well as full-length and is unable to detect eGFP-CCDC32(1-54)'. This phrase should belong to Figure S1 (B), not (A)

      Corrected.

      - The immunoprecipitations of CCDC32 and its mutants with AP2 and its subunits are partially confusing. In Figure 5, the authors show that CCDC32 interacts specifically with the alpha-AD, but not with the beta-AD of AP2. In Figure 6B and C, on the other hand, Co-IPs are shown also with the beta and the mu domain of AP2. This is understandable in the context of the full AP2. However, when interaction with the alpha domain (and sigma) is abolished through mutation of helix 78-98, why would beta and mu still interact, when the beta-AD cannot interact with CCDC32 on its own. Are there interaction sites expected outside the ADs in the beta or mu domains?

      See responses to reviewer 1 above.  This result likely reflects the co-chaperone activity of CCDC32 as reported by Wan et al it likely due to their reported interactions of CCDC32 with the µ2 subnit of b2:µ2 hemicomplexes.

      - Figure S6 D, E and F: How much confidence do the authors have on the AlphaFold predictions? Have the same binding poses been obtained repeatedly by independent predictions?

      We provide, with a color scale, the confidence score for each interaction, which is very high (>90%). Of course, this is still a prediction that will need to be verified by further structural studies as we have stated.

    1. Reviewer #1 (Public review):

      Summary:

      The mechanism by which WNT signals are received and transduced into the cell has been the topic of extensive research. Cell surface levels of the WNT receptors of the FZD family are subject to tight control and it's well established that the transmembrane ubiquitin ligases ZNRF3 and RNF43 target FZDs for degradation and that proteins of the R-spondin family block this effect. This manuscript explores the role that WNT proteins play in receptor internalization, recycling and degradation, and the authors provide evidence that WNTs promote interactions of FZD with the ubiquitin ligases. Using cells mutant in all 3 DVL genes, the authors demonstrate that this effect of WNT on FZD is DVL-independent.

      Strengths:

      Overall, the data are of good quality and support the authors' hypothesis. Strengths of this study is the use of CRISPR-mutated cell lines to establish genetic requirements for the various components. The finding that FZD internalization and degradation is WNT dependent and does not involve DVL is novel.

      Weaknesses:

      A weakness of the work includes a heavy reliance on overexpression of FZD proteins. To detect endogenous FZDs, the authors have inserted a V5 tag into the endogenous gene, which may affect their activity(ies).

    2. Reviewer #2 (Public review):

      In this manuscript Luo et al uncover that the ZNRF3/RNF43 E3 ubiquitin ligases participate in the selective endocytosis and degradation of FZD5/8 receptors in response to Wnt stimulation. In my opinion there are three significant findings of this study: 1) Wnt proteins are required for ZNRF3/RNF43 mediated endocytosis and degradation of FZD receptors and this constitutes an important negative regulatory loop. 2) Wnt can induce FZD endocytosis in the absence of ZNRF3/RNF43 but this does not influence total or cell surface levels. 3) The ZNRF3/RNF43 substrate selectivity for FZD5/8 over the other 8 Frizzleds. Of course, many questions remain, and new ones emerge as it is often the case, but these findings challenge our dogmatic view on how the ZNRF3/RNF43 regulate Wnt signaling and emphasize their role in Wnt-dependent Frizzled endocytosis/degradation and beta-catenin signaling.

      This is an elegant study employing several CRISPR-edited cell lines to tag endogenous Frizzled receptors and to knockout ZNRF3/RNF43 and all three Dishevelled proteins. One major strength of the study is therefore the careful assessment of the roles of RNF43 and ZNFR3 in endogenous expression contexts. This is especially relevant since overexpression of membrane E3 ligases have been shown to ectopically degrade membrane proteins and could have blurred previous interpretations. A second strength is clarifying the role of Dishevelled proteins in FZD endocytosis. Indeed, although previous studies suggested that the Wnt-promoted interaction between FZD and RNF43/ZNFR3 was mediated through Dvl, the authors clearly show that this is not the case (using Dvl knockout cells and functional assays). Dvl proteins, on the other han,d are still required for ligand-independent FZD-endocytosis.

      The only weakness pertains to the difference in signaling outcome, comparing elevated signaling seen when FZD levels are upregulated following ZNFR3/RNF43 KO vs ectopic overexpression. Indeed, the authors suggest that in the absence of RNF43/ZNFR3 the receptors could be recycled back to the PM and thereby contribute to increased signaling seen in the mutant cells. This has not been directly demonstrated.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors):

      Because many conclusions are drawn from overexpression studies and from a single cell line (HEK293), it is unclear how general these effects are. In particular, one of the main claims put forth in this manuscript is that of specificity, namely, that FZD5/8, and none of the other FZDs, are uniquely involved in this internalization and degradation. While there are examples of similar specificities, many of these examples can be attributed to a particular cellular context. Without demonstrating that this FZD5/8 specificity is observed in multiple cell lines and contexts, this point remains unconvincing and questionable. One way to address this point of criticism is to omit the word "specifically" in the title and soften the language concerning this idea throughout the manuscript.

      We appreciate your valuable comments and suggestions. We have removed the word “specifically” from the title and softened the language concerning this idea throughout the manuscript. Moreover, we performed new experiments to show that Wnt3a/5a induces FZD5/8 endocytosis and degradation and that IWP-2 treatment increases the cell surface levels of FZD5/8 in cell lines other than 293A (Figure 1-Figure supplement 1 and Figure 2-Figure supplement 1). These results indicate that Wnt-induced FZD5/8 endocytosis and degradation are not cell specific.

      The starting point for these studies is a survey of all 10 FZDs, V5-tagged and overexpressed in HEK293 cells. Here, the authors observed a decline in cell surface levels of only FZD5 and 8 in response to Wnt3a and Wnt5a. As illustrated in the immunoblot (Fig 1B), several FZDs were poorly expressed, including FZD1, 3, 6 and 9, which calls into question that only FZD5 and 8 were affected. Furthermore, total levels of FZD8 don't diminish appreciably, as claimed by the authors, and only FZD5 shows a subtle decline upon WNT treatment. All of these experiments are performed with overexpressed V5-tagged FZD proteins or with endogenously V5-tagged (KI) proteins, and it is possible that overexpression or tagging lead to potentially artifactual observations. Examining the effects of WNTs on FZD protein localization and levels need to be done with endogenously expressed, non-tagged FZDs. In this context, it is somewhat puzzling that the authors don't show such an experiment using the pan- and FZD5/8-specific antibodies, which they use in multiple experiments throughout the manuscript. With these available tools it should be possible to examine FZD levels at the cell surface in response to Wnt3a and Wnt5a, ideally in multiple cell lines.

      We appreciate your valuable comments and suggestions. Figure 1B shows the results of the follow-up study shown in Figure 1A. As shown in Figure 1A, we used flow cytometry analysis to detect the cell surface levels of stably expressed FZDs and found that Wnt3a/5a specifically reduced the levels of FZD5/8 on the cell surface, suggesting that Wnt3a/5a induces FZD5/8 endocytosis. As shown in Figure 1B and C, we performed immunoblotting to examine whether Wnt3a/5a-induced FZD5/8 internalization resulted in FZD5/8 degradation. Notably, most FZDs exhibit two bands on immunoblots, as also suggested by other published studies, and the upper bands represent the mature form that is fully glycosylated and presented to the cell surface (see also new Figure 2L), whereas the lower bands represent the immature form. Our results clearly indicated that Wnt3a/5a treatment reduced the levels of the mature forms of both FZD5 and FZD8, although the immunoblotting signals of the mature form of FZD8 (upper bands) were relatively weak. The immunoblotting signals of the other FZDs varied, and some of them (including FZD1, -3, -6 and -9) were relatively weak; however, according to the results in Figure 1A, all of the FZDs were expressed and present on the cell surface.

      Commercially available FZD5/8 antibodies, including those used in published studies, cannot detect endogenous FZD5/8 or can only recognize immature FZD5 in our hands, which is why we have to use the CRISPR-CAS9-based KI technique to introduce a V5 tag to FZD5 and FZD7. Notably, in the overexpression experiments, the V5 tag is on the amino terminus, and in the KI experiments, the V5 tag is on the carboxyl terminus of FZDs, which may minimize the potential artificial effects of the V5 tag on the immunoblotting assays.

      The monoclonal antibodies used in this study, such as anti-pan-FZD, anti-FZD5/8, and anti-FZD4 antibodies, are neutralizing antibodies that can compete with Wnt ligands to bind to the FZD CRD. These antibodies have been successfully used to detect the surface levels of FZDs via flow cytometry assays. However, as the binding affinity of the Wnt-FZD CRD is comparable to the binding affinity of the antibody-FZD, we were cautious in using these antibodies to detect the cell surface levels of FZDs when the cells were treated with Wnt3a/5a CM, which contains relatively high concentrations of Wnt3a/5a. As shown in Author response image 1, Wnt3a or Wnt5a treatment dramatically reduced the endogenous cell surface level of FZD5/8, as detected by flow cytometry using the anti-FZD5/8 antibody. However, in another experiment, HEK293A cells were first incubated with cold Wnt3a or Wnt5a CM at 4°C to minimize endocytosis and then analyzed via flow cytometry using the anti-FZD5/8 antibody. The results showed that Wnt3a/5a incubation reduced the floe cytometry signals, suggesting that Wnt3a/5a binding to FZD5/8 might interfere with antibody-FZD5/8 binding, although we cannot exclude the possibility that Wnt3a/5a may induce FZD5/8 endocytosis at 4°C (Author response image 1).

      Author response image 1.

      (A) HEK293A cells were treated with control, Wnt3a or Wnt5a CM for 2 hours at 37°C in a humidified incubator and were analyzed via flow cytometry using the anti-FZD5/8 antibody.

      (B) HEK293A cells were incubated with control, Wnt3a or Wnt5a CM for 1 h at 4°C and analyzed by flow cytometry using the anti-FZD5/8 antibody.

       

      Several experiments rely on gene-edited clonal cell lines, including knockouts of FZD5/8, RNF43/ZNRF3, and DVL. Gene knockouts were confirmed by genomic DNA sequencing and, for DVL and FZD5/8, by loss of protein expression. While these KO lines are powerful tools to study gene function, there is a concern for clonal variability. Each cell line may have acquired additional changes as a result of gene editing. In addition, there may be compensatory changes in gene expression as a consequence of the loss of certain genes. For example, expression of other FZDs may increase in FZD5/8 DKO cells. To address this critique, the authors should show that re-expression of the knocked-out genes rescues the observed effect. This is done in some instances (Fig 5E, G, H) but not in other instances, such as with the DVL TKO (Fig. 3). Since the authors assert that DVL is important for FZD internalization in the absence of WNT, but not for FZD internalization in the presence of WNT, this particular rescue experiment is important. This is a potentially important finding and it should be confirmed by re-expression of DVL in the TKO line. As an alternative, conditional knockdown using Tet-inducible shRNA expression could address concerns for clonal variability.

      We appreciate your valuable comments and suggestions. We re-expressed DVL2 in DVLTKO cells stably expressing V5-linker-FZD5 or V5-linker-FZD7. As shown in Figure 3G-K, re-expression of DVL2 rescued the decreased Wnt-independent endocytosis of FZD5 and FZD7 caused by DVL1/2/3 knockout.

      Given the significant differences in signaling activity by Wnt3a and Wnt5a, it is somewhat surprising that all experiments shown in this manuscript do not identify distinguishing features between Wnt3a and Wnt5a. In addition, it is unclear why the authors switch between Wnt3a and Wnt5a. For example, Figures 1C, 3G-J, 4C-D only use Wnt5a. In contrast, Figures 6E and H use Wnt3a, most likely because b-catenin stabilization is examined, an effect generally not observed with Wnt5a. The choice of which Wnt is examined/used appears to be somewhat arbitrary and the authors never provide any explanations for these choices. In the end, this type of inconsistency becomes puzzling when the authors present, quite convincingly, in Figure 7, that both Wnt3a and 5a promote an interaction between FZD5/8 and RNF43 through proximity biotin labeling.

      Although Wnt3a and Wnt5a are significantly different in triggering intracellular signaling pathways, both bind FZD5/8 and induce FZD5/8 endocytosis and degradation similarly. When FZD5 is stably overexpressed, Wnt5a has slightly stronger effects on inducing FZD5 endocytosis and degradation, possibly because the Wnt5a concentration may be higher than the Wnt3a concentration in our CM, which is why we used Wnt5a CM in some experiments when V5-FZD5 was overexpressed. In the revised manuscript, we used both Wnt3a and Wnt5a CM in the experiments as you suggested, as shown in Figure 1C, 3G-K and Figure 4-Figure supplement 1.

      Minor Points:

      Figure 3G and I: it is curious that individual cells are shown in the "0 h" samples, while the "Con 1 h" and "Wnt5a 1 h" show multiple cells with several making direct contact with each other. This is notable because the V5 staining at sites of cell-cell contact are quite distinct and variable between control and Wnt5a-treated and WT versus DVL TKO cells. Also, sub-cellular localization of FZD5 (V5 tag) puncta is quite distinct between Con and Wnt5a: puncta in Wnt5a-treated cells appear to be more plasma membrane proximal than in Con cells. These points may be easy to address by showing images of cells that are more similar with respect to cell number and density for each condition.

      Thank you for your suggestions. We repeated these experiments and added Wnt3a treatment and adjusted the cell density. Images including an individual cell were selected for presentation.

      Figure 5E: the following statement is confusing/misleading: "Furthermore, reintroducing ZNRF3 or RNF43 into ZRDKO cells efficiently restored the increase in cytosolic β-catenin levels, whereas the expression of RNF130 or RNF150, two structurally similar transmembrane E3 ubiquitin ligases, did not (Fig. 5E)." First, reintroduction of ZNRF3 or RNF43 restores cytosolic b-catenin levels; it does not restore the increase in b-catenin. Second, the claim that RNF130 fails to have this effect is not substantiated since it is barely expressed.

      Thank you for your suggestions and comments. We reorganized the language to make the statement clearer. Notably, the expression level of RNF130 was relatively low compared with that of other E3 ligases, but RNF130 was expressed (Figure 5E darker exposure) and could reduce the cell surface levels of FZDs, as shown in Figure 5G.

      Reviewer #2 (Recommendations for the authors):

      (1) Given their results the authors conclude that upregulation of Frizzled on the plasma membrane is not sufficient to explain the stabilization of beta-catenin seen in the ZNRF3/RNF43 mutant cells. This interpretation is sound, and they suggest in the discussion that ZNRF3/RNF43-mediated ubiquitination could serve as a sorting signal to sort endocytosed FZD to lysosomes for degradation and that absence or inhibition of this process would promote FZD recycling. This should be relatively easy to test using surface biotinylation experiments and would considerably strengthen the manuscript.

      Thank you for your valuable suggestions and comments. We performed cell surface biotinylation experiments in HEK293A FZD5KI cells, as shown in Figure 2L. The results indicated that Wnt3a or Wnt5a treatment induced the degradation of FZD5 on the cell surface, which was antagonized by cotreatment with RSPO1. We did not perform a more detailed endocytosis/recycling biotinylation experiment that requires complex reversible biotinylation and multiple washing steps because HEK293A cells are fragile in culture and not easy to handle. Furthermore, the results shown in Figure 4 indicate that knockout of ZNRF3/RNF43 or RSPO1 significantly blocked the degradation of internalized FZD5 and reduced the colocalization of internalized FZD5 with lysosomal markers, suggesting that Wnt3a/5a induced lysosomal degradation of FZD5 in the presence of ZNRF3/RNF43 and that the internalized FZD5 was most likely recycled back to the cell surface when ZNRF3/RNF43 was knocked out or inhibited by RSPO1.

      (2) The authors show that the FZD5 CRD domain is required for endocytosis since a mutant FZD5 protein in which the CRD is removed does not undergo endocytosis. This is perhaps not surprising since this is the site of Wnt binding, but the authors show that a chimeric FZD5CRD-FZD4 receptor can confer Wnt-dependent endocytosis to an otherwise endocytosis incompetent FZD4 protein. Since the linker region between the CRD and the first TM differs between FZD5 and FZD4, it would be interesting to understand whether the CRD specifically or the overall arrangement (such as the spacing) is the most important determinant.

      Our results in Figure 1D-H clearly show that the CRD of FZD5 specifically is both necessary and sufficient for Wnt3a/5a-induced FZD5 endocytosis, as replacing the CRD alone in FZD5 with the CRD from either FZD4 or FZD7 completely abolished Wnt-induced endocytosis, whereas replacing the CRD alone in FZD4 or FZD7 with the FZD5 CRD alone could confer Wnt-induced endocytosis.

      (3) I find it surprising that only FZD5 and FZD8 appear to undergo endocytosis or be stabilized at the cell surface upon ZNRF3/RNF43 knockout. Is this consistent with previous literature? Is that a cell-specific feature? These findings should be tested in a different cell line, with possibly different relative levels of ZNRF3 and RNF43 expression.

      Thank you for your comments and suggestions. Our finding that ZNRF3/RNF43 specifically regulates FZD5/8 degradation is consistent with recent published studies in which FZD5 is required for the survival of RNF43-mutant PDAC or colorectal cancer cells (Nature Medicine, 2017, PMID: 27869803) and FZD5 is required for the maintenance of intestinal stem cells (Developmental Cell, 2024, PMID: 39579768 and 39579769), and in both cases, FZDs other than FZD5/8 are also expressed but not sufficient to compensate for the function of FZD5. The mechanism by which Wnt3a/5a specifically induces FZD5/8 endocytosis and degradation is currently unknown and needs to be explored in the future. We speculate that Wnt binding to FZD5/8 may recruit another protein on the cell surface to specifically facilitate FZD5/8 endocytosis. On the other hand, we cannot exclude the possibility that Wnts other than Wnt3a/5a may induce the endocytosis and degradation of FZDs other than FZD5/8 since there are 19 Wnts and 10 FZDs in humans. Notably, several previous studies have suggested that ZNRF3/RNF43 may regulate the endocytosis and degradation of all FZDs without selectivity (such as Nature, 2012, PMID: 22575959; Nature, 2012, PMID: 22895187; Mol Cell, 2015, PMID: 25891077). However, their conclusions were drawn mostly on the basis of overexpression studies. According to the results shown in Figure 5E-H, overexpressing a membrane-tethered E3 ligase (such as ZNRF3, RNF43, RNF130, or RNF150) may nonspecifically degrade FZD proteins on the cell surface.

      Furthermore, in the revised manuscript, we showed that Wnt3a/5a induced FZD5/8 endocytosis and degradation in multiple cell lines, including Huh7, U2OS, MCF7, and 769P cells (Figure 1-Figure supplement 1 and Figure 2-Figure supplement 1), suggesting that these phenomena are not specific to 293A cells.

      (4) If FZD7 is not a substrate of ZNRF3/RNF43 and therefore is not ubiquitinated and degraded, how do the authors reconcile that its overexpression does not lead to elevated cytosolic beta-catenin levels in Figure 5B?

      We are currently not sure of the mechanism underlying this result. Considering that most FZDs are expressed in 293A cells, we do not know how much of the mature form of overexpressed FZD7 was presented to the plasma membrane.

      (5) For Figure 5B, it would be interesting if the authors could evaluate whether overexpression of FZD5 in the ZNRF3/RNF43 double knockout lines would synergize and lead to further increase in cytosolic beta-catenin levels. As control if the substrate selectivity is clear FZD7 overexpression in that line should not do anything.

      Thank you for your suggestion. We performed these experiments as suggested, and the results indicated that overexpressing FZD5 further increased cytosolic beta-catenin levels in ZRDKO cells, whereas FZD7 had no effect (Figure 6D).

      (6) In Figure 6G, the authors need to show cytosolic levels of beta-catenin in the absence of Wnt in all cases.

      We did not add Wnt CM in this experiment. RSPO1 activity, which relies on endogenous Wnt, has been well documented in previous studies.

      (7) Since the authors show that DVL is not involved in the Wnt and ZRNF3-dependent endocytosis they should repeat the proximity biotinylation experiment in figure 7 in the DVL triple KO cells. This is an important experiment since previous studies showed that DVL was required for the ZRNF3/RNF43-mediated ubiqtuonation of FZD.

      Thank you for your valuable suggestions. As you suggested, we performed a proximity biotinylation experiment in DVL TKO cells, and the results showed that Wnt3a/5a could still induce the interaction of FZD5 and RNF43 in DVLTKO cells (Figure 7-figure supplement 1), suggesting that the Wnt-induced FZD5‒RNF43 interaction is DVL independent.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Gerken et al examined how neurons in the human medial temporal lobe respond to and potentially code dynamic movie content. They had 29 patients watch a long-form movie while neurons within their MTL were monitored using depth electrodes. They found that neurons throughout the region were responsive to the content of the movie. In particular, neurons showed significant responses to people, places, and to a lesser extent, movie cuts. Modeling with a neural network suggests that neural activity within the recorded regions was better at predicting the content of the movies as a population, as opposed to individual neural representations. Surprisingly, a subpopulation of unresponsive neurons performed better than the responsive neurons at decoding the movie content, further suggesting that while classically nonresponsive, these neurons nonetheless provided critical information about the content of the visual world. The authors conclude from these results that low-level visual features, such as scene cuts, may be coded at the neuronal level, but that semantic features rely on distributed population-level codes.

      Strengths:

      Overall, the manuscript presents an interesting and reasonable argument for their findings and conclusions. Additionally, the large number of patients and neurons that were recorded and analyzed makes this data set unique and potentially very powerful. On the whole, the manuscript was very well written, and as it is, presents an interesting and useful set of data about the intricacies of how dynamic naturalistic semantic information may be processed within the medial temporal lobe.

      We thank the reviewer for their comments on our manuscript and for describing the strengths of our presented work

      Weaknesses:

      There are a number of concerns I have based on some of the experimental and statistical methods employed that I feel would help to improve our understanding of the current data.

      In particular, the authors do not address the issue of superposed visual features very well throughout the manuscript. Previous research using naturalistic movies has shown that low-level visual features, particularly motion, are capable of driving much of the visual system (e.g, Bartels et al 2005; Bartels et al 2007; Huth et al 2012; Çukur et al 2013; Russ et al 2015; Nentwich et al 2023). In some of these papers, low-level features were regressed out to look at the influence of semantics, in others, the influence of low-level features was explicitly modeled. The current manuscript, for the most part, appears to ignore these features with the exception of scene cuts. Based on the previous evidence that low-level features continue to drive later cortical regions, it seems like including these as regressors of no interest or, more ideally, as additional variables, would help to determine how well MTL codes for semantic features over top of these lower-order variables.

      We thank the reviewer for this insightful comment and for the relevant literature regarding visual motion in not only the primary visual system but in cortical areas as well. While we agree that the inclusion of visual motion as a regressor of no interest or as an additional variable would be overall informative in determining if single neurons in the MTL are driven by this level of feature, we would argue that our analyses already provide some insight into its role and that only the parahippocampal cortical neurons would robustly track this feature.

      As noted by the reviewer, our model includes two features derived from visual motion: Camera Cuts (directly derived from frame-wise changes in pixel values)  and Scene Cuts (a subset of Camera Cuts restricted to changes in scene). As shown in Fig. 5a, decoding performance for these features was strongest in the parahippocampal cortex (~20%), compared to other MTL areas (~10%). While the entorhinal cortex also showed some performance for Scene Cuts (15%), we interpret this as being driven by the changes in location that define a scene, rather than by motion itself.

      These findings suggest that while motion features are tracked in the MTL, the effect may be most robust in the parahippocampal cortex. We believe that quantifying more complex 3D motion in a naturalistic stimulus like a full-length movie is a significant challenge that would likely require a dedicated study. We agree this is an interesting future research direction and will update the manuscript to highlight this for the reader.

      A few more minor points that would help to clarify the current results involve the selection of data for particular analyses. For some analyses, the authors chose to appropriately downsample their data sets to compare across variables. However, there are a few places where similar downsampling would be informative, but was not completed. In particular, the analyses for patients and regions may have a more informative comparison if the full population were downsampled to match the size of the population for each patient or region of interest. This could be done with the Monte Carlo sampling that is used in other analyses, thus providing a control for population size while still sampling the full population.

      We thank the reviewer for raising this important methodological point. The decision not to downsample the patient- and region-specific analyses was deliberate, and we appreciate the opportunity to clarify our rationale.

      Generally, we would like to emphasize that due to technical and ethical limitations of human single-neuron recordings, it is currently not possible to record large populations of neurons simultaneously in individual patients. The limited and variable number of recorded neurons per subject (Fig. S1) generally requires pooling neurons into a pseudo-populations for decoding, which is a well‐established standard in human single‐neuron studies (see e.g., (Jamali et al., 2021; Kamiński et al., 2017; Minxha et al., 2020; Rutishauser et al., 2015; Zheng et al., 2022)).

      For the patient-specific analysis, our primary goal was to show that no single patient's data could match the performance of the complete pseudo-population. Crucially, we found no direct relationship between the number of recorded neurons and decoding performance; patients with the most neurons (patients 4, 13) were not top performers, and those with the fewest (patients 11, 14) were not the worst (see Fig. 4). This indicates that neuron count was not the primary limiting factor and that downsampling would be unlikely to provide additional insight.

      Similarly, for the region-specific analysis, regions with larger neural populations did not systematically outperform those with fewer neurons (Fig. 5). Given the inherent sparseness of single-neuron data, we concluded that retaining the full dataset was more informative than excluding neurons simply to equalize population sizes.

      We agree that this methodological choice should be transparent and explicitly justified in the text. We will add an explanation to the revised manuscript to justify why this approach was taken and how it differs from the analysis in Fig. 6.

      Reviewer #2 (Public review):

      Summary:

      This study introduces an exciting dataset of single-unit responses in humans during a naturalistic and dynamic movie stimulus, with recordings from multiple regions within the medial temporal lobe. The authors use both a traditional firing-rate analysis as well as a sophisticated decoding analysis to connect these neural responses to the visual content of the movie, such as which character is currently on screen.

      Strengths:

      The results reveal some surprising similarities and differences between these two kinds of analyses. For visual transitions (such as camera angle cuts), the neurons identified in the traditional response analysis (looking for changes in firing rate of an individual neuron at a transition) were the most useful for doing population-level decoding of these cuts. Interestingly, this wasn't true for character decoding; excluding these "responsive" neurons largely did not impact population-level decoding, suggesting that the population representation is distributed and not well-captured by individual-neuron analyses.

      The methods and results are well-described both in the text and in the figures. This work could be an excellent starting point for further research on this topic to understand the complex representational dynamics of single neurons during naturalistic perception.

      We thank the reviewer for their feedback and for summarizing the results of our work.

      (1) I am unsure what the central scientific questions of this work are, and how the findings should impact our understanding of neural representations. Among the questions listed in the introduction is "Which brain regions are informative for specific stimulus categories?". This is a broad research area that has been addressed in many neuroimaging studies for decades, and it's not clear that the results tell us new information about region selectivity. "Is the relevant information distributed across the neuronal population?" is also a question with a long history of work in neuroscience about localist vs distributed representations, so I did not understand what specific claim was being made and tested here. Responses in individual neurons were found for all features across many regions (e.g., Table S1), but decodable information was also spread across the population.

      We thank the reviewer for this important point, which gets to the core of our study's contribution. While concepts like regional specificity are well-established from studies on the blood-flow level, their investigation at the single-neuron level in humans during naturalistic, dynamic stimulation remains a critical open question. The type of coding (sparse vs. distributed) on the other hand cannot be investigated with blood-flow studies as the technology lacks the spatial and temporal resolution.

      Our study addresses this gap directly. The exceptional temporal resolution of single-neuron recordings allows us to move beyond traditional paradigms and examine cellular-level dynamics as they unfold in neuronal response on a frame-by-frame basis to a more naturalistic and ecologically valid stimulus. It cannot be assumed that findings from other modalities or simplified stimuli will generalize to this context.

      To meet this challenge, we employed a dual analytical strategy: combining a classic single-unit approach with a machine learning-based population analysis. This allowed us to create a bridge between prior work and our more naturalistic data. A key result is that our findings are often consistent with the existing literature, which validates the generalizability of those principles. However, the differences we observe between these two analytical approaches are equally informative, providing new insights into how the brain processes continuous, real-world information.

      We will revise the introduction and discussion to more explicitly frame our work in this context, emphasizing the specific scientific question driving this study, while also highlighting the strengths of our experimental design and recording methods.

      (2) The character and indoor/outdoor labels seem fundamentally different from the scene/camera cut labels, and I was confused by the way that the cuts were put into the decoding framework. The decoding analyses took a 1600ms window around a frame of the video (despite labeling these as frame "onsets" like the feature onsets in the responsive-neuron analysis, I believe this is for any frame regardless of whether it is the onset of a feature), with the goal of predicting a binary label for that frame. Although this makes sense for the character and indoor/outdoor labels, which are a property of a specific frame, it is confusing for the cut labels since these are inherently about a change across frames. The way the authors handle this is by labeling frames as cuts if they are in the 520ms following a cut (there is no justification given for this specific value). Since the input to a decoder is 1600ms, this seems like a challenging decoding setup; the model must respond that an input is a "cut" if there is a cut-specific pattern present approximately in the middle of the window, but not if the pattern appears near the sides of the window. A more straightforward approach would be, for example, to try to discriminate between windows just after a cut versus windows during other parts of the video. It is also unclear how neurons "responsive" to cuts were defined, since the authors state that this was determined by looking for times when a feature was absent for 1000ms to continuously present for 1000ms, which would never happen for cuts (unless this definition was different for cuts?).

      We thank the reviewer for the valuable comment regarding specifically the cut labels. The choice to label frames that lie in a time window of 520ms following a cut as positive was selected based on prior research and is intended to include the response onsets across all regions within the MTL (Mormann et al., 2008). We agree that this explanation is currently missing from the manuscript, and we will add a brief clarification in the revised version.

      As correctly noted, the decoding analysis does not rely on feature onset but instead continuously decodes features throughout the entire movie. Thus, all frames are included, regardless of whether they correspond to a feature onset.

      Our treatment of cut labels as sustained events is a deliberate methodological choice. Neural responses to events like cuts often unfold over time, and by extending the label, we provide our LSTM network with the necessary temporal window to learn this evolving signature. This approach not only leverages the sequential processing strengths of the LSTM (Hochreiter et al., 1997) but also ensures a consistent analytical framework for both event-based (cuts) and state-based (character or location) features.

      (3) The architecture of the decoding model is interesting but needs more explanation. The data is preprocessed with "a linear layer of same size as the input" (is this a layer added to the LSTM that is also trained for classification, or a separate step?), and the number of linear layers after the LSTM is "adapted" for each label type (how many were used for each label?). The LSTM also gets to see data from 800 ms before and after the labeled frame, but usually LSTMs have internal parameters that are the same for all timesteps; can the model know when the "critical" central frame is being input versus the context, i.e., are the inputs temporally tagged in some way? This may not be a big issue for the character or location labels, which appear to be contiguous over long durations and therefore the same label would usually be present for all 1600ms, but this seems like a major issue for the cut labels since the window will include a mix of frames with opposite labels.

      We thank the reviewer for their insightful comments regarding the decoding architecture. The model consists of an LSTM followed by 1–3 linear readout layers, where the exact number of layers is treated as a hyperparameter and selected based on validation performance for each label type. The initial linear layer applied to the input is part of the trainable model and serves as a projection layer to transform the binned neural activity into a suitable feature space before feeding it into the LSTM. The model is trained in an end-to-end fashion on the classification task.

      Regarding temporal context, the model receives a 1600 ms window (800 ms before and after the labeled frame), and as correctly pointed out by the reviewer, LSTM parameters are shared across time steps. We do not explicitly tag the temporal position of the central frame within the sequence. While this may have limited impact for labels that persist over time (e.g., characters or locations), we agree this could pose a challenge for cut labels, which are more temporally localized.

      This is an important point, and we will clarify this limitation in the revised manuscript and consider incorporating positional encoding in future work to better guide the model’s focus within the temporal window. Additionally, we will add a data table, specifying the ranges of hyperparameters in our decoding networks. Hyperparameters were optimized for each feature and split individually, but we agree that some more details on how these parameters were chosen are important and we will provide a data table in our revised manuscript giving more insights into the ranges of hyperparameters.

      We thank the reviewer for this important point. We will clarify this limitation in the revised manuscript and note that positional encoding is a valuable direction to better guide the model’s focus within the temporal window. To improve methodological transparency, we will also add a supplementary table detailing the hyperparameter ranges used for our optimization process.

      (4) Because this is a naturalistic stimulus, some labels are very imbalanced ("Persons" appears in almost every frame), and the labels are correlated. The authors attempt to address the imbalance issue by oversampling the minority class during training, though it's not clear this is the right approach since the test data does not appear to be oversampled; for example, training the Persons decoder to label 50% of training frames as having people seems like it could lead to poor performance on a test set with nearly 100% Persons frames, versus a model trained to be biased toward the most common class. [...]

      We thank the reviewer for this critical and thoughtful comment. We agree that the imbalanced and correlated nature of labels in naturalistic stimuli is a key challenge.

      To address this, we follow a standard machine learning practice: oversampling is applied exclusively to the training data. This technique helps the model learn from underrepresented classes by creating more balanced training batches, thus preventing it from simply defaulting to the majority class. Crucially, the test set remains unaltered to ensure our evaluation reflects the model's true generalization performance on the natural data distribution.

      For the “Persons” feature, which appears in nearly all frames, defining a meaningful negative class is particularly challenging. The decoder must learn to identify subtle variations within a highly skewed distribution. Oversampling during training helps provide a more balanced learning signal, while keeping the test distribution intact ensures proper evaluation of generalization.

      The reviewer’s comment—that we are “training the Persons decoder to label 50% of training frames as having people”—may suggest that labels were modified. We want to emphasize this is not the case. Our oversampling strategy does not alter the labels; it simply increases the exposure of the rare, underrepresented class during training to ensure the model can learn its pattern despite its low frequency.

      We will revise the Methods section to describe this standard procedure more explicitly, clarifying that oversampling is a training-only strategy to mitigate class imbalance.

      (5) Are "responsive" neurons defined as only those showing firing increases at a feature onset, or would decreased activity also count as responsive? If only positive changes are labeled responsive, this would help explain how non-responsive neurons could be useful in a decoding analysis.

      We define responsive neurons as those showing increased firing rates at feature onset; we did not test for decreases in activity. We thank the reviewer for this valuable comment and will address this point in the revised manuscript by assessing responseness without a restriction on the direction of the firing rate.

      (6) Line 516 states that the scene cuts here are analogous to the hard boundaries in Zheng et al. (2022), but the hard boundaries are transitions between completely unrelated movies rather than scenes within the same movie. Previous work has found that within-movie and across-movie transitions may rely on different mechanisms, e.g., see Lee & Chen, 2022 (10.7554/eLife.73693).

      We thank the reviewer for pointing out this distinction and for including the relevant work from Lee & Chan (2022) which further contextualizes this distinction. Indeed, the hard boundaries defined in the cited paper differ slightly from ours. The study distinguishes between (1) hard boundaries—transitions between unrelated movies—and (2) soft boundaries—transitions between related events within the same movie. While our camera cuts resemble their soft boundaries, our scene cuts do not fully align with either category. We defined scene cuts to be more similar to the study’s hard boundaries, but we recognize this correspondence is not exact. We will clarify the distinctions between our scene cuts and the hard boundaries described in Zheng et al. (2022) in the revised manuscript, and will update our text to include the finding from Lee & Chan (2022).

      Reviewer #3 (Public review):

      This is an excellent, very interesting paper. There is a groundbreaking analysis of the data, going from typical picture presentation paradigms to more realistic conditions. I would like to ask the authors to consider a few points in the comments below.

      (1) From Figure 2, I understand that there are 7 neurons responding to the character Summer, but then in line 157, we learn that there are 46. Are the other 39 from other areas (not parahippocampal)? If this is the case, it would be important to see examples of these responses, as one of the main claims is that it is possible to decode as good or better with non-responsive compared to single responsive neurons, which is, in principle, surprising.

      We thank the reviewer for pointing out this ambiguity in the text. Yes, the other 39 units are responsive neurons from other areas. We will clarify to which neuronal sets the number of responsive neurons corresponds. We will also include response plots depicting the unit activity for the mentioned units.

      (2) Also in Figure 2, there seem to be relatively very few neurons responding to Summer (1.88%) and to outdoor scenes (1.07%). Is this significant? Isn't it also a bit surprising, particularly for outdoor scenes, considering a previous paper of Mormann showing many outdoor scene responses in this area? It would be nice if the authors could comment on this.

      We thank the reviewer for this insightful point. While a low response to the general 'outdoor scene' label seems surprising at first, our findings align with the established role of the parahippocampal cortex (PHC) in processing scenes and spatial layouts. In previous work using static images, each image introduces a new spatial context. In our movie stimulus, new spatial contexts specifically emerge at scene cuts. Accordingly, our data show a strong PHC response precisely at these moments. We will revise the discussion to emphasize this interpretation, highlighting the consistency with prior work.

      Regarding the first comment, we did not originally test if the proportion of the units is significant using e.g. a binomial test. We will include the results of a binomial test for each region and feature pair in the revised manuscript.

      (3) I was also surprised to see that there are many fewer responses to scene cuts (6.7%) compared to camera cuts (51%) because every scene cut involves a camera cut. Could this have been a result of the much larger number of camera cuts? (A way to test this would be to subsample the camera cuts.)

      The decrease in responsive units for scene cuts relative to camera cuts could indeed be due to the overall decrease in “trials” from one label to the other. To test this, we will follow the reviewer’s suggestion and perform tests using sets of randomly subsampled camera cuts and will include the results in the revised manuscript.

      (4) Line 201. The analysis of decoding on a per-patient basis is important, but it should be done on a per-session basis - i.e., considering only simultaneously recorded neurons, without any pooling. This is because pooling can overestimate decoding performances (see e.g. Quian Quiroga and Panzeri NRN 2009). If there was only one session per patient, then this should be called 'per-session' rather than 'per-patient' to make it clear that there was no pooling.

      The per-patient decoding was indeed also a per-session decoding, as each patient contributed only a single session to the dataset. We will make note of this explicitly in the text to resolve the ambiguity.

      (6) Lines 406-407. The claim that stimulus-selective responses to characters did not account for the decoding of the same character is very surprising. If I understood it correctly, the response criterion the authors used gives 'responsiveness' but not 'selectivity'. So, were people's responses selective (e.g., firing only to Summer) or non-selective (firing to a few characters)? This could explain why they didn't get good decoding results with responsive neurons. Again, it would be nice to see confusion matrices with the decoding of the characters. Another reason for this is that what are labelled as responsive neurons have relatively weak and variable responses.

      We thank the reviewer for pointing out the importance of selectivity in addition to responsiveness. Indeed, our response criterion does not take stimulus selectivity into account and exclusively measures increases in firing activity after feature onsets for a given feature irrespective of other features.

      We will adjust the text to reflect this shortcoming of the response-detection approach used here. To clarify the relationship between neural populations, we will add visualizations of the overlap of responsive neurons across labels for each subregion. These figures will be included in the revised manuscript.

      In our approach, we trained separate networks for each feature to effectively mitigate the issue of correlated feature labels within the dataset (see earlier discussion). While this strategy effectively deals with the correlated features, it precluded the generation of standard confusion matrices, as classification was performed independently for each feature.

      To directly assess the feature selectivity of responsive neurons, we will fit generalized linear models to predict their firing rates from the features. This approach will enable us to quantify their selectivity and compare it to that of the broader neuronal population.

      (7) Line 455. The claim that 500 neurons drive decoding performance is very subjective. 500 neurons gives a performance of 0.38, and 50 neurons gives 0.33.

      We agree with the reviewer that the phrasing is unclear. We will adjust our summary of this analysis as given in Line 455 to reflect that the logistic regression-derived neuronal rankings produce a subset which achieve comparable performance.

      (8) Lines 492-494. I disagree with the claim that "character decoding does not rely on individual cells, as removing neurons that responded strongly to character onset had little impact on performance". I have not seen strong responses to characters in the paper. In particular, the response to Summer in Figure 2 looks very variable and relatively weak. If there are stronger responses to characters, please show them to make a convincing argument. It is fine to argue that you can get information from the population, but in my view, there are no good single-cell responses (perhaps because the actors and the movie were unknown to the subjects) to make this claim. Also, an older paper (Quian Quiroga et al J. Neurophysiol. 2007) showed that the decoding of individual stimuli in a picture presentation paradigm was determined by the responsive neurons and that the non-responsive neurons did not add any information. The results here could be different due to the use of movies instead of picture presentations, but most likely due to the fact that, in the picture presentation paradigm, the pictures were of famous people for which there were strong single neuron responses, unlike with the relatively unknown persons in this paper.

      This is an important point and we thank the reviewer for highlighting a previous paradigm in which responsive neurons did drive decoding performance. Indeed, the fact that the movie, its characters and the corresponding actors were novel to patients could explain the disparity in decoding performance by way of weaker and more variable responses. We will include additional examples in the supplement of responses to features. Additionally, we will modify the text to emphasize the point that reliable decoding is possible even in the absence of a robust set of neuronal responses. It could indeed be the case that a decoder would place more weight on responsive units if they were present (as shown in the mentioned paper and in our decoding from visual transitions in the parahippocampal cortex).

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Cells need to adjust their gene expression pattern, including nutrient transporters and enzymes to process the available nutrient. How cells maintain the coordination between these processes is one of the most critical questions in biology. In this work authors elegantly combined a range of relevant experimental techniques, ranging from time-lapse microscopy, microfluidics, and mathematical modelling to address this question. Combining these methods, authors proposed a push-pull like mechanism, involving two pairs of repressors (Mth1, Std1 and Migs) in the glucose sensing network. In budding yeast there are multiple hexose transporter genes with varying affinity and transport rate. Authors postulated that on sensing glucose, cells switch between expressing high affinity glucose transporters (when extracellular glucose is low), and low affinity glucose transporters (in high extracellular glucose), and these processes are mediated by the pairs of repressors as mentioned earlier. Following the expressing patterns of fluorescently tagged hexose transporters and varying the extracellular glucose concentrations in media, authors proposed that pairs of repressors switch their activity depending on extracellular glucose level, and which is matched by the promoters of the hexose transporter genes to achieve optimality of glucose transport.

      This study is elegantly designed and addressed an interesting question. The mechanism (push-pull involving two pairs of repressors) is plausible and justified by the data. Authors also presented a mathematical model and made predictions, which are also verified. We will recommend the publication of this work with minor modifications.

      Major comments:

      This study is well designed and experiments performed accordingly. We have only minor comments for revision.

      Minor comments:

      1. Although authors covered a wide array of literature, but while discussing tradeoffs and nutrient sensing, it will be good to include bacterial growth law and related literature, and physiological level tradeoffs should be discussed. Moreover, authors vouched that the push-pull mechanism helps to circumvent the rate-affinity tradeoff of the transporter, whereas expressing genes to more precisely corelate with the extracellular glucose level brings out physiological optimality. This rate-affinity tradeoff and its physiological role should be discussed clearly.
      2. Authors described the ALCATRAS device in their previous publication, but for better clarity, a supplementary figure with schematic diagram and experimental plan should be included.
      3. Microscopic images of transporter expression pattern should be shown as kymographs in the supplementary, in this version of the manuscript plots from processed microscopy images are shown only.
      4. GFP was used to tag HXT1-7 as mentioned by the authors and expression of these genes are evaluated in separate experiments. We suggest including a schematic diagram describing the experimental design while using the microfluidic device and the experimental plan should be written in more detail in general. We found this part confusing. Did authors considered tagging two separate transporters with different fluorescent tag from either end of the affinity spectrum and showing the expression pattern in one experiment? Authors mentioned co expression of receptors at a particular glucose concentration over time, is this inferred from separate timelapse experiments? This need to be more clearly stated.
      5. Please mark the second phase of media glucose concentration in panel 1C, 1% glucose phase is marked, please mark the other phases for clarity.
      6. For the repressors to sense glucose and to initiate the push pull mechanism, there should be baseline glucose flux, which is not clearly mentioned in the manuscript. Authors mentioned that minimal intracellular glucose in absence of extracellular glucose and deployed a logistic function to increase intracellular glucose. The baseline glucose level is crucial, and authors should comment on this. Also, glucose mediated protection of HXT4 should be discussed in this context.
      7. Figure 3B and 3C, details of the error bars should be mentioned in the figure legend.

      Referee cross-commenting

      All other reviewers also identified this study insightful and interesting, similar to our comments. We also agree with the suggestions made by other reviewers. Suggested changes and modifications can be addressed within a month as mentioned by most of the reviewers. Excellent point raised by other reviewers on technicalities and addressing those points will improve the readability of this work even more.

      Significance

      General assessment:

      Use of innovative microfluidics platform to trap mother cells and following the gene expression pattern by fluorescence microscopy and combining the experimental approach with mathematical model are the strengths of this work. Whereas the proposed push-pull mechanism is not generalizable to other carbons. Model is merely used to fit the data, rather than making interesting predictions. Also how does the mechanism holds when cells are switched from other nutrient sources is also not clear in this work, which are the limitations of this work.

      Advance

      This work involves experimental technique and mathematical model to test the hypothesis. Use of custom-built microfluidics set up and live cell imaging to track gene expression levels in varying nutrient condition. This study links single cell level gene expression pattern to model and predict system level behavior. Nutrient sensing and subsequent rearrangement of gene regulatory network is an important question to address, and the proposed push-pull mechanism in this study adds up to the existing body of literature.

      Audience:

      This work is interdisciplinary and researchers across multiple fields will be interested in this work, including researchers interested in microbial nutrient sensing, systems biology, topology of gene regulatory network, metabolism, and general microbiology.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-03083 Corresponding author(s): David Fay General Statements [optional] This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We greatly appreciate the input of the four reviewers, all of whom carried out a careful reading of our manuscript, provided useful suggestions for improvements, and were enthusiastic about the study including its thoroughness and utility to the field. Because the reviewers required no additional experiments, we were able to address their comments in writing.

      However, in response to a comment from reviewer #4 we decided to add an additional new biological finding to our study given that our functional validation of proximity labeling targets was not extensive. Namely, we now show that a missense mutation affecting BCC-1, one of the top NEKL-MLT interactors identified by our proximity labeling screen, is a causative mutation (together with catp-1) in a strain isolated through a forward genetic screen for suppressors of nekl molting defects (new Fig 9C). This finding, combined with our genetic enhancer tests, further strengthens the functional relevance of proteins identified though our proximity labeling approach and highlights the synergy of proteomics combined with classical genetics.

      Positive statements from reviewers include: Reviewer #1: Overall, this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner.

      Reviewer #2: The key conclusions are convincing, and the work is rigorous. The work provides a clear roadmap to reproducing the data. The experiments are adequately replicated, and statistical analysis is adequate... In many papers, TurboID seems very trivial but this paper clearly highlights the limitations and will be an invaluable resource for labs that want to get proximity labeling established in their labs.

      Reviewer #3: Overall, the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. ...This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system.

      Reviewer #4: Fay et al. present a solid, clear and comprehensive BioID-based proteomics study that takes into account and discusses decisive aspects for the (re)production and analysis of high-quality TurboID-based mass spectrometry data. Claims and conclusions are generally well and sufficiently supported by the presented data and illustrated with figures (throughout the text as well as with plenty of supplementary data)... Basic consideration and thoughts for the experimental design and MS data analysis are given in detail and can serve as another guideline for future studies.

      Based on these reviews and comments, we believe that our manuscript is suitable for publication in a high-impact journal. 1. Point-by-point description of the revisions This section is mandatory. Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript.

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      *Proximity labeling has become a powerful tool for defining protein interaction networks and has been utilized in a growing number of multicellular model systems. However, while such an approach can efficiently generate a list of potential interactors, knowledge of the most appropriate controls and standardized metrics to judge the quality of the data are lacking. The study by Fay systematically investigates these questions using the C. elegans NIMA kinase family members NEKL-2 and NEKL-2 and their known binding partners MLT-2, MLT-3 and MLT-4. The authors perform eight TurboID experiments each with multiple NEKL and MLT proteins and explore general metrics for assessing experimental outcomes as well as how each of the individual metrics correlates with one another. They also compare technical and biological replicates, explore strategies for identifying false positives and investigate a number of variations in the experimental approach, such as the use of N- versus C-terminal tags, depletion of endogenous biotinylated proteins, combining auxin-inducible degradation, and the use of gene ontology analysis to identify physiological interactors. Finally, the authors validate their findings by demonstrating that a number of the candidate identified functionally interact with NEKL-2 or components of the WASH complex. *

      Overall this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner. I really like this study (particularly because I plan to do a proximity labeling study of my own), but I did come away less than impressed with some of the analysis. This is a data-dense manuscript, and it appears to me that the authors tried to cover so much ground that in some cases very little insight was provided. For instance, the authors promote the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). However the authors do not provide any analysis to indicate one approach is better than the other. Likewise the combined use of auxin-induced degradation and proximity labeling is explored but there is very little to take away from these experiments. Despite these issues, I am very enthusiastic about the study as a whole. Below I list major and minor concerns.

      Major concerns * 1. My biggest issue with the manuscript is that a lot is made of the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). The authors perform experiments using DIA and DDA approaches but do not directly compare the outcomes. As a result there is really no way to know if one approach is better than the other. I would suggest the authors either perform the necessary analysis to compare the two approaches or tone down their promotion of DIA.* We agree and have scaled back any statements comparing DDA to DIA as our manuscript did not address this directly. We also now point out this caveat in our closing thoughts section, while referencing other studies that compared the two (lines 926-929). Our main point was to convey that DIA worked well for our proximity labeling studies but has seen little use by the model organism field. Surprising (to us), DIA was also considerably less expensive than DDA options.

      2. Line 75, The authors promote the use of data-independent acquisition (DIA) without defining what this approach is and how it differs from the more conventional data-dependent acquisition. As a non-mass spectroscopist, I found myself with lots of question concerning DIA, what it is and how it differs from DDA. I think it would really be helpful to expand the description of DIA and its comparison with DDA in the introduction. As non-mass-spectroscopists ourselves, we understand the reviewer's point. Because the paper is quite long, we were trying to avoid non-essential information. We have now added some information to explain some of the key differences between DDA and DIA. We have also included references for readers who may want to learn more. (lines 77-80)

      Minor concerns: * Line 92 typo. I believe the authors meant to say NEKL-2-MLT-2-MLT-4. * Corrected. (line 95)

      Line169. Is exogenous the correct word to use here? It suggests that you are talking about non-worm proteins, but I know you are not. Corrected. Changed to "Moreover, the detection of biotinylated proteins may be difficult if the bait-TurboID fusion is expressed at low levels..." (line 181).

      Line 177 typo (D) should be (C). Corrected. (line 1122)

      Figure 1C: Lucky Charms may sue you for infringement of their trademarked marshmallow treats. Thank you for picking up on this. The authors accept full responsibility for any resulting lawsuits.

      Figure 1D. The NEKL-2::TurboID band is indicated with a green triangle in the figure but the figure legend states that green triangles indicate mNG::TurboID control. I know this triangle is a shade off the triangle that indicates mNG::TurboID but it's really hard to see the difference. All of the differently colored triangles in panel F are unnecessary. I would either just pick one color for all non-control bait proteins or better yet, only use a triangle to point to bands that are not obvious. For instance I don't need the triangles that point to NEKL-2 -3 and -4 fusion proteins. These are just distracting. We understand the reviewer's point. We colored the triangles to match the colors used for the proteins in the figures. We have now added "bright green triangles with white outlines" (Fig 1 legend) to indicate the Pdpy-7::mNG::TurboID control" and changed triangles in the corresponding figures. Although we would be fine with removing or changing the triangles, we think that they may aid somewhat with clarity.

      Line: 316: Conceivably, another factor that could contribute to the counterintuitive upregulation of some proteins in the N2 samples is related to the fusion proteins that are being expressed in the TurboID lines. A partially functional bait protein (one with a level of activity similar to nekl-2(fd81) that may not result in an obvious phenotype) could directly or indirectly affect gene expression leading to lower levels of a subset of proteins in the TurboID samples. The same could be said for fusion proteins with a gain-of-function effect. This is an interesting idea, and we tested this possibility by looking for consistent overlap between N2-up proteins between biological replates of individual bait proteins. We now include a representative Venn diagram in S3C Fig to highlight this comparison. In summary, although we cannot rule out this possibility, our analysis did not support the widespread occurrence of this effect in our study. We also made certain that our statement regarding N2 up proteins was not too definitive. (lines 285-288)

      *Fig 3 B-E. I am a little confused how the data in these graphs is normalized. For instance, I would have expected that for NEKL-3 in panel B, that the normalized (log2) intensity value in N2 be set at 0 as it is for NEKL-2. Maybe I just don't have enough information on how these plots were generated. * The difference is that in the N2 sample, NEKL-3 was detected but NEKL-2 was not. The numbers themselves are assigned by the Spectronaut software used to quantify the DIA results but are not meaningful beyond indicating relative amounts (intensity values) of a given protein within an individual biological experiment. We've added some lines to the figure legend to make this clearer. (lines 1165-1169)

      *Figure 6C legend is not correct. * Corrected. (line 1214)

      Line 575: Figure reference should be Fig. S5G. The authors should check to make sure all references to supplemental figures include correct panel information. Corrected. (line 464) In addition, we have now gone through the manuscript and added panel numbers references where applicable. Note that the addition of a new supplemental file has shifted the numbering.

      Line 576. The authors reference a study by Artan and colleagues and report a weak correlation between their study and that of Artan. They reference figure S4 but it should be Fig S5H. Apologies and many thanks to the reviewer for catching these errors. (line 464)

      Line 652. The authors note that numerous proteins were present at substantially reduced levels in the mNG::TurboID samples and suggest that sticky proteins may have been outcompeted or otherwise excluded from beads incubated with the mNG::TurboID lysates. Why would sticky proteins only be a problem in these samples? The reasoning is not clear to me. The idea was that in the sample with very high levels of biotinylated proteins (mNG::TurboID), the surface of the beads might become saturated with high-affinity biotinylated proteins. This could prevent or out complete the binding of random proteins that are not biotinylated but nevertheless have some affinity to the beads ("sticky" proteins). We have reworded this section to make this clearer. (lines 546-550)

      Line 745: The term "bait overlaps" is a bit vague. Ultimately, I figured out what it meant but it was not immediately obvious. We have changed this to "overlap between baits" and made this section clearer. (line 624-628)

      *S7B Fig. Why is actin missing from the eluate? * In S7B we refer to the purified eluate as the "eluate", which may have caused some confusion. In other sections of the manuscript, we refer to the bead-bound proteins as the "purified eluate" (Figs 1 and 5). For the purified eluate a portion of the streptavidin beads are boiled in sample buffer to elute the bound proteins before running a western. Actin would not be expected in these samples because it's (presumably) not biotinylated in our samples and doesn't detectably bind the beads. This result was seen in all relevant westerns in S1 Data. For consistency, however, we've gone through all our files to make sure we consistently use the term "purified eluate" versus "eluate", which is less specific.

      L*ine 873: The authors state the extent of overlap in GO terms between the various experiments and provide percentages. I tried to extract this information from Figure 8C and came up with different values. For instance, in the case of Molecular Function, they state that they observed a 54% overlap between NEKL-2 and NEKL-3 but in the Venn diagram in Figure 8C I see that the NEKL-2 and NEKL-3 experiments had 71 (25+46) GO terms in common. Out of 98 GO terms for NEKL-2 or 104 for NEKL-3 the percentage I got is closer to 72. Am I analyzing this correctly? * Thanks for checking this. We believe our method for calculating the percent overlap is correct. In the case of NEKL-2/NEKL-3 overlap for Molecular Function, there are 131 total unique terms, of which 71 overlap, giving a 54% overlap. In the case of NEKL-2/NEKL-3 overlap for Biological Process, however, we made an error in arithmetic (415 unique, 239 overlap), such that the correct percentage is 58%, which we have corrected in the text.

      *Reviewer #1 (Significance (Required)): *

      *Overall this is an outstanding study that will be of great interest to those interested in using proximity labeling to identify interactors of their favorite protein. The experiments are well executed and the data presented in a mostly clear manner. I really like this study (particularly because I plan to do a proximity labeling study of my own), but I did come away less than impressed with some of the analysis. This is a data-dense manuscript, and it appears to me that the authors tried to cover so much ground that in some cases very little insight was provided. For instance, the authors promote the use of data independent acquisition (DIA) as compared to the more commonly used data dependent acquisition (DDA). However the authors do not provide any analysis to indicate one approach is better than the other. Likewise the combined use of auxin-induced degradation and proximity labeling is explored but there is very little to take away from these experiments. Despite these issues, I am very enthusiastic about the study as a whole. *

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)): *

      *This study expanded the use of data-independent acquisition-mass spectrometry (DIA-MS) in TurboID proximity-labeling proteomics to identify novel interactors of NEKL-2, NEKL-3, MLT-2, MLT-3, and MLT-4 complexes in C. elegans. The authors described several useful metrics to evaluate the quality of TurboID experiments, such as using the percentage of upregulated genes, the percentage of proteins present only in bait-TurboID experiments as compared to N2 controls, and the percentage of endogenously biotinylated carboxylases as internal controls. Further, the authors introduced methodological variability across 23 TurboID experiments and evaluated any improvement to the resulting data, such as N-terminally tagging bait proteins with TurboID, depleting endogenous carboxylases, and auxin-inducible degradation of known complex members. Finally, this study identified the kinase folding chaperone CDC-37 and the WASH complex component DDL-2 as novel interactors with the NEKL-MLT complexes through an RNAi-based enhancer approach following their identification by TurboID. *

      Major comments: * The key conclusions are convincing, and the work is rigorous. The work provides a clear roadmap to reproducing the data. The experiments are adequately replicated, and statistical analysis is adequate. We only have minor comments.*

      Minor comments: * •In the western blot in Fig 1 why does the mNG::Turbo have two bands? * Thank you for point this out. To our knowledge this is a breakdown product that was especially prevalent in replicate 3 (also see S1 Data), which we chose to shown because all the NEKL-MLTs were clearly visible in this western. The expected size of the mNeonGreen::TurboID (including linker and tags) is ~68 kDa and our blots are roughly consistent those of Artan et al., (2001). This lower band was not evident in Exp 8. We have now included a statement in the figure legend to indicate that the upper band is the full-length protein whereas the lower band is likely to be a breakdown product (lines 1141-1142).

      •Fig 2B is difficult to parse as a reader. Columns labeled "Upreg," "Downreg," "TurboID only," "N2 only," "Filter-1," "Filter-2," and "Epi %" could be moved to Supplemental. Fold change vs N2 could be represented as a bar chart, allowing for trends between fold change and the metrics Upreg %, Turbo %, and Carboxylase % to be seen more clearly. Further, rows headed "Carboxylase depletion," "DDA," and "Auxin treated" could be presented as separate panels to better match the distinct points made in the text. After serious consideration we have made several changes including the addition of S2 Fig, which may provide readers with a better visual representation of the bait and prey fold changes observed in all our experiments. However, we feel that the detailed data embedded in Fig 2 is the most concise and accurate means by which to convey our full results and is key to our methodological conclusions. As such we did not want to relegate this information to a supplemental table. We note that this figure was not found to be problematic by other reviewers, although we do understand the points made by this reviewer.

      •Line 179: in vivo should be italicized Because journals differ in their stylistic practices, we are currently waiting before doing our final formatting. We did keep our use of Latin phrases consistently non-italicized in the draft.

      •Lines 215-217: The comparison between Western blot expression levels and prior fluorescent reporter levels is unclear. Could be reformatted to make it clearer that relative expression of the different NEKL-MLTs in this study is consistent with prior data. We reformatted this sentence to improve clarity. (lines 205-207)

      *•Lines 267-268: The final line of the passage is unclear and can be removed. * This sentence has been removed.

      •Lines 311-313: This study is able to use the recovery of bait and known interactor proteins as internal controls to determine the quality of each experiment, but this may not always be the case for other users' experiments. The authors should comment on how Upreg %, a value influenced by many factors, can actually be used as a quality check when a bait protein has no known interactors. We have added language to highlight this point. (lines 344-348)

      *•Line 702: There is a [new REF] that should be removed * As described above, we have now included this finding on bcc-1 as part of this manuscript (Fig 9C).

      •The approach used mixed stage animals, but some genes oscillate or are transiently expressed. Please discuss cost-benefit of mixed stage vs syncing. This is an important point. We have added a discussion on the benefits and drawbacks of using mixed stages to the discussion. (lines 901-911)

      *•Authors were working on hypodermally expressed proteins. It would be valuable to discuss what tissues are amenable to TurboID. Ie are the cases where there are few cells (anchor cell, glial sockets, etc) that it will be extremely challenging to perform this technique * We agree that certain tissues/proteins will not be amenable to proximity labeling. We believe that we have addressed this point together with the above comment throughout the manuscript and now on lines 936-940.

      •Authors mention approaches such as nanobodies, split Turbo. Based on their experiences it would be valuable to add Discussion on strengths and weaknesses of these approaches to guide folks considering TurboID and DIA-MS experiments in C. elegans Because we have not tested these methods, we feel that we cannot provide a great deal of insight into these alternate approaches. We mention and reference these methods in the introduction so that readers are aware of them.

      *Reviewer #2 (Significance (Required)): *

      •Advance in technique: This study expands the use cases of data-independent acquisition MS method (DIA-MS) in C. elegans, which fragments all ions independent of the initial MS1 data. The benefits of this approach include better reproducibility across technical replicates and better recovery of low abundance peptides, which are critical for advancing our ability to capture weak and transient interactions.

      •The use of DIA-MS in this study has improved our understanding of the partners of these NEKL-MLTs in membrane trafficking, molting, and cell adhesion within the epidermis.

      •In many papers, TurboID seems very trivial but this paper clearly highlights the limitations and will be an invaluable resource for labs that want to get proximity labeling established in their labs.

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)): *

      *Summary: *

      Fay and colleagues perform a series of proximity labeling experiments in C. elegans followed by thorough and rational analysis of the resulting biotinylated proteins identified by LC-MS/MS. The overall goals of the study are to evaluate different techniques and provide practical guidance on how to achieve success. The major takeaways are that integration of data-independent acquisition (DIA) along with comparison of endogenously tagged TurboID alleles to soluble TurboID expressed in the same tissue results in improved detection of bona-fide interactors and reduced numbers of false-positives.

      *Major comments: *

      Overall the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. I have no major concerns with the manuscript and focus primarily on improving the accessibility of this important contribution to the scientific community. As such, I suggest that the authors:

      1) Provide more explanation of and rationale for using DIA. This is not yet a standard technique and most basic biomedical scientists will be unaware of the jargon. As I expect many labs in the C. elegans community and beyond will be interested in the guidance provided in this manuscript, the introduction offers a great opportunity to bring the reader up to speed, as opposed to sending them to the complicated proteomics analysis literature. We have added some additional context (lines 77-80) as well as new references. We note that getting into the technical differences between DIA and DDA, beyond what we briefly mention, would take a substantial amount of space, may not be of interest to many readers, and can be found through standard internet and (sigh) AI-based searches.

      *2) Provide a better overview of the various protocols tested (Experiments 1-8). Maybe at the beginning of the results, and maybe with an accompanying schematic. As currently written, it is difficult to figure out details regarding how the experiments vary and why. * We have now added a short paragraph to better inform the reader at the front end regarding the major experiments. (lines 139-146).

      3) As to be expected, expression of TurboID tags at endogenous levels via low abundance proteins in a complex multicellular system results in somewhat weak signals that flirt with the limit of detection. Perhaps by combining tagged alleles within the same complex (NEKL-3/MLT-3 or NEKL-2/MLT-2/MLT-4) the signals could be boosted? Tandem tags, either on one end or multiple ends of proteins might help as well. As the authors point out, a benefit of tagging the two NEKL-MLT complexes is that there are strong loss-of-function phenotypes (lethal molting defects) to help evaluate whether a tagging strategy results in a non-functional complex. THESE EXPERIMENTS ARE OPTIONAL and might simply be discussed at the authors discretion. These are interesting ideas that we have now incorporated into our discussion. (lines 936-940)

      *Minor Comments: *

      *1) Figure 3A is cropped on the right. * Thank you for catching this. Corrected.

      *2) Better define [new REF] on line 702. * We have added new results (Fig 9C), obviating the need for this reference.

      ***Referee cross-comments** *

      Overall, I am in agreement with, and supportive of, the other reviewers' comments.

      *Reviewer #3 (Significance (Required)): *

      *Significance: *

      Proximity labeling is often proposed as a technique to determine interaction networks of proteins in vivo, but in practice it remains challenging for most labs to execute a successful experiment, especially within the context of multicellular model organisms. Fay and colleagues provide a much needed roadmap for how to best approach proximity labeling experiments in C. elegans that will likely apply to other model systems.

      They establish a rigorous approach by choosing to endogenously tag components of two essential NEKL-MLT complexes required for C. elegans molting. These complexes are relatively low abundance as they are only expressed in a single cell type, the hyp7 epidermal syncytium. In addition, as inactivation of any member of the complexes results in molting defects, they have a powerful selection for functional tags. Thus, they have set a high bar for themselves in order to discern whether a given variation on the experimental approach results in improved detection of interactors and fewer false positives.

      *Potential areas for improvement include lowering the expression level of the skin-specific soluble TurboID used to determine non-specific biotinylation events. This control results in much higher levels of biotinylation compared to the TurboID-tagged NEKL-MLT alleles and likely affects their analysis, which they openly admit. In addition, to reduce the high level of background biotinylation signals generated by endogenous carboxylases, they adopt a depletion strategy pioneered by other researchers but this does not offer major improvements in detection of specific signals. The source of these conflicting results remains to be determined. It is also curious that auxin-inducible degradation of components of the NEKL-MLT complexes did not robustly alter the resulting biotinylating capacity of other members. This approach should be evaluated in subsequent studies. Finally, as mentioned in Major Comment #3 (above), it would be interesting to see if combining TurboID tags within the same complex might improve signal-to-background ratios. *

      This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system. I am a cell biologist that uses a variety of genetic, molecular and biochemical approaches, mostly centered around C. elegans. I have used LC/MS-MS in our studies but have relatively little expertise in evaluating all aspects of proteomic pipelines.

      *Reviewer #4 (Evidence, reproducibility and clarity (Required)): *

      *Fay et al. describe an extensive proximity labeling BioID study in C. elegans with TurboID and DIA-LCMS analysis. They chose the NEKL-2/3 kinases and their known interactors MLT-2/3/4 as TurboID-fused bait proteins (C- and partially N-terminal fusions encoded from CRISPR-mediated genome edited genes). With eight biological replicates (and three to four technical replicates each) and with the unmodified wildtype or mNeonGreen-TurboID expressing worms as controls, a comprehensive dataset was generated. Although starting from quite different abundances of the bait-fusions within the cell lysates all bait proteins and known complex-binding partners were convincingly enriched with capturing streptavidin beads after only one hour of incubation with the lysate. This confirms the general applicability of TurboID-BioID approach in C. elegans. The BioID method typically gives rise to large proteomics datasets (up to more than thousand proteins identified after biotin capture) with several tens to hundreds enriched proteins (against negative control strains) as potential proteins that localize proximal to the bait-TurboID protein. However, substantial variations of candidates between biological replicates are frequently observed in BioID experiments. The authors scrutinized their dataset towards indicative metrics, filters and cutoffs in order to separate high-confidence from low-confidence candidates. With the workflow applied the authors melt down the number of candidates to 15 proteins that were grouped in four functional groups reasonably associated to NEKL-MLT function. *

      Successful BioID experiments depend on reliable enrichment quantification with mass spectrometry using control cell lines that require a carefully bait-tailored design. Those must adequately express TurboID controls matching the abundance of the bait-TurboID fusion protein and its biotinylation activity. After affinity capture, sample preparation and LCMS data acquisition there is no silver bullet towards the identification true bait neighbors. Fay et al. elaborately describe their considerations and workflow towards high-confidence candidates. The workflow considered (i) data analysis with Volcano plots to account for statistical reproducibility of biological replicates against negative controls, (ii) fraction of proteins only detected in the positive or negative controls thus evading the fold-enrichment quantification approach, (iii) evaluation of variations in carboxylase enrichment as a measure for variations in the general biotin capture quality between experiments, (iv) an assessment of technical reproducibility with scatter plots and Venn diagrams, (v) exclusion of potentially false positives, e.g. promiscuously biotinylated non-proximal proteins, through comparisons with control worms expressing a non-localized mNeonGreen-TurboID fusion protein, (vi) batch effects, (vii) the impact of endogenous biotinylated carboxylases through depletion, (viii) gene ontology analysis of enriched proteins, (ix) weighing data according to the quality of individual experiments according to the afore mentioned metrics, and finally (x) genetic interaction studies to functionally associate high-confidence candidates with the bait.

      *Major comments: *

      Fay et al. present a solid, clear and comprehensive BioID-based proteomics study that takes into account and discusses decisive aspects for the (re)production and analysis of high-quality TurboID-based mass spectrometry data. Claims and conclusions are generally well and sufficiently supported by the presented data and illustrated with figures (throughout the text as well as with plenty of supplementary data). However, although the authors claim to seek for substrates of the kinase complex they drew no further attention to the phosphorylation status of the captured proteins. Haven't the MS data been analyzed in this respect? Information regarding this issue would enhance the manuscript. Data generation and method description appear reproducible for readers. Also, the statistical analyses appear adequate. The authors should also consider to deposit their MS raw and analysis data in a public repository (e.g. PRIDE) for future reviewing processes and as reference data for readers and followers. Our raw MS data have been deposited by the Arkansas Proteomics Facility. I have followed up to ensure that they are publicly available.

      *Minor comments: *

      The authors should combine supplementary data files to reduce the number of single files readers have to deal with. We have combined these files as suggested.

      The authors should avoid the term "upregulation" or "increased biotinylation" when capture enrichment is meant. We agree with reviewer's point. We now use the terms enriched versus reduced or up versus down, depending on the context, and clearly define these terms. These changes have been incorporated throughout the manuscript.

      *Reviewer #4 (Significance (Required)): *

      The manuscript presents a robust BioID proteomics screening for co-localizing proteins of NEKL-2/3 kinases and their known interactors MLT-2/3/4. The ongoing validation of their functional interactions and whether the protein candidates reflect phosphorylation substrates or else remains elusive and is announced for upcoming manuscripts. The knowledge gain in terms of molecular mechanisms with NEKL-2/3 MLT-2/3/4 involvement in C. elegans is therefore limited to a table of - promising - interacting candidates that have to be studied further. Information about the phosphorylation status of the captured proteins from the MS data are not given. However, knowing the protein candidates will be of interest for groups working with these complexes (or the identified potentially interacting proteins) either in C. elegans or any other organism. Also, in-depth proteomics screenings with novel approaches such as BioID have to be established for individual organisms. For C. elegans there is only one prior BioID publication (Holzer et al. 2022). Many of the aspects discussed here have also been addressed earlier for BioIDs in other organisms and are not principally new. However, the presented study can be of conceptual interest for labs delving into or entangled with the BioID method in C. elegans or other organisms. The study addresses especially proteomics groups working on protein-protein interactions using proximity labeling/MS approaches. Basic consideration and thoughts for the experimental design and MS data analysis are given in detail and can serve as another guideline for future studies.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      Fay and colleagues perform a series of proximity labeling experiments in C. elegans followed by thorough and rational analysis of the resulting biotinylated proteins identified by LC-MS/MS. The overall goals of the study are to evaluate different techniques and provide practical guidance on how to achieve success. The major takeaways are that integration of data-independent acquisition (DIA) along with comparison of endogenously tagged TurboID alleles to soluble TurboID expressed in the same tissue results in improved detection of bona-fide interactors and reduced numbers of false-positives.

      Major comments:

      Overall the claims are solid and conclusions supported. The data and methods are substantial to enable reproducibility in other labs. The experiments have been repeated multiple times with particular attention to statistical analysis. I have no major concerns with the manuscript and focus primarily on improving the accessibility of this important contribution to the scientific community. As such, I suggest that the authors:

      1. Provide more explanation of and rationale for using DIA. This is not yet a standard technique and most basic biomedical scientists will be unaware of the jargon. As I expect many labs in the C. elegans community and beyond will be interested in the guidance provided in this manuscript, the introduction offers a great opportunity to bring the reader up to speed, as opposed to sending them to the complicated proteomics analysis literature.
      2. Provide a better overview of the various protocols tested (Experiments 1-8). Maybe at the beginning of the results, and maybe with an accompanying schematic. As currently written, it is difficult to figure out details regarding how the experiments vary and why.
      3. As to be expected, expression of TurboID tags at endogenous levels via low abundance proteins in a complex multicellular system results in somewhat weak signals that flirt with the limit of detection. Perhaps by combining tagged alleles within the same complex (NEKL-3/MLT-3 or NEKL-2/MLT-2/MLT-4) the signals could be boosted? Tandem tags, either on one end or multiple ends of proteins might help as well. As the authors point out, a benefit of tagging the two NEKL-MLT complexes is that there are strong loss-of-function phenotypes (lethal molting defects) to help evaluate whether a tagging strategy results in a non-functional complex. THESE EXPERIMENTS ARE OPTIONAL and might simply be discussed at the authors discretion.

      Minor Comments:

      1. Figure 3A is cropped on the right.
      2. Better define [new REF] on line 702.

      Referee cross-comments

      Overall, I am in agreement with, and supportive of, the other reviewers' comments.

      Significance

      Proximity labeling is often proposed as a technique to determine interaction networks of proteins in vivo, but in practice it remains challenging for most labs to execute a successful experiment, especially within the context of multicellular model organisms. Fay and colleagues provide a much needed roadmap for how to best approach proximity labeling experiments in C. elegans that will likely apply to other model systems.

      They establish a rigorous approach by choosing to endogenously tag components of two essential NEKL-MLT complexes required for C. elegans molting. These complexes are relatively low abundance as they are only expressed in a single cell type, the hyp7 epidermal syncytium. In addition, as inactivation of any member of the complexes results in molting defects, they have a powerful selection for functional tags. Thus, they have set a high bar for themselves in order to discern whether a given variation on the experimental approach results in improved detection of interactors and fewer false positives.

      Potential areas for improvement include lowering the expression level of the skin-specific soluble TurboID used to determine non-specific biotinylation events. This control results in much higher levels of biotinylation compared to the TurboID-tagged NEKL-MLT alleles and likely affects their analysis, which they openly admit. In addition, to reduce the high level of background biotinylation signals generated by endogenous carboxylases, they adopt a depletion strategy pioneered by other researchers but this does not offer major improvements in detection of specific signals. The source of these conflicting results remains to be determined. It is also curious that auxin-inducible degradation of components of the NEKL-MLT complexes did not robustly alter the resulting biotinylating capacity of other members. This approach should be evaluated in subsequent studies. Finally, as mentioned in Major Comment #3 (above), it would be interesting to see if combining TurboID tags within the same complex might improve signal-to-background ratios.

      This manuscript represents a methodological advance that will likely become an oft-cited reference for members of the C. elegans community and a springboard for other basic biomedical scientists wanting to adapt rigorous proximity labeling techniques to their system. I am a cell biologist that uses a variety of genetic, molecular and biochemical approaches, mostly centered around C. elegans. I have used LC/MS-MS in our studies but have relatively little expertise in evaluating all aspects of proteomic pipelines.

    1. I don't think I've seen a single person bring up the classism inherent in dictating gentlemanly manners.

      Here, or in general?

      I do think about this a lot. This is a nice, succinct way to put it. (Critique, though: "classism" is not the best way to put it. For better or worse, "privilege" is probably one of the best words we have for this. Separately: Since "privilege" became a staple of common rhetoric, I've mused a lot about trying to convince people to minimize the focus on "privilege" (to avoid the familiar kneejerk reactions from those hearing it who have associated it with overuse), with the intent to be to sway people instead by speaking about privilege without actually using the word "privilege" and speaking exclusively in terms of affordances*.)

      See: https://hypothes.is/a/TCB5zClKEeyrIOu9mp-5TA and tag:"privilege vs affordance". (NB: Hypothes.is doesn't linkify the tag in the preceding annotation correctly.)

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers for the constructive comments, which have improved the manuscript. In response to these comments, we have made the following major changes to the main text and reviewer response:

      (1) Added experimental and computational evidence to support the use of Cut&Tag to determine speckle location.

      (2) Performed new Transmission Electron Microscopy (TEM) experiments to visualize interchromatin granule clusters +/- speckle degradation.

      (3) Altered the text of the manuscript to remove qualitative statements and clarify effect sizes.

      (4) Performed new analyses of published whole genome bisulfite data from LIMe-Hi-C following DNMT1 inhibition to demonstrate that CpG methylation is lost at DNMT1i-specific gained CTCF sites.

      (5) Included citations for relevant literature throughout the text.

      These revisions in addition to others are described in the point-by-point response below.

      Reviewer #1 (Public review):

      Summary

      Roseman et al. use a new inhibitor of the maintenance DNA methyltransferase DNMT1 to probe the role of methylation on binding of the CTCF protein, which is known to be involved chromatin loop formation. As previous reported, and as expected based on our knowledge that CTCF binding is methylation-sensitive, the authors find that loss of methylation leads to additional CTCF binding sites and increased loop formation. By comparing novel loops with the binding of the pre-mRNA splicing factor SON, which localizes to the nuclear speckle compartment, they propose that these reactivated loops localize to near speckles. This behavior is dependent on CTCF whereas degradation of two speckle proteins does not affect CTCF binding or loop formation. The authors propose a model in which DNA methylation controls the association of genome regions with speckles via CTCF-mediated insulation.

      Strengths

      The strengths of the study are 1) the use of a new, specific DNMT1 inhibitor and 2) the observation that genes whose expression is sensitive to DNMT1 inhibition and dependent on CTCF (cluster 2) show higher association with SON than genes which are sensitive to DNMT1 inhibition but are CTCF insensitive, is in line with the authors' general model.

      Weaknesses

      There are a number of significant weaknesses that as a whole undermine many of the key conclusions, including the overall mechanistic model of a direct regulatory role of DNA methylation on CTCF-mediated speckle association of chromatin loops.

      We appreciate the reviewer’s constructive comments and address them point-by-point below.

      (1) The authors frequently make quasi-quantitative statements but do not actually provide the quantitative data, which they actually all have in hand. To give a few examples: "reactivated CTCF sites were largely methylated (p. 4/5), "many CTCF binding motifs enriched..." (p.5), "a large subset of reactivated peaks..."(p.5), "increase in strength upon DNMT1 inhibition" (p.5); "a greater total number....." (p.7). These statements are all made based on actual numbers and the authors should mention the numbers in the text to give an impression of the extent of these changes (see below) and to clarify what the qualitative terms like "largely", "many", "large", and "increase" mean. This is an issue throughout the manuscript and not limited to the above examples.

      Related to this issue, many of the comparisons which the authors interpret to show differences in behavior seem quite minor. For example, visual inspection suggests that the difference in loop strength shown in figure 1E is something like from 0 to 0.1 for K562 cells and a little less for KCT116 cells. What is a positive control here to give a sense of whether these minor changes are relevant. Another example is on p. 7, where the authors claim that CTCF partners of reactivated peaks tend to engage in a "greater number" of looping partners, but inspection of Figure 2A shows a very minor difference from maybe 7 to 7.5 partners. While a Mann-Whitney test may call this difference significant and give a significant P value, likely due to high sample number, it is questionable that this is a biologically relevant difference.

      We have amended the text to include actual values, instead of just qualitative statements. We have also moderated our claims in the text to note where effect sizes are more modest.

      The following literature examples can serve as positive controls for the effect sizes that we might expect when perturbing CTCF. Our observed effect sizes are largely in line with these expected magnitudes.

      https://pmc.ncbi.nlm.nih.gov/articles/PMC8386078/ Fig. 2E

      https://www.cell.com/cell-reports/pdf/S2211-1247(23)01674-1.pdf Fig. 3J,K

      https://academic.oup.com/nar/article/52/18/10934/7740592 Fig. S5D (CTCF binding only).

      (2) The data to support the central claim of localization of reactivated loops to speckles is not overly convincing. The overlap with SON Cut&Tag (figure 2F) is partial at best and although it is better with the publicly available TSA-seq data, the latter is less sensitive than Cut&Tag and more difficult to interpret. It would be helpful to validate these data with FISH experiments to directly demonstrate and measure the association of loops with speckles (see below).

      A recent publication we co-authored validated the use of speckle (SON) Cut&Run using FISH (Yu et al, NSMB 2025, doi: 10.1038/s41594-024-01465-6). This paper also supports a role of CTCF in positioning DNA near speckles. Unfortunately, the resolution of these FISH probes is in the realm of hundreds of kilobases. This was not an issue for Yu et. al., as they were looking at large-scale effects of CTCF degradation on positioning near speckles. However, FISH does not provide the resolution we need to look at more localized changes over methylation-specific peak sites.

      Instead, we use Cut&Tag to look at these high-resolution changes. In Figure 3C, we show that SON localizes to DNMT1i-specific peaks only upon DNMT1 inhibition. We further demonstrate that this interaction is dependent on CTCF. In response to reviewer comments, we have now also performed spike-in normalized Cut&Tag upon acute (6 hr) SON degradation to validate that our signal is also directly dependent on SON and not merely due to a bias toward open chromatin.

      Author response image 1.

      TSA-seq has been validated with FISH (Chen et. al., doi: 10.1083/jcb.201807108), Alexander et. Al 10.1016/j.molcel.2021.03.006) Fig 6. We include TSA-seq data where possible in our manuscript to support our claims.

      We also note that Fig 2F shows all CTCF peaks and loops, not just methylation-sensitive peaks and loops, to give a sense of the data. We apologize for any confusion and have clarified this in the figure legend.

      (3) It is not clear that the authors have indeed disrupted speckles from cells by degrading SON and SRRM2. Speckles contain a large number of proteins and considering their phase separated nature stronger evidence for their complete removal is needed. Note that the data published in ref 58 suffers from the same caveat.

      Based upon the reviewers’ feedback, we generated Tranmission electron microscopy (TEM) data to visualize nuclear speckles +/- degradation of SON and SRRM2 (DMSO and dTAG). We were able to detect Interchromatin Granules Clusters (ICGs) that are representative of nuclear speckles in the DMSO condition. However, even at baseline, we observed a large degree of cell-to-cell variability in these structures. In addition, we also observe potential structural changes in the distribution of heterochromatin upon speckle degradation. Consequently, we hesitate to make quantitative conclusions regarding loss of these nuclear bodies. In the interest of transparency, we have included representative raw images from both conditions for the reviewers’ consideration.

      We also note that in Ref 58 (Ilik et. Al., https://doi.org/10.7554/eLife.60579), the authors show diffusion of speckle client proteins RBM25, SRRM1, and PNN upon SON and SRRM2 depletion, further supporting speckle dissociation in these conditions.

      Author response image 2.

      Author response image 3.

      (4) The authors ascribe a direct regulatory role to DNA methylation in controlling the association of some CTCF-mediated loops to speckles (p. 20). However, an active regulatory role of speckle association has not been demonstrated and the observed data are equally explainable by a more parsimonious model in which DNA methylation regulates gene expression via looping and that the association with speckles is merely an indirect bystander effect of the activated genes because we know that active genes are generally associated with speckles. The proposed mechanism of a regulatory role of DNA methylation in controlling speckle association is not convincingly demonstrated by the data. As a consequence, the title of the paper is also misleading.

      While it is difficult to completely rule out indirect effects, we do not believe that the relationship between methylation-sensitive CTCF sites and speckles relies only on gene activity.

      We can partially decouple SON Cut&Tag signal from gene activation if we break down Figure 4D to look only at methylation-sensitive CTCF peaks on genes whose expression is unchanged upon DNMT1 inhibition (using thresholds from manuscript, P-adj > 0.05 and/or |log2(fold-change)| < 0.5). This analysis shows that many methylation-sensitive CTCF peaks on genes with unchanged expression still change speckle association upon DNMT1 inhibition. This result refutes the necessity of transcriptional activation to recruit speckles to CTCF.

      Author response image 4.

      We note the comparator upregulated gene set here is small (~20 genes with our stringent threshold for methylation-sensitive CTCF after 1 day DNMT1i treatment).

      However, we acknowledge that these effects cannot be completely disentangled. We previously included the statement “other features enriched near speckles, such as open chromatin, high GC content, and active gene expression, could instead contribute to increased CTCF binding and looping near speckles” in the discussion. In response to the reviewer’s comment, we have further tempered our statements on page 20/21 and also added a statement noting that DNA demethylation and gene activation cannot be fully disentangled. While we are also open to a title change, we are unsure which part of the title is problematic. 

      (5) As a minor point, the authors imply on p. 15 that ablation of speckles leads to misregulation of genes by altering transcription. This is not shown as the authors only measure RNA abundance, which may be affected by depletion of constitutive splicing factors, but not transcription. The authors would need to show direct effects on transcription.

      We agree, and we have changed this wording to say RNA abundance.

      Reviewer #2 (Public review):

      Summary:

      CTCF is one of the most well-characterized regulators of chromatin architecture in mammals. Given that CTCF is an essential protein, understanding how its binding is regulated is a very active area of research. It has been known for decades that CTCF is sensitive to 5-cystosine DNA methylation (5meC) in certain contexts. Moreover, at genomic imprints and in certain oncogenes, 5meC-mediated CTCF antagonism has very important gene regulatory implications. A number of labs (eg, Schubeler and Stamatoyannopoulos) have assessed the impact of DNA methylation on CTCF binding, but it is important to also interrogate the effect on chromatin organization (ie, looping). Here, Roseman and colleagues used a DNMT1 inhibitor in two established human cancer lines (HCT116 [colon] and K562 [leukemia]), and performed CTCF ChIPseq and HiChIP. They showed that "reactivated" CTCF sites-that is, bound in the absence of 5meC-are enriched in gene bodies, participate in many looping events, and intriguingly, appear associated with nuclear speckles. This last aspect suggests that these reactivated loops might play an important role in increased gene transcription. They showed a number of genes that are upregulated in the DNA hypomethylated state actually require CTCF binding, which is an important result.

      Strengths:

      Overall, I found the paper to be succinctly written and the data presented clearly. The relationship between CTCF binding in gene bodies and association with nuclear speckles is an interesting result. Another strong point of the paper was combining DNMT1 inhibition with CTCF degradation.

      Weaknesses:

      The most problematic aspect of this paper in my view is the insufficient evidence for the association of "reactivated" CTCF binding sites with nuclear speckles needs to be more diligently demonstrated (see Major Comment). One unfortunate aspect was that this paper neglected to discuss findings from our recent paper, wherein we also performed CTCF HiChIP in a DNA methylation mutant (Monteagudo-Sanchez et al., 2024 PMID: 39180406). It is true, this is a relatively recent publication, although the BioRxiv version has been available since fall 2023. I do not wish to accuse the authors of actively disregarding our study, but I do insist that they refer to it in a revised version. Moreover, there are a number of differences between the studies such that I find them more complementary rather than overlapping. To wit, the species (mouse vs human), the cell type (pluripotent vs human cancer), the use of a CTCF degron, and the conclusions of the paper (we did not make a link with nuclear speckles). Furthermore, we used a constitutive DNMT knockout which is not viable in most cell types (HCT116 cells being an exception), and in the discussion mentioned the advantage of using degron technology:

      "With high-resolution techniques, such as HiChIP or Micro-C (119-121), a degron system can be coupled with an assessment of the cis-regulatory interactome (118). Such techniques could be adapted for DNA methylation degrons (eg, DNMT1) in differentiated cell types in order to gauge the impact of 5meC on the 3D genome."

      The authors here used a DNMT1 inhibitor, which for intents and purposes, is akin to a DNMT1 degron, thus I was happy to see a study employ such a technique. A comparison between the findings from the two studies would strengthen the current manuscript, in addition to being more ethically responsible.

      We thank the reviewer for the helpful comments, which we address in the point-by-point response below. We sincerely apologize for this oversight in our references. We have included references to your paper in our revised manuscript. It is exciting to see these complementary results! We now include discussion of this work to contextualize the importance of methylation-sensitive CTCF sites and motivate our study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      To address the above points, the authors should:

      (1) Provide quantitative information in the text on all comparisons and justify that the small differences observed, albeit statistically significant, are biologically relevant. Inclusion of positive controls to give an indication of what types of changes can be expected would be helpful.

      We have added quantitative information to the text, as discussed in the response to public comments above.  We also provide literature evidence of expected effect sizes in that response.

      (2) Provide FISH data to a) validate the analysis of comparing looping patterns with SON Cut&Tag data as an indicator of physical association of loops with speckles and b) demonstrate by FISH increased association of some of the CTCF-dependent loops/genes (cluster 2) with speckles upon DNMT1 inhibition.

      Please see response to Reviewer 1 comment #2 above. Unfortunately, FISH will not provide the resolution we need for point a). We have confidence in our use of TSA-seq and Cut&Tag to study SON association with CTCF sites on a genome-wide scale, which would not be possible with individual FISH probes. Specifically, since the submission of our manuscript several other researchers (Yu et al, Nat. Struct. and Mol. Biol. 2025, Gholamalamdari et al eLife 2025) have leveraged CUT&RUN/CUT&TAG and TSA-seq to map speckle associated chromatin and have validated these methods with orthogonal imaging based approaches.

      (3) Demonstrate loss of speckles upon SON or SRRM2 by probing for other speckle components and ideally analysis by electron microscopy which should show loss of interchromatin granules.  

      We have performed TEM in K562 cells +/- SON/SRRM2 degradation. Please see response to Reviewer 1 comment #3. Specifically, interchromatin granule clusters are visible in the TEM images of the DMSO sample (see highlighted example above), however, given the heterogeneity of these structures and potential global alterations in heterochromatin that may be occurring following speckle loss, we refrained from making quantitative conclusions from this data. We instead include the raw images above.

      (4) The authors should either perform experiments to clearly show whether loop association is transcription dependent or whether association is merely a consequence of gene activation. Alternatively, they should tone down their model ascribing a direct regulatory role of methylation in control of loop association with speckles and also discuss other models. Unless the model is more clearly demonstrated, the title of the paper should be changed to reflect the uncertainty of the central conclusion.

      Please see response to Reviewer 1 comment #4 above.

      (5) The authors should either probe directly for the effect of speckle ablation on transcription or change their wording.

      We have changed our wording to RNA abundance.

      Reviewer #2 (Recommendations for the authors):

      Major:

      ⁃ There was no DNA methylation analysis after inhibitor treatment. Ideally, genome bisulfite sequencing should be performed to show that the DNMT1i-specific CTCF binding sites are indeed unmethylated. But at the very least, a quantitative method should be employed to show the extent to which 5meC levels decrease in the presence of the DNMT1 inhibitor

      Response: We have now included analysis of genome wide bisulfite information from LIMe-Hi-C (bisulfite Hi-C) in K562 following DNMT1i inhibition. Specifically, we leverage the CpG methylation readout and find that DNTM1i-specific CTCF sites are more methylated than non-responsive CTCF peaks at baseline. In addition, these sites show the greatest decrease in CpG methylation upon 3 days of DNMT1 inhibition. We include a figure detailing these analyses in the supplement (Fig S1E). In addition, we have added CpG methylation genome browser tracks to (Fig S1D). In terms of global change, we have found that 3 days of DNMT1 inhibitor treatment leads to a reduction in methylation to about ~1/4 the level at baseline.

      I am not convinced that CUT&Tag is the proper technique to assess SON binding. CUT&Tag only works under stringent conditions (high salt), and can be a problematic assay for non-histone proteins, which bind less well to chromatin. In our experience, even strong binders such as CTCF exhibit a depleted binding profile when compared to ChIP seq data. I would need to be strongly convinced that the analysis presented in figures 2F-J and S2 D-I simply do not represent ATAC signal (ie, default Tn5 activity). For example, SON ChIP Seq, CUT&Tag in the SON degron and/or ATAC seq could be performed. What worries me is that increased chromatin accessibility would also be associated with increased looping, so they have generated artifactual results that are consistent with their model.

      As the reviewer suggested, we have now performed spike-in normalized SON Cut&Tag with DNMT1 inhibition and 6 hours of SON/SRRM2 degradation in our speckle dTAG knockin cell line. These experiments confirm that the SON Cut&Tag signal we see is SON-dependent. If the signal was truly due to artifactual binding, gained peaks would be open irrespective of speckle binding, however we see a clear speckle dependence as this signal is much lower if SON is degraded.

      Author response image 5.

      Moreover, in our original Cut&Tag experiments, we did not enrich detectable DNA without using the SON antibody (see last 4 samples-IgG controls). This further suggests that our signal is SON-dependent.

      Author response image 6.

      Finally, we see good agreement between Cut&Tag and TSA-seq (Spearman R=0.82).  The agreement is particularly strong in the top quadrant, which is most relevant since this is where the non-zero signal is.

      Author response image 7.

      Minor points

      ⁃ Why are HCT116 cells more responsive to treatment than K562 cells? This is something that could be addressed with DNA methylation analysis, for example

      K562 is a broadly hypomethylated cell line (Siegenfeld et.al, 2022 https://doi.org/10.1038/s41467-022-31857-5 Fig S2A-C). Thus, there may be less dynamic range to lose methylation compared to HCT116.

      Our results are also consistent with previous results comparing DKO HCT116 and aza-treated K562 cells (Maurano 2015, http://dx.doi.org/10.1016/j.celrep.2015.07.024). They state “In K562 cells, 5-aza-CdR treatment resulted in weaker reactivation than in DKO cells…”  In addition, cell-type-specific responsiveness to DNA methyltransferase KO depending upon global CpG methylation levels, has also been observed in ES and EpiLC cells (Monteagudo-Sanchez et al., 2024), which we now comment on in the manuscript.

      ⁃ How many significant CTCF loops in DNMTi, compared to DMSO? It was unclear what the difference in raw totals is.

      We now include a supplemental table with the HiChIP loop information. We call similar numbers of raw loops comparing DNMT1i and DMSO, as only a small subset of loops is changing.

      ⁃ For the architectural stripes, it would be nice to see a representative example in the form of a contact plot. Is that possible to do with the hiChIP data?

      As described in our methods, we called architectural stripes using Stripenn (Yoon et al 2022) from LIMe-Hi-C data under DNMT1i conditions (Siegenfeld et al, 2022). Shown below is a representative example of a stripe in the form of a Hi-C contact map.

      Author response image 8.

      ⁃ Here 4-10x more DNMT1i-specific CTCF binding sites were observed than we saw in our study. What are thresholds? Could the thresholds for DNMT1i-specific peaks be defined more clearly? For what it's worth, we defined our DNMT KO-specific peaks as fold-change {greater than or equal to} 2, adjusted P< 0.05. The scatterplots (1B) indicate a lot of "small" peaks being called "reactivated."

      We called DNMT1i-specific peaks using HOMER getDifferentialPeaksReplicates function. We used foldchange >2 and padj <0.05. We further restricted these peaks to those that were not called in the DMSO condition. 

      ⁃ On this note, is "reactivated" the proper term? Reactivated with regards to what? A prior cell state? I think DNMT1i-specific is a safer descriptor.

      We chose this term based on prior literature (Maurano 2015 http://dx.doi.org/10.1016/j.celrep.2015.07.024, Spracklin 2023 https://doi.org/10.1038/s41594-022-00892-7) . However, we agree it is not very clear, so we’ve altered the text to say “DNMT1i-specific”. We thank the reviewer for suggesting this improved terminology.

      ⁃ It appears there is a relatively small enrichment for CTCF peaks (of any class) in intergenic regions. How were intergenic regions defined? For us, it is virtually half of the genome. We did some enrichment of DNMT KO-specific peaks in gene bodies (our Supplemental Figure 1C), but a substantial proportion were still intergenic.

      We defined intergenic peaks using HOMER’s annotatepeaks function, with the -gtf option using Ensembl gene annotations (v104). We used the standard annotatepeaks priority order, which is TSS > TTS> CDS Exons > 5’UTR exons >3’ UTR exons > Introns > Intergenic.

      Maurano et. al. 2015 (http://dx.doi.org/10.1016/j.celrep.2015.07.024) also found reduced representation of intergenic sites among demethylation-reactivated CTCF sites in their Fig S5A. We note this is not a perfect comparison because their data is displayed as a fraction of all intergenic peaks.

      ⁃ We also recently published a review on this subject: The impact of DNA methylation on CTCF-mediated 3D genome organization NSMB 2024 (PMID: 38499830) which could be cited if the authors choose.

      We have cited this relevant review.

    1. find out that I didn't have the whole picture, the problem was messier than it first appeared, and there were perfectly valid reasons for the code being that way

      I've tried using a hiking metaphor to describe a similar phenomenon (specifically, and perversely, as a preface when trying to explain second panel syndrome.

  3. Jul 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __We thank the reviewers for the supportive suggestions and comments. We have addressed all comments underneath the original text in red. As suggested, we added to line numbers to the text and use these numbers to refer to the changes made. __

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript is well written and presents solid data, most of which is statistically analyzed and sound. Given that the author's previous comprehensive publications on seipin organization and interactions, it might be beneficial (particularly in the title and abstract) to emphasize that this manuscript focuses on the metabolic regulation of lipid droplet assembly by Ldb16, to distinguish it from previous work. Perhaps one consideration, potentially interesting, involves changes in lipid droplet formation under the growth conditions used for galactose-mediated gene induction.

      We thank the reviewer for the supportive comments and suggestions.

      Comments: (1) Fig. 3 and 4. The galactose induction of lipid droplet biogenesis in are1∆/2∆ dga1∆ lro1∆ cells though activation of a GAL1 promoter fusion to DGA1 is a sound approach for regulating lipid droplet formation. Although unlikely, carbon sources can impact lipid droplet proliferation and (potentially interesting) metabolic changes under growth in non-fermentable carbon sources may impact lipid droplet biogenesis; in fact, oleate has significant effects (e.g. PMID: 21422231; PMID: 21820081). The GAL1 promoter is a very strong promoter and the overexpression of DGA1 via this heterologous promoter might itself cause unforeseen changes. Affirmation of the results using another induction system might be beneficial.

      We thank the reviewer for these suggestions. In this study we focused on the organisation of the yeast seipin complex during the process of LD formation. We chose to use galactose-based induction of Dga1 because this is a well-established and widely used assay in the field, extensively characterized by many groups over the years. The tight control it provides, enabling synchronous and rapid LD induction, makes it the method of choice for many researchers. Importantly, the LDs formed using this assay are morphologically normal and involve the same components as LDs formed under other conditions.

      Regarding the role of metabolism in LD formation, it is worth noting that galactose is metabolized by yeast primarily through fermentation, following its conversion to UDP-glucose. Therefore, its use does not involve drastic metabolic changes. The impact of metabolism in LD biogenesis is an interesting question but it falls beyond the scope of the current study.

      (2) Fig. 3B. Although only representative images are shown, the panel convincingly shows that lipid droplets do form upon galactose induction of DGA1 in are1∆/2∆ dga1∆ lro1∆ cells. However, it does not show to what extent. Are lipid droplets synthesized at WT levels? How many cells were counted? How many lipid droplets per cell? Is there a statistical difference with respect to WT cells?

      We did not assess these parameters in this study. The aim of the study was to assess the relations between components of the seipin complex with and without lipid droplets. For this purpose, inducing lipid droplet formation over a 4-hour period was sufficient to address that specific question. As mentioned above, LDs formed using this assay are morphologically normal and involve the same components as LDs formed under other conditions. This being said, it is known that prolonged overexpression of Dga1 (> 12hours) can lead to enlarged LDs.

      (3) Fig. 2D. It is not clear how standard deviation can be meaningfully applied to two data points, let alone providing a p-value. For some of these experiments, triplicate trials might provide a more robust statistical sampling.

      We thank the reviewer for this suggestion. We have added 2 more repeats to the Co-IP in figure 2.

      Reviewer #1 (Significance (Required)):

      Klug and Carvalho report on the lipid droplet architecture of the yeast seipin complex. Specifically, the mechanism of yeast seipin Sei1 binding to Ldo16 and the subsequent recruitment of Ldb45 is analyzed. These results follow from a recent publication (PMID: 34625558) from the same authors and aims to define a more precise role for the components of the seipin complex. Using photo-crosslinking, Ldo45 and Ldo16 interactions are analyzed in the context of lipid droplet assembly.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Klug and Carvalho apply a photo-crosslinking approach, which has been extensively used in the Carvalho group, to investigate the subunit interactions of the seipin complex in yeast. The authors apply this approach to further study possible changes within the seipin complex following induction of neutral lipid synthesis and lipid droplet (LD) formation. The authors propose that Ldo45 makes contact with Ldb16 and that the seipin complex subunits assemble even in the absence of LDs.

      Major comments:

      Overall, this is a focused and well-executed study on one of the fundamental structural components of LDs. The study addresses the subunit interactions of the seipin complex but does not look into their functional consequences, for example how the mutations on Ldb16 that affect its interaction with Ldo45, influence LD formation; similarly, the authors make the interesting observation that Ldo16 may be differentially affected by the lack of neutral lipids (Fig. 3A) but this observation is not explored.

      We thank the reviewer for this comment. The Ldb16 mutations analyzed in this study have been previously characterized by us (see Klug et al., 2021 – Figure 3) and exhibit a mild defect in lipid droplet (LD) formation. This phenotype is unlikely to result from impaired Ldo16/45 recruitment, as deletion of Ldo proteins causes only a very mild effect on LD formation (as shown in Teixeira et al., 2018 and Eisenberg-Bord et al., 2018).

      We agree that the differential effect on Ldo proteins by the absence of neutral lipids is particularly interesting. However, its exploration falls outside of the scope of the current study and should be thoroughly investigated in the future.

      1. For the crosslinking pull-downs (Fig. 1), it seems that the authors significantly overexpress (ADH1 promoter) the Ldb16 subunit that carries the various photoreactive amino acid residues, while keeping the other (tagged) seipin complex members at endogenous levels. Would not this imbalance affect the assembly of the complex and therefore the association of the different subunits with each other?

      We thank the reviewer for this comment. The in vivo site-specific crosslinking is highly sensitive methodology to detect protein-protein interactions in a position-dependent manner. However, one of the caveats of the approach is the low efficiency of amber stop codon suppression and BPA incorporation. To mitigate this limitation, we (and others) induce the expression of the amber-containing protein (in this case Ldb16) from a strong constitutive promoter such as ADH1. Therefore, despite using a strong promoter, the overall levels of LDB16 remain comparable to endogenous levels due to the inherently low efficiency of amber suppression. Moreover, it is known that when not bound to Sei1, Ldb16 is rapidly degraded in a proteasome dependent manner (Wang, C.W. 2014), further preventing its accumulation.

      Although the authors do show delta4 cells with no LDs (Fig. 3B, 0h), galactose-inducible systems in yeast are known to be leaky. Given that the authors' conclusion that the complex is "pre-assembled" irrespective of the addition of galactose, I think it would be important to confirm biochemically that there is no neutral lipid at time point 0. Alternatively, it may be better to simply compare wt vs dga1 lro1 or are1are2 mutants - there is no need for GAL induction since the authors look at one time point only.

      Among the various regulable promoters, GAL1 shows a superior level of control. For example, expression of essential genes from GAL1 promoter frequently leads to cell death in glucose containing media, a condition that represses GAL1 promoter. Having said this, we cannot exclude that minute amounts of DGA1 are expressed prior galactose induction. However, if this is the case, the resulting levels of TAG are insufficient to be detected by sensitive lipid dyes and to induce LDs, as noted by the reviewer. Therefore, we believe our conclusions remain valid. This is consistent that we use in the text, where we refer to LD formation rather than complete loss of neutral lipids. To make this absolutely clear we replaced the word “presence” to “abundance” in line 236.

      Lastly, we do not agree with the reviewer that using double mutants (are1/2 or dga1/lro1 mutants) would be sufficient since these mutations are not sufficient to abolish LD formation – a key aspect of this study. The GAL1 system allows us to monitor 2 time points in the same cells –no LDs (time 0h) and with LDs (Time 4h). The system proposed by the reviewer would only allow a snap shot of steady state levels in different cells rather than within the same cell culture.

      Some methodological issues could be better detailed. For example, which of the three delta4 strains was used to induce neutral lipid in Fig. 4B? How exactly were the quantifications in Fig. 4D performed (I assume they were done under non-saturating band intensity conditions, as for some residues it is difficult to conclude whether the blot aligns with the quantification results).

      We thank the reviewer for these comments. We have clarified the strain number in the figure legend of figure 4B (strain yPC12630).

      We have also added the following text in rows 437-441 in the methods section: “Reactive bands were detected by ECL (Western Lightning ECL Pro, Perkin Elmer #NEL121001EA), and visualized using an Amersham Imager 600 (GE Healthcare Life Sciences). Data quantification was performed using Image Studio software (Li-Cor) to measure line intensity under non saturating conditions.”

      "our findings support the notion that Ldo45 is important for early steps of LD formation as previously proposed" I find this statement confusing given that the authors claim that Ldo45 is already bound to the complex before LD formation.

      We thank the reviewer for raising this important point. We believe that our findings support previous hypotheses on the role of Ldo45. It has been suggested that Ldo45 is important for the early stages of lipid droplet (LD) formation (Teixeira et al., 2018; Eisenberg-Bord et al., 2018). As such, Ldo45 would need to be recruited to the seipin complex before or at the onset of LD formation. The observation that Ldo45 is present at the complex prior to LD formation provides strong support for its role in the initial steps of this process.

      To clarify this idea in the manuscript, we have revised the sentence on line 310 as follows:

      “Irrespective of the mechanism, our findings support the notion that Ldo45 plays a role in the early steps of LD formation, as previously proposed…”

      The model in Fig. 5 is essentially the same as the one shown in Fig. 1G.

      To aid the reader and avoid confusion, we intentionally used a similar color scheme throughout the manuscript. This may contribute to the perception that the figures are very similar. However, there are clear distinctions between them. In Figure 1G, we summarize our findings regarding the positioning of Ldo45 within the complex and note that we do not yet have data on Ldo16. Building upon these findings, in Figure 5 we speculate where Ldo16 might interact with Ldb16 and highlight that recruitment of both Ldo16 and Ldo45 increases with neutral lipid availability.

      Therefore, we believe that both figures serve distinct and complementary purposes, and that each is useful for communicating our overall message.

      Minor comments

      In the pull-downs in Fig. 2C, it seems that full-length Ldb16 is not enriched after the FLAG IP. What is the reason of this?

      We thank the reviewer for raising this interesting aspect. We do not know why this occurs, but it is clear that full length Ldb16 is not efficiently pulled down. We could speculate that this has to do with access to the FLAG moiety at the C terminus that may become inaccessible due to interactions or folding in the long unstructured C-terminus of Ldb16. This might explain why when we truncate the C terminus in the 1-133 mutant we achieve a more efficient IP.

      At the blots at Fig. 2C and 3A, the anti-Dpm1 Ab seems to recognize in the IP fractions a band labelled as non-specific, however this band is absent from the input.

      We thank the reviewer for raising this. This non-specific band is the light chain of the antibody used in the pull down that detaches from the matrix during elution – thus not found in the input. This is a common non-specific band that appears in Co-IP blots.

      Reviewer #2 (Significance (Required)):

      Regulation of seipin function is essential for proper LD biogenesis in eukaryotes, so this study addresses a fundamental question in the field. As stated above some functional analysis that goes beyond the biochemistry would be beneficial. There is some overlap with a recently published paper from the Wang group that also examines the assembly of seipin in yeast.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Klug and Carvalho investigates the interaction of the yeast seipin complex (Sei1 and Ldb16) with Ldo45 and Ldo16. Using a site-specific photocrosslinking approach, the authors map some residues of the seipin complex in contact Ldo45, demonstrating that Ldo45 likely binds to Ldb16 in the center of the Sei1-Ldb16 complex. They find that both Ldo45 and Ldo16 copurify with Ldb16. Complex assembly is demonstrated to occur independently of the presence of neutral lipids. An Ldb16 mutant, harbouring the transmembrane domain (1-133) but lacking the cytosolic region (previously shown to allow normal LD formation and still bind to Sei1) showed photocrosslinks with Ldo45, but not Ldo16. No crosslinks between Sei1 and either Ldo45 or Ldo16 were detected.

      Major: 1. Figure 2 shows CoIPs using different Ldb16 mutants/truncations to test for binding of Ldo45 and Ldo16. Both Ldo16 and Ldo45 copurify with full length Ldb16. Loss of the cytosolic part of Ldb16 strongly reduced binding of both Ldo45 and Ldo16, indicating that the TM-Helix-TM domain of Ldb16 (1-133) alone is not sufficient for proper binding of Ldo45 or Ldo16. The quantifications (2D and 2E) presented for this CoIP represent a n=2 with mean, standard deviation and statistics. To be a meaningful statistical analysis, the authors need to increase their n to at least n=3. In addition, they refer to the statistics they use here as "two-sided Fischer's T-test" in the respective Figure legend. To my knowledge, there is no such test, either it is Student's T-test or Fischer's exact test? Can the authors please clarify?

      We thank the reviewer for this comment and suggestions. We have now included 2 additional repeats for this experiment and the results essentially support our conclusion.

      The two-sided Fischer’s T-test is the name of the test in Graphpad- Prism. We wanted to acknowledge the test name so that the reader can trace the exact test we used in the program.

      1. Figure 2E shows the same data as 2D with different normalization to highlight the differences between binding to the domain 1-133 per se and binding to this domain when the linker helix is mutated. These mutations seem to cause a further decrease in binding of both Ldo45 and Ldo16. Still, effects are rather small, and the n=2 does not allow any meaningful statistical tests. To make this point, the authors should increase their sample number (at least n=3) to show that this difference is indeed meaningful and to allow statistical analysis.

      We thank the reviewer for this comment and suggestions. We have now included 2 additional repeats for this experiment and the results essentially support our conclusion.

      For Ldo16, no crosslinks were detected with Ldb16 TM-HelixTM domain (Figure 1). In line, CoIP demonstrated that the interaction between Ldo16 and Ldb16 was strongly reduced when the Ldb16 domain 1-133 was used for IP. Still, additional mutation of the linker helix in this 1-133 domain further reduced this interaction (to a similar extend as for Ldo45). Could the authors please clarify why the additional mutations in the linker helix region also decreased the binding of Ldo16, though the authors conclude from their crosslinking approach in Fig. 1 that Ldo16 does not interact with this region?

      We thank the reviewer for raising this point. Our negative crosslinking results for Ldo16 do not exclude the possibility of binding to that region; rather, they indicate that we were unable to detect Ldo16 there. Additionally, mutations in the linker helix may influence how Ldb16 interacts with seipin, including its positioning within the seipin ring and the membrane bilayer. These structural changes could, in turn, affect Ldo16 recruitment in ways that we do not fully understand.

      Similarly, also in 4D, a quantification with n=2 is presented, showing that some of the crosslinks are more prominently detectable when LD biogenesis is induced. The findings of this manuscript are completely based on results obtained with CoIP and photocrosslinking, and quantification of a sufficient n to allow statistical analysis will be essential.

      While we agree that additional experiments are useful for the Co-IP because of variability between experiments, this is less of a concern for the photocrosslinking experiments. In the case of photocrosslinking, we typically see much less variability and normally, for a given position, the effects are much more “black and white”- either there is a crosslink or not.

      Why is there nowhere a blot with crosslinked Ldb16 bands shown (but only non-crosslinked Ldb16, e.g. Fig. 1C)?

      We thank the reviewer for this comment. In all cases the amount of crosslinked product is very minor. This is particularly obvious in the case of Ldb16, where the non-crosslinked species dominates in the blots (as can be observed in figure S1B).

      Figure 3: The authors conclude that galactose-induced expression of either Dga1, Lro1 or Are1 in cells lacking all four enzymes for neutral lipid synthesis (quadruple deletion mutant) increases the levels of Ldb16. However, I do not see any difference on the FLAG-Ldb16 blot when comparing Ldb16 levels in the quadruple deletion mutant with or without Dga1, Lro1 or Are1, and no quantification is presented that might reveal very subtle differences not visible on the blot.

      We agree with the reviewer and modified the text to more accurately describe our results.

      OPTIONAL: Have the authors considered to assess which sites/domains of Ldo45 and Ldo16 are employed to bind to Ldb16?

      This is a logical next step that will be undertaken in a future study.

      Minor: 1. Page numbers would have been helpful to refer to specific text sections.

      Page numbers have been added

      1. Figure 3C: Unclear to me why the authors label a part of their immunoblot where they detected HA with OSW5?

      This was a mistake and has been corrected

      1. Figure 4D and corresponding figure legend could be improved in respect to labeling to clarify.

      we have added an X axis label and made extra clarifications in the legend

      1. Please correct his sentence: "These variants we expressed in cells where the other subunits of the Sei1 complex were epitope tagged to facilitate detection and expressed their endogenous loci."

      This sentence has been corrected

      Reviewer #3 (Significance (Required)):

      This is a short and interesting study completely based on UV-induced site-specific photocrosslinking and CoIPs that provides some new insights into the interaction surface between the Seipin complex and Ldo45 and the interaction between Ldo16 and Ldb16. Though in parts still premature, these findings will likely be of interest to the large community interested in lipid metabolism, expanding the role of Ldb16 from neutral lipid binding to regulator recruitment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Phytophathogens including fungal pathogens such as F. graminearum remain a major threat to agriculture and food security. Several agriculturally relevant fungicides including the potent Quinofumelin have been discovered to date, yet the mechanisms of their action and specific targets within the cell remain unclear. This paper sets out to contribute to addressing these outstanding questions.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The paper is generally well-written and provides convincing data to support their claims for the impact of Quinofumelin on fungal growth, the target of the drug, and the potential mechanism. Critically the authors identify an important pyrimidine pathway dihydroorotate dehydrogenase (DHODH) gene FgDHODHII in the pathway or mechanism of the drug from the prominent plant pathogen F. graminearum, confirming it as the target for Quinofumelin. The evidence is supported by transcriptomic, metabolomic as well as MST, SPR, molecular docking/structural biology analyses.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Whilst the study adds to our knowledge about this drug, it is, however, worth stating that previous reports (although in different organisms) by Higashimura et al., 2022 https://pmc.ncbi.nlm.nih.gov/articles/PMC9716045/ had already identified DHODH as the target for Quinofumelin and hence this knowledge is not new and hence the authors may want to tone down the claim that they discovered this mechanism and also give sufficient credit to the previous authors work at the start of the write-up in the introduction section rather than in passing as they did with reference 25? other specific recommendations to improve the text are provided in the recommendations for authors section below.

      We appreciate the reviewer's suggestion. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of previous work on quinofumelin by Higashimura et al., 2022 in the discussion section to more effectively contextualize their contributions. Moreover, we have made revisions and provided responses in accordance with the recommendations.

      Reviewer #2 (Public review):

      Summary:

      In the current study, the authors aim to identify the mode of action/molecular mechanism of characterized a fungicide, quinofumelin, and its biological impact on transcriptomics and metabolomics in Fusarium graminearum and other Fusarium species. Two sets of data were generated between quinofumelin and no treatment group, and differentially abundant transcripts and metabolites were identified. The authors further focused on uridine/uracil biosynthesis pathway, considering the significant up- and down-regulation observed in final metabolites and some of the genes in the pathways. Using a deletion mutant of one of the genes and in vitro biochemical assays, the authors concluded that quinofumelin binds to the dihydroorotate dehydrogenase.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      Omics datasets were leveraged to understand the physiological impact of quinofumelin, showing the intracellular impact of the fungicide. The characterization of FgDHODHII deletion strains with supplemented metabolites clearly showed the impact of the enzyme on fungal growth.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Some interpretation of results is not accurate and some experiments lack controls. The comparison between quinofumelin-treated deletion strains, in the presence of different metabolites didn't suggest the fungicide is FgDHODHII specific. A wild type is required in this experiment.

      Potential Impact: Confirming the target of quinofumelin may help understand its resistance mehchanism, and further development of other inhibitory molecules against the target.

      The manuscript would benefit more in explaining the study rationale if more background on previous characterization of this fungicide on Fusarium is given.

      We appreciate the reviewer's suggestion. Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil. In our previous study, quinofumelin not only exhibited excellent antifungal activity against the mycelial growth and spore germination of F. graminearum, but also inhibited the biosynthesis of deoxynivalenol (DON). We have added this part to the introduction section.

      Reviewer #3 (Public review):

      Summary:

      The manuscript shows the mechanism of action of quinofumelin, a novel fungicide, against the fungus Fusarium graminearum. Through omics analysis, phenotypic analysis, and in silico approaches, the role of quinofumelin in targeting DHODH is uncovered.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The phenotypic analysis and mutant generation are nice data and add to the role of metabolites in bypassing pyrimidine biosynthesis.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      The role of DHODH in this class of fungicides has been known and this data does not add any further significance to the field. The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      There is no mention of the other fungicide within this class ipflufenoquin, as there is ample data on this molecule.

      We appreciate the reviewer's suggestion. We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions. The information regarding action mechanism of ipflufenoquin against filamentous fungi was added in discussion section.

      Reviewer #1 (Recommendations for the authors):

      (1) Given that the DHODH gene had been identified as a target earlier, could the authors perform blast experiments with this gene instead and let us know the percentage similarity between the FgDHODHII gene and the Pyricularia oryzae class II DHODH gene in the report by Higashimura et al., 2022.

      BLAST experiment revealed that the percentage similarity between the FgDHODHII gene and the class II DHODH gene of P. oryzae was 55.41%. We have added the description ‘Additionally, the amino acid sequence of the FgDHODHII exhibits 55.41% similarity to that of DHODHII from Pyricularia oryzae, as previously reported (Higashimura et al., 2022)’ in section Results.

      (2) Abstract:

      The authors started abbreviating new terms e.g. DEG, DMP, etc but then all of a sudden stopped and introduced UMP with no full meaning of the abbreviation. Please give the full meaning of all abbreviations in the text, UMP, STC, RM, etc.

      We have provided the full meaning for all abbreviations as requested.

      (3) Introduction section:

      The introduction talks very little about the work of other groups on quinofumelin. Perhaps add this information in and reference them including the work of Higashimura et al., 2022 which has done quite significant work on this topic but is not even mentioned in the background

      We have added the work of other groups on quinofumelin in section introduction.

      (4) General statements:

      Please show a model of the pyrimidine pathway that quinofumelin attacks to make it easier for the reader to understand the context. They could just copy this from KEGG

      We have added the model (Fig. 7).

      (5) Line 186:

      The authors did a great job of demonstrating interactions with the Quinofumelin and went to lengths to perform MST, SPR, molecular docking, and structural biology analyses yet in the end provide no details about the specific amino acid residues involved in the interaction. I would suggest that site-directed mutagenesis studies be performed on FgDHODHII to identify specific amino acid residues that interact with Quinofumelin and show that their disruption weakens Quinofumelin interaction with FgDHODHII.

      Thank you for this insightful suggestion. We fully agree with the importance of elucidating the interaction mechanism. At present, we are conducting site-directed mutagenesis studies based on interaction sites from docking results and the mutation sites of FgDHODHII from the resistant mutants; however, due to the limitations in the accuracy of existing predictive models, this work remains ongoing. Additionally, we are undertaking co-crystallization experiments of FgDHODHII with quinofumelin to directly and precisely reveal their interaction pattern

      (6) Line 76:

      What is the reference or evidence for the statement 'In addition, quinofumelin exhibits no cross-resistance to currently extensively used fungicides, indicating its unique action target against phytopathogenic fungi.

      If two fungicides share the same mechanism of action, they will exhibit cross resistance. Previous studies have demonstrated that quinofumelin retains effective antifungal activity against fungal strains resistant to commercial fungicides, indicating that quinofumelin does not exhibit cross-resistance with other commercially available fungicides and possesses a novel mechanism of action. Additionally, we have added the relevant inference.

      (7) Line 80-82:

      Again, considering the work of previous authors, this target is not newly discovered. Please consider toning down this statement 'This newly discovered selective target for antimicrobial agents provides a valuable resource for the design and development of targeted pesticides.'

      We have rewritten the description of this sentence.

      (8) Line 138: If the authors have identified DHODH in experimental groups (I assume in F. graminearum), what was the exact locus tag or gene name in F. graminearum, and why not just continue with this gene you identified or what is the point of doing a blast again to find the gene if the DHODH gene if it already came up in your transcriptomic or metabolic studies? This unfortunately doesn't make sense but could be explained better.

      The information of FgDHODHII (gene ID: FGSG_09678) has been added. We have revised this part.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 40:

      Please add a reference.

      We have added the reference

      (2) Line 47:

      Please add a reference.

      We have added the reference.

      (3) Line 50:

      The lack of target diversity in existing fungicides doesn't necessarily serve as a reason for discovering new targets being more challenging than identifying new fungicides within existing categories, please consider adjusting the argument here. Instead, the authors can consider reasons for the lack of new targets in the field.

      We have revised the description.

      (4) Line 63:

      Please cite your source with the new technology.

      We have added the reference.

      (5) Line 68:

      What are you referring to for "targeted medicine", do you have a reference?

      We have revised the description and the reference.

      (6) Line 74:

      One of the papers referred to "quinoxyfen", what are the similarities and differences between the two? Please elaborate for the readership.

      Quinoxyfen, similar to quinofumelin, contains a quinoline ring structure. It inhibits mycelial growth by disrupting the MAP kinase signaling pathway in fungi (https://www.frac.info). In addition, quinoxyfen still exhibits excellent antifungal activity against the quinofumelin-resistant mutants (the findings from our group), indicating that action mechanism for quinofumelin and quinoxyfen differ.

      (7) Line 84:

      Please introduce why RNA-Seq was designed in the study first. What were the groups compared? How was the experiment set up? Without this background, it is hard to know why and how you did the experiment.

      According to your suggestions, we have added the description in Section Results. In addition, the experimental process was described in Section Materials and methods as follows: A total of 20 mL of YEPD medium containing 1 mL of conidia suspension (1×105 conidia/mL) was incubated with shaking (175 rpm/min) at 25°C. After 24 h, the medium was added with quinofumelin at a concentration of 1 μg/mL, while an equal amount of dimethyl sulfoxide was added as the control (CK). The incubation continued for another 48 h, followed by filtration and collection of hyphae. Carry out quantitative expression of genes, and then analyze the differences between groups based on the results of DESeq2 for quantitative expression.

      (8) Figures:

      The figure labeling is missing (Figures 1,2,3 etc). Please re-order your figure to match the text

      The figures have been inserted.

      (9) Line. 97:

      "Volcano plot" is a common plot to visualize DEGs, you can directly refer to the name.

      We have revised the description.

      (10) Figure 1d, 1e:

      Can you separate down- and up-regulated genes here? Does the count refer to gene number?

      The expression information for down- and up-regulated genes is presented in Figure 1a and 1b. However, these bubble plots do not distinguish down- and up-regulated genes. Instead, they only display the significant enrichment of differentially expressed genes in specific metabolic pathways. To more clearly represent the data, we have added the detailed counts of down- and up-regulated genes for each metabolic pathway in Supplementary Table S1 and S2. Here, the term "count" refers to differentially expressed genes that fall within a certain pathway.

      (11) Line 111:

      Again, no reasoning or description of why and how the experiment was done here.

      Based on the results of KEGG enrichment analysis, DEMs are associated with pathways such as thiamine metabolism, tryptophan metabolism, nitrogen metabolism, amino acid sugar and nucleotide sugar metabolism, pantothenic acid and CoA biosynthesis, and nucleotide sugar production compounds synthesis. To specifically investigate the metabolic pathways involved action mechanism of quinofumelin, we performed further metabolomic experiments. Therefore, we have added this description according the reviewer’s suggestions.

      (12) Figure 2a:

      It seems many more metabolites were reduced than increased. Is this expected? Due to the antifungal activity of this compound, how sick is the fungus upon treatment? A physiological study on F. graminearum (in a dose-dependent manner) should be done prior to the omics study. Why do you think there's a stark difference between positive and negative modes in terms of number of metabolites down- and up-regulated?

      Quinofumelin demonstrates exceptional antifungal activity against Fusarium graminearum. The results indicate that the number of reduced metabolites significantly exceeds the number of increased metabolites upon quinofumelin treatment. Mycelial growth is markedly inhibited under quinofumelin exposure. Prior to conducting omics studies, we performed a series of physiological and biochemical experiments (refer to Qian Xiu's dissertation https://paper.njau.edu.cn/openfile?dbid=72&objid=50_49_57_56_49_49&flag=free). Upon quinofumelin treatment, the number of down-regulated metabolites notably surpasses that of up-regulated metabolites compared to the control group. Based on the findings from the down-regulated metabolites, we conducted experiments by exogenously supplementing these metabolites under quinofumelin treatment to investigate whether mycelial growth could be restored. The results revealed that only the exogenous addition of uracil can restore mycelial growth impaired by quinofumelin.

      Quinofumelin exhibits an excellent antifungal activity against F. graminearum. At a concentration of 1 μg/mL, quinofumelin inhibits mycelial growth by up to 90%. This inhibitory effect indicates that life activities of F. graminearum are significantly disrupted by quinofumelin. Consequently, there is a marked difference in down- and up-regulated metabolites between quinofumelin-treated group and untreated control group. The detailed results were presented in Figures 1 and 2.

      (13) Figure 2e:

      This is a good analysis. To help represent the data more clearly, the authors can consider representing the expression using fold change with a p-value for each gene.

      To more clearly represent the data, we have incorporated the information on significant differences in metabolites in the de novo pyrimidine biosynthesis pathway, as affected by quinofumelin, in accordance with the reviewer’s suggestions.

      (14) Line 142:

      Please indicate fold change and p-value for statistical significance. Did you validate this by RT-qPCR?

      We validated the expression level of the DHODH gene under quinofumelin treatment using RT-qPCR. The results indicated that, upon treatment with the EC50 and EC90 concentrations of quinofumelin, the expression of the DHODH gene was significantly reduced by 11.91% and 33.77%, respectively (P<0.05). The corresponding results have been shown in Figure S4.

      (15) Line 145:

      It looks like uracil is the only metabolite differentially abundant in the samples - how did you conclude this whole pathway was impacted by the treatment?

      The experiments involving the exogenous supplementation of uracil revealed that the addition of uracil could restore mycelial growth inhibited by quinofumelin. Consequently, we infer that quinofumelin disrupts the de novo pyrimidine biosynthesis pathway. In addition, as uracil is the end product of the de novo pyrimidine biosynthesis pathway, the disruption of this pathway results in a reduction in uracil levels.

      (16) Figure 3:

      What sequence was used as the root of the tree? Why were the species chosen? Since the BLAST query was Homo sapiens sequence, would it be good to use that as the root?

      FgDHODHII sequence was used as the root of the tree. These selected fungal species represent significant plant-pathogenic fungi in agriculture production. According to your suggestion, we have removed the BLAST query of Homo sapiens in Figure 3.

      (17) Figure 4:

      How were the concentrations used to test chosen?

      Prior to this experiment, we carried out concentration-dependent exogenous supplementation experiments. The results indicated that 50 μg/mL of uracil can fully restore mycelial growth inhibited by quinofumelin. Consequently, we chose 50 μg/mL as the testing concentration.

      (18) Line 164:

      Why do you hypothesize supplementing dihydroorotate would restore resistance? The metabolite seemed accumulated in the treatment condition, whereas downstream metabolites were comparable or even depleted. The DHODH gene expression was suppressed. Would accumulation of dihydroorotate be associated with growth inhibition by quinofumelin? Please include the hypothesis and rationale for the experimental setup.

      DHODH regulates the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthesis pathway. The inhibition of DHODH by quinofumelin results in the accumulation of dihydroorotate and the depletion of the downstream metabolites, including UMP, uridine and uracil. Consequently, downstream metabolites were considered as positive controls, while upstream metabolite dihydroorotate served as a negative control. This design further demonstrates DHODH as action target of quinofumelin against F. graminearum. In addition, the accumulation of dihydroorotate is not associated with growth inhibition by quinofumelin; however, but the depletion of downstream metabolites in the de novo pyrimidine biosynthesis pathway is closely associated with growth inhibition by quinofumelin.

      (19) Line 168:

      I'm not sure if this conclusion is valid from your results in Figure 4 showing which metabolites restore growth.

      o minimize the potential influence of strain-specific effects, five strains were tested in the experiments shown in Figure 4. For each strain, the first row (first column) corresponds to control condition, while second row (first column) represents treatment with 1 μg/mL of quinofumelin, which completely inhibits mycelial growth. The second row (second column) for each strain represents the supplementation with 50 μg/mL of dihydroorotate fails to restore mycelial growth inhibited by quinofumelin. In contrast, the second row (third column, fourth column, fifth colomns) for each strain demonstrated that the supplementation of 50 μg/mL of UMP, uridine and uracil, respectively, can effectively restore mycelial growth inhibited by quinofumelin.

      (20) Figure 5a:

      The fact you saw growth of the deletion mutant means it's not lethal. However, the growth was severely inhibited.

      Our experimental results indicate that the growth of the deletion mutant is lethal. The mycelial growth observed originates from mycelial plugs that were not exposed to quinofumelin, rather than from the plates amended with quinofumelin.

      (21) Figure 5b:

      Would you expect different restoration of growth in the presence of quinofumelin vs. no treatment? The wild type control is missing here. Any conclusions about the relationship between quinofumelin, FgDHODHII, and other metabolites in the pathway?

      Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil.

      (22) Figure 6b:

      Lacking positive and negative controls (known binder and non-binder). What does the Kd (in comparison to other interactions) indicate in terms of binding strength?

      We tested the antifungal activities of publicly reported DHODH inhibitors (such as leflunomide and teriflunomide) against F. graminearum. The results showed that these inhibitors exhibited no significant inhibitory effects against the strain PH-1. Therefore, we lacked an effective chemical for use as a positive control in subsequent experiments. Biacore experiments offers detailed insights into molecular interactions between quinofumelin and DHODHII. As shown in Figure 6b, the left panel illustrates the time-dependent kinetic curve of quinofumelin binding to DHODHII. Within the first 60 s after quinofumelin was introduced onto the DHODHII surface, it bound to the immobilized DHODHII on the chip surface, with the response value increasing proportionally to the quinofumelin concentration. Following cessation of the injection at 60 s, quinofumelin spontaneously dissociated from the DHODHII surface, leading to a corresponding decrease in the response value. The data fitting curve presented on the right panel indicates that the affinity constant KD of quinofumelin for DHODHII is 6.606×10-6 M, which falls within the typical range of KD values (10-3 ~ 10-6 M) for protein-small molecule interaction patterns. A lower KD value indicates a stronger affinity; thus, quinofumelin exhibits strong binding affinity towards DHODHII.

      Reviewer #3 (Recommendations for the authors):

      The authors should add information about the other molecule within this class, ipflufenoquin, and what is known about it. There are already published data on its mode of action on DHODH and the role of pyrimidine biosynthesis.

      We have added the information regarding action mechanism of ipflufenoquin against filamentous fungi in discussion section.

      The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions.

      It is unclear how the protein model was established and this should be included. What species is the molecule from and how was it obtained? How are they different from Fusarium?

      The three-dimensional structural model of F. graminearum DHODHII protein, as predicted by AlphaFold, was obtained from the UniProt database. Additionally, a detailed description along with appropriate citations has been incorporated in the ‘Manuscript’ file.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript provides an initial characterization of three new missense variants of the PLCG1 gene associated with diverse disease phenotypes, utilizing a Drosophila model to investigate their molecular effects in vivo. Through the meticulous creation of genetic tools, the study assesses the small wing (sl) phenotype - the fly's ortholog of PLCG1 - across an array of phenotypes from longevity to behavior in both sl null mutants and variants. The findings indicate that the Drosophila PLCG1 ortholog displays aberrant functions. Notably, it is demonstrated that overexpression of both human and Drosophila PLCG1 variants in fly tissue leads to toxicity, underscoring their pathogenic potential in vivo.

      Strengths:

      The research effectively highlights the physiological significance of sl in Drosophila. In addition, the study establishes the in vivo toxicity of disease-associated variants of both human PLCG1 and Drosophila sl.

      Weaknesses:

      The study's limitations include the human PLCG1 transgene's inability to compensate for the Drosophila sl null mutant phenotype, suggesting potential functional divergence between the species. This discrepancy signals the need for additional exploration into the mechanistic nuances of PLCG1 variant pathogenesis, especially regarding their gain-of-function effects in vivo.

      Overall:

      The study offers compelling evidence for the pathogenicity of newly discovered disease-related PLCG1 variants, manifesting as toxicity in a Drosophila in vivo model, which substantiates the main claim by the authors. Nevertheless, a deeper inquiry into the specific in vivo mechanisms driving the toxicity caused by these variants in Drosophila could significantly enhance the study's impact.

      Reviewer #2 (Public Review):

      The manuscript by Ma et al. reports the identification of three unrelated people who are heterozygous for de novo missense variants in PLCG1, which encodes phospholipase C-gamma 1, a key signaling protein. These individuals present with partially overlapping phenotypes including hearing loss, ocular pathology, cardiac defects, abnormal brain imaging results, and immune defects. None of the patients present with all of the above phenotypes. PLCG1 has also been implicated as a possible driver for cell proliferation in cancer.

      The three missense variants found in the patients result in the following amino acid substitutions: His380Arg, Asp1019Gly, and Asp1165Gly. PLCG1 (and the closely related PLCG2) have a single Drosophila ortholog called small wing (sl). sl-null flies are viable but have small wings with ectopic wing veins and supernumerary photoreceptors in the eye. As all three amino acids affected in the patients are conserved in the fly protein, in this work Ma et al. tested whether they are pathogenic by expressing either reference or patient variant fly or human genes in Drosophila and determining the phenotypes produced by doing so.

      Expression in Drosophila of the variant forms of PLCG1 found in these three patients is toxic; highly so for Asp1019Gly and Asp1165Gly, much more modestly for His380Arg. Another variant, Asp1165His which was identified in lymphoma samples and shown by others to be hyperactive, was also found to be toxic in the Drosophila assays. However, a final variant, Ser1021Phe, identified by others in an individual with severe immune dysregulation, produced no phenotype upon expression in flies.

      Based on these results, the authors conclude that the PLCG1 variants found in patients are pathogenic, producing gain-of-function phenotypes through hyperactivity. In my view, the data supporting this conclusion are robust, despite the lack of a detectable phenotype with Ser1021Phe, and I have no concerns about the core experiments that comprise the paper.

      Figure 6, the last in the paper, provides information about PLCG1 structure and how the different variants would affect it. It shows that the His380, Asp1019, and Asp1165 all lie within catalytic domains or intramolecular interfaces and that variants in the latter two affect residues essential for autoinhibition. It also shows that Ser1021 falls outside the key interface occupied by Asp1019, but more could have been said about the potential effects of Ser1021Phe.

      Overall, I believe the authors fully achieved the aims of their study. The work will have a substantial impact because it reports the identification of novel disease-linked genes, and because it further demonstrates the high value of the Drosophila model for finding and understanding gene-disease linkages.

      Reviewer #3 (Public Review):

      Summary:

      The paper attempts to model the functional significance of variants of PLCG2 in a set of patients with variable clinical manifestations.

      Strengths:

      A study attempting to use the Drosophila system to test the function of variants reported from human patients.

      Weaknesses:

      Additional experiments are needed to shore up the claims in the paper. These are listed below.

      Major Comments:

      (1) Does the pLI/ missense constraint Z score prediction algorithm take into consideration whether the gene exhibits monoallelic or biallelic expression?

      To our knowledge, pLI and missense Z don't consider monoallelic or biallelic expression. Instead, they reflect sequence constraint and are calculated based on the observed versus expected variant frequencies in population databases.

      (2) Figure 1B: Include human PLCG2 in the alignment that displays the species-wide conserved variant residues.

      We have updated Figure 1B and incorporated the alignment of PLCG2.

      (3) Figure 4A:

      Given that

      (i) sl is predicted to be the fly ortholog for both mammalian PLCγ isozymes: PLCG1 and PLCG2 [Line 62]

      (ii) they are shown to have non-redundant roles in mammals [Line 71]

      (iii) reconstituting PLCG1 is highly toxic in flies, leading to increased lethality.

      This raises questions about whether sl mutant phenotypes are specifically caused by the absence of PLCG1 or PLCG2 functions in flies. Can hPLCG2 reconstitution in sl mutants be used as a negative control to rule out the possibility of the same?

      The studies about the non-redundant roles of PLCG1 and PLCG2 mainly concern the immune system.

      We have assessed the phenotypes in the sl<sup>T2A</sup>/Y; UAS-hPLCG2 flies. Expression of human PLCG2 in flies is also toxic and leads to severely reduced eclosion rate.

      We have updated the manuscript with these results, and included the eclosion rate of sl<sup>T2A</sup>/Y; UAS-hPLCG2 flies in the new Figure 4B.

      (4) Do slT2A/Y; UAS-PLCG1Reference flies survive when grown at 22{degree sign}C? Since transgenic fly expressing PLCG1 cDNA when driven under ubiquitous gal4s, Tubulin and Da, can result in viable progeny at 22{degree sign}C, the survival of slT2A/Y; UAS-PLCG1Reference should be possible.

      The eclosion rate of sl<sup>T2A</sup>/Y >PLCG1<sup>Reference</sup> flies at 22°C is slightly higher than at 25°C, but remains severely reduced compared to the UAS-Empty control. We have presented these results in the updated Figure S3.

      and similarly

      Does slT2A flies exhibit the phenotypes of (i) reduced eclosion rate (ii) reduced wing size and ectopic wing veins and (iii) extra R7 photoreceptor in the fly eye at 22{degree sign}C?

      The mutant phenotypes are still observed at 22 °C.

      If so, will it be possible to get a complete rescue of the slT2A mutant phenotypes with the hPLCG1 cDNA at 22{degree sign}C? This dataset is essential to establish Drosophila as an ideal model to study the PLCG1 de novo variants.

      Thank you for the suggestion. It is difficult to directly assess the rescue ability of the PLCG1 cDNAs due to the toxicity. However, our ectopic expression assays show that the variants are more toxic than the reference with variable severities, suggesting that the variants are deleterious.

      The ectopic expression strategy has been used to evaluate the consequence of genetic variants and has significantly contributed to the interpretation of their pathogenicity in many cases (reviewed in Her et al., Genome, 2024, PMID: 38412472).

      (5) Localisation and western blot assays to check if the introduction of the de novo mutations can have an impact on the sub-cellular targeting of the protein or protein stability respectively.

      Thank you for the suggestion.

      We expressed PLCG1 cDNAs in the larval salivary glands and performed antibody staining (rabbit anti-Human PLCG1; 1:100, Cell Signaling Technology, #5690). The larval salivary gland are composed of large columnar epithelia cells that are ideal for analyzing subcellular localization of proteins. The PLCG1 proteins are cytoplasmic and localize near the cell surface, with some enrichment in the plasma membrane region. The variant proteins are detected, and did not show significant difference in expression level or subcellular distribution compared to the reference. We did not include this data.

      (6) Analysing the nature of the reported gain of function (experimental proof for the same is missing in the manuscript) variants:

      Instead of directly showing the effect of introducing the de novo variant transgenes in the Drosophila model especially when the full-length PLCG1 is not able to completely rescue the slT2A phenotype;

      (i) Show that the gain-of-function variants can have an impact on the protein function or signalling via one of the three signalling outputs in the mammalian cell culture system: (i) inositol-1,4,5-trisphosphate production, (ii) intracellular Ca2+ release or (iii) increased phosphorylation of extracellular signal-related kinase, p65, and p38.

      We appreciate the reviewer’s suggestion. We utilized the CaLexA (calcium-dependent nuclear import of LexA) system (Masuyama et al., J Neurogenet, 2012, PMID: 22236090) to assess the intracellular Ca<sup>2+</sup> change associated with the expression of PLCG1 cDNAs in fly wing discs. The results show that, compared to the reference, expression of the D1019G or D1165G variants leads to elevated intracellular Ca<sup>2+</sup> levels, similar to the hyperactive S1021F and D1165H variants. However, the H380R or L597F variants did not show a detectable phenotype in this assay. These results suggest that D1019G and D1165G are hyperactive variants, whereas H380R and L597F variant are not, or their effect is too mild to be detected in this assay. We have updated the related sections in the manuscript and Figures 5A and S5.

      OR

      (ii) Run a molecular simulation to demonstrate how the protein's auto-inhibited state can be disrupted and basal lipase activity increased by introducing D1019G and D1165G, which destabilise the association between the C2 and cSH2 domains. The H380R variant may also exhibit characteristics similar to the previously documented H335A mutation which leaves the protein catalytically inactive as the residue is important to coordinate the incoming water molecule required for PIP2 hydrolysis.

      We utilized the DDMut platform, which predicts changes in the Gibbs Free Energy (ΔΔG) upon single and multiple point mutations (Zhou et al., Nucleic Acid Res, 2023, PMID: 37283042), to gain insight into the molecular dynamics changes of variants. The results are now presented in Figure S7.

      Additionally, we performed Molecular dynamics (MD) simulations. The results show that, similar to the hyperactive D1165H variant, the D1019G and D11656G variants exhibit increased disorganization, with a higher root mean square deviations (RMSD) compared to the reference PLCG1.The data are also presented in the updated Figure S7.

      (7) Clarify the reason for carrying out the wing-specific and eye-specific experiments using nub-gal4 and eyless-gal4 at 29˚C despite the high gal4 toxicity at this temperature.

      We used high temperature and high expression level to see if the mild H380R and L597F variants could show phenotypes in this condition.

      The toxicity of the two strong variants (D1019G and D1165G) has been consistently confirmed in multiple assays at different temperatures.

      (8) For the sake of completeness the authors should also report other variants identified in the genomes of these patients that could also contribute to the clinical features.

      Thank you!

      The additional variants and their potential contributions to the clinical features are listed and discussed in Table 1 and its legend.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript's significant contribution is tempered by a lack of comprehensive analysis using the generated genetic reagents in Drosophila. To enhance our understanding of the PLCG1 orthologs, I suggest the following:

      (1) A more detailed molecular analysis to distinguish the actions of sl variants from the wild-type could be very informative. For example, utilizing the HA-epitope tag within the current UAS-transgenes could reveal more about the cellular dynamics and abundance of these variants, potentially elucidating mechanisms beyond gain-of-function.

      We appreciate the reviewer’s suggestion. The UAS-sl cDNA constructs contain stop codon and do not express an HA-epitope tag. Alternatively, we utilized commercially available antibodies against human PLCG1 antibodies to assess the subcellular localization and protein stability by expressing the reference and variant PLCG1 cDNAs in Drosophila larval salivary glands. The reference proteins are cytoplasmic with some enrichment along the plasma membrane. However, we did not observe significant differences between the reference and variant proteins in this assay. We did not include this data.

      (2) I suggest further investigating the relative contributions of developmental processes and acute (Adult) effects on the sl-variant phenotypes observed. For example, employing systems that allow for precise temporal control of gene expression, such as the temperature-sensitive Gal80, could differentiate between these effects, shedding light on the mechanisms that affect longevity and locomotion. This knowledge would be vital for a deeper understanding of the corresponding human disorders and for developing therapeutic interventions.

      We appreciate the reviewer’s suggestion. We utilized Tub-GAL4, Tub-GAL80<sup>ts</sup> to drive the expression of sl wild-type or variant cDNAs, and performed temperature shifts after eclosion to induce expression of the cDNAs only in adult flies. The sl<sup>D1184G</sup> variant (corresponding to PLCG1<sup>D1165G</sup>) caused severely reduced lifespan and the flies mostly die within 10 days. The sl<sup>D1041G</sup> variant (corresponding to PLCG1<sup>D1019G</sup>) led to reduced longevity and locomotion. The sl<sup>H384R</sup> variant (corresponding to PLCG1<sup>H380R</sup>) showed only a mild effect on longevity and no significant effect on climbing ability. These results suggest that the two strong variants (sl<sup>D1041G<sup> and sl<sup>D1184G</sup>) contribute to both developmental and acute effects while the H384R variant mainly contributes to developmental stages.

      I also suggest a more refined analysis of overexpression toxicity. Rather than solely focusing on ubiquitous transgene expression, overexpressing transgene in endogenous pattern using sl-t2a-Gal4 may yield a more nuanced understanding of the pathogenic mechanisms of gain-of-function mutations, particularly in the pathogenesis associated with these variants exclusively located in the coding regions.

      We appreciate the reviewer’s suggestion. We therefore performed the experiments using sl<sup>T2A</sup> to drive overexpression ofPLCG1cDNAs in heterozygous female progeny with one copy of wild-type sl+ (sl<sup>T2A</sup>/ yw > UAS-cDNAs). In this context, expression of PLCG1<sup>Reference<sup>, PLCG1<sup>H380R</sup>orPLCG1<sup>L597F</sup> is viable whereas expression of PLCG1<sup>D1019G</sup> or PLCG1<sup>D1165G</sup> is lethal, suggesting that the PLCG1<sup>D1019G</sup> and PLCG1<sup>D1165G</sup> variants exert a strong dominant toxic effect while the PLCG1<sup>H380R</sup>and PLCG1<sup>L597F<sup> are comparatively milder. Similar patterns have been consistently observed in other ectopic expression assays with varying degrees of severity. These results are updated in the manuscript and figures.

      Reviewer #2 (Recommendations For The Authors):

      The work in the paper could be usefully extended by determining the effects of expressing His380Phe and His380Ala in flies. These variants suppress PLCG1 activity, so their phenotype, if any, would be predicted not to be the same as His380Arg. Determining this would add further strength to the conclusions of the paper.

      We thank the reviewer for the constructive suggestions! We have tested the enzymatic-dead H380A variant, which still exhibits toxicity when expressed in sl<sup>T2A</sup>/Y hemizygous flies, but it is not toxic in heterozygous females suggesting that the reduced eclosion rate is likely not directly associated with enzymatic activity. We have updated the manuscript and figures accordingly.

    1. The good part was the immediate visual feedback in a GUI editor where you couldn't break anything by forgetting to close an XML tag! And you didn't even have to know all the types to type in because you had a visible list of UI elements you could pick from
    1. Reviewer #1 (Public review):

      The objectives of this research are to understand how key selector transcription factors, Tal1, Gata2, Gata3, determine GABAergic vs glutamatergic neuron fate from the rhombencephalic V2 precursor domain and how their spatiotemporal expression is controlled by upstream regulators. Toward these goals, the authors have generated an impressive array of scRNA, scATAC-seq, and CUT&Tag datasets obtained from dissociated E12.5 ventral R1 dissections. The rV2 was subsetted with well-known markers. The authors use an extensive set of computational approaches to identify temporal patterns of chromatin accessibility, TF motif binding activities (footprints), gene expression and regulatory motifs at the different selector gene loci. These analyses are used to predict upstream regulators, candidate accessible CREs, and DNA binding motifs through which the selectors may be controlled in rV2 by upstream regulators. Further analyses predict auto- and cross-regulatory interactions for maintenance of selector expression and the downstream effectors of alternative transmitter identities controlled by the selectors. The authors have achieved their aim of making predictions about upstream and downstream selector TF regulatory networks; their conclusions and predictions are largely well supported. The work clearly illustrates the daunting gene regulatory complexity likely at play in controlling rV2 transmitter fate.

      This is data-rich study and a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators and motifs identified in the study. The strengths of this work are the overall high quality of the datasets and in depth analyses. Through its comprehensive data and predictions, it is likely to have impact in advancing the understanding of GABAergic vs glutamatergic neuron fate decisions. The authors present a "simplified" gene regulatory model. However, the model does not illustrate the complexity of potential stage-specific upstream TF interactions with Tal1 and Vsx2 selector genes uncovered in TF footprinting analyses. While this seems nearly impossible to achieve given the plethora of potential functional TF inputs, the authors should consider assembling a focussed model by selectively illustrating the most robust, evidence-backed upstream TF input predictions, which are considered the strongest candidates for future hypothesis-driven perturbation experiments. It seems Insm1, Sox4, E2f1, Ebf1 and Tead2 TFs might be the strongest upstream candidates for future testing of Tal1 activation given the extensive analyses of their spatiotemporal expression patterns relative to Tal1, presented in Fig 4.

    2. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The objective of this research is to understand how the expression of key selector transcription factors, Tal1, Gata2, Gata3, involved in GABAergic vs glutamatergic neuron fate from a single anterior hindbrain progenitor domain is transcriptionally controlled. With suitable scRNAseq, scATAC-seq, CUT&TAG, and footprinting datasets, the authors use an extensive set of computational approaches to identify putative regulatory elements and upstream transcription factors that may control selector TF expression. This data-rich study will be a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators identified in the study. The data are displayed in some of the main and supplemental figures in a way that makes it difficult to appreciate and understand the authors' presentation and interpretation of the data in the Results narrative. Primary images used for studying the timing and coexpression of putative upstream regulators, Insm1, E2f1, Ebf1, and Tead2 with Tal1 are difficult to interpret and do not convincingly support the authors' conclusions. There appears to be little overlap in the fluorescent labeling, and it is not clear whether the signals are located in the cell soma nucleus.

      Strengths:

      The main strength is that it is a data-rich compilation of putative upstream regulators of selector TFs that control GABAergic vs glutamatergic neuron fates in the brainstem. This resource now enables future perturbation-based hypothesis testing of the gene regulatory networks that help to build brain circuitry.

      We thank Reviewer #1 for the thoughtful assessment and recognition of the extensive datasets and computational approaches employed in our study. We appreciate the acknowledgment that our efforts in compiling data-rich resources for identifying putative regulators of key selector transcription factors (TFs)—Tal1, Gata2, and Gata3—are valuable for future hypothesis-driven research.

      Weaknesses:

      Some of the findings could be better displayed and discussed.

      We acknowledge the concerns raised regarding the clarity and interpretability of certain figures, particularly those related to expression analyses of candidate upstream regulators such as Insm1, E2f1, Ebf1, and Tead2 in relation to Tal1. We agree that clearer visualization and improved annotation of fluorescence signals are crucial to accurately support our conclusions. In our revised manuscript, we will enhance image clarity and clearly indicate sites of co-expression for Tal1 and its putative regulators, ensuring the results are more readily interpretable. Additionally, we will expand explanatory narratives within the figure legends to better align the figures with the results section.

      Reviewer #2 (Public review):

      Summary:

      In the manuscript, the authors seek to discover putative gene regulatory interactions underlying the lineage bifurcation process of neural progenitor cells in the embryonic mouse anterior brainstem into GABAergic and glutamatergic neuronal subtypes. The authors analyze single-cell RNA-seq and single-cell ATAC-seq datasets derived from the ventral rhombomere 1 of embryonic mouse brainstems to annotate cell types and make predictions or where TFs bind upstream and downstream of the effector TFs using computational methods. They add data on the genomic distributions of some of the key transcription factors and layer these onto the single-cell data to get a sense of the transcriptional dynamics.

      Strengths:

      The authors use a well-defined fate decision point from brainstem progenitors that can make two very different kinds of neurons. They already know the key TFs for selecting the neuronal type from genetic studies, so they focus their gene regulatory analysis squarely on the mechanisms that are immediately upstream and downstream of these key factors. The authors use a combination of single-cell and bulk sequencing data, prediction and validation, and computation.

      We also appreciate the thoughtful comments from Reviewer #2, highlighting the strengths of our approach in elucidating gene regulatory interactions that govern neuronal fate decisions in the embryonic mouse brainstem. We are pleased that our focus on a critical cell-fate decision point and the integration of diverse data modalities, combined with computational analyses, has been recognized as a key strength.

      Weaknesses:

      The study generates a lot of data about transcription factor binding sites, both predicted and validated, but the data are substantially descriptive. It remains challenging to understand how the integration of all these different TFs works together to switch terminal programs on and off.

      Reviewer #2 correctly points out that while our study provides extensive data on predicted and validated transcription factor binding sites, clearly illustrating how these factors collectively interact to regulate terminal neuronal differentiation programs remains challenging. We acknowledge the inherently descriptive nature of the current interpretation of our combined datasets.

      In our revision, we will clarify how the different data types support and corroborate one another, highlighting what we consider the most reliable observations of TF activity. Additionally, we will revise the discussion to address the challenges associated with interpreting the highly complex networks of interactions within the gene regulatory landscape.

      We sincerely thank both reviewers for their constructive feedback, which we believe will significantly enhance the quality and accessibility of our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The results in Figure 3 and several associated supplements are mainly a description/inventory of putative CREs some of which are backed to some extent by previous transgenic studies. But given the way the authors chose to display the transgenic data in the Supplements, it is difficult to fully appreciate how well the transgenic data provide functional support. Take, for example, the Tal +40kb feature that maps to a midbrain enhancer: where exactly does +40kb map to the enhancer region? Is Tal +40kb really about 1kb long? The legend in Supplemental Figure 6 makes it difficult to interpret the bar charts; what is the meaning of: features not linked to gene -Enh? Some of the authors' claims are not readily evident or are inscrutable. For example, Tal locus features accessible in all cell groups are not evident (Fig 2A,B). Other cCREs are said to closely correlate with selector expression for example, Tal +.7kb and +40kb. However, inspection of the data seems to indicate that the two cCREs have very different dynamics and only +40kb seems to correlate with the expression track above it. Some features are described redundantly such as the Gata2 +22 kb, +25.3 kb, and +32.8 kb cCREs above and below the Gata3 cCRE. What is meant by: The feature is accessible at 3' position early, and gains accessibility at 5' positions ... Detailed feature analysis later indicated the binding of Nkx6-1 and Ascl1 that are expressed in the rV2 neuronal progenitors, at 3' positions, and binding of Insm1 and Tal1 TFs that are activated in early precursors, at 5' positions (Figure 3C).

      To allow easier assessment of the overlap of the features described in this study in reference to the transgenic studies, we have added further information about the scATAC features, cCREs and previously published enhancers, as well as visual schematics of the feature-enhancer overlaps in the Supplementary table 4. The Supplementary Table 4 column contents are also now explained in detail in the table legend (under the table). We hope those changes make the feature descriptions clearer. To answer the reviewer's question about the Tal1+40kb enhancer, the length of the published enhancer element is 685 bp and the overlapping scATAC feature length is 2067 bp (Supplementary Table 3, sheet Tal1, row 103).

      The legend and the chart labelling in the Supplementary Figure 5 (formerly Supplementary figure 6) have been elaborated, and the shown categories explained more clearly.

      Regarding the features at the Tal1 locus, the text has been revised and the references to the features accessible in all cell groups were removed. These features showed differences in the intensity of signal but were accessible in all cell groups. As the accessibility of these features does not correlate with Tal1 expression, they are of less interest in the context of this paper.

      The gain in accessibility of the +0.7kb and +40 kb features correlates with the onset of Tal1 RNA expression. This is now more clearly stated in the text, as " For example, the gain in the accessibility of Tal1 cCREs at +0.7 and +40 kb correlated temporally with the expression of Tal1 mRNA (Figure 2B), strongly increasing in the earliest GABAergic precursors (GA1) and maintained at a lower level in the more mature GABAergic precursor groups (GA2-GA6), " (Results, page 4). The reviewer is right that the later dynamics of the +0.7 and +40 cCREs differ and this is now stated more clearly in the text (Results, page 5, last chapter).

      The repetition in the description of the Gata2 +22 kb, +25.3 kb, and +32.8 kb cCREs has been removed.

      The Tal1 +23 kb cCRE showed within-feature differences in accessibility signal. This is explained in the text on page 5, referring to the relevant figure 2A, showing the accessibility or scATAC signal in cell groups and the features labelled below, and 3C, showing the location of the Nkx6-1 and Ascl1 binding sites in this feature: "The Tal1 +23 kb cCRE contained two scATAC-seq peaks, having temporally different patterns of accessibility. The feature is accessible at 3' position early, and gains accessibility at 5' positions concomitant with GABAergic differentiation (Figure 2A, accessibility). Detailed feature analysis later indicated that the 3' end of this feature contains binding sites of Nkx6-1 and Ascl1 that are expressed in the rV2 neuronal progenitors, while the 5' end contains TF binding sites of Insm1 and Tal1 TFs that are activated in early precursors (described below, see Figure 3C)."

      (2) Supplementary Figure 3 is not presented in the Results.

      Essential parts of previous Supplementary Figure 3 have been incorporated into the Figure 4 and the previous Supplementary Figure omitted.

      (3) The significance of Figure 3 and the many related supplements is difficult to understand. A large number of footprints with wide-ranging scores, many very weak or unbound, are displayed in the various temporal cell groups in different epigenomic regions of Tal1 and Vsx2. The footprints for GA1 and Ga2 are combined despite Tal1 showing stronger expression in GA1 and stronger accessibility (Figure 2). Many possibilities are outlined in the Results for how the many different kinds of motifs in the cCREs might bind particular TFs to control downstream TF expression, but no experiments are performed to test any of the possibilities. How well do the TOBIAS footprints align with C&T peaks? How was C&T used to validate footprints? Are Gata2, 3, and Vsx2 known to control Tal1 expression from perturbation experiments?

      Figure 3 and related supplements present examples of the primary data and summarise the results of comprehensive analysis. The methods of identifying the selector TF regulatory features and the regulators are described in the Methods (Materials and Methods page 16). Briefly, the correlation between feature accessibility and selector TF RNA expression (assessed by the LinkPeaks score and p-value) were used to select features shown in the Figure 3.

      We are aware of differences in Tal1 expression and accessibility between GA1 and GA2. However, number of cells in GA2 was not high enough for reliable footprint calculations and therefore we opted for combining related groups throughout the rV2 lineage for footprinting.

      As suggested, CUT&Tag could be used to validate the footprinting results with some restrictions. In the revised manuscript, we included analysis of CUT&Tag peak location and footprints similarly to an earlier study (Eastman et al. 2025). In summary, we analysed whether CUT&Tag peaks overlap locations in which footprinting was also recognized and vice versa. Per each TF with CUT&Tag data we calculated a) Total number of CUT&Tag consensus peaks b) Total number of bound TFBS (footprints) c) Percentage of CUT&Tag overlapping bound TFBS d) Percentage of bound TFBS overlapping CUT&Tag. These results are shown in Supplementary Table 6 and in Supplementary figure 11 with analysis described in Methods (Materials and Methods, page 19). There is considerable overlap between CUT&Tag peaks and bound footprints, comparable to one shown in Eastman et al. 2025. However, these two methods are not assumed to be completely matching for several reasons: binding by related/redundant TFs, antigen masking in the TF complex, chromatin association without DNA binding, etc. In addition, some CUT&Tag peaks with unbound footprints could arise from non-rV2 cells that were part of the bulk CUT&Tag analysis but not of the scATAC footprint analysis.

      The evidence for cross-regulation of selector genes and the regulation of Tal1 by Gata2, Gata3 and Vsx2 is now discussed (Discussion, chapter Selector TFs directly autoregulate themselves and cross-regulate each other, page 12-13). The regulation of Tal1 expression by Vsx2 has, to our knowledge, not been earlier studied.

      (4) Figure 4 findings are problematic as the primary images seem uninterpretable and unconvincing in supporting the authors' claims. There is a lack of clear evidence in support of TF coexpression and that their expression precedes Tal1.

      Figure 4 has been entirely redrawn with higher resolution images and a more logical layout. In the revised Figure 4, only the most relevant ISH images are shown and arrowheads are added showing the colocalization of the mRNA in the cell cytoplasm. Next to the plots of RNA expression along the apical-basal axis of r1, an explanatory image of the quantification process is added (Figure 4D).

      (5) What was gained from also performing ChromVAR other than finding more potential regulators and do the results of the two kinds of analyses corroborate one another? What is a dual GATA:TAL BS?

      Our motivation for ChromVAR analysis is now more clearly stated in the text (Results, page 9): “In addition to the regulatory elements of GABAergic fate selectors, we wanted to understand the genome-wide TF activity during rV2 neuron differentiation. To this aim we applied ChromVAR (Schep et al., 2017)" Also, further explanation about the Tal1and Gata binding sites has been added in this chapter (Results, page 9).

      The dual GATA:Tal BS (TAL1.H12CORE.0.P.B) is a 19-bp motif that consists of an E-box and GATA sequence, and is likely bound by heteromeric Gata2-Tal1 TF complex, but may also be bound by Gata2, Gata3 or Tal1 TFs separately. The other TFBSs of Tal1 contain a strong E-box motif and showed either a lower activity (TAL1.H12CORE.1.P.B) or an earlier peak of activity in common precursors with a decline after differentiation (TAL1.H12CORE.2.P.B) (Results, page 9).

      (6) The way the data are displayed it is difficult to see how the C&T confirmed the binding of Ebf1 and Insm1, Tal1, Gata2, and Gata3 (Supplementary Figures 9-11). Are there strong footprints (scores) centered at these peaks? One can't assess this with the way the displays are organized in Figure 3. What is the importance of the H3K4me3 C&T? Replicate consistency, while very strong for some TFs, seems low for other TFs, e.g. Vsx2 C&T on Tal1 and Gata2. The overlaps do not appear very strong in Supplementary Figure 10. Panels are not letter labeled.

      We have added an analysis of footprint locations within the CUT&Tag peaks (Supplementary Figure 11). The Figure shows that the footprints are enriched at the middle regions of the CUT&Tag peaks, which is expected if TF binding at the footprinted TFBS site was causative for the CUT&Tag peaks.

      The aim of the Supplementary Figures 9-11 (Supplementary Figures 8-10 in the revised manuscript) was to show the quality and replicability of the CUT&Tag.

      The anti-H3K4me3 antibody, as well as the anti-IgG antibody, was used in CUT&Tag as part of experiment technical controls. A strong CUT&Tag signal was detected in all our CUT&Tag experiments with H3K4me3. The H3K4me3 signal was not used in downstream analyses.

      We have now labelled the H3K4me3 data more clearly as "positive controls" in the Supplementary Figure 8. The control samples are shown only on Supplementary Figure 8 and not in the revised Supplementary Figure 10, to avoid repetition. The corresponding figure legends have been modified accordingly.

      To show replicate consistency, the genome view showing the Vsx2 CUT&Tag signal at Gata2 gene has been replaced by a more representative region (Supplementary Figure 8, Vsx2). The Vsx2 CUT&Tag signal at the Gata2 locus is weak, explaining why the replicability may have seemed low based on that example.

      Panel labelling is added on Supplementary Figures S8, S9, S10.  

      (7) It would be illuminating to present 1-2 detailed examples of specific target genes fulfilling the multiple criteria outlined in Methods and Figure 6A.

      We now present examples of the supporting evidence used in the definition of selector gene target features and target genes. The new Supplementary Figure 12 shows an example gene Lmo1 that was identified as a target gene of Tal1, Gata2 and Gata3.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors perform CUT&Tag to ask whether Tal1 and other TFs indeed bind putative CREs computed. However, it is unclear whether some of the antibodies (such as Gata3, Vsx2, Insm1, Tead2, Ebf1) used are knock-out validated for CUT&Tag or a similar type of assay such as ChIP-seq and therefore whether the peaks called are specific. The authors should either provide specificity data for these or a reference that has these data. The Vsx2 signal in Figure S9 looks particularly unconvincing.

      Information about the target specificity of the antibodies can be found in previous studies or in the product information. The references to the studies have been now added in the Methods (Materials and Methods, CUT&Tag, pages 18-19). Some of the antibodies are indeed not yet validated for ChIP-seq, Cut-and-run or CUT&Tag. This is now clearly stated in the Materials and Methods (page 19): "The anti-Ebf1, anti-Tal1, anti-IgG and anti-H3K4me3 antibodies were tested on Cut-and-Run or ChIP-seq previously (Boller et al., 2016b; Courtial et al., 2012) and Cell Signalling product information). The anti-Gata2 and anti-Gata3 antibodies are ChIP-validated ((Ahluwalia et al., 2020a) and Abcam product information). There are no previous results on ChIP, ChIP-seq or CUT&Tag with the anti-Insm1, anti-Tead2 and anti-Vsx2 antibodies used here. The specificity and nuclear localization have been demonstrated in immunohistochemistry with anti-Vsx2 (Ahluwalia et al., 2020b) and anti-Tead2 (Biorbyt product information). We observed good correlation between replicates with anti-Insm1, similar to all antibodies used here, but its specificity to target was not specifically tested". We admit that specificity testing with knockout samples would increase confidence in our data. However, we have observed robust signals and good replicability in the CUT&Tag for the antibodies shown here.

      Vsx2 CUT&Tag signal at the loci previously shown in Supplementary Figure S9 (now Supplementary Figure 8) is weak, explaining why the replicability may seem low based on those examples. The genome view showing the Vsx2 CUT&Tag signal at Gata2 gene locus in Supplementary Figure 8 (previously Supplementary figure 9) has now been replaced by a view of Vsx2 locus that is more representative of the signal.

      (2) It is unclear why the authors chose to focus on the transcription factor genes described in line 626 as opposed to the many other putative TFs described in Figure 3/Supplementary Figure 8. This is the major challenge of the paper - the authors are trying to tell a very targeted story but they show a lot of different names of TFs and it is hard to follow which are most important.

      We agree with the reviewer that the process of selection of the genes of interest is not always transparent. We are aware that interpretations of a paper are based on the known functions of the putative regulatory TFs, however additional aspects of regulation could be revealed even if the biological functions of all the TFs were known. This is now stated in the Discussion “Caveats of the study” chapter. It would be relevant to study all identified candidate genes, but as often is the case, our possibilities were limited by the availability of materials (probes, antibodies), time, and financial resources. In the revised manuscript, we now briefly describe the biological processes related to the selected candidate regulatory TFs of the Tal1 gene (Results, page 8, "Pattern of expression of the putative regulators of Tal1 in the r1"). We hope this justifies the focus on them in our RNA co-expression analysis. The TFs analysed by RNAscope ISH are examples, which demonstrate alignment of the tissue expression patterns with the scRNA-seq data, suggesting that the dynamics of gene expression detected by scRNA-seq generally reflects the pattern of expression in the developing brainstem.

      (3) How is the RNA expression level in Figure 5B and 4D-L computed? These are the clusters defined by scATAC-seq. Is this an inferred RNA expression? This should be made more clear in the text.

      The charts in Figures 5B and 4G,H,I show inferred RNA expression. The Y-axis labels have now been corrected and include the term inferred’. RNA expression in the scATAC-seq cell clusters is inferred from the scRNA-seq cells after the integration of the datasets.

      (4) The convergence of the GABA TFs on a common set of target genes reminds me of a nice study from the Rubenstein lab PMID: 34921112 that looked at a set of TFs in cortical progenitors. This might be a good comparison study for the authors to use as a model to discuss the convergence data.

      We thank the reviewer for bringing this article to our attention. The article is now discussed in the manuscript (Discussion, page 11).

      (5) The data in Figure 4, the in-situ figure, needs significant work. First, the images especially B, F, and J appear to be of quite low resolution, so they are hard to see. It is unclear exactly what is being graphed in C, G, and K and it does not seem to match the text of the results section. Perhaps better labeling of the figure and a more thorough description will make it clear. It is not clear how D, H, and L were supposed to relate to the images - presumably, this is a case where cell type is spatially organized, but this was unclear in the text if this is known and it needs to be more clearly described. Overall, as currently presented this figure does not support the descriptions and conclusions in the text.

      Figure 4 has been entirely redrawn with higher resolution images and more logical layout. In the revised Figure 4, the ISH data and the quantification plots are better presented; arrows showing the colocalization of the mRNA in the cell cytoplasm were added; and an explanatory image of the quantification process is added on (D).

      Minor points

      (1) Helpful if the authors include scATAC-seq coverage plots for neuronal subtype markers in Figure 1/S1.

      We are unfortunately uncertain what is meant with this request. Subtype markers in Figure 1/S1 scATAC-seq based clusters are shown from inferred RNA expression, and therefore these marker expression plots do not have any coverage information available.

      (2) The authors in line 429 mention the testing of features within TADs. They should make it clear in the main text (although tadmap is mentioned in the methods) that this is a prediction made by aggregating HiC datasets.

      Good point and that this detail has been added to both page 3 and 16.

      (3) The authors should include a table with the phastcons output described between lines 511 and 521 in the main or supplementary figures.

      We have now clarified int the text that we did not recalculate any phastcons results, we merely used already published and available conservation score per nucleotide as provided by the original authors (Siepel et al. 2005). (Results, page 5: revised text is " To that aim, we used nucleotide conservation scores from UCSC (Siepel et al., 2005). We overlaid conservation information and scATAC-seq features to both validate feature definition as well as to provide corroborating evidence to recognize cCRE elements.")

      (4) It is very difficult to read the names of the transcription factor genes described in Figure 3B-D and Supplementary Figure 8 - it would be helpful to resize the text.

      The Figures 3B-D and Supplementary Figure 7 (former Supplementary figure 8) have been modified, removing unnecessary elements and increasing the size of text.

      (5) It is unclear what strain of mouse is used in the study - this should be mentioned in the methods.

      Outbred NMRI mouse strain was used in this study. Information about the mouse strain is added in Materials and Methods: scRNA-seq samples (page 14), scATAC-seq samples (page 15), RNAscope in situ hybridization (page 17) and CUT&Tag (page 18).

      (6) Text size in Figure 6 should be larger. R-T could be moved to a Supplementary Figure.

      The Figure 6 has been revised, making the charts clearer and the labels of charts larger. The Figure 6R-S have been replaced by Supplementary table 8 and the Figure 6T is now shown as a new Figure (Figure 7).

      Additional corrections in figures

      Figure 6 D,I,N had wrong y-axis scale. It has been corrected, though it does not have an effect on the interpretation of the data as Pos.link and Neg.link counts were compared to each other’s (ratio).

      On Figure 2B, the heatmap labels were shifted making it difficult to identify the feature name per row. This is now corrected.

    1. Reviewer #3 (Public review):

      Summary:

      The study explores the cellular and circuit features that distinguish dentate gyrus semilunar granule cells and granule cells activated during contextual memory formation. The authors tag memory and enriched environment-activated dentate granule cells and semilunar granule cells and show their reactivation in an appropriate context a week later. They perform patch clamp recordings from activated and surrounding neurons to understand the cellular driving of the selective activation of semilunar granule cells and granule cells. Authors perform dual patch clamp recordings from various pairs of labeled semilunar granule cells, labeled granule cells, unlabeled granule cells, and unlabeled semilunar granule cells. The sustained firing of semilunar granule cells explained their preferential activation. In addition, activated neurons received correlated inputs.

      Strengths:

      The authors confirmed the engram cell properties of activated semilunar granule cells and granule cells in two different paradigms, validating these findings using an enriched environment paradigm.

      The authors carefully separate semilunar granule cells from granule cells, using electrophysiology and morphology. Cell filling to confirm morphology further strengthens confidence.

      The dual patch recordings, which are technically challenging, are carefully performed, and the presence of synaptic activity is confirmed.

      The authors report that sEPSCs recorded from labelled sGCS are more frequent, higher in amplitude, and temporally correlated than their counterparts.

      The authors provide evidence that lateral inhibition is not playing a role in the selective activation of sGCs during contextual learning.

      Exclusive use of slice physiology limits some of these conclusions due to the shearing of connections during the slicing process.

    1. Reviewer #2 (Public review):

      In this manuscript, Mella et al. investigate the effect of GFP tagging on the localization and stability of the nuclear-localized tail-anchored (TA) protein Emerin. A previous study from this group demonstrated that C-terminally GFP-tagged Emerin traffics to the plasma membrane and is eventually targeted to lysosomes for degradation. It has been suggested that the C-terminal tagging of TA proteins may shift their insertion from the post-translational TRC/GET pathway to the co-translational SRP-mediated pathway. Consistent with this, the authors confirm that C-terminal GFP tagging causes Emerin to mislocalize to the plasma membrane and subsequently to lysosomes.

      In this study, they investigate the mechanism underlying this misrouting. By manipulating the cytosolic domain and the hydrophobicity of the transmembrane domain (TMD), the authors show that an ER retention sequence and increased TMD hydrophobicity contribute to Emerin's trafficking through the secretory pathway.

      This reviewer had previously raised the concern that the potential role of the GFP tag within the ER lumen in promoting secretory trafficking was not addressed. In the revised manuscript, the authors respond to this concern by examining the co-localization of Emerin-GFP with the ER exit site marker Sec31A. Their data show that the presence of the C-terminal GFP tag increases Emerin's propensity to engage ER exit sites, supporting the conclusion that GFP tagging promotes its entry into the secretory pathway.

    2. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors revisit the specific domains/signals required for the redirection of an inner nuclear membrane protein, emerin, to the secretory pathway. They find that epitope tagging influences protein fate, serving as a cautionary tale for how different visualisation methods are used. Multiple tags and lines of evidence are used, providing solid evidence for the altered fate of different constructs.

      Strengths:

      This is a thorough dissection of domains and properties that confer INM retention vs secretion to the PM/lysosome, and will serve the community well as a caution regarding the placement of tags and how this influences protein fate.

      Weaknesses:

      Biogenesis pathways are not explored experimentally: it would be interesting to know if the lysosomal pool arrives there via the secretory pathway (eg by engineering a glycosylation site into the lumenal domain) or by autophagy, where failed insertion products may accumulate in the cytoplasm and be degraded directly from cytoplasmic inclusions.

      This manuscript is a Research Advance that follows previous work that we published in eLife on this topic (Buchwalter et al., eLife 2019; PMID 31599721). In that prior publication, we showed that emerin-GFP arrives at the lysosome by secretion and exposure at the PM, followed by internalization. While we state these previous findings in this manuscript, we did not explicitly restate here how we came to that conclusion. In the 2019 study, we (i) engineered in a glycosylation site, which demonstrated that emerin-GFP receives complex, Endo H-resistant N-glycans, indicating passage through the Golgi; (ii) performed cell surface labeling, which confirmed that emerin accesses the PM; and interfered with (iii) the early secretory pathway using brefeldin A and with (iv) lysosomal function using bafilomycin A1. Further, we ruled out autophagy as a major contributor to emerin trafficking by treating cells with the PI3K inhibitor KU55933, which had no effect on emerin’s lysosomal delivery.

      It would be helpful if the topology of constructs could be directly demonstrated by pulse-labelling and protease protection. It's possible that there are mixed pools of both topologies that might complicate interpretation.

      We demonstrate that emerin’s TMD inserts in a tail-anchored orientation (C terminus in ER lumen) by appending a GFP tag to either the N or C terminus, followed by anti-GFP antibody labeling of unpermeabilized cells (Fig. 1G). This shows the preferred topology of emerin’s wild type TMD.

      As the reviewer points out, it is possible that our manipulations of the TMD sequence (Fig. 2D-E) alter its preferred topology of membrane insertion. We addressed this question by performing anti-GFP and anti-emerin antibody labeling of the less hydrophobic TMD mutant (EMD-TMDm-GFP) after selective permeabilization of the plasma membrane (Figure 2 supplement, panel F). If emerin biogenesis is normal, the GFP tag should face the ER lumen while the emerin antibody epitope should be cytosolic. If the fidelity of emerin’s membrane insertion is impaired, the GFP tag could be exposed to the cytosol (flipped orientation), which would be detected by anti-GFP labeling upon plasma membrane permeabilization. We find that the C-terminal GFP tag is completely inaccessible to antibody when the PM is selectively permeabilized with digitonin, but is readily detected when all intracellular membranes are permeabilized with Triton-X-100. These data confirm that mutating emerin’s TMD does not disrupt the protein’s membrane topology.

      Reviewer #2 (Public review):

      In this manuscript, Mella et al. investigate the effect of GFP tagging on the localization and stability of the nuclear-localized tail-anchored (TA) protein Emerin. A previous study from this group showed that C-terminally GFP-tagged Emerin protein traffics to the plasma membrane and reaches lysosomes for degradation. It is suggested that the C-terminal tagging of tail-anchored proteins shifts their insertion from the post-translational TRC/GET pathway to the co-translational SRP-mediated pathway. The authors of this paper found that C-terminal GFP tagging causes Emerin to localize to the plasma membrane and eventually reach lysosomes. They investigated the mechanism by which Emerin-GFP moves to the secretory pathway. By manipulating the cytosolic domain and the hydrophobicity of the transmembrane domain (TMD), the authors identify that an ER retention sequence and strong TMD hydrophobicity contribute to Emerin trafficking to the secretory pathway. Overall, the data are solid, and the knowledge will be useful to the field. However, the authors do not fully answer the question of why C-terminally GFP-tagged Emerin moves to the secretory pathway. Importantly, the authors did not consider the possible roles of GFP in the ER lumen influencing Emerin trafficking to the secretory pathway.

      Reviewer #2 (Recommendations for the authors):

      Major concerns:

      (1) The authors suggest that an ER retention sequence and high hydrophobicity of Emerin TMD contribute to its trafficking to the secretory pathway. However, these two features are also present in WT Emerin, which correctly localizes to the inner nuclear membrane. Additionally, the authors show that the ER retention sequence is normally obscured by the LEM domain. The key difference between WT Emerin and Emerin-GFP is the presence of GFP in the ER lumen. The authors missed investigating the role of GFP in the ER lumen in influencing Emerin trafficking to the secretory pathway. It is likely that COPII carrier vesicles capture GFP protein in the lumen as part of the bulk flow mechanism for transport to the Golgi compartment. The authors could easily test this by appending a KDEL sequence to the C-terminus of GFP; this should now redirect the protein to the nucleus.

      We agree with the reviewer’s point that the presence of lumenal GFP somehow promotes secretion of emerin from the ER, likely at the stage of enhancing its packaging into COPII vesicles. We struggle to think about how to interpret the KDEL tagging experiment that the reviewer proposes, as the KDEL receptor predominantly recycles soluble proteins from the Golgi to the ER, while emerin is a membrane protein; and we have shown that emerin already contains a putative COPI-interacting RRR recycling motif in its cytosolic domain.

      Nevertheless, we agree with the reviewer that it is worthwhile to test the possibility that addition of GFP to emerin’s C-terminus promotes capture by COPII vesicles. We have evaluated this question by performing temperature block experiments to cause cargo accumulation within stalled COPII-coated ER exit sites, then comparing the propensity of various untagged and tagged emerin variants to enrich in ER exit sites as judged by colocalization with the COPII subunit Sec31a. These data now appear in Figure 4 supplement 1. These experiments indicate that emerin-GFP samples ER exit sites significantly more than does untagged emerin. Further, the ER exit site enrichment of emerin-GFP is dampened by shortening emerin’s TMD. We do not see further enrichment of any emerin variant in ER exit sites when COPII vesicle budding is stalled by low temperature incubation, implying that emerin lacks any positive sorting signals that direct its selective enrichment in COPII vesicles. Altogether, these data indicate that both emerin’s long and hydrophobic TMD and the addition of a lumenal GFP tag increase emerin’s propensity to sample ER exit sites and undergo non-selective, “bulk flow” ER export.

      (2) The authors nicely demonstrate that the hydrophobicity of Emerin TMD plays a role in its secretory trafficking. I wonder if this feature may be beneficial for cells to degrade newly synthesized Emerin via the lysosomal pathway during mitosis, as the nuclear envelope breakdown may prevent the correct localization of newly synthesized Emerin. The authors could test Emerin localization during mitosis. Such findings could add to the physiological significance of their findings. At the minimum, they should discuss this possibility.

      We thank the reviewer for this insightful suggestion. It is attractive to speculate that secretory trafficking might enable lysosomal degradation of emerin during mitosis, when its lamin anchor has been depolymerized. However, we think it is unlikely that mitotic trafficking contributes significantly to the turnover flux of untagged emerin; if it did, we would expect to see higher steady state levels and/or slowed turnover of emerin mutants that cannot traffic to the lysosome. We did not observe this outcome. Instead, mutations that enhance (RA) or impair (TMDm) emerin trafficking had no effect on the untagged protein’s steady-state levels (Fig. 4G).

      Minor concerns:

      (1) On page 7, the authors note that "FLAG-RA construct was not poorly expressed relative to WR, in contrast with RA-GFP (Figures S3C, 2I)." The expression levels of these proteins cannot be compared across two different blots.

      We apologize for this confusion; we were implying two distinct comparisons to internal controls present on each blot. We have adjusted the text to read “FLAG-RA construct was not poorly expressed relative to FLAG-WT (Fig. S3C) in contrast to RA-GFP compared to WT-GFP (Fig. 2I).”

      (2) In the first paragraph of the discussion, the authors suggest that aromatic amino acids facilitate trafficking to lysosomes. However, they only replaced aromatic amino acids with alanine residues. If they want to make this claim, they should test other amino acids, particularly hydrophobic amino acids such as leucine.

      The reviewer may be inferring more import from our statement than we intended. We focused on these aromatic residues within the TMD because they contribute strongly to its overall hydrophobicity. Experimentally, we determined that nonconservative alanine substitutions of these aromatic residues inhibited trafficking. We do not state and do not intend to imply that the aromatic character of these residues specifically influences trafficking propensity, and we agree with the reviewer that to test such a question would require additional substitutions with non-aromatic hydrophobic amino acids.

      We realize that our phrasing may have been misleading by opening with discussion of the aromatic amino acids; in the revised discussion paragraph, we instead lead with discussion of TMD hydrophobicity, and then state how the specific substitutions we made affect trafficking.

      Reviewing Editor comments:

      While reviewer 1 did not provide any recommendations to the authors, I agree with this reviewer that the authors should validate the topology of their tagged proteins (at least for the one used to draw key conclusions). Given that Emerin is a tail-anchored protein, having a big GFP tag at the C-terminus could mess up ER insertion, causing the protein to take a wrong topology or even be mislocalized in the cytosol, particularly under overexpression conditions. In either case, it can be subject to quality control-dependent clearance via either autophagy, ERphagy, or ER-to-lysosome trafficking. I think that the authors should try a few straightforward experiments such as brefeldin A treatment or dominant negative Sar1 expression to test whether blocking conventional ER-to-Golgi trafficking affects lysosomal delivery of Emerin. I also think that the authors should discuss their findings in the context of the RESET pathway reported previously (PMID: 25083867). The ER stress-dependent trafficking of tagged Emerin to the PM and lysosomes appears to follow a similar trafficking pattern as RESET, although the authors did not demonstrate that Emerin traffic to lysosomes via the PM. In this regard, they should tone down their conclusion and discuss their findings in the context of the RESET pathway, which could serve as a model for their substrate.

      We agree that validating the topology of TMD mutants is important, and now include these experiments in the revised manuscript (please see our response to Reviewer 1 above).

      Please see our response to Reviewer 1’s public review; we previously determined that emerin-GFP undergoes ER-to-Golgi trafficking (see our 2019 study).

      We recognize the major parallels between our findings and the RESET pathway. In our 2019 study, we found that similarly to other RESET cargoes, emerin-GFP travels through the secretory pathway, is exposed at the PM, and is then internalized and delivered to lysosomes. We discussed these strong parallels to RESET in our 2019 study. In this revised manuscript, we now also point out the parallels between emerin trafficking and RESET and cite the 2014 study by Satpute-Krishnan and colleagues (PMID 25083867)

    1. Reviewer #2 (Public review):

      Summary:

      The authors developed a cell-type specific fluorescence-tagging approach using a CRISPR/Cas9 induced spilt-GFP reconstitution system to visualize endogenous Bruchpilot (BRP) clusters as presynaptic active zones (AZ) in specific cell types of the mushroom body (MB) in the adult Drosophila brain. This AZ profiling approach was implemented in a high-throughput quantification process, allowing for the comparison of synapse profiles within single cells, cell types, MB compartments, and between different individuals. The aim is to analyse in more detail neuronal connectivity and circuits in this centre of associative learning. These are notoriously difficult to investigate due to the density of cells and structures within a cell. The authors detect and characterize cell-type-specific differences in BRP-dependent profiling of presynapses in different compartments of the MB, while intracellular AZ distribution was found to be stereotyped. Next to the descriptive part characterizing various AZ profiles in the MB, the authors apply an associative learning assay and detect consequent AZ re-organisation.

      Strengths:

      The strength of this study lies in the outstanding resolution of synapse profiling in the extremely dense compartments of the MB. This detailed analysis will be the entry point for many future analyses of synapse diversity in connection with functional specificity to uncover the molecular mechanisms underlying learning and memory formation and neuronal network logics. Therefore, this approach is of high importance for the scientific community and a valuable tool to investigate and correlate AZ architecture and synapse function in the CNS.

      Weaknesses:

      The results and conclusions presented in this study are, in many aspects, well-supported by the data presented. To further support the key findings of the manuscript, additional controls, comments, and possibly broader functional analysis would be helpful. In particular:

      (1) All experiments in the study are based on spilt-GFP lines (BRP:GFP11 and UAS-GFP1-10). The Materials and Methods section does not contain any cloning strategy (gRNA, primer, PCR/sequencing validation, exact position of tag insertion, etc.) and only refers to a bioRxiv publication. It might be helpful to add a Materials and Methods section (at least for the BRP:GFP11 line). Additionally, as this is an on locus insertion the in BRP-ORF, it needs a general validation of this line, including controls (Western Blot and correlative antibody staining against BRP) showing that overall BRP expression is not compromised due to the GFP insertion and localizes as BRP in wild type flies, that flies are viable, have no defects in locomotion and learning and memory formation and MB morphology is not affected compared to wild type animals.

      (2) Several aspects of image acquisition and high-throughput quantification data analysis would benefit from a more detailed clarification.

      a) For BRP cluster segmentation it is stated in the Materials and Methods state, that intensity threshold and noise tolerance were "set" - this setting has a large effect on the quantification, and it should be specified and setting criteria named and justified (if set manually (how and why) or automatically (to what)). Additionally, if Pyhton was used for "Nearest Neigbor" analysis, the code should be made available within this manuscript; otherwise, it is difficult to judge the quality of this quantification step.

      b) To better evaluate the quality of both the imaging analysis and image presentation, it would be important to state, if presented and analysed images are deconvolved and if so, at least one proof of principle example of a comparison of original and deconvoluted file should be shown and quantified to show the impact of deconvolution on the output quality as this is central to this study.

      (3) The major part of this study focuses on the description and comparison of the divergent synapse parameters across cell-types in MB compartments, which is highly relevant and interesting. Yet it would be very interesting to connect this new method with functional aspects of the heterogeneous synapses. This is done in Figure 7 with an associative learning approach, which is, in part, not trivial to follow for the reader and would profit from a more comprehensive analysis.

      a) It would be important for the understanding and validation of the learning induced changes, if not (only) a ratio (of AZ density/local intensity) would be presented, but both values on their own, especially to allow a comparison to the quoted, previous AZ remodelling analysis quantifying BRP intensities (ref. 17, 18). It should be elucidated in more detail why only the ratio was presented here.

      b) The reason why a single instead of a dual odour conditioning was performed could be clarified and discussed (would that have the same effects?).

      c) Additionally, "controls" for the unpaired values - that is, in flies receiving neither shock nor odour - it would help to evaluate the unpaired control values in the different MB compartments.

      d) The temporal resolution of the effect is very interesting (Figure 7D), and at more time points, especially between 90 and 270 min, this might raise interesting results.

      e) Additionally, it would be very interesting and rewarding to have at least one additional assay, relating structure and function, e.g. on a molecular level by a correlative analysis of BRP and synaptic vesicles (by staining or co-expression of SV-protein markers) or calcium activity imaging or on a functional level by additional learning assays

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for providing us the opportunity to revise our manuscript titled “Identifying regulators of associative learning using a protein-labelling approach in C. elegans.” We appreciate the insightful feedback that we received to improve this work. In response, we have extensively revised the manuscript with the following changes: we have (1) clarified the criteria used for selecting candidate genes for behavioural testing, presenting additional data from ‘strong’ hits identified in multiple biological replicates (now testing 26 candidates, previously 17), (2) expanded our discussion of the functional relevance of validated hits, including providing new tissue-specific and neuron class-specific analyses, and (3) improved the presentation of our data, including visualising networks identified in the ‘learning proteome’, to better highlight the significance of our findings. We also substantially revised the text to indicate our attempts to address limitations related to background noise in the proteomic data and outlined potential refinements for future studies. All revisions are clearly marked in the manuscript in red font. A detailed, point-by-point response to each comment is provided below.

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Rahmani et al., utilize the TurboID method to characterize the global proteome changes in the worm's nervous system induced by a salt-based associative learning paradigm. Altogether, Rahmani et al., uncover 706 proteins that are tagged by the TurboID method specifically in samples extracted from worms that underwent the memory inducing protocol. Next, the authors conduct a gene enrichment analysis that implicates specific molecular pathways in salt-associative learning, such as MAP-kinase and cAMP-mediated pathways. The authors then screen a representative group of the hits from the proteome analysis. The authors find that mutants of candidate genes from the MAP-kinase pathway, namely dlk-1 and uev-3, do not affect the performance in the learning paradigm. Instead multiple acetylcholine signaling mutants significantly affected the performance in the associative memory assay, e.g., acc-1, acc-3, gar-1, and lgc-46. Finally, the authors demonstrate that the acetylcholine signaling mutants did not exhibit a phenotype in similar but different conditioning paradigms, such as aversive salt-conditioning or appetitive odor conditioning, suggesting their effect is specific to appetitive salt conditioning.

      Major comments:

      1. The statistical approach and analysis of the behavior assay: The authors use a 2-way ANOVA test which assumes normal distribution of the data. However, the chemotaxis index used in the study is bounded between -1 and 1, which prevents values near the boundaries to be normally distributed.

      Since most of the control data in this assay in this study is very close to 1, it strongly suggests that the CI data is not normally distributed and therefore 2-way ANOVA is expected to give skewed results.

      I am aware this is a common mistake and I also anticipate that most conclusions will still hold also under a more fitting statistical test.

      We appreciate the point raised by Reviewer 1 and understand the importance of performing the correct statistical tests.

      The statistical tests used in this study were chosen since parametric tests, particularly ANOVA tests to assess differences between multiple groups, are commonly used to assess behaviour in the C. elegans learning and memory field. Below is a summary of the tests used by studies that perform similar behavioural tests cited in this work, as examples:

      Table 1 | A summary for the statistical tests performed by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to (A) use parametric tests only or (B) performed either a parametric or non-parametric test on each chemotaxis assay dataset depending on whether the data passed a normality test. Listings for ANOVA tests are in bold to demonstrate their common use in the C. elegans learning and memory field.

      Reference

      Parametric test/s used in the reference

      Non-parametric test/s used in the reference

      Beets et al., 2020

      Two-way ANOVA

      None

      Hiroki & Iino 2022

      One-way ANOVA

      None

      Hiroki et al., 2022

      One-way ANOVA

      None

      Hukema et al., 2006

      T-tests

      None

      Hukema et al., Learn. Mem. 2008

      T-tests

      None

      Jang et al., 2019

      ANOVA

      None

      Kitazono et al., 2017

      Two-way ANOVA and t-tests

      None

      Lans et al., 2004

      One-way ANOVA

      None

      Lim et al., 2018

      Two-way ANOVA

      Wilcoxon rank sum test adjusted with the Benjamini–Hochberg method

      Lin et al., 2010

      Two-way or three-way ANOVA

      None

      Nagashima et al., 2019

      One-way ANOVA

      None

      Ohno et al., 2014

      None

      Sakai et al., 2017

      One-way ANOVA or t-tests

      None

      Stein & Murphy 2014

      Two-way ANOVA and t-tests

      None

      Tang et al., 2023

      One-way ANOVA or t-tests

      None

      Tomioka et al., 2006

      T tests

      None

      Watteyne et al., 2020

      One-way ANOVA

      Two-sided Kruskal–Wallis

      We note Reviewer 1's concern that this may stem from a common mistake. As stated, Two-way ANOVA generally relies on normally distributed data. We used GraphPad Prism to perform the Shapiro-Wilk normality test on our chemotaxis assay data as it is generally appropriate for sample sizes Table 2 | Shapiro-Wilk normality test results for chemotaxis assay data in Figure S8C. Chemotaxis assay data was generated to assess salt associative learning capacity for wild-type (WT) versus lgc-46(-) mutant C. elegans. Three experimental groups were prepared for each C. elegans strain (naïve, high-salt control, and trained). From top-to-bottom, the data below displays the ‘W’ value, ‘P value’, a binary yes/no for whether the data passes the Shapiro-Wilk normality test, and a ‘P value summary’ (ns = non-significant). W values measure the similarity between a normal distribution and the chemotaxis assay data. Data is considered normal in the Shapiro-Wilk normality test when a W value is near 1.0 and the null hypothesis is not rejected (i.e., P value > 0.05).*

      WT naïve

      WT high-salt control

      WT trained

      lgc-46 naïve

      lgc-46 high-salt control

      lgc-46 trained

      W

      0.9196

      0.9114

      0.8926

      0.8334

      0.8151

      0.8769

      P value

      0.5272

      0.4758

      0.3705

      0.1475

      0.1070

      0.2954

      Passed normality test (alpha=0.05)?

      Yes

      Yes

      Yes

      Yes

      Yes

      Yes

      P value summary

      ns

      ns

      ns

      ns

      ns

      ns

      The manuscript now includes the use of the Shapiro-Wilk normality test to assess chemotaxis assay data before using two-way ANOVA on page 51.

      Nevertheless an appropriate statistical analysis should be performed. Since I assume the authors would wish to take into consideration both the different conditions and biological repeats, I can suggest two options:

      • Using a Generalized linear mixed model, one can do with R software.
      • Using a custom bootstrapping approach. We thank Reviewer 1 for suggesting these two options. We carefully considered both approaches and consulted with the in-house statistician at our institution (Dr Pawel Skuza, Flinders University) for expert advice to guide our decision. In summary:

      • Generalised linear mixed models: Generalised linear mixed models (GLMMs) are generally most appropriate for nested/hierarchal data. However, our chemotaxis assay data does not exhibit such nesting. Each biological replicate (N) consists of three technical replicates, which are averaged to yield a single chemotaxis index per N. Our statistical comparisons are based solely on these averaged values across experimental groups, making GLMMs less applicable in this context.

      • __Bootstrapping: __Based on advice from our statistician, while bootstrapping can be a powerful tool, its effectiveness is limited when applied to datasets with a low number of biological replicates (N). Bootstrapping relies on resampling existing data to simulate additional observations, which may artificially inflate statistical power and potentially suggest significance where the biological effect size is minimal or not meaningful. Increasing the number of biological replicates to accommodate bootstrapping could introduce additional variability and compromise the interpretability of the results. The total number of assays, especially controls, varies quite a bit between the tested mutants. For example compare the acc-1 experiment in Figure 4.A., and gap-1 or rho-1 in Figure S4.A and D. It is hard to know the exact N of the controls, but I assume that for example, lowering the wild type control of acc-1 to equivalent to gap-1 would have made it non significant. Perhaps the best approach would be to conduct a power analysis, to know what N should be acquired for all samples.

      We thoroughly evaluated performing the power analysis: however, this is typically performed with the assumption that an N = 1 represents a singular individual/person. An N =1 in this study is one biological replicate that includes hundreds of worms, which is why it is not typically employed in our field for this type of behavioural test.

      Considering these factors, we have opted to continue using a two-way ANOVA for our statistical analysis. This choice aligns with recent publications that employ similar experimental designs and data structures. Crucially, we have verified that our data meet the assumptions of normality, addressing key concerns regarding the suitability of parametric testing. We believe this approach is sufficiently rigorous to support our main conclusions. This rationale is now outlined on page 51.

      To be fully transparent, our aim is to present differences between wild-type and mutant strains that are clearly visible in the graphical data, such that the choice of statistical test does not become a limiting factor in interpreting biological relevance. We hope this rationale is understandable, and we sincerely appreciate the reviewer’s comment and the opportunity to clarify our analytical approach.

      We hope that Reviewer 1 will appreciate these considerations as sufficient justification to retain the statistical tests used in the original manuscript. Nevertheless, to constructively address this comment, we have performed the following revisions:

      1. __Consistent number of biological replicates: __We performed additional biological replicates of the learning assay to confirm the behavioural phenotypes for the key candidates described (KIN-2 , F46H5.3, ACC-1, ACC-3, LGC-46). We chose N = 5 since most studies cited in this paper that perform similar behavioural tests do the same (see the table below). Table 3 | A summary for sample sizes generated by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to the sample sizes (N) below corresponding to biological replicates of chemotaxis assay data. N values are in bold when the study uses N ≤ 5.

      Reference

      N used in the study for chemotaxis assay data

      Beets et al., 2020

      8

      Hiroki & Iino 2022

      5-8

      Hiroki et al., 2022

      6-7

      Hukema et al., 2006

      ≥ 4

      Hukema et al., Learn. Mem. 2008

      ≥ 4

      Jang et al., 2019

      ≥ 4

      Kitazono et al., 2017

      ≥ 4

      Kauffman et al., 2010

      ≥ 3

      Kauffman et al., J. Vis. Exp. 2011

      ≥ 3

      Lans et al., 2004

      2

      Lim et al., 2018

      2-4

      Lin et al., 2010

      ≥ 4

      Nagashima et al., 2019

      ≥ 7

      Ohno et al., 2014

      ≥ 11

      Sakai et al., 2017

      ≥ 4

      Stein & Murphy 2014

      3-5

      Tang et al., 2023

      ≥ 9

      Watteyne et al., 2020

      ≥ 10

      __Grouped presentation of behavioural data: __We now present all behavioural data by grouping genotypes tested within the same biological replicate, including wild-type controls, rather than combining genotypes tested separately. This ensures that each graph displays data from genotypes sharing the same N, also an important consideration for performing parametric tests. Accordingly, we re-performed statistical analyses using this reduced Nfor relevant graphs. As anticipated, this rendered some comparisons non-significant. All statistical comparisons are clearly indicated on each graph. Improved clarity of figure legends: __We revised figure legends for __Figures 5, 6, S7, S8, & S9 to make clear how many biological replicates have been performed for each genotype by adding N numbers for each genotype in all figures.

      The authors use the phrasing "a non-significant trend", I find such claims uninterpretable and should be avoided. Examples: Page 16. Line 7 and Page 18, line 16.

      This is an important point. While we were not able to find the specific phrasing "a non-significant trend" from this comment in the original manuscript, we acknowledge that referring to a phenotype as both a trend and non-significant may confuse readers, which was originally stated in the manuscript in two locations.

      The main text has been revised on pages 27 & 28 when describing comparisons between trained groups between two C. elegans lines, by removing mentions of trends and retaining descriptions of non-significance.

      Neuron-specific analysis and rescue of mutants:

      Throughout the study the authors avoid focusing on specific neurons. This is understandable as the authors aim at a systems biology approach, however, in my view this limits the impact of the study. I am aware that the proteome changes analyzed in this study were extracted from a pan neuronally expressed TurboID. Yet, neuron-specific changes may nevertheless be found. For example, running the protein lists from Table S2, in the Gene enrichment tool of wormbase, I found, across several biological replicates, enrichment for the NSM, CAN and RIG neurons. A more careful analysis may uncover specific neurons that take part in this associative memory paradigm. In addition, analysis of the overlap in expression of the final gene list in different neurons, comparing them, looking for overlap and connectivity, would also help to direct towards specific circuits.

      This is an important and useful suggestion. We appreciate the benefit in exploring the data from this study from a neuron class-specific lens, in addition to the systems-level analyses already presented.

      The WormBase gene enrichment tool is indeed valuable for broad transcriptomic analyses (the findings from utilising this tool are now on page 16); however, its use of Anatomy Ontology (AO) terms also contains annotations from more abundant non-neuronal tissues in the worm. To strengthen our analysis and complement the Wormbase tool, we also used the CeNGEN database as suggested by Reviewer 3 Major Comment 1 (Taylor et al., 2021), which uses single cell RNA-Seq data to profile gene expression across the C. elegans nervous system. We input our learning proteome data into CeNGEN as a systemic analysis, identifying neurons highly represented by the learning proteome (on pages 16-20). To do this, we specifically compared genes/proteins from high-salt control worms and trained worms to identify potential neurons that may be involved in this learning paradigm. Briefly, we found:

      • WormBase gene enrichment tool: Enrichment for anatomy terms corresponding to specific interneurons (ADA, RIS, RIG), ventral nerve cord neurons, pharyngeal neurons (M1, M2, M5, I4), PVD sensory neurons, DD motor neurons, serotonergic NSM neurons, and CAN.
      • CeNGEN analysis: Representation of neurons previously implicated in associative learning (e.g., AVK interneurons, RIS interneurons, salt-sensing neuron ASEL, CEP & ADE dopaminergic neurons, and AIB interneurons), as well as neurons not previously studied in this context (pharyngeal neurons I3 & I6, polymodal neuron IL1, motor neuron DA9, and interneuron DVC). Methods are detailed on pages 50 & 51. These data are summarised in the revised manuscript as Table S7 & Figure 4.

      To further address the reviewer’s suggestion, we examined the overlap in expression patterns of the validated learning-associated genes acc-1, acc-3, lgc-46, kin-2, and F46H5.3 across the neuron classes above, using the CeNGEN database. This was done to explore potential neuron classes in which these regulators may act in to regulate learning. This analysis revealed both shared and distinct expression profiles, suggesting potential functional connectivity or co-regulation among subsets of neurons. To summarise, we found:

      • All five learning regulators are expressed in RIM interneurons and DB motor neurons.
      • KIN-2 and F46H5.3 share the same neuron expression profile and are present in many neurons, so they may play a general function within the nervous system to facilitate learning.
      • ACC-3 is expressed in three sensory neuron classes (ASE, CEP, & IL1).
      • In contrast, ACC-1 and LGC-46 are expressed in neuron classes (in brackets) implicated in gustatory or olfactory learning paradigms (AIB, AVK, NSM, RIG, & RIS) (Beets et al., 2012, Fadda et al., 2020, Wang et al., 2025, Zhou et al., 2023, Sato et al., 2021), neurons important for backward or forward locomotion (AVE, DA, DB, & VB) (Chalfie et al., 1985), and neuron classes for which their function is yet detailed in the literature (ADA, I4, M1, M2, & M5). These neurons form a potential neural circuit that may underlie this form of behavioural plasticity, which we now describe in the main text on pages 16-20 & 34-35 and summarise in Figure 4.

      OPTIONAL: A rescue of the phenotype of the mutants by re-expression of the gene is missing, this makes sure to avoid false-positive results coming from background mutations. For example, a pan neuronal or endogenous promoter rescue would help the authors to substantiate their claims, this can be done for the most promising genes. The ideal experiment would be a neuron-specific rescue but this can be saved for future works.

      We appreciate this suggestion and recognise its potential to strengthen our manuscript. In response, we made many attempts to generate pan-neuronal and endogenous promoter re-expression lines. However, we faced several technical issues in transgenic line generation, including poor survival following microinjection likely due to protein overexpression toxicity (e.g., C30G12.6, F46H5.3), and reduced animal viability for chemotaxis assays, potentially linked to transgene-related reproductive defects (e.g., ACC-1). As we have previously successfully generated dozens of transgenic lines in past work (e.g. Chew et al., Neuron 2018; Chew et al., Phil Trans B 2018; Gadenne/Chew et al., Life Science Alliance 2022), we believe the failure to produce most of these lines is not likely due to technical limitations. For transparency, these observations have been included in the discussion section of the manuscript on pages 39 & 40 as considerations for future troubleshooting.

      Fortunately, we were able to generate a pan-neuronal promoter line for KIN-2 that has been tested and included in the revised manuscript. This new data is shown in Figure 5B __and described on __pages 23 & 24. Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to reproduce the enhanced learning phenotype observed in kin-2(ce179) animals, confirming the role of KIN-2 in gustatory learning.

      To address the potential involvement of background mutations (also indicated by Reviewer 4 under ‘cross-commenting’), we have also performed experiments with backcrossed versions of several mutants. These experiments aimed to confirm that salt associative learning phenotypes are due to the expected mutation. Namely, we assessed kin-2(ce179) mutants that had been backcrossed previously by another laboratory, as well as C30G12.6(-) and F46H5.3(-) animals backcrossed in this study. Although not all backcrossed mutants retained their original phenotype (i.e., C30G12.6) (Figure 6D, a newly added figure), we found that backcrossed versions of KIN-2 and F46H5.3 both robustly showed enhanced learning (Figures 5A & 6B). This is described in the text on pages 23-26.

      __Minor comments: __

      1. Lack of clarity regarding the validation of the biotin tagging of the proteome. The authors show in Figure 1 that they validated that the combination of the transgene and biotin allows them to find more biotin-tagged proteins. However there is significant biotin background also in control samples as is common for this method. The authors mention they validated biotin tagging of all their experiments, but it was unclear in the text whether they validated it in comparison to no-biotin controls, and checked for the fold change difference.

      This is an important point: We validated our biotin tagging method prior to mass spectrometry by comparing ‘no biotin’ and ‘biotin’ groups. This is shown in Figure S1 in the revised manuscript, which includes a western blot comparing untreated and biotin treated animals that are non-transgenic or expressing TurboID. As expected, by comparing biotinylated protein signal for untreated and treated lanes within each line, biotin treatment increased the signal 1.30-fold for non-transgenic and 1.70-fold for TurboID C. elegans. This is described on __page 8 __of the revised manuscript.

      To clarify, for mass spectrometry experiments, we tested a no-TurboID (non-transgenic) control, but did not perform a no-biotin control. We included the following four groups: (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’, where trained versus control refers to whether ‘no salt’ was used as the conditioned stimulus or not, respectively (illustrated in Figure 1A). Due to the complexity of the learning assay (which involves multiple washes and handling steps, including a critical step where biotin is added during the conditioning period), and the need to collect sufficient numbers of worms for protein extraction (>3,000 worms per experimental group), adding ‘no-biotin’ controls would have doubled the number of experimental groups, which we considered unfeasible for practical reasons. This is explained on __pages 8 & 9 __of the revised manuscript.

      Also, it was unclear which exact samples were tested per replicate. In Page 9, Lines 17-18: "For all replicates, we determined that biotinylated proteins could be observed ...", But in Page 8, Line 24 : "We then isolated proteins from ... worms per group for both 'control' and 'trained' groups,... some of which were probed via western blotting to confirm the presence of biotinylated proteins".

      • Could the authors specify which samples were verified and clarify how?

      Thank you for pointing out these unclear statements: We have clarified the experimental groups used for mass spectrometry experiments as detailed in the response above on pages 8 &____ 9. In addition, western blots corresponding to each biological replicate of mass spectrometry data described in the main text on page 10 and have been added to the revised manuscript (as Figure S3). These western blots compare biotinylation signal for proteins extracted from (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’. These blots function to confirm that there were biotinylated proteins in TurboID samples, before enrichment by streptavidin-mediated pull-down for mass spectrometry.

      OPTIONAL: include the fold changes of biotinylated proteins of all the ones that were tested. Similar to Figure 1.C.

      This is an excellent suggestion. As recommended by the reviewer, we have included fold-changes for biotinylated protein levels between high-salt control and trained groups (on pages 9 & 10 for replicate #1 and in __Table S2 __for replicates #2-5). This was done by measuring protein levels in whole lanes for each experimental group per biological replicate within western blots (__Figure 1C __for replicate #1 and __Figure S3 __for replicates #2-5) of protein samples generated for mass spectrometry (N = 5).

      Figure 2 does not add much to the reader, it can be summarized in the text, as the fraction of proteins enriched for specific cellular compartments.

      • I would suggest to remove Figure 2 (originally written as figure 3) to text, or transfer it to the supplementry material.

      As noted in cross-comment response to Reviewer 4, there were typos in the original figure references, we have corrected them above. Essentially, this comment is referring to Figure 2.

      We appreciate this feedback from Reviewer 1. We agree that the original __Figure 2 __functions as a visual summary from analysis of the learning proteome at the subcellular compartment level. However, it also serves to highlight the following:

      • Representation for neuron-specific GO terms is relatively low, but even this small percentage represents entire protein-protein networks that are biologically meaningful, but that are difficult to adequately describe in the main text.
      • TurboID was expressed in neurons so this figure supports the relevance of the identified proteome to biological learning mechanisms.
      • Many of these candidates could not be assessed by learning assay using single mutants since related mutations are lethal or substantially affect locomotion. These networks therefore highlight the benefit in using strategies like TurboID to study learning. We have chosen to retain this figure, moving it to the supplementary material as Figure S4 in the revised manuscript, as suggested.

      • OPTIONAL- I would suggest the authors to mark in a pathway summary figure similar to Figure 3 (originally written as Figure 4) the results from the behavior assay of the genetic screen. This would allow the reader to better get the bigger picture and to connect to the systemic approach taken in Figures 2 and 3.

      We think this is a fantastic suggestion and thank Reviewer 1 for this input. In the revised manuscript, we have added Figure 7, which summarises the tested candidates that displayed an effect on learning, mapped onto potential molecular pathways derived from networks in the learning proteome. This figure provides a visual framework linking the behavioural outcomes to the network context. This is described in the main text on pages 32-33.

      Typo in Figure 3: the circle of PPM1: The blue right circle half is bigger than the left one.

      We thank the Reviewer for noticing this, the node size for PPM-1.A has been corrected in what is now Figure 2 in the revised work.

      Unclarity in the discussions. In the discussion Page 24, Line 14, the authors raise this question: "why are the proteins we identified not general learning regulators?. The phrasing and logic of the argumentation of the possible answers was hard to follow. - Can you clarify?

      We appreciate this feedback in terms of unclarity, as we strive to explain the data as clearly and transparently as possible. Our goal in this paragraph was to discuss why some candidates were seen to only affect salt associative learning, as opposed to showing effects in multiple learning paradigms (i.e., which we were defining as a ‘general learning regulator’). We have adjusted the wording in several places in this paragraph now on pages 36 & 37 to address this comment. We hope the rephrased paragraph provides sufficient rationalisation for the discussion regarding our selection strategy used to isolate our protein list of potential learning regulators, and its potential limitations.

      ***Cross-Commenting** *

      Firstly, we would like to express our appreciation for the opportunity for reviewers to cross-comment on feedback from other reviewers. We believe this is an excellent feature of the peer review process, and we are grateful to the reviewers for their thoughtful engagement and collaborative input.

      I would like to thank Reviewer #4 for the great cross comment summary, I find it accurate and helpful.

      I also would like to thank Reviewer #4 for spotting the typos in my minor comments, their page and figure numbers are the correct ones.

      We have corrected these typos in the relevant comments, and have responded to them accordingly.

      Small comment on common point 1 - My feeling is that it is challanging to do quantitative mass spectrometry, especially with TurboID. In general, the nature of MS data is that it hints towards a direction but a followup validation work is required in order to assess it. For example, I am not surprised that the fraction of repeats a hit appeared in does not predict well whether this hit would be validated behavioraly. Given these limitations, I find the authors' approach reasonable.

      We thank Reviewer 1 for this positive and thoughtful feedback. We also appreciate Reviewer 4’s comment regarding quantitative mass spectrometry and have addressed this in detail below (see response to Reviewer 4). However, we agree with Reviewer 1 that there are practical challenges to performing quantitative mass spectrometry with TurboID, primarily due to the enrichment for biotinylated proteins that is a key feature of the sample preparation process.

      Importantly, we whole-heartedly agree with Reviewer 1’s statement that “In general, the nature of MS data is that it hints towards a direction but a follow-up validation work is required in order to assess it”. This is the core of our approach: however, we appreciate that there are limitations to a qualitative ‘absent/present’ approach. We have addressed some of these limitations by clarifying the criteria used for selecting candidate genes, based additionally on the presence of the candidate in multiple biological replicates (categorised as ‘strong’ hits). Based on this method, we were able to validate the role of several novel learning regulators (Figures 5, 6, & S7). We sincerely hope that this manuscript can function as a direction for future research, as suggested by this Reviewer.

      I also would like to highlight this major comment from reviewer 4:

      "In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). "

      This threshold seems arbitrary to me too, and it requires the clarifications requested by reviewer 4.

      As detailed in our response to Reviewer 4, Major Comment 2, data were excluded only in rare cases, specifically when N2 worms failed to show strong salt attraction prior to training, or when trained N2 worms did not exhibit the expected behavioural difference compared to untrained controls – this can largely be attributed to clear contamination or over-population issues, which are visible prior to assessing CTX plates and counting chemotaxis indices.

      These criteria were initially established to provide an objective threshold for excluding biological replicates, particularly when planning to assay a large number of genetic mutants. However, after extensive testing across many replicates, we found that N2 worms (that were not starved, or not contaminated) consistently displayed the expected phenotype, rendering these thresholds unnecessary. We acknowledge that emphasizing these criteria may have been misleading, and have therefore removed them from page 50 in the revised manuscript to avoid confusion and ensure clarity.

      Reviewer #1 (Significance (Required)):

      This study does a great job to effectively utilize the TurboID technique to identify new pathways implicated in salt-associative learning in C. elegans. This technique was used in C. elegans before, but not in this context. The salt-associative memory induced proteome list is a valuable resource that will help future studies on associative memory in worms. Some of the implicated molecular pathways were found before to be involved in memory in worms like cAMP, as correctly referenced in the manuscript. The implication of the acetylcholine pathway is novel for C. elgeans, to the best of my knowledge. The finding that the uncovered genes are specifically required for salt associative memory and not for other memory assays is also interesting.

      However overall I find the impact of this study limited. The premise of this work is to use the Turbo-ID method to conduct a systems analysis of the proteomic changes. The work starts by conducting network analysis and gene enrichment which fit a systemic approach. However, since the authors find that ~30% of the tested hits affect the phenotype, and since only 17/706 proteins were assessed, it is challenging to draw conclusive broad systemic claims. Alternatively, the authors could have focused on the positive hits, and understand them better, find the specific circuits where these genes act. This could have increased the impact of the work. Since neither of these two options are satisfied, I view this work as solid, but not wide in its impact and therefore estimate the audience of this study would be more specialized.

      My expertise is in C. elegans behavior, genetics, and neuronal activity, programming and machine learning.

      We thank the Reviewer for these comments and appreciate the recognition of the value of the proteomic dataset and the identification of novel molecular pathways, including the acetylcholine pathway, as well as the specificity of the uncovered genes to salt-associative memory.

      Regarding the reviewer’s concern about the overall impact and scope of the study, we respectfully offer the following clarification. Our aim was to establish a systems-level approach for investigating learning-related proteomic changes using TurboID, and we acknowledge that only a subset of the identified proteins was experimentally tested (now 26/706 proteins in the revised manuscript). Although only five of the tested single gene mutants showed a robust learning phenotype in the revised work (after backcrossing, more stringent candidate selection, improved statistical analysis in addressing reviewer comments), our proteomic data provides us a unique opportunity to define these candidates within protein-protein networks (as illustrated in Figure 7). Importantly, our functional testing focused on single-gene mutants, which may not reveal phenotypes for genes that act redundantly (now mentioned on pages 28-30). This limitation is inherent to many genetic screens and highlights the value of our proteomic dataset, which enables the identification of broader protein-protein interaction networks and molecular pathways potentially involved in learning.

      To support this systems-level perspective, we have added Figure 7, which visually integrates the tested candidates into molecular pathways derived from the learning proteome for learning regulators KIN-2 and F46H5.3. We also emphasise more explicitly in the text (on pages 32-33) the value of our approach by highlighting the functional protein networks that can be derived from our proteomics dataset.

      We fully acknowledge that the use of TurboID across all neurons limits the resolution needed to pinpoint individual neuron contributions, and understand the benefit in further experiments to explore specific circuits. Many circuits required for salt sensing and salt-based learning are highly explored in the literature and defined explicitly (see Rahmani & Chew, 2021), so our intention was to complement the existing literature by exploring the protein-protein networks involved in learning, rather than on neuron-neuron connectivity. However, we recognise the benefit in integrating circuit-level analyses, given that our proteomic data suggests hundreds of candidates potentially involved in learning. While validating each of these candidates is beyond the scope of the current study, we have taken steps to suggest candidate neurons/circuits by incorporating tissue enrichment analyses and single-cell transcriptomic data (Table S7 & Figure 4). These additions highlight neuron classes of interest and suggest possible circuits relevant to learning.

      We hope this clarification helps convey the intended scope and contribution of our study. We also believe that the revisions made in response to Reviewer 1’s feedback have strengthened the manuscript and enhanced its significance within the field.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In this study by Rahmani in colleagues, the authors sought to define the "learning proteome" for a gustatory associative learning paradigm in C. elegans. Using a cytoplasmic TurboID expressed under the control of a pan-neuronal promoter, the authors labeled proteins during the training portion of the paradigm, followed by proteomics analysis. This approach revealed hundreds of proteins potentially involved in learning, which the authors describe using gene ontology and pathways analysis. The authors performed functional characterization of some of these genes for their requirement in learning using the same paradigm. They also compared the requirement for these genes across various learning paradigms, and found that most hits they characterized appear to be specifically required for the training paradigm used for generating the "learning proteome".

      Major Comments:

      1. The definition of a "hit" from the TurboID approach is does not appear stringent enough. According to the manuscript, a hit was defined as one unique peptide detected in a single biological replicate (out of 5), which could give rise to false positives. In figure S2, it is clear that there relatively little overlap between samples with regards to proteins detected between replicates, and while perhaps unintentional, presenting a single unique peptide appears to be an attempt to inflate the number of hits. Defining hits as present in more than one sample would be more rigorous. Changing the definition of hits would only require the time to re-list genes and change data presented in the manuscript accordingly. We thank Reviewer 2 for this valuable comment, and the following related suggestion. We agree with the statement that “Defining hits as present in more than one sample would be more rigorous”. Therefore, to address this comment, we have now separated candidates into two categories in Table 2 __in the revised manuscript: ‘__strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). However, we think these weaker candidates should still be included in the manuscript, considering we did observe relationships between these proteins and learning. For example, ACC-1, which influences salt associative learning in C. elegans, was detected in one replicate of mass spectrometry as a potential learning regulator (Figure S8A). We describe this classification in the main text on pages 21-22.

      We also agree with Reviewer 2 that the overlap between individual candidate hits is low between biological replicates; the inclusion of Figure S2 __in the original manuscript serves to highlight this limitation. However, it is also important to consider that there is notable overlap for whole molecular pathways between biological replicates of mass spectrometry data as shown in __Figure 2 __in the revised manuscript (this consideration is now mentioned on __pages 13-14). We have included Figure 3 to illustrate representation for two metabolic processes across several biological replicates normally indispensable to animal health, as an example to provide additional visual aid for the overlap between replicates of mass spectrometry. We provide this figure (described on pages 13 & 15) to demonstrate the strength of our approach in that it can detect candidates not easily assessable by conventional forward or reverse genetic screens.

      We also appreciate the opportunity to explain our approach. The criteria of “at least one unique peptide” was chosen based on a previous work for which we adapted for this manuscript (Prikas et al., 2020). It was not intended to inflate the number of hits but rather to ensure sensitivity in detecting low-abundance neuronal proteins. We have clarified this in our Methods (page 46).

      The "hits" that the authors chose to functionally characterize do not seem like strong candidate hits based on the proteomics data that they generated. Indeed, most of the hits are present in a single, or at most 2, biological replicate. It is unclear as to why the strongest hits were not characterized, which if mutant strains are publicly available, would not be a difficult experiment to perform.

      We thank the reviewer for this important suggestion. To address this, we have described two molecular pathways with multiple components that appear in more than one biological replicate of mass spectrometry data in Figure 3 (main text on page 13). In addition, we have included __Figures 6 & S7 __where 9 additional single mutants corresponding to candidates in three or more biological replicates of mass spectrometry were tested for salt associative learning. Briefly, we found the following (number of replicates that a protein was unique to TurboID trained animals is in brackets):

      • Novel arginine kinase F46H5.3 (4 replicates) displays an effect in both salt associative learning and salt aversive learning in the same direction (Figures 6A, 6B, & S9A, pages 31-32 & 37-38).
      • Worms with a mutation for armadillo-domain protein C30G12.6 (3 replicates) only displayed an enhanced learning phenotype when non-backcrossed, not backcrossed. This suggests the enhanced learning phenotype was caused by a background mutation (Figure 6, pages 24-25).
      • We did not observe an effect on salt associative learning when assessing mutations for the ciliogenesis protein IFT-139 (5 replicates), guanyl nucleotide factors AEX-3 or TAG-52 (3 replicates), p38/MAPK pathway interactor FSN-1 (3 replicates), IGCAM/RIG-4 (3 replicates), and acetylcholine components ACR-2 (4 replicates) and ELP-1 (3 replicates) (Figure S7, on pages 27-30). However, we note throughout the section for which these candidates are described that only single gene mutants were tested, meaning that genes that function in redundant or compensatory pathways may not exhibit a detectable phenotype. Because of the lack of strong evidence that these are indeed proteins regulated in the context of learning based on proteomics, including evidence of changes in the proteins (by imaging expression changes of fluorescent reporters or a biochemical approach), would increase confidence that these hits are genuine.

      We thank Reviewer 2 for this suggestion – we agree that it would have been ideal to have additional evidence suggesting that changes in candidate protein levels are associated directly with learning. Ideally, we would have explored this aspect further; however, as outlined in response to Reviewer 1 Major Comment 2 (OPTIONAL), this was not feasible within the scope of the current study due to several practical challenges. Specifically, we attempted to generate pan-neuronal and endogenous promoter rescue lines for several candidates, but encountered significant challenges, including poor survival post-microinjection (likely due to protein overexpression toxicity) and reduced viability for behavioural assays, potentially linked to transgene-related reproductive defects. This information is now described on pages 39 & 40 of the revised work.

      To address these limitations, we performed additional behavioural experiments where possible. We successfully generated a pan-neuronal promoter line for kin-2, which was tested and included in the revised manuscript (Figure 5B, pages 30 & 31). In addition, to confirm that observed learning phenotypes were due to the expected mutations and not background effects, we conducted experiments using backcrossed versions of several mutant lines as suggested by Reviewer 4 Cross Comment 3 (Figure 6, pages 23-24 & 24-26). Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to repeat the enhanced learning phenotype observed in backcrossed kin-2(ce179) animals, providing additional evidence that the identified hits are required for learning. We also confirmed that F46H5.3 modulates salt associative learning, given both non-backcrossed and backcrossed F46H5.3(-) mutants display a learning enhancement phenotype. The revised text now describes this data on the page numbers mentioned above.

      Minor Comments:

      1. The authors highlight that the proteins they discover seem to function uniquely in their gustatory associative paradigm, but this is not completely accurate. kin-2, which they characterize in figure 4, is required for positive butanone association (the authors even say as much in the manuscript) in Stein and Murphy, 2014. We appreciate this correction and thank the Reviewer for pointing this out. We have amended the wording appropriately on page 31 to clarify our meaning.

      2. “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      Reviewer #2 (Significance (Required)):

      • General Assessment: The approach used in this study is interesting and has the potential to further our knowledge about the molecular mechanisms of associative behaviors. Strengths of the study include the design with carefully thought out controls, and the premise of combining their proteomics with behavioral analysis to better understand the biological significance of their proteomics findings. However, the criteria for defining hits and prioritization of hits for behavioral characterizations were major wweaknesses of the paper.
      • Advance: There have been multiple transcriptomic studies in the worm looking at gene expression changes in the context of behavioral training (Lakhina et al., 2015, Freytag 2017). This study compliments and extends those studies, by examining how the proteome changes in a different training paradigm. This approach here could be employed for multiple different training paradigms, presenting a new technical advance for the field.
      • Audience: This paper would be of interest to the broader field of behavioral and molecular neuroscience. Though it uses an invertebrate system, many findings in the worm regarding learning and memory translate to higher organisms.
      • I am an expert in molecular and behavioral neuroscience in both vertebrate and invertebrate models, with experience in genetics and genomics approaches. We appreciate Reviewer 2’s thoughtful assessment and constructive feedback. In response to concerns regarding definition and prioritisation of hits, we have revised our approach as detailed above to place more consideration on ‘strong’ hits present in multiple biological replicates. We have also added new behavioural data for additional mutants that fall into this category (Figures 6 & S7). We hope these revisions strengthen our study and enhance its relevance to the behavioural/molecular neuroscience community.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In the manuscript titled "Identifying regulators of associative learning using a protein-labelling approach in C. elegans" the authors attempted to generate a snapshot of the proteomic changes that happen in the C. elegans nervous system during learning and memory formation. They employed the TurboID-based protein labeling method to identify the proteins that are uniquely found in samples that underwent training to associate no-salt with food, and consequently exhibited lower attraction to high salt in a chemotaxis assay. Using this system they obtained a list of target proteins that included proteins represented in molecular pathways previously implicated in associative learning. The authors then further validated some of the hits from the assay by testing single gene mutants for effects on learning and memory formation.

      Major Comments:

      In the discussion section, the authors comment on the sources of "background noise" in their data and ways to improve the specificity. They provide some analysis on this aspect in Supplementary figure S2. However, a better visualization of non-specificity in the sample could be a GO analysis of tissue-specificity, and presented as a pie chart as in Figure 2A. Non-neuronal proteins such as MYO-2 or MYO-3 repeatedly show up on the "TurboID trained" lists in several biological replicates (Tables S2 and S3). If a major fraction of the proteins after subtraction of control lists are non-specific, that increases the likelihood that the "hits" observed are by chance. This analysis should be presented in one of the main figures as it is essential for the reader to gauge the reliability of the experiment.

      We agree with this assessment and thank Reviewer 3 for this constructive suggestion. In response, we have now incorporated a comprehensive tissue-specific analysis of the learning proteome in the revised manuscript. Using the single neuron RNA-Seq database CeNGEN, we identified the proportion of neuronal vs non-neuronal proteins from each biological replicate of mass spectrometry data. Specifically, we present Table 1 __on page 17 (which we originally intended to include in the manuscript, but inadvertently left out), which shows that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons, supporting that the TurboID enzyme was able to target the neuronal proteome as expected. __Table 1 is now described in the main text of the revised work on page 16.

      In addition, we performed neuron-specific analyses using both the WormBase gene enrichment tool and the CeNGEN single-cell transcriptomic database, which we describe in detail on our response to Reviewer 1 Major Comment 2. To summarise, these analyses revealed enrichment of several neuron classes, including those previously implicated in associative learning (e.g., ASEL, AIB, RIS, AVK) as well as neurons not previously studied in this context (e.g., IL1, DA9, DVC) (summarised in Table S7). By examining expression overlap across neuron types, we identified shared and distinct profiles that suggest potential functional connectivity and candidate circuits underlying behavioural plasticity (Figure 4). Taken together, these data show that the proteins identified in our dataset are (1) neuronal and (2) expressed in neurons that are known to be required for learning. Methods are detailed on pages 50-51.

      Other than the above, the authors have provided sufficient details in their experimental and analysis procedures. They have performed appropriate controls, and their data has sufficient biological and technical replaictes for statistical analysis.

      We appreciate this positive feedback and thank the Reviewer for acknowledging the clarity of our experimental and analysis procedures.

      Minor Comments:

      There is an error in the first paragraph of the discussion, in the sentences discussing the learning effects in gar-1 mutant worms. The sentences in lines 12-16 on page 22 says that gar-1 mutants have improved salt-associative learning and defective salt-aversive learning, while in fact the data and figures state the opposite.

      We appreciate the Reviewer noting this discrepancy. As clarified in our response to Reviewer 1, Major Comment 1 above, we reanalysed the behavioural data to ensure consistency across genotypes by comparing only those tested within the same biological replicates (thus having the same N for all genotypes). Upon this reanalysis, we found that the previously reported phenotype for gar-1 mutants in salt-associative learning was not statistically different from wild-type controls. Therefore, we have removed references to GAR-1 from the manuscript.

      __Reviewer #3 (Significance (Required)): __Strengths and limitations: This study used neuron-specific TurboID expression with transient biotin exposure to capture a temporally restricted snapshot of the C. elegans nervous system proteome during salt-associative learning. This is an elegant method to identify proteins temporally specific to a certain condition. However, there are several limitations in the way the experiments and analyses were performed which affect the reliability of the data. As the authors themselves have noted in the discussion, background noise is a major issue and several steps could be taken to improve the noise at the experimental or analysis steps (use of integrated C. elegans lines to ensure uniformity of samples, flow cytometry to isolate neurons, quantitative mass spec to detect fold change vs. strict presence/absence). Advance: Several studies have demonstrated the use of proximity labeling to map the interactome by using a bait protein fusion. In fact, expressing TurboID not fused to a bait protein is often used as a negative control in proximity labeling experiments. However, this study demonstrates the use of free TurboID molecules to acquire a global snapshot of the proteome under a given condition. Audience: Even with the significant limitations, this study is specifically of interest to researchers interested in understanding learning and memory formation. Broadly, the methods used in this study could be modified to gain insights into the proteomic profiles at other transient developmental stages. The reviewer's field of expertise: Cell biology of C. elegans neurons.

      We thank the reviewer for their thoughtful evaluation of our work. We appreciate the recognition of the novelty and potential of using neuron-specific TurboID to capture a temporally restricted snapshot of the C. elegans nervous system proteome during learning. We agree that this approach offers a unique opportunity to identify proteins associated with specific behavioural states in future studies.

      We also appreciate the reviewer’s comments regarding limitations in experimental and analytical design. In revising the manuscript, we have taken several steps to address these concerns and improve the clarity, rigour, and interpretability of our data. Specifically:

      • We now provide a frequency-based representation of proteomic hits (Table 2), which helps clarify how candidate proteins were selected and highlights differences between trained and control groups.
      • We have added neuron-specific enrichment analyses using both WormBase and CenGEN databases (Table S7 & Figure 4), which help identify candidate neurons and potential circuits involved in learning (methods on pages 50-51).
      • We have clarified the rationale for using qualitative proteomics in the context of TurboID, in addition to acknowledging the challenges of integrating quantitative mass spectrometry with biotin-based enrichment (page 39). Additional methods for improving sample purity, such as using integrated lines or FACS-enrichment of neurons, could further refine this approach in future studies. For transparency, we did attempt to integrate the TurboID transgenic line to improve the strength and consistency of biotinylation signals. However, despite four rounds of backcrossing, this line exhibited unexpected phenotypes, including a failure to respond reliably to the established training protocol. As a result, we were unable to include it in the current study. Nonetheless, we believe our current approach provides a valuable proof-of-concept and lays the groundwork for future refinement. By addressing the major concerns of peer reviewers, we believe our study makes a significant and impactful contribution by demonstrating the feasibility of using TurboID to capture learning-induced proteomic changes in the nervous system. The identification of novel learning-related mutants, including those involved in acetylcholine signalling and cAMP pathways, provides new directions for future research into the molecular and circuit-level mechanisms of behavioural plasticity.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this manuscript, authors used a learning paradigm in C. elegans; when worms were fed in a saltless plate, its chemotaxis to salt is greatly reduced. To identify learning-related proteins, authors employed nervous system-specific transcriptome analysis to compare whole proteins in neurons between high-salt-fed animals and saltless-fed animals. Authors identified "learning-specific genes" which are observed only after saltless feeding. They categorized these proteins by GO analyses and pathway analyses, and further stepped forward to test mutants in selected genes identified by the proteome analysis. They find several mutants that are defective or hyper-proficient for learning, including acc-1/3 and lgc-46 acetylcholine receptors, gar-1 acetylcholine receptor GPCR, glna-3 glutaminase involved in glutamate biosynthesis, and kin-2, a cAMP pathway gene. These mutants were not previously reported to have abnormality in the learning paradigm.

      Major comments:

      1) There are problems in the data processing and presentation of the proteomics data in the current manuscript which deteriorates the utility of the data. First, as the authors discuss (page 24, lines 5-12), the current approach does not consider amount of the peptides. Authors state that their current approach is "conservative", because some of the proteins may be present in both control and learned samples but in different amounts. This reviewer has a concern in the opposite way: some of the identified proteins may be pseudo-positive artifacts caused by the analytical noise. The problem is that authors included peptides that are "present" in "TurboID, trained" sample but "absent" in the "Non-Tg, trained" and "TurboID, control" samples in any one of the biological replicates, to identify "learning proteome" (706 proteins, page 8, last line - page 9, line 8; page 32, line 21-22). The word "present" implies that they included even peptides whose amounts are just above the detection threshold, which is subject to random noise caused by the detector or during sample collection and preparation processes. This consideration is partly supported by the fact that only a small fraction of the proteins are common between biological replicates (honestly and respectably shown in Figure S2). Because of this problem, there is no statistical estimate of the identity in "learning proteome" in the current manuscript. Therefore, the presentation style in Tables S2 and S3 are not very useful for readers, especially because authors already subtracted proteins identified in Non-Tg samples, which must also suffer from stochastic noise. I suggest either quantifying the MS/MS signal, or if authors need to stick to the "present"/"absent" description of the MS/MS data, use the number of appearances in biological replicates of each protein as estimate of the quantity of each protein. For example, found in 2 replicates in "TurboID, learned" and in 0 replicates in "Non-Tg, trained". One can apply statistics to these counts. This said, I would like to stress that proteins related to acquisition of memory may be very rare, especially because learning-related changes likely occur in a small subset of neurons. Therefore, 1 time vs 0 time may be still important, as well as something like 5 times vs 1 time. In summary, quantitative description of the proteomics results is desired.

      We thank the reviewer for these valuable comments and suggestions.

      We acknowledge that quantitative proteomics would provide beneficial information; however, as also indicated by Reviewer 1 (in cross-comment), it is practically challenging to perform with TurboID. We have included discussion of potential future experiments involving quantitative mass spectrometry, as well as a comprehensive discussion of some of the limitations of our approach as summarised by this Reviewer, in the Discussion section (page 39). However, we note that our qualitative approach also provides beneficial knowledge, such as the identification of functional protein networks acting within biological pathways previously implicated in learning (Figure 2), and novel learning regulators ACC-1/3, LGC-46, and F46H5.3.

      We agree with the assessment that the frequency of occurrence for each candidate we test per biological replicate is useful to disclose in the manuscript as a proxy for quantification. This was also highlighted by Reviewer 2 (Major Comment 1). As detailed above in response to R2, we have now separated candidates into two categories: ‘strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). We have also added behavioural data after testing 9 of these strong candidates in Figures 6 & S7.

      We have also added Table 2 to the revised manuscript, which summarises the frequency-based representation of the proteomics results, as suggested. This is described on pages 22-23. Briefly, this shows the range of candidates further explored using single mutant testing. Specifically, this data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates, providing a clearer view of how proteomic frequency informed our selection for functional testing.

      2) There is another problem in the treatment of the behavioural data. In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). How were these values determined? One common example for judging a data point as an outlier is > mean + 1.5, 2 or 3 SD, or Thank you for pointing this out. As mentioned by both Reviewer 1 and Reviewer 4, the original manuscript states the following: “Data was excluded for salt associative learning experiments when wild-type N2 displayed (1) an average CI ≤ 0.6499 for naïve or control groups and/or (2) an average CI either 0.5499 for trained groups.”

      To clarify, we only excluded experiments in rare cases where N2 worms did not display robust high salt attraction before training, or where trained N2 did not display the expected behavioural difference compared to untrained or high-salt control N2. These anomalies were typically attributable to clear contamination or starvation issues that could clearly be observed prior to counting chemotaxis indices on CTX plates.

      We established these exclusion criteria in advance of conducting multiple learning assays to ensure an objective threshold for identifying and excluding assays affected by these rare but observable issues. However, these criteria were later found to be unnecessary, as N2 worms robustly displayed the expected untrained and trained phenotypes for salt associative learning when not compromised by starvation or contamination.

      We understand that the original criteria may have appeared to introduce arbitrary bias in data selection. To address this concern, we have removed these criteria from the revised manuscript from page 50.

      Minor comments:

      1) Related to Major comments 1), the successful effect of neuron-specific TurboID procedure was not evaluated. Authors obtained both TurboID and Non-Tg proteome data. Do they see enrichment of neuron-specific proteins? This can be easily tested, for example by using the list of neuron-specific genes by Kaletsky et al. (http://dx.doi.org/10.1038/nature16483 or http://dx.doi.org/10.1371/journal.pgen.1007559), or referring to the CenGEN data.

      We thank this Reviewer for this helpful suggestion, which was echoed by Reviewer 3 (Major Comment 1). As indicated in the response to R3 above, the revised manuscript now includes Table 1 as a tissue-specific analysis of the learning proteome, using the single neuron RNA-Seq database CeNGEN to identify the proportion of neuronal proteins from each biological replicate of mass spectrometry data. Generally, we observed a range of 87-95% of proteins corresponded to genes from the CeNGEN database that had been detected in neurons, providing evidence that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 is now described in the main text of the revised work on pages 16 & 17.

      2) The behavioural paradigm needs to be described accurately. Page 5, line 16-17, "C. elegans normally have a mild attraction towards higher salt concentration": in fact, C. elegans raised on NGM plates, which include approximately 50mM of NaCl, is attracted to around 50mM of NaCl (Kunitomo et al., Luo et al.) but not 100-200 mM.

      We thank the Reviewer for pointing this out. We agree that clarification is necessary. The revised text reads as follows on page 5: “C. elegans are typically grown in the presence of salt (usually ~ 50 mM) and display an attraction toward this concentration when assayed for chemotaxis behaviour on a salt gradient (Kunitomo et al., 2013, Luo et al., 2014). Training/conditioning with ‘no salt + food’ partially attenuates this attraction (group referred to ‘trained’).”

      Authors call this assay "salt associative learning", which refers to the fact that worms associate salt concentration (CS) and either presence or absence of food (appetitive or aversive US) during conditioning (Kunitomo et al., Luo et al., Nagashima et al.) but they are looking at only association with presence of food, and for proteome analysis they only change the CS (NaCl concentration, as discussed in Discussion, p24, lines 4-5). It is better to attempt to avoid confusion to the readers in general.

      Thank you Reviewer 4 for highlighting this clarity issue. We clarify our definition of “salt associative learning” for the purpose of this study in the revised manuscript on page 6 with the following text:

      “Similar behavioural paradigms involving pairings between salt/no salt and food/no food have been previously described in the literature (Nagashima et al. 2019). Here, learning experiments were performed by conditioning worms with either ‘no salt + food’ (referred to as ‘salt associative learning’) or ‘salt + no food’ (called ‘salt aversive learning’).”

      3) page 32, line 23: the wording "excluding" is obscure and misleading because the elo-6 gene was included in the analysis.

      We appreciate this Reviewer for pointing out this misleading comment, which was unintentional. We have now removed it from the text (on page 21).

      4) Typo at page 24, line 18: "that ACC-1" -> "than ACC-1".

      This has been corrected (on page 37).

      5) Reference. In "LEO, T. H. T. et al.", given and sir names are flipped for all authors. Also, the paper has been formally published (http://dx.doi.org/10.1016/j.cub.2023.07.041).

      We appreciate the Reviewer drawing our attention to this – the reference has been corrected and updated.

      I would like to express my modest cross comments on the reviews:

      1) Many of the reviewers comment on the shortage in the quantitative nature of the proteome analysis, so it seems to be a consensus.

      Thank you Reviewer 4 for this feedback. We appreciate the benefit in performing quantitative mass spectrometry, in that it provides an additional way to parse molecular mechanisms in a biological process (e.g., fold-changes in protein expression induced by learning). However, we note that quantitative mass spectrometry is challenging to integrate with TurboID due to the requirement to enrich for biotinylated peptides during sample processing (we now mention this on page 39). Nevertheless, it would be exciting to see this approach performed in a future study.

      To address the limitations of our original qualitative approach and enhance the clarity and utility of our dataset, we have made the following revisions in the manuscript:

      • Candidate selection criteria: We now clearly define how candidates were selected for functional testing, based on their frequency across biological replicates. Specifically, “strong candidates” were detected in three or more replicates, while “weak candidates” appeared in two or fewer.
      • Frequency-based representation (_Table 2_):__We appreciate the suggestion by Reviewer 4 (Major Comment 1) to quantify differences between high-salt control and trained groups. We now provide the frequency-based representation of the candidates tested in this study within our proteomics data in __Table 2. This data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates We hope these additions help clarify our approach and demonstrate the value of the dataset, even within the constraints of qualitative proteomics.

      2) Also, tissue- or cell-specificity of the identified proteins were commonly discussed. In reviewer #3's first Major comment, appearance of non-neuronal protein in the list was pointed out, which collaborate with my (#4 reviewer's) question on successful identification of neuronal proteins by this method. On the other hand, reviewer #1 pointed out subset neuron-specific proteins in the list. Obviously, these issues need to be systematically described by the authors.

      We agree with Reviewer 4 that these analyses provide a critical angle of analysis that is not explored in the original manuscript.

      Tissue analysis (Reviewer 3 Major Comment 1): We have used the single neuron RNA-Seq database CeNGEN, to identify that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons. These findings support that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 provides this information as is now described in the main text of the revised work on page 16.

      __Neuron class analyses (Reviewer 1 Major Comment 2): __In response, we have used the suggested Wormbase gene enrichment tool and CeNGEN. We specifically input proteins from the learning proteome into Wormbase, after filtering for proteins unique to TurboID trained animals. For CeNGEN, we compared genes/proteins from control worms and trained worms to identify potential neurons that may be involved in this learning paradigm.

      Briefly, we found highlight a range of neuron classes known in learning (e.g., RIS interneurons), cells that affect behaviour but have not been explored in learning (e.g., IL1 polymodal neurons), and neurons for which their function/s are unknown (e.g., pharyngeal neuron I3). Corresponding text for this new analysis has been added on pages 16-20, with a new table and figure added to illustrate these findings (Table S7 & Figure 4). Methods are detailed on pages 50-51.

      3) Given reviewer #1's OPTIONAL Major comment, as an expert of behavioral assays in C. elegans, I would like to comment based on my experience that mutants received from Caenorhabditis Genetics Center or other labs often lose the phenotype after outcrossing by the wild type, indicating that a side mutation was responsible for the observed behavioral phenotype. Therefore, outcrossing may be helpful and easier than rescue experiments, though the latter are of course more accurate.

      Thank you for this suggestion. To address the potential involvement of background mutations, we have done experiments with backcrossed versions of mutants tested where possible, as shown in Figure 6. We found that F46H5.3(-) mutants maintained enhanced learning capacity after backcrossing with wild type, compared to their non-backcrossed mutant line. This was in contrast to C30G12.6(-) animals which lost their enhanced learning phenotype following backcrossing using wild type worms. This is described in the text on pages 24-26.

      4) Just let me clarify the first Minor comment by reviewer #2. Authors described that the kin-2 mutant has abnormality in "salt associative learning" and "salt aversive learning", according to authors' terminology. In this comment by reviewer #2, "gustatory associative learning" probably refers to both of these assays.

      Reviewer 4 is correct. We have amended the wording appropriately on page 31 to clarify our meaning to address Reviewer 2’s comment.

      • “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      5) There seem to be several typos in reviewer #1's Minor comments.

      "In Page 9, Lines 17-18" -> "Page 8, Lines 17-18".

      "Page 8, Line 24" -> "Page 7, Line 24".

      "I would suggest to remove figure 3" -> "I would suggest to remove figure 2"

      "summary figure similar to Figure 4" -> "summary figure similar to Figure 3"

      "In the discussion Page 24, Line 14" -> "In the discussion Page 23, Line 14"

      (I note that because a top page was inserted in the "merged" file but not in art file for review, there is a shift between authors' page numbers and pdf page numbers in the former.)

      It would be nice if reviewer #1 can confirm on these because I might be wrong.

      We appreciate Reviewer 4 noting this, and can confirm that these are the correct references (as indicated by Reviewer 1 in their cross-comments)

      Reviewer #4 (Significance (Required)):

      1) Total neural proteome analysis has not been conducted before for learning-induced changes, though transcriptome analysis has been performed for odor learning (Lakhina et al., http://dx.doi.org/10.1016/j.neuron.2014.12.029). This guarantees the novelty of this manuscript, because for some genes, protein levels may change even though mRNA levels remain the same. We note an example in which a proteome analysis utilizing TurboID, though not the comparison between trained/control, has led to finding of learning related proteins (Hiroki et al., http://dx.doi.org/10.1038/s41467-022-30279-7). As described in the Major comments 1) in the previous section, improvement of data presentation will be necessary to substantiate this novelty.

      We appreciate this thoughtful feedback. We agree that while the neuronal transcriptome has been explored in Lakhina et al., 2015 for C. elegans in the context of memory, our study represents the first to examine learning-induced changes in the total neuronal proteome. We particularly agree with the statement that “for some genes, protein levels may change even though mRNA levels remain the same”. This is essential rationale that we now discuss on page 42.

      Additionally, we acknowledge the relevance of the study by Hiroki et al., 2022, which used TurboID to identify learning-related proteins, though not in a trained versus control comparison. Our work builds on this by directly comparing trained and control conditions, thereby offering new insights into the proteomic landscape of learning. This is now clarified on page 36.

      To substantiate the novelty and significance of our approach, we have revised the data presentation throughout the manuscript, including clearer candidate selection criteria, frequency-based representation of proteomic hits (Table 2), and neuron-specific enrichment analyses (Table S7 & Figure 4). We hope these improvements help convey the unique contribution of our study to the field.

      2) Authors found six mutants that have abnormality in the salt learning (Fig. 4). These genes have not been described to have the abnormality, providing novel knowledge to the readers, especially those who work on C. elegans behavioural plasticity. Especially, involvement of acetylcholine neurotransmission has not been addressed. Although site of action (neurons involved) has not been tested in this manuscript, it will open the venue to further determine the way in which acetylcholine receptors, cAMP pathway etc. influences the learning process.

      Thank you Reviewer 4, for this encouraging feedback. To further strengthen the study and expand its relevance, we have tested additional mutants in response to Reviewer 3’s comments, as shown in Figures 6 & S7. These results provide even more candidate genes and pathways for future exploration, enhancing the significance and impact of our study.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all the reviewers for their helpful and constructive comments and for their time.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      Summary: Dady et al have developed fluorescent reporters to enable live imaging of cell behaviour and morphology in human pluripotent stem cell lines (PSCs). These reporters target 3 main features, the plasma membrane, nucleus and cytoskeleton. Reporter PSCs have been generated using a piggyBac transposon-mediated stable integration strategy, using a hyperactive piggyBac transposase (HyPBase). The same constructs were also used for mosaic labelling of cells within 2D cultures using lipofectamine transfection.

      The reporters used are tagged with either eGFP or mKate2 (far red) and tag the plasma membrane (pm) via the addition of a 20 amino-acid sequence from rat GAP-43 to the N-terminus of the fluorescent protein, the nucleus via Histone 2B with a laser-mediated photo-conversion option (H2B-mEos3.2), and the cytoskeleton via F-Tractin. In total, the authors produced lines with the following:

      • pm-mKate2 (far red) • pm-eGFP (green) • H2B-mEos3.2 (green to red) • F-tractin-mKate2 (far red) • H2B-mEos3.2 and pm-mKate2 (green to red, plus far red)

      The cell lines used to generate these were the human embryonic stem cell line H9 and human induced pluripotent cell line ChiPS4. The constructs were also used to label cells in a mosaic fashion, using lipofectamine transfection of the original cell lines once they had formed neural rosettes.

      Using these cells, Dady et al then performed live imaging in vitro of human spinal cord rosettes and assessed cell behaviour. In particular they analysed mitotic cleavage planes and apical positioning of neural progenitor cells (NPCs), and assessed actin dynamics within these cells. They showed a slowing of the cell cycle length after the initial expansion phase, an increase in the rate of asymmetric division of these NPCs, and abscission of the apical membrane during these divisions. The F-tractin reporter showed enrichment at the basal nuclear membrane during these cell divisions, suggested to help prevent basal chromosome displacement during mitosis.

      Major comments: The data presented are convincing and could be strengthened by the following additions and clarifications:*

      1. How long do the fluorescent reports take to be visible when transfected via lipofectamine? How efficiently are they expressed? And what concentrations were tested to enable the mosaic expression presented? * We followed the manufacturer’s instructions for Lipofectamine 3000 transfection, using the protocol recommended for set up for a 6 wells plate. We detected fluorescence the following morning ~16h. We did not assess earlier time points or optimise efficiency as we observed the mosaic pattern of expression we set out to achieve, with small groups of labelled cells and single cells as shown in Figure 3 and movies 2 and 3. This information and the detailed protocol provided below are now included in the Methods section “Labelling individual cells in human spinal cord rosettes by lipofection”.

      Manufacturer’s instructions for Lipofectamine 3000 transfection (6 well plate):

      • 1 tube containing 125 ul of Opti-MEM and 7.5 ul of Lipofectamine 3000
      • 1 tube containing 250 ul of Opti-MEM with 5 ug of DNA (total mix DNAs of 2 ug/ul) and P3000 Reagent
      • Add diluted DNA to diluted Lipofectamine 3000 (Ratio 1:1) and incubate for 10 to 15 min at Room Temperature.
      • 20 ul of DNA-Lipid complex was added to neural rosettes growing in 8 well IBIDI dishes (20 ul/well).
      • The ratio of DNA (PiggyBac plasmid) and HypBase transposase was kept at 5:1 (for a final concentration of 2ug/ul).
      • Cells in IBIDI dishes were left to develop in a sterile incubator overnight and mosaic fluorescence was observed the following morning (~16h post-lipofection).

      • Will these cell lines and constructs be made publicly available after publication?*

      The cell lines can be made available: for those reporters made in the H9 WiCell line an MTA will first have to be signed between the requesting PI and WiCell and permission for us to share the line(s) confirmed by WiCell; similarly, for reporters in ChiPS4 line an MTA will first need to be signed between the requesting PI and Cellartis/TakaraBio Europe. We will need to make a charge to cover costs. Constructs will be deposited with Addgene.

      • Were the H9 and ChiPS4 lines characterised after the reporters were added to show they still proliferate/differentiate as they did prior to the reporter integration*?

      In the Results we make clear that all lines created are polyclonal, with exception of a pm-eGFP ChiPS4 line, which is a monoclonal line (lines 145-150). We do not have direct data measuring cell proliferation but collected cell passaging data for all the reporter lines. This showed that they grow to similar densities at each passage compared to the parental line (this metadata is now provided as Supplementary data 1 and is cited in the Methods, line 348).

      As a proof of principle for this approach, we created one monoclonal line from a polyclonal line ChIPS4-pm-eGFP. The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers (immunocytochemistry data Figure S4), and the ability to differentiate into 3 germ layers (qPCR Supplementary data 1). This information is already cited in the Methods (Lines 358-362).

      • Can the novel actin dynamics described be quantified? How many cells imaged show these novel dynamics?* Some of this quantification data was already reported in the paper (in figure 4 legend and in the Methods); we have now updated this and provide the detailed metadata in an Excel spread sheet, Supplementary data 4 (cited in the Methods, line 489)

      Minor comments: 1. Some images in the figures and supplemental movies are low in resolution, for example the DAPI in Fig 4B, making it hard to distinguish individual cells. Please increase this.

      We consider the DAPI labelling in Figure 4b to be clear, however, we wonder whether the reviewer was expecting to also see this combined with the other markers. We have therefore now provided these merged additional images in a revised Figure 4.

      • Please show a merge of Phalloidin and F-Tractin in Fig4, this will help the colocalization to be fully appreciated.*

      This has now been provided in revised Figure 4B.

      • Some additional annotation on the supplemental movies would be useful to indicate to the **reader exactly what cell to follow. *

      We have added indicative arrows to the movies, and note that more detailed labelling of the series of still images from these movies are provided in the main figures (Figures 3D and 4E & F).

      *Reviewer #1 (Significance (Required)):

      Human neurogenesis is currently poorly understood compared to many model systems used, yet key differences have already been identified between the human and the mouse, prompting the need for further investigation of human neural development. A major reason that human neurogenesis has been difficult to study is a lack of tools to enable cell morphology and behaviours to be analysed in real time.

      The reporters and reporter PSC lines generated by Dady et al will allow many of these cell characteristics to be observed using live imaging. For example, the morphology of neural progenitors during and after cell divisions, how the apical and basal processes and membranes are divided, and how the actin cytoskeleton helps to regulate these processes.

      *Importantly, PSC lines can be very heterogeneous, making generating reporter lines costly and time intensive. The use of these reporters with lipofectamine transfection, for a mosaic labelling, allows the visualisation of the plasma membrane, nucleus and cytoskeleton in any human PSC/NPC line, or even in human tissue cultures, without the need to generate each specific reporter line, making it a valuable tool for many labs in the field.

      We strongly agree with this final point; this is a major reason for our study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):*

      The manuscript describes the generation of novel lines of human pluripotent stem cells bearing fluorescent reporters, engineered through piggyBac transposon-mediated integration. The cells are differentiated into neuronal organoids, allowing to capture cellular behaviors associated to cell division. A replating protocol allows the observation of aging neurons by reducing the thickness of the tissue thereby facilitating live imaging. The authors also leverage the transposon technology to create mosaically-labelled organoids which allows visualizing aspects of neuronal delamination, notably cytoskeleton dynamics. They discover an undescribed pattern of F-actin enrichment at the basal nuclear membrane prior to nuclear envelope breakdown.

      L104-109: "Moreover, the transposon system obviates drawbacks of directly engineering endogenous proteins...". Despite the risk of endogenous protein dysfunction, directly tagging allows the full regulation of gene expression (including the promoter, the enhancers and other regulatory regions rather than a strong constitutive promoter such as CAG). In addition, the number of copies integrated and the genomic regions are variable with PB, which does not reflect the endogenous expression. This could be rephrased by nuancing the advantages and drawbacks of each approach. The PiggyBac method is easier and faster, but it results in overexpression of a tagged protein that will be expressed since the hESC state and might not reflect the expression dynamics of the endogenous protein.* We agree and have now revised this in the Introduction L109-118.

      *L124-126: "To monitor cell shape and dynamics we used a plasma membrane (pm) localized protein tagged with eGFP or mKate2 (pm-eGFP or pm-mKate2)." Could the authors provide more details and a reference on the palmitoylated rat peptide use to force membrane expression? *

      This information, including the peptide sequence, is provided in the Methods (L330-331), we have now added a reference addressing its role in membrane localisation PMID: 2918027.

      L132-133: " Finally, to observe actin cytoskeletal dynamics we selected F-tractin, for its minimal impact on cytoskeletal homeostasis".

      A recent JCB paper (https://doi.org/10.1083/jcb.202409192) suggests that "F-tractin alters actin organization and impairs cell migration when expressed at high levels". Whether the overexpression of F-tractin in hESC using a CAG promoter reflects the physiological F-actin dynamics and/or if the high levels could lead to an alteration of cell behavior should be addressed or at least discussed. The paper we cite in this sentence (Belin et al 2014) evaluates F-tractin expression against other approaches to labelling and monitoring the actin cytoskeleton and concludes that in comparison F-tractin has minimal impact.

      We do appreciate that expression above the endogenous level has the potential to alter cell behaviour and have revised the paper to more explicitly acknowledge this: in the Introduction (L109-112), and in the Discussion/conclusion (L289-293) where we now note the recent advances reported in Shatskiy et al. 2025 PMID: 39928047.

      “A further potential limitation of this approach is that over-expression driven by the CAG promoter might not reflect physiological protein dynamics and/or alter cell behaviour; for example, high levels of F-Tractin can impair cell migration and induce actin bundling, interestingly, this can now be minimised by removing the N-terminal region (Shatskiy et al 2025)”.

      L146-147: "...to generate polyclonal cell lines selected for expression of easily detectable (medium level) fluorescence for live imaging studies". What are the criteria used to define medium level? Number of copies integrated into the genome? Or levels by FACS during clone selection?

      To clarify, all the lines presented here are polyclonal, except for one clonal line, pm-eGFP in ChiPS4. The numbers of copies integrated may vary from cell to cell in polyclonal lines. In this study, we selected cells for all lines with a FACS gate and this data is presented in Figure S1 (see line 147).

      L260-263: "Efficient stable integration and moderate expression levels were achieved by optimising, i) the quantity and ratio of piggyBac plasmids and transposase and ii) subsequent FACS to exclude high expressing cells, as well as iii) transfection methods, including temporally defined lipofection in hiPSC-derived tissues." The ration 5:1 is classically used for PB Transposase delivery, however there is still high variability in the number of copies integration. Lipofection in derived tissues has been shown to be challenging. Could the authors should provide quantitative data regarding the efficiency of their approaches, notably the level of mosaicism one could expect?

      We provide quantitative data for the efficiency of transfection using nucleoporation assays (FACS data presented in Supplementary figure S1), which shows more than 80-90% efficiency for eGFP in 82.82% of cells, mKate2 in 92.74% of cells, and H2B-mEos3 22.75% of cells, while 13.79% of cells co-expressed pm-Kate and H2B-mEos3.2. No comparative data regarding the efficiency of the tissue Lipofection assay was collected: our goal was to label single/small numbers of cells in order to monitor individual cell behaviours, and this “inefficient labelling” was readily achieved following the manufacturer’s instructions (please see response to Review 1 point 1), further details are now provided in the Methods.

      L191-194: "We further wished to monitor sub-cellular behaviour within the developing neuroepithelium. To achieve this, we devised a strategy to target a mosaic of cells in established neural rosettes using lipofection. PiggyBac constructs and HyPBase transposase were transfected into D8/D9 human spinal cord neural progenitors using lipofectamine (Felgner, et al., 1987)(Fig. 3A)." The mosaicism is not an all or nothing in this method but also leads to variations in expression levels among the positive cells. The protocol for lipofection could be better detailed to allow easy reproduction by other teams, and its expected efficiency should be discussed. It would be interesting to explore the relationship between individual cells phenotype and expression levels. Please see response to Reviewer 1 point 1 above for more detailed lipofection protocol which generated mosaic expression, this is now also included in the Methods. We agree that investigating the relationship between individual cell phenotypes and expression levels would be interesting, but we think this is beyond the scope of this paper.

      Additional comments: -Did the authors perform karyotyping of the hPSCs prior to use in the differentiation protocol?

      As these are polyclonal lines, we did not undertake karyotyping. This could be done for the one monoclonal line described here (pm-eGFP ChiPS4 line): we lack funds for commercial options, but we are exploring other possibilities.

      -Were pluripotency assays performed after reporter lines generation?

      These were carried out for the clonal pm-eGFP ChiPS4 line (lines 145-150). The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers by IF (Figure S4), and the ability to differentiate into 3 germ layers by qPCR (Supplementary data 2). This information is provided in the Methods (Lines 358-362).

      *-Did the authors measure the cell proliferation rate in H2B-overexpressing cells and controls? Since H2B plays an important role in cytokinesis, it could interfere in cell division when H2B is overexpressed (see doi: 10.3390/cells8111391). *

      We did not directly measure cell division when H2B is over-expressed. However, we assessed cell -passaging time of all the transfected cell lines. This showed that they grow to similar densities at each passage compared to the parental line (this is now provided as Supplementary data 1 and is cited in the Methods, line 348). We also found no difference between apical visiting time of progenitors in spinal cord rosettes expressing pm-eGFP or H2B-mEoS3.2, further supporting the conclusion that levels of H2B-mEoS3.2 expression achieved in this line did not interfere with cell division (metadata provided in Supplementary data 3).

      The authors should provide data concerning the efficiency of expression of the distinct markers after electroporation. This is provided in Supplementary Figure S1 (FACS data) and detailed above for this reviewer.

      *At Fig 1C, the schematic representation describes clone selection, however in the methods it is stated (L348-349): "Sorted cells expressing medium levels of fluorescence were expanded and frozen then representative lots of each polyclonal cell line...". There is some confusion regarding which experiments were performed using polyclonal medium-level mixed populations or monoclonal populations. *

      We apologise for any confusion and have revised the Figure 1C schematic to indicate that cells can be selected to either make polyclonal lines or clonal lines.

      *Reviewer #2 (Significance (Required)):

      The study provides novel tools, as well as elements regarding neuroepithelium biology. It is well conducted and written, and the quality of images is excellent. It reads more as a resource paper in its current version, since the observation regarding neural cell division and delamination are interesting but not deeply explored, so this review will focus on those technical aspects rather than the novelty of the biological findings.

      This study would be of interests for researchers in stem cells and organoids, developmental biology, and neurosciences.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In the manuscript, "Engineering fluorescent reporters in human pluripotent cells and strategies for live imaging human neurogenesis" the authors Dady et al. describe the adaptation of a recent advancement in transposase technology (HyPBase) as a method to integrate live reporters in human pluripotent stem cells. They show that these florescent reporters paired with new imaging strategies can be used to confirm the existence cellular behaviour described in other species such as the interkinetic nuclear migration (IKNM) of dividing progenitors in neural tube development. Finally, they demonstrate that this live imaging system is also able to discover novel biology by identifying previously undescribed actin polymerization at the basal nuclear surface of cortical progenitors undergoing cell division. Overall, the study presents two examples in which this adapted tool will aid in live-imaging studies of cellular biology.

      Major Concerns: 1. This work needs more controls to properly demonstrate claims that their engineering strategy provides an advancement to current Piggyback methods. Their HyPBase strategy needs to be compared and quantified in terms of efficiency with other methods to support their claims (increased detection and reduced phototoxicity).*

      We do not make specific claims for our experiments with respect to the superiority of HyPBase strategy. Our comments on this approach referred to by the reviewer here are in the Introduction (L 94-103), are supported by the literature (e.g. more stable gene expression than native piggyBac or the Tc1/mariner transposase Sleeping Beauty (Doherty, et al., 2012, Yusa, et al., 2011) and serve to explain our selection of HyPBase for our experiments. We make a case for using HyPBase as opposed to another transposase and although it would be interesting to compare efficiencies, this comment does not specify what “other methods” might be informative.

      2.Throughout the manuscript more quantification is needed of the results. How many rosettes were examined? Were all the reported cells within one rosette? Were there differences between rosettes? This should be done for both the spinal and cortical differentiations.

      The reviewer appears to have missed this information – we placed detailed quantifications in the figure legends (numbers of independent experiments and rosettes) and in the Methods in a specific section on Quantification of cell behaviour (L465-486), rather than in the main text. These has since been further updated and we now also provide additional metadata in the form of Excel spreadsheets for quantifications and analyses made for both spinal cord and cortical rosettes (Supplementary data 3 and 4 respectively).

      Minor Comments: 1. Line 246 needs quantification shown in figures of the statements made. Specifically, how many cells were measured to get this number?

      This information was provided in the figure 4 legend and we have since added numbers to these data; we were able to monitor 169 divisions in 21 rosettes; 154/166 divisions had vertical cleavage planes (symmetric) and 12/166 had horizontal cleavage planes (asymmetric).

      These detailed observations were made in two independent experiments, along with observations of basal nuclear membrane F-Tractin localisation. This is noted in figure 4 legend, Methods and detailed metadata is provided in Supplementary data 4.

      2.How many cells in the cortical rosettes had the enriched actin at the basal nuclear surface?

      We confidently observed basal nuclear membrane F-Tractin enrichment in 141/146 divisions, for the remaining 20 cases (166-146), we could not tell whether F-Tractin is enriched or not at the basal nuclear membrane either because of low expression levels or because the basal nuclear membrane was out of focus at NEB. In 5 cases, we did not see the basal nuclear enrichment despite sufficient F-Tractin expression levels and the nucleus being in focus. We have updated the Fig4 legend excluding the non-analysable cases and see detailed metadata is provided in Supplementary data 4.

      *Reviewer #3 (Significance (Required)):

      General Assessment: This manuscript makes a very minor advancement in the field of stem cell engineering and developmental biology, but one that is worthy of publication with a few edits.

      Advance: While PiggyBac reporters are widely used in stem cell engineering, Dady et al. demonstrate a new workflow using HyPBase which would be beneficial to the field. However, to increase this benefit, much more description and quantification of the methods would be needed. The biological advances of this manuscript are also very minor, but interesting as most of them confirm that human neural rosettes mimic many of the observed cell behaviours seen in animal models. Along these lines is the actin dynamics observation in cortical rosettes is interesting, but a preliminary observation and in need of follow up experiments.

      Audience: Regardless, this technique would be of interest to the wider field of stem cell engineering.

      My Expertise: Human Stem Cell Engineering, Neural Tube Development*

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      Dady et al have developed fluorescent reporters to enable live imaging of cell behaviour and morphology in human pluripotent stem cell lines (PSCs). These reporters target 3 main features, the plasma membrane, nucleus and cytoskeleton. Reporter PSCs have been generated using a piggyBac transposon-mediated stable integration strategy, using a hyperactive piggyBac transposase (HyPBase). The same constructs were also used for mosaic labelling of cells within 2D cultures using lipofectamine transfection.

      The reporters used are tagged with either eGFP or mKate2 (far red) and tag the plasma membrane (pm) via the addition of a 20 amino-acid sequence from rat GAP-43 to the N-terminus of the fluorescent protein, the nucleus via Histone 2B with a laser-mediated photo-conversion option (H2B-mEos3.2), and the cytoskeleton via F-Tractin. In total, the authors produced lines with the following:

      • pm-mKate2 (far red)
      • pm-eGFP (green)
      • H2B-mEos3.2 (green to red)
      • F-tractin-mKate2 (far red)
      • H2B-mEos3.2 and pm-mKate2 (green to red, plus far red)

      The cell lines used to generate these were the human embryonic stem cell line H9 and human induced pluripotent cell line ChiPS4. The constructs were also used to label cells in a mosaic fashion, using lipofectamine transfection of the original cell lines once they had formed neural rosettes.

      Using these cells, Dady et al then performed live imaging in vitro of human spinal cord rosettes and assessed cell behaviour. In particular they analysed mitotic cleavage planes and apical positioning of neural progenitor cells (NPCs), and assessed actin dynamics within these cells. They showed a slowing of the cell cycle length after the initial expansion phase, an increase in the rate of asymmetric division of these NPCs, and abscission of the apical membrane during these divisions. The F-tractin reporter showed enrichment at the basal nuclear membrane during these cell divisions, suggested to help prevent basal chromosome displacement during mitosis.

      Major comments:

      The data presented are convincing and could be strengthened by the following additions and clarifications: 1. How long do the fluorescent reports take to be visible when transfected via lipofectamine? How efficiently are they expressed? And what concentrations were tested to enable the mosaic expression presented? 2. Will these cell lines and constructs be made publicly available after publication? 3. Were the H9 and ChiPS4 lines characterised after the reporters were added to show they still proliferate/differentiate as they did prior to the reporter integration? 4. Can the novel actin dynamics described be quantified? How many cells imaged show these novel dynamics?

      Minor comments:

      1. Some images in the figures and supplemental movies are low in resolution, for example the DAPI in Fig 4B, making it hard to distinguish individual cells. Please increase this.
      2. Please show a merge of Phallodin and F-Tractin in Fig4, this will help the colocalization to be fully appreciated.
      3. Some additional annotation on the supplemental movies would be useful to indicate to the reader exactly what cell to follow.

      Significance

      Human neurogenesis is currently poorly understood compared to many model systems used, yet key differences have already been identified between the human and the mouse, prompting the need for further investigation of human neural development. A major reason that human neurogenesis has been difficult to study is a lack of tools to enable cell morphology and behaviours to be analysed in real time.

      The reporters and reporter PSC lines generated by Dady et al will allow many of these cell characteristics to be observed using live imaging. For example, the morphology of neural progenitors during and after cell divisions, how the apical and basal processes and membranes are divided, and how the actin cytoskeleton helps to regulate these processes.

      Importantly, PSC lines can be very heterogeneous, making generating reporter lines costly and time intensive. The use of these reporters with lipofectamine transfection, for a mosaic labelling, allows the visualisation of the plasma membrane, nucleus and cytoskeleton in any human PSC/NPC line, or even in human tissue cultures, without the need to generate each specific reporter line, making it a valuable tool for many labs in the field.

    1. Zwei Ex-Soldaten rechnen ab: So schlecht steht es um Deutschland wirklich

      https://www.youtube.com/watch?v=kOWDBy4fbqs

      Der Kipp-Punkt kommt, wenn die Kassen leer sind‼️ Dann gehen uns unsere Fachkräfte an die Gurgel‼️

      selbstjustiz und revolution, das ist das einzige was hilft, alles andere ist zeitverschwendung.

      4:51 Die Polizisten haben Angst, die Bürger haben Angst und das ist ja auch das Problem. Machst du jetzt irgendwas? Die sind ja nicht blöd, die kriegen deine Daten raus über die Staatsanwaltschaft, und dann auf einmal kriegst du Hausbesuche. Dasselbe Problem haben die Richter, dasselbe haben die Anwälte. Massive Einschüchterung, zumindest wenn es um Clankriminalität geht. Keiner traut sich mehr, was, also Deutschland hat fertig. Wir sind im Kriegszustand. nur hat es bis jetzt uns nur keiner gesagt.

      8:05 Das Problem ist auch mit diesen Einschüchterungen, das ist eine Form der Propaganda. Man weiß, man kann gegen die Leute nichts machen, also schüchtert man sie ein. Weil dann sozusagen, oh, eine Hausdurchsuchung links oder rechts von einen. Es wird juristisch nichts passieren, aber was passiert sozial? Was passiert mit den Job? Also, bestrafe einen und züchtige Hunderte. Das ist ein reines Abschreckungsmittel, was eigentlich in diktatorischen Gefilden normalerweise angewendet wird, aber anscheinend ist unsere Politik so weit, dass sie in die Enge getrieben ist, sich von der Realität verabschiedet haben, um jetzt sozusagen auf, ich nenn es mal "alte Methoden" zurückgreift, um dort einfach an der Macht zu bleiben.

      8:42 Weil das wissen wir, sei es die NGO Geschichten, sei es die vielen Skandale, die Masse wahrscheinlich von vielen vielen Amsträgern, die müssten wahrscheinlich auch im Knast landen. Ja, nur das kann man natürlich schön verheimlichen, indem man die Medien auf seiner Seite hat, die Richter, die alle auch politisch irgendwo ihre Pässe haben, ihre Parteibücher, und auf der anderen Seite mit den Medien. Also alles so ein Schornstein-Effekt, alle nutzen sich gegenseitig, und geben sich auch gegenseitig Autorität.

      11:04 Vorsorgen kann bis zu einem gewissen Grad ja wirklich jeder, ne? Ja, und es geht auch nicht immer um materielle Sachen. Körperlich, Geist, Netzwerk, Austauschen. Alleine bist du in der Krise nichts. Egal, was du für ein Background hast, egal wie gut du bewaffnet bist, egal wie viel Essen du hast, jeder ist Mal krank oder müde oder angeschlagen oder verletzt. Man braucht eine Schichtfähigkeit. Man braucht vor allem spezialisierte Leute, die verschiedene Fähigkeiten machen können, sich ergänzen können als Team. Ja, was ursprünglich eigentlich so die Volksseele war. Das ist ja durch die Atomisierung, ist auch wieder so eine so eine Technik, ist ja das ausgetrieben worden, ne? Oder Entwurzelungstechniken. Damit ist natürlich die Bevölkerung komplett sozusagen, jeder gegen jeden, und nur noch Ellenbogengesellschaft, und dass man eigentlich zusammen gehört, auch dieses links und rechts, grün gegen sonst was, oben gegen unten, das sind alles Techniken, nur um eigentlich "die da oben", sage ich mal, zu schützen, dass das Volk nicht ein irgendwo vorgeht. Und du hast gefragt, wie lange geht's noch? Es geht so lange, wie wir uns das gefallen lassen, und irgendwann, irgendwann stehen Leute auf und sagen, jetzt reicht's.

      12:10 Aber dieser Kippppunkt muss noch kommen, das ist das Problem an der deutschen Seele, ja, bei den Südländern ist es eher so eine Art "Tauziehen", sagt man in der Psychologie. Also, wenn sozusagen eine Reaktion kommt, Druck von Regierung, neue Steuern, dann wird direkt reagiert. Bei den Deutschen oder den, ich nenn es mal den Norddeuropäern, das ist eher so ein "Kipppunkt", da passiert nichts, passiert nichts, irgendwann reicht's und dann schnappt das um, und dann ist natürlich gleich wieder Volleskalation. Aber dieser Punkt ist noch nicht da. Wir haben noch Trinken, es gibt noch Bier, es kommt noch Fußball im Fernsehen.

      13:42 190.000 zusätzliche Arbeitslose mehr als im selben Zeitpunkt im Jahr davor, aber 6,2% Arbeitslosenquote. Aber sind wir mal ehrlich, das ist ja nicht die Wahrheit. Die Wahrheit ist ja, wie viele sind in Maßnahmen, wie viele gehen im vorzeitigen Ruhstand, wenn man ehrlich ist, kann man das ja mindestens verdoppeln. Und dann hast du natürlich von den zusätzlichen Beamten, die geschaffen werden, sei es in Berlin, sei es aber auf kommunaler Ebene, ich kriege das bei mir auf kommunale Ebene mit, wie viele Menschen dort verbeamtet werden, die in der Verwaltung sitzen. Ist für mich immer unbegreiflich, weiß du. Also Beamte brauchst du maximal Richter, Staatsanwälte, Polizisten. Brauchst du keine Lehrer als Beamter in meinen Augen. Ist völliger Nonsens.

      14:23 Aber es bläht sich halt komplett auf, dieser Wasserkopf, und diejenigen, die hier tatsächlich produktiv noch sind, die werden immer weniger, die werden immer mehr zur Kasse gebeten. Was habe ich mich gestern und heute mit Unternehmen unterhalten, die einfach die Schnauze voll haben und sagen, ich mach nicht mehr, ich hau ab, ihr könnt mich alle mal, und dann stehen wir da. Dann hast du eine extrem linke Bewegung. Ich glaube, gestern waren es ernsthaft die Linken in den Umfragen bei 16%, wo ich mir denke, sag mal, seid ihr alle nicht mehr ganz dicht oder was? Du kannst ja ne linke Einstellung haben. Die linke Einstellung endet für mich da, wenn man irgendwie das, weiß du, "Deutschland verrecke", "Alerta Alerta", die ganze Nummer, die ich da von morgens bis abends von irgendwelchen wirklich dummen Menschen höre, die aber auf meine Kosten leben, die vom Sozialstaat leben. Was glauben die denn, wo das herkommt?

      19:42 Die sind nicht alle blöd. Das Problem ist, vielen fehlen die Fakten, vielen fehlen sachliche neutrale Fakten. Alles was, sei es über öffentlich-rechtlichen Rundfunk ist, oder über Fernsehen, Radio, sonst was, durchläuft mindestens fünf Filter. Also fünf Filter von "hier ist die Explosion", hier ist die Primärquelle, und ehe wir das sehen, lesen oder sonst was, muss es mindestens durch fünf Filter durchgehen, teilweise auch sechs oder sieben Filter, und somit ist natürlich klar, die Leute können bloß auf der Datenlage, die die bekommen, eine eine Reaktion bzw. eine Lagefeststellung, eine Entscheidung treffen. Wenn aber die Rohdaten nur Lügen sind, und die das aber nicht wissen, dann können die einfach das nicht machen. Die denken wirklich vielleicht "aus bestem Wissen und Gewissen wähle ich jetzt das", oder mache ich jetzt das, oder "die sind böse und die sind gut". Aber woher ziehen die ihre Daten? Ja, und das sind so die Sachen. Einfach mehr hinterfragen, mehr selber nachdenken. Am Ende wird man selber drauf kommen, ne? Es ist es ist nicht so komplex, nur dadurch dass jeder arbeiten ist, keine Zeit hat. Ja, und wenn er dann abends kaputt nach 10 Stunden Arbeit, vor allem die Selbständigen, das ja dann eher Halbzeit, dann fällt man nur noch ins Bett oder auf Sofa, schaut Netflix, trinkt nen Wein und dann dann fängt der nächste Tag wieder vor los, also diese Narkotisierung durch viele Informationen und aber auch Überschwemmung mit 1000 Fake News und Desinformation, dadurch können die Leute leider, muss man sagen, gar nicht so richtig das urteilen. Das ist das Problem. Diese, beim NLP heißt das ja "unbewusste Inkompetenz". Ja, sie wissen gar nicht, dass die dumm sind bzw. wissen gar nicht, dass denen irgendwas fehlt. Dazu müssten die sozusagen erstmal die richtigen Fragen stellen, um eine "bewusste Inkompetenz". "Oh, hier habe ich eine Lücke." Ja, deswegen sage ich immer, vielfältig informieren. Es es reicht heutzutage nicht einfach nur um 19 Uhr die Glotze anzumachen.

      23:59 Also ich kann bloß das wiederholen, was einige Polizeipräsidenten zu mir gesagt haben, und da ging's ja einmal hier um das Beispiel Frankfurt, was sie gesagt hatten, dass die komplette Polizei und auch Bundeswehr nicht in der Lage wäre, allein gegen die Frankfurter Gangster und die Kriminellen anzugehen. Also das Gegenüber hat viel mehr Waffen, Munition, viel mehr Manpower. Von allen Behörden, die ich jemals getroffen und gesehen habe, seit 2004, sagen alle dasselbe. Sobald es kracht, nehmen Sie ihre Dienstwaffe und gehen nach Hause. Also, es ist kaum einer da, und auch viele Dienststellen sind schon infiltriert [Graue Wölfe, Bozkurt]. Auch da sind schon viele, ich sag mal, aus den Clans aus den Gangbereichen mit drin, die gezielt reingebracht wurden.

      26:42 Jeder, der sich mit dieser ganzen Situation mal intensiv befasst hat, weiß das. In Deutschland denken da kaum Menschen drüber nach. Die Naivität in diesem Land ist bemerkenswert. Ich habe in meinem letzten Video das von dem Delta Force Operator eingespielt, weil er, wie er gesagt hat, die Brutalität bei unseren Menschen, und die sind ja in diesem Land, das sind nicht alle, ja, aber es sind genügend mit eingesickert, die vom islamischen Staat kommen, und so weiter. Und wenn die dann die "Leutnante" sind, sage ich mal, auf der Straße, du hast das letztes mal gesagt, da werden viele folgen, da werden viele mitmachen.

      27:23 Ich habe eine Rede von dem ehemaligen Chef der Kommando Spezialkräfte, General Günzel, gehört, der gesagt hat, der Mensch ist von Natur aus schlecht und brutal. Geht es aber um religiöse Gründe, ist die Brutalität in keinster Weise in Worte zu fassen. "Dieses Bemühen um eine humane Kriegführung, wenn dieses Wort erlaubt ist, fiel jedoch regelmäßig und ironischerweise immer dann sofort wieder in sich zusammen, wenn das Volk im Namen Gottes zu den Waffen gerufen wurde. Glaubenskriege und Kreuzzüge waren die mit Abstand grausamsten der Menschheitsgeschichte."

      28:52 Die iranische Führung hat jetzt offiziell den heiligen Krieg erklärt gegen Israel und Amerika.

      29:36 Wann geht's hier richtig los? Wenn sozusagen der Heilige Krieg, also zwischen Christen und Juden gegen Muslime bzw. Muslime gegen die Christen und Juden, dann wird es hier verdammt eng.

      33:26 Lass uns den Menschen noch ein bisschen Hoffnung machen. Dass es knallen wird, das ist klar. Aber wahrscheinlich brauchen wir so ein "Reinigungsgewitter" wie Marc Friedrich, ich habe mit dem auch gestern noch so ein Interview gemacht, ganz interessant, der beschrieben. Es geht immer in Zyklen, alle 80 Jahre, und ich glaube er hat einfach recht. Ja und wir sind jetzt einfach dran. Die Frage ist, wie schlimm wird's? Die Frage ist, wie kommen wir da durch, und dann wie kommen wir auch schnell wieder nach oben? Weil wirtschaftlich ist ist hat Deutschland fertig. Hat Deutschland wirklich fertig. Das ist einfach wahr. Und das das kommt auch nicht zurück. Die Firmen, die weg sind, kommen kommen nicht wieder. Die Facharbeiter, die weg sind, kommen nicht wieder. Und ich glaube ja, da hat das, was Marc Friedrich wahrscheinlich gemeint hat, ist "das Prinzip der vier Generation" [good times create weak men…], was einfach wiederkehrend in der Geschichte der Menschheit immer wieder da ist. Und ja, ich glaube, wir brauchen es, und ich hoffe einfach noch, dass ein bisschen Restfunke, sage ich mal, unsere Ahnen irgendwie in uns drin ist, zwischen Dichtern, Denkern und auch Kämpfern. Ja, die German waren ist nicht unbedingt nur Leute, die da ganze Zeit Gedichte geschrieben haben. Ja, also auch das Wehrhafte, hoffe ich, dass das irgendwann mal wieder zurückkommt, und dann werden wir das sehen. Also, ich denke, wir zwei sehen uns dann irgendwann mal auf der Straße wieder, an der Seite von denjenigen, die Schutz brauchen. Ja, aber ich weiß nicht, wer sonst noch da ist. Das das ist genau der Punkt. Einige Kämpfer gibt es in diesem Land noch, und ich weiß, wenn wir uns auf der Straße treffen sollten, dass ich mich auf dich verlassen kann. Mein Lieber, grüß bitte alle deine Mitstreiter, weil es gibt noch genügend in diesem Land, die dieses Land lieben und nicht zum Kotzen finden ("Warum bist denn du heute hier? - Alerta Alerta!") und Deutschland nicht den Tod wünschen ("Deutschland verrecke") und von daher glaube ich schon, dass wir am Ende irgendwie wieder vernünftig vorgehen können, mein Lieber. Vielen Dank, Andre.

      35:22 "Glaubenskriege und Kreuzzüge waren die mit Abstand grausamsten der Menschheitsgeschichte. Denn hier kämpfte man ja nicht mehr gegen einen, wenn auch feindlich gesonnenen, aber doch immerhin menschlichen Gegner. Hier kämpfte man gegen den Leibhaftigen mit seinem gesamten höllischen Anhang. Hier ging es nicht mehr um irdische Güter, um Land, Macht oder Interessen. Hier ging es um das Wort und die Werke des wahren Gottes. Nicht um Sieg oder Niederlage, sondern um die Ausrottung des Bösen schlechthin. Und da aber natürlich auch jedes Mittel recht, denn wer mit Gott im Bunde war, der konnte ja nichts Unrechtes tun."

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for the GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Comments on latest version:

      The authors have attempted to address my initial concerns with additional experiments and refutations. Unfortunately, my concerns, especially my specific comments 1-3, remain unaddressed. The present manuscript is descriptive and fails to describe the molecular mechanism by which Sakura exerts its function in the germline. Nevertheless, this reviewer acknowledges that the observed defects in sakura mutant ovaries and the possible physiological significance of the Sakura-Out interaction are worth sharing with the research community, as they may lay the groundwork for future research in functional analysis.

      We thank the reviewer for valuable comments. We would like to investigate the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (named it sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. In this revised manuscript, the authors further investigated whether Sakura affects the function of Orb, a binding partner they identified, in deubiquitinase activity when Orb interacts with Bam.

      We appreciate the authors' efforts to address all our comments. While these revisions have greatly improved the clarity of certain sections, some of the concerns remain unclear, while details mentioned in the responses about these studies should be incorporated in the manuscript. Specifically, the manuscript still lacks the demonstration that Sakura co-localizes with Orb/Bam despite having the means for staining and visualization. This would bring insight into the selective binding of Orb with Bam vs. Sakura perhaps at different stages of oogenesis. Such analyses would allow for more specific conclusions, further alluding to the underlying mechanism, rather than the general observations currently presented.

      This elaborate study will be embraced by both germline-focused scientists and the developmental biology community.

      We thank the reviewer for valuable comments. We believe that the author meant Otu, not Orb, for the binding partner of Sakura that we identified. We would like to investigate the colocalization of Sakura with other proteins including Otu and the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field.

      Comments on latest version:

      With these revisions, the authors have addressed my main concerns.

      We thank the reviewer for valuable comments.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      The manuscript is much improved based on the changes made upon recommendations from the reviewers.

      Though most of our comments have been addressed, we have a few more we wish to recommend. For previous points we made, we replied with further clarification for the authors.

      Figure 1

      (1) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      • Previous Fig1B (sakura mRNA expression level) is now Fig S2, not S1. Please make this data as Fig S1.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      (2) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      • The labels on lanes for Stages 12-13 and Stage 14, still only say "chambers", not "egg chambers". Also there is no Stage 1-3 egg chamber. More accurately, the label should be "Germarium - Stage 11 egg chambers".

      We updated the lables on lanes as suggested by the reviewer.

      (3) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakuranull phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      • Please put this info into the Methods section.

      We added this info into the Methods section.

      (4) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      • Please add this detail into the manuscript.

      We added this info into the Methods section.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer's point. We think using numbers, not %, makes more sense.

      • Having a different 'n' number for each experiment does not allow one to compare anything except numbers of the egg chambers. This must be normalized.

      We still don’t agree with the reviewer. In Fig 5D, we are showing the numbers of stage 14 oocytes per fly (= per a pair of ovaries). ‘n’ is the number of flies (= number of a pair of ovaries) examined. We now clarified this in the figure legend. Different ‘n’ number does not prevent us from comparing the numbers of stage 14 oocytes per fly. Therefore, we would like to show as it is now.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      • Please add this information to the manuscript.

      We added this info into the Methods section.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      • Current Fig S1 should go to Fig 7, to better understand the relationship between pMad and Bam expression.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      Figure 9C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      • Please add this info to the Methods section.

      We added this info into the Methods section.

      Figure 10- Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer's points. In our study, even for the full-length proteins. We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      • Based on your binding studies, we would expect them to colocalize in the egg chamber, and since there are antibodies and a GFP-line available, it would be important to demonstrate that via visualization.

      As we wrote in the response and now in the manuscript, our antibodies are not best for immunostaining. We will try to optimize the experimental conditions in the future studies.

    1. Reviewer #2 (Public review):

      In this manuscript, Ross and Miscik et. al described the phenotypic discrepancies between F0 zebrafish mosaic mutant ("CRISPants") and morpholino knockdown (Morphant) embryos versus a set of 5 different loss-of-function (LOF) stable mutants in one particular gene involved in hepatic stellate cells development: podxl. While transient LOF and mosaic mutants induced a decrease of hepatic stellate cells number stable LOF zebrafish did not. The authors analyzed the molecular causes of these phenotypic differences and concluded that LOF mutants are genetically compensated through the upregulation of the expression of many genes. Additionally, they ruled out other better-known and described mechanisms such as the expression of redundant genes, protein feedback loops, or transcriptional adaptation.

      While the manuscript is clearly written and conclusions are, in general, properly supported, there are some aspects that need to be further clarified and studied.

      (1) It would be convenient to apply a method to better quantify potential loss-of-function mutations in the CRISPants. Doing this it can be known not only percentage of mutations in those embryos but also what fraction of them are actually generating an out-of-frame mutation likely driving gene loss of function (since deletions of 3-6 nucleotides removing 1-2 aminoacid/s will likely not have an impact in protein activity, unless that this/these 1-2 aminoacid/s is/are essential for the protein activity). With this, the authors can also correlate phenotype penetrance with the level of loss-of-function when quantifying embryo phenotypes that can help to support their conclusions.

      (2) It is unclear that 4.93 ng of morpholino per embryo is totally safe. The amount of morpholino causing undesired effects can differ depending on the morpholino used. I would suggest performing some sanity check experiments to demonstrate that morpholino KD is not triggering other molecular outcomes, such as upregulation of p53 or innate immune response.

      (3) Although the authors made a set of controls to demonstrate the specificity of the CRISPant phenotypes, I believe that a rescue experiment could be beneficial to support their conclusions. Injecting an mRNA with podxl ORF (ideally with a tag to follow protein levels up) together with the induction of CRISPants could be a robust manner to demonstrate the specificity of the approach. A rescue experiment with morphants would also be good to have, although these are a bit more complicated, to ultimately demonstrate the specificity of the approach.

      (4) In lines 314-316, the authors speculate on a correlation between decreased HSC and Podxl levels. It would be interesting to actually test this hypothesis and perform RT-qPCR upon CRISPant induction or, even better and if antibodies are available, western blot analysis.

      (5) Similarly, in lines 337-338 and 342-344, the authors discuss that it could be possible that genes near to podxl locus could be upregulated in the mutants. Since they already have a transcriptomic done, this seems an easy analysis to do that can address their own hypothesis.

      (6) Figures 4 and 5 would be easier to follow if panels B-F included what mutants are (beyond having them in the figure legend). Moreover, would it be more accurate and appropriate if the authors group all three WT and mutant data per panel instead of showing individual fish? Representing technical replicates does not demonstrate in vivo variability, which is actually meaningful in this context. Then, statistical analysis can be done between WT and mutant per panel and per set of primers using these three independent 3-month-old zebrafish.

    2. Author response:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Ross, Miscik, and others describes an intriguing series of observations made when investigating the requirement for podxl during hepatic development in zebrafish. Podxl morphants and CRISPants display a reduced number of hepatic stellate cells (HSCs), while mutants are either phenotypically wild type or display an increased number of HSCs.

      The absence of observable phenotypes in genetic mutants could indeed be attributed to genetic compensation, as the authors postulate. However, in my opinion, the evidence provided in the manuscript at this point is insufficient to draw a firm conclusion. Furthermore, the opposite phenotype observed in the two deletion mutants is not readily explainable by genetic compensation and invokes additional mechanisms.

      Major concerns:

      (1) Considering discrepancies in phenotypes, the phenotypes observed in podxl morphants and CRISPants need to be more thoroughly validated. To generate morphants, authors use "well characterized and validated ATG Morpholino" (lines 373-374). However, published morphants, in addition to kidney malformations, display gross developmental defects including pericardial edema, yolk sack extension abnormalities, and body curvature at 2-3 dpf (reference 7 / PMID: 24224085). Were these gross developmental defects observed in the knockdown experiments performed in this paper? If yes, is it possible that the liver phenotype observed at 5 dpf is, to some extent, secondary to these preceding abnormalities? If not, why were they not observed? Did kidney malformations reproduce? On the CRISPant side, were these gross developmental defects also observed in sgRNA#1 and sgRNA#2 CRISPants? Considering that morphants and CRISPants show very similar effects on HSC development and assuming other phenotypes are specific as well, they would be expected to occur at similar frequencies. It would be helpful if full-size images of all relevant morphant and CRISPant embryos were displayed, as is done for tyr CRISPant in Figure S2. Finally, it is very important to thoroughly quantify the efficacy of podxl sgRNA#1 and sgRNA#2 in CRISPants. The HRMA data provided in Figure S1 is not quantitative in terms of the fraction of alleles with indels. Figure S3 indicates a very broad range of efficacies, averaging out at ~62% (line 100). Assuming random distribution of indels among cells and that even in-frame indels result in complete loss of function (possible for sgRNA#1 due to targeting the signal sequence), only ~38% (.62*.62) of all cells will be mutated bi-allelically. That does not seem sufficient to reliably induce loss-of-function phenotypes. My guess is that the capillary electrophoresis method used in Figure S3 underestimates the efficiency of mutagenesis, and that much higher mutagenesis rates would be observed if mutagenesis were assessed by amplicon sequencing (ideally NGS but Sanger followed by deconvolution analysis would suffice). This would strengthen the claim that CRISPant phenotypes are specific.

      The reviewer points out some excellent caveats regarding the morphant experiments. We agree that at least some of the effects of the podxl morpholino may be related to its effects on kidney development and/or gross developmental defects that impede liver development. Because of these limitations, we focused our experiments on analysis of CRISPant and mutant phenotypes, including showing that podxl (Ex1(p)_Ex7Δ) mutants are resistant to CRISPant effects on HSC number when injected with sgRNA#1. We did not observe any gross morphologic defects in podxl CRISPants. Liver size was not significantly altered in podxl CRISPants (Figure 2A). We will add brightfield images of podxl CRISPant larvae to the supplemental data for the revised manuscript.

      We agree with the reviewer that HRMA is not quantitative with respect to the fraction of alleles with indels and that capillary electrophoresis likely underestimates mutagenesis efficiency. Nonetheless, even with 100% mutation efficiency, podxl CRISPant knockdown, like most CRISPR knockdowns, would not represent complete loss of function:  ~1/3 of alleles will contain in-frame mutations and likely retain at least some gene function, so ~1/3*1/3 = 1/9 of cells will have no out-of-frame indels and contain two copies of at least partially functional podxl and ~2/3*2/3 = 4/9 of cells will have one out-of-frame indel and one copy of at least partially functional podxl. Thus, the decreased HSCs we observe with podxl CRISPant likely represents a partial loss-of-function phenotype in any case.

      (2) In addition to confidence in morphant and CRISPant phenotypes, the authors' claim of genetic compensation rests on the observation that podxl (Ex1(p)_Ex7Δ) mutants are resistant to CRISPant effect when injected with sgRNA#1 (Figure 3L). Considering the issues raised in the paragraph above, this is insufficient. There is a very straightforward way to address both concerns, though. The described podxl(-194_Ex7Δ) and podxl(-319_ex1(p)Δ) deletions remove the binding site for the ATG morpholino. Therefore, deletion mutants should be refractive to the Morpholino (specificity assessment recommended in PMID: 29049395, see also PMID: 32958829). Furthermore, both deletion mutants should be refractive to sgRNA#1 CRISPant phenotypes, with the first being refractive to sgRNA#2 as well.

      The reviewer proposes elegant experiments to address the specificity of the morpholino. For the revision, we plan to perform additional morpholino studies, including morpholino injections of podxl mutants and assessment of tp53 and other immune response/cellular stress pathway genes in podxl morphants.

      Reviewer #2 (Public review):

      In this manuscript, Ross and Miscik et. al described the phenotypic discrepancies between F0 zebrafish mosaic mutant ("CRISPants") and morpholino knockdown (Morphant) embryos versus a set of 5 different loss-of-function (LOF) stable mutants in one particular gene involved in hepatic stellate cells development: podxl. While transient LOF and mosaic mutants induced a decrease of hepatic stellate cells number stable LOF zebrafish did not. The authors analyzed the molecular causes of these phenotypic differences and concluded that LOF mutants are genetically compensated through the upregulation of the expression of many genes. Additionally, they ruled out other better-known and described mechanisms such as the expression of redundant genes, protein feedback loops, or transcriptional adaptation.

      While the manuscript is clearly written and conclusions are, in general, properly supported, there are some aspects that need to be further clarified and studied.

      (1) It would be convenient to apply a method to better quantify potential loss-of-function mutations in the CRISPants. Doing this it can be known not only percentage of mutations in those embryos but also what fraction of them are actually generating an out-of-frame mutation likely driving gene loss of function (since deletions of 3-6 nucleotides removing 1-2 aminoacid/s will likely not have an impact in protein activity, unless that this/these 1-2 aminoacid/s is/are essential for the protein activity). With this, the authors can also correlate phenotype penetrance with the level of loss-of-function when quantifying embryo phenotypes that can help to support their conclusions.

      Reviewer #2 raises an excellent point that is similar to Reviewer #1’s first concern. Please see our response above. In general, we agree that correlating phenotype penetrance with level of loss-of-function is a very good way to support conclusions regarding specificity in knockdown experiments. Unfortunately, because the phenotype we are examining (HSC number) has a relatively large standard deviation even in control/wildtype larvae (for example, 63 ± 19 (mean ± standard deviation) HSCs per liver in uninjected control siblings in Figure 1) it would be technically very difficult to do this experiment for podxl.

      (2) It is unclear that 4.93 ng of morpholino per embryo is totally safe. The amount of morpholino causing undesired effects can differ depending on the morpholino used. I would suggest performing some sanity check experiments to demonstrate that morpholino KD is not triggering other molecular outcomes, such as upregulation of p53 or innate immune response.

      Reviewer #2 raises an excellent point that is similar to Reviewer #1’s second concern. Please see our response above. We acknowledge that some of the effects of the podxl morpholino may be non-specific. To address this concern in the revised manuscript, we plan to perform additional morpholino studies, including morpholino injections of podxl mutants and assessment of tp53 and other immune response/cellular stress pathway genes in podxl morphants.

      (3) Although the authors made a set of controls to demonstrate the specificity of the CRISPant phenotypes, I believe that a rescue experiment could be beneficial to support their conclusions. Injecting an mRNA with podxl ORF (ideally with a tag to follow protein levels up) together with the induction of CRISPants could be a robust manner to demonstrate the specificity of the approach. A rescue experiment with morphants would also be good to have, although these are a bit more complicated, to ultimately demonstrate the specificity of the approach.

      (4) In lines 314-316, the authors speculate on a correlation between decreased HSC and Podxl levels. It would be interesting to actually test this hypothesis and perform RT-qPCR upon CRISPant induction or, even better and if antibodies are available, western blot analysis.

      We appreciate the reviewer’s acknowledgement of the controls we performed to demonstrate the specificity of the CRISPant phenotypes. The proposed experiments (rescue, assessment of Podxl levels) would help bolster our conclusions but are technically difficult due to the relatively large standard deviation for the HSC number phenotype even in wildtype larvae and the lack of well-characterized zebrafish antibodies against Podxl.

      (5) Similarly, in lines 337-338 and 342-344, the authors discuss that it could be possible that genes near to podxl locus could be upregulated in the mutants. Since they already have a transcriptomic done, this seems an easy analysis to do that can address their own hypothesis.

      Thank you for this suggestion. We were referring in these sections to genes that are near the podxl locus with respect to three-dimensional chromatin structure; such genes would not necessarily be near the podxl locus on chromosome 4. We will clarify the text in this paragraph for the revised manuscript. At the same time, we will examine our transcriptomic data to check expression of mkln1, cyb5r3, and other nearby genes on chromosome 4 as suggested and include this analysis in the revised manuscript.

      (6) Figures 4 and 5 would be easier to follow if panels B-F included what mutants are (beyond having them in the figure legend). Moreover, would it be more accurate and appropriate if the authors group all three WT and mutant data per panel instead of showing individual fish? Representing technical replicates does not demonstrate in vivo variability, which is actually meaningful in this context. Then, statistical analysis can be done between WT and mutant per panel and per set of primers using these three independent 3-month-old zebrafish.

      Thank you for this suggestion. We will modify these figures to clarify our results.

      Reviewer #3 (Public review):

      Summary:

      Ross et al. show that knockdown of zebrafish podocalyxin-like (podxl) by CRISPR/Cas or morpholino injection decreased the number of hepatic stellate cells (HSC). The authors then generated 5 different mutant alleles representing a range of lesions, including premature stop codons, in-frame deletion of the transmembrane domain, and deletions of the promoter region encompassing the transcription start site. However, unlike their knockdown experiment, HSC numbers did not decrease in podxl mutants; in fact, for two of the mutant alleles, the number of HSCs increased compared to the control. Injection of podxl CRISPR/Cas constructs into these mutants had no effect on HSC number, suggesting that the knockdown phenotype is not due to off-target effects but instead that the mutants are somehow compensating for the loss of podxl. The authors then present multiple lines of evidence suggesting that compensation is not exclusively due to transcriptional adaptation - evidence of mRNA instability and nonsense-mediated decay was observed in some but all mutants; expression of the related gene endoglycan (endo) was unchanged in the mutants and endo knockdown had no effect on HSC numbers; and, expression profiling by RNA sequencing did not reveal changes in other genes that share sequence similarity with podxl. Instead, their RNA-seq data showed hundreds of differentially expressed genes, especially ECM-related genes, suggesting that compensation in podxl mutants is complex and multi-genic.

      Strengths:

      The data presented is impressively thorough, especially in its characterization of the 5 different podxl alleles and exploration of whether these mutants exhibit transcriptional adaptation.

      Thank you very much for appreciating the hard work that went into this manuscript.

      Weaknesses:

      RNA sequencing expression profiling was done on adult livers. However, compensation of HSC numbers is apparent by 6 dpf, suggesting compensatory mechanisms would be active at larval or even embryonic stages. Although possible, it's not clear that any compensatory changes in gene expression would persist to adulthood.

      This reviewer makes an excellent point. Our finding that the largest changes in gene expression were in extracellular matrix (ECM) genes and ECM modulation is a major function of HSCs supports the hypothesis that genetic compensation is occurring in adults. Nonetheless, we agree that compensatory changes in adults may not fully reflect the compensatory changes during development, so it would bolster the conclusions of the paper to perform the RNA sequencing and qPCR experiments on zebrafish larval livers.

      We tried very hard to do this experiment proposed by Reviewer #3. In our hands, obtaining sufficient high-quality RNA for robust gene expression analysis typically requires pooling of ~10-15 larval livers. These larvae need to be obtained from a heterozygous in-cross in order to have matched wildtype sibling controls. Livers must be dissected from freshly euthanized (not fixed) zebrafish. Thus, this experiment requires genotyping live, individual larvae from a small amount of tissue (without sacrificing the larvae) before dissecting and pooling the livers. Unfortunately we were unable to confidently and reproducibly genotype individual live podxl larvae with these small amounts of tissue despite trying multiple approaches. Therefore we were not able to perform gene expression analysis on podxl mutant larval livers.

  4. Jun 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision Plan

      June 28, 2025

      Manuscript number: RC-2025-02982

      Corresponding author(s): Babita Madan, Nathan Harmston, David Virshup

      General Statements In Wnt signaling, the relative contributions of ‘canonical (β-catenin dependent) and non- canonical (β-catenin independent) signaling remains unclear. Here, we exploited a unique and highly robust in vivo system to study this. Our study is therefore the first comprehensive analysis of the β-catenin independent arm of the Wnt signaling pathway in a cancer model and illustrates how a combination of cis-regulatory elements can determine Wnt-dependent gene regulation.

      We are very pleased with the reviews; it appears we communicated our goal and our findings clearly, and in general the reviewers felt the study provided important information, was well planned and the results were “crystal clear”.

      While more experiments could strengthen and extend the results, we feel our results are already very robust due to the use of multiple replicates in the in vivo system.

      The Virshup lab in Singapore closed July 1, 2025 and so additional wet lab studies are not feasible.

      1. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      Below we address the points raised by the reviewers:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The article has the merit of addressing a yet-unsolved question in the field (if beta-catenin can also repress genes) that only a limited number of studies has tried to tackle, and provides useful datasets for the community. The system employed is elegant, and the PORCN-inhibition bypassed by a ____constitutively active beta-catenin is clean and ingenious. The manuscript is clearly written.

      We thank the reviewers for their kind comments on the importance of the data. Our orthotopic model provides the opportunity to exploit robust Wnt regulated gene expression in a more responsive microenvironment than can be achieved in cell culture and simple flank xenograft models.

      Here we propose a series of thoughts and comments that, if addressed, would in our opinion improve the study and its description.

      1) We wonder why a xenograft model is necessary to induce a robust WNT response in these cells.

      The authors describe this set-up as a strength, as it is supposed to provide physiological relevance, yet it is not clear to us why this is the case.

      We welcome the opportunity to expand on our choice of an orthotopic xenograft model. It has been long established that cancer cells behave differently in different in vivo locations (Killion et al., 1998). Building on this, we confirmed this in our system that identical pancreatic cancer cells treated with the same PORCN inhibitor had very different responses in vitro, in the flank and in their orthotopic environment (Madan et al., 2018). To quote from our prior paper, “Looking only at genes decreasing more than 1.5-fold at 56 hours, we would have missed 817/1867 (44%) genes using a subcutaneous or 939/1867 (50%) using an in vitro model. Thus, the overall response to Wnt inhibition was reduced in the subcutaneous model and further blunted in vitro. An orthotopic model more accurately represents real biology.

      The reason for this is presumably the very different orthotopic microenvironment, including tissue appropriate stroma-tumor, vascular-tumor, lymphatic-tumor, and humoral interactions.

      Moreover, as the authors homogenize the tumour to perform bulk RNA-seq, we wonder whether they are not only sequencing mRNA from the cancer cells but also from infiltrating immune cells and/or from the surrounding connective tissue.

      In experiments generating RNA-seq data from xenograft models, the resulting sequences can originate from either human (graft) or mouse (host). In order to account for this, following standard practice, we filtered reads prior to alignment using Xenome (Conway et al., 2012). We have added additional text to the methods to highlight this step in our pipeline.

      2) If, as the established view implies, Wnt/beta-catenin only leads to gene activation, pathway

      inhibition would free up the transcriptional machinery - there is evidence that some of its constituents are rate-limiting. The free machinery could now activate some other genes: the net effect observed would be their increased transcription upon Wnt inhibition, irrespective of beta-catenin's presence. Could this be considered as an alternative explanation for the genes that go up in both control and bcat4A lines upon ETC-159 administration? This, we think, is in part corroborated by the absence of enrichment of biological pathways in this group of genes. The genes that are beta-catenin-dependent and downregulated (D&R) are obviously not affected by this alternative explanation.

      This is an interesting suggestion, and we will incorporate this thought into our discussion of potential mechanisms.

      3) The authors mention that HPAF-II are Wnt addicted. Do they die upon ETC-159 administration, and is this effect rescued by exogenous WNT addition?

      We and several others have previously reported that Wnt-addicted cells differentiate and/or senesce upon Wnt withdrawal in vivo but not in vitro. This is related to the broader changes in gene expression in the orthotopic tumors. The effect of PORCN inhibition has been demonstrated by us and others and is rescued by Wnt addition, downstream activation of Wnt signaling by e.g. APC mutation, and, as we show here, stabilized β-catenin.

      4) Line 120: the authors write about Figure 1C: "This demonstrates that the growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling." The opposite is true: control cells require WNT and form less colony with ETC159, while β-cat4A are independent from Wnt secretion.

      We appreciate the reviewer pointing out our mis-statement. This error has now been corrected in the revised manuscript.

      5) Lines 226-229: "The β-catenin independent repressed genes were notably enriched for motifs bound by homeobox factors including GSC2, POU6F2, and MSGN1. This finding aligns with the known role of non-canonical Wnt signaling in embryonic development" This statement assumes that target genes, or at least the beta-catenin independent ones, are conserved across tissues, including developing organs. This contrasts with the view that target genes in addition to the usual suspects (e.g., AXIN2, SP5 etc.) are modulated tissue-specifically - a view that the authors (and in fact, these reviewers) appear to support in their introduction.

      We agree with the reviewer that a majority of Wnt-regulated genes are tissue specific. Indeed, the β-catenin independent Wnt-repressed genes may also be tissue specific. In other tissues, we speculate that other β-catenin independent Wnt-repressed genes may also have homeobox factor binding sites as well and so the general concept remains valid. We do not have sufficient data in other tissues to resolve this issue.

      7) The luciferase and mutagenesis work presented in Figure 5 are crystal-clear. One important aspect that remains to be clarified is whether beta-catenin and/or TCF7L2 directly bind to the NRE sites. Or do the authors hypothesize that another factor binds here? We suggest the authors to show TCF7L2 binding tracks at the NRE/WRE motifs in the main figures.

      A major question of the reviewers was, can we provide additional evidence that the NRE is bound by LEF/TCF family members. Our initial analysis of more datasets indicates TCF7L2 peaks are enriched on NREs in Wnt-β-catenin responsive cell lines like HCT116 and PANC1. These analyses appear to further support the model that the NRE binds TCF7L2, but we fully agree these analyses can neither prove nor disprove the model.

      In our revision, we will analyze additional cut and run datasets as suggested and look at the HEPG2 datasets suggested by reviewer 1. We are concerned about tissue specificity as some of the genes are not expressed in e.g. HEPG2 or HEK293 cells where datasets are available. However, our data continues to support a functional role for the NRE in the modulation of β-catenin regulated genes. The best analysis would be more ChIP-Seq or Cut and Run assays on tissues, not cells, but these studies are beyond what we can do.

      What about other TCF/LEFs and beta-catenin? Are there relevant datasets that could be explored to test whether all these bind here during Wnt activation?

      As above, We will analyze additional ChIP and Cut & Run datasets to address this question looking at β-catenin and other LEF/TCF family members. We also reflect on the fact that ChIP-Seq does not necessarily imply that the targeted factor (e.g.,TCF7L2) is bound in the target site in all the cells.

      The repression might be mediated by beta-catenin partnering with other factors that bind the NRE even by competing with TCF7L2.

      We appreciate the insightful comments and now incorporate this into our discussion.

      8) In general, while we greatly appreciate the github page to replicate the analysis, we feel that the methods' description is lacking, both concerning analytical details (e.g., the cutoff used for MACS2 peak calling) or basic experimental planning (e.g, how the luciferase assays were performed).

      We thank reviewers for the suggestions and will add further details regarding the analysis

      and experimental planning in the method sections.

      9) The paper might benefit from the addition of quality metrics on the RNA-seq. Interesting for example would be to see a PCA analysis - as a more unbiased approach - rather than the kmeans clustering.

      We have this data and will add it to the revised manuscript.

      10) It seems that in Figure 3A the clusters are mislabelled as compared to Figure 3B and Figure 1. Here the repressor clusters are labelled DR5, DR6 and DN7 whereas in the rest of the paper they are labelled DR1, DR2 and DN1.

      Thank you for pointing out this issue. This has now been corrected in Figure 3.

      11) The siCTNNB1 in Figure 5E is described to be a significant effect in the text whereas in Figure 5E this has a p value of 0.075.

      Thank you for pointing out the p value did not cross the 0.05 threshold. We have modified the text to remove the word ‘significant’.

      12) Line 396: 'Here we confirm and extend the identification of a TCF-dependent negative regulatory element (NRE), where beta-catenin interacts with TCF to repress gene expression'. We suggest caution in stating that beta-catenin and TCF directly repress gene expression by binding to NRE. In the current state the authors do not show that TCF & beta-catenin bind to these elements. See our previous point 7.

      We appreciate the suggestion of the reviewers. We will be more cautious in our interpretation.

      Further suggestions - or food for thoughts:

      13) A frequently asked question in the field concerns the off-target effects of CHIR treatment as opposed to exposure to WNT ligands. CHIR treatment - in parallel to bcat4A overexpression - would allow the authors to delineate WNT independent effects of CHIR treatment and settle this debate.

      We thank the reviewers for suggesting this interesting experiment to sort out the non- Wnt effects of GSK3 inhibition. Such a study would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      14) We think that Figure 4C could be strengthened by adding more public TCF-related datasets (e.g., from ENCODE) to confirm the observation across datasets from different laboratories. In particular, the HEPG2 could possibly be improved as there is an excellent TCF7L2 dataset available by ENCODE.

      Many more datasets are easily searchable through: https://www.factorbook.org/.

      As above, we will analyze the HEPG2 dataset. We plan on updating Fig 4 with data from analysis from different datasets such as (Blauwkamp et al., 2008; Zambanini et al., 2022).

      15) The authors show that there is no specific spacing between NREs and WREs. This implies that it is not likely that TCF7L2 recognizes both at the same time through the C-clamp. Do the authors think that there might be a pattern discernible when comparing the location of WRE and NRE in relation to the TCF7L2 ChIP-seq peak summit? This would allow inferring whether TCF7L2 more likely directly binds the WRE (presumably) and if the NRE is bound by a cofactor.

      This is an interesting suggestion and we will conduct this analysis as suggested on available datasets (as the result may be different in different tissue types with varying degrees of Wnt/β-catenin signaling).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Overall, the study provides a solid framework for understanding noncanonical transcriptional ____outputs of Wnt signaling in a cancer context. The majority of the conclusions are well supported by the data. However, there are a few substantive points that require clarification before the manuscript is ready for publication.

      Major Comments

      The authors' central claim-that their findings represent a comprehensive analysis of the β-catenin- independent arm of Wnt signaling and uncover a "cis-regulatory grammar" governing Wnt-dependent gene activation versus repression-is overstated based on the presented data.

      We appreciate the reviewers concern and will temper our language.

      Specifically:

      • Figure 3B identifies TF-binding motifs enriched among different Wnt-responsive gene clusters, but the authors only functionally investigate the role of NRE in β-catenin-dependent repression, particularly in the context of TCF motif interaction.

      • To support a broader claim regarding cis-regulatory grammar, additional analyses are required:

      o What is the distribution of NREs across all clusters? Are they exclusive to β-catenin-dependent repressed clusters, or more broadly present?

      The distribution of the NREs is a statistically significant enrichment; they are observed in the repressed clusters more frequently than expected by chance alone, but they are present elsewhere as well. We have tempered our language around the cis-regulatory grammar.

      o Do NREs interact with other enriched motifs beyond TCF? Is this interaction specific to repression or also involved in activation?

      This is an interesting question beyond the scope of this analysis. Our dataset uses multiple interventions; The NREs may interact with other motifs but we would need more transcriptional analysis data with biological intervention to assess this.

      o A more comprehensive analysis of cis-element combinations is needed to draw conclusions about their collective influence on gene regulation across clusters.

      We agree; This would be a great question if we had TCF binding data in our orthotopic xenograft model. It’s a dataset we do not have, nor do we have the resources to pursue this.

      Other important clarifications:

      • The use of the term "wild-type" to describe HPAF-II cells is potentially misleading. These cells are not genetically wild-type and harbor multiple oncogenic alterations.

      Thank you for pointing this out. We will use the word “parental” in the text

      • The manuscript does not clearly present the kinetics of Wnt target downregulation upon ETC-159 treatment of HPAF-II cells. Understanding whether repression mirrors activation dynamics (e.g., delay or persistence of Wnt effects) is essential to interpreting the system's temporal behavior.

      We previously addressed the temporal dynamics of activation and repression in our more comprehensive time course papers (Harmston et al., 2020; Madan et al., 2018); there are differences in the dynamics that are difficult to tease out in this new dataset as the density of time points is less. Having said that, we will compare the time course and annotate the sets of genes identified in this current study with the data from our original study to provide more information on the temporal dynamics of this system.

      Minor Comment

      • The statement in Figure 1C (lines 119-120) that "growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling" is inconsistent with the data. As the β-cat4A allele encodes a constitutively active form of β-catenin, Wnts should not be required. Please revise this conclusion for clarity.

      We thank the reviewers for pointing out this mis-statement. We have corrected this.

      Reviewer #2 (Significance (Required)):

      This study offers a systematic classification of Wnt-responsive gene expression dynamics, differentiating between β-catenin-dependent and -independent mechanisms. The insights into temporal expression patterns and the potential role of the NRE element in transcriptional repression add depth to our understanding of Wnt signaling. These findings have relevance for developmental biology, stem cell biology, and cancer research-particularly in understanding how Wnt-mediated repression may influence tumor progression and therapeutic response.

      Nice review; thank you.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      … The work advances understanding of Wnt mediated repression via cis regulatory grammar.

      Major Concerns

      1) Statistical thresholds and clustering - The criteria for classifying β catenin-dependent versus - independent genes rely on FDR cutoffs above or below 0.1. If the more stringent cutoff of 0.05 was used, how many genes would still be considered Wnt regulated?

      We can readily address this in a revised manuscript.

      2) Validation of selected β catenin-dependent and -independent Wnt target genes - While the authors identify β catenin-dependent and -independent Wnt target genes (4 selected genes from different clusters in Fig.2), RT-qPCR based validation of Axin2 has been performed in Fig. S3. Authors should also validate other 3 genes as well.

      We had considered performing qPCR to re-validate some of our gene-expression changes but qPCR analyses is intrinsically more error prone than RNAseq, and we believe the literature shows that qPCR from the same samples will not add any extra utility. Previous studies that have examined this question have reported excellent correlation between the RNAseq and pPCR (Asmann et al., 2009; Griffith et al., 2010; Wu et al., 2014).

      3) NRE mechanistic insight - The most important contribution of this manuscript is the extension of the importance of the NRE motif in Wnt regulated enhancers. But the mutagenesis data provided is insufficient to conclusively nail down that the NREs are responsible for the repression. The effects in the synthetic reporters in Fig. 4D are small - it's not clear that there is much activity in the MimRep to be repressed by the NREs. The data in Fig. 5 is a better context to test the importance of the NREs, but the authors use deletion analysis which is too imprecise and settle for single nucleotide mutants in individual NREs in the ABHD11-AS1 reporter. In the Axin2 report, they mutate sequences outside of the NRE. It's too inconsistent. They should mutate 3 or 4 positions within the NRE in BOTH motifs in the context of the ABHD11-AS1 reporter. Same for the Axin2 reporter.

      We feel our analysis, coupled with the Kim paper (Kim et al., 2017), support the role of the NRE. We agree that more data is always desirable, but in our current circumstances are we cannot add additional wetlab experiments.

      Regarding Figure 4D, this is a synthetic system lacking the endogenous elements in the promoter. We agree with the reviewer that the effect is small but we would also like to point out that adding the well-established 2WRE in front of the MinRep increased the transcription activity to 1.5 fold, which is of similar magnitude change of the 2NRE deceasing the transcriptional activity 1/1.5 = 0.6.

      In Kim et al, it was shown that mutating the 11st nucleotide of the NRE motif showed the strongest effect, so we followed their lead in only mutated the 11st nucleotide in ABHD11- AS1 NRE.

      As for the putative NRE sequence present in AXIN2 promoter, its downstream sequence is polyT (__GTGTTTTTTTT__TTTTTTTTTT), if we only mutate 11st nucleotide to G/C, we could create similar sequence to NRE, so we mutated sequences outside of the NRE to fully disrupt it.

      4) Even if the mutagenesis is done more completely, the results simply replicate that of the Goentoro group. In Kim et al 2017, they provide suggestive (not convincing) evidence that TCFs directly bind to the NRE. The authors of this manuscript should explore that in more detail, e.g., can purified TCF bind to the NRE sequence? Can the authors design experiments to directly test whether beta-catenin is acting through the NRE - their data currently only demonstrates that the NRE provide a negative input to the reporters - that's an important mechanistic difference.

      We point out that our minimal reporter studies with the NRE showed a repressive effect in HCT116 (colorectal cancer cells with stabilized β-catenin) but not HT1080 (sarcoma cells with low Wnt) supporting the importance of β-catenin acting through the NRE (Figs. 4D, 4E).

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and culture-based ChIP assays would be of some value, the best study should be done in vivo where the system is most robust. We are not in a position to do these studies, but we will add in a discussion of this as a limitation of the current study.

      5) In vertebrates, some TCFs are more repressive than others and TLEs have been implicated in repressive. Exploring these factors in the context of the NRE would increase the value of this story.

      This is an interesting idea but beyond the scope of the current manuscript. It is likely this would be dependent on tissue specific expression, local expression levels, and local binding of co-factors. As we look at other TCF members in other datasets we may be able to address this. Further wetlab experiments are beyond the scope of this work.

      **Referees cross-commenting**

      I respectfully disagree that the luciferase assays are sufficient. Using deletion analysis to understand the function of specific binding sites is insufficient and the more specific mutations of NREs are incomplete. Regarding this paper extending our knowledge of direct transcriptional repression by Wnt/bcat signaling, I don't agree that it adds much - there are numerous datasets where Wnt signaling activates and represses genes - the trick is determining whether any of the repressed genes are the result and direct regulation by TCF/bcat. They don't explore that. The main finding is an extension of the work by Lea Goentoro on the importance of the NRE motif, but they don't address whether TCF directly associates with this sequence. Goentoro argued in the 2017 paper that it does, but that data is unconvincing to me. Can purified TCF bind the NRE? Without that information (done carefully) this manuscript is very limited.

      We respectfully disagree with the reviewer regarding the contribution of this manuscript. There are certainly many datasets looking at Wnt-regulated genes in tissue culture, but these cell-based studies are underpowered to really understand Wnt biology. There are only two papers, ours and Cantú’s, that address Wnt repressed genes in any depth. No prior papers have differentiated β-catenin dependent from β-catenin independent genes before, and certainly not in an orthotopic animal model.

      A major impact of our study is the finding that only 10% of Wnt regulated genes are independent of β-catenin, at least in pancreatic cancer. We feel this is a major contribution. We further add to this analysis by re-enforcing/extend the prior evidence on the NRE in humans (and correct the motif sequence!) for Wnt-repressed genes. Our data supports the fine-tuning of the Wnt/β-catenin regulated genes by a cis-regulatory grammar.

      Reviewer #3 (Significance (Required)):

      Overall, this study advances our understanding of the dual roles of Wnt signaling in gene activation and repression, highlighting the role of the NRE motif. But this is an extension of the original NRE paper (Kim et al 2017) with no mechanistic advance beyond that original work. The transcriptomics in the first part of the manuscript have some value, but similar data sets already exist.

      We respectfully but strongly disagree with the reviewer. First, our work examines the NRE in a large-scale in vivo transcriptome dataset, significantly extending the candidate gene approach of Kim et al. Secondly, we disagree with the comment that “similar data sets already exist.” Indeed, reviewer 1 (C. Cantú) specifically pointed out we had addressed an “yet-unsolved question in the field” on whether and how β-catenin repressed genes.

      __3. __Description of the revisions that have already been incorporated in the transferred manuscript

      To date we have only corrected several typographical errors.

      1. Description of analyses that authors prefer not to carry out

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and cell culture-based ChIP assays would be of some modest value, they have already been done in vitro by Kim et al. (Kim et al., 2017) and the best next study should be done in vivo in Wnt-responsive cancers or tissues where the biology is most robust (Madan et al., 2018) . We are not in a position to do these studies, but we will add this into the discussion as a limitation of the current study. We also acknowledge that the NRE may interact with other currently unidentified factors.

      Reviewer 1 asked about considering experiments to determine non-Wnt effects of GSK3 inhibitors like CHIR. Such a study, while interesting, would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      Finally, we note that the Virshup lab at Duke-NUS Medical School in Singapore, where these in vivo studies were performed, has closed as of July 1, 2025 and the various lab members have moved on to new adventures. Because of this, we are unable to undertake new wet-lab studies.

      Thank you for your consideration,

      For the authors,

      David Virshup

      References:

      Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI,

      Poland GA, Wieben ED, Kocher J-PA. 2009. 3’ tag digital gene expression profiling of human

      brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom 10:531–

      1. doi:10.1186/1471-2164-10-531

      Blauwkamp TA, Chang MV, Cadigan KM. 2008. Novel TCF-binding sites specify transcriptional

      repression by Wnt signalling. The EMBO Journal 27:1436–1446. doi:10.1038/emboj.2008.80

      Conway T, Wazny J, Bromage A, Tymms M, Sooraj D, Williams ED, Beresford-Smith B. 2012.

      Xenome—a tool for classifying reads from xenograft samples. Bioinformatics 28:i172–i178.

      doi:10.1093/bioinformatics/bts236

      Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, Tang MJ, Hou

      Y-C, Pugh TJ, Robertson G, Chittaranjan S, Ally A, Asano JK, Chan SY, Li HI, McDonald H,

      Teague K, Zhao Y, Zeng T, Delaney A, Hirst M, Morin GB, Jones SJM, Tai IT, Marra MA.

      1. Alternative expression analysis by RNA sequencing. Nat Methods 7:843–847.

      doi:10.1038/nmeth.1503

      Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM, Madan B. 2020.

      Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway.

      Cancer Res 81:464–475. doi:10.1158/0008-5472.can-20-2129

      Killion JJ, Radinsky R, Fidler IJ. 1998. Orthotopic models are necessary to predict therapy of

      transplantable tumors in mice. Cancer metastasis reviews 17:279–284.

      Kim K, Cho J, Hilzinger TS, Nunns H, Liu A, Ryba BE, Goentoro L. 2017. Two-Element

      Transcriptional Regulation in the Canonical Wnt Pathway. Current Biology 27:2357-2364.e5.

      doi:10.1016/j.cub.2017.06.037

      Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E, Virshup DM. 2018. Temporal

      dynamics of Wnt-dependent transcriptome reveals an oncogenic Wnt/MYC/ribosome axis. J

      Clin Invest 128:5620–5633. doi:10.1172/jci122383

      Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL,

      Sim S, Clarke MF, Quake SR. 2014. Quantitative assessment of single-cell RNA-sequencing

      methods. Nat Methods 11:41–46. doi:10.1038/nmeth.2694

      Zambanini G, Nordin A, Jonasson M, Pagella P, Cantù C. 2022. A new cut&run low volume-

      urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/b-catenin tissue-

      specific genomic targets. Development 149. doi:10.1242/dev.201124

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      1. The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K'). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed "normal, fully expanded" lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system.

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E).

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I'), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.

      Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion to more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy.

      Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I'). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManII-GFP signals. Standard colocalization analysis methods, such as Pearson's correlation coefficient or Mander's overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L').

      I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed "filled" electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      1. The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology.

      Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to "defective sulfation affects Golgi structures and multiple routes of intracellular trafficking".

      DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. Dpy-YFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5-figure supplement 2C.

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly.

      Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to "constrictions" to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes?

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H).

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np.

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT.

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      Minor: Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error. It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance (Required)):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      minor comments 1. Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsmMI07716 line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.

      The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.

      Reviewer #2 (Significance (Required)):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      • This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I') and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.

      • A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed). This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila. Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130.

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants-although this line was very sick and difficult to grow-showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss.

      • A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a product recognized by WGA? For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We're also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism's proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant.

      • Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      After cleavages by Np and furin, the Pio protein should have three fragments. The N-terminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals.

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1's comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      • What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That's probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      • The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3.

      • The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      • It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.

      • The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a "C-terminal ZP domain", which is a middle piece after furin + Np cleavages.

      • The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance (Required)):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript by Walter-McNeill, Kruglyak, and team, the authors provide solid evidence of another toxin-antidote (TA) system in C. elegans. Generally, TA systems involve selfish and linked genetic elements, one encoding a toxin that kills progeny inheriting it, unless an antidote (the second element) is also present. Currently, only two TA systems have been characterized in this species, pointing to the importance of identifying new instances of such systems to understand their transmission dynamics, prevalence, and functions in shaping worm populations.

      Strengths:

      This novel TA system (mll-1/smll-1) was identified on LGV in wild C. elegans isolates from the Hawaiian islands, by crossing divergent strains and observing allele frequency distortions by high-throughput genome sequencing after 10 generations. These allele frequency distortions were subsequently confirmed in another set of crosses with a separate divergent strain, and crosses of heterozygous males or hermaphrodites resulted in a pattern of L1 lethality in progeny (with a rod arrest phenotype) that suggested the maternal transmission of this TA system from the XZ1516 genetic background. By elegantly combining the use of near-isogenic lines, CRISPR editing to generate knock-outs, and a transgene rescue of the antidote gene, the authors identified the genes encoding the toxin and the antidote, which they refer to as mll-1 and smll-1. Moreover, the specific mll-1 isoform responsible for the production of the toxin was identified and mll-1 transcripts were observed by FISH in early and late embryos, as well as in larvae. Inducible expression of the toxin in various strains resulted in larval arrest and rod phenotypes. The authors then characterized the genetic variation of 550 wild isolates at the toxin/antidote region on LGV and distinguished three clades: (1) one with the conserved TA system, (2) one having lost the toxin and retaining a mostly functional antidote, and (3) one having lost the antidote and retaining a divergent yet coding toxin (this includes the reference strain Bristol N2, in which the homologous toxin gene has acquired mutations and is known as B0250.8). Further, the authors show that this region is under positive selection. These data are compelling and provide very strong evidence of a new TA system in this species.

      Weaknesses:

      The question remained as to how one clade, including N2, could retain the toxin gene but not possess a functional antidote. In the second part of the manuscript, the authors hypothesized that small RNA targeting (RNAi) of the toxin transcript could provide the necessary repression to allow worms to survive without the antidote. Through a meta-analysis of multiple small RNA datasets from the literature, the authors found evidence to support this idea, in which the toxin transcript is targeted by 22G siRNAs whose biogenesis is dependent on the Mutator foci protein, MUT-16. They note that from previous studies, mut-16 null mutants displayed a varied penetrance of larval arrest. In their own hands, mut-16 mutants displayed 15% varied larval arrest and 2% rod phenotypes. In an attempt to link B0250.8 to mut-16/siRNAs, they made a double mutant and examined body length as a proxy for developmental stage. Here, they observed a partial rescue of the mut-16 size defect by B0250.8 mutation. Finally, the authors also highlight data from further meta-analysis, which predicts the recognition of B0250.8 by several piRNAs. Also based on existing data from the literature, the authors link loss of Piwi (PRG-1), which binds piRNAs, to a depletion of 22G-RNAs targeting B0250.8 and an upregulation of B0250.8 expression in gonads, suggesting that piRNAs are the primary small RNAs that target B0250.8 for downregulation. The data in this portion of the manuscript are intriguing, but somewhat preliminary and incomplete, as they are based on little primary experimentation and a collection of different datasets (which have been acquired by slightly different methods in most cases). This portion of the study would require subsequent experimentation to firmly establish this mechanistic link. For example, to be able to claim that "the N2 toxin allele has acquired mutations that enable piRNA binding to initiate MUT-16-dependent 22G small RNA amplification that targets the transcript for degradation" the identified piRNA sites should be mutated and protein and transcript levels analysed in wild-type and in the strain with mutated piRNA sites. At a minimum, the protein levels in wild-type and mut-16, prg-1, and/or wago-1 mutants should be measured by western blot and/or by live imaging (introducing a GFP or some other tag to the endogenous protein via CRISPR editing) to show that the toxin is not accumulated as a protein in wt, but increases in levels in these mutants. mRNA levels in Figure S5A suggest there is still some expression of the B0250.8 transcript in a wild-type situation.

    1. NATIONAL DISASTER RISKFINANCING FRAMEWORKAND IMPLEMENTATION PLAN

      Hi Colleagues!

      Highlight any part of the text to leave a comment, question, or insight. You can also reply to others’ annotations.

      Tag your comments if needed, e.g., #question, #suggestion to help us filter key themes later.

      Let’s use this space to: Clarify content Share reflections and experiences Suggest collaboration opportunities

    1. we used a very high level um uh commu communication that this build an I here and like any good intelligence it has a multiscale hierarchical control where it took care of all of the downstream molecular um details.

      for - example - importance of multiscale hierarchical intelligence and control - Michael Levin - high level instruction is issued and the multiscale structure ensures that all the lower level details are executed - like a software function call

      new plexmark - person assigned to each comment in multiplayer conversational environment - have a way to - detect then - discriminate and finally - tag - each sequentially different conversant' s comments in the conversation - This will help with Indyweb provenance by attributing the person with each sentence

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon.

      The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.

      To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.

      Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells than in DNMT1 KO alone.

      Strengths:

      The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.

      Weaknesses:

      Suggestions for refinement:

      The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants a more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells?

      The transcriptome analysis of DNMT1 KO cells showed hundreds of deregulated genes upon DNMT1 ablation. As expected, the majority were up-regulated and gene ontology analysis revealed that among the strongest up-regulated genes were gene clusters with functions in “regulation of transcription from RNA polymerase II promoter” and “cell differentiation” and genes encoding proteins with KRAB domains. In addition, the de novo methyltransferases DNMT3A and DNMT3B were up-regulated in DNMT1 KO cells suggesting the set-up of compensatory mechanisms in these cells. We will include this data set in the revised version of the manuscript.

      Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1.

      We have previously discovered that conditional deletion of the maintenance DNA methyltransferase DNMT1 in the murine epidermis results not only in the up-regulation of mobile elements, such as IAPs but also the induced expression of L1TD1 ((Beck et al, 2021), Suppl. Table 1 and Author response image 1). Similary, L1TD1 expression was induced by treatment of primary human keratinocytes or squamous cell carcinoma cells with the DNMT inhibitor aza-deoxycytidine (Author response image 2 and 3). These finding are in accordance with the observation that inhibition of DNA methyltransferase activity by azadeoxycytidine in human non-small cell lung cancer cells (NSCLCs) results in upregulation of L1TD1 (Altenberger et al, 2017). Our interest in L1TD1 was further fueled by reports on a potential function of L1TD1 as prognostic tumor marker. We will include this information in the revised manuscript.

      Author response image 1.

      RT-qPCR of L1TD1 expression in cultured murine control and Dnmt1 Δ/Δker keratinocytes. mRNA levels of L1td1 were analyzed in keratinocytes isolated at P5 from conditional Dnmt1 knockout mice (Beck et al., 2021). Hprt expression was used for normalization of mRNA levels and wildtype control was set to 1. Data represent means ±s.d. with n=4. **P < 0.01 (paired t-test).

      Author response image 2.

      RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2-deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. **P < 0.01 (paired t-test).

      Author response image 3.

      Induced L1TD1 expression upon DNMT inhibition in squamous cell carcinoma cell lines SCC9 and SCCO12. Cells were treated with 5-aza-2-deoxycidine for 24 hours, 48 hours or 6 days. (A) Western blot analysis of L1TD1 protein levels using beta-actin as loading control. (B) Indirect immunofluorescence microscopy analysis of L1TD1 expression in SCC9 cells. Nuclear DNA was stained with DAPI. Scale bar: 10 µm. (C) RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. P < 0.05, *P < 0.01 (paired t-test).

      The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transposition-positive colonies? Further exploration of this phenomenon would be intriguing.

      This is an important point and we were aware of this potential problem. Therefore, we calibrated the retrotransposition assay by transfection with a blasticidin resistance gene vector to take into account potential differences in cell viability and blasticidin sensitivity. Thus, the observed reduction in L1 retrotransposition efficiency is not an indirect effect of reduced cell viability.

      Based on previous studies with hESCs, it is likely that, in addition to its role in retrotransposition, L1TD1 has additional functions in the regulation of cell proliferation and differentiation. L1TD1 might therefore attenuate the effect of DNMT1 loss in KO cells generating an intermediate phenotype (as pointed out by Reviewer 2) and simultaneous loss of both L1TD1 and DNMT1 results in more pronounced effects on cell viability.

      Reviewer #2 (Public Review):

      In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:  

      Reviewer #1 (Public Review): 

      Summary: 

      In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon. 

      The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.  

      To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.  

      Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells than in DNMT1 KO alone.  

      Strengths: 

      The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.  

      Weaknesses: 

      Suggestions for refinement:  

      The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants a more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells? 

      This is an excellent suggestion. We have gene expression data on WT versus DNMT1 KO HAP1 cells and have included them now as Suppl. Figure S1. The  transcriptome analysis of DNMT1 KO cells showed hundreds of deregulated genes upon DNMT1 ablation. As expected, the majority were up-regulated and gene ontology analysis revealed that among the strongest up-regulated genes were gene clusters with functions in “regulation of transcription from RNA polymerase II promoter” and “cell differentiation” and genes encoding proteins with KRAB domains. In addition, the de novo methyltransferases DNMT3A and DNMT3B were up-regulated in DNMT1 KO cells suggesting the set-up of compensatory mechanisms in these cells. 

      Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1. 

      We have previously discovered that conditional deletion of the maintenance DNA methyltransferase DNMT1 in the murine epidermis results not only in the up-regulation of mobile elements, such as IAPs but also the induced expression of L1TD1 ([1], Suppl. Table 1 and Author response image 1). Similary, L1TD1 expression was induced by treatment of primary human keratinocytes or squamous cell carcinoma cells with the DNMT inhibitor azadeoxycytidine (Author response images 2 and 3). These findings are in accordance with the observation  that inhibition of DNA methyltransferase activity by aza-deoxycytidine in human non-small cell lung cancer cells (NSCLCs) results in up-regulation of L1TD1 [2]. Our interest in L1TD1 was further fueled by reports on a potential function of L1TD1 as prognostic tumor marker. We have included this information in the last paragraph of the Introduction in the revised manuscript.

      Author response image 1. RT-qPCR of L1TD1 expression in cultured murine control and Dnmt1 Δ/Δker keratinocytes. mRNA levels of L1td1 were analyzed in keratinocytes isolated at P5 from conditional Dnmt1 knockout mice [1]. Hprt expression was used for normalization of mRNA levels and wildtype control was set to 1. Data represent means ±s.d. with n=4. **P < 0.01 (paired t-test). 

      Author response image 2. RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2-deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. **P < 0.01 (paired t-test).

      Author response image 3. Induced L1TD1 expression upon DNMT inhibition in squamous cell carcinoma cell lines SCC9 and SCCO12. Cells were treated with 5-aza-2-deoxycidine for 24 hours, 48 hours or 6 days. (A) Western blot analysis of L1TD1 protein levels using beta-actin as loading control. (B) Indirect immunofluorescence microscopy analysis of L1TD1 expression in SCC9 cells. Nuclear DNA was stained with DAPI. Scale bar: 10 µm. (C)  RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. *P < 0.05, **P < 0.01 (paired t-test).

      The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transposition-positive colonies? Further exploration of this phenomenon would be intriguing. 

      This is an important point and we were aware of this potential problem. Therefore, we calibrated the retrotransposition assay by transfection with a blasticidin resistance gene vector to take into account potential differences in cell viability and blasticidin sensitivity. Thus, the observed reduction in L1 retrotransposition efficiency is not an indirect effect of reduced cell viability. We have added a corresponding clarification in the Results section on page 8, last paragraph. 

      Based on previous studies with hESCs and germ cell tumors [3], it is likely that, in addition to its role in retrotransposition, L1TD1 has further functions in the regulation of cell proliferation and differentiation. L1TD1 might therefore attenuate the effect of DNMT1 loss in KO cells generating an intermediate phenotype (as pointed out by Reviewer 2) and simultaneous loss of both L1TD1 and DNMT1 results in more pronounced effects on cell viability. This is in agreement with the observation that a subset of L1TD1 associated transcripts encode proteins involved in the control of cell division and cell cycle. It is possible that subtle changes in the expression of these protein that were not detected in our mass spectrometry approach contribute to the antiproliferative effect of L1TD1 depletion as discussed in the Discussion section of the revised manuscript. 

      Reviewer #2 (Public Review):           

      In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.   

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):        

      Major 

      (1) The study only used one knockout (KO) cell line generated by CRISPR/Cas9. Considering the possibility of an off-target effect, I suggest the authors attempt one or both of these suggestions. 

      A) Generate or acquire a similar DMNT1 deletion that uses distinct sgRNAs, so that the likelihood of off-targets is negligible. A few simple experiments such as qRT-PCR would be sufficient to suggest the same phenotype.  

      B) Confirm the DNMT1 depletion also by siRNA/ASO KD to phenocopy the KO effect.  (2) In addition to the strategies to demonstrate reproducibility, a rescue experiment restoring DNMT1 to the KO or KD cells would be more convincing. (Partial rescue would suffice in this case, as exact endogenous expression levels may be hard to replicate). 

      We have undertook several approaches to study the effect of DNMT1 loss or inactivation: As described above, we have generated a conditional KO mouse with ablation of DNMT1 in the epidermis. DNMT1-deficient keratinocytes isolated from these mice show a significant increase in L1TD1 expression.  In addition, treatment of primary human keratinocytes and two squamous cell carcinoma cell lines with the DNMT inhibitor aza-deoxycytidine led to upregulation of L1TD1 expression. Thus, the derepression of L1TD1 upon loss of DNMT1 expression or activity is not a clonal effect. Also, the spectrum of RNAs identified in RIP experiments as L1TD1-associated transcripts in HAP1 DNMT1 KO cells showed a strong overlap with the RNAs isolated by a related yet different method in human embryonic stem cells. When it comes to the effect of L1TD1 on L1-1 retrotranspostion, a recent study has reported a similar effect of L1TD1 upon overexpression in HeLa cells [4].  

      All of these points together help to convince us that our findings with HAP1 DNMT KO are in agreement with results obtained in various other cell systems and are therefore not due to off-target effects. With that in mind, we would pursue the suggestion of Reviewer 1 to analyze the effects of DNA hypomethylation upon DNMT1 ablation.

      (3) As stated in the introduction, L1TD1 and ORF1p share "sequence resemblance" (Martin 2006). Is the L1TD1 antibody specific or do we see L1 ORF1p if Fig 1C were uncropped?  (6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).  

      This is a relevant question. We are convinced that the L1TD1 antibody does not crossreact with L1 ORF1p for the following reasons: Firstly, the antibody does not recognize L1 ORF1p (40 kDa) in the  uncropped Western blot for Figure 1C (Author response image 4A). Secondly, the L1TD1 antibody gives only background signals in DKO cells in the  indirect immunofluorescence experiment shown in Figure 1E of the manuscript. 

      Thirdly, the immunogene sequence of L1TD1 that determines the specificity of the antibody was checked in the antibody data sheet from Sigma Aldrich. The corresponding epitope is not present in the L1 ORF1p sequence. Finally, we have shown that the ORF1p antibody does not cross-react with L1TD1 (Author response image 4B).

      Author response image 4. (A) Uncropped L1TD1 Western blot shown in Figure 1C. An unspecific band is indicated by an asterisk. (B) Westernblot analysis of WT, KO and DKO cells with L1 ORF1p antibody.

      (4) In abstract (P2), the authors mentioned that L1TD1 works as an RNA chaperone, but in the result section (P13), they showed that L1TD1 associates with L1 ORF1p in an RNAindependent manner. Those conclusions appear contradictory. Clarification or revision is required. 

      Our findings that both proteins bind L1 RNA, and that L1TD1 interacts with ORF1p are compatible with a scenario where L1TD1/ORF1p heteromultimers bind to L1 RNA. The additional presence of L1TD1 might thereby enhance the RNA chaperone function of ORF1p. This model is visualized now in Suppl. Figure S7C. 

      (5) Figure 2C fold enrichment for L1TD1 and ARMC1 is a bit difficult to fully appreciate. A 100 to 200-fold enrichment does not seem physiological. This appears to be a "divide by zero" type of result, as the CT for these genes was likely near 40 or undetectable. Another qRT-PCRbased approach (absolute quantification) would be a more revealing experiment. 

      This is the validation of the RIP experiments and the presentation mode is specifically developed for quantification of RIP assays (Sigma Aldrich RIP-qRT-PCR: Data Analysis Calculation Shell). The unspecific binding of the transcript in the absence of L1TD1 in DNMT1/L1TD1 DKO cells is set to 1 and the value in KO cells represents the specific binding relative the unspecific binding. The calculation also corrects for potential differences in the abundance of the respective transcript in the two cell lines. This is not a physiological value but the quantification of specific binding of transcripts to L1TD1. GAPDH as negative control shows no enrichment, whereas specifically associated transcripts show strong enrichement. We have explained the details of RIPqRT-PCR evaluation in Materials and Methods (page 14) and the legend of Figure 2C in the revised manuscript.       

      (6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).            

      See response to (3).  

      (7) Figure S4A and S4B: There appear to be a few unusual aspects of these figures that should be pointed out and addressed. First, there doesn't seem to be any ORF1p in the Input (if there is, the exposure is too low). Second, there might be some L1TD1 in the DKO (lane 2) and lane 3. This could be non-specific, but the size is concerning. Overexposure would help see this.

      The ORF1p IP gives rise to strong ORF1p signals in the immunoprecipitated complexes even after short exposure. Under these contions ORF1p is hardly detectable in the input. Regarding the faint band in DKO HAP1 cells, this might be due to a technical problem during Western blot loading. Therefore, the input samples were loaded again on a Western blot and analyzed for the presence of ORF1p, L1TD1 and beta-actin (as loading control) and shown as separate panel in Suppl. Figure S4A. 

      (8) Figure S4C: This is related to our previous concerns involving antibody cross-reactivity. Figure 3E partially addresses this, where it looks like the L1TD1 "speckles" outnumber the ORF1p puncta, but overlap with all of them. This might be consistent with the antibody crossreacting. The western blot (Figure 3C) suggests an upregulation of ORF1p by at least 2-3x in the DKO, but the IF image in 3E is hard to tell if this is the case (slightly more signal, but fewer foci). Can you return to the images and confirm the contrast are comparable? Can you massively overexpose the red channel in 3E to see if there is residual overlap? 

      In Figure 3E the L1TD1 antibody gives no signal in DNMT1/L1TD1 DKO cells confirming that it does not recognize ORF1p. In agreement with the Western blot in Figure 3C the L1 ORF1p signal in Figure 3E is stronger in DKO cells. In DNMT1 KO cells the L1 ORF1p antibody does not recognize all L1TD1 speckles. This result is in agreement with the Western blot shown above in Figure R4B and indicates that the L1 ORF1p antibody does not recognize the L1TD1 protein. The contrast is comparable and after overexposure there are still L1TD1 specific speckles. This might be due to differences in abundance of the two proteins.

      (9) The choice of ARMC1 and YY2 is unclear. What are the criteria for the selection?

      ARMC1 was one of the top hits in a pilot RIP-seq experiment (IP versus input and IP versus  IgG IP). In the actual RIP-seq experiment with DKO HAP1 cells instead of IgG IP as a negative control, we found ARMC1 as an enriched hit, although it was not among the top 5 hits. The results from the 2nd RIP-seq further confirmed the validity of ARMC1 as an L1TD1-interacting transcript. YY2 was of potential biological relevance as an L1TD1 target due to the fact that it is a processed pseudogene originating from YY1 mRNA as a result of retrotransposition. This is mentioned on page 6 of the revised manuscript.

      (10) (P16) L1 is the only protein-coding transposon that is active in humans. This is perhaps too generalized of a statement as written. Other examples are readily found in the literature. Please clarify.  

      We will tone down this statement in the revised manuscript. 

      (11) In both the abstract and last sentence in the discussion section (P17), embryogenesis is mentioned, but this is not addressed at all in the manuscript. Please refrain from implying normal biological functions based on the results of this study unless appropriate samples are used to support them.

      Much of the published data on L1TD1 function are related to embryonic stem cells [3-7]. Therefore, it is important to discuss our findings in the context of previous reports.

      (12) Figure 3E: The format of Figures 1A and 3E are internally inconsistent. Please present similar data/images in a cohesive way throughout the manuscript.  

      We show now consistent IF Figures in the revised manuscript.

      Minor: 

      (1) Intro:           

      - Is L1Td1 in mice and Humans? How "conserved" is it and does this suggest function?  

      Murine and human L1TD1 proteins share 44% identity on the amino acid level and it was suggested that the corresponding genes were under positive selection during evolution with functions in transposon control and maintenance of pluripotency [8].  

      - Why HAP1? (Haploid?) The importance of this cell line is not clear.          

      HAP1 is a nearly haploid human cancer cell line derived from the KBM-7 chronic myelogenous leukemia (CML) cell line [9, 10]. Due to its haploidy is perfectly suited and widely used for loss-of-function screens and gene editing. After gene editing  cells can be used in the nearly haploid or in the diploid state. We usually perform all experiments with diploid HAP1 cell lines.  Importantly, in contrast to other human tumor cell lines, this cell line tolerates ablation of DNMT1. We have included a corresponding explanation in the revised manuscript on page 5, first paragraph.

      - Global methylation status in DNMT1 KO? (Methylations near L1 insertions, for example?) 

      The HAP1 DNMT1 KO cell line with a 20 bp deletion in exon 4 used in our study was validated in the study by Smits et al. [11]. The authors report a significant reduction in overall DNA methylation. However, we are not aware of a DNA methylome study on this cell line. We show now data on the methylation of L1 elements in HAP1 cells and upon DNMT1 deletion in the revised manuscript in Suppl. Figure S1B.

      (2) Figure 1:  

      - Figure 1C. Why is LMNB used instead of Actin (Fig1D)?  

      We show now beta-actin as loading control in the revised manuscript.  

      - Figure 1G shows increased Caspase 3 in KO, while the matching sentence in the result section skips over this. It might be more accurate to mention this and suggest that the single KO has perhaps an intermediate phenotype (Figure 1F shows a slight but not significant trend). 

      We fully agree with the reviewer and have changed the sentence on page 6, 2nd paragraph accordingly.  

      - Would 96 hrs trend closer to significance? An interpretation is that L1TD1 loss could speed up this negative consequence. 

      We thank the reviewer for the suggestion. We have performed a time course experiment with 6 biological replicas for each time point up to 96 hours and found significant changes in the viability upon loss of DNMT1 and again significant reduction in viability upon additional loss of L1TD1 (shown in Figure 1F). These data suggest that as expexted loss of DNMT1 leads to significant reduction viability and that additional ablation of L1TD1 further enhances this effect.

      - What are the "stringent conditions" used to remove non-specific binders and artifacts (negative control subtraction?) 

      Yes, we considered only hits from both analyses, L1TD1 IP in KO versus input and L1TD1 IP in KO versus L1TD1 IP in DKO. This is now explained in more detail in the revised manuscript on page 6, 3rd paragraph.  

      (3) Figure 2:  

      - Figure 2A is a bit too small to read when printed. 

      We have changed this in the revised manuscript.

      - Since WT and DKO lack detectable L1TD1, would you expect any difference in RIP-Seq results between these two?

      Due to the lack of DNMT1 and the resulting DNA hypomethylation, DKO cells are more similar to KO cells than WT cells with respect to the expressed transcripts.

      - Legend says selected dots are in green (it appears blue to me). 

      We have changed this in the revised manuscript.           

      - Would you recover L1 ORF1p and its binding partners in the KO? (Is the antibody specific in the absence of L1TD1 or can it recognize L1?) I noticed an increase in ORF1p in the KO in Figure 3C.  

      Thank you for the suggestion. Yes, L1 ORF1p shows slightly increased expression in the proteome analysis and we have marked the corresponding dot in the Volcano plot (Figure 3A).

      - Should the figure panel reference near the (Rosspopoff & Trono) reference instead be Sup S1C as well? Otherwise, I don't think S1C is mentioned at all. 

      - What are the red vs. green dots in 2D? Can you highlight ERV and ALU with different colors? 

      We added the reference to Suppl. Figure S1C (now S3C) in the revised manuscript. In Figure 2D L1 elements are highlighted in green, ERV elements in yellow, and other associated transposon transcripts in red.     

      - Which L1 subfamily from Figure 2D is represented in the qRT-PCR in 2E "LINE-1"? Do the primers match a specific L1 subfamily? If so, which? 

      We used primers specific for the human L1.2 subfamily. 

      - Pulling down SINE element transcripts makes some sense, as many insertions "borrow" L1 sequences for non-autonomous retro transposition, but can you speculate as to why ERVs are recovered? There should be essentially no overlap in sequence. 

      In the L1TD1 evolution paper [8], a potential link between L1TD1 and ERV elements was discussed: 

      "Alternatively, L1TD1 in sigmodonts could play a role in genome defense against another element active in these genomes. Indeed, the sigmodontine rodents have a highly active family of ERVs, the mysTR elements [46]. Expansion of this family preceded the death of L1s, but these elements are very active, with 3500 to 7000 species-specific insertions in the L1-extinct species examined [47]. This recent ERV amplification in Sigmodontinae contrasts with the megabats (where L1TD1 has been lost in many species); there are apparently no highly active DNA or RNA elements in megabats [48]. If L1TD1 can suppress retroelements other than L1s, this could explain why the gene is retained in sigmodontine rodents but not in megabats." 

      Furthermore, Jin et al. report the binding of L1TD1 to repetitive sequences in transcripts [12]. It is possible that some of these sequences are also present in ERV RNAs.

      - Is S2B a screenshot? (the red underline). 

      No, it is a Powerpoint figure, and we have removed the red underline.

      (4) Figure 3: 

      - Text refers to Figure 3B as a western blot. Figure 3B shows a volcano plot. This is likely 3C but would still be out of order (3A>3C>3B referencing). I think this error is repeated in the last result section. 

      - Figure and legends fail to mention what gene was used for ddCT method (actin, gapdh, etc.). 

      - In general, the supplemental legends feel underwritten and could benefit from additional explanations. (Main figures are appropriate but please double-check that all statistical tests have been mentioned correctly).

      Thank you for pointing this out. We have corrected these errors in the revised manuscript.

      (5) Discussion: 

      -Aluy connection is interesting. Is there an "Alu retrotransposition reporter assay" to test whether L1TD1 enhances this as well? 

      Thank you for the suggestion. There is indeed an Alu retrotransposition reporter assay reported be Dewannieux et al. [13]. The assay is based on a Neo selection marker. We have previously tested a Neo selection-based L1 retrotransposition reporter assay, but this system failed to properly work in HAP1 cells, therefore we switched to a blasticidinbased L1 retrotransposition reporter assay. A corresponding blasticidin-based Alu retrotransposition reporter assay might be interesting for future studies (mentioned in the Discussion, page 11 paragraph 4 of the revised manuscript.

      (6) Material and Methods       : 

      - The number of typos in the materials and methods is too numerous to list. Instead, please refer to the next section that broadly describes the issues seen throughout the manuscript. 

      Writing style  

      (1) Keep a consistent style throughout the manuscript: for example, L1 or LINE-1 (also L1 ORF1p or LINE-1 ORF1p); per or "/"; knockout or knock-out; min or minute; 3 times or three times; media or medium. Additionally, as TE naming conventions are not uniform, it is important to maintain internal consistency so as to not accidentally establish an imprecise version. 

      (2) There's a period between "et al" and the comma, and "et al." should be italic. 

      (3) The authors should explain what the key jargon is when it is first used in the manuscript, such as "retrotransposon" and "retrotransposition".    

      (4) The authors should show the full spelling of some acronyms when they use it for the first time, such as RNA Immunoprecipitation (RIP).  

      (5) Use a space between numbers and alphabets, such as 5 µg.  

      (6) 2.0 × 105 cells, that's not an "x".  

      (7) Numbers in the reference section are lacking (hard to parse).  

      (8) In general, there are a significant number of typos in this draft which at times becomes distracting. For example, (P3) Introduction: Yet, co-option of TEs thorough (not thorough, it should be through) evolution has created so-called domesticated genes beneficial to the gene network in a wide range of organisms. Please carefully revise the entire manuscript for these minor issues that collectively erode the quality of this submission.  

      Thank you for pointing out these mistakes. We have corrected them in the revised manuscript. A native speaker from our research group has carefully checked the paper. In summary, we have added Supplementary Figure S7C and have changed Figures 1C, 1E, 1F, 2A, 2D, 3A, 4B, S3A-D, S4B and S6A based on these comments. 

      REFERENCES

      (1) Beck, M.A., et al., DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J, 2021. 40(22): p. e108234.

      (2) Altenberger, C., et al., SPAG6 and L1TD1 are transcriptionally regulated by DNA methylation in non-small cell lung cancers. Mol Cancer, 2017. 16(1): p. 1.

      (3) Narva, E., et al., RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells, 2012. 30(3): p. 452-60.

      (4) Jin, S.W., et al., Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res, 2024. 52(6): p. 3310-3326.

      (5) Emani, M.R., et al., The L1TD1 protein interactome reveals the importance of posttranscriptional regulation in human pluripotency. Stem Cell Reports, 2015. 4(3): p. 519-28.

      (6) Santos, M.C., et al., Embryonic Stem Cell-Related Protein L1TD1 Is Required for Cell Viability, Neurosphere Formation, and Chemoresistance in Medulloblastoma. Stem Cells Dev, 2015. 24(22): p. 2700-8.

      (7) Wong, R.C., et al., L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS One, 2011. 6(4): p. e19355.

      (8) McLaughlin, R.N., Jr., et al., Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency. PLoS Genet, 2014. 10(9): p. e1004531.

      (9) Andersson, B.S., et al., Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genet Cytogenet, 1987. 24(2): p. 335-43.

      (10) Carette, J.E., et al., Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature, 2011. 477(7364): p. 340-3.

      (11) Smits, A.H., et al., Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods, 2019. 16(11): p. 1087-1093.

      (12) Jin, S.W., et al., Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res, 2024.

      (13) Dewannieux, M., C. Esnault, and T. Heidmann, LINE-mediated retrotransposition of marked Alu sequences. Nat Genet, 2003. 35(1): p. 41-8.

    1. 对于检测模型,有标注框的是正样本,无标注信息的是负样本,日常工作需要对正负样本进行拆分,需要支持按文本信息划分(可能原始数据集自带,也可能数据清洗标注后有tag)

      目的和上面的不一样

    2. 日常工作中需要对原始数据集进行BMK和Training的划分,需要支持按文本信息划分(可能原始数据集自带,也可能数据清洗标注后有tag),及设置划分比例

      自带的标记,按比例,数据清洗的标记 数据处理和数据集管理逻辑明确

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reply to Public Reviews:

      Reply to Reviewer #1:

      This is a carefully performed and well-documented study to indicate that the FUS protein interacts with the GGGGCC repeat sequence in Drosophila fly models, and the mechanism appears to include modulating the repeat structure and mitigating RAN translation. They suggest FUS, as well as a number of other G-quadruplex binding RNA proteins, are RNA chaperones, meaning they can alter the structure of the expanded repeat sequence to modulate its biological activities.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are very happy to see the reviewer for highly appreciating our manuscript.

      1. Overall this is a nicely done study with nice quantitation. It remains somewhat unclear from the data and discussions in exactly what way the authors mean that FUS is an RNA chaperone: is FUS changing the structure of the repeat or does FUS binding prevent it from folding into alternative in vivo structure?

      Response: We appreciate the reviewer’s constructive comments. Indeed, we showed that FUS changes the higher-order structures of GGGGCC [G4C2] repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation in vivo. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #2:

      Fuijino et al. provide interesting data describing the RNA-binding protein, FUS, for its ability to bind the RNA produced from the hexanucleotide repeat expansion of GGGGCC (G4C2). This binding correlates with reductions in the production of toxic dipeptides and reductions in toxic phenotypes seen in (G4C2)30+ expressing Drosophila. Both FUS and G4C2 repeats of >25 are associated with ALS/FTD spectrum disorders. Thus, these data are important for increasing our understanding of potential interactions between multiple disease genes. However, further validation of some aspects of the provided data is needed, especially the expression data.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript and also for her/his important comments that helped to strengthen our manuscript.

      Some points to consider when reading the work:

      1. The broadly expressed GMR-GAL4 driver leads to variable tissue loss in different genotypes, potentially confounding downstream analyses dependent on viable tissue/mRNA levels.

      Response: We thank the reviewer for this constructive comment. In the RT-qPCR experiments (Figures 1E, 3C, 4G, 6D and Figure 1—figure supplement 1C), the amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue, to avoid potential confounding derived from the difference in tissue viability between genotypes, as the reviewer pointed out. To clarify this process, we have made the following change to the revised manuscript.

      (1) On page 30, line 548-550, the sentence “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts in the same sample” was changed to “The amounts of G4C2 repeat transcripts were normalized to those of gal4 transcripts expressed in the same tissue to avoid potential confounding derived from the difference in tissue viability between genotypes”.

      2. The relationship between FUS and foci formation is unclear and should be interpreted carefully.

      Response: We appreciate the reviewer’s important comment. We apologize for the lack of clarity. We showed the relationship between FUS and RNA foci formation in our C9-ALS/FTD fly, that is, FUS suppresses RNA foci formation (Figures 3A and 3B), and knockdown of endogenous caz, a Drosophila homologue of FUS, enhanced it conversely (Figures 4E and 4F). We consider that FUS suppresses RNA foci formation through altering RNA structures and preventing aggregation of misfolded G4C2 repeat RNA as an RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Reply to Reviewer #3:

      In this manuscript Fujino and colleagues used C9-ALS/FTD fly models to demonstrate that FUS modulates the structure of (G4C2) repeat RNA as an RNA chaperone, and regulates RAN translation, resulting in the suppression of neurodegeneration in C9-ALS/FTD. They also confirmed that FUS preferentially binds to and modulates the G-quadruplex structure of (G4C2) repeat RNA, followed by the suppression of RAN translation. The potential significance of these findings is high since C9ORF72 repeat expansion is the most common genetic cause of ALS/FTD, especially in Caucasian populations and the DPR proteins have been considered the major cause of the neurodegenerations.

      Response: We would like to thank the reviewer for her/his time for evaluating our manuscript. We are grateful to the reviewer for the insightful comments, which were very helpful for us to improve the manuscript.

      1. While the effect of RBP as an RNA chaperone on (G4C2) repeat expansion is supposed to be dose-dependent according to (G4C2)n RNA expression, the first experiment of the screening for RBPs in C9-ALS/FTD flies lacks this concept. It is uncertain if the RBPs of the groups "suppression (weak)" and "no effect" were less or no ability of RNA chaperone or if the expression of the RBP was not sufficient, and if the RBPs of the group "enhancement" exacerbated the toxicity derived from (G4C2)89 RNA or the expression of the RBP was excessive. The optimal dose of any RBPs that bind to (G4C2) repeats may be able to neutralize the toxicity without the reduction of (G4C2)n RNA.

      Response: We appreciate the reviewer’s constructive comments. We employed the site-directed transgenesis for the establishment of RBP fly lines, to ensure the equivalent expression levels of the inserted transgenes. We also evaluated the toxic effects of overexpressed RBPs themselves by crossbreeding with control EGFP flies, showing in Figure 1A. To clarify them, we have made the following changes to the revised manuscript.

      (1) On page 8, line 166-168, the sentence “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and their different roles in RNA metabolism.” was changed to “The variation in the effects of these G4C2 repeat-binding RBPs on G4C2 repeat-induced toxicity may be due to their different binding affinities to G4C2 repeat RNA, and the different toxicity of overexpressed RBPs themselves.”.

      (2) On page 29, line 519-522, the sentence “By employing site-specific transgenesis using the pUASTattB vector, each transgene was inserted into the same locus of the genome, and was expected to be expressed at the equivalent levels.” was added.

      2. In relation to issue 1, the rescue effect of FUS on the fly expressing (G4C2)89 (FUS-4) in Figure 4-figure supplement 1 seems weaker than the other flies expressing both FUS and (G4C2)89 in Figure 1 and Figure 1-figure supplement 2. The expression level of both FUS protein and (G4C2)89 RNA in each line is important from the viewpoint of therapeutic strategy for C9-ALS/FTD.

      Response: We appreciate the reviewer’s important comment. The FUS-4 transgene is expected to be expressed at the equivalent level to the FUS-3 transgene, since they are inserted into the same locus of the genome by the site-directed transgenesis. Thus, we suppose that the weaker suppressive effect of FUS-4 coexpression on G4C2 repeat-induced eye degeneration can be attributed to the C-terminal FLAG tag that is fused to FUS protein expressed in FUS-4 fly line. Since the caz fly expresses caz protein also fused to FLAG tag at the C-terminus, we used this FUS-4 fly line to directly compare the effect of caz on G4C2 repeat-induced toxicity to that of FUS.

      3. While hallmarks of C9ORF72 are the presence of DPRs and the repeat-containing RNA foci, the loss of function of C9ORF72 is also considered to somehow contribute to neurodegeneration. It is unclear if FUS reduces not only the DPRs but also the protein expression of C9ORF72 itself.

      Response: We thank the reviewer for this comment. We agree that not only DPRs, but also toxic repeat RNA and the loss-of-function of C9ORF72 jointly contribute to the pathomechanisms of C9-ALS/FTD. Since Drosophila has no homolog corresponding to the human C9orf72 gene, the effect of FUS on C9orf72 expression cannot be assessed. Our fly models are useful for evaluating gain-of-toxic pathomechanisms such as RNA foci formation and RAN translation, and the association between FUS and loss-of function of C9ORF72 is beyond the scope of this study.

      4. In Figure 5E-F, it cannot be distinguished whether FUS binds to GGGGCC repeats or the 5' flanking region. The same experiment should be done by using FUS-RRMmut to elucidate whether FUS binding is the major mechanism for this translational control. Authors should show that FUS binding to long GGGGCC repeats is important for RAN translation.

      Response: We would like to thank the reviewer for these insightful comments. Following the reviewer’s suggestion, we perform in vitro translation assay again using FUS-RRMmut, which loses the binding ability to G4C2 repeat RNA as evident by the filter binding assay (Figure 5A), instead of BSA. The results are shown in the figures of Western blot analysis below. The addition of FUS to the translation system suppressed the expression levels of GA-Myc efficiently, whereas that of FUS-RRMmut did not. FUS decreased the expression level of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity. These results suggest that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA.

      Unfortunately, RAN translation from short G4C2 repeat RNA was not investigated in our translation system, although the previous study reported the low efficacy of RAN translation from short G4C2 repeat RNA (Green et al., 2017).

      Author response image 1.

      (A) Western blot analysis of the GA-Myc protein in the samples from in vitro translation. (B) Quantification of the GA-Myc protein levels.

      We have made the following changes to the revised manuscript.

      (1) Figure 5F was replaced to new Figures 5F and 5G.

      (2) On page 14-15, line 326-330, the sentence “Notably, the addition of FUS to this system decreased the expression level of GA-Myc in a dose-dependent manner, whereas the addition of the control bovine serum albumin (BSA) did not (Figure 5F).” was changed to “Notably, upon the addition to this translation system, FUS suppressed RAN translation efficiently, whereas FUS-RRMmut did not. FUS decreased the expression levels of GA-Myc at as low as 10nM, and nearly eliminated RAN translation activity at 100nM. At 400nM, FUS-RRMmut weakly suppressed the GA-Myc expression levels probably because of the residual RNA-binding activity (Figure 5F and 5G).”.

      (3) On page 15, line 330-332, the sentence “Taken together, these results indicate that FUS suppresses RAN translation from G4C2 repeat RNA in vitro as an RNA chaperone.” was changed to “Taken together, these results indicate that FUS suppresses RAN translation in vitro through direct interactions with G4C2 repeat RNA as an RNA chaperone.”.

      (4) On page 37, line 720-723, the sentence “For preparation of the FUS protein, the human FUS (WT) gene flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS.” was changed to “For preparation of the FUS proteins, the human FUS (WT) and FUS-RRMmut genes flanked at the 5¢ end with an Nde_I recognition site and at the 3¢ end with a _Xho_I recognition site was amplified by PCR from pUAST-_FUS and pUAST- FUS-RRMmut, respectively.”.

      (5) On page 41, line 816-819, the sentence “FUS or BSA at each concentration (10, 100, and 1,000 nM) was added for translation in the lysate.” was changed to “FUS or FUS-RRMmut at each concentration (10, 100, 200, 400, and 1,000 nM) was preincubated with mRNA for 10 min to facilitate the interaction between FUS protein and G4C2 repeat RNA, and added for translation in the lysate.”.

      5. It is not possible to conclude, as the authors have, that G-quadruplex-targeting RBPs are generally important for RAN translation (Figure 6), without showing whether RBPs that do not affect (G4C2)89 RNA levels lead to decreased DPR protein level or RNA foci.

      Response: We appreciate the reviewer’s critical comment. Following the suggestion by the reviewer, we evaluate the effect of these G-quadruplex-targeting RBPs on RAN translation. We additionally performed immunohistochemistry of the eye imaginal discs of fly larvae expressing (G4C2)89 and these G-quadruplex-targeting RBPs. As shown in the figures of immunohistochemistry below, we found that coexpression of EWSR1, DDX3X, DDX5, and DDX17 significantly decreased the number of poly(GA) aggregates. The results suggest that these G-quadruplex-targeting RBPs regulate RAN translation as well as FUS.

      Author response image 2.

      (A) Immunohistochemistry of poly(GA) in the eye imaginal discs of fly larvae expressing (G4C2)89 and the indicated G-quadruplex-targeting RBPs. (B) Quantification of the number of poly(GA) aggregates.

      We have made the following changes to the revised manuscript.

      (1) Figures 6E and 6F were added.

      (2) On page 6-7, line 135-137, the sentence “In addition, other G-quadruplex-targeting RBPs also suppressed G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.” was changed to “In addition, other G-quadruplex-targeting RBPs also suppressed RAN translation and G4C2 repeat-induced toxicity in our C9-ALS/FTD flies.”.

      (3) On page 15, line 344-346, the sentence “As expected, these RBPs also decreased the number of poly(GA) aggregates in the eye imaginal discs (Figures 6E and 6F).” was added.

      (4) On page 15, line 346-347, the sentence “Their effects on G4C2 repeat-induced toxicity and repeat RNA expression were consistent with those of FUS.” was changed to “Their effects on G4C2 repeat-induced toxicity, repeat RNA expression, and RAN translation were consistent with those of FUS.”

      (5) On page 16, line 355-357, the sentence “Thus, some G-quadruplex-targeting RBPs regulate G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.” was changed to “Thus, some G-quadruplex-targeting RBPs regulate RAN translation and G4C2 repeat-induced toxicity by binding to and possibly by modulating the G-quadruplex structure of G4C2 repeat RNA.”

      (6) On page 19, line 417-421, the sentence “We further found that G-quadruplex-targeting RNA helicases, including DDX3X, DDX5, and DDX17, which are known to bind to G4C2 repeat RNA (Cooper-Knock et al., 2014; Haeusler et al., 2014; Mori et al., 2013a; Xu et al., 2013), also alleviate G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.” was changed to “We further found that G-quadruplex-targeting RNA helicases, … ,also suppress RAN translation and G4C2 repeat-induced toxicity without altering the expression levels of G4C2 repeat RNA in our Drosophila models.”.

      Reply to Recommendations For The Authors:

      1) It is not clear from the start that the flies they generated with the repeat have an artificial vs human intronic sequence ahead of the repeat. It would be nice if they presented somewhere the entire sequence of the insert. The reason being that it seems they also tested flies with the human intronic sequence, and the effect may not be as strong (line 234). In any case, in the future, with a new understanding of RAN translation, it would be nice to compare different transgenes, and so as much transparency as possible would be helpful regarding sequences. Can they include these data?

      Response: We thank the editors and reviewers for this comment. We apologize for the lack of clarity. We used artificially synthesized G4C2 repeat sequences when generating constructs for (G4C2)n transgenic flies, so these constructs do not contain human intronic sequence ahead of the G4C2 repeat in the C9orf72 gene, as explained in the Materials and Methods section. To clarify the difference between our C9-ALS/FTD fly models and LDS-(G4C2)44GR-GFP fly model (Goodman et al., 2019), we have made the following change to the revised manuscript.

      (1) Schema of the LDS-(G4C2)44GR-GFP construct was presented in Figure 3—figure supplement 1.

      Furthermore, to maintain transparency of the study, we have provided the entire sequence of the insert as the following source file.

      (2) The artificial sequences inserted in the pUAST vector for generation of the (G4C2)n flies were presented in Figure 1—figure supplement 1—source data 1.

      2) It is really nice how they quantitated everything and showed individual data points.

      Response: We thank the editors and reviewers for appreciating our data analysis method. All individual data points and statistical analyses are summarized in source data files.

      3) So when they call FUS an RNA chaperone, are they simply meaning it is changing the structure of the repeat, or could it just be interacting with the repeat to coat the repeat and prevent it from folding into whatever in vivo structures? Can they speculate on why some RNA chaperones lead to presumed decay of the repeat and others do not? Can they discuss these points in the discussion? Detailed mechanistic understanding of RNA chaperones that ultimately promote decay of the repeat might be of highly significant therapeutic benefit.

      Response: We appreciate these critical comments. Indeed, we showed that FUS changes the higher-order structures of G4C2 repeat RNA in vitro, and that FUS suppresses G4C2 RNA foci formation. According to the established definition of RNA chaperone, RNA chaperones are proteins changing the structures of misfolded RNAs without ATP use, resulting in the maintenance of proper RNAs folding (Rajkowitsich et al., 2007). Thus, we consider that FUS is classified into RNA chaperone. To clarify these interpretations, we revised the manuscript as follows.

      (1) On page 10, line 215-219, the sentence “These results were in good agreement with our previous study on SCA31 showing the suppressive effects of FUS and other RBPs on RNA foci formation of UGGAA repeat RNA as RNA chaperones …” was changed to “These results were in good agreement with … RNA foci formation of UGGAA repeat RNA through altering RNA structures and preventing aggregation of misfolded repeat RNA as RNA chaperones …”.

      (2) On page 17, line 363-366, the sentence “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure, as evident by CD and NMR analyses (Figure 5), suggesting its functional role as an RNA chaperone.” was changed to “FUS directly binds to G4C2 repeat RNA and modulates its G-quadruplex structure as evident by CD and NMR analyses (Figure 5, Figure 5—figure supplement 2), and suppresses RNA foci formation in vivo (Figures 3A and 3B), suggesting its functional role as an RNA chaperone.”

      Besides these RNA chaperones, we observed the expression of IGF2BP1, hnRNPA2B1, DHX9, and DHX36 decreased G4C2 repeat RNA expression levels. In addition, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). We speculate these RBPs could be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA. To clarify these interpretations, we revised the manuscript as follows.

      (3) On page 18, line 392-398, the sentences “Similarly, we recently reported that hnRNPA3 reduces G4C2 repeat RNA expression levels, leading to the suppression of neurodegeneration in C9-ALS/FTD fly models (Taminato et al., 2023). Interestingly, these RBPs have been reported to be involved in RNA decay pathways as components of the P-body or interactors with the RNA deadenylation machinery (Tran et al., 2004; Katahira et al., 2008; Geissler et al., 2016; Hubstenberger et al., 2017), possibly contributing to the reduced expression levels of G4C2 repeat RNA.” was added.

      4) What is the level of the G4C2 repeat when they knock down caz? Is it possible that knockdown impacts the expression level of the repeat? Can they show this (or did they and I miss it)?

      Response: We thank the editors and reviewers for this comment. The expression levels of G4C2 repeat RNA in (G4C2)89 flies were not altered by the knockdown of caz, as shown in Figure 4G.

      5) A puzzling point is that FUS is supposed to be nuclear, so where is FUS in the brain in their lines? They suggest it modulates RAN translation, and presumably, that is in the cytoplasm. Is FUS when overexpressed now in part in the cytoplasm? Is the repeat dragging it into the cytoplasm? Can they address this in the discussion? If FUS is never found in vivo in the cytoplasm, then it raises the point that the impact they find of FUS on RAN translation might not reflect an in vivo situation with normal levels of FUS.

      Response: We appreciate these important comments. We agree with the editors and reviewers that FUS is mainly localized in the nucleus. However, FUS is known as a nucleocytoplasmic shuttling RBP that can transport RNA into the cytoplasm. Indeed, FUS is reported to facilitate transport of actin-stabilizing protein mRNAs to function in the cytoplasm (Fujii et al., 2005). Thus, we consider that FUS binds to G4C2 repeat RNA in the cytoplasm and suppresses RAN translation in this study.

      6) When they are using 2 copies of the driver and repeat, are they also using 2 copies of FUS? These are quite high levels of transgenes.

      Response: We thank the editors and reviewers for this comment. We used only 1 copy of FUS when using 2 copies of GMR-Gal4 driver. Full genotypes of the fly lines used in all experiments are described in Supplementary file 1.

      7) In Figure5-S1, FUS colocalizing with (G4C2)RNA is not clear. High-magnification images are recommended.

      Response: We appreciate this constructive comment on the figure. Following the suggestion, high-magnification images are added in Figure 5—figure supplement 1.

      8) I also suggest that the last sentence of the Discussion be revised as follows: Thus, our findings contribute not only to the elucidation of C9-ALS/FTD, but also to the elucidation of the repeat-associated pathogenic mechanisms underlying a broader range of neurodegenerative and neuropsychiatric disorders than previously thought, and it will advance the development of potential therapies for these diseases.

      Response: We appreciate this recommendation. We have made the following change based on the suggested sentence.

      (1) On page 20-21, line 455-459, “Thus, our findings contribute not only towards the elucidation of repeat-associated pathogenic mechanisms underlying a wider range of neuropsychiatric diseases than previously thought, but also towards the development of potential therapies for these diseases.” was changed to “Thus, our findings contribute to the elucidation of the repeat-associated pathogenic mechanisms underlying not only C9-ALS/FTD, but also a broader range of neuromuscular and neuropsychiatric diseases than previously thought, and will advance the development of potential therapies for these diseases.”.

      Authors’ comment on previous eLife assessment:

      We thank the editors and reviewers for appreciating our study. We mainly evaluated the function of human FUS protein on RAN translation and G4C2 repeat-induced toxicity using Drosophila expressing human FUS in vivo, and the recombinant human FUS protein in vitro. To validate that FUS functions as an endogenous regulator of RAN translation, we additionally evaluated the function of Drosophila caz protein as well. We are afraid that the first sentence of the eLife assessment, that is, “This important study demonstrates that the Drosophila FUS protein, the human homolog of which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …” is somewhat misleading. We would be happy if you modify this sentence like “This important study demonstrates that the human FUS protein, which is implicated in amyotrophic lateral sclerosis (ALS) and related conditions, …”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable study investigates how the neural representation of individual finger movements changes during the early period of sequence learning. By combining a new method for extracting features from human magnetoencephalography data and decoding analyses, the authors provide incomplete evidence of an early, swift change in the brain regions correlated with sequence learning, including a set of previously unreported frontal cortical regions. The addition of more control analyses to rule out that head movement artefacts influence the findings, and to further explain the proposal of offline contextualization during short rest periods as the basis for improvement performance would strengthen the manuscript.

      We appreciate the Editorial assessment on our paper’s strengths and novelty. We have implemented additional control analyses to show that neither task-related eye movements nor increasing overlap of finger movements during learning account for our findings, which are that contextualized neural representations in a network of bilateral frontoparietal brain regions actively contribute to skill learning. Importantly, we carried out additional analyses showing that contextualization develops predominantly during rest intervals.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study addresses the issue of rapid skill learning and whether individual sequence elements (here: finger presses) are differentially represented in human MEG data. The authors use a decoding approach to classify individual finger elements and accomplish an accuracy of around 94%. A relevant finding is that the neural representations of individual finger elements dynamically change over the course of learning. This would be highly relevant for any attempts to develop better brain machine interfaces - one now can decode individual elements within a sequence with high precision, but these representations are not static but develop over the course of learning.

      Strengths:

      The work follows a large body of work from the same group on the behavioural and neural foundations of sequence learning. The behavioural task is well established and neatly designed to allow for tracking learning and how individual sequence elements contribute. The inclusion of short offline rest periods between learning epochs has been influential because it has revealed that a lot, if not most of the gains in behaviour (ie speed of finger movements) occur in these socalled micro-offline rest periods. The authors use a range of new decoding techniques, and exhaustively interrogate their data in different ways, using different decoding approaches. Regardless of the approach, impressively high decoding accuracies are observed, but when using a hybrid approach that combines the MEG data in different ways, the authors observe decoding accuracies of individual sequence elements from the MEG data of up to 94%.

      We have previously showed that neural replay of MEG activity representing the practiced skill was prominent during rest intervals of early learning, and that the replay density correlated with micro-offline gains (Buch et al., 2021). These findings are consistent with recent reports (from two different research groups) that hippocampal ripple density increases during these inter-practice rest periods, and predict offline learning gains (Chen et al., 2024; Sjøgård et al., 2024). However, decoder performance in our earlier work (Buch et al., 2021) left room for improvement. Here, we reported a strategy to improve decoding accuracy that could benefit future studies of neural replay or BCI using MEG.

      Weaknesses:

      There are a few concerns which the authors may well be able to resolve. These are not weaknesses as such, but factors that would be helpful to address as these concern potential contributions to the results that one would like to rule out. Regarding the decoding results shown in Figure 2 etc, a concern is that within individual frequency bands, the highest accuracy seems to be within frequencies that match the rate of keypresses. This is a general concern when relating movement to brain activity, so is not specific to decoding as done here. As far as reported, there was no specific restraint to the arm or shoulder, and even then it is conceivable that small head movements would correlate highly with the vigor of individual finger movements. This concern is supported by the highest contribution in decoding accuracy being in middle frontal regions - midline structures that would be specifically sensitive to movement artefacts and don't seem to come to mind as key structures for very simple sequential keypress tasks such as this - and the overall pattern is remarkably symmetrical (despite being a unimanual finger task) and spatially broad. This issue may well be matching the time course of learning, as the vigor and speed of finger presses will also influence the degree to which the arm/shoulder and head move. This is not to say that useful information is contained within either of the frequencies or broadband data. But it raises the question of whether a lot is dominated by movement "artefacts" and one may get a more specific answer if removing any such contributions.

      Reviewer #1 expresses concern that the combination of the low-frequency narrow-band decoder results, and the bilateral middle frontal regions displaying the highest average intra-parcel decoding performance across subjects is suggestive that the decoding results could be driven by head movement or other artefacts.

      Head movement artefacts are highly unlikely to contribute meaningfully to our results for the following reasons. First, in addition to ICA denoising, all “recordings were visually inspected and marked to denoise segments containing other large amplitude artifacts due to movements” (see Methods). Second, the response pad was positioned in a manner that minimized wrist, arm or more proximal body movements during the task. Third, while online monitoring of head position was not performed for this study, it was assessed at the beginning and at the end of each recording. The head was restrained with an inflatable air bladder, and head movement between the beginning and end of each scan did not exceed 5mm for all participants included in the study.

      The Reviewer states a concern that “it is conceivable that small head movements would correlate highly with the vigor of individual finger movements”. We agree that despite the steps taken above, it is possible that minor head movements could still contribute to some remaining variance in the MEG data in our study. However, such correlations between small head movements and finger movements could only meaningfully contribute to decoding performance if: (A) they were consistent and pervasive throughout the recording (which might not be the case if the head movements were related to movement vigor and vigor changed over time); and (B) they systematically varied between different finger movements, and also between the same finger movement performed at different sequence locations (see 5-class decoding performance in Figure 4B). The possibility of any head movement artefacts meeting all these conditions is unlikely. Alternatively, for this task design a much more likely confound could be the contribution of eye movement artefacts to the decoder performance (an issue raised by Reviewer #3 in the comments below).

      Remember from Figure 1A in the manuscript that an asterisk marks the current position in the sequence and is updated at each keypress. Since participants make very few performance errors, the position of the asterisk on the display is highly correlated with the keypress being made in the sequence. Thus, it is possible that if participants are attending to the visual feedback provided on the display, they may generate eye movements that are systematically related to the task. Since we did record eye movements simultaneously with the MEG recordings (EyeLink 1000 Plus; Fs = 600 Hz), we were able to perform a control analysis to address this question. For each keypress event during trials in which no errors occurred (which is the same time-point that the asterisk position is updated), we extracted three features related to eye movements: 1) the gaze position at the time of asterisk position update (triggered by a KeyDown event), 2) the gaze position 150ms later, and 3) the peak velocity of the eye movement between the two positions. We then constructed a classifier from these features with the aim of predicting the location of the asterisk (ordinal positions 1-5) on the display. As shown in the confusion matrix below (Author response image 1), the classifier failed to perform above chance levels (overall cross-validated accuracy = 0.21817):

      Author response image 1.

      Confusion matrix showing that three eye movement features fail to predict asterisk position on the task display above chance levels (Fold 1 test accuracy = 0.21718; Fold 2 test accuracy = 0.22023; Fold 3 test accuracy = 0.21859; Fold 4 test accuracy = 0.22113; Fold 5 test accuracy = 0.21373; Overall cross-validated accuracy = 0.2181). Since the ordinal position of the asterisk on the display is highly correlated with the ordinal position of individual keypresses in the sequence, this analysis provides strong evidence that keypress decoding performance from MEG features is not explained by systematic relationships between finger movement behavior and eye movements (i.e. – behavioral artefacts) (end of figure legend).

      Remember that the task display does not provide explicit feedback related to performance, only information about the present position in the sequence. Thus, it is possible that participants did not actively attend to the feedback. In fact, inspection of the eye position data revealed that on majority of trials, participants displayed random-walk-like gaze patterns around a central fixation point located near the center of the screen. Thus, participants did not attend to the asterisk position on the display, but instead intrinsically generated the action sequence. A similar realworld example would be manually inputting a long password into a secure online application. In this case, one intrinsically generates the sequence from memory and receives similar feedback about the password sequence position (also provided as asterisks) as provided in the study task – feedback which is typically ignored by the user.

      The minimal participant engagement with the visual task display observed in this study highlights another important point – that the behavior in explicit sequence learning motor tasks is highly generative in nature rather than reactive to stimulus cues as in the serial reaction time task (SRTT). This is a crucial difference that must be carefully considered when designing investigations and comparing findings across studies.

      We observed that initial keypress decoding accuracy was predominantly driven by contralateral primary sensorimotor cortex in the initial practice trials before transitioning to bilateral frontoparietal regions by trials 11 or 12 as performance gains plateaued. The contribution of contralateral primary sensorimotor areas to early skill learning has been extensively reported in humans and non-human animals.(Buch et al., 2021; Classen et al., 1998; Karni et al., 1995; Kleim et al., 1998) Similarly, the increased involvement of bilateral frontal and parietal regions to decoding during early skill learning in the non-dominant hand is well known. Enhanced bilateral activation in both frontal and parietal cortex during skill learning has been extensively reported (Doyon et al., 2002; Grafton et al., 1992; Hardwick et al., 2013; Kennerley et al., 2004; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001), and appears to be even more prominent during early fine motor skill learning in the non-dominant hand (Lee et al., 2019; Sawamura et al., 2019). The frontal regions identified in these studies are known to play crucial roles in executive control (Battaglia-Mayer & Caminiti, 2019), motor planning (Toni, Thoenissen, et al., 2001), and working memory (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001; Wolpert et al., 1998) processes, while the same parietal regions are known to integrate multimodal sensory feedback and support visuomotor transformations (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001; Wolpert et al., 1998), in addition to working memory (Grover et al., 2022). Thus, it is not surprising that these regions increasingly contribute to decoding as subjects internalize the sequential task. We now include a statement reflecting these considerations in the revised Discussion.

      A somewhat related point is this: when combining voxel and parcel space, a concern is whether a degree of circularity may have contributed to the improved accuracy of the combined data, because it seems to use the same MEG signals twice - the voxels most contributing are also those contributing most to a parcel being identified as relevant, as parcels reflect the average of voxels within a boundary. In this context, I struggled to understand the explanation given, ie that the improved accuracy of the hybrid model may be due to "lower spatially resolved whole-brain and higher spatially resolved regional activity patterns".

      We disagree with the Reviewer’s assertion that the construction of the hybrid-space decoder is circular for the following reasons. First, the base feature set for the hybrid-space decoder constructed for all participants includes whole-brain spatial patterns of MEG source activity averaged within parcels. As stated in the manuscript, these 148 inter-parcel features reflect “lower spatially resolved whole-brain activity patterns” or global brain dynamics. We then independently test how well spatial patterns of MEG source activity for all voxels distributed within individual parcels can decode keypress actions. Again, the testing of these intra-parcel spatial patterns, intended to capture “higher spatially resolved regional brain activity patterns”, is completely independent from one another and independent from the weighting of individual inter-parcel features. These intra-parcel features could, for example, provide additional information about muscle activation patterns or the task environment. These approximately 1150 intra-parcel voxels (on average, within the total number varying between subjects) are then combined with the 148 inter-parcel features to construct the final hybrid-space decoder. In fact, this varied spatial filter approach shares some similarities to the construction of convolutional neural networks (CNNs) used to perform object recognition in image classification applications (Srinivas et al., 2016). One could also view this hybrid-space decoding approach as a spatial analogue to common timefrequency based analyses such as theta-gamma phase amplitude coupling (θ/γ PAC), which assess interactions between two or more narrow-band spectral features derived from the same time-series data (Lisman & Jensen, 2013).

      We directly tested this hypothesis – that spatially overlapping intra- and inter-parcel features portray different information – by constructing an alternative hybrid-space decoder (Hybrid<sub>Alt</sub>) that excluded average inter-parcel features which spatially overlapped with intra-parcel voxel features, and comparing the performance to the decoder used in the manuscript (Hybrid<sub>Orig</sub>). The prediction was that if the overlapping parcel contained similar information to the more spatially resolved voxel patterns, then removing the parcel features (n=8) from the decoding analysis should not impact performance. In fact, despite making up less than 1% of the overall input feature space, removing those parcels resulted in a significant drop in overall performance greater than 2% (78.15% ± 7.03% SD for Hybrid<sub>Orig</sub> vs. 75.49% ± 7.17% for Hybrid<sub>Alt</sub>; Wilcoxon signed rank test, z = 3.7410, p = 1.8326e-04; Author response image 2).

      Author response image 2.

      Comparison of decoding performances with two different hybrid approaches. Hybrid<sub>Alt</sub>: Intra-parcel voxel-space features of top ranked parcels and inter-parcel features of remaining parcels. Hybrid<sub>Orig</sub>: Voxel-space features of top ranked parcels and whole-brain parcel-space features (i.e. – the version used in the manuscript). Dots represent decoding accuracy for individual subjects. Dashed lines indicate the trend in performance change across participants. Note, that Hybrid<sub>Orig</sub> (the approach used in our manuscript) significantly outperforms the Hybrid<sub>Alt</sub> approach, indicating that the excluded parcel features provide unique information compared to the spatially overlapping intra-parcel voxel patterns (end of figure legend).

      Firstly, there will be a relatively high degree of spatial contiguity among voxels because of the nature of the signal measured, i.e. nearby individual voxels are unlikely to be independent. Secondly, the voxel data gives a somewhat misleading sense of precision; the inversion can be set up to give an estimate for each voxel, but there will not just be dependence among adjacent voxels, but also substantial variation in the sensitivity and confidence with which activity can be projected to different parts of the brain. Midline and deeper structures come to mind, where the inversion will be more problematic than for regions along the dorsal convexity of the brain, and a concern is that in those midline structures, the highest decoding accuracy is seen.

      We agree with the Reviewer that some inter-parcel features representing neighboring (or spatially contiguous) voxels are likely to be correlated, an important confound in connectivity analyses (Colclough et al., 2015; Colclough et al., 2016), not performed in our investigation.

      In our study, correlations between adjacent voxels effectively reduce the dimensionality of the input feature space. However, as long as there are multiple groups of correlated voxels within each parcel (i.e. – the rank is greater than 1), the intra-parcel spatial patterns could meaningfully contribute to the decoder performance, as shown by the following results:

      First, we obtained higher decoding accuracy with voxel-space features (74.51% ± 7.34% SD) compared to parcel space features (68.77% ± 7.6%; Figure 3B), indicating individual voxels carry more information in decoding the keypresses than the averaged voxel-space features or parcel space features. Second, individual voxels within a parcel showed varying feature importance scores in decoding keypresses (Author response image 3). This finding shows that correlated voxels form mini subclusters that are much smaller spatially than the parcel they reside within.

      Author response image 3.:

      Feature importance score of individual voxels in decoding keypresses: MRMR was used to rank the individual voxel space features in decoding keypresses and the min-max normalized MRMR score was mapped to a structural brain surface. Note that individual voxels within a parcel showed different contribution to decoding (end of figure legend).

      Some of these concerns could be addressed by recording head movement (with enough precision) to regress out these contributions. The authors state that head movement was monitored with 3 fiducials, and their time courses ought to provide a way to deal with this issue. The ICA procedure may not have sufficiently dealt with removing movement-related problems, but one could eg relate individual components that were identified to the keypresses as another means for checking. An alternative could be to focus on frequency ranges above the movement frequencies. The accuracy for those still seems impressive and may provide a slightly more biologically plausible assessment.

      We have already addressed the issue of movement related artefacts in the first response above. With respect to a focus on frequency ranges above movement frequencies, the Reviewer states the “accuracy for those still seems impressive and may provide a slightly more biologically plausible assessment”. First, it is important to note that cortical delta-band oscillations measured with local field potentials (LFPs) in macaques is known to contain important information related to end-effector kinematics (Bansal et al., 2011; Mollazadeh et al., 2011) muscle activation patterns (Flint et al., 2012) and temporal sequencing (Churchland et al., 2012) during skilled reaching and grasping actions. Thus, there is a substantial body of evidence that low-frequency neural oscillatory activity in this range contains important information about the skill learning behavior investigated in the present study. Second, our own data shows (which the Reviewer also points out) that significant information related to the skill learning behavior is also present in higher frequency bands (see Figure 2A and Figure 3—figure supplement 1). As we pointed out in our earlier response to questions about the hybrid space decoder architecture (see above), it is likely that different, yet complimentary, information is encoded across different temporal frequencies (just as it is encoded across different spatial frequencies) (Heusser et al., 2016). Again, this interpretation is supported by our data as the highest performing classifiers in all cases (when holding all parameters constant) were always constructed from broadband input MEG data (Figure 2A and Figure 3—figure supplement 1).

      One question concerns the interpretation of the results shown in Figure 4. They imply that during the course of learning, entirely different brain networks underpin the behaviour. Not only that, but they also include regions that would seem rather unexpected to be key nodes for learning and expressing relatively simple finger sequences, such as here. What then is the biological plausibility of these results? The authors seem to circumnavigate this issue by moving into a distance metric that captures the (neural network) changes over the course of learning, but the discussion seems detached from which regions are actually involved; or they offer a rather broad discussion of the anatomical regions identified here, eg in the context of LFOs, where they merely refer to "frontoparietal regions".

      The Reviewer notes the shift in brain networks driving keypress decoding performance between trials 1, 11 and 36 as shown in Figure 4A. The Reviewer questions whether these shifts in brain network states underpinning the skill are biologically plausible, as well as the likelihood that bilateral superior and middle frontal and parietal cortex are important nodes within these networks.

      First, previous fMRI work in humans assessed changes in functional connectivity patterns while participants performed a similar sequence learning task to our present study (Bassett et al., 2011). Using a dynamic network analysis approach, Bassett et al. showed that flexibility in the composition of individual network modules (i.e. – changes in functional brain region membership of orthogonal brain networks) is up-regulated in novel learning environments and explains differences in learning rates across individuals. Thus, consistent with our findings, it is likely that functional brain networks rapidly reconfigure during early learning of novel sequential motor skills.

      Second, frontoparietal network activity is known to support motor memory encoding during early learning (Albouy et al., 2013; Albouy et al., 2012). For example, reactivation events in the posterior parietal (Qin et al., 1997) and medial prefrontal (Euston et al., 2007; Molle & Born, 2009) cortex (MPFC) have been temporally linked to hippocampal replay, and are posited to support memory consolidation across several memory domains (Frankland & Bontempi, 2005), including motor sequence learning (Albouy et al., 2015; Buch et al., 2021; F. Jacobacci et al., 2020). Further, synchronized interactions between MPFC and hippocampus are more prominent during early as opposed to later learning stages (Albouy et al., 2013; Gais et al., 2007; Sterpenich et al., 2009), perhaps reflecting “redistribution of hippocampal memories to MPFC” (Albouy et al., 2013). MPFC contributes to very early memory formation by learning association between contexts, locations, events and adaptive responses during rapid learning (Euston et al., 2012). Consistently, coupling between hippocampus and MPFC has been shown during initial memory encoding and during subsequent rest (van Kesteren et al., 2010; van Kesteren et al., 2012). Importantly, MPFC activity during initial memory encoding predicts subsequent recall (Wagner et al., 1998). Thus, the spatial map required to encode a motor sequence memory may be “built under the supervision of the prefrontal cortex” (Albouy et al., 2012), also engaged in the development of an abstract representation of the sequence (Ashe et al., 2006). In more abstract terms, the prefrontal, premotor and parietal cortices support novice performance “by deploying attentional and control processes” (Doyon et al., 2009; Hikosaka et al., 2002; Penhune & Steele, 2012) required during early learning (Doyon et al., 2009; Hikosaka et al., 2002; Penhune & Steele, 2012). The dorsolateral prefrontal cortex DLPFC specifically is thought to engage in goal selection and sequence monitoring during early skill practice (Schendan et al., 2003), all consistent with the schema model of declarative memory in which prefrontal cortices play an important role in encoding (Morris, 2006; Tse et al., 2007). Thus, several prefrontal and frontoparietal regions contributing to long term learning (Berlot et al., 2020) are also engaged in early stages of encoding. Altogether, there is strong biological support for the involvement of bilateral prefrontal and frontoparietal regions to decoding during early skill learning. We now address this issue in the revised manuscript.

      If I understand correctly, the offline neural representation analysis is in essence the comparison of the last keypress vs the first keypress of the next sequence. In that sense, the activity during offline rest periods is actually not considered. This makes the nomenclature somewhat confusing. While it matches the behavioural analysis, having only key presses one can't do it in any other way, but here the authors actually do have recordings of brain activity during offline rest. So at the very least calling it offline neural representation is misleading to this reviewer because what is compared is activity during the last and during the next keypress, not activity during offline periods. But it also seems a missed opportunity - the authors argue that most of the relevant learning occurs during offline rest periods, yet there is no attempt to actually test whether activity during this period can be useful for the questions at hand here.

      We agree with the Reviewer that our previous “offline neural representation” nomenclature could be misinterpreted. In the revised manuscript we refer to this difference as the “offline neural representational change”. Please, note that our previous work did link offline neural activity (i.e. – 16-22 Hz beta power (Bonstrup et al., 2019) and neural replay density (Buch et al., 2021) during inter-practice rest periods) to observed micro-offline gains.

      Reviewer #2 (Public review):

      Summary

      Dash et al. asked whether and how the neural representation of individual finger movements is "contextualized" within a trained sequence during the very early period of sequential skill learning by using decoding of MEG signal. Specifically, they assessed whether/how the same finger presses (pressing index finger) embedded in the different ordinal positions of a practiced sequence (4-1-3-2-4; here, the numbers 1 through 4 correspond to the little through the index fingers of the non-dominant left hand) change their representation (MEG feature). They did this by computing either the decoding accuracy of the index finger at the ordinal positions 1 vs. 5 (index_OP1 vs index_OP5) or pattern distance between index_OP1 vs. index_OP5 at each training trial and found that both the decoding accuracy and the pattern distance progressively increase over the course of learning trials. More interestingly, they also computed the pattern distance for index_OP5 for the last execution of a practice trial vs. index_OP1 for the first execution in the next practice trial (i.e., across the rest period). This "off-line" distance was significantly larger than the "on-line" distance, which was computed within practice trials and predicted micro-offline skill gain. Based on these results, the authors conclude that the differentiation of representation for the identical movement embedded in different positions of a sequential skill ("contextualization") primarily occurs during early skill learning, especially during rest, consistent with the recent theory of the "micro-offline learning" proposed by the authors' group. I think this is an important and timely topic for the field of motor learning and beyond.

      Strengths

      The specific strengths of the current work are as follows. First, the use of temporally rich neural information (MEG signal) has a large advantage over previous studies testing sequential representations using fMRI. This allowed the authors to examine the earliest period (= the first few minutes of training) of skill learning with finer temporal resolution. Second, through the optimization of MEG feature extraction, the current study achieved extremely high decoding accuracy (approx. 94%) compared to previous works. As claimed by the authors, this is one of the strengths of the paper (but see my comments). Third, although some potential refinement might be needed, comparing "online" and "offline" pattern distance is a neat idea.

      Weaknesses

      Along with the strengths I raised above, the paper has some weaknesses. First, the pursuit of high decoding accuracy, especially the choice of time points and window length (i.e., 200 msec window starting from 0 msec from key press onset), casts a shadow on the interpretation of the main result. Currently, it is unclear whether the decoding results simply reflect behavioral change or true underlying neural change. As shown in the behavioral data, the key press speed reached 3~4 presses per second already at around the end of the early learning period (11th trial), which means inter-press intervals become as short as 250-330 msec. Thus, in almost more than 60% of training period data, the time window for MEG feature extraction (200 msec) spans around 60% of the inter-press intervals. Considering that the preparation/cueing of subsequent presses starts ahead of the actual press (e.g., Kornysheva et al., 2019) and/or potential online planning (e.g., Ariani and Diedrichsen, 2019), the decoder likely has captured these future press information as well as the signal related to the current key press, independent of the formation of genuine sequential representation (e.g., "contextualization" of individual press). This may also explain the gradual increase in decoding accuracy or pattern distance between index_OP1 vs. index_OP5 (Figure 4C and 5A), which co-occurred with performance improvement, as shorter inter-press intervals are more favorable for the dissociating the two index finger presses followed by different finger presses. The compromised decoding accuracies for the control sequences can be explained in similar logic. Therefore, more careful consideration and elaborated discussion seem necessary when trying to both achieve high-performance decoding and assess early skill learning, as it can impact all the subsequent analyses.

      The Reviewer raises the possibility that (given the windowing parameters used in the present study) an increase in “contextualization” with learning could simply reflect faster typing speeds as opposed to an actual change in the underlying neural representation.

      We now include a new control analysis that addresses this issue as well as additional re-examination of previously reported results with respect to this issue – all of which are inconsistent with this alternative explanation that “contextualization” reflects a change in mixing of keypress related MEG features as opposed to a change in the underlying representations themselves. As correct sequences are generated at higher and higher speeds over training, MEG activity patterns related to the planning, execution, evaluation and memory of individual keypresses overlap more in time. Thus, increased overlap between the “4” and “1” keypresses (at the start of the sequence) and “2” and “4” keypresses (at the end of the sequence) could artefactually increase contextualization distances even if the underlying neural representations for the individual keypresses remain unchanged. One must also keep in mind that since participants repeat the sequence multiple times within the same trial, a majority of the index finger keypresses are performed adjacent to one another (i.e. - the “4-4” transition marking the end of one sequence and the beginning of the next). Thus, increased overlap between consecutive index finger keypresses as typing speed increased should increase their similarity and mask contextualization related changes to the underlying neural representations.

      We addressed this question by conducting a new multivariate regression analysis to directly assess whether the neural representation distance score could be predicted by the 4-1, 2-4 and 4-4 keypress transition times observed for each complete correct sequence (both predictor and response variables were z-score normalized within-subject). The results of this analysis also affirmed that the possible alternative explanation that contextualization effects are simple reflections of increased mixing is not supported by the data (Adjusted R<sup>2</sup> = 0.00431; F = 5.62). We now include this new negative control analysis in the revised manuscript.

      We also re-examined our previously reported classification results with respect to this issue. We reasoned that if mixing effects reflecting the ordinal sequence structure is an important driver of the contextualization finding, these effects should be observable in the distribution of decoder misclassifications. For example, “4” keypresses would be more likely to be misclassified as “1” or “2” keypresses (or vice versa) than as “3” keypresses. The confusion matrices presented in Figures 3C and 4B and Figure 3—figure supplement 3A display a distribution of misclassifications that is inconsistent with an alternative mixing effect explanation of contextualization.

      Based upon the increased overlap between adjacent index finger keypresses (i.e. – “4-4” transition), we also reasoned that the decoder tasked with separating individual index finger keypresses into two distinct classes based upon sequence position, should show decreased performance as typing speed increases. However, Figure 4C in our manuscript shows that this is not the case. The 2-class hybrid classifier actually displays improved classification performance over early practice trials despite greater temporal overlap. Again, this is inconsistent with the idea that the contextualization effect simply reflects increased mixing of individual keypress features.

      In summary, both re-examination of previously reported data and new control analyses all converged on the idea that the proximity between keypresses does not explain contextualization.

      We do agree with the Reviewer that the naturalistic, generative, self-paced task employed in the present study results in overlapping brain processes related to planning, execution, evaluation and memory of the action sequence. We also agree that there are several tradeoffs to consider in the construction of the classifiers depending on the study aim. Given our aim of optimizing keypress decoder accuracy in the present study, the set of trade-offs resulted in representations reflecting more the latter three processes, and less so the planning component. Whether separate decoders can be constructed to tease apart the representations or networks supporting these overlapping processes is an important future direction of research in this area. For example, work presently underway in our lab constrains the selection of windowing parameters in a manner that allows individual classifiers to be temporally linked to specific planning, execution, evaluation or memory-related processes to discern which brain networks are involved and how they adaptively reorganize with learning. Results from the present study (Figure 4—figure supplement 2) showing hybrid-space decoder prediction accuracies exceeding 74% for temporal windows spanning as little as 25ms and located up to 100ms prior to the KeyDown event strongly support the feasibility of such an approach.

      Related to the above point, testing only one particular sequence (4-1-3-2-4), aside from the control ones, limits the generalizability of the finding. This also may have contributed to the extremely high decoding accuracy reported in the current study.

      The Reviewer raises a question about the generalizability of the decoder accuracy reported in our study. Fortunately, a comparison between decoder performances on Day 1 and Day 2 datasets does provide insight into this issue. As the Reviewer points out, the classifiers in this study were trained and tested on keypresses performed while practicing a specific sequence (4-1-3-2-4). The study was designed this way as to avoid the impact of interference effects on learning dynamics. The cross-validated performance of classifiers on MEG data collected within the same session was 90.47% overall accuracy (4-class; Figure 3C). We then tested classifier performance on data collected during a separate MEG session conducted approximately 24 hours later (Day 2; see Figure 3 — figure supplement 3). We observed a reduction in overall accuracy rate to 87.11% when tested on MEG data recorded while participants performed the same learned sequence, and 79.44% when they performed several previously unpracticed sequences. Both changes in accuracy are important with regards to the generalizability of our findings. First, 87.11% performance accuracy for the trained sequence data on Day 2 (a reduction of only 3.36%) indicates that the hybrid-space decoder performance is robust over multiple MEG sessions, and thus, robust to variations in SNR across the MEG sensor array caused by small differences in head position between scans. This indicates a substantial advantage over sensor-space decoding approaches. Furthermore, when tested on data from unpracticed sequences, overall performance dropped an additional 7.67%. This difference reflects the performance bias of the classifier for the trained sequence, possibly caused by high-order sequence structure being incorporated into the feature weights. In the future, it will be important to understand in more detail how random or repeated keypress sequence training data impacts overall decoder performance and generalization. We strongly agree with the Reviewer that the issue of generalizability is extremely important and have added a new paragraph to the Discussion in the revised manuscript highlighting the strengths and weaknesses of our study with respect to this issue.

      In terms of clinical BCI, one of the potential relevance of the study, as claimed by the authors, it is not clear that the specific time window chosen in the current study (up to 200 msec since key press onset) is really useful. In most cases, clinical BCI would target neural signals with no overt movement execution due to patients' inability to move (e.g., Hochberg et al., 2012). Given the time window, the surprisingly high performance of the current decoder may result from sensory feedback and/or planning of subsequent movement, which may not always be available in the clinical BCI context. Of course, the decoding accuracy is still much higher than chance even when using signal before the key press (as shown in Figure 4 Supplement 2), but it is not immediately clear to me that the authors relate their high decoding accuracy based on post-movement signal to clinical BCI settings.

      The Reviewer questions the relevance of the specific window parameters used in the present study for clinical BCI applications, particularly for paretic patients who are unable to produce finger movements or for whom afferent sensory feedback is no longer intact. We strongly agree with the Reviewer that any intended clinical application must carefully consider the specific input feature constraints dictated by the clinical cohort, and in turn impose appropriate and complimentary constraints on classifier parameters that may differ from the ones used in the present study. We now highlight this issue in the Discussion of the revised manuscript and relate our present findings to published clinical BCI work within this context.

      One of the important and fascinating claims of the current study is that the "contextualization" of individual finger movements in a trained sequence specifically occurs during short rest periods in very early skill learning, echoing the recent theory of micro-offline learning proposed by the authors' group. Here, I think two points need to be clarified. First, the concept of "contextualization" is kept somewhat blurry throughout the text. It is only at the later part of the Discussion (around line #330 on page 13) that some potential mechanism for the "contextualization" is provided as "what-and-where" binding. Still, it is unclear what "contextualization" actually is in the current data, as the MEG signal analyzed is extracted from 0-200 msec after the keypress. If one thinks something is contextualizing an action, that contextualization should come earlier than the action itself.

      The Reviewer requests that we: 1) more clearly define our use of the term “contextualization” and 2) provide the rationale for assessing it over a 200ms window aligned to the KeyDown event. This choice of window parameters means that the MEG activity used in our analysis was coincident with, rather than preceding, the actual keypresses. We define contextualization as the differentiation of representation for the identical movement embedded in different positions of a sequential skill. That is, representations of individual action elements progressively incorporate information about their relationship to the overall sequence structure as the skill is learned. We agree with the Reviewer that this can be appropriately interpreted as “what-and-where” binding. We now incorporate this definition in the Introduction of the revised manuscript as requested.

      The window parameters for optimizing accurate decoding individual finger movements were determined using a grid search of the parameter space (a sliding window of variable width between 25-350 ms with 25 ms increments variably aligned from 0 to +100ms with 10ms increments relative to the KeyDown event). This approach generated 140 different temporal windows for each keypress for each participant, with the final parameter selection determined through comparison of the resulting performance between each decoder. Importantly, the decision to optimize for decoding accuracy placed an emphasis on keypress representations characterized by the most consistent and robust features shared across subjects, which in turn maximize statistical power in detecting common learning-related changes. In this case, the optimal window encompassed a 200ms epoch aligned to the KeyDown event (t<sub>0</sub> = 0 ms). We then asked if the representations (i.e. – spatial patterns of combined parcel- and voxel-space activity) of the same digit at two different sequence positions changed with practice within this optimal decoding window. Of course, our findings do not rule out the possibility that contextualization can also be found before or even after this time window, as we did not directly address this issue in the present study. Future work in our lab, as pointed out above, are investigating contextualization within different time windows tailored specifically for assessing sequence skill action planning, execution, evaluation and memory processes.

      The second point is that the result provided by the authors is not yet convincing enough to support the claim that "contextualization" occurs during rest. In the original analysis, the authors presented the statistical significance regarding the correlation between the "offline" pattern differentiation and micro-offline skill gain (Figure 5. Supplement 1), as well as the larger "offline" distance than "online" distance (Figure 5B). However, this analysis looks like regressing two variables (monotonically) increasing as a function of the trial. Although some information in this analysis, such as what the independent/dependent variables were or how individual subjects were treated, was missing in the Methods, getting a statistically significant slope seems unsurprising in such a situation. Also, curiously, the same quantitative evidence was not provided for its "online" counterpart, and the authors only briefly mentioned in the text that there was no significant correlation between them. It may be true looking at the data in Figure 5A as the online representation distance looks less monotonically changing, but the classification accuracy presented in Figure 4C, which should reflect similar representational distance, shows a more monotonic increase up to the 11th trial. Further, the ways the "online" and "offline" representation distance was estimated seem to make them not directly comparable. While the "online" distance was computed using all the correct press data within each 10 sec of execution, the "offline" distance is basically computed by only two presses (i.e., the last index_OP5 vs. the first index_OP1 separated by 10 sec of rest). Theoretically, the distance between the neural activity patterns for temporally closer events tends to be closer than that between the patterns for temporally far-apart events. It would be fairer to use the distance between the first index_OP1 vs. the last index_OP5 within an execution period for "online" distance, as well.

      The Reviewer suggests that the current data is not enough to show that contextualization occurs during rest and raises two important concerns: 1) the relationship between online contextualization and micro-online gains is not shown, and 2) the online distance was calculated differently from its offline counterpart (i.e. - instead of calculating the distance between last Index<sub>OP5</sub> and first Index<sub>OP1</sub> from a single trial, the distance was calculated for each sequence within a trial and then averaged).

      We addressed the first concern by performing individual subject correlations between 1) contextualization changes during rest intervals and micro-offline gains; 2) contextualization changes during practice trials and micro-online gains, and 3) contextualization changes during practice trials and micro-offline gains (Figure 5 – figure supplement 4). We then statistically compared the resulting correlation coefficient distributions and found that within-subject correlations for contextualization changes during rest intervals and micro-offline gains were significantly higher than online contextualization and micro-online gains (t = 3.2827, p = 0.0015) and online contextualization and micro-offline gains (t = 3.7021, p = 5.3013e-04). These results are consistent with our interpretation that micro-offline gains are supported by contextualization changes during the inter-practice rest periods.

      With respect to the second concern, we agree with the Reviewer that one limitation of the analysis comparing online versus offline changes in contextualization as presented in the original manuscript, is that it does not eliminate the possibility that any differences could simply be explained by the passage of time (which is smaller for the online analysis compared to the offline analysis). The Reviewer suggests an approach that addresses this issue, which we have now carried out. When quantifying online changes in contextualization from the first Index<sub>OP1</sub> the last Index<sub>OP5</sub> keypress in the same trial we observed no learning-related trend (Figure 5 – figure supplement 5, right panel). Importantly, offline distances were significantly larger than online distances regardless of the measurement approach and neither predicted online learning (Figure 5 – figure supplement 6).

      A related concern regarding the control analysis, where individual values for max speed and the degree of online contextualization were compared (Figure 5 Supplement 3), is whether the individual difference is meaningful. If I understood correctly, the optimization of the decoding process (temporal window, feature inclusion/reduction, decoder, etc.) was performed for individual participants, and the same feature extraction was also employed for the analysis of representation distance (i.e., contextualization). If this is the case, the distances are individually differently calculated and they may need to be normalized relative to some stable reference (e.g., 1 vs. 4 or average distance within the control sequence presses) before comparison across the individuals.

      The Reviewer makes a good point here. We have now implemented the suggested normalization procedure in the analysis provided in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      One goal of this paper is to introduce a new approach for highly accurate decoding of finger movements from human magnetoencephalography data via dimension reduction of a "multiscale, hybrid" feature space. Following this decoding approach, the authors aim to show that early skill learning involves "contextualization" of the neural coding of individual movements, relative to their position in a sequence of consecutive movements. Furthermore, they aim to show that this "contextualization" develops primarily during short rest periods interspersed with skill training and correlates with a performance metric which the authors interpret as an indicator of offline learning.

      Strengths:

      A clear strength of the paper is the innovative decoding approach, which achieves impressive decoding accuracies via dimension reduction of a "multi-scale, hybrid space". This hybrid-space approach follows the neurobiologically plausible idea of the concurrent distribution of neural coding across local circuits as well as large-scale networks. A further strength of the study is the large number of tested dimension reduction techniques and classifiers (though the manuscript reveals little about the comparison of the latter).

      We appreciate the Reviewer’s comments regarding the paper’s strengths.

      A simple control analysis based on shuffled class labels could lend further support to this complex decoding approach. As a control analysis that completely rules out any source of overfitting, the authors could test the decoder after shuffling class labels. Following such shuffling, decoding accuracies should drop to chance level for all decoding approaches, including the optimized decoder. This would also provide an estimate of actual chance-level performance (which is informative over and beyond the theoretical chance level). Furthermore, currently, the manuscript does not explain the huge drop in decoding accuracies for the voxel-space decoding (Figure 3B). Finally, the authors' approach to cortical parcellation raises questions regarding the information carried by varying dipole orientations within a parcel (which currently seems to be ignored?) and the implementation of the mean-flipping method (given that there are two dimensions - space and time - what do the authors refer to when they talk about the sign of the "average source", line 477?).

      The Reviewer recommends that we: 1) conduct an additional control analysis on classifier performance using shuffled class labels, 2) provide a more detailed explanation regarding the drop in decoding accuracies for the voxel-space decoding following LDA dimensionality reduction (see Fig 3B), and 3) provide additional details on how problems related to dipole solution orientations were addressed in the present study.

      In relation to the first point, we have now implemented a random shuffling approach as a control for the classification analyses. The results of this analysis indicated that the chance level accuracy was 22.12% (± SD 9.1%) for individual keypress decoding (4-class classification), and 18.41% (± SD 7.4%) for individual sequence item decoding (5-class classification), irrespective of the input feature set or the type of decoder used. Thus, the decoding accuracy observed with the final model was substantially higher than these chance levels.

      Second, please note that the dimensionality of the voxel-space feature set is very high (i.e. – 15684). LDA attempts to map the input features onto a much smaller dimensional space (number of classes – 1; e.g. – 3 dimensions, for 4-class keypress decoding). Given the very high dimension of the voxel-space input features in this case, the resulting mapping exhibits reduced accuracy. Despite this general consideration, please refer to Figure 3—figure supplement 3, where we observe improvement in voxel-space decoder performance when utilizing alternative dimensionality reduction techniques.

      The decoders constructed in the present study assess the average spatial patterns across time (as defined by the windowing procedure) in the input feature space. We now provide additional details in the Methods of the revised manuscript pertaining to the parcellation procedure and how the sign ambiguity problem was addressed in our analysis.

      Weaknesses:

      A clear weakness of the paper lies in the authors' conclusions regarding "contextualization". Several potential confounds, described below, question the neurobiological implications proposed by the authors and provide a simpler explanation of the results. Furthermore, the paper follows the assumption that short breaks result in offline skill learning, while recent evidence, described below, casts doubt on this assumption.

      We thank the Reviewer for giving us the opportunity to address these issues in detail (see below).

      The authors interpret the ordinal position information captured by their decoding approach as a reflection of neural coding dedicated to the local context of a movement (Figure 4). One way to dissociate ordinal position information from information about the moving effectors is to train a classifier on one sequence and test the classifier on other sequences that require the same movements, but in different positions (Kornysheva et al., 2019). In the present study, however, participants trained to repeat a single sequence (4-1-3-2-4). As a result, ordinal position information is potentially confounded by the fixed finger transitions around each of the two critical positions (first and fifth press). Across consecutive correct sequences, the first keypress in a given sequence was always preceded by a movement of the index finger (=last movement of the preceding sequence), and followed by a little finger movement. The last keypress, on the other hand, was always preceded by a ring finger movement, and followed by an index finger movement (=first movement of the next sequence). Figure 4 - Supplement 2 shows that finger identity can be decoded with high accuracy (>70%) across a large time window around the time of the key press, up to at least +/-100 ms (and likely beyond, given that decoding accuracy is still high at the boundaries of the window depicted in that figure). This time window approaches the keypress transition times in this study. Given that distinct finger transitions characterized the first and fifth keypress, the classifier could thus rely on persistent (or "lingering") information from the preceding finger movement, and/or "preparatory" information about the subsequent finger movement, in order to dissociate the first and fifth keypress. Currently, the manuscript provides no evidence that the context information captured by the decoding approach is more than a by-product of temporally extended, and therefore overlapping, but independent neural representations of consecutive keypresses that are executed in close temporal proximity - rather than a neural representation dedicated to context.

      Such temporal overlap of consecutive, independent finger representations may also account for the dynamics of "ordinal coding"/"contextualization", i.e., the increase in 2-class decoding accuracy, across Day 1 (Figure 4C). As learning progresses, both tapping speed and the consistency of keypress transition times increase (Figure 1), i.e., consecutive keypresses are closer in time, and more consistently so. As a result, information related to a given keypress is increasingly overlapping in time with information related to the preceding and subsequent keypresses. The authors seem to argue that their regression analysis in Figure 5 - Figure Supplement 3 speaks against any influence of tapping speed on "ordinal coding" (even though that argument is not made explicitly in the manuscript). However, Figure 5 - Figure Supplement 3 shows inter-individual differences in a between-subject analysis (across trials, as in panel A, or separately for each trial, as in panel B), and, therefore, says little about the within-subject dynamics of "ordinal coding" across the experiment. A regression of trial-by-trial "ordinal coding" on trial-by-trial tapping speed (either within-subject or at a group-level, after averaging across subjects) could address this issue. Given the highly similar dynamics of "ordinal coding" on the one hand (Figure 4C), and tapping speed on the other hand (Figure 1B), I would expect a strong relationship between the two in the suggested within-subject (or group-level) regression. Furthermore, learning should increase the number of (consecutively) correct sequences, and, thus, the consistency of finger transitions. Therefore, the increase in 2-class decoding accuracy may simply reflect an increasing overlap in time of increasingly consistent information from consecutive keypresses, which allows the classifier to dissociate the first and fifth keypress more reliably as learning progresses, simply based on the characteristic finger transitions associated with each. In other words, given that the physical context of a given keypress changes as learning progresses - keypresses move closer together in time and are more consistently correct - it seems problematic to conclude that the mental representation of that context changes. To draw that conclusion, the physical context should remain stable (or any changes to the physical context should be controlled for).

      The issues raised by Reviewer #3 here are similar to two issues raised by Reviewer #2 above. We agree they must both be carefully considered in any evaluation of our findings.

      As both Reviewers pointed out, the classifiers in this study were trained and tested on keypresses performed while practicing a specific sequence (4-1-3-2-4). The study was designed this way as to avoid the impact of interference effects on learning dynamics. The cross-validated performance of classifiers on MEG data collected within the same session was 90.47% overall accuracy (4class; Figure 3C). We then tested classifier performance on data collected during a separate MEG session conducted approximately 24 hours later (Day 2; see Figure 3—supplement 3). We observed a reduction in overall accuracy rate to 87.11% when tested on MEG data recorded while participants performed the same learned sequence, and 79.44% when they performed several previously unpracticed sequences. This classification performance difference of 7.67% when tested on the Day 2 data could reflect the performance bias of the classifier for the trained sequence, possibly caused by mixed information from temporally close keypresses being incorporated into the feature weights.

      Along these same lines, both Reviewers also raise the possibility that an increase in “ordinal coding/contextualization” with learning could simply reflect an increase in this mixing effect caused by faster typing speeds as opposed to an actual change in the underlying neural representation. The basic idea is that as correct sequences are generated at higher and higher speeds over training, MEG activity patterns related to the planning, execution, evaluation and memory of individual keypresses overlap more in time. Thus, increased overlap between the “4” and “1” keypresses (at the start of the sequence) and “2” and “4” keypresses (at the end of the sequence) could artefactually increase contextualization distances even if the underlying neural representations for the individual keypresses remain unchanged (assuming this mixing of representations is used by the classifier to differentially tag each index finger press). If this were the case, it follows that such mixing effects reflecting the ordinal sequence structure would also be observable in the distribution of decoder misclassifications. For example, “4” keypresses would be more likely to be misclassified as “1” or “2” keypresses (or vice versa) than as “3” keypresses. The confusion matrices presented in Figures 3C and 4B and Figure 3—figure supplement 3A in the previously submitted manuscript do not show this trend in the distribution of misclassifications across the four fingers.

      Following this logic, it’s also possible that if the ordinal coding is largely driven by this mixing effect, the increased overlap between consecutive index finger keypresses during the 4-4 transition marking the end of one sequence and the beginning of the next one could actually mask contextualization-related changes to the underlying neural representations and make them harder to detect. In this case, a decoder tasked with separating individual index finger keypresses into two distinct classes based upon sequence position might show decreased performance with learning as adjacent keypresses overlapped in time with each other to an increasing extent. However, Figure 4C in our previously submitted manuscript does not support this possibility, as the 2-class hybrid classifier displays improved classification performance over early practice trials despite greater temporal overlap.

      As noted in the above reply to Reviewer #2, we also conducted a new multivariate regression analysis to directly assess whether the neural representation distance score could be predicted by the 4-1, 2-4 and 4-4 keypress transition times observed for each complete correct sequence (both predictor and response variables were z-score normalized within-subject). The results of this analysis affirmed that the possible alternative explanation put forward by the Reviewer is not supported by our data (Adjusted R<sup>2</sup> = 0.00431; F = 5.62). We now include this new negative control analysis result in the revised manuscript.

      Finally, the Reviewer hints that one way to address this issue would be to compare MEG responses before and after learning for sequences typed at a fixed speed. However, given that the speed-accuracy trade-off should improve with learning, a comparison between unlearned and learned skill states would dictate that the skill be evaluated at a very low fixed speed. Essentially, such a design presents the problem that the post-training test is evaluating the representation in the unlearned behavioral state that is not representative of the acquired skill. Thus, this approach would miss most learning effects on a task in which speed is the main learning metrics.

      A similar difference in physical context may explain why neural representation distances ("differentiation") differ between rest and practice (Figure 5). The authors define "offline differentiation" by comparing the hybrid space features of the last index finger movement of a trial (ordinal position 5) and the first index finger movement of the next trial (ordinal position 1). However, the latter is not only the first movement in the sequence but also the very first movement in that trial (at least in trials that started with a correct sequence), i.e., not preceded by any recent movement. In contrast, the last index finger of the last correct sequence in the preceding trial includes the characteristic finger transition from the fourth to the fifth movement. Thus, there is more overlapping information arising from the consistent, neighbouring keypresses for the last index finger movement, compared to the first index finger movement of the next trial. A strong difference (larger neural representation distance) between these two movements is, therefore, not surprising, given the task design, and this difference is also expected to increase with learning, given the increase in tapping speed, and the consequent stronger overlap in representations for consecutive keypresses. Furthermore, initiating a new sequence involves pre-planning, while ongoing practice relies on online planning (Ariani et al., eNeuro 2021), i.e., two mental operations that are dissociable at the level of neural representation (Ariani et al., bioRxiv 2023).

      The Reviewer argues that the comparison of last finger movement of a trial and the first in the next trial are performed in different circumstances and contexts. This is an important point and one we tend to agree with. For this task, the first sequence in a practice trial is pre-planned before the first keypress is performed. This occurs in a somewhat different context from the sequence iterations that follow, which involve temporally overlapping planning, execution and evaluation processes. The Reviewer is concerned about a difference in the temporal mixing effect issue raised above between the first and last keypresses performed in a trial. Please, note that since neural representations of individual actions are competitively queued during the pre-planning period in a manner that reflects the ordinal structure of the learned sequence (Kornysheva et al., 2019), mixing effects are most likely present also for the first keypress in a trial.

      Separately, the Reviewer suggests that contextualization during early learning may reflect preplanning or online planning. This is an interesting proposal. Given the decoding time-window used in this investigation, we cannot dissect separate contributions of planning, memory and sensory feedback to contextualization. Taking advantage of the superior temporal resolution of MEG relative to fMRI tools, work under way in our lab is investigating decoding time-windows more appropriate to address each of these questions.

      Given these differences in the physical context and associated mental processes, it is not surprising that "offline differentiation", as defined here, is more pronounced than "online differentiation". For the latter, the authors compared movements that were better matched regarding the presence of consistent preceding and subsequent keypresses (online differentiation was defined as the mean difference between all first vs. last index finger movements during practice). It is unclear why the authors did not follow a similar definition for "online differentiation" as for "micro-online gains" (and, indeed, a definition that is more consistent with their definition of "offline differentiation"), i.e., the difference between the first index finger movement of the first correct sequence during practice, and the last index finger of the last correct sequence. While these two movements are, again, not matched for the presence of neighbouring keypresses (see the argument above), this mismatch would at least be the same across "offline differentiation" and "online differentiation", so they would be more comparable.

      This is the same point made earlier by Reviewer #2, and we agree with this assessment. As stated in the response to Reviewer #2 above, we have now carried out quantification of online contextualization using this approach and included it in the revised manuscript. We thank the Reviewer for this suggestion.

      A further complication in interpreting the results regarding "contextualization" stems from the visual feedback that participants received during the task. Each keypress generated an asterisk shown above the string on the screen, irrespective of whether the keypress was correct or incorrect. As a result, incorrect (e.g., additional, or missing) keypresses could shift the phase of the visual feedback string (of asterisks) relative to the ordinal position of the current movement in the sequence (e.g., the fifth movement in the sequence could coincide with the presentation of any asterisk in the string, from the first to the fifth). Given that more incorrect keypresses are expected at the start of the experiment, compared to later stages, the consistency in visual feedback position, relative to the ordinal position of the movement in the sequence, increased across the experiment. A better differentiation between the first and the fifth movement with learning could, therefore, simply reflect better decoding of the more consistent visual feedback, based either on the feedback-induced brain response, or feedback-induced eye movements (the study did not include eye tracking). It is not clear why the authors introduced this complicated visual feedback in their task, besides consistency with their previous studies.

      We strongly agree with the Reviewer that eye movements related to task engagement are important to rule out as a potential driver of the decoding accuracy or contextualizaton effect. We address this issue above in response to a question raised by Reviewer #1 about the impact of movement related artefacts on our findings.

      First, the assumption the Reviewer makes here about the distribution of errors in this task is incorrect. On average across subjects, 2.32% ± 1.48% (mean ± SD) of all keypresses performed were errors, which were evenly distributed across the four possible keypress responses. While errors increased progressively over practice trials, they did so in proportion to the increase in correct keypresses, so that the overall ratio of correct-to-incorrect keypresses remained stable over the training session. Thus, the Reviewer’s assumptions that there is a higher relative frequency of errors in early trials, and a resulting systematic trend phase shift differences between the visual display updates (i.e. – a change in asterisk position above the displayed sequence) and the keypress performed is not substantiated by the data. To the contrary, the asterisk position on the display and the keypress being executed remained highly correlated over the entire training session. We now include a statement about the frequency and distribution of errors in the revised manuscript.

      Given this high correlation, we firmly agree with the Reviewer that the issue of eye movement related artefacts is still an important one to address. Fortunately, we did collect eye movement data during the MEG recordings so were able to investigate this. As detailed in the response to Reviewer #1 above, we found that gaze positions and eye-movement velocity time-locked to visual display updates (i.e. – a change in asterisk position above the displayed sequence) did not reflect the asterisk location above chance levels (Overall cross-validated accuracy = 0.21817; see Author response image 1). Furthermore, an inspection of the eye position data revealed that most participants on most trials displayed random walk gaze patterns around a center fixation point, indicating that participants did not attend to the asterisk position on the display. This is consistent with intrinsic generation of the action sequence, and congruent with the fact that the display does not provide explicit feedback related to performance. As pointed out above, a similar real-world example would be manually inputting a long password into a secure online application. In this case, one intrinsically generates the sequence from memory and receives similar feedback about the password sequence position (also provided as asterisks), which is typically ignored by the user.

      The minimal participant engagement with the visual display in this explicit sequence learning motor task (which is highly generative in nature) contrasts markedly with behavior observed when reactive responses to stimulus cues are needed in the serial reaction time task (SRTT). This is a crucial difference that must be carefully considered when comparing findings across studies using the two sequence learning tasks.

      The authors report a significant correlation between "offline differentiation" and cumulative microoffline gains. However, it would be more informative to correlate trial-by-trial changes in each of the two variables. This would address the question of whether there is a trial-by-trial relation between the degree of "contextualization" and the amount of micro-offline gains - are performance changes (micro-offline gains) less pronounced across rest periods for which the change in "contextualization" is relatively low? Furthermore, is the relationship between micro-offline gains and "offline differentiation" significantly stronger than the relationship between micro-offline gains and "online differentiation"?

      In response to a similar issue raised above by Reviewer #2, we now include new analyses comparing correlation magnitudes between (1) “online differentiation” vs micro-online gains, (2) “online differentiation” vs micro-offline gains and (3) “offline differentiation” and micro-offline gains (see Figure 5 – figure supplement  4, 5 and 6). These new analyses and results have been added to the revised manuscript. Once again, we thank both Reviewers for this suggestion.

      The authors follow the assumption that micro-offline gains reflect offline learning.

      We disagree with this statement. The original (Bonstrup et al., 2019) paper clearly states that micro-offline gains do not necessarily reflect offline learning in some cases and must be carefully interpreted based upon the behavioral context within which they are observed. Further, the paper lays out the conditions under which one can have confidence that micro-offline gains reflect offline learning. In fact, the excellent meta-analysis of (Pan & Rickard, 2015), which re-interprets the benefits of sleep in overnight skill consolidation from a “reactive inhibition” perspective, was a crucial resource in the experimental design of our initial study (Bonstrup et al., 2019), as well as in all our subsequent work. Pan & Rickard state:

      “Empirically, reactive inhibition refers to performance worsening that can accumulate during a period of continuous training (Hull, 1943 . It tends to dissipate, at least in part, when brief breaks are inserted between blocks of training. If there are multiple performance-break cycles over a training session, as in the motor sequence literature, performance can exhibit a scalloped effect, worsening during each uninterrupted performance block but improving across blocks(Brawn et al., 2010; Rickard et al., 2008 . Rickard, Cai, Rieth, Jones, and Ard (2008 and Brawn, Fenn, Nusbaum, and Margoliash (2010 (Brawn et al., 2010; Rickard et al., 2008 demonstrated highly robust scalloped reactive inhibition effects using the commonly employed 30 s–30 s performance break cycle, as shown for Rickard et al.’s (2008 massed practice sleep group in Figure 2. The scalloped effect is evident for that group after the first few 30 s blocks of each session. The absence of the scalloped effect during the first few blocks of training in the massed group suggests that rapid learning during that period masks any reactive inhibition effect.”

      Crucially, Pan & Rickard make several concrete recommendations for reducing the impact of the reactive inhibition confound on offline learning studies. One of these recommendations was to reduce practice times to 10s (most prior sequence learning studies up until that point had employed 30s long practice trials). They state:

      “The traditional design involving 30 s-30 s performance break cycles should be abandoned given the evidence that it results in a reactive inhibition confound, and alternative designs with reduced performance duration per block used instead (Pan & Rickard, 2015 . One promising possibility is to switch to 10 s performance durations for each performance-break cycle Instead (Pan & Rickard, 2015 . That design appears sufficient to eliminate at least the majority of the reactive inhibition effect (Brawn et al., 2010; Rickard et al., 2008 .”

      We mindfully incorporated recommendations from (Pan & Rickard, 2015) into our own study designs including 1) utilizing 10s practice trials and 2) constraining our analysis of micro-offline gains to early learning trials (where performance monotonically increases and 95% of overall performance gains occur), which are prior to the emergence of the “scalloped” performance dynamics that are strongly linked to reactive inhibition effects.

      However, there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level.

      We strongly disagree with the Reviewer’s assertion that “there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level.” The initial (Bonstrup et al., 2019) report was followed up by a large online crowd-sourcing study (Bonstrup et al., 2020). This second (and much larger) study provided several additional important findings supporting our interpretation of micro-offline gains in cases where the important behavioral conditions clarified above were met (see Author response image 4 below for further details on these conditions).

      Author response image 4.

      This Figure shows that micro-offline gains o ser ed in learning and nonlearning contexts are attri uted to different underl ing causes. Micro-offline and online changes relative to overall trial-by-trial learning. This figure is based on data from (Bonstrup et al., 2019). During early learning, micro-offline gains (red bars) closely track trial-by-trial performance gains (green line with open circle markers), with minimal contribution from micro-online gains (blue bars). The stated conclusion in Bönstrup et al. (2019) is that micro-offline gains only during this Early Learning stage reflect rapid memory consolidation (see also (Bonstrup et al., 2020)). After early learning, about practice trial 11, skill plateaus. This plateau skill period is characterized by a striking emergence of coupled (and relatively stable) micro-online drops and micro-offline increases. Bönstrup et al. (2019) as well as others in the literature (Brooks et al., 2024; Gupta & Rickard, 2022; Florencia Jacobacci et al., 2020), argue that micro-offline gains during the plateau period likely reflect recovery from inhibitory performance factors such as reactive inhibition or fatigue, and thus must be excluded from analyses relating micro-offline gains to skill learning. The Non-repeating groups in Experiments 3 and 4 from Das et al. (2024) suffer from a lack of consideration of these known confounds (end of Fig legend).

      Evidence documented in that paper (Bonstrup et al., 2020) showed that micro-offline gains during early skill learning were: 1) replicable and generalized to subjects learning the task in their daily living environment (n=389); 2) equivalent when significantly shortening practice period duration, thus confirming that they are not a result of recovery from performance fatigue (n=118); 3) reduced (along with learning rates) by retroactive interference applied immediately after each practice period relative to interference applied after passage of time (n=373), indicating stabilization of the motor memory at a microscale of several seconds consistent with rapid consolidation; and 4) not modified by random termination of the practice periods, ruling out a contribution of predictive motor slowing (N = 71) (Bonstrup et al., 2020). Altogether, our findings were strongly consistent with the interpretation that micro-offline gains reflect memory consolidation supporting early skill learning. This is precisely the portion of the learning curve (Pan & Rickard, 2015) refer to when they state “…rapid learning during that period masks any reactive inhibition effect”.

      This interpretation is further supported by brain imaging evidence linking known memory-related networks and consolidation mechanisms to micro-offline gains. First, we reported that the density of fast hippocampo-neocortical skill memory replay events increases approximately three-fold during early learning inter-practice rest periods with the density explaining differences in the magnitude of micro-offline gains across subjects (Buch et al., 2021). Second, Jacobacci et al. (2020) independently reproduced our original behavioral findings and reported BOLD fMRI changes in the hippocampus and precuneus (regions also identified in our MEG study (Buch et al., 2021)) linked to micro-offline gains during early skill learning. These functional changes were coupled with rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that operates during rest periods of early learning undergoes structural plasticity over several minutes following practice (Deleglise et al., 2023). Crucial to this point, Chen et al. (2024) and Sjøgård et al (2024) provided direct evidence from intracranial EEG in humans linking sharp-wave ripple density during rest periods (which are known markers for neural replay (Buzsaki, 2015)) in the human hippocampus (80-120 Hz) to micro-offline gains during early skill learning.

      Thus, there is now substantial converging evidence in humans across different indirect noninvasive and direct invasive recording techniques linking hippocampal activity, neural replay dynamics and offline performance gains in skill learning.

      On the contrary, recent evidence questions this interpretation (Gupta & Rickard, npj Sci Learn 2022; Gupta & Rickard, Sci Rep 2024; Das et al., bioRxiv 2024). Instead, there is evidence that micro-offline gains are transient performance benefits that emerge when participants train with breaks, compared to participants who train without breaks, however, these benefits vanish within seconds after training if both groups of participants perform under comparable conditions (Das et al., bioRxiv 2024).

      The recent work of (Gupta & Rickard, 2022, 2024) does not present any data that directly opposes our finding that early skill learning (Bonstrup et al., 2019) is expressed as micro-offline gains during rest breaks. These studies are an extension of the Rickard et al (2008) paper that employed a massed (30s practice followed by 30s breaks) vs spaced (10s practice followed by 10s breaks) experimental design to assess if recovery from reactive inhibition effects could account for performance gains measured after several minutes or hours. Gupta & Rickard (2022) added two additional groups (30s practice/10s break and 10s practice/10s break as used in the work from our group). The primary aim of the study was to assess whether it was more likely that changes in performance when retested 5 minutes after skill training (consisting of 12 practice trials for the massed groups and 36 practice trials for the spaced groups) had ended reflected memory consolidation effects or recovery from reactive inhibition effects. The Gupta & Rickard (2024) follow-up paper employed a similar design with the primary difference being that participants performed a fixed number of sequences on each trial as opposed to trials lasting a fixed duration. This was done to facilitate the fitting of a quantitative statistical model to the data.

      To reiterate, neither study included any analysis of micro-online or micro-offline gains and did not include any comparison focused on skill gains during early learning trials (only at retest 5 min later). Instead, Gupta & Rickard (2022), reported evidence for reactive inhibition effects for all groups over much longer training periods than early learning. In fact, we reported the same findings for trials following the early learning period in our original 2019 paper (Bonstrup et al., 2019) (Author response image 4). Please, note that we also reported that cumulative microoffline gains over early learning did not correlate with overnight offline consolidation measured 24 hours later (Bonstrup et al., 2019) (see the Results section and further elaboration in the Discussion). We interpreted these findings as indicative that the mechanisms underlying offline gains over the micro-scale of seconds during early skill learning versus over minutes or hours very likely differ.

      In the recent preprint from (Das et al., 2024), the authors make the strong claim that “micro-offline gains during early learning do not reflect offline learning” which is not supported by their own data. The authors hypothesize that if “micro-offline gains represent offline learning, participants should reach higher skill levels when training with breaks, compared to training without breaks”. The study utilizes a spaced vs. massed practice groups between-subjects design inspired by the reactive inhibition work from Rickard and others to test this hypothesis.

      Crucially, their design incorporates only a small fraction of the training used in other investigations to evaluate early skill learning (Bonstrup et al., 2020; Bonstrup et al., 2019; Brooks et al., 2024; Buch et al., 2021; Deleglise et al., 2023; F. Jacobacci et al., 2020; Mylonas et al., 2024). A direct comparison between the practice schedule designs for the spaced and massed groups in Das et al., and the training schedule all participants experienced in the original Bönstrup et al. (2019) paper highlights this issue as well as several others (Author response image 5):

      Author response image 5.

      This figure shows (A) Comparison of Das et al. Spaced & Massed group training session designs, and the training session design from the original (Bonstrup et al., 2019) paper. Similar to the approach taken by Das et al., all practice is visualized as 10-second practice trials with a variable number (either 0, 1 or 30) of 10-second-long inter-practice rest intervals to allow for direct comparisons between designs. The two key takeaways from this comparison are that (1) the intervention differences (i.e. – practice schedules) between the Massed and Spaced groups from the Das et al. report are extremely small (less than 12% of the overall session schedule) (gaps in the red shaded area) and (2) the overall amount of practice is much less than compared to the design from the original Bönstrup report (Bonstrup et al., 2019) (which has been utilized in several subsequent studies). (B) Group-level learning curve data from Bönstrup et al. (2019) (Bonstrup et al., 2019) is used to estimate the performance range accounted for by the equivalent periods covering Test 1, Training 1 and Test 2 from Das et al (2024). Note that the intervention in the Das et al. study is limited to a period covering less than 50% of the overall learning range (end of figure legend).

      Participants in the original (Bonstrup et al., 2019) experienced 157.14% more practice time and 46.97% less inter-practice rest time than the Spaced group in the Das et al. study (Author response image 5). Thus, the overall amount of practice and rest differ substantially between studies, with much more limited training occurring for participants in Das et al.

      In addition, the training interventions (i.e. – the practice schedule differences between the Spaced and Massed groups) were designed in a manner that minimized any chance of effectively testing their hypothesis. First, the interventions were applied over an extremely short period relative to the length of the total training session (5% and 12% of the total training session for Massed and Spaced groups, respectively; see gaps in the red shaded area in Author response image 5). Second, the intervention was applied during a period in which only half of the known total learning occurs. Specifically, we know from Bönstrup et al. (2019) that only 46.57% of the total performance gains occur in the practice interval covered by Das et al Training 1 intervention. Thus, early skill learning as evaluated by multiple groups (Bonstrup et al., 2020; Bonstrup et al., 2019; Brooks et al., 2024; Buch et al., 2021; Deleglise et al., 2023; F. Jacobacci et al., 2020; Mylonas et al., 2024), is in the Das et al experiment amputated to about half.

      Furthermore, a substantial amount of learning takes place during Das et al’s Test 1 and Test 2 periods (32.49% of total gains combined). The fact that substantial learning is known to occur over both the Test 1 (18.06%) and Test 2 (14.43%) intervals presents a fundamental problem described by Pan and Rickard (Pan & Rickard, 2015). They reported that averaging over intervals where substantial performance gains occur (i.e. – performance is not stable) inject crucial artefacts into analyses of skill learning:

      “A large amount of averaging has the advantage of yielding more precise estimates of each subject’s pretest and posttest scores and hence more statistical power to detect a performance gain. However, calculation of gain scores using that strategy runs the risk that learning that occurs during the pretest and (or posttest periods (i.e., online learning is incorporated into the gain score (Rickard et al., 2008; Robertson et al., 2004 .”

      The above statement indicates that the Test 1 and Test 2 performance scores from Das et al. (2024) are substantially contaminated by the learning rate within these intervals. This is particularly problematic if the intervention design results in different Test 2 learning rates between the two groups. This in fact, is apparent in their data (Figure 1C,E of the Das et al., 2024 preprint) as the Test 2 learning rate for the Spaced group is negative (indicating a unique interference effect observable only for this group). Specifically, the Massed group continues to show an increase in performance during Test 2 and 4 relative to the last 10 seconds of practice during Training 1 and 2, respectively, while the Spaced group displays a marked decrease. This post-training performance decrease for the Spaced group is in stark contrast to the monotonic performance increases observed for both groups at all other time-points. One possible cause could be related to the structure of the Test intervals, which include 20 seconds of uninterrupted practice. For the Spaced group, this effectively is a switch to a Massed practice environment (i.e., two 10-secondlong practice trials merged into one long trial), which interferes with greater Training 1 interval gains observed for the Space group. Interestingly, when statistical comparisons between the groups are made at the time-points when the intervention is present (Figure 1E) then the stated hypothesis, “If micro-offline gains represent offline learning, participants should reach higher skill levels when training with breaks, compared to training without breaks”, is confirmed.

      In summary, the experimental design and analyses used by Das et al does not contradict the view that early skill learning is expressed as micro-offline gains during rest breaks. The data presented by Gupta and Rickard (2022, 2024) and Das et al. (2024) is in many ways more confirmatory of the constraints employed by our group and others with respect to experimental design, analysis and interpretation of study findings, rather than contradictory. Still, it does highlight a limitation of the current micro-online/offline framework, which was originally only intended to be applied to early skill learning over spaced practice schedules when reactive inhibition effects are minimized (Bonstrup et al., 2019; Pan & Rickard, 2015). Extrapolation of this current framework to postplateau performance periods, longer timespans, or non-learning situations (e.g. – the Nonrepeating groups from Das et al. (2024)), when reactive inhibition plays a more substantive role, is not warranted. Ultimately, it will be important to develop new paradigms allowing one to independently estimate the different coincident or antagonistic features (e.g. - memory consolidation, planning, working memory and reactive inhibition) contributing to micro-online and micro-offline gains during and after early skill learning within a unifying framework.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) I found Figure 2B too small to be useful, as the actual elements of the cells are very hard to read.

      We have removed the grid colormap panel (top-right) from Figure 2B. All of this colormap data is actually a subset of data presented in Figure 2 – figure supplement 1, so can still be found there.

      Reviewer #2 (Recommendations for the authors):

      (1) Related to the first point in my concerns, I would suggest the authors compare decoding accuracy between correct presses followed by correct vs. incorrect presses. This would clarify if the decoder is actually taking the MEG signal for subsequent press into account. I would also suggest the authors use pre-movement MEG features and post-movement features with shorter windows and compare each result with the results for the original post-movement MEG feature with a longer window.

      The present study does not contain enough errors to perform the analysis proposed by the Reviewer. As noted above, we did re-examine our data and now report a new control regression analysis, all of which indicate that the proximity between keypresses does not explain contextualization effects.

      (2) I was several times confused by the author's use of "neural representation of an action" or "sequence action representations" in understanding whether these terms refer to representation on the level of whole-brain, region (as defined by the specific parcellation used), or voxels. In fact, what is submitted to the decoder is some complicated whole-brain MEG feature (i.e., the "neural representation"), which is a hybrid of voxel and parcel features that is further dimension-reduced and not immediately interpretable. Clarifying this point early in the text and possibly using some more sensible terms, such as adding "brain-wise" before the "sequence action representation", would be the most helpful for the readers.

      We now clarified this terminology in the revised manuscript.

      (3) Although comparing many different ways in feature selection/reduction, time window selection, and decoder types is undoubtedly a meticulous work, the current version of the manuscript seems still lacking some explanation about the details of these methodological choices, like which decoding method was actually used to report the accuracy, whether or not different decoding methods were chosen for individual participants' data, how training data was selected (is it all of the correct presses in Day 1 data?), whether the frequency power or signal amplitude was used, and so on. I would highly appreciate these additional details in the Methods section.

      The reported accuracies were based on linear discriminant analysis classifier. A comparison of different decoders (Figure 3 – figure supplement 4) shows LDA was the optimal choice.

      Whether or not different decoding methods were chosen for individual participants' data

      We selected the same decoder (LDA) performance to report the final accuracy.

      How training data was selected (is it all of the correct presses in Day 1 data?),

      Decoder training was conducted as a randomized split of the data (all correct keypresses of Day 1) into training (90%) and test (10%) samples for 8 iterations.

      Whether the frequency power or signal amplitude was used

      Signal amplitude was used for feature calculation.

      (4) In terms of the Methods, please consider adding some references about the 'F1 score', the 'feature importance score,' and the 'MRMR-based feature ranking,' as the main readers of the current paper would not be from the machine learning community. Also, why did the LDA dimensionality reduction reduce accuracy specifically for the voxel feature?

      We have now added the following statements to the Methods section that provide more detailed descriptions and references for these metrics:

      “The F1 score, defined as the harmonic mean of the precision (percentage of true predictions that are actually true positive) and recall (percentage of true positives that were correctly predicted as true) scores, was used as a comprehensive metric for all one-versus-all keypress state decoders to assess class-wise performance that accounts for both false-positive and false-negative prediction tendencies [REF]. A weighted mean F1 score was then computed across all classes to assess the overall prediction performance of the multi-class model.”

      and

      “Feature Importance Scores

      The relative contribution of source-space voxels and parcels to decoding performance (i.e. – feature importance score) was calculated using minimum redundant maximum relevance (MRMR) and highlighted in topography plots. MRMR, an approach that combines both relevance and redundancy metrics, ranked individual features based upon their significance to the target variable (i.e. – keypress state identity) prediction accuracy and their non-redundancy with other features.”

      As stated in the Reviewer responses above, the dimensionality of the voxel-space feature set is very high (i.e. – 15684). LDA attempts to map the input features onto a much smaller dimensional space (number of classes-1; e.g. – 3 dimensions for 4-class keypress decoding). It is likely that the reduction in accuracy observed only for the voxel-space feature was due to the loss of relevant information during the mapping process that resulted in reduced accuracy. This reduction in accuracy for voxel-space decoding was specific to LDA. Figure 3—figure supplement 3 shows that voxel-space decoder performance actually improved when utilizing alternative dimensionality reduction techniques.

      (5) Paragraph 9, lines #139-142: "Notably, decoding associated with index finger keypresses (executed at two different ordinal positions in the sequence) exhibited the highest number of misclassifications of all digits (N = 141 or 47.5% of all decoding errors; Figure 3C), raising the hypothesis that the same action could be differentially represented when executed at different learning state or sequence context locations."

      This does not seem to be a fair comparison, as the index finger appears twice as many as the other fingers do in the sequence. To claim this, proper statistical analysis needs to be done taking this difference into account.

      We thank the Reviewer for bringing this issue to our attention. We have now corrected this comparison to evaluate relative false negative and false positive rates between individual keypress state decoders, and have revised this statement in the manuscript as follows:

      “Notably, decoding of index finger keypresses (executed at two different ordinal positions in the sequence) exhibited the highest false negative (0.116 per keypress) and false positive (0.043 per keypress) misclassification rates compared with all other digits (false negative rate range = [0.067 0.114]; false positive rate range = [0.020 0.037]; Figure 3C), raising the hypothesis that the same action could be differentially represented when executed within different contexts (i.e. - different learning states or sequence locations).”

      (6) Finally, the authors could consider acknowledging in the Discussion that the contribution of micro-offline learning to genuine skill learning is still under debate (e.g., Gupta and Rickard, 2023; 2024; Das et al., bioRxiv, 2024).

      We have added a paragraph in the Discussion that addresses this point.

      Reviewer #3 (Recommendations for the authors):

      In addition to the additional analyses suggested in the public review, I have the following suggestions/questions:

      (1) Given that the authors introduce a new decoding approach, it would be very helpful for readers to see a distribution of window sizes and window onsets eventually used across individuals, at least for the optimized decoder.

      We have now included a new supplemental figure (Figure 4 – figure Supplement 2) that provides this information.

      (2) Please explain in detail how you arrived at the (interpolated?) group-level plot shown in Figure 1B, starting from the discrete single-trial keypress transition times. Also, please specify what the shading shows.

      Instantaneous correct sequence speed (skill measure) was quantified as the inverse of time (in seconds) required to complete a single iteration of a correctly generated full 5-item sequence. Individual keypress responses were labeled as members of correct sequences if they occurred within a 5-item response pattern matching any possible circular shifts of the 5-item sequence displayed on the monitor (41324). This approach allowed us to quantify a measure of skill within each practice trial at the resolution of individual keypresses. The dark line indicates the group mean performance dynamics for each trial. The shaded region indicates the 95% confidence limit of the mean (see Methods).

      (3) Similarly, please explain how you arrived at the group-level plot shown in Figure 1C. What are the different colored lines (rows) within each trial? How exactly did the authors reach the conclusion that KTT variability stabilizes by trial 6?

      Figure 1C provides additional information to the correct sequence speed measure above, as it also tracks individual transition speed composition over learning. Figure 1C, thus, represents both changes in overall correct sequence speed dynamics (indicated by the overall narrowing of the horizontal speed lines moving from top to bottom) and the underlying composition of the individual transition patterns within and across trials. The coloring of the lines is a shading convention used to discriminate between different keypress transitions. These curves were sampled with 1ms resolution, as in Figure 1B. Addressing the underlying keypress transition patterns requires within-subject normalization before averaging across subjects. The distribution of KTTs was normalized to the median correct sequence time for each participant and centered on the mid-point for each full sequence iteration during early learning.

      (4) Maybe I missed it, but it was not clear to me which of the tested classifiers was eventually used. Or was that individualized as well? More generally, a comparison of the different classifiers would be helpful, similar to the comparison of dimension reduction techniques.

      We have now included a new supplemental figure that provides this information.

      (5) Please add df and effect sizes to all statistics.

      Done.

      (6) Please explain in more detail your power calculation.

      The study was powered to determine the minimum sample size needed to detect a significant change in skill performance following training using a one-sample t-test (two-sided; alpha = 0.05; 95% statistical power; Cohen’s D effect size = 0.8115 calculated from previously acquired data in our lab). The calculated minimum sample size was 22. The included study sample size (n = 27) exceeded this minimum.

      This information is now included in the revised manuscript.

      (7) The cut-off for the high-pass filter is unusually high and seems risky in terms of potential signal distortions (de Cheveigne, Neuron 2019). Why did the authors choose such a high cut-off?

      The 1Hz high-pass cut-off frequency for the 1-150Hz band-pass filter applied to the continuous raw MEG data during preprocessing has been used in multiple previous MEG publications (Barratt et al., 2018; Brookes et al., 2012; Higgins et al., 2021; Seedat et al., 2020; Vidaurre et al., 2018).

      (8) "Furthermore, the magnitude of offline contextualization predicted skill gains while online contextualization did not", lines 336/337 - where is that analysis?

      Additional details pertaining to this analysis are now provided in the Results section (Figure 5 – figure supplement 4).

      (9) How were feature importance scores computed?

      We have now added a new subheading in the Methods section with a more detailed description of how feature importance scores were computed.

      (10)  Please add x and y ticks plus tick labels to Figure 5 - Figure Supplement 3, panel A

      Done

      (11) Line 369, what does "comparable" mean in this context?

      The sentence in the “Study Participants” part of the Methods section referred to here has now been revised for clarity.

      (12) In lines 496/497, please specify what t=0 means (KeyDown event, I guess?).

      Yes, the KeyDown event occurs at t = 0. This has now been clarified in the revised manuscript.

      (13) Please specify consistent boundaries between alpha- and beta-bands (they are currently not consistent in the Results vs. Methods (14/15 Hz or 15/16 Hz)).

      We thank the Reviewer for alerting us to this discrepancy caused by a typographic error in the Methods. We have now corrected this so that the alpha (8-14 Hz) and beta-band (15-24 Hz) frequency limits are described consistently throughout the revised manuscript.

      References

      Albouy, G., Fogel, S., King, B. R., Laventure, S., Benali, H., Karni, A., Carrier, J., Robertson, E. M., & Doyon, J. (2015). Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. Neuroimage, 108, 423-434. https://doi.org/10.1016/j.neuroimage.2014.12.049

      Albouy, G., King, B. R., Maquet, P., & Doyon, J. (2013). Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 23(11), 985-1004. https://doi.org/10.1002/hipo.22183 Albouy, G., Sterpenich, V., Vandewalle, G., Darsaud, A., Gais, S., Rauchs, G., Desseilles, M., Boly, M., Dang-Vu, T., Balteau, E., Degueldre, C., Phillips, C., Luxen, A., & Maquet, P. (2012). Neural correlates of performance variability during motor sequence acquisition. NeuroImage, 60(1), 324-331. https://doi.org/10.1016/j.neuroimage.2011.12.049

      Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annu Rev Neurosci, 25, 189-220. https://doi.org/10.1146/annurev.neuro.25.112701.142922 112701.142922 [pii]

      Ashe, J., Lungu, O. V., Basford, A. T., & Lu, X. (2006). Cortical control of motor sequences. Curr Opin Neurobiol, 16(2), 213-221. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=16563734

      Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W., & Donoghue, J. P. (2011). Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J Neurophysiol, 105(4), 1603-1619. https://doi.org/10.1152/jn.00532.2010

      Barratt, E. L., Francis, S. T., Morris, P. G., & Brookes, M. J. (2018). Mapping the topological organisation of beta oscillations in motor cortex using MEG. NeuroImage, 181, 831-844. https://doi.org/10.1016/j.neuroimage.2018.06.041

      Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S A, 108(18), 7641-7646. https://doi.org/10.1073/pnas.1018985108

      Battaglia-Mayer, A., & Caminiti, R. (2019). Corticocortical Systems Underlying High-Order Motor Control. J Neurosci, 39(23), 4404-4421. https://doi.org/10.1523/JNEUROSCI.2094-18.2019

      Berlot, E., Popp, N. J., & Diedrichsen, J. (2020). A critical re-evaluation of fMRI signatures of motor sequence learning. Elife, 9. https://doi.org/10.7554/eLife.55241

      Bonstrup, M., Iturrate, I., Hebart, M. N., Censor, N., & Cohen, L. G. (2020). Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data. NPJ Sci Learn, 5, 7. https://doi.org/10.1038/s41539-020-0066-9

      Bonstrup, M., Iturrate, I., Thompson, R., Cruciani, G., Censor, N., & Cohen, L. G. (2019). A Rapid Form of Offline Consolidation in Skill Learning. Curr Biol, 29(8), 1346-1351 e1344. https://doi.org/10.1016/j.cub.2019.02.049

      Brawn, T. P., Fenn, K. M., Nusbaum, H. C., & Margoliash, D. (2010). Consolidating the effects of waking and sleep on motor-sequence learning. J Neurosci, 30(42), 13977-13982. https://doi.org/10.1523/JNEUROSCI.3295-10.2010

      Brookes, M. J., Woolrich, M. W., & Barnes, G. R. (2012). Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage, 63(2), 910-920. https://doi.org/10.1016/j.neuroimage.2012.03.048

      Brooks, E., Wallis, S., Hendrikse, J., & Coxon, J. (2024). Micro-consolidation occurs when learning an implicit motor sequence, but is not influenced by HIIT exercise. NPJ Sci Learn, 9(1), 23. https://doi.org/10.1038/s41539-024-00238-6

      Buch, E. R., Claudino, L., Quentin, R., Bonstrup, M., & Cohen, L. G. (2021). Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Rep, 35(10), 109193. https://doi.org/10.1016/j.celrep.2021.109193

      Buneo, C. A., & Andersen, R. A. (2006). The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44(13), 2594-2606. https://doi.org/10.1016/j.neuropsychologia.2005.10.011

      Buzsaki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073-1188. https://doi.org/10.1002/hipo.22488

      Chen, P.-C., Stritzelberger, J., Walther, K., Hamer, H., & Staresina, B. P. (2024). Hippocampal ripples during offline periods predict human motor sequence learning. bioRxiv, 2024.2010.2006.614680. https://doi.org/10.1101/2024.10.06.614680

      Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51-56. https://doi.org/10.1038/nature11129

      Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol, 79(2), 1117-1123. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=9463469

      Colclough, G. L., Brookes, M. J., Smith, S. M., & Woolrich, M. W. (2015). A symmetric multivariate leakage correction for MEG connectomes. NeuroImage, 117, 439-448. https://doi.org/10.1016/j.neuroimage.2015.03.071

      Colclough, G. L., Woolrich, M. W., Tewarie, P. K., Brookes, M. J., Quinn, A. J., & Smith, S. M. (2016). How reliable are MEG resting-state connectivity metrics? NeuroImage, 138, 284-293. https://doi.org/10.1016/j.neuroimage.2016.05.070

      Das, A., Karagiorgis, A., Diedrichsen, J., Stenner, M.-P., & Azanon, E. (2024). “Micro-offline gains” convey no benefit for motor skill learning. bioRxiv, 2024.2007.2011.602795. https://doi.org/10.1101/2024.07.11.602795

      Deleglise, A., Donnelly-Kehoe, P. A., Yeffal, A., Jacobacci, F., Jovicich, J., Amaro, E., Jr., Armony, J. L., Doyon, J., & Della-Maggiore, V. (2023). Human motor sequence learning drives transient changes in network topology and hippocampal connectivity early during memory consolidation. Cereb Cortex, 33(10), 6120-6131. https://doi.org/10.1093/cercor/bhac489

      Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. [Review]. Behavioural brain research, 199(1), 61-75. https://doi.org/10.1016/j.bbr.2008.11.012

      Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A, 99(2), 1017-1022. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=11805340

      Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057-1070. https://doi.org/10.1016/j.neuron.2012.12.002

      Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science, 318(5853), 1147-1150. https://doi.org/10.1126/science.1148979

      Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E., & Slutzky, M. W. (2012). Local field potentials allow accurate decoding of muscle activity. J Neurophysiol, 108(1), 18-24. https://doi.org/10.1152/jn.00832.2011

      Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nat Rev Neurosci, 6(2), 119-130. https://doi.org/10.1038/nrn1607

      Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., & Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A, 104(47), 1877818783. https://doi.org/10.1073/pnas.0705454104

      Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S., & Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci, 12(7), 2542-2548.

      Grover, S., Wen, W., Viswanathan, V., Gill, C. T., & Reinhart, R. M. G. (2022). Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci, 25(9), 1237-1246. https://doi.org/10.1038/s41593-022-01132-3

      Gupta, M. W., & Rickard, T. C. (2022). Dissipation of reactive inhibition is sufficient to explain post-rest improvements in motor sequence learning. NPJ Sci Learn, 7(1), 25. https://doi.org/10.1038/s41539-022-00140-z

      Gupta, M. W., & Rickard, T. C. (2024). Comparison of online, offline, and hybrid hypotheses of motor sequence learning using a quantitative model that incorporate reactive inhibition. Sci Rep, 14(1), 4661. https://doi.org/10.1038/s41598-024-52726-9

      Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative metaanalysis and review of motor learning in the human brain. NeuroImage, 67, 283-297. https://doi.org/10.1016/j.neuroimage.2012.11.020

      Heusser, A. C., Poeppel, D., Ezzyat, Y., & Davachi, L. (2016). Episodic sequence memory is supported by a theta-gamma phase code. Nat Neurosci, 19(10), 1374-1380. https://doi.org/10.1038/nn.4374

      Higgins, C., Liu, Y., Vidaurre, D., Kurth-Nelson, Z., Dolan, R., Behrens, T., & Woolrich, M. (2021). Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron, 109(5), 882-893 e887. https://doi.org/10.1016/j.neuron.2020.12.007

      Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Curr Opin Neurobiol, 12(2), 217-222. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=12015240

      Jacobacci, F., Armony, J. L., Yeffal, A., Lerner, G., Amaro, E., Jr., Jovicich, J., Doyon, J., & Della-Maggiore, V. (2020). Rapid hippocampal plasticity supports motor sequence learning. Proc Natl Acad Sci U S A, 117(38), 23898-23903. https://doi.org/10.1073/pnas.2009576117

      Jacobacci, F., Armony, J. L., Yeffal, A., Lerner, G., Amaro Jr, E., Jovicich, J., Doyon, J., & DellaMaggiore, V. (2020). Rapid hippocampal plasticity supports motor sequence learning.

      Proceedings of the National Academy of Sciences, 117(38), 23898-23903. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155-158. https://doi.org/10.1038/377155a0

      Kennerley, S. W., Sakai, K., & Rushworth, M. F. (2004). Organization of action sequences and the role of the pre-SMA. J Neurophysiol, 91(2), 978-993. https://doi.org/10.1152/jn.00651.2003 00651.2003 [pii]

      Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol, 80, 3321-3325.

      Kornysheva, K., Bush, D., Meyer, S. S., Sadnicka, A., Barnes, G., & Burgess, N. (2019). Neural Competitive Queuing of Ordinal Structure Underlies Skilled Sequential Action. Neuron, 101(6), 1166-1180 e1163. https://doi.org/10.1016/j.neuron.2019.01.018

      Lee, S. H., Jin, S. H., & An, J. (2019). The difference in cortical activation pattern for complex motor skills: A functional near- infrared spectroscopy study. Sci Rep, 9(1), 14066. https://doi.org/10.1038/s41598-019-50644-9

      Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 1002-1016. https://doi.org/10.1016/j.neuron.2013.03.007

      Mollazadeh, M., Aggarwal, V., Davidson, A. G., Law, A. J., Thakor, N. V., & Schieber, M. H. (2011). Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements. J Neurosci, 31(43), 15531-15543. https://doi.org/10.1523/JNEUROSCI.2999-11.2011

      Molle, M., & Born, J. (2009). Hippocampus whispering in deep sleep to prefrontal cortex--for good memories? Neuron, 61(4), 496-498. https://doi.org/10.1016/j.neuron.2009.02.002

      Morris, R. G. M. (2006). Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. [Review]. The European journal of neuroscience, 23(11), 2829-2846. https://doi.org/10.1111/j.1460-9568.2006.04888.x

      Mylonas, D., Schapiro, A. C., Verfaellie, M., Baxter, B., Vangel, M., Stickgold, R., & Manoach, D. S. (2024). Maintenance of Procedural Motor Memory across Brief Rest Periods Requires the Hippocampus. J Neurosci, 44(14). https://doi.org/10.1523/JNEUROSCI.1839-23.2024

      Pan, S. C., & Rickard, T. C. (2015). Sleep and motor learning: Is there room for consolidation? Psychol Bull, 141(4), 812-834. https://doi.org/10.1037/bul0000009

      Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res., 226(2), 579-591. https://doi.org/10.1016/j.bbr.2011.09.044

      Qin, Y. L., McNaughton, B. L., Skaggs, W. E., & Barnes, C. A. (1997). Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci, 352(1360), 1525-1533. https://doi.org/10.1098/rstb.1997.0139

      Rickard, T. C., Cai, D. J., Rieth, C. A., Jones, J., & Ard, M. C. (2008). Sleep does not enhance motor sequence learning. J Exp Psychol Learn Mem Cogn, 34(4), 834-842. https://doi.org/10.1037/0278-7393.34.4.834

      Robertson, E. M., Pascual-Leone, A., & Miall, R. C. (2004). Current concepts in procedural consolidation. Nat Rev Neurosci, 5(7), 576-582. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=15208699

      Sawamura, D., Sakuraba, S., Suzuki, Y., Asano, M., Yoshida, S., Honke, T., Kimura, M., Iwase, Y., Horimoto, Y., Yoshida, K., & Sakai, S. (2019). Acquisition of chopstick-operation skills with the non-dominant hand and concomitant changes in brain activity. Sci Rep, 9(1), 20397. https://doi.org/10.1038/s41598-019-56956-0

      Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025. https://doi.org/10.1016/s0896-6273(03)00123-5

      Seedat, Z. A., Quinn, A. J., Vidaurre, D., Liuzzi, L., Gascoyne, L. E., Hunt, B. A. E., O'Neill, G. C., Pakenham, D. O., Mullinger, K. J., Morris, P. G., Woolrich, M. W., & Brookes, M. J. (2020). The role of transient spectral 'bursts' in functional connectivity: A magnetoencephalography study. NeuroImage, 209, 116537. https://doi.org/10.1016/j.neuroimage.2020.116537

      Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277, 821-824.

      Sjøgård, M., Baxter, B., Mylonas, D., Driscoll, B., Kwok, K., Tolosa, A., Thompson, M., Stickgold, R., Vangel, M., Chu, C., & Manoach, D. S. (2024). Hippocampal ripples mediate motor learning during brief rest breaks in humans. bioRxiv. https://doi.org/10.1101/2024.05.02.592200

      Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S. S., & Babu, R. V. (2016). A Taxonomy of Deep Convolutional Neural Nets for Computer Vision [Technology Report]. Frontiers in Robotics and AI, 2. https://doi.org/10.3389/frobt.2015.00036

      Sterpenich, V., Albouy, G., Darsaud, A., Schmidt, C., Vandewalle, G., Dang Vu, T. T., Desseilles, M., Phillips, C., Degueldre, C., Balteau, E., Collette, F., Luxen, A., & Maquet, P. (2009). Sleep promotes the neural reorganization of remote emotional memory. J Neurosci, 29(16), 5143-5152. https://doi.org/10.1523/JNEUROSCI.0561-09.2009

      Toni, I., Ramnani, N., Josephs, O., Ashburner, J., & Passingham, R. E. (2001). Learning arbitrary visuomotor associations: temporal dynamic of brain activity. Neuroimage, 14(5), 10481057. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=11697936

      Toni, I., Thoenissen, D., & Zilles, K. (2001). Movement preparation and motor intention. NeuroImage, 14(1 Pt 2), S110-117. https://doi.org/10.1006/nimg.2001.0841

      Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., Witter, M. P., & Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76-82. https://doi.org/10.1126/science.1135935

      van Kesteren, M. T., Fernandez, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schemadependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci U S A, 107(16), 7550-7555. https://doi.org/10.1073/pnas.0914892107

      van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends Neurosci, 35(4), 211-219. https://doi.org/10.1016/j.tins.2012.02.001

      Vidaurre, D., Hunt, L. T., Quinn, A. J., Hunt, B. A. E., Brookes, M. J., Nobre, A. C., & Woolrich, M. W. (2018). Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat Commun, 9(1), 2987. https://doi.org/10.1038/s41467-01805316-z

      Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., Rosen, B. R., & Buckner, R. L. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. [Comment]. Science (New York, N.Y.), 281(5380), 1188-1191. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9712582 &retmode=ref&cmd=prlinks

      Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci, 1(6), 529-533. https://doi.org/10.1038/2245

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors present a novel CRISPR/Cas9-based genetic tool for the dopamine receptor dop1R2. Based on the known function of the receptor in learning and memory, they tested the efficacy of the genetic tool by knocking out the receptor specifically in mushroom body neurons. The data suggest that dop1R2 is necessary for longer-lasting memories through its action on ⍺/ß and ⍺'/ß' neurons but is dispensable for short-term memory and thus in ɣ neurons. The experiments impressively demonstrate the value of such a genetic tool and illustrate the specific function of the receptor in subpopulations of KCs for longer-term memories. The data presented in this manuscript are significant.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript examines the role of the dopamine receptor, Dop1R2, in memory formation. This receptor has complex roles in supporting different stages of memory, and the neural mechanisms for these functions are poorly understood. The authors are able to localize Dop1R2 function to the vertical lobes of the mushroom body, revealing a role in later (presumably middle-term) aversive and appetitive memory. In general, the experimental design is rigorous, and statistics are appropriately applied. While the manuscript provides a useful tool, it would be strengthened further by additional mechanistic studies that build on the rich literature examining the roles of dopamine signaling in memory formation. The claim that Dop1R2 is involved in memory formation is strongly supported by the data presented, and this manuscript adds to a growing literature revealing that dopamine is a critical regulator of olfactory memory. However, the manuscript does not necessarily extend much beyond our understanding of Dop1R2 in memory formation, and future work will be needed to fully characterize this reagent and define the role of Dop1R2 in memory.

      Strengths:

      (1) The FRT lines generated provide a novel tool for temporal and spatially precise manipulation of Dop1R2 function. This tool will be valuable to study the role of Dop1R2 in memory and other behaviors potentially regulated by this gene.

      (2) Given the highly conserved role of Dop1R2 in memory and other processes, these findings have a high potential to translate to vertebrate species.

      Weaknesses:

      (1) The authors state Dop1R2 associates with two different G-proteins. It would be useful to know which one is mediating the loss of aversive and appetitive memory in Dop1R2 knockout flies.

      We thank you for the insightful comment. We agree that it would be very useful to know which G-proteins are transmitting Dop1R2 signaling. To that extent, we examined single-cell transcriptomics data to check the level of co-expression of Dop1R2 with G-proteins that are of interest to us. (Figure 1 S1)

      Lines 312-325

      “Some RNA binding proteins and Immediate early genes help maintain identities of Mushroom body cells and are regulators of local transcription and translation (de Queiroz et al., 2025; Raun et al., 2025). So, the availability of different G-proteins may change in different lobes and during different phases of memory. The G-protein via which GPCRs signal, may depend on the pool of available G-proteins in the cell/sub-cellular region (Hermans, 2003)., Therefore, Dop1R2 may signal via different G-proteins in different compartments of the Mushroom body and also different compartments of the neuron. We looked at Gαo and Gαq as they are known to have roles in learning and forgetting (Ferris et al., 2006; Himmelreich et al., 2017). We found that Dop1R2 co-expresses more frequently with Gαo than with Gαq (Figure 1 S1). While there is evidence for Dop1R2 to act via Gαq (Himmelreich et al., 2017). It is difficult to determine whether this interaction is exclusive, or if Dop1R2 can also be coupled to other G-proteins. It will be interesting to determine the breadth of G-proteins that are involved in Dop1R2 signaling.”

      (2) It would be interesting to examine 24hr aversive memory, in addition to 24hr appetitive memory.

      This is indeed an important point and we agree that it will complete the assessment of temporally distinct memory traces. We therefore performed the Aversive LTM experiments and include them in the results.

      Lines 208-228

      “24h memory is impaired by loss of Dop1R2

      Next, we wanted to see if later memory forms are also affected. One cycle of reward training is sufficient to create LTM (Krashes & Waddell, 2008), while for aversive memory, 5-6 cycles of electroshock-trainings are required to obtain robust long-term memory scores (Tully et al., 1994). So, we looked at both, 24h aversive and appetitive memory. For aversive LTM, the flies were tested on the Y-Maze apparatus as described in (Mohandasan et al., (2022).

      Flipping out Dop1R2 in the whole MB causes a reduced 24h memory performance (Figure 4A, E). No phenotype was observed when Ddop1R2 was flipped out in the γ-lobe (Figure 4B, F). However, similar to 2h memory, loss of Ddop1R2 in the α/β-lobes (Figure 4C, G) or the α’/β’-lobes (Figure 4D, H) causes a reduction in memory performance. Thus, Dop1R2 seems to be involved in aversive and appetitive LTM in the α/β-lobes and the α’/β’-lobes.

      Previous studies have shown mutation in the Dop1R2 receptor leads to improvement in LTM when a single shock training paradigm is used (Berry et al., 2012). As we found that it disrupts LTM, we wanted to verify if the absence of Dop1R2 outside the MB is what leads to an improvement in memory. To that extent, we tested panneuronal flip-out of Dop1R2 flies for 6hr and 24hr memory upon single shock using the elav-Gal4 driver. We found that it did not improve memory at both time points (Figure 4 S1). Confirming that flipping out Dop1R2 panneuronally does not improve LTM (Figure 4 S1C) and highlighting its irrelevance in memory outside the MB.”

      (3) The manuscript would be strengthened by added functional analysis. What are the DANs that signal through Dop1R. How do these knockouts impact MBONs?

      We thank you for this question. We indeed agree that it is a highly relevand and open question, how distinct DANs signal via distinct Dopamine receptors. Our work here uniquely focusses on Dop1R2 within the MB. We aim to investigate other DopRs and the connection between DANs in the future using similar approaches.

      (4) Also in Figure 2, the lobe-specific knockouts might be moved to supplemental since there is no effect. Instead, consider moving the control sensory tests into the main figure.

      We thank you for this suggestion and understand that in Figure 2 no significant difference is seen. However, we have emphasized in the text that the results from the supplementary figures are just to confirm that the modifications made at the Dop1R2 locus did not alter its normal function.

      Lines 156-162

      “We wanted to see if flipping out Dop1R2 in the MB affects memory acquisition and STM by using classical olfactory conditioning. In short, a group of flies is presented with an odor coupled to an electric shock (aversive) or sugar (appetitive) followed by a second odor without stimulus. For assessing their memory, flies can freely choose between the odors either directly after training (STM) or at a later timepoint.

      To ensure that the introduced genetic changes to the Dop1R2 locus do not interfere with behavior we first checked the sensory responses of that line”

      (5) Can the single-cell atlas data be used to narrow down the cell types in the vertical lobes that express Dop1R2? Is it all or just a subset?

      This is indeed an interesting question, and we thank you for mentioning it. To address this as best as we could, we analyzed the single cell transcriptomic data from (Davie et al., 2018) and presented it in Figure 1 S1.

      Reviewer #3 (Public Review):

      Summary:

      Kaldun et al. investigated the role of Dopamine Receptor Dop1R2 in different types and stages of olfactory associative memory in Drosophila melanogaster. Dop1R2 is a type 1 Dopamine receptor that can act both through Gs-cAMP and Gq-ERCa2+ pathways. The authors first developed a very useful tool, where tissue-specific knock-out mutants can be generated, using Crispr/Cas9 technology in combination with the powerful Gal4/UAS gene-expression toolkit, very common in fruit flies.

      They direct the K.O. mutation to intrinsic neurons of the main associative memory centre fly brain-the mushroom body (MB). There are three main types of MB-neurons, or Kenyon cells, according to their axonal projections: a/b; a'/b', and g neurons.

      Kaldun et al. found that flies lacking dop1R2 all over the MB displayed impaired appetitive middle-term (2h) and long-term (24h) memory, whereas appetitive short-term memory remained intact. Knocking-out dop1R2 in the three MB neuron subtypes also impaired middle-term, but not short-term, aversive memory.

      These memory defects were recapitulated when the loss of the dop1R2 gene was restricted to either a/b or a'/b', but not when the loss of the gene was restricted to g neurons, showcasing a compartmentalized role of Dop1R2 in specific neuronal subtypes of the main memory centre of the fly brain for the expression of middle and long-term memories.

      Strengths:

      (1) The conclusions of this paper are very well supported by the data, and the authors systematically addressed the requirement of a very interesting type of dopamine receptor in both appetitive and aversive memories. These findings are important for the fields of learning and memory and dopaminergic neuromodulation among others. The evidence in the literature so far was generated in different labs, each using different tools (mutants, RNAi knockdowns driven in different developmental stages...), different time points (short, middle, and long-term memory), different types of memories (Anesthesia resistant, which is a type of protein synthesis independent consolidated memory; anesthesia sensitive, which is a type of protein synthesis-dependent consolidated memory; aversive memory; appetitive memory...) and different behavioral paradigms. A study like this one allows for direct comparison of the results, and generalized observations.

      (2) Additionally, Kaldun and collaborators addressed the requirement of different types of Kenyon cells, that have been classically involved in different memory stages: g KCs for memory acquisition and a/b or a'/b' for later memory phases. This systematical approach has not been performed before.

      (3) Importantly, the authors of this paper produced a tool to generate tissue-specific knock-out mutants of dop1R2. Although this is not the first time that the requirement of this gene in different memory phases has been studied, the tools used here represent the most sophisticated genetic approach to induce a loss of function phenotypes exclusively in MB neurons.

      Weaknesses:

      (1) Although the paper does have important strengths, the main weakness of this work is that the advancement in the field could be considered incremental: the main findings of the manuscript had been reported before by several groups, using tissue-specific conditional knockdowns through interference RNAi. The requirement of Dop1R2 in MB for middle-term and long-term memories has been shown both for appetitive (Musso et al 2015, Sun et al 2020) and aversive associations (Plaçais et al 2017).

      Thank you for this comment. We believe that the main takeaway from the paper is the elegant tool we developed, to study the role of Dop1R2 in fruit flies by effectively flipping it out spatio-temporally. Additionally, we studied its role in all types of olfactory associative memory to establish it as a robust tool that can be used for further research in place of RNAi knockouts which are shown to be less efficient in insects as mentioned in the texts in line 394-398.

      “The genetic tool we generated here to study the role of the Dop1R2 dopamine receptor in cells of interest, is not only a good substitute for RNAi knockouts, which are known to be less efficient in insects (Joga et al., 2016), but also provides versatile possibilities as it can be used in combination with the powerful genetic tools of Drosophila.”

      (2) The approach used here to genetically modify memory neurons is not temporally restricted. Considering the role of dopamine in the correct development of the nervous system, one must consider the possible effects that this manipulation can have in the establishment of memory circuits. However, previous studies addressing this question restricted the manipulation of Dop1R2 expression to adulthood, leading to the same findings than the ones reported in this paper for both aversive and appetitive memories, which solidifies the findings of this paper.

      We thank you for this comment and we agree that it would be important to show a temporally restricted effect of Dop1R2 knockout. To assess this and rule out potential developmental defects we decided to restrict the knockout to the post-eclosion stage and to include these results.

      Lines 230-250

      “Developmental defects are ruled out in a temporally restricted Dop1R2 conditional knockout.

      To exclude developmental defects in the MB caused by flip-out of Dop1R2, we stained fly brains with a FasII antibody. Compared to genetic controls, flies lacking Dop1R2 in the mushroom body had unaltered lobes (Figure 4 S2C).

      Regardless, we wanted to control for developmental defects leading to memory loss in flip-out flies. So, we generated a Gal80ts-containing line, enabling the temporal control of Dop1R2 knockout in the entire mushroom body (MB). Given that the half-life of the receptor remains unknown, we assessed both aversive short-term memory (STM) and long-term memory (LTM) to determine whether post-eclosion ablation of Dop1R2 in the MB produced differences compared to our previously tested line, in which Dop1R2 was constitutively knocked out from fertilization. To achieve this, flies were maintained at 18°C until eclosion and subsequently shifted to 30°C for five to seven days. On the fifth day, training was conducted, followed by memory testing. Our results indicate that aversive STM was not significantly impaired in Dop1R2-deficient MBs compared to control flies (Figure 4 S3), consistent with our previous findings (Figure 2). However, aversive LTM was significantly impaired relative to control lines (Figure 4 S3), which also aligned with prior observations. These findings strongly indicate that memory loss caused by Dop1R2 flip-out is not due to developmental defects.”

      (3) The authors state that they aim to resolve disparities of findings in the field regarding the specific role of Dop1R2 in memory, offering a potent tool to generate mutants and addressing systematically their effects on different types of memory. Their results support the role of this receptor in the expression of long-term memories, however in the experiments performed here do not address temporal resolution of the genetic manipulations that could bring light into the mechanisms of action of Dop1R2 in memory. Several hypotheses have been proposed, from stabilization of memory, effects on forgetting, or integration of sequences of events (sensory experiences and dopamine release).

      We thank you for this comment. We agree that it would be interesting to dissect the memory stages by knocking out the receptor selectively in some of them (encoding, consolidation, retrieval). However, our tool irreversibly flips out Dop1R2 preventing us from investigating the receptor’s role in retrieval. Our results show that the receptor is dispensable for STM formation (Figure 2, Figure 4 Supplement 3), suggesting that it is not involved in encoding new information. On the other hand, it is instead involved in consolidation and/or retrieval of long-term and middle-term memories (Figure 3, Figure 4, Figure 5B).

      Overall, the authors generated a very useful tool to study dopamine neuromodulation in any given circuit when used in combination with the powerful genetic toolkit available in Drosophila. The reports in this paper confirmed a previously described role of Dop1R2 in the expression of aversive and appetitive LTM and mapped these effects to two specific types of memory neurons in the fly brain, previously implicated in the expression and consolidation of long-term associative memories.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) On the first view, the results shown here are different from studies published earlier, while in the same line with others (e.g. Sun et al, for appetitive 24h memories). For example, Berry et al showed that the loss of dop1R2 impairs immediate memory, while memory scores are enhanced 3h, 6h, and 24h after training. Further, they showed data that shock avoidance, at least for higher shock intensities, is reduced in mutant (damb) flies. All in all, this favors how important it is to improve the genetic tools for tissue-specific manipulation. Despite the authors nicely discussing their data with respect to the previous studies, I wondered whether it would be suitable to use the new tool and knock out dop1R2 panneuronally to see whether the obtained data match the results published by Berry et al.. Further, as stated in line 105ff: "As these studies used different learning assays - aversive and appetitive respectively as well as different methods, it is unclear if Dop1R2 has different functions for the different reinforcement stimulus" I wondered why the authors tested aversive and appetitive learning for STM and 2h memory, but only appetitive memory for 24h.

      Thank you for this comment. To that extent, as mentioned above in response to reviewer #2, we included in the results the aversive LTM experiment (Figure 4). Moreover, we performed experiments along the line of Berry et al. using our tool as shown in Figure 4 S1. Our results support that Dop1R2 is required for LTM, rather than to promote forgetting.

      (2) Line 165ff: I can´t find any of the supplementary data mentioned here. Please add the corresponding figures.

      Thank you for pointing this out. In that line we don’t refer to any supplementary data, but to the Figure 1F, showing the absence of the HA-tag in our MB knock-out line. We have clarified this in the text (lines 151-153)

      (3) I can't imagine that the scale bar in Figure 1D-F is correct. I would also like to suggest to show a more detailed analysis of the expression pattern. For example, both anterior and posterior views would be appropriate, perhaps including the VNC. This would allow the expression pattern obtained with this novel tool to be better compared with previously published results. Also, in relation to my comment above (1), it may help to understand the functional differences with previous studies, especially as the authors themselves state that the receptor is "mainly" expressed in the mushroom body (line 99). It would be interesting to see where else it is expressed (if so). This would also be interesting for the panneuronal knockdown experiment suggested under (1). If the receptor is indeed expressed outside the mushroom body, this may explain the differences to Berry et al.

      Thank you for noting this, there was indeed a mistake in the scale bar which we now fixed. Since with our HA-tag immunostaining we could not detect any noticeable signal outside of the MB, we decided to analyze previously existing single cell transcriptomics data that showed expression of the receptor in 7.99% of cells in the VNC and in 13.8% of cells outside the MB (lines 98-100) confirming its sparse expression in the nervous system. The lack of detection of these cells is likely due to the sparse and low expression of the protein. The HA-tag allows to detect the endogenous level of the locus (it is possible that a Gal4/UAS amplification of the signal might allow to detect these cells).

      Regarding the panneuronal knockout, we decided to try to replicate the experiment shown in Berry et al. in Figure 4 S1 and found that Dop1R2 is required for LTM.

      (4) Related to learning data shown in Figures 2-4, the authors should show statistical differences between all groups obtained in the ANOVA + PostHoc tests. Currently, only an asterisk is placed above the experimental group, which does not adequately reflect the statistical differences between the groups. In addition, I would like to suggest adding statistical tests to the chance level as it may be interesting to know whether, for example, scores of knockout flies in 3C and 3D are different from the chance level.

      Many thanks for this correction, we agree with the fact that the way significance scores were shown was not informative enough. We fixed the point by now showing significance between all the control groups and the experimental ones. We also inserted the chance level results in the figure legends.

      (5) Unfortunately, the manuscript has some typing errors, so I would like to ask the authors to check the manuscript again carefully.

      Some Examples:

      Line 31: the the

      Line 56: G-Protein

      Line 64: c-AMP

      Line 68: Dopamine

      Line 70: G-Protein (It alternates between G-protein and G-Protein)

      Line 76: References are formatted incorrectly

      Line 126: Ha-Tag (It alternates between Ha and HA)

      Line 248: missing space before the bracket...is often found

      Thank you for noticing these errors, we have now corrected the spelling throughout the manuscript.

      (6) In the figures the axes are labelled Preference Index (Pref"I"). In the methods, however, the calculation formula is defined as "PREF".

      We thank you for drawing attention to this. To avoid confusion, we changed the definition in the methods section so that it could be clear and coherent (“Memory tests” paragraph in the methods section).

      “PREF = ((N<sub>arm1</sub> - N<sub>arm2</sub>) 100) / N<sub>total</sub> the two preference indices were calculated from the two reciprocal experiments. The average of these two PREFs gives a learning index (LI). LI = (PREF<sub>1</sub> + PREF<sub>2</sub>) / 2.

      In case of all Long-term Aversive memory experiments, Y-Maze protocol was adapted to test flies 24 hours post training. Testing using the Y-Maze was done following the protocol as described in (Mohandasan et al., 2022) where flies were loaded at the bottom of 20-minutes odorized 3D-printed Y-Mazes from where they would climb up to a choice point and choose between the two odors. The learning index was then calculated after counting the flies in each odorized vial as follows: LI = ((N<sub>CS-</sub> - N<sub>CS+</sub>) 100) / N<sub>total</sub>. Where NCS- and NCS+ are the number of flies that were found trapped in the untrained and trained odor tube respectively.

      Reviewer #2 (Recommendations For The Authors):

      (1) In Figures 2 and 3, the legends running two different subfigures is confusing. Would be helpful to find a different way to present.

      Thank you for your suggestion. We modified how we present legends, placing them vertically so that it is clearer.

      (2) Use additional drivers to verify middle and long-term memory phenotypes.

      We agree that it would be interesting to see the role of Dop1R2 in other neurons. To that extent, we looked at long term aversive memory in flies where the receptor was panneuronaly flipped out, and did not find evidence that suggested involvement of Dop1R2 in memory processes outside the MB. (Figure 4 S1)

      (3) Additional discussion of genetic background for fly lines would be helpful.

      Thank you for your advice. We have mentioned the genetic background of flies in the key resources table of the methods sections. Additionally, we also included further explanation on how the lines were created and their genetic background (see “Fly Husbandry” paragraph in the methods section).

      “UAS-flp;;Dop1R2 cko flies and Gal4;Dop1R2<sup>cko</sup> flies were crossed back with ;;Dop<sup>cko</sup> flies to obtain appropriate genetic controls which were heterozygous for UAS and Gal4 but not Dop1R2<sup>cko</sup>.”

      Reviewer #3 (Recommendations For The Authors):

      Line 109 states that to resolve the problem a tool is developed to knock down Dop1R2 in s spatial and temporal specific manner- while I agree that this is within the potential of the tool, there is no temporal control of the flipase action in this study; at least I cannot find references to the use of target/gene switch to control stages of development or different memory phases. However the version available for download is missing supplementary information, so I did not have access to supplementary figures and tables.

      Thank you for the comment, as mentioned before it would be great to be able to dissect the memory phases. We show in lines 232 – 250 and Figure 4 S3 that the temporally restricted flip-out to the post-eclosion life stage gave us coherent results with the previous findings, ruling out potential developmental defects.

      In relation to my comment on the possible developmental effects of the loss of the gene, Figure 1F could showcase an underdeveloped g lobe when looking at the lobe profiles. I understand this is not within the scope of the figure, but maybe a different z projection can be provided to confirm there are no obvious anatomical alterations due to the loss of the receptor.

      We understand the doubt about the correct development of the MB and we thank you for your insightful comment. To that extent we decided to perform a FasII immunostaining that could show us the MB in the different lines (Figure 4 S2) and it appears that there are no notable differences in the lobes development in our knockout line.

      It seems that the obvious missing piece of the puzzle would be to address the effects of knocking out Dop1R2 in aversive LTM. The idea of systematically addressing different types of memory at different time points and in different KCs is the most attractive aspect of this study beyond the technical sophistication, and it feels that the aim of the study is not delivered without that component.

      We agree and we thank you for the clarification. As mentioned above in response to Reviewer #2, we decided to test aversive LTM as described in lines –208-228, Figure 4, Figure 4 S1.

      Some statements of the discussion seem too vague, and I think could benefit from editing:

      Line 284 "however other receptors could use Gq and mediate forgetting"- does this refer to other dopamine receptors? Other neuromodulators? Examples?

      Thank you for pointing this out. We Agree and therefore decided to omit this line.

      Line 289 "using a space training protocol and a Dop1R2 line" - this refers to RNAi lines, but it should be stated clearly.

      That is correct, we thank you for bringing attention to this and clarified it in the manuscript.

      –Lines 329-330

      “Interestingly, using a spaced training protocol and a Dop1R2 RNAi knockout line another study showed impaired LTM (Placais et al., 2017).”

      The paragraph starting in line 305 could be re-written to improve clarity and flow. Some statements seem disconnected and require specific citations. For example "In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways and the internal state of the animal...". This is not accurate. Berry et al 2012 report enhanced LTM performance in dop1R2 mutants whereas Plaçais et al 2017 report LTM defects in Dop1R2 knock-downs, but these different findings do not seem to rely on different internal states or signaling pathways. Maybe further elaboration can help the reader understand this speculation.

      We agree and we thank you for this advice. We decided to add additional details and citations to validate our speculation

      Lines 350-353

      “In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways. The signaling pathway that is activated further depends on the available pool of secondary messengers in the cell (Hermans, 2003) which may be regulated by the internal state of the animal.”

      "...for reward memory formation, loss of Dop1R2 seems to impair memory", this seems redundant at this point, as it has been discussed in detail, however, citations should be provided in any case (Musso 2015, Sun 2020)

      Thank you for noting this. We recognize the redundancy and decided to exclude the line.

      Finally, it would be useful to additionally refer to the anatomical terminology when introducing neuron names; for example MBON MVP2 (MBON-g1pedc>a/b), etc.

      Thank you for this suggestion. We understand the importance of anatomical terminologies for the neurons. Therefore, we included them when we introduce neurons in the paper.

      We thank you for your observations. We recognize their value, so we have made appropriate changes in the discussion to sound less vague and more comprehensive.

    1. Reviewer #1 (Public review):

      Summary:<br /> This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.<br /> They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are corepressed than coactivated by BMP signaling and PRDM16 and focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:<br /> Understanding context-dependent response to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      Main weakness of the experimental setup:<br /> (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels is very different from endogenous levels (as explicitly shown in Supp. Fig. 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo. Although the authors combine in vitro and in vivo evidence on the role of PRDM16 as a co-factor for MBP signaling and verified that BMP induces quiescence in their NSC model in a PRDM16-dependent manner, this experimental setup remains a weakness and likely affects the results of the various genomics experiments.

      Other experimental weaknesses that make the evidence less convincing:

      (1) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.) The authors acknowledged this problem in their rebuttal, stating that they were unable to overexpress PRDM16 in KO cells.

      (2) The authors show in Fig.2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. This appears inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Fig.1C. The authors explained in their rebuttal that the Ttr protein levels are not detectable in the NSCs with antibodies but the effect is still visible at the level of mRNA. The dramatic difference in protein expression is curious.

    2. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.

      They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are co-repressed than co-activated by BMP signaling and PRDM16. They focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:

      Understanding context-dependent responses to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      We thank the reviewer for the thoughtful summary and positive feedback. We appreciate the recognition of our integrative in vivo and in vitro approach. We're glad the reviewer found our findings on context-dependent gene regulation and developmental signaling valuable.

      Main weaknesses of the experimental setup:

      (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels are very different from endogenous levels (as explicitly shown in Supplementary Figure 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo.

      We acknowledge that our in vitro experiments may not ideally replicate the in vivo situation, a common limitation of such experiments, our primary aim was to explore the molecular relationship between PRDM16 and BMP signaling in gene regulation. Such molecular investigations are challenging to conduct using in vivo tissues. In vitro NSCs treated with BMP4 has been used a model to investigate NSC proliferation and quiescence, drawing on previous studies (e.g., Helena Mira, 2010; Marlen Knobloch, 2017). Crucially, to ensure the relevance of our in vitro findings to the in vivo context, we confirmed that cultured cells could indeed be induced into quiescence by BMP4, and this induction necessitated the presence of PRDM16. Furthermore, upon identifying target genes co-regulated by PRDM16 and SMADs, we validated PRDM16's regulatory role on a subset of these genes in the developing Choroid Plexus (ChP) (Fig. 7 and Suppl.Fig7-8). Only by combining evidence from both in vitro and in vivo experiments could we confidently conclude that PRDM16 serves as an essential co-factor for BMP signaling in restricting NSC proliferation.

      (2) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.)

      We agree that Prdm16 KO cells carrying the Prdm16-expressing vector would be a good comparison with those with KO_vector. However, despite more than 10 attempts with various optimization conditions, we were unable to establish a viable cell line after infecting Prdm16 KO cells with the Prdm16-expressing vector. The overall survival rate for primary NSCs after viral infection is low, and we observed that KO cells were particularly sensitive to infection treatment when the viral vector was large (the Prdm16 ORF is more than 3kb).

      As an alternative oo assess vector effects, we instead included two other control cell lines, wt and KO cells infected with the 3xNLS_Flag-tag viral vector, and presented the results in supplementary Fig 2.  When we compared the responses of the four lines — wt, KO, wt infected with the Flag vector, KO infected with the Flag vector — to the addition and removal of BMP4, we confirmed that the viral infection itself has no significant impacts on the responses of these cells to these treatments regarding changes in cell proliferation and Ttr induction.

      Given that wt cells and the KO cells, with or without viral backbone infection behave quite similarly in terms of cell proliferation, we speculate that even if we were successful in obtaining a cell line with Prdm16-expressing vector in the KO cells, it may not exhibit substantial differences compared to wt cells infected with Prdm16-expressing vector.

      Other experimental weaknesses that make the evidence less convincing:

      (1) The authors show in Figure 2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. Does this appear inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Figure1C?

      The reviwer’s point is that there was no significant increase in Ttr expression in Prdm16_KO cells after BMP4 treatment (Fig. 2E), but there remained residule Ttr mRNA signals in the Prdm16 mutant ChP (Fig. 1C). We think the difference lies in the measuable level of Ttr expression between that induced by BMP4 in NSC culture and that in the ChP. This is based on our immunostaining expreriment in which we tried to detect Ttr using a Ttr antibody. This antibody could not detect the Ttr protein in BMP4-treated Prdm16_expressing NSCs but clearly showed Ttr signal in the wt ChP. This means that although Ttr expression can be significantly increased by BMP4 in vitro to a level measurable by RT-qPCR, its absolute quantity even in the Prdm16_expressing condition is much lower compared to that in vivo. Our results in Fig 1C and Fig 2E, as well as Fig 7B, all consistently showed that Prdm16 depletion significantly reduced Ttr expression in in vitro and in vivo.

      (2) Figure 3: The authors use H3K4me3 to measure gene activity. This is however, very indirect, with bulk RNA-seq providing the most direct readout and polymerase binding (ChIP-seq) another more direct readout. Transcription can be regulated without expected changes in histone methylation, see e.g. papers from Josh Brickman. They verify their H3K4me3 predictions with qPCR for a select number of genes, all related to the kinetochore, but it is not clear why these genes were picked, and one could worry whether these are representative.

      H3K4me3 has widely been used as an indicator of active transcription and is a mark for cell identity genes. And it has been demonstrated that H3K4me3 has a direct function in regulating transciption at the step of RNApolII pausing release. As stated in the text, there are advantages and disadvantages of using H3K4me3 compared to using RNA-seq. RNA-seq profiles all gene products, which are affected by transcription and RNA stability and turnover. In contrast, H3K4me3 levels at gene promoter reflects transcriptional activity. In our case, we aimed to identify differential gene expression between proliferation and quiescence states. The transition between these two states is fast and dynamic. RNA-seq may not be able to identify functionally relevant genes but more likely produces false positive and negative results. Therefore, we chose H3K4me3 profiling.

      We agree that transcription may change without histone methylation changes. This may cause an under-estimation of the number of changed genes between the conditions. 

      We validated 7 out of 31 genes (Wnt7b, Id3, Mybl2, Spc24, Spc25, Ndc80 and Nuf2). We chose these genes based on two critira: 1) their function is implicated in cell proliferation and cell-cycle regulation based on gene ontology analysis; 2) their gene products are detectable in the developing ChP based on the scRNA-seq data. Three of these genes (Wnt7b, Id3, Mybl2) are not related to the kinetochore. We now clarify this description in the revised text.

      (3) Line 256: The overlap of 31 genes between 184 BMP-repressed genes and 240 PRDM16-repressed genes seems quite small.

      This result indicates that in addition to co-repressing cell-cycle genes, BMP and PRDM16 have independent fucntions. For example, it was reported that BMP regulates neuronal and astrocyte differentiation (Katada, S. 2021), while our previous work demonstrated that Prdm16 controls temporal identity of NSCs (He, L. 2021).

      (4) The Wnt7b H3K4me3 track in Fig. 3G is not discussed in the text but it shows H3K4me3 high in _KO and low in _E regardless of BMP4. This seems to contradict the heatmap of H3K4me3 in Figure 3E which shows H3K4me3 high in _E no BMP4 and low in _E BMP4 while omitting _KO no BMP4. Meanwhile CDKN1A, the other gene shown in 3G, is missing from 3E.

      The track in Fig 3G shows the absolute signal of H3K4me3 after mapping the sequencing reads to the genome and normaliz them to library size. Compare the signal in Prdm16_E with BMP4 and that in Prdm16_E without BMP4, the one with BMP4 has a lower peak. The same trend can be seen for the pair of Prdm16_KO cells with or without BMP4.  The heatmap in Fig. 3E shows the relative level of H3K4me3 in three conditions. The Prdm16_E cells with BMP4 has the lowest level, while the other two conditions (Prdm16_KO with BMP4 and Prdm16_E without BMP4) display higher levels. These two graphs show a consistent trend of H3K4me3 changes at the Wnt7b promoter across these conditions. Figure 3E only includes genes that are co-repressed by PRDM16 and BMP. CDKN1A’s H3K4me3 signals are consistent between the conditions, and thus it is not a PRDM16- or BMP-regulated gene. We use it as a negative control. 

      (5) The authors use PRDM16 CUT&TAG on dissected dorsal midline tissues to determine if their 31 identified PRDM16-BMP4 co-repressed genes are regulated directly by PRDM16 in vivo. By manual inspection, they find that "most" of these show a PRDM16 peak. How many is most? If using the same parameters for determining peaks, how many genes in an appropriately chosen negative control set of genes would show peaks? Can the authors rigorously establish the statistical significance of this observation? And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.

      In our text, we indicated the genes containing PRDM16 binding peaks in the figures and described them as “Text in black in Fig. 6A and Supplementary Fig. 5A”. We will add the precise number “25 of these genes” in the main text to clarify it. We used BMP-only repressed 184-31 =153 genes (excluding PRDM16-BMP4 co-repressed) as a negative control set of genes. By computationally determine the nearest TSS to a PRDM16 peak, we identified 24/31 co-repressed genes and 84/153 BMP-only-repressed genes, containing PRDM16 peaks in the E12.5 ChP data. Fisher’s Exact Test comparing the proportions yields the P-value = 0.015.

      We are confused with the second part of the comment “And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.” If the reviewer meant why we didn’t sequence the material from sequential-ChIP or validate more taget genes, the reason is the limitation of the material. Sequential ChIP requires a large quantity of the antibodies, and yields little material barely sufficient for a few qPCR after the second round of IP. This yielded amount was far below the minimum required for library construction. The PRDM16 antibody was a gift, and the quantity we have was very limited. We made a lot of efforts to optimize all available commercial antibodies in ChIP and Cut&Tag, but none of them worked in these assays.

      (6) In comparing RNA in situ between WT and PRDM16 KO in Figure 7, the authors state they use the Wnt2b signal to identify the border between CH and neocortex. However, the Wnt2b signal is shown in grey and it is impossible for this reviewer to see clear Wnt2b expression or where the boundaries are in Figure 7A. The authors also do not show where they placed the boundaries in their analysis. Furthermore, Figure 7B only shows insets for one of the regions being compared making it difficult to see differences from the other region. Finally, the authors do not show an example of their spot segmentation to judge whether their spot counting is reliable. Overall, this makes it difficult to judge whether the quantification in Figure 7C can be trusted.

      In the revised manuscript we have included an individal channel of Wnt2b and mark the boundaries. We also provide full-view images and examples of spot segmentation in the new supplementary figure 8. 

      (7) The correlation between mKi67 and Axin2 in Figure 7 is interesting but does not convincingly show that Wnt downstream of PRDM16 and BMP is responsible for the increased proliferation in PRDM16 mutants.

      We agree that this result (the correlation between mKi67 and Axin2) alone only suggests that Wnt signaling is related to the proliferation defect in the Prdm16 mutant, and does not necessarily mean that Wnt is downstream of PRDM16 and BMP. Our concolusion is backed up by two additional lines of evidences:  the Cut&Tag data in which PRDM16 binds to regulatory regions of Wnt7b and Wnt3a; BMP and PRDM16 co-repress Wnt7b in vitro.

      An ideal result is that down-regulating Wnt signaling in Prdm16 mutant can rescue Prdm16 mutant phenotype. Such an experiment is technically challenging. Wnt plays diverse and essential roles in NSC regulation, and one would need to use a celltype-and stage-specific tool to down-regulate Wnt in the background of Prdm16 mutation. Moreover, Wnt genes are not the only targets regulated by PRDM16 in these cells, and downregulating Wnt may not be sufficient to rescue the phenotype. 

      Weaknesses of the presentation:

      Overall, the manuscript is not easy to read. This can cause confusion.

      We have revised the text to improve clarity.

      Reviewer #1 (Recommendations for the authors):

      (1) Overall, the manuscript is not easy to read. Here are some causes of confusion for which the presentation could be cleaned up:

      We are grateful for the reviewer’s suggestion. In the revised manuscript, we have made efforts to improve the clarity of the text.

      (a) Part of the first section is confusing in that some statements seem contradictory, in particular:

      "there is no overall patterning defect of ChP and CH in the Prdm16 mutant" (line 125)

      "Prdm16 depletion disrupted the transition from neural progenitors into ChP epithelia" (line 144)

      It would be helpful if the authors could reformulate this more clearly.

      We modified the text to clarify that while the BMP-patterned domain is not affected, the transition of NSCs into ChP epithelial cells is compromised in the Prdm16 mutant.

      (b) Flag_PRDM16, PRDM16_expressing, PRDM16_E, PRDM16 OE all seem to refer to the same PRDM16 overexpressing cells, which is very confusing. The authors should use consistent naming. Moreover, it would be good if they renamed these all to PRDM16_OE to indicate expression is not endogenous but driven by a constitutive promoter.

      We appreciate the comment and agree that the use of multiple terms to refer to the same PRDM16-overexpressing condition was confusing. Our original intention in using Prdm16_E was to distinguish cells expressing PRDM16 from the two other groups: wild-type cells and Prdm16_KO cells, which both lack PRDM16 protein expression. However, we acknowledge that Prdm16_E could be misinterpreted as indicating expression from the endogenous Prdm16 promoter. To avoid this confusion and ensure consistency, we have now standardized the terminology and refer to this condition as Prdm16_OE, indicating Flag-tagged PRDM16 expression driven by a constitutive promoter.

      (c) Line 179 states "generated a cell line by infecting Prdm16_KO cells with the same viral vector, expressing 3xNSL_Flag". Do the authors mean 3xNLS_Flag_Prdm16, so these are the Prdm16_KO_E cells by the notation suggested above? Or is this a control vector with Flag only? The following paragraph refers to Supplementary Figure 2C-F where the same construct is called KO_CDH, suggesting this was an empty CDH vector, without Flag, or Prdm16. This is confusing.

      We appreciate the reviewer’s careful reading and helpful comment. We acknowledge the confusion caused by the inconsistent terminology. To clarify: in line 179, we intended to describe an attempt to generate a Prdm16_KO cell line expressing 3xNLS_Flag_Prdm16, not a control vector with Flag only. However, despite repeated attempts, we were unable to establish this line due to low viral efficiency and the vulnerability of Prdm16_KO cells to infection with the large construct. Therefore, these cells were not included in the subsequent analyses.

      The term KO_CDH refers to Prdm16_KO cells infected with the empty CDH control vector, which lacks both Flag and Prdm16. This is the line used in the experiments shown in Supplementary Fig. 2C–F. We have revised the text throughout the manuscript to ensure consistent use of terminology and to avoid this confusion.

      (2) The introductory statements on lines 53-54 could use more references.

      Thanks for the suggestion. We have now included more references.

      (3) It would be helpful if all structures described in the introduction and first section were annotated in Figure 1, or otherwise, if a cartoon were included. For example, the cortical hem, and fourth ventricle.

      Thanks for the suggestion. We have now indicated the structures, ChP, CH and the fourth ventricle, in the images in Figure 1 and Supplementary Figure 1.

      (4) In line 115, "as previously shown.." - to keep the paper self-contained a figure illustrating the genetics of the KO allele would be helpful.

      Thanks for the suggestion. We have now included an illustration of the Prdm16 cGT allele in Figure 1B.

      (5) In Figure 1D as costain for a ChP marker would be helpful because it is hard to identify morphologically in the Prdm16 KO.

      Appoligize for the unclarity. The KO allele contains a b-geo reporter driven by Prdm16 endogenous promoter. The samples were co-stained for EdU, b-Gal and DAPI. To distingquish the ChP domain from the CH, we used the presence of b b-Gal as a marker. We indicated this in the figure legend, but now have also clarified this in the revised text.

      (6) The details in Figure 1E are hard to see, a zoomed-in inset would help.

      A zoomed-in inset is now included in the figure.

      (7) Supplementary Figure 2A does not convincingly show that PRDM16 protein is undetectable since endogenous expression may be very low compared to the overexpression PRDM16_E cells so if the contrast is scaled together it could appear black like the KO.

      We appreciate the reviewer’s point and have carefully considered this concern. We concluded that PRDM16 protein is effectively undetectable in cultured wild-type NSCs based on direct comparison with brain tissue. Both cultured NSCs and brain sections were processed under similar immunostaining and imaging conditions. While PRDM16 showed robust and specific nuclear localization in embryonic brain sections (Fig. 1B and Supplementary Fig. 1A), only a small subset of cultured NSCs exhibited PRDM16 signal, primarily in the cytoplasm (middle panel of Fig. 2A). This stark contrast supports our conclusion that endogenous PRDM16 protein is either absent or significantly downregulated in vitro. Because of this limitation, we turned to over-expressing Prdm16 in NSC culture using a constitutive promoter. 

      (9) Line 182 "Following the washout step" - no such step had been described, maybe replace by "After washout of BMP".

      Yes, we have revised the text.

      (8) Line 214: "indicating a modest level" - what defines modest? Compared to what? Why is a few thousand moderate rather than low? Does it go to zero with inhibitors for pathways?

      Here a modest level means a lower level than to that after adding BMP4. To clarify this, we revised the description to “indicating endogenous levels of …”

      (9) The way qPCR data are displayed makes it difficult to appreciate the magnitude of changes, e.g. in Supplementary Figure 2B where a gap is introduced on the scale. Displaying log fold change / relative CT values would be more informative.

      We used a segmented Y-axis in Supplementary Figure 2B because the Prdm16 overexpression samples exhibited much higher experssion levels compared to other conditions. In response to this suggestion, we explored alternative ways to present the result, including ploting log-transformed values and log fold changes. However, these methods did not enhance the clarity of the differences – in fact, log scaling made the magnitude of change appear less apparent. To address this, we now present the overexpression samples in a separate graph, thereby eliminating the need for a broken Y-axis and improving the overall readability of the data.

      (10) Writing out "3 days" instead of 3D in Figure 2A would improve clarity. It would be good if the used time interval is repeated in other figures throughout the paper so it is still clear the comparison is between 0 and 3 days.

      We have changed “3D” to “3 days”. All BMP4 treatments in this study were 3 days.

      (11) Line 290: "we found that over 50% of SMAD4 and pSMAD1/5/8 binding peaks were consistent in Prdm16_E and Prdm16_KO cells, indicating that deletion of Prdm16 does not affect the general genomic binding ability of these proteins" - this only makes sense to state with appropriate controls because 50% seems like a big difference, what is the sample to sample variability for the same condition? Moreover, the next paragraph seems to contradict this, ending with "This result suggests that SMAD binding to these sites depends on PRDM16". The authors should probably clarify the writing.

      We appreciate the reviwer’s comment and agree that clarification was needed. Our point was that SMAD4 and pSMAD1/5/8 retain the ability to bind DNA broadly in the Prdm16 KO cells, with more than half of the original binding sites still occupied. This suggests that deletion of Prdm16 does not globally impair SMAD genomic binding. Howerever, our primary interest lies in the subset of sites that show differential by SMAD binding between wt and Prdm16 KO conditions, as thse are likely to be PRDM16-dependent. 

      In the following paragraph, we focused specifically on describing SMAD and PRDM16 co-bound sites. At these loci, SMAD4 and pSMAD1/5/8 showed reduced enrichment in the absence of PRDM16, suggesting PRDM16 facilitates SMAD binding at these particular regions. We have revised the text in the manuscript to more clearly distinguish between global SMAD binding and PRDM16-dependent sites.

      (12) Much more convincing than ChIP-qPCR for c-FOS for two loci in Figures 5F-G would be a global analysis of c-FOS ChIP-seq data.

      We agree that a global c-FOS ChIP-seq analysis would provide a more comprehensive view of c-FOS binding patterns. However, the primary focus of this study is the interaction between BMP signaling and PRDM16. The enrichment of AP-1 motifs at ectopic SMAD4 binding sites was an unexpected finding, which we validated using c-FOS ChIP-qPCR at selected loci. While a genome-wide analysis would be valuable, it falls beyond the current scope. We agree that future studies exploring the interplay among SMAD4/pSMAD, PRDM16, and AP-1 will be important and informative.

      (13) Figure 6A is hard to read. A heatmap would make it much easier to see differences in expression. Furthermore, if the point is to see the difference between ChP and CH, why not combine the different subclusters belonging to those structures? Finally, why are there 28 genes total when it is said the authors are evaluating a list of 31 genes and also displaying 6 genes that are not expressed (so the difference isn't that unexpressed genes are omitted)?

      For the scRNA-seq data, we chose violin plots because they display both gene expression levels and the number of cells that express each gene. However, we agree that the labels in Figure 6A were too small and difficult to read. We have revised the figure by increasing the font size and moved genes with low expression to  Supplementary Figure 5A. Figure 6A includes 17 more highly expressed genes together with three markers, and  Supplementary Figure 5A contains 13 lowly expressed genes. One gene Mrtfb is missing in the scRNA-seq data and thus not included. We have revised the description of the result in the main text and figure legends.

      Reviewer #2 (Public review):

      Summary:

      This article investigates the role of PRDM16 in regulating cell proliferation and differentiation during choroid plexus (ChP) development in mice. The study finds that PRDM16 acts as a corepressor in the BMP signaling pathway, which is crucial for ChP formation.

      The key findings of the study are:

      (1) PRDM16 promotes cell cycle exit in neural epithelial cells at the ChP primordium.

      (2) PRDM16 and BMP signaling work together to induce neural stem cell (NSC) quiescence in vitro.

      (3) BMP signaling and PRDM16 cooperatively repress proliferation genes.

      (4) PRDM16 assists genomic binding of SMAD4 and pSMAD1/5/8.

      (5) Genes co-regulated by SMADs and PRDM16 in NSCs are repressed in the developing ChP.

      (6) PRDM16 represses Wnt7b and Wnt activity in the developing ChP.

      (7) Levels of Wnt activity correlate with cell proliferation in the developing ChP and CH.

      In summary, this study identifies PRDM16 as a key regulator of the balance between BMP and Wnt signaling during ChP development. PRDM16 facilitates the repressive function of BMP signaling on cell proliferation while simultaneously suppressing Wnt signaling. This interplay between signaling pathways and PRDM16 is essential for the proper specification and differentiation of ChP epithelial cells. This study provides new insights into the molecular mechanisms governing ChP development and may have implications for understanding the pathogenesis of ChP tumors and other related diseases.

      Strengths:

      (1) Combining in vitro and in vivo experiments to provide a comprehensive understanding of PRDM16 function in ChP development.

      (2) Uses of a variety of techniques, including immunostaining, RNA in situ hybridization, RT-qPCR, CUT&Tag, ChIP-seq, and SCRINSHOT.

      (3) Identifying a novel role for PRDM16 in regulating the balance between BMP and Wnt signaling.

      (4) Providing a mechanistic explanation for how PRDM16 enhances the repressive function of BMP signaling. The identification of SMAD palindromic motifs as preferred binding sites for the SMAD/PRDM16 complex suggests a specific mechanism for PRDM16-mediated gene repression.

      (5) Highlighting the potential clinical relevance of PRDM16 in the context of ChP tumors and other related diseases. By demonstrating the crucial role of PRDM16 in controlling ChP development, the study suggests that dysregulation of PRDM16 may contribute to the pathogenesis of these conditions.

      We thank the reviewer for the thorough and thoughtful summary of our study. We’re glad the key findings and significance of our work were clearly conveyed, particularly regarding the role of PRDM16 in coordinating BMP and Wnt signaling during ChP development. We also appreciate the recognition of our integrated approach and the potential implications for understanding ChP-related diseases.

      Weaknesses:

      (1) Limited investigation of the mechanism controlling PRDM16 protein stability and nuclear localization in vivo. The study observed that PRDM16 protein became nearly undetectable in NSCs cultured in vitro, despite high mRNA levels. While the authors speculate that post-translational modifications might regulate PRDM16 in NSCs similar to brown adipocytes, further investigation is needed to confirm this and understand the precise mechanism controlling PRDM16 protein levels in vivo.

      While mechansims controlling PRDM16 protein stability and nuclear localization in the developing brain are interesting, the scope of this paper is revealing the function of PRDM16 in the choroid plexus and its interaction with BMP signaling. We will be happy to pursuit this direction in our next study.

      (2) Reliance on overexpression of PRDM16 in NSC cultures. To study PRDM16 function in vitro, the authors used a lentiviral construct to constitutively express PRDM16 in NSCs. While this approach allowed them to overcome the issue of low PRDM16 protein levels in vitro, it is important to consider that overexpressing PRDM16 may not fully recapitulate its physiological role in regulating gene expression and cell behavior.

      As stated above, we acknowledge that findings from cultured NSCs may not directly apply to ChP cells in vivo. We are cautious with our statements. The cell culture work was aimed to identify potential mechanisms by which PRDM16 and SMADs interact to regulate gene expression and target genes co-regulated by these factors. We expect that not all targets from cell culture are regulated by PRDM16 and SMADs in the ChP, so we validated expression changes of several target genes in the developing ChP and now included the new data in Fig. 7 and Supplementary Fig. 7. Out of the 31 genes identified from cultured cells, four cell cycle regulators including Wnt7b, Id3, Spc24/25/nuf2 and Mybl2, showed de-repression in Prdm16 mutant ChP. These genes can be relevant downstream genes in the ChP, and other target genes may be cortical NSC-specific or less dependent on Prdm16 in vivo.

      (3) Lack of direct evidence for AP1 as the co-factor responsible for SMAD relocation in the absence of PRDM16. While the study identified the AP1 motif as enriched in SMAD binding sites in Prdm16 knockout cells, they only provided ChIP-qPCR validation for c-FOS binding at two specific loci (Wnt7b and Id3). Further investigation is needed to confirm the direct interaction between AP1 and SMAD proteins in the absence of PRDM16 and to rule out other potential co-factors.

      We agree that the finding of the AP1 motif enriched at the PRDM16 and SMAD co-binding regions in Prdm16 KO cells can only indirectly suggest AP1 as a co-factor for SMAD relocation. That’s why we used ChIP-qPCR to examine the presence of C-fos at these sites. Although we only validated two targets, the result confirms that C-fos binds to the sites only in the Prdm16 KO cells but not Prdm16_expressing cells, suggesting AP1 is a co-factor.  Our results cannot rule out the presence of other co-factors.

      Reviewer #2 (Recommendations for the authors):

      Minor typo: [7, page 3] "sicne" should be "since".

      We appreciate the reviewer’s careful reading. We have now corrected the typo and revised some part of the text to improve clarity.

      Reviewer #3 (Public review):

      Summary:

      Bone morphogenetic protein (BMP) signaling instructs multiple processes during development including cell proliferation and differentiation. The authors set out to understand the role of PRDM16 in these various functions of BMP signaling. They find that PRDM16 and BMP co-operate to repress stem cell proliferation by regulating the genomic distribution of BMP pathway transcription factors. They additionally show that PRDM16 impacts choroid plexus epithelial cell specification. The authors provide evidence for a regulatory circuit (constituting of BMP, PRDM16, and Wnt) that influences stem cell proliferation/differentiation.

      Strengths:

      I find the topics studied by the authors in this study of general interest to the field, the experiments well-controlled and the analysis in the paper sound.

      We thank the reviewer for their positive feedback and thoughtful summary. We appreciate the recognition of our efforts to define the role of PRDM16 in BMP signaling and stem cell regulation, as well as the soundness of our experimental design and analysis.

      Weaknesses:

      I have no major scientific concerns. I have some minor recommendations that will help improve the paper (regarding the discussion).

      We have revised the discussion according to the suggestions.

      Reviewer #3 (Recommendations for the authors):

      Specific minor recommendations:

      Page 18. Line 526: In a footnote, the authors point out a recent report which in parallel was investigating the link between PRDM16 and SMAD4. There is substantial non-overlap between these two papers. To aid the reader, I would encourage the authors to discuss that paper in the discussion section of the manuscript itself, highlighting any similarities/differences in the topic/results.

      Thanks for the suggestion. We now included the comparison in the discussion. One conclusion between our study and this publication is consistent, that PRDM16 functions as a co-repressor of SMAD4. However, the mechanims are different. Our data suggests a model in which PRDM16 facilitates SMAD4/pSMAD binding to repress proliferation genes under high BMP conditions. However, the other report suggests that SMAD4 steadily binds to Prdm16 promoter and switches regulatory functions depending on the co-factors. Together with PRDM16, SMAD4 represses gene expression, while with SMAD3 in response to high levels of TGF-b1, it activates gene expression. These differences could be due to different signaling (BMP versus TGF-b), contexts (NSCs versus Pancreatic cancers) etc.

      Page 3. Line 65: typo 'since'

      We appreciate the reviewer’s careful reading. We have now corrected the typo and revised the text to improve clarity.

    1. Perform oral prophylaxis procedure using nonfluoridated and oil less prophylaxis pastes.• Clean and wash the teeth with water. Isolate to prevent any contamination from salivaor gingival crevicular fluid• Apply acid etchant in the form of gel for 15 to 30 seconds. Deciduous teeth requirelonger time for etching than permanent teeth because of the presence of aprismaticenamel in deciduous teeth• Wash the etchant continuously for 10 to 15 seconds• Note the appearance of a properly etched surface. It should give a frosty whiteappearance on drying• If any sort of contamination occurs, repeat the procedure• Now apply bonding agent and low viscosity monomers over the etched enamel surface.Generally, bonding agents contain Bis-GMA or UDMA with TEGDMA added to lower theviscosity of the bonding agent. The bonding agents due to their low viscosity, rapidly wetand penetrate the clean, dried, conditioned enamel into the microspaces forming resintags. The resin tags which form between enamel prisms are known as Macrotags.

      ① Perform oral prophylaxis procedure using nonfluoridated and oil less prophylaxis pastes. ① Florürsüz ve yağsız profilaksi patları kullanarak ağız hijyen uygulaması yapın.

      ② Clean and wash the teeth with water. Isolate to prevent any contamination from saliva or gingival crevicular fluid ② Dişleri suyla temizleyip yıkayın. Tükürük veya diş eti oluğu sıvısından gelebilecek bulaşmaları önlemek için izolasyon sağlayın.

      ③ Apply acid etchant in the form of gel for 15 to 30 seconds. Deciduous teeth require longer time for etching than permanent teeth because of the presence of aprismatic enamel in deciduous teeth ③ Asit ajanı jel formunda 15 ila 30 saniye süreyle uygulayın. Süt dişlerinde aprismatik mine bulunduğu için, daimi dişlere göre daha uzun süre asitlenmeleri gerekir.

      ④ Wash the etchant continuously for 10 to 15 seconds ④ Asit ajanı sürekli şekilde 10 ila 15 saniye boyunca yıkayın.

      ⑤ Note the appearance of a properly etched surface. It should give a frosty white appearance on drying ⑤ Uygun şekilde asitlenmiş yüzeyin görünümüne dikkat edin. Kuruduğunda buzlu beyaz bir görünüm vermelidir.

      ⑥ If any sort of contamination occurs, repeat the procedure ⑥ Herhangi bir kontaminasyon meydana gelirse işlemi tekrarlayın.

      ⑦ Now apply bonding agent and low viscosity monomers over the etched enamel surface. ⑦ Şimdi, asitlenmiş mine yüzeyine bağlayıcı ajan ve düşük viskoziteli monomerleri uygulayın.

      ⑧ Generally, bonding agents contain Bis-GMA or UDMA with TEGDMA added to lower the viscosity of the bonding agent. ⑧ Genellikle bağlayıcı ajanlar, viskoziteyi azaltmak için TEGDMA ile birlikte Bis-GMA veya UDMA içerir.

      ⑨ The bonding agents due to their low viscosity, rapidly wet and penetrate the clean, dried, conditioned enamel into the microspaces forming resin tags. ⑨ Bağlayıcı ajanlar düşük viskoziteleri nedeniyle temizlenmiş, kurutulmuş ve hazırlanmış mineyi hızla ıslatır ve mikro boşluklara nüfuz ederek rezin çıkıntılar (resin tag) oluştururlar.

      ⑩ The resin tags which form between enamel prisms are known as Macrotags. ⑩ Mine prizmaları arasında oluşan rezin çıkıntılara makrotag (macrotag) adı verilir.

    Annotators

    1. Author response:

      Our response aims to address the following:

      The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.

      We would like to highlight that post-hoc power calculations are often considered redundant since the statistical power estimated for an observed association is directly related to its p-value[1]. In other words, the uncertainty of the association is already reflected in its 95% confidence interval. However, we understand power calculations may still be of interest to the reader, so we will incorporate them in the revised manuscript.

      The reason we use inverse variance weighted (IVW) Mendelian randomization (MR) to obtain our main results rather than the pleiotropy-robust methods mentioned by the reviewer/editors (i.e., MR-Egger, weighted median and weighted mode) is that the former has greater statistical power than the latter[2]. Hence, instead of focussing on the statistical significance of the pleiotropy-robust analyses, we consider it is of more value to compare the consistency of the effect sizes and direction of the effect estimates across methods. Any evidence of such consistency increases our confidence in our main findings, since each method relies on different assumptions. As we cannot be sure about the presence and nature of horizontal pleiotropy, it is useful to compare results across methods even though they are not equally powered. It is true that our results for the genetically predicted effects of body mass index (BMI) on the risk of head and neck cancer (HNC) differ across methods. This is precisely what led us to question the validity of our main finding (suggesting a positive effect of BMI on HNC risk). We will clarify this in the discussion section of the revised manuscript as advised.

      We understand that the reviewer/editors are concerned that we do not have a robust model to explore the role of tobacco consumption in the link between BMI and HNC. However, we have a different perspective on the matter. If indeed, the main IVW finding for BMI and HNC is due to pleiotropy (since some of the pleiotropy-robust methods suggest conflicting results), then the IVW multivariable MR method is a way to explore the potential source of this bias[3]. We were particularly interested in exploring the role of smoking in the observed association because smoking and adiposity are known to influence each other [4-9] and share a genetic basis[10, 11].

      References:

      (1) Heinsberg LW, Weeks DE: Post hoc power is not informative. Genet Epidemiol 2022, 46(7):390-394.

      (2) Burgess S, Butterworth A, Thompson SG: Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013, 37(7):658-665.

      (3) Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C et al: Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019, 4:186.

      (4) Morris RW, Taylor AE, Fluharty ME, Bjorngaard JH, Asvold BO, Elvestad Gabrielsen M, Campbell A, Marioni R, Kumari M, Korhonen T et al: Heavier smoking may lead to a relative increase in waist circumference: evidence for a causal relationship from a Mendelian randomisation meta-analysis. The CARTA consortium. BMJ Open 2015, 5(8):e008808.

      (5) Taylor AE, Morris RW, Fluharty ME, Bjorngaard JH, Asvold BO, Gabrielsen ME, Campbell A, Marioni R, Kumari M, Hallfors J et al: Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers. PLoS Genet 2014, 10(12):e1004799.

      (6) Taylor AE, Richmond RC, Palviainen T, Loukola A, Wootton RE, Kaprio J, Relton CL, Davey Smith G, Munafo MR: The effect of body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization study. Hum Mol Genet 2019, 28(8):1322-1330.

      (7) Asvold BO, Bjorngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Smith GD, Romundstad PR: Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol 2014, 43(5):1458-1470.

      (8) Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, Martin RM: Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361:k1767.

      (9) Freathy RM, Kazeem GR, Morris RW, Johnson PC, Paternoster L, Ebrahim S, Hattersley AT, Hill A, Hingorani AD, Holst C et al: Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol 2011, 40(6):1617-1628.

      (10) Thorgeirsson TE, Gudbjartsson DF, Sulem P, Besenbacher S, Styrkarsdottir U, Thorleifsson G, Walters GB, Consortium TAG, Oxford GSKC, consortium E et al: A common biological basis of obesity and nicotine addiction. Transl Psychiatry 2013, 3(10):e308.

      (11) Wills AG, Hopfer C: Phenotypic and genetic relationship between BMI and cigarette smoking in a sample of UK adults. Addict Behav 2019, 89:98-103.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In Sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled.

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (and named it Sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in Sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through the modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. Given Sakura's role in pMad expression, it would be insightful to investigate whether overexpression of Mad or pMad could mitigate these phenotypic defects (UAS-Mad line is available at Bloomington Drosophila Stock Center).

      As suggested reviewer 1, we tested whether overexpression of Mad could rescue or mitigate the loss of sakura phenotypic defects, by using nos-Gal4-VP16 > UASp-Mad-GFP in the background of sakura<sup>null</sup>. As shown in Fig S11, we did not observe any mitigation of defects.

      Then, we also tested whether expressing a constitutive active form of Tkv, by using UAS-Dcr2, NGT-Gal4 > UASp-tkv.Q235D in the background of sakura<sup>RNAi</sup>. As shown in Fig S12, we did not observe any mitigation of defects by this approach either.

      A major concern is the overstated role of Sakura in regulating Orb. The data does not reveal mislocalized Orb; rather, a mislocalized oocyte and cytoskeletal breakdown, which may be secondary consequences of defects in oocyte polarity and structure rather than direct misregulation of Orb. The conclusion that Sakura is necessary for Orb localization is not supported by the data. Orb still localizes to the oocyte until about stage 6. In the later stage, it looks like the cytoskeleton is broken down and the oocyte is not positioned properly, however, there is still Orb localization in the ~8-stage egg chamber in the oocyte. This phenotype points towards a defect in the transport of Orb and possibly all other factors that need to localize to the oocyte due to cytoskeletal breakdown, not Orb regulation directly. While this result is very interesting it needs further evaluation on the underlying mechanism. For example, the decrease in E-cadherin levels leads to a similar phenotype and Bam is known to regulate E-cadherin expression. Is Bam expressed in these later knockdowns?

      We examined Bam and DE-Cadherin expression in later RNAi knockdowns driven by ToskGal4. As shown in Fig S9, Bam was not expressed in these later knockdowns compared with controls. DE-Cadherin staining suggested a disorganized structure in late-stage egg chambers.

      We agree that we overstated a role of Sakura in regulating Orb in the initial manuscript. We changed the text to avoid overstating.

      The manuscript would benefit from a more balanced interpretation of the data concerning Sakura's role in Orb regulation. Furthermore, a more expanded discussion on Sakura's potential role in pMad regulation is needed. For example, since Otu and Bam are involved in translational regulation, do the authors think that Mad is not translated and therefore it is the reason for less pMad? Currently the discussion presents just a summary of the results and not an extension of possible interpretation discussed in context of present literature.

      We changed the text to avoid overstating a role of Sakura in regulating Orb localization.

      Based on our newly added results showing that transgenic overexpression of Mad could not rescue or mitigate the phenotypic defects of sakura<sup>null</sup> mutant (Fig S11), we do not think the reason for less pMad is less translation of Mad.

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field. However, there are some weaknesses and I would recommend that they address the comments in the Recommendations for the authors section below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      General Comments:

      (1) The gene nomenclature: As mentioned in the text, Sakura means cherry blossom and is one of the national flowers of Japan. I am not sure whether the phenotype of the CG14545 mutant is related to Sakura or not. I would like to suggest the authors reconsider the naming.

      The striking phenotype of sakura mutant­ is tumorous and germless ovarioles. The tumorous phenotype, exhibiting lots of round fusome in germarium visualized by anti-Hts staining, looks like cherry blossom blooming to us. Also, the germless phenotype reminds us falling of the cherry blossom, especially considering that the ratio of tumorous phenotype decreases and that of germless decreases over fly age. Furthermore, “Sakura” symbolizes birth and renewal in Japanese culture (the last author of this manuscript is Japanese). Our findings indicated that the gene sakura is involved in regulation of renewal and differentiation of GSCs (which leads to birth). These are the reasons for the naming, which we would like to keep.

      (2) In many of the microscopic photographs in the figures, especially for the merged confocal images, the resolution looks low, and the images appear blurred, making it difficult to judge the authors' claims. Also, the Alpha Fold structure in Figure 10A requires higher contrast images. The magnification of the images is often inadequate (e.g. Figures 3A, 3B, 5E, 7A, etc). The authors should take high-magnification images separately for the germarium and several different stages of the egg chambers and lay out the figures.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      Specific Comments

      (1) How Sakura can cooperate with Otu remains unanswered. Sakura does not regulate deubiquitinase activity in vitro. Both sakura and otu appear to be involved in the Dpp-Smad signaling pathway and in the spatial control of Bam expression in the germarium, whereas Otu has been reported to act in concert with Bam to deubiquitinate and stabilize Cyc A for proper cystoblast differentiation. Therefore, it is plausible that the stabilization of Cyc A in the Sakura mutant is an indirect consequence of Bam misexpression and independent of the Sakura-Otu interaction. The authors may need to provide much deeper insight into the mechanism by which Sakura plays roles in these seemingly separable steps to orchestrate germ cell maintenance and differentiation during early oogenesis.

      Yes, it is possible that the stabilization of CycA in the sakura mutant is an indirect consequence of Bam misexpression and independent of the Sakura-Otu interaction. To test the significance and role of the Sakura-Otu interaction, we have attempted to identify Sakura point mutants that lose interaction with Otu. If such point mutants were successfully obtained, we were planning to test if their transgene expression could rescue the phenotypes of sakura mutant as the wild-type transgene did. However, after designing and testing the interaction of over 30 point mutants with Otu, we could not obtain such mutant version of Sakura yet. We will continue making efforts, but it is beyond the scope of the current study. We hope to address this important point in future studies.

      (2) Figure 3A and Figure 4: The authors show that piRNA production is abolished in Sakura KO ovaries. It is known that piRNA amplification (the ping-pong cycle) occurs in the Vasa-positive perinuclear nuage in nurse cells. Is the nuage normally formed in the absence of Sakura? The authors provide high-magnification images in the germarium expressing Vas-GFP. How does Sakura, and possibly Out, contribute to piRNA production? Are the defects a direct or indirect consequence of the loss of Sakura?

      We provided higher magnification images of germarium expressing Vasa-EGFP in sakura mutant background (Fig 3A and 3B). The nuage formation does not seem to be dysregulated in sakura mutant. Currently, we do not know if the piRNA defects are direct or indirect consequence of the loss of Sakura. This question cannot be answered easily. We hope to address this in future studies.

      (3) Figure 7 and Figure 12: The authors showed that Dpp-Smad signaling was abolished in Sakura KO germline cells. The same defects were also observed in otu mutant ovaries (Figure 12B). How does the Sakura-Otu axis contribute to the Dpp-Smad pathway in the germline?

      As we mentioned in the response to comment (1), we attempted to test the significance and role of the Sakura-Otu interaction, including in the Dpp-Smad pathway in the germline, but we have not yet been able to obtain loss-of-interaction mutant(s) of Sakura. We hope to address this in future studies.

      (4) Figure 9 and Fig 10: The authors raised antibodies against both Sakura and Otu, but their specificities were not provided. For Western blot data, the authors should provide whole gel images as source data files. Also, the authors argue that the Otu band they observed corresponds to the 98-kDa isoform (lines 302-304). The molecular weight on the Western blot alone would be insufficient to support this argument.

      When we submitted the initial manuscript, we also submitted original, uncropped, and unmodified whole Western blot images for all gel images to the eLife journal, as requested. We did the same for this revised submission. I believe eLife makes all those files available for downloading to readers.

      In the newly added Fig S13B, we used very young 2-5 hours ovaries and 3-7 days ovaries. 2-5 days ovaries contain only mostly pre-differentiated germ cells. Older ovaries (3-7 days in our case here) contain all 14 stages of oogenesis and later stages predominate in whole ovary lysates.

      As reported in previous literature (Sass et al. 1995), we detected a higher abundance of the 104 kDa Otu isoform than the 98 kDa isoform in from 2-5 hours ovaries and predominantly the 98 kDa isoform in 3-7 days ovaries (Fig S13B). These results confirmed that the major Otu isoform we detected in Western blot, all of which uses old ovaries except for the 2-5 hours ovaries in Fig S13B, is the 98 kDa isoform.

      (5) Otu has been reported to regulate ovo and Sxl in the female germline. Is Sakura involved in their regulation?

      We examined sxl alternative splicing pattern in sakura mutant ovaries. As shown in Fig S6, we detected the male-specific isoform of sxl RNA and a reduced level of the female-specific sxl isoform in sakura mutant ovaries. Thus Sakura seems to be involved in sxl splicing in the female germline, while further studies will be needed to understand whether Sakura has a direct or indirect role here.

      (6) Lines 443-447: The GSC loss phenotype in piwi mutant ovaries is thought to occur in a somatic cell-autonomous manner: both piwi-mutant germline clones and germline-specific piwi knockdown do not show the GSC-loss phenotype. In contrast, the authors provide compelling evidence that Sakura functions in the germline. Therefore, the Piwi-mediated GSC maintenance pathway is likely to be independent of the Sakura-Otu axis.

      We changed the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      Overall, this is a cleanly written manuscript, with some sentences/sections that are confusing the way they are constructed (i.e. Line 37-38, 334, section on Flp/FRT experiments).

      We rewrote those sections to avoid confusion.

      Comment for all merged image data: the quality of the merged images is very poor - the individual channels are better but should also be reprocessed for more resolved image data sets. Also, it would be helpful to have boundaries drawn in an individual panel to identify the regions of the germarium, as cartooned in Figure S1A (which should be brought into Figure 1) F-actin or Vsg staining would have helped throughout the manuscript to enhance the visualization of described phenotypes.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      We outlined the germarium in Fig 1E.

      We brought the former FigS1 into Fig 1A.

      We provided Phalloidin (F-Actin) staining images in Fig S7.

      All p-values seem off. I recommend running the data through the student t-test again.

      We used the student t-test to calculate p-values and confirmed that they are correct. We don’t understand why the reviewer thinks all p-values seem off.

      In the original manuscript, as we mentioned in each figure legends, we used asterisk (*) to indicate p-value <0.05, without distinguishing whether it’s <0.001, <0.01< or <0.05.

      Probably reviewer 2 is suggesting us to use ***, **, and *, to indicate p-value of <0.001, <0.01, and <0.05, respectively? If so, we now followed reviewer2’s suggestions.

      Figure 1

      (1) Within the text, C is mentioned before A.

      We updated the text and now we mentioned Fig 1A before Fig 1C.

      (2) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      (3) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      (4) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakura<sup>null</sup> phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      (5) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      (6) Line 95 "as shown below" is not clear that it's referencing panel D.

      We now referenced Fig 1D.

      (7) Re: Figures 1 E and F. There is no mention of Hts or Vasa proteins in the text.<br /> "Sakura-EGFP was not expressed in somatic cells such as terminal filament, cap cells, escort cells, or follicle cells (Figure 1E). In the egg chamber, Sakura-EGFP was detected in the cytoplasm of nurse cells and was enriched in developing oocytes (Figure 1F)". Outline these areas or label these structures/sites in the images. The color of Merge labels is confusing as the blue is not easily seen.

      We mentioned Hts and Vasa in the text. We labeled the structures/sites in the images and updated the color labeling.

      Figure 2

      (1) Entire figure is not essential to be a main figure, but rather supplemental.

      We don’t agree with the reviewer. We think that the female fertility assay data, where sakura null mutant exhibits strikingly strong phenotype, which was completely rescued by our Sakura-EGFP transgene, is very important data and we would like to present them in a main figure.

      (2) 2A- one star (*) significance does not seem correct for the presented values between 0 and 100+.

      In the original manuscript, as we mentioned in each figure legends, we used asterisk (*) to indicate p-value <0.05, without distinguishing whether it’s <0.001, <0.01< or <0.05.

      Probably reviewer 2 is suggesting us to use ***, **, and *, to indicate p-value of <0.001, <0.01, and <0.05, respectively? If so, we now followed reviewer2’s suggestions.

      (3) 2C images are extremely low quality. Should be presented as bigger panels.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images. We also presented as bigger panels.

      Figure 3

      (1) "We observed that some sakura<sup>null</sup> /null ovarioles were devoid of germ cells ("germless"), while others retained germ cells (Fig 3A)" What is described is, that it is hard to see. Must have a zoomed-in panel.

      We provided zoomed-in panels in Fig 3B

      (2) C - The control doesn't seem to match. Must zoom in.

      We provided matched control and also zoomed in.

      (3) For clarity, separate the tumorous and germless images.

      In the new image, only one tumorous and one germless ovarioles are shown with clear labeling and outline, for clarity.

      (4) Use arrows to help clearly indicate the changes that occur. As they are presented, they are difficult to see.

      We updated all the panels to enhance clarity.

      (5) Line 158 seems like a strong statement since it could be indirect.

      We softened the statement.

      Figure 4

      (1) Line 188-189 - Conclusion is an overstatement.

      We softened the statement.

      (2) Is the piRNA reduction due to a change in transcription? Or a direct effect by Sakura?

      We do not know the answers to these questions. We hope to address these in future studies.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer’s point. We think using numbers, not %, makes more sense.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      (3) In Line 218 there's an extra parenthesis after the PGC acronym.

      We corrected the error.

      (4) TOsk-Gal4 fly is not in the Methods section.

      We mentioned TOsk-Gal4 in the Methods.

      Figure 6:

      (1) The FLP-FRT section must be rewritten.

      We rewrote the FLP-FRT section.

      (2) A - include statistics.

      We included statistics using the chi-square test.

      (3) B - is not recalled in the Results text.

      We referred Fig 6B in the text.

      (4) Line 232 references Figure 3, but not a specific panel.

      We referred Fig 3A, 3C, 3D, and 3E, in the text.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      (1) There should be CycA expression in the control during the first 4 divisions.

      Yes, there is CycA expression observed in the control during the first 4 divisions, while it’s much weaker than in sakura<sup>null</sup> clone.

      (2) Helpful to add the dotted lines to delineate (A) as well.

      We added a dotted outline for germarium in Fig 7A.

      (3) Line 263 CycA is miswritten as CyA.

      We corrected the typo.

      Figure 9

      (1) Otu antibody control?

      We validated Otu antibody in newly added Fig 10C and Fig S13A.

      (2) Which Sakura-EGFP line was used? sakura het. or null background? This isn't mentioned in the text, nor legend.

      We used Sakura-EGFP in the background of sakura[+/+]. We added this information in the methods and figure legend.

      (3) C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti-Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      Figure 10

      (1) A- The resolution of images of the ribbon protein structure is poor.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      (2) A table summarizing the interactions between domains would help bring clarity to the data presented.

      We added a table summarizing the fragment interaction results.

      (3) Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer’s points. In our study, even for the full-length proteins.

      We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      Figure 12

      (1) A - control and RNAi lines do not match.

      We provided matched images.

      (2) In general, since for Sakura, only its binding to Otu was identified and since they phenocopy each other, doesn't most of the characterization of Sakura just look at Otu phenotypes? Does Sakura knockdown affect Otu localization or expression level (and vice versa)?

      We tested this by Western (Fig S15) and IF (Fig 12). Sakura knockdown did not decrease Otu protein level, and Otu knockdown did not decrease Sakura protein level (Fig S15). In sakura<sup>null</sup> clone, Otu level was not notably affected (Fig 12). In sakura<sup>null</sup> clone, Otu lost its localization to the posterior position within egg chambers.

      Figure S6

      (1) It is Luciferase, not Lucifarase.

      We corrected the typo.

      Reviewer #3 (Recommendations for the authors):

      (1) It is interesting that germless and tumorous phenotypes coexist in the same population of flies. Additional consideration of these essentially opposite phenotypes would significantly strengthen the study. For example, do they co-exist within the same fly and are the tumorous ovarioles present in newly eclosed flies or do they develop with age? The data in Figure 8 show that bam knockdown partially suppresses the germless phenotype. What effect does it have on the tumorous phenotype? Is transposon expression involved in either phenotype? Do Sakura mutant germline stem cell clones overgrow relative to wild-type cells in the same ovariole? Does sakura RNAi driven by NGT-Gal4 only cause germless ovaries or does it also cause tumorous phenotypes? What happens if the knockdown of Sakura is restricted to adulthood with a Gal80ts? It may not be necessary to answer all of these questions, but more insight into how these two phenotypes can be caused by loss of sakura would be helpful.

      We performed new experiments to answer these questions.

      do they co-exist within the same fly and are the tumorous ovarioles present in newly eclosed flies or do they develop with age?

      Tumorous and germless ovarioles coexist in the same fly (in the same ovary). Tumorous ovarioles are present in very young (0-1 day old) flies, including newly eclosed (Fig S5). The ratio of germless ovarioles increases and that of tumorous ovarioles decreases with age (Fig S5).

      The data in Figure 8 show that bam knockdown partially suppresses the germless phenotype. What effect does it have on the tumorous phenotype?

      bam knockdown effect on tumorous phenotype is shown in Fig S10. bam knockdown increased the ratio of tumorous ovarioles and the number of GSC-like cells.

      Is transposon expression involved in either phenotype?

      Since our transposon-piRNA reporter uses germline-specific nos promoter, it is expressed only in germ line cells, so we cannot examine in germless ovarioles.

      Do Sakura mutant germline stem cell clones overgrow relative to wild-type cells in the same ovariole?

      Yes, Sakura mutant GSC clones overgrow. Please compare Fig 6C and Fig S8.

      Does sakura RNAi driven by NGT-Gal4 only cause germless ovaries or does it also cause tumorous phenotypes?

      Fig S10 and Fig S12 show the ovariole phenotypes of sakura RNAi driven by NGT-Gal4. It causes both germless and tumorous phenotypes.

      What happens if the knockdown of Sakura is restricted to adulthood with a Gal80ts?

      Our mosaic clone was induced at the adult stage, so we already have data of adulthood-specific loss of function. Gal80ts does not work well with nos-Gal4.

      (2) The idea that the excessive bam expression in tumorous ovaries is due to a failure of bam repression by dpp signaling is not well-supported by the data. Dpp signaling is activated in a very narrow region immediately adjacent to the niche but the images in Figure 7A show bam expression in cells that are very far away from the niche. Thus, it seems more likely to be due to a failure to turn bam expression off at the 16-cell stage than to a failure to keep it off in the niche region. To determine whether bam repression in the niche region is impaired, it would be important to examine cells adjacent to the niche directly at a higher magnification than is shown in Figure 7A.

      We provided higher magnification images of cells adjacent to the niche in new Fig 7A.

      We found that cells adjacent to the niche also express Bam-GFP.

      That said, we agree with the reviewer. A failure to turn bam expression off at the 16-cell stage may be an additional or even a main cause of bam misexpression in sakura mutant. We added this in the Discussion.

      (3) In addition, several minor comments should be addressed:

      a. Does anti-Sakura work for immunofluorescence?

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies.

      b. Please provide insets to show the phenotypes indicated by the different color stars in Figure 3C more clearly.

      We provided new, higher-magnification images to show the phenotypes more clearly.

      c. Please indicate the frequency of the expression patterns shown in Figure 4D (do all ovarioles in each genotype show those patterns or is there variable penetrance?).

      We indicated the frequency.

      d. An image showing TOskGal4 driving a fluorophore should be provided so that readers can see which cells express Gal4 with this driver combination.

      It has been already done in the paper ElMaghraby et al, GENETICS, 2022, 220(1), iyab179, so we did not repeat the same experiment.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Contractile Injection Systems (CIS) are versatile machines that can form pores in membranes or deliver effectors. They can act extra or intracellularly. When intracellular they are positioned to face the exterior of the cell and hence should be anchored to the cell envelope. The authors previously reported the characterization of a CIS in Streptomyces coelicolor, including significant information on the architecture of the apparatus. However, how the tubular structure is attached to the envelope was not investigated. Here they provide a wealth of evidence to demonstrate that a specific gene within the CIS gene cluster, cisA, encodes a membrane protein that anchors the CIS to the envelope. More specifically, they show that:

      - CisA is not required for assembly of the structure but is important for proper contraction and CIS-mediated cell death

      - CisA is associated to the membrane (fluorescence microscopy, cell fractionation) through a transmembrane segment (lacZ-phoA topology fusions in E. coli)

      - Structural prediction of interaction between CisA and a CIS baseplate component<br /> - In addition they provide a high-resolution model structure of the >750-polypeptide Streptomyces CIS in its extended conformation, revealing new details of this fascinating machine, notably in the baseplate and cap complexes.

      All the experiments are well controlled including trans-complemented of all tested phenotypes.

      One important information we miss is the oligomeric state of CisA.

      Thank you for this suggestion. We now provide information on the potential oligomeric state of CisA. We performed further AlphaFold3 modelling of CisA using an increasing number of CisA protomers (1 to 8). We ran predictions for the configuration using the sequence of the well-folded C-terminal CisA domain (amino acids 285-468), which includes the transmembrane domain and the conserved domain that shares similarities to carbohydrate-degrading domains. The obtained confidence scores (mean values for pTM=0.73, ipTM=0.7, n=5) indicate that CisA can assemble into a pentamer and that this oligomerization is mediated through the interaction of the C-terminal solute-binding like superfamily domain.

      We have added this information to the revised manuscript (Fig. 3b/c) and further discuss the possible implications of CisA oligomerization for its proposed mode of action.

      While it would have been great to test the interaction between CisA and Cis11, to perform cryo-electron microscopy assays of detergent-extracted CIS structures to maintain the interaction with CisA, I believe that the toxicity of CisA upon overexpression or upon expression in E. coli render these studies difficult and will require a significant amount of time and optimization to be performed. It is worth mentioning that this study is of significant novelty in the CIS field because, except for Type VI secretion systems, very few membrane proteins or complexes responsible for CIS attachment have been identified and studied.

      We thank this reviewer for their highly supportive and positive comments on our manuscript and we are grateful for their recognition of the novelty of our study, particularly in the context of membrane proteins and complexes involved in CIS attachment.

      We agree that further experimental evidence on direct interaction between CisA and Cis11 would have strengthened our model on CisA function. However, as noted by this reviewer, this additional work is technically challenging and currently beyond the scope of this study.

      Reviewer #2 (Public review):

      Summary:

      The overall question that is addressed in this study is how the S. coelicolor contractile injection system (CISSc) works and affects both cell viability and differentiation, which it has been implicated to do in previous work from this group and others. The CISSc system has been enigmatic in the sense that it is free-floating in the cytoplasm in an extended form and is seen in contracted conformation (i.e. after having been triggered) mainly in dead and partially lysed cells, suggesting involvement in some kind of regulated cell death. So, how do the structure and function of the CISSc system compare to those of related CIS from other bacteria, does it interact with the cytoplasmic membrane, how does it do that, and is the membrane interaction involved in the suggested role in stress-induced, regulated cell death? The authors address these questions by investigating the role of a membrane protein, CisA, that is encoded by a gene in the CIS gene cluster in S. coelicolor. Further, they analyse the structure of the assembled CISSc, purified from the cytoplasm of S. coelicolor, using single-particle cryo-electron microscopy.

      Strengths:

      The beautiful visualisation of the CIS system both by cryo-electron tomography of intact bacterial cells and by single-particle electron microscopy of purified CIS assemblies are clearly the strengths of the paper, both in terms of methods and results. Further, the paper provides genetic evidence that the membrane protein CisA is required for the contraction of the CISSc assemblies that are seen in partially lysed or ghost cells of the wild type. The conclusion that CisA is a transmembrane protein and the inferred membrane topology are well supported by experimental data. The cryo-EM data suggest that CisA is not a stable part of the extended form of the CISSc assemblies. These findings raise the question of what CisA does.

      We thank Reviewer #2 for the overall positive evaluation of our manuscript and the constructive criticism.

      Weaknesses:

      The investigations of the role of CisA in function, membrane interaction, and triggering of contraction of CIS assemblies, are important parts of the paper and are highlighted in the title. However, the experimental data provided to answer these questions appear partially incomplete and not as conclusive as one would expect.

      We acknowledge that some aspects of our work remain unanswered. We are currently unable to conduct additional experiments because the two leading postdoctoral researchers on this project have moved on to new positions. We currently don’t have the extra manpower with a similar skill set to pick up the project.

      The stress-induced loss of viability is only monitored with one method: an in vivo assay where cytoplasmic sfGFP signal is compared to FM5-95 membrane stain. Addition of a sublethal level of nisin lead to loss of sfGFP signal in individual hyphae in the WT, but not in the cisA mutant (similarly to what was previously reported for a CIS-negative mutant). Technically, this experiment and the example images that are shown give rise to some concern. Only individual hyphal fragments are shown that do not look like healthy and growing S. coelicolor hyphae. Under the stated growth conditions, S. coelicolor strains would normally have grown as dense hyphal pellets. It is therefore surprising that only these unbranched hyphal fragments are shown in Fig. 4ab.

      We thank this Reviewer for their thoughtful criticism regarding the viability assays and the data presented in Figure 4. We acknowledge the importance of ensuring that the presented images reflect the physiological state of S. coelicolor under the stated growth conditions and recognize that hyphal fragments shown in Figure 4 do not fully capture the typical morphology of S. coelicolor. As pointed out by this reviewer, S. coelicolor grows in large hyphal clumps when cultured in liquid media, making the quantification of fluorescence intensities in hyphae expressing cytoplasmic GFP or stained with the membrane dye FM5-95 particularly challenging. To improve the image analysis and quantification of GFP and FM5-95-fluorescent intensities across the three S. coelicolor strains (wildtype, cisA deletion mutant and the complemented cisA mutant), we vortexed the cell samples before imaging to break up hyphal clumps, increasing hyphal fragments. The hyphae shown in our images were selected as representative examples across three biological replicates.

      Further, S. coelicolor would likely be in a stationary phase when grown 48 h in the rich medium that is stated, giving rise to concern about the physiological state of the hyphae that were used for the viability assay. It would be valuable to know whether actively growing mycelium is affected in the same way by the nisin treatment, and also whether the cell death effect could be detected by other methods.

      The reasoning behind growing S. coelicolor for 48 h before performing the fluorescence-based viability assay was that we (DOI: 10.1038/s41564-023-01341-x ) and others (e.g.: DOI: 10.1038/s41467-023-37087-7 ) previously showed that the levels of CIS particles peak at the transition from vegetative to reproductive/stationary growth, thus indicating that CIS activity is highest during this growth stage. The obtained results in this manuscript are consistent with previous results, in which we showed a similar effect on the viability of wildtype versus cis-deficient S. coelicolor strains (DOI: 10.1038/s41564-023-01341-x ) using nisin, the protonophore CCCP and UV radiation. The results presented in this study and our previous study are based on biological triplicate experiments and appropriate controls. Furthermore, our results are in agreement with the findings reported in a complementary study by Vladimirov et al. (DOI: 10.1038/s41467-023-37087-7 ) that used a different approach (SYTO9/PI staining of hyphal pellets) to demonstrate that CIS-deficient mutants exhibit decreased hyphal death.

      Taken together, we believe that the results obtained from our fluorescence-based viability assay provide strong experimental evidence that functional CIS mediate hyphal cell death in response to exogenous stress.

      The model presented in Fig. 5 suggests that stress leads to a CisA-dependent attachment of CIS assemblies to the cytoplasmic membrane, and then triggering of contraction, leading to cell death. This model makes testable predictions that have not been challenged experimentally. Given that sublethal doses of nisin seem to trigger cell death, there appear to be possibilities to monitor whether activation of the system (via CisA?) indeed leads to at least temporally increased interaction of CIS with the membrane.

      We thank this reviewer for their suggestions on how to test our model further. This is a challenging experiment because we do not know the exact dynamics of how nisin stress is perceived and transmitted to CisA and CIS particles.

      In an attempt to address this point, we have performed co-immunoprecipitation experiments using S. coelicolor cells that produced CisA-FLAG as bait, and which were treated with a sub-lethal nisin concentration for 0/15/45 min.  Mass spectrometry analysis of co-eluted peptides did not show the presence of CIS-associated peptides at the analyzed timepoints. While we cannot exclude the possibility that our experimental assay requires further optimization to successfully demonstrate a CisA-CIS interaction (e.g. optimization of the use of detergents to improve the solubilization of CisA from Streptomyces membrane, which is currently not an established method), an alternative and equally valid hypothesis is that the interaction between CIS particles and CisA is transient and therefore difficult to capture. We would like to mention, however, that we did detect CisA peptides in crude purifications of CIS particles from nisin-stressed cells (Supplementary Table 2, manuscript: line 301/302), supporting our proposed model that CisA can associate with CIS particles in vivo.

      Further, would not the model predict that stress leads to an increased number of contracted CIS assemblies in the cytoplasm? No clear difference in length of the isolated assemblies if Fig. S7 is seen between untreated and nisin-exposed cells, and also no difference between assemblies from WT and cisA mutant hyphae.

      The reviewer is correct that there is no clear difference in length in the isolated CIS particles shown in Figure S7. This is in line with our results, which show that CisA is not required for the correct assembly of CIS particles and their ability to contract in the presence and absence of nisin treatment. The purpose of Figure S7 was to support this statement. We would like to note that the particles shown in Figure S7 were purified from cell lysates using a crude sheath preparation protocol, during which CIS particles generally contract irrespective of the presence or absence of CisA. Thus, we cannot comment on whether there is an increased number of contracted CIS assemblies in the cytoplasm of nisin-exposed cells. To answer this point, we would need to acquire additional cryo-electron tomograms (cyroET) of the different strains treated with nisin. CryoET is an extremely time and labor-intensive task and given that we currently don’t know the exact dynamics of the CIS-CisA interaction following exogenous stress, we believe this experiment is beyond the scope of this work.

      The interaction of CisA with the CIS assembly is critical for the model but is only supported by Alphafold modelling, predicting interaction between cytoplasmic parts of CisA and Cis11 protein in the baseplate wedge. An experimental demonstration of this interaction would have strengthened the conclusions.

      We agree that direct experimental evidence of this interaction would have further strengthened the conclusions of our study, and we have extensively tried to provide additional experimental evidence. Unfortunately, because of the toxicity of cisA expression in E. coli and the possibly transient nature of the interaction under the experimental conditions used, we were unable to confirm this interaction by biochemical or biophysical techniques, such as co-purification or bacterial two-hybrid assays. Despite these technical challenges, we believe that the AlphaFold predictions provided a valuable hypothesis about the role of CisA in firing and the function of CIS particles in S. coelicolor.

      The cisA mutant showed a similarly accelerated sporulation as was previously reported for CIS-negative strains, which supports the conclusion that CisA is required for function of CISSc. But the results do not add any new insights into how CIS/CisA affects the progression of the developmental life cycle and whether this effect has anything to do with the regulated cell death that is caused by CIS. The same applies to the effect on secondary metabolite production, with no further mechanistic insights added, except reporting similar effects of CIS and CisA inactivations.

      Thank you for your feedback on this aspect of the manuscript. We would like to note that the main focus of this study was to provide further insight into how CIS contraction and firing are mediated in Streptomyces. We used the analysis of accelerated sporulation and secondary metabolite production as a readout to directly assess the functionality of CIS in the presence or absence of CisA and to complement the in situ cryoET data. In summary, our data significantly expand our knowledge of CIS function and firing in Streptomyces and suggest a model in which CisA plays an essential role in mediating the interaction of CIS particles with the membrane, which is required for CIS-mediated cell death. We discuss this model in more detail in the revised manuscript (Line 274-283).

      We agree that we still don’t fully understand the full nature of the signals that trigger CIS contraction, but we do know that the production of CIS is an integral part of the Streptomyces multicellular life cycle as demonstrated by two independent previous studies by us and others (DOI: 10.1038/s41564-023-01341-x and DOI: 10.1038/s41467-023-37087-7 ).

      We further speculate that the assembly and CisA-dependent firing of Streptomyces CIS particles could present a molecular mechanism to dismantle part of the vegetative mycelium. This form of “regulated cell death” could provide two key benefits: (1) to prevent the spread of local cellular damage to the rest of mycelium and (2) to provide additional nutrients for the rest of the mycelium to delay the terminal differentiation into spores, which in turn also affects the production of secondary metabolites.

      Concluding remarks:

      The work will be of interest to anyone interested in contractile injection systems, T6SS, or similar machineries, as well for people working on the biology of streptomycetes. There is also a potential impact of the work in the understanding of how such molecular machineries could have been co-opted during evolution to become a mechanism for regulated cell death. However, this latter aspect remains still poorly understood. Even though this paper adds excellent new structural insights and identifies a putative membrane anchor, it remains elusive how the Streptomyces CIS may lead to cell death. It is also unclear what the advantage would be to trigger death of hyphal compartments in response to stress, as well as how such cell death may impact (or accelerate) the developmental progression. Finally, it is inescapable to wonder whether the Streptomyces CIS could have any role in protection against phage infection.

      We thank Reviewer #2 for the overall supportive assessment of our work. We will briefly discuss functional CIS's impact on Streptomyces development in the revised manuscript. We previously tested if Streptomyces could defend against phages but have not found any experimental evidence to support this idea (unpublished data). The analysis of phage defense mechanisms is an underdeveloped area in Streptomyces research, partly due to the currently limited availability of a diverse phage panel.

      Reviewer #3 (Public review):

      Summary:

      In this work, Casu et al. have reported the characterization of a previously uncharacterized membrane protein CisA encoded in a non-canonical contractile injection system of Streptomyces coelicolor, CISSc, which is a cytosolic CISs significantly distinct from both intracellular membrane-anchored T6SSs and extracellular CISs. The authors have presented the first high-resolution structure of extended CISSc structure. It revealed important structural insights in this conformational state. To further explore how CISSc interacted with cytoplasmic membrane, they further set out to investigate CisA that was previously hypothesized to be the membrane adaptor. However, the structure revealed that it was not associated with CISSc. Using fluorescence microscope and cell fractionation assay, the authors verified that CisA is indeed a membrane-associated protein. They further determined experimentally that CisA had a cytosolic N-terminal domain and a periplasmic C-terminus. The functional analysis of cisA mutant revealed that it is not required for CISSc assembly but is essential for the contraction, as a result, the deletion significantly affects CISSc-mediated cell death upon stress, timely differentiation, as well as secondary metabolite production. Although the work did not resolve the mechanistic detail how CisA interacts with CISSc structure, it provides solid data and a strong foundation for future investigation toward understanding the mechanism of CISSc contraction, and potentially, the relation between the membrane association of CISSc, the sheath contraction and the cell death.

      Strengths:

      The paper is well-structured, and the conclusion of the study is supported by solid data and careful data interpretation was presented. The authors provided strong evidence on (1) the high-resolution structure of extended CISSc determined by cryo-EM, and the subsequent comparison with known eCIS structures, which sheds light on both its similarity and different features from other subtypes of eCISs in detail; (2) the topological features of CisA using fluorescence microscopic analysis, cell fractionation and PhoA-LacZα reporter assays, (3) functions of CisA in CISSc-mediated cell death and secondary metabolite production, likely via the regulation of sheath contraction.

      Weaknesses:

      (1) The data presented are not sufficient to provide mechanistic details of CisA-mediated CISSc contraction, as authors are not able to experimentally demonstrate the direct interaction between CisA with baseplate complex of CISSc (hypothesized to be via Cis11 by structural modeling), since they could not express cisA in E. coli due to its potential toxicity. Therefore, there is a lack of biochemical analysis of direct interaction between CisA and baseplate wedge. In addition, there is no direct evidence showing that CisA is responsible for tethering CISSc to the membrane upon stress, and the spatial and temporal relation between membrane association and contraction remains unclear. Further investigation will be needed to address these questions in future.

      We thank Reviewer #3 for the supportive evaluation and constructive feedback of our study in the non-public review. We appreciate the recognition of the technical limitations of experimentally demonstrating a direct interaction between CisA and CIS baseplate complex, and we agree that further investigations in the future will hopefully provide a full mechanistic understanding of the spatiotemporal interaction of CisA and CIS particular and the subsequent CIS firing.

      To further improve the manuscript, we will revise the text and clarify figures and figure legends as suggested in the non-public review.

      Discussion:

      Overall, the work provides a valuable contribution to our understanding on the structure of a much less understood subtype of CISs, which is unique compared to both membrane-anchored T6SSs and host-membrane targeting eCISs. Importantly, the work serves as a good foundation to further investigate how the sheath contraction works here. The work contributes to expanding our understanding of the diverse CIS superfamilies.

      Thank you.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      - Magnification of the potential CisA-Cis11 model, with side chains at the interface, should be shown in Supplementary Figures 9/10 to help the reader appreciates the intercation between the two subunits.

      Done. A zoomed-in view of the relevant side chains at the CisA-Cis11 interface has been added to Supplementary Figure 9e. For clarity, we decided not to highlight these residues in Supplementary Figure 10 because they are identical to those in Figure 9e.

      - A model where CisA is positionned onto the baseplate (by merging the CisA-Cis11 model and the baseplate structure) will also be informative for the reader.

      We agree that such a presentation would be helpful to visualize the proposed CisA-Cis11 interaction. However, the Cis11 residues predicted to bind CisA are buried in our cryoEM single-particle structure of the elongated Streptomyces CIS. This is not surprising, as the structure is based on a previously established non-contractile CIS mutant variant (PMCID: PMC10066040), which means we were only able to capture one specific configuration of the baseplate complex in the current work. This baseplate configuration is most likely structurally distinct from the baseplate configuration in contracted CIS particles. A similar observation was also reported for the baseplate complex of eCIS particles from Algoriphagus machipongonesis (PMCID: PMC8894135 ).  

      We speculate that in Streptomyces, initial non-specific contacts between CisA and cytoplasmic CIS particles induce a rearrangement of baseplate components, resulting in the exposure of the relevant Cis11 residues, which in turn facilitates a transient interaction between CisA and Cis11. This interaction then leads to additional conformational changes within the baseplate complex, triggering sheath contraction and CIS firing.

      We believe that a transient binding step is a crucial part of the activation process, contributing to the dynamic nature of the system.

      - Providing information on the oligomeric state of CisA will strenghten the manuscript. Authors may consider having blue-native gel analysis of CisA-3xFLAG extracted from Streptomyces or E. coli membranes, or in vivo chemical cross-linking coupled to SDS-PAGE analyses. In case these quite straightforward experiments are not possible, the authors may consider providing AF3 models of various CisA multimers.

      Thank you for these suggestions. Unfortunately, we currently don’t have the capability to conduct additional experiments. However, we have performed additional AF3 modelling to explore potential different configurations of CisA. The results of these analyses suggest that CisA can assemble into a pentamer (see also Response to reviewer 1). We speculate that CisA may exist in different oligomeric states and that membrane-localized CisA monomers oligomerize into a larger protein complex in response to a cellular or extracellular (e.g. nisin) signal, which could then directly or indirectly interact with CIS particles in the cytoplasm to facilitate their recruitment to the membrane and CIS firing. Such a stress-dependent conformational change of CisA could also be a safety mechanism to prevent accidental interaction of CisA with CIS particles and CIS firing.

      We now show the AF model for the predicted CisA pentamer in Figure 3b/c and discuss the potential implications of the different CisA configurations in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      - The quantification of contracted versus extended CIS assemblies in the cytoplasm is only presented for the tomograms from the cisA mutant (graph in Fig. S2d). However, there are no data for the WT and complemented mutant to compare with. It would help to add such data, or at least refer to the previous quantification done for the WT in the previous paper. Further, would it be possible to illustrate the difference by measuring lengths of CIS assemblies and plot length distributions (assuming the extended ones are long and contracted are short)?

      Thank you for your suggestions. We have included the results from our previous quantification of CIS assembly states observed in the WT in the revised manuscript (lines 106–110).

      In the acquired tomograms of CIS particles observed in intact and dead hyphae, we consistently observed only two CIS conformations: the fully extended state (average length of 233 nm, diameter of 18 nm) and the fully contracted state (average length of 124 nm, diameter of 23 nm). We have added this information to the revised manuscript (lines 112-114).

      - The Western blot in Fig. 3d, top panel, contains additional bands that are not mentioned. Are they non-specific bands? Absent in disA mutant? It would help if it was clarified in the legend what they are.

      Correct, these additional bands are unspecific bands, which are also visible in the lysate and soluble fraction of wild-type sample (negative control, no FLAG-tagged protein). We have now labelled these bands in the figure and clarified the figure legend.

      - Fig. S8a needs improvement. It was not possible to clearly see the stated effect of disA deletion on secondary metabolite production in these photos.

      We agree and have removed figure panel S8a from the manuscript. The quantification of total actinorhodin production shown in Figure S8b convincingly shows a significantly reduction of actinorhodin production in the cisA deletion mutant compared to the wildtype and the complement mutant.

      - It is not an important point, but the paragraph in lines 109-116 appears more like a re-iteration of the Introduction than Results.

      We agree. We have removed the highlighted text from the Results section and added some of the information to the introduction.

      - Line 206 appears to have a typo. Should it not be WT instead of WT cisA?

      Correct. This is a typo which has been fixed. Thank you.

      - At the end of the Discussion, it is suggested that a stepwise mechanism of recruiting CIS to the membrane and then triggering firing would prevent unwanted activation and self-inflicted death. Since both steps appear to be dependent in DisA, it would be good to more clearly spell out how such a stepwise mechanism would work and how it could prevent spontaneous and erroneous firing of the system.

      Thank you for this suggestion. We have revised the text to clarify the proposed stepwise mechanism. Based on additional structural modeling, we propose that the conserved extra-cytoplasmic domain of CisA may play a role in sensing stress signals. Binding of a ‘stress-associated molecule’ could induce a conformational change in CisA, a hypothesis supported by: (1) Foldseek protein structure searches, which suggest that the conserved C-terminal CisA domain resembles substrate/solute-binding proteins, and (2) AlphaFold3 models predicting that CisA can form a pentamer via its putative substrate-binding domain. This suggests that a transition from CisA monomers to pentamers in response to stress may serve as a key checkpoint, activating CisA and facilitating the recruitment of CIS assemblies to the membrane, either directly or indirectly. Conversely, in the absence of a stress signal, CisA is likely to remain in its monomeric (resting) form, incapable of triggering CIS firing. We have revised the discussion to explain the proposed model in more detail.

      We recognize that this model poses many testable hypotheses that we currently cannot test but aim to address in the future.

      Reviewer #3 (Recommendations for the authors):

      There are a few concerns potentially worth addressing to strengthen the study or for future investigation.

      (1) It would be worth considering moving the first part of the result ('CisA is required for CISSc contraction in situ') after presenting the structure of extended CISSc, and combining it with the last part of the result section ('CisA is essential for the cellular function of CISSc'), as both parts describe the functional characterization of CisA.

      We appreciate the reviewer’s suggestion but have chosen to retain the current order of the results. As this manuscript focuses on the role of CisA, we believe that first establishing a functional link between CisA and CIS contraction provides essential context and motivation for the study.

      (2) Line 169: it is not clear to me if the fusion of CisA with mCherry is functional (if it complements the native CisA). Moreover, it was not shown if its localization changes under nisin stress or in the strain with non-contractile CISSc.

      We have not tested if the CisA-mCherry fusion is fully functional. While we cannot exclude the possibility that the activity of this protein fusion is compromised in vivo, we believe that the described accumulation of CisA-mCherry at the membrane is accurate. This conclusion is further supported by the results obtained from protein fractionation experiments and the membrane topology assay (Figure 3).

      We did not examine if the localization of CisA-mCherry changes in CIS mutant strains under nisin-stress, but this is something we will follow up on in the future.

      (3) In ref 18, the previous work from the same team presented a functional fluorescent fusion of Cis2 (sheath), thus, it will be interesting to see if (i) Cis2 localization and dynamics is affected by the absence of CisA under normal and stressed conditions; (ii) if Cis2 shows any co-localization with CisA under normal and especially stressed conditions, and potentially, its timing correlation to ghost cell formation by time-lapse imaging of both fusions.

      We thank this reviewer for the suggestions, and we plan to address these questions in the future.

      (4) Line 261: it was hypothesized by authors that the cytosolic portion of CisA was required for interacting with Cis11. While it was not possible to verify the direct interaction at current state, a S. coelicolor mutant lacking this cytosolic domain may be of help to indirectly test the hypothesis. Moreover, it would be interesting to see if the cytosolic region alone is enough to induce the contraction upon stress (by removing the TM-C region). If so, whether it leads to cell death, or if it is insufficient to cause cell death without membrane association despite the sheath contraction. If not, it would suggest that membrane association occurs before contraction.

      These are really great suggestions and if we had the manpower and resources, we would have performed these experiments. We plan to follow up on these questions in the future.

      However, additional structural modelling of CisA indicates that CisA may exist in different configurations (see response to Reviewer #1 and #2), a monomeric and/or a pentameric configuration. In these structural models (revised Figure 3), CisA oligomerization is mediated by the annotated periplasmic solute-binding domain. It is conceivable that CisA oligomerization (e.g. in response to a stress signal) presents a critical checkpoint that results in a conformational change within CisA monomers that subsequently drives CisA oligomerization into a configuration primed to interact with CIS particles. We would therefore speculate that the expression of just the cytoplasmic CisA domain may not be sufficient for CIS contraction and cell death.

      (5) Line 263: as it was not possible to express full-length cisA in E. coli, making it difficult to assess the interaction between CisA and Cis11, it may be worth considering expressing the cytosolic portion of CisA (ΔTM-C) instead of full-length CisA, or alternatively performing a co-immunoprecipitation assay of CisA (i.e., with an affinity tag) from S. coelicolor cultures under stressed conditions. However, I am aware that these may be beyond the scope of this work but can be considered for future investigation in general.

      Thank you for your suggestions and your understanding that some of this work is beyond the scope of this work. We have performed CisA-FLAG co-immunoprecipitation experiments from S. coelicolor cultures that were treated with nisin for 0/15/45 min. However, mass spectrometry analysis of co-eluted peptides did not show the presence of CIS-associated peptides at the analysed timepoints. While we cannot exclude technical issues with our assays that resulted in an inefficient solubilization of CisA from Streptomyces membranes, an alternative hypothesis is that the interaction between CIS particles and CisA is very transient and therefore difficult to capture. We would like to mention, however, that we did detect CisA peptides in crude purifications of CIS particles from nisin-stressed cells (Supplementary Table 2, manuscript: line 301/302), supporting our proposed model that CisA can associate with CIS particles in vivo.

      Minor points:

      (1) I will suggest moving Supplementary Fig 2d with control quantification of WT strain and complementation strain (similar to Fig 3g from ref 18) to the main Fig 1, as the quantitative representation with better comparison without going back and forth to ref 18.

      Thank you for your suggestion. Instead of moving Supplementary Fig. 2d to the main figure, we have added additional information in lines 106–110 to discuss the previous quantification of CIS assembly states in the WT, as described in our earlier work. We believe this approach allows readers to easily reference our established quantification without compromising the flow of the main figures.

      (2) Line 52/785: as work of Ref 12 has recently been published DOI: 10.1126/sciadv.adp7088, the reference should be updated accordingly.

      This reference has been updated. Thank you.

      (3) A brief description of key differences between contracted (ref 18) and extended sheath structure will be a good addition for a broader audience.

      Thank you for this suggestion. We have added more information on lines 178–180.

      (4) Fig 3d: it is not clear how well the samples from different fractions were normalized in amount (volume and cell density), but there was an inconsistency in the amount of CisA-Flag in lysate, vs. soluble and membrane fractions (total protein amount combined from soluble fraction and membrane fraction together seemed to be more than in the lysate, while in theory it should be more or less equal; and the amount of WhiA from WT seemed to be less than from the CisA-Flag strain). In the method section, it was mentioned that 'The final pellet was dissolved in 1/10 of the initial volume with wash buffer (no urea). Equi-volume amounts of fractions were mixed with 2x SDS sample buffer and analyzed by immunoblotting.' But it is still not clear whether equivalent amounts (normalized to the same OD for example) were used and if we could directly compare. A brief clarification in the legend of how samples were prepared is needed.

      The samples were normalized by first using the same volume of starting material (similar culture density and incubation period for each strain) and by loading equal volumes of each fraction for analysis. After fractionation, equi-volume amounts of the soluble and membrane protein fractions were mixed with 2× SDS sample buffer and subjected to immunoblotting, ensuring a consistent basis for comparison between samples. We have revised the figure legend and Material and Method sections to make this clear.

      We agree that the amount of CisA-3xFLAG appears slightly lower in the “Lysate” fraction compared to the “Membrane” fraction in Figure 3d (now Fig. 3f). However, this does not affect the overall conclusion of this experiment, showing that CisA-3xFLAG is clearly enriched in the membrane fraction.

      For reference, please find below the uncropped version of this Western blot image. Based on the signal of the unspecific bands, we would like to argue that equal amounts of samples obtained from the WT control strain (no FLAG epitope present) and a strain producing CisA-3xFLAG were loaded for each of the fractions. When we revisited this data, we noted that the protein size marker was wrong. This has been fixed.

      Author response image 1.

      (5) Fig. 4f: statistical analysis is missing.

      The missing statistical analysis has been added to this figure and figure legend.

    1. Author response:

      (1) General Statements

      As you will see in our attached rebuttal to the reviewers, we have added several new experiments and revised manuscript to fully address their concerns.

      (2) Point-by-point description of the revisions

      Reviewer #1:

      Evidence, reproducibility and clarity

      Summary:

      The manuscript by Yang et al. describes a new CME accessory protein. CCDC32 has been previously suggested to interact with AP2 and in the present work the authors confirm this interaction and show that it is a bona fide CME regulator. In agreement with its interaction with AP2, CCDC32 recruitment to CCPs mirrors the accumulation of clathrin. Knockdown of CCDC32 reduces the amount of productive CCPs, suggestive of a stabilisation role in early clathrin assemblies. Immunoprecipitation experiments mapped the interaction of CCDC42 to the α-appendage of the AP2 complex α-subunit. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome disrupt the interaction of this protein to the AP2 complex. The manuscript is well written and the conclusions regarding the role of CCDC32 in CME are supported by good quality data. As detailed below, a few improvements/clarifications are needed to reinforce some of the conclusions, especially the ones regarding CFNDS.

      We thank the referee for their positive comments. In light of a recently published paper describing CCDC32 as a co-chaperone required for AP2 assembly (Wan et al., PNAS, 2024, see reviewer 2), we have added several additional experiments to address all concerns and consequently gained further insight into CCDC32-AP2 interactions and the important dual role of CCDC32 in regulating CME. 

      Major comments:

      (1) Why did the protein could just be visualized at CCPs after knockdown of the endogenous protein? This is highly unusual, especially on stable cell lines. Could this be that the tag is interfering with the expressed protein function rendering it incapable of outcompeting the endogenous? Does this points to a regulated recruitment?

      The reviewer is correct, this would be unusual; however, it is not the case. We misspoke in the text (although the figure legend was correct) these experiments were performed without siRNA knockdown and we can indeed detect eGFP-CCDC32 being recruited to CCPs in the presence of endogenous protein. Nonetheless, we repeated the experiment to be certain (see Author response image 1).  

      Author response image 1.

      Cohort-averaged fluorescence intensity traces of CCPs (marked with mRuby-CLCa) and CCP-enriched eGFPCCDC32(FL).

      (2) The disease mutation used in the paper does not correspond to the truncation found in patients. The authors use an 1-54 truncation, but the patients described in Harel et al. have frame shifts at the positions 19 (Thr19Tyrfs*12) and 64 (Glu64Glyfs*12), while the patient described in Abdalla et al. have the deletion of two introns, leading to a frameshift around amino acid 90. Moreover, to be precisely test the function of these disease mutations, one would need to add the extra amino acids generated by the frame shift. For example, as denoted in the mutation description in Harel et al., the frameshift at position 19 changes the Threonine 19 to a Tyrosine and ads a run of 12 extra amino acids (Thr19Tyrfs*12).

      The label of the disease mutant p.(Thr19Tyrfs12) and p.(Glu64Glyfs12) is based on a 194aa polypeptide version of CCDC32 initiated at a nonconventional start site that contains a 9 aa peptide (VRGSCLRFQ) upstream of the N-terminus we show. Thus, we are indeed using the appropriate mutation site (see: https://www.uniprot.org/uniprotkb/Q9BV29/entry). The reviewer is correct that we have not included the extra 12 aa in our construct; however as these residues are not present in the other CFNDS mutants, we think it unlikely that they contribute to the disease phenotype.  Rather, as neither of the clinically observed mutations contain the 78-98 aa sequence required for AP2 binding and CME function, we are confident that this defect contributed to the disease. Thus, we are including the data on the CCDC32(1-54) mutant, as we believe these results provide a valuable physiological context to our studies. 

      (3) The frameshift caused by the CFNDS mutations (especially the one studied) will likely lead to nonsense mediated RNA decay (NMD). The frameshift is well within the rules where NMD generally kicks in. Therefore, I am unsure about the functional insights of expressing a diseaserelated protein which is likely not present in patients.

      We thank the reviewer for bringing up this concern. However, as shown in new Figure S1, the mutant protein is expressed at comparable levels as the WT, suggesting that NMD is not occurring.

      (4) Coiled coils generally form stable dimers. The typically hydrophobic core of these structures is not suitable for transient interactions. This complicates the interpretation of the results regarding the role of this region as the place where the interaction to AP2 occurs. If the coiled coil holds a stable CCDC32 dimer, disrupting this dimer could reduce the affinity to AP2 (by reduced avidity) to the actual binding site. A construct with an orthogonal dimeriser or a pulldown of the delta78-98 protein with of the GST AP2a-AD could be a good way to sort this issue.

      We were unable to model a stable dimer (or other oligomer) of this protein with high confidence using Alphafold 3.0. Moreover, we were unable to detect endogenous CCDC32 coimmunoprecipitating with eGFP-CCDC32 (Fig. S6C). Thus, we believe that the moniker, based solely on the alpha-helical content of the protein is a misnomer.  We have explained this in the main text.

      Minor comments:

      (1) The authors interchangeably use the term "flat CCPs" and "flat clathrin lattices". While these are indeed related, flat clathrin lattices have been also used to refer to "clathrin plaques". To avoid confusion, I suggest sticking to the term "flat CCPs" to refer to the CCPs which are in their early stages of maturation.

      Agreed. Thank you for the suggestion. We have renamed these structures flat clathrin assemblies, as they do not acquire the curvature needed to classify them as pits, and do not grow to the size that would classify then as plaques. 

      Significance

      General assessment:

      CME drives the internalisation of hundreds of receptors and surface proteins in practically all tissues, making it an essential process for various physiological processes. This versatility comes at the cost of a large number of molecular players and regulators. To understand this complexity, unravelling all the components of this process is vital. The manuscript by Yang et al. gives an important contribution to this effort as it describes a new CME regulator, CCDC32, which acts directly at the main CME adaptor AP2. The link to disease is interesting, but the authors need to refine their experiments. The requirement for endogenous knockdown for recruitment of the tagged CCDC32 is unusual and requires further exploration.

      Advance:

      The increased frequency of abortive events presented by CCDC32 knockdown cells is very interesting, as it hints to an active mechanism that regulates the stabilisation and growth of clathrin coated pits. The exact way clathrin coated pits are stabilised is still an open question in the field.

      Audience:

      This is a basic research manuscript. However, given the essential role of CME in physiology and the growing number of CME players involved in disease, this manuscript can reach broader audiences.

      We thank the referee for recognizing the ‘interesting’ advances our studies have made and for considering these studies as ‘an important contribution’ to ‘an essential process for various physiological processes’ and able ‘to reach broader audiences’. We have addressed and reconciled the reviewer’s concerns in our revised manuscript. 

      Field of expertise of the reviewer:

      Clathrin mediated endocytosis, cell biology, microscopy, biochemistry.

      Reviewer #2:

      Evidence, reproducibility and clarity

      In this manuscript, the authors demonstrate that CCDC32 regulates clathrin-mediated endocytosis (CME). Some of the findings are consistent with a recent report by Wan et al. (2024 PNAS), such as the observation that CCDC32 depletion reduces transferrin uptake and diminishes the formation of clathrin-coated pits. The primary function of CCDC32 is to regulate AP2 assembly, and its depletion leads to AP2 degradation. However, this study did not examine AP2 expression levels. CCDC32 may bind to the appendage domain of AP2 alpha, but it also binds to the core domain of AP2 alpha.

      We thank the reviewer for drawing our attention to the Wan et al. paper, that appeared while this work was under review.  However, our in vivo data are not fully consistent with the report from Wan et al. The discrepancies reveal a dual function of CCDC32 in CME that was masked by complete knockout vs siRNA knockdown of the protein, and also likely affected by the position of the GFP-tag (C- vs N-terminal) on this small protein. Thus:

      -  Contrary to Wan et al., we do not detect any loss of AP2 expression (see new Figure S3A-B) upon siRNA knockdown. Most likely the ~40% residual CCDC32 present after siRNA knockdown is sufficient to fulfill its catalytic chaperone function but not its structural role in regulating CME beyond the AP2 assembly step.  

      - Contrary to Wan et al., we have shown that CCDC32 indeed interacts with intact AP2 complex (Figure S3C and 6B,C) showing that all 4 subunits of the AP2 complex co-IP with full length eGFP-CCDC32. Interestingly, whereas the full length CCDC32 pulls down the intact AP2 complex, co-IP of the ∆78-98 mutant retains its ability to pull down the β2-µ2 hemicomplex, its interactions with α:σ2 are severely reduced.  While this result is consistent with the report of Wan et al that CCDC32 binds to the α:σ2 hemi-complex, it also suggests that the interactions between CCDC32 and AP2 are more complex and will require further studies.

      - Contrary to Wan et al., we provide strong evidence that CCDC32 is recruited to CCPs. Interestingly, modeling with AlphaFold 3.0 identifies a highly probably interaction between alpha helices encoded by residues 66-91 on CCDC32 and residues 418-438 on α. The latter are masked by µ2-C in the closed confirmation of the AP2 core, but exposed in the open confirmation triggered by cargo binding, suggesting that CCDC32 might only bind to membrane-bound AP2.

      Thus, our findings are indeed novel and indicate striking multifunctional roles for CCDC32 in CME, making the protein well worth further study. 

      (1) Besides its role in AP2 assembly, CCDC32 may potentially have another function on the membrane. However, there is no direct evidence showing that CCDC32 associates with the plasma membrane.

      We disagree, our data clearly shows that CCDC32 is recruited to CCPs (Fig. 1B) and that CCPs that fail to recruit CCDC32 are short-lived and likely abortive (Fig. 1C). Wan et al. did not observe any colocalization of C-terminally tagged CCDC32 to CCPs, whereas we detect recruitment of our N-terminally tagged construct, which we also show is functional (Fig. 6F).  Further, we have demonstrated the importance of the C-terminal region of CCDC32 in membrane association (see new Fig. S7).  Thus, we speculate that a C-terminally tagged CCDC32 might not be fully functional. Indeed, SIM images of the C-terminally-tagged CCDC32 in Wan et al., show large (~100 nm) structures in the cytosol, which may reflect aggregation. 

      (2) CCDC32 binds to multiple regions on AP2, including the core domain. It is important to distinguish the functional roles of these different binding sites.

      We have localized the AP2-ear binding region to residues 78-99 and shown these to be critical for the functions we have identified. As described above we now include data that are complementary to those of Wan et al. However, our data also clearly points to additional binding modalities. We agree that it will be important and map these additional interactions and identify their functional roles, but this is beyond the scope of this paper.  

      (3) AP2 expression levels should be examined in CCDC32 depleted cells. If AP2 is gone, it is not surprising that clathrin-coated pits are defective.

      Agreed and we have confirmed this by western blotting (Figure S3A-B) and detect no reduction in levels of any of the AP2 subunits in CCDC32 siRNA knockdown cells. As stated above this could be due to residual CCDC32 present in the siRNA KD vs the CRISPR-mediated gene KO.

      (4) If the authors aim to establish a secondary function for CCDC32, they need to thoroughly discuss the known chaperone function of CCDC32 and consider whether and how CCDC32 regulates a downstream step in CME.

      Agreed. We have described the Wan et al paper, which came out while our manuscript was in review, in our Introduction.  As described above, there are areas of agreement and of discrepancies, which are thoroughly documented and discussed throughout the revised manuscript.  

      (5) The quality of Figure 1A is very low, making it difficult to assess the localization and quantify the data.

      The low signal:noise in Fig. 1A the reviewer is concerned about is due to a diffuse distribution of CCDC32 on the inner surface of the plasma membrane. We now, more explicitly describe this binding, which we believe reflects a specific interaction mediated by the C-terminus of CCDC32; thus the degree of diffuse membrane binding we observe follows: eGFP-CCDC32(FL)> eGFPCCDC32(∆78-98)>eGFP-CCDC32(1-54)~eGFP/background (see new Fig. S7). Importantly, the colocalization of CCDC32 at CCPs is confirmed by the dynamic imaging of CCPs (Fig 1B).

      (6) In Figure 6, why aren't AP2 mu and sigma subunits shown?

      Agreed. Not being aware of CCDC32’s possible dual role as a chaperone, we had assumed that the AP2 complex was intact.  We have now added this data in Figure 6 B,C and Fig. S3C, as discussed above. 

      Page 5, top, this sentence is confusing: "their surface area (~17 x 10 nm<sup>2</sup>) remains significantly less than that required for the average 100 nm diameter CCV (~3.2 x 103 nm<sup>2</sup>)."

      Thank you for the criticism. We have clarified the sentence and corrected a typo, which would definitely be confusing.  The section now reads,  “While the flat CCSs we detected in CCDC32 knockdown cells were significantly larger than in control cells (Fig. 4D, mean diameter of 147 nm vs. 127 nm, respectively), they are much smaller than typical long-lived flat clathrin lattices (d≥300 nm)(Grove et al., 2014). Indeed, the surface area of the flat CCSs that accumulate in CCDC32 KD cells (mean ~1.69 x 10<sup>4</sup> nm<sup>2</sup>) remains significantly less than the surface area of an average 100 nm diameter CCV (~3.14 x 10<sup>4</sup> nm<sup>2</sup>). Thus, we refer to these structures as ‘flat clathrin assemblies’ because they are neither curved ‘pits’ nor large ‘lattices’. Rather, the flat clathrin assemblies represent early, likely defective, intermediates in CCP formation.” 

      Significance

      Overall, while this work presents some interesting ideas, it remains unclear whether CCDC32 regulates AP2 beyond the assembly step.

      Our responses above argue that we have indeed established that CCDC32 regulates AP2 beyond the assembly step. We have also identified several discrepancies between our findings and those reported by Wan et al., most notably binding between CCDC32 and mature AP2 complexes and the AP2-dependent recruitment of CCDC32 to CCPs.  It is possible that these discrepancies may be due to the position of the GFP tag (ours is N-terminal, theirs is C-terminal; we show that the N-terminal tagged CCDC32 rescues the knockdown phenotype, while Wan et al., do not provide evidence for functionality of the C-terminal construct). 

      Reviewer #3: 

      Evidence, reproducibility and clarity (Required): 

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, known to play a role in CFNDS, is also addressed in this study and shown to have endocytic defects.

      We thank the reviewer for their positive remarks regarding the quality of our data and the strength of our conclusions.  

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2, whereby the following major and minor points remain to be addressed: 

      - The authors show that CCDC32 depletion leads to the formation of brighter and static clathrin coated structures (Figure 2), but that these were only prevalent to 7.8% and masked the 'normal' dynamic CCPs. At the same time, the authors show that the absence of CCDC32 induces pits with shorter life times (Figure 1 and Figure 2), the 'majority' of the pits.

      Clarification is needed as to how the authors arrive at these conclusions and these numbers. The authors should also provide (and visualize) the corresponding statistics. The same statement is made again later on in the manuscript, where the authors explain their electron microscopy data. Was the number derived from there? 

      These points are critical to understanding CCDC32's role in endocytosis and is key to understanding the model presented in Figure 8. The numbers of how many pits accumulate in flat lattices versus normal endocytosis progression and the actual time scales could be included in this model and would make the figure much stronger. 

      Thank you for these comments.  We understand the paradox between the visual impression and the reality of our dynamic measurements. We have been visually misled by this in previous work (Chen et al., 2020), which emphasizes the importance of unbiased image analysis afforded to us through the well-documented cmeAnalysis pipeline, developed by us (Aguet et al., 2013) and now used by many others (e.g. (He et al., 2020)). 

      The % of static structures was not derived from electron microscopy data, but quantified using cmeAnalysis, which automatedly provides the lifetime distribution of CCPs. We have now clarified this in the manuscript and added a histogram (Fig. S4) quantifying the fraction of CCPs in lifetime cohorts  <20s, 21-60s, 61-100s, 101-150s and >150s (static). 

      - In relation to the above point, the statistics of Figure 2E-G and the analysis leading there should also be explained in more detail: For example, what are the individual points in the plot (also in Figures 6G and 7G)? The authors should also use a few phrases to explain software they use, for example DASC, in the main text. 

      Each point in these bar graphs represents a movie, where n≥12. These details have been added to the respective figure legend. We have also added a brief description of DASC analysis in the text. 

      -  There are several questions related to the knock-down experiments that need to be addressed:

      Firstly, knock-down of CCDC32 does not seem to be very strong (Figure S2B). Can the level of knock-down be quantified? 

      We have now quantified the KD efficiency. It is ~60%. This turns out to be fortuitous (see responses to reviewer 2), as a recent publication, which came out after we completed our study, has shown by CRISPR-mediated knockout, that CCD32 also plays an essential chaperone function required for AP2 assembly.  We do not see any reduction in AP2 levels or its complex formation under our conditions (see new Supplemental Figure S3), which suggests that the effects of CCDC32 on CCP dynamics are more sensitive to CCDC32 concentration than its roles as a chaperone. Our phenotypes would have been masked by more efficient depletion of CCDC32.  

      In page 6 it is indicated that the eGFP-CCDC32(1-54) and eGFP-CCDC32(∆78-98) constructs are siRNA-resistant. However in Fig S2B, these proteins do not show any signal in the western blot, so it is not clear if they are expressed or simply not detected by the antibody. The presence of these proteins after silencing endogenous CCDC32 needs to be confirmed to support Figures 6 and Figures 7, which critically rely on the presence of the CCDC32 mutants. 

      Unfortunately, the C-terminally truncated CCDC32 proteins are not detected because they lack the antibody epitope, indeed even the ∆78-98 deletion is poorly detected (compare the GFP blot in new S1A with the anti-CCDC32 blot in S1B).  However, these constructs contain the same siRNA-resistance mutation as the full length protein. That they are expressed and siRNA resistant can be seen in Fig. S2A (now Fig. S1A) blotting for GFP.

      In Figures 6 and 7, siRNA knock-down of CCDC32 is only indicated for sub-figures F to G. Is this really the case? If not, the authors should clarify. The siRNA knock-down in Figure 1 is also only mentioned in the text, not in the figure legend. The authors should pay attention to make their figure legends easy to understand and unambiguous. 

      No, it is not the case.  Thank you for pointing out the uncertainty. We have added these details to the Figure legends and checked all Figure legends to ensure that they clearly describe the data shown.  

      - It is not exactly clear how the curves in Figure 3C (lower panel) on the invagination depth were obtained. Can the authors clarify this a bit more? For example, what are kT and kE in Figure 3A? What is I0? And how did the authors derive the logarithmic function used to quantify the invagination depth? In the main text, the authors say that the traces were 'logarithmically transformed'. This is not a technical term. The authors should refer to the actual equation used in the figure. 

      This analysis was developed by the Kirchhausen lab (Saffarian and Kirchhausen, 2008). We have added these details and reference them in the Figure legend and in the text. We also now use the more accurate descriptor ‘log-transformed’.

      - In the discussion, the claim 'The resulting dysregulation of AP2 inhibits CME, which further results in the development of CFNDS.' is maybe a bit too strong of a statement. Firstly, because the authors show themselves that CME is perturbed, but by no means inhibited. Secondly, the molecular link to CFNDS remains unclear. Even though CCDC32 mutants seem to be responsible for CFNDS and one of the mutant has been shown in this study to have a defect in endocytosis and AP2 binding, a direct link between CCDC32's function in endocytosis and CFNDS remains elusive. The authors should thus provide a more balanced discussion on this topic. 

      We have modified and softened our conclusions, which now read that the phenotypes we see likely “contribute to” rather than “cause” the disease.

      - In Figure S1, the authors annotate the presence of a coiled-coil domain, which they also use later on in the manuscript to generate mutations. Could the authors specify (and cite) where and how this coiled-coil domain has been identified? Is this predicted helix indeed a coiled-coil domain, or just a helix, as indicated by the authors in the discussion?

      See response to Reviewer 1, point 4.  We have changed this wording to alpha-helix. The ‘coiled-coil’ reference is historical and unlikely a true reflection of CCDC32 structure. AlphaFold 3.0 predictions were unable to identify with certainly any coiled-coil structures, even if we modelled potential dimers or trimers; and we find no evidence of dimerization of CCDC32 in vivo. We have clarified this in the text.

      Minor comments

      - In general, a more detailed explanation of the microscopy techniques used and the information they report would be beneficial to provide access to the article also to non-expert readers in the field. This concerns particularly the analysis methods used, for example: 

      How were the cohort-averaged fluorescence intensity and lifetime traces obtained? 

      How do the tools cmeAnalysis and DASC work? A brief explanation would be helpful. 

      We have expanded Methods to add these details, and also described them in the main text. 

      - The axis label of Figure 2B is not quite clear. What does 'TfnR uptake % of surface bound' mean? Maybe the authors could explain this in more detail in the figure legend? Is the drop in uptake efficiency also accessible by visual inspection of the images? It would be interesting to see that. 

      This is a standard measure of CME efficiency. 'TfnR uptake % of surface bound' = Internalized TfnR/Surface bound TfnR. Again, images may be misleading as defects in CME lead to increased levels of TfnR on the cell surface, which in turn would result in more Tfn uptake even if the rate of CME is decreased.

      - Figure 4: How is the occupancy of CCPs in the plasma membrane measured? What are the criteria used to divide CCSs into Flat, Dome or Sphere categories? 

      We have expanded Methods to add these details. Based on the degree of invagination, the shapes of CCSs were classified as either: flat CCSs with no obvious invagination; dome-shaped CCSs that had a hemispherical or less invaginated shape with visible edges of the clathrin lattice; and spherical CCSs that had a round shape with the invisible edges of clathrin lattice in 2D projection images. In most cases, the shapes were obvious in 2D PREM images. In uncertain cases, the degree of CCS invagination was determined using images tilted at ±10–20 degrees. The area of CCSs were measured using ImageJ and used for the calculation of the CCS occupancy on the plasma membrane.

      - Figure 5B: Can the authors explain, where exactly the GFP was engineered into AP2 alpha? This construct does not seem to be explained in the methods section. 

      We have added this information. The construct, which corresponds to an insertion of GFP into the flexible hinge region of AP2, at aa649, was first described by (Mino et al., 2020) and shown to be fully functional.  This information has been added to the Methods section.

      - Figure S1B: The authors should indicate the colour code used for the structural model.

      We have expanded our structural modeling using AlphaFold 3.0 in light of the recent publication suggesting the CCDC32 interacts with the µ2 subunit and does not bind full length AP2. These results are described in the text. The color coding now reflects certainty values given by AlphaFold 3.0 (Fig. S6B, D). 

      - The list of primers referred to in the materials and methods section does not exist. There is a Table S1, but this contains different data. The actual Table S1 is not referenced in the main text. This should be done. 

      We apologize for this error. We have now added this information in Table S2.

      Significance (Required):

      In this study, the authors analyse a so-far poorly understood endocytic accessory protein, CCDC32, and its implication for endocytosis. The experimental tool set used, allowing to quantify CCP dynamics and invagination is clearly a strength of the article that allows assessing the impact of an accessory protein towards the endocytic uptake mechanism, which is normally very robust towards mutations. Only through this detailed analysis of endocytosis progression could the authors detect clear differences in the presence and absence of CCDC32 and its mutants. If the above points are successfully addressed, the study will provide very interesting and highly relevant work allowing a better understanding of the early phases in CME with implication for disease. 

      The study is thus of potential interest to an audience interested in CME, in disease and its molecular reasons, as well as for readers interested in intrinsically disordered proteins to a certain extent, claiming thus a relatively broad audience. The presented results may initiate further studies of the so-far poorly understood and less well known accessory protein CCDC32.

      We thank the reviewer for their positive comments on the significance of our findings and the importance of our detailed phenotypic analysis made possible by quantitative live cell microscopy. We also believe that our new structural modeling of CCDC32 and our findings of complex and extensive interactions with AP2 make the reviewers point regarding intrinsically disordered proteins even more interesting and relevant to a broad audience.  We trust that our revisions indeed address the reviewer’s concerns. 

      The field of expertise of the reviewer is structural biology, biochemistry and clathrin mediated endocytosis. Expertise in cell biology is rather superficial.

      References:

      Aguet, F., Costin N. Antonescu, M. Mettlen, Sandra L. Schmid, and G. Danuser. 2013. Advances in Analysis of Low Signal-to-Noise Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint. Developmental Cell. 26:279-291.

      Chen, Z., R.E. Mino, M. Mettlen, P. Michaely, M. Bhave, D.K. Reed, and S.L. Schmid. 2020. Wbox2: A clathrin terminal domain–derived peptide inhibitor of clathrin-mediated endocytosis. Journal of Cell Biology. 219.

      Grove, J., D.J. Metcalf, A.E. Knight, S.T. Wavre-Shapton, T. Sun, E.D. Protonotarios, L.D. Griffin, J. Lippincott-Schwartz, and M. Marsh. 2014. Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell. 25:3581-3594.

      He, K., E. Song, S. Upadhyayula, S. Dang, R. Gaudin, W. Skillern, K. Bu, B.R. Capraro, I. Rapoport, I. Kusters, M. Ma, and T. Kirchhausen. 2020. Dynamics of Auxilin 1 and GAK in clathrinmediated traffic. J Cell Biol. 219.

      Mino, R.E., Z. Chen, M. Mettlen, and S.L. Schmid. 2020. An internally eGFP-tagged α-adaptin is a fully functional and improved fiduciary marker for clathrin-coated pit dynamics. Traffic. 21:603-616.

      Saffarian, S., and T. Kirchhausen. 2008. Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys J. 94:23332342.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      In their manuscript de las Mercedes Carro et al investigated the role of Ago proteins during spermatogenesis by producing a triple knockout of Ago 1, 3 and 4. They first describe the pattern of expression of each protein and of Ago2 during the differentiation of male germ cells, then they describe the spermatogenesis phenotype of triple knockout males, study gene deregulation by scRNA seq and identify novel interacting proteins by co-IP mass spectrometry, in particular BRG1/SMARCA4, a chromatin remodeling factor and ATF2 a transcription factor. The main message is that Ago3 and 4 are involved in the regulation of XY gene silencing during meiosis, and also in the control of autosomal gene expression during meiosis. Overall the manuscript is well written, the topic, very interesting and the experiments, well-executed. However, there are some parts of the methodology and data interpretation that are unclear (see below).

      Major comments

      1= Please clarify how the triple KO was obtained, and if it is constitutive or specific to the male germline. In the result section a Cre (which cre?) is mentioned but it is not mentioned in the M&M. On Figure S1, a MICER VECTOR is shown instead of a deletion, but nothing is explained in the text nor legend. Could the authors provide more details in the results section as well as in the M&M ? This is essential to fully interpret the results obtained for this KO line, and to compare its phenotype to other lines (such as lines 184-9 Comparison of triple KO phenotype with that of Ago4 KO). Also, if it is a constitutive KO, the authors should mention if they observed other phenotypes in triple KO mice since AGO proteins are not only expressed in the male germline.

      Response: We apologize for omitting this vital information. We have now incorporated a more detailed description of how the Ago413 mutant was created in the results and M&M sections (line 120 and 686 respectively).

      As mentioned in the manuscript, Ago4, Ago1 and Ago3 are widely expressed in mammalian somatic tissues. Mutations or deletions of these genes does not disrupt development; however, there is limited research on the impact of these mutations in mammalian models in vivo. In humans, mutations in Ago1 and Ago3 genes are associated with neurological disorders, autism and intellectual disability (Tokita, M.J.,et al. 2015- doi: 10.1038/ejhg.2014.202., Sakaguchi et al. 2019- doi: 10.1016/j.ejmg.2018.09.004, Schalk et al 2021- doi: 10.1136/jmedgenet-2021-107751). In mouse, global deletion of Ago1 and Ago3 simultaneously was shown to increase mice susceptibility to influenza virus through impaired inflammation responses (Van Stry et al 2012- doi.org/10.1128/jvi.05303-11). Studies performed in female Ago413 mutants (the same mutant line used herein) have shown that knockout mice present postnatal growth retardation with elevated circulating leukocytes (Guidi et al 2023- doi: 10.1016/j.celrep.2023.113515). Other studies of double conditional knockout of Ago1 and Ago3 in the skin associated the loss of these Argonautes with decreased weight of the offspring and severe skin morphogenesis defects (Wang et al 2012- doi: 10.1101/gad.182758.111). In our study, we did not observe major somatic or overt behavioral phenotypes, and we did not observe statistical differences in body weights of null males compared to WT as shown in figure below.

      2= The paragraph corresponding to G2/M analysis is unclear to me. Why was this analysis performed? What does the heatmap show in Figure S4? What is G2/M score? (Fig 2D). Lines 219-220, do the authors mean that Pachytene cells are in a cell phase equivalent to G2/M? All this paragraph and associated figures require more explanation to clarify the method and interpretation.

      __Response: __We have modified the methods to include more information about how the cell cycle scoring used in Figures 2D and S4 were calculated and will add more information regarding the interpretation of these figures.

      3= I have concerns regarding Fig2G: to be convincing the analysis needs to be performed on several replicates, and, it is essential to compare tubules of the same stage - which does not seem to be the case. This does not appear to be the case. Besides, co (immunofluorescent) staining with markers of different cell types should be shown to demonstrate the earlier expression of some markers and their colocalization with markers of the earlier stages.

      __Response: __We agree with the Reviewer. New images with staged tubules will be added to the analysis of Figure 2G.

      4= one important question that I think the authors should discuss regarding their scRNAseq: clusters are defined using well characterized markers. But Ago triple KO appears to alter the timing of expression of genes... could this deregulation affects the interperetation of scRNAseq clusters and results?

      __Response: __We thank the reviewer for this suggestion and agree that including this information is important. We expect that, at most, this dysregulation impacts the edges of these clusters slightly. Given that marker genes that have been used to define cell types in these data are consistently expressed between the knockout and wildtype mice (see Figure S4A), we do not think that the cells in these clusters have different identities, just dysregulated expression programs. We have added the relevant sentence to the discussion, and will include additional supplemental figure panels to document this point more comprehensively.

      5= XY gene deregulation is mentioned throughout the result section but only X chromosome genes seem to have been investigated.... Even the gene content of the Y is highly repetitive, it would be very interesting to show the level of expression of Y single copy and Y multicopy genes in a figure 3 panel.

      __Response: __We agree with the reviewer that including analysis of Y-linked genes is important. We will add a supplemental figure which includes the Y:Autosome ratio and differential expression analysis.

      6= Can the authors elaborate on the observation that X gene upregulation is visible in the KO before MSCI; that is in lept/zygotene clusters (and in spermatogonia, if the difference visible in 3A is significant?)

      Response: We do see that X gene expression is upregulated before pachynema. Previous scRNA-seq studies that have looked at MCSI have seen that silencing of genes on the X and Y chromosomes starts before the cell clusters that are defined as pachynema, though silencing is not fully completed until pachynema. We have clarified this point in the manuscript.

      7 = miRNA analysis: could the authors indicate if X encoded miRNA were identified and found deregulated? Because Ago4 has been shown to lead to a downregulation of miRNA, among which many X encoded. It is therefore puzzling to see that the triple KO does not recapitulate this observation. Were the analyses performed differently in the present study and in Ago4 KO study?

      __Response: __The analysis identifying downregulation of miRNA in the original Ago4 mutant analysis was conducted relative to total small RNA expression. Amongst those altered miRNA families in the Ago4 mutants, we demonstrated both upregulation and downregulation of miRNA. We agree that confirming a similar global downregulation of miRNA counts compared to other small RNAs is important. Therefore, in a revised manuscript, we will add this information to the miRNA analysis section, especially highlighting the X chromosome-associated miRNAs, as well as whether the ratios between other small RNA classes change.

      8 = The last results paragraph would also benefit from some additional information. It is not clear why the authors focused on enhancers and did not investigate promoters (or maybe they were but it's unclear). Which regions (size and location from TSS) were investigated for motif enrichment analyses? To what correspond the "transcriptional regulatory regions previously identified using dREG" mentioned in the M&M? I understand it's based on a previous article, but more info in the present manuscript would be useful.

      Response: We thank the reviewer for this suggestion. The regions that were used for motif enrichment will be included as a supplementary information in the fully revised manuscript. We have also clarified in the methods that these transcriptional regulatory regions were downloaded from GEO and obtained from previous ChRO-seq data (from GEO) analysis. These data are run through the dREG pipeline that identifies regions predicted to contain transcription start sites, which include promoters and enhancers.

      Minor comments

      1) In the introduction: The sentence "Ago1 is not expressed in the germline from the spermatogonia stage onwards allowing us to use this model to study the roles of Ago4 and Ago3 in spermatogenesis." is misleading because Ago1 is expressed at least in spermatogonia; It would be more precise to write "after spermatogonia stage" and rephrase the sentence. Otherwise it is surprising to see AGO1 protein in testis lysate and it is not in line with the scRNA seq shown in figure 2.

      __Response: __We agree with the Reviewers suggestion and have edited the sentence on line 100. This sentence now reads "Ago1 is not expressed in the germline after the spermatogonia stage allowing us to use this model to study the roles of Ago4 and Ago3 in spermatogenesis".

      2) Could the authors precise if AGO proteins are expressed in other tissues? In somatic testicular cells?

      __Response: __Expression patterns of mammalian AGOs have been described in somatic and testicular tissues for the mouse by Gonzales-Gonzales et al (2008) by qPCR. They found that Ago2 is expressed in all the somatic tissues analyzed (brain, spleen, heart, muscle and lung) as well as the testis, with the highest expression in brain and lowest in heart. Ago1 is highly expressed in spleen compared to all the tissues analyzed, while Ago3 and Ago4 showed highest expression in testis and brain. Within somatic tissues of the testis, the four argonautes are expressed in Sertoli cells, however, Ago1,3 and 4 expression is very low compared to Ago2, with the latter showing a 10-fold higher transcript level. We have included a sentence with this information in the introduction in line 89.

      3) Pattern of expression: How do the authors explain that AGO3 disappears at the diplotene stage and reappears in spermatids?

      __Response: __ Single cell RNAseq data in the germline shows reduced transcript for Ago3 from the Pachytene stage onwards, suggesting minimal if any new transcription in round spermatids. We hypothesize that the AGO3 protein present in the round spermatid stage is cytoplasmic, presumably coming from the pool of AGO3 in the chromatoid body, a cytoplasmic structure with functional association with the nucleus in round spermatids (Kotaja et al, 2003 doi: 10.1073/pnas.05093331).

      4) It would be useful to show the timing of expression of AGO 1 to 4 throughout spermatogenesis in the first paragraph of the article. Maybe the authors could present data from fig2B earlier?

      Response: We understand the Reviewers concern, however, given that Ago expression throughout spermatogenesis was obtained from scRNA seq, we consider that this data should be presented after introducing the Ago413 knockout and the scRNA seq experiment. As Ago1-4 expression was also described in an earlier manuscript by Gonzales-Gonzales et al in the mouse male germline, and our data aligns with this report, we included a sentence about these previous findings in the earlier results section.

      5) Line 190: please modify the sentence "reveal no differences in cellular architecture of the seminiferous tubules when compared to wild-type males" to " reveal no gross differences..." since even without quantification of the different cell types it is visible that KO seminiferous tubules are different from WT tubules.

      __Response: __We agree with the reviewer, and we modified line 190 (now 173) as suggested. Grossly, seminiferous tubules from Ago413 null males contain the same cell types as in wild type tubules, including spermatozoa. However, our studies show that the number and quality of germ cells is compromised in knockouts, as shown by sperm counts and TUNEL staining.

      6) TUNEL analysis: please stage the tubules to determine the stage(s) at which apoptosis is the most predominant.

      __Response: __We have complied with the reviewer suggestion. Figure 1G now shows staged seminiferous tubules, and we have replaced the wild type image for one where the staged tubules match the knockout image.

      7) Figure S4B does not show an increase of cells at Pachytene stage but at Lepto/zygotene stage (as well as an increase of spermatogonia). Please comment this discrepancy with results shown in Fig2.

      __Response: __Figures 2 and S4 show distribution of cells in different substages of spermatogenesis and prophase I measured with very different methods: a cytological approach using chromosome spreads cells vs a transcriptomic approach that involves clustering of cells. We attribute the differences in cell type distribution to differences in the sensitivity of the methods to identify each cell type and therefore identify differences between the number of cells for each group. Moreover, our scRNA-seq data groups the leptotene and zygotene stages together, while the cytological approach allows for separation of these two sub-stages. Importantly, both results show that Ago413 spermatocytes are progressing slower from pachynema into diplonema and/or are dying after pachynema, as stated in line 194 in our manuscript.

      8) Fig5H and 5I are not mentioned in the result section. Also, it would be useful to label them with "all chromosomes" and "XY" to differentiate them easily

      __Response: __We apologize for the omission and have now cited Figures 5H and 5I in the manuscript (line 453). We have added the suggested labels.

      9) Line 530 "data provide further evidence for a functional association between AGO-dependent small RNAs and heterochromatin formation, maintenance and/or silencing." Please rephrase, the present article does not really show that AGO nuclear role depends on small RNAs.

      __Response____: __We agree with the reviewer that these data do not directly show a dependence on small RNAs. As our identified localization of AGO proteins to the pericentric heterochromatin coincides with localization of DICER shown previously by Yadav and collaborators (2020, doi: 10.1093/nar/gkaa460), we do believe that our data further implicates small RNAs in the silencing of heterochromatin. Yadav et al shows that DICER localizes to pericentromeric heterochromatin and processes major satellite transcripts into small RNAs in mouse spermatocytes, and cKO germ cells have reduced localization of SUV39H2 and H3K9me3 to the pericentromeric heterochromatin. Given the colocalization of both small RNA producing machinery and AGOs at pericentromeric heterochromatin, the AGOs may bind these small RNAs, and the statement in line 530 refers to how our results provide evidence for the involvement of other RNAi machinery in the silencing of pericentromeric heterochromatin investigated by Yadav et al which likely includes small RNAs.

      To clarify this point, we have modified the text accordingly.

      10) Line 1256: replace "cite here " by appropriate reference

      __Response: __The reference was added to line 1256.

      11) Please use SMARCA4 instead of BRG1 name as it is its official name.

      __Response: __We have replaced BRG1 with SMARCA4 in the text and figures.

      Figures:

      Figure 1: Are the pictures shown for Ago3-tagged and floxed from the same stages ? The leptotene stage in 1A looks like a zygotene, while some pachytene/diplotene stage pictures do not look alike.

      __Response: __New representative images have been added to figure 1 to match the same substages across the figure.

      Figure 1D, please label the Y scale properly (testis weight related to body weight)

      __Response: __We have fixed this.

      FigS1: Please comment the presence of non-specific bands in the figure legend

      __Response: __We have added a sentence in Figure S1 Legend.

      Fig 2E and F, please indicate on the figure (in addition to its legend), what are the X and Y axes respectively to facilitate its reading.

      __Response: __X and Y axes are now labelled in Figure 2E and F.

      2F: please use an easier abbreviation for Spermatocyte than Sp (which could spermatogonia, sperm etc..) such as Scyte I ? (same comment for Fig 3C)

      Response: The abbreviation for spermatocyte was changed from Sp to Scyte I in Figures 2 and 3.

      Overall, for all figures showing GSEA analyses, could the authors explain what a High positive NES and a High negative NES mean in the results section?

      Response: Thank you for this suggestion. We have added this information where the GSEA score of the cell markers is initially introduced.

      Significance

      Ago proteins are known for their roles in post transcriptional gene regulation via small RNA mediated cleavage of mRNA, which takes places in the cytoplasm. Some Ago proteins have been shown to be also located in the nucleus suggesting other non-canonical roles. It is the case of Ago4 which has been shown to localize to the transcriptionally silenced sex chromosomes (called sex body) of the spermatocyte nucleus, where it contributes to regulate their silencing (Modzelewski et al 2012). Interestingly, Ago4 knockout leads to Ago3 upregulation, including on the sex body indicating that Ago3 and Ago4 are involved in the same nuclear process. In their manuscript, de las Mercedes Carro et al., investigate the consequences of loss of both Ago3 and Ago4 in the male germline by the production of a triple knockout of Ago1, 3 and 4 in the mouse. With this model, the authors describe the role of Ago3 and Ago4 during spermatogenesis and show that they are involved in sex chromosome gene repression in spermatocytes and in round spermatids, as well as in the control of autosomal meiotic gene expression. Triple KO males have impaired meiosis and spermiogenesis, with fewer and abnormal spermatozoa resulting in reduced fertility. Since Ago1 male germline expression is restricted to pre-meiotic germ cells, it is not expected to contribute to the meiotic and postmeiotic phenotypes observed in the triple KO. The strengths of the study are i) the thorough analyses of mRNA expression at the single cell level, and in purified spermatocytes and spermatids (bulk RNAseq), ii) the identification of novel nuclear partners of AGO3/4 relevant for their described nuclear role: ATF2, which they show to also co-localize with the sex body, and BRG1/SMARCA4, a SWI/SNF chromatin remodeler. The main limitation of the study is the lack of information in the method regarding the production of the triple KO, as well as some aspects of the transcriptome and motif analyses. It is also surprising to see that the triple KO does not recapitulate the miRNA deregulation observed in Ago4 KO. The characterization of a non-canonical role of AGO3/4 in male germ cells will certainly influence researchers of the field, and also interest a broader audience studying Argonaute proteins and gene regulation at transcriptional and posttranscriptional levels.

      Reviewer #2

      Evidence, reproducibility and clarity

      In the manuscript titled "Argonaute proteins regulate the timing of the spermatogenic transcriptional program" by Carro et al., the authors present their findings on how Argonaute proteins regulate spermatogenic development. They utilize a mouse model featuring a deletion of the gene cluster on chromosome 4 that contains Ago1, Ago3, and Ago4 to investigate the cumulative roles of AGO3 and AGO4 in spermatogenic cells. The authors characterize the distribution of AGO proteins and their effects on key meiotic milestones such as synapsis, recombination, meiotic transcriptional regulation, and meiotic sex chromosome inactivation (MSCI). They analyze stage-specific transcriptomes in spermatogenic cells using single-cell and bulk RNA sequencing and determine the interactome of AGO3 and AGO4 through mass spectrometry to examine how AGO proteins may regulate gene expression in these cells during meiotic and post-meiotic development. The authors conclude that both AGO3 and AGO4 are essential for regulating the overall gene expression program in spermatogenic cells and specifically modulate MSCI to repress sex-linked genes in pachytene spermatocytes, which may be partially mediated by the proper distribution of DNA damage repair factors. Additionally, AGO3 is suggested to interact with the chromatin remodeler SWI/SNF factor BRG1, facilitating its removal from the sex-chromatin to enable the repression of sex-linked genes during MSCI.

      Major Comments: 1. The study utilized a triple knockout mouse model to determine the effect of AGO3 on spermatogenesis, following up on their previous report about the role of AGO4 in spermatogenesis, which resulted from an upregulation of AGO3 in Ago4-/- spermatocytes. However, the results are more difficult to interpret and ascertain the role of AGO3 in these cells, given the absence of any observable phenotype from Ago3 interruption. AGO4 regulates sex body formation, meiotic sex chromosome inactivation (MSCI), and miRNA production in spermatocytes, all of which were noted in the absence of both AGO3 and AGO4, with only an increased incidence of cells containing abnormal RNAPII at the sex chromosomes. It will be necessary to characterize how AGO3 regulates spermatogenic development, including meiotic progression and the regulation of the meiotic transcriptome, and compare these findings with the current observations to determine if the proposed mechanism involving AGO3, BRG1, and possibly AP2 is relevant in this context.

      __Response: __While we agree with Reviewer that a single Ago3 knockout will help understand distinct roles of AGO3 and AGO4 in spermatogenesis, the time and resources required to generate a new mouse model are substantial. The analysis included in this current manuscript has already taken over seven years, and with the lengthy production of a new single mutant mouse, validation of the new mouse, and then final analysis, we would be looking at another 3-5 years of analysis. In the current funding climate, and with strong concerns over ensuring reduction in utilization of laboratory mice, we consider this request to be far in excess of what is required to move this important story forward.

      The Ago413-/- mouse model has allowed us to associate a nuclear role of Argonaute proteins with a strong reproductive phenotype in the mouse germline. Given the redundancy between Ago3 and Ago4, it is likely that a single Ago3 knockout would have a mild phenotype just like the Ago4 KO. All this said, we agree with the reviewer that analysis of an Ago3 knockout mouse is a valuable next step, just not within this chapter of the story.

      1. Does Ago413-/- mice recapitulate the early meiotic entry phenotype observed in Ago4-/- mice? If not, could it be possible that AGO3 promotes meiotic entry, given its strong mRNA expression in spermatogonia according to the scRNAseq data (Fig. 2B)

      Response: Our scRNA-seq data shows strong expression of Ago3 in spermatogonia, as mentioned by the Reviewer. Analysis of cell cycle marker expression also shows that the transcriptomic profile of spermatogonia is altered, with higher levels of transcripts corresponding to the later G2/M stages (Figure 2D). Moreover, Ago413 knockouts present an increase in the number of spermatogonial stem cells (Supplementary Figure S4B). However, this cluster represents a pool of quiescent and mitotically active cells entering meiosis, therefore interpretation of these data might be challenging. While specific experiments could be conducted to answer this question, this is outside of the scope of our manuscript. The manuscript as it stands is already rather large, and a full analysis of meiotic entry dynamics would dilute the core message relating to chromatin regulation in the sex body.

      1. The authors suggested that the removal of BRG1 by AGO3 is necessary during sex body formation and the eventual establishment of MSCI. However, the BAF complex subunit ARID1A has been shown to facilitate MSCI by regulating promoter accessibility. It will be interesting to determine how BRG1 distribution changes across the genome in the absence of AGO proteins and how that correlates with alterations in sex-linked gene expression.

      __Response: __We agree that changes in BRG1 distribution across the genome would be very interesting to identify. However, in this work we show that BRG1/SMARCA4 protein changes its localization in the sex body very rapidly between early to late pachynema. These two substages are only discernable by immunofluorescence using synaptonemal complex markers, as there are currently no available techniques to enrich for these subfractions. Therefore, study of genome occupancy of BRG1 in these specific substages by techniques such as CUT&Tag are not currently possible. However, we are currently working on new methods to distinguish these cell populations and hope eventually to use these purification strategies to perform the studies suggested by this reviewer. Alternatively, the hope is that single cell CUT&Tag methods will become more reliable, and will enable us to address these questions. Both of these options are not currently available to us. The studies by Menon et al (2024-doi:10.7554/eLife.88024.5) provide strong evidence to support that ARID1A is needed to reduce promoter accessibility of XY silenced genes in prophase I through modulation of H3.3 distribution. However, this mechanism and our identification of the removal of BRG1 between early and late pachytema are not inconsistent with one another, as either SMARCA4 or SMARCA2 can associate with ARID1A as part of the cBAF complex, and ARID1A is also not in all forms of the BAF complex which BRG1 are in. The difference between our results and those seen in Menon et al likely indicate that there are multiple forms of the BAF complex which are differentially regulated during MSCI and play different roles in silencing transcription. Further studies of specific BAF subunits are needed to elucidate how different flavors of the BAF complex act at specific genomic locations and meiotic time points.

      1. The observations presented in this manuscript (Fig. 1D, 2C, 3D, and 4) suggest a haploinsufficiency of the deleted locus in spermatogenic development. How does this compare with the ablation of either Ago3 or Ago4? Please explain.

      Response: Our previous studies in single Ago4 knockouts did not present a heterozygous phenotype (Modzelewski et al 2012, doi: 10.1016/j.devcel.2012.07.003, data not shown). Triple Ago413 knockouts show a much stronger fertility phenotype than single Ago4 knockout. Testis weight of Ago413 homozygous null present a 30% reduction while heterozygous mice show a 15% reduction (Figure 1D), comparable to the 13% reduction previously observed in Ago4-/- males. Sperm counts of Ago413 null and heterozygous males are reduced by 60% and 39% compared to wild type (Figure 1E), respectively, whereas Ago4 null mice have a milder phenotype, with only a 22% reduction in sperm counts. At the MSCI level, both homozygous and heterozygous Ago413 mutant spermatocytes show a similar increase in pachytene spermatocytes with increased RNA pol II ingression into the sex body with respect to wild-type of 35% and 30%, respectively. Ago4 single knockouts show an almost 18% increase in Pol II ingression when compared to wild type. These comparisons are now included in our manuscript in lines 170, 172 and 288. A milder phenotype of the Ago4 knockout and haploinsufficiency in triple Ago413 knockouts but not in Ago4 single knockouts is likely a consequence of the overlapping functions of Ago3 and Ago4 in mammals (and/or overexpression of Ago3 in Ago4 knockouts). In the context of their role in RISC, Wang et al (doi: 10.1101/gad.182758.111) studied the effects of single and double conditional knockouts for Ago1 and Ago2 in miRNA-mediated silencing. They discovered that the interaction between miRNAs and AGOs is highly correlated with the abundance of each AGO protein, and only double knockouts presented an observable phenotype.

      Minor Comments: Based on the interactome analysis, it was argued that AGO3 and AGO4 may function separately. Please discuss how AGO3 might compensate for AGO4 (Line 109).

      Response: We hypothesize that the combined function of AGO3 and AGO4 is needed for proper sex chromosome inactivation during meiosis. We base this hypothesis on the facts that (i) both proteins localize to the sex body in pachytene spermatocytes, (ii) loss of Ago4 leads to upregulation of Ago3, and (iii) the MSCI phenotype of Ago413 knockout mice is much stronger than the single Ago4 knockout (see above). However, AGO3 and AGO4 might not induce silencing through the same mechanism or pathway. In this work, we observed that their temporal expression in prophase I is different; while AGO3 protein seems to disappear by the diplotene stage, AGO4 is present in the sex body of these cells. Moreover, the proteomic analysis revealed a very low number of common interactors, an observation which could support the idea of AGO3 and AGO4 acting by different (albeit perhaps related) mechanisms to achieve MSCI. It is also possible that common interactors were not identified in our proteomic analysis due to the low abundance of AGO3 and AGO4 in the germ cells, limiting the resolution of the proteomics analysis (note that in order to visualize AGO proteins in WB experiments, at least 60 μg of enriched germ cell lysate must be loaded per lane). Moreover, given the difficulty in obtaining enough isolated pachytene and diplotene spermatocytes to perform immunoprecipitation experiments, we performed IP experiments in whole germ cell lysates, which limits the interpretation of our analysis. If AGO3 and AGO4 protein interactors overlap, then AGO3 would directly substitute for AGO4 leading to silencing in single Ago4 knockouts. However, if AGO3 and AGO4 work together through different, complementary mechanisms, then Ago4 mutant mice likely compensates loss of Ago4 by upregulation of Ago3along with specific interactors of the given pathway. We have added a sentence addressing this matter in line 411 of the results section and lines 506 and 513 of the discussion in the revised manuscript.

      In Line 221, it is unclear what is meant by 'cell cycle transcripts'. Does this refer to meiotic transcripts? It is also important to discuss the relevance of the G2/M cell cycle marker genes at later stages of meiotic prophase.

      Response: Thank you for this suggestion. We have changed the relevant text to remove redundancies and include more information. We agree that considering the importance of these genes across meiotic prophase is needed, as cells which are in the dividing stage will already have produced the proteins necessary for division. These cells likely correspond to the diplotene/M cluster cells that have a lower G2/M score, potentially causing the bimodal distribution seen in Figure 2D. We have added a sentence addressing this to the manuscript.

      While identified as a common interactor of both AGO3 and AGO4 in lines 440-445, HNRNPD is not listed among AGO4 interactors in Table S6. Please correct or explain this discrepancy.

      Response: HNRPD was originally identified as an AGO4 interactor using a less strict criteria than the one used in our manuscript: we required consistent enrichment in at least two rounds of IP MS experiments. This reference to HNRNPD was a mistake, given that HNRPD was only enriched in one of our three replicates. Thus, we apologize and have removed the sentence in lines 440-445.

      It is unclear whether wild-type cell lysate or lysate containing FLAG-tagged AGO3 was used for BRG1 immunoprecipitation, and which antibody was used to detect AGO3 in the BRG1 IP sample. A co-IP experiment demonstrating interaction between BRG1 and wild-type AGO3 would be ideal in this context. Furthermore, co-localization by IF would be beneficial to determine the subcellular localization and the cell stages the interaction may be occurring. Additionally, co-IP and Western blot methodologies should be included in the methods section.

      __Response: __MYC-FLAG tagged AGO3 protein lysates were used for BRG1 Co-Immunoprecipitation, along with an anti MYC antibody to detect AGO3. This is now detailed in the Methods section of our revised manuscript (line 1133).

      Regarding BRG1 and AGO3 colocalization by IF, we can confidently show that both AGO3 and BRG1 localize to the sex chromosomes in early pachynema by comparing BRG1/SYCP3 and FLAG-AGO3/SYCP3 stained spreads. We were not able to show colocalization simultaneously on the same cells, given the lack of appropriate antibodies. Our anti FLAG antibody is raised in mouse, while anti BRG1 is raised in rabbit, therefore a non-rabbit, non-mouse anti SYCP3 would be needed to identify prophase I substages, and our lab does not possess such a validated antibody. However, we now have access to a multiplexing kit that allows to use same-species antibodies for immunofluorescence and we can perform these experiments for a revised manuscript.

      __Response: __The methods section now includes description of co-IP methodologies (line 1132). Western Blot methodologies are explained in lane 718, under the "Immunoblotting" title.

      In line 599, it is unclear what is meant by 'persistence of sex chromosome de-repression'. Please correct or clarify this.

      Response: This sentence has been changed and reads: "The persistence of sex chromosome gene expression".

      If possible, please add an illustration to summarize the findings together.

      Response: We thank the reviewer for this suggestion, and have now added this in Figure 6

      Significance

      Overall, this study enhances the understanding of gene expression regulation by AGO proteins during spermatogenesis. Several approaches, including functional, histological, and molecular characterization of the triple knockout phenotype, were instrumental in elucidating the role of AGO proteins in MSCI and meiotic as well as postmeiotic gene regulation. The main limitation of the study is that it is challenging to appreciate the role of AGO3 in addition to the previously published role of AGO4 without the inclusion of necessary control groups. Furthermore, the mechanism of action for AGO proteins in meiotic gene regulation was left relatively unexplored. This study presents new findings that will be significant for the research community interested in gene regulation, chromatin biology, and reproductive biology with the above suggestions considered.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      The authors characterize a CRISPR-Cas9 mouse mutant that targets 3 genes that encode AGO family proteins, 2 of which are expressed during spermatogenesis (AGO3 and AGO4) and one that is said is not expressed, AGO1. This mouse mutant showed that AGO3 and AGO4 both contribute to spermatogenesis success as the "Ago413" mutation gave rise to an additive reduction in testis weight, due to spermatocyte apoptosis, and reduction in sperm count. Furthermore, they use insertion mouse mutants for Ago3 and Ago2 that express tagged versions of their corresponding proteins, which they use in combination with pan-AGO antibodies and Ago mutants to show differential expression and localization properties of AGO2, AGO3, and AGO4 (and the absence of AGO1) during spermatogenesis with a particular focus on meiotic prophase. They perform single-cell RNAseq and intricate analyses to demonstrate a change in distribution of meiotic stages in Ago413 mutants, and the overall cell cycle in spermatogonia and spermatocytes is altered. This analysis shows that the mutation leads to an inability to downregulate prior spermatogonia/spermatocyte stage transcripts in a timely manner. On the other hand, later-stage spermatocytes are abnormally expressing spermiogenesis genes. Similar to the Ago4 mutant previously characterized MSCI is disrupted. The authors also show that AGO3 has different interaction partners compared to AGO4 and focus their final assessment on a novel interaction partner of AGO3, BRG1. They show that this factor, which is involved in chromatin remodeling, is aberrantly localized to the sex body during meiotic prophase and diplonema. As BRG1 is involved in open chromatin, it is proposed that AGO3 restricts BRG1 (and related proteins) from the XY chromosome to ensure MSCI. Overall, this paper is very well constructed with mechanistic insights that make this a very impactful contribution to the research community. Major Comments:

      1. The abstract contains "Ago413-/- mouse" without any explanation of what that is. The abstract needs to be a stand-alone document that does not require any referencing for context.

      Response: We have included a sentence describing Ago413 in line 27

      Figure 2C. - The significance bars are confusing as they appear to overlap strangely.

      Response: We have modified this figure and now present the significance bars are on top of the data points.

      On line 235, the authors state that "we first identified the top non-overlapping upregulated genes for Ago413+/+ germ cells in each cluster. Why did the authors not also select down-regulated genes in each cluster to perform a similar analysis?

      __Response: __Thank you for this question. As our goal was to identify genes that are markers of the transcriptional program in each cell type, we used only uniquely upregulated genes for each cluster. Genes that are downregulated for a cluster may be indicative of the transcription in several other cell types, which is not easily interpretable. For a revised manuscript, we will perform this analysis to determine if there is any specific alterations in these downregulated genes.

      Their Ago413 mutant characterization does a good job of assessing meiotic prophase and spermatozoa. However, their assessment of the stages in between these is lacking (meiotic divisions and spermiogenesis).

      Response: We understand the reviewer's concern, however, it is not usual to study stages between the first meiotic division and spermiogenesis because meiosis II is so rapid and thus we lack tools to dissect it. In general, any defect that impacts meiosis I (and particularly prophase I) leads to cell death during prophase I or at metaphase I due to strictly adhered checkpoints that eradicate defective cells. Thus, the increased TUNEL staining in prophase I indicates to us that defective cells are cleared before exit from meiosis I, and those cells progressing to the spermatid stage are "normal" for meiosis II progression. For these cells that did complete meiosis I and progressed normally through meiosis II, we analyzed their spermiogenic outcome extensively (see section entitled "Post-meiotic spermatids from Ago413-/- males exhibit defective spermiogenesis and poor spermatozoa function"). This section included extensive sperm morphology, sperm motility and sperm fertility through in vitro fertilization assays. That said, we have added a sentence on line 268 to explain the transit through meiosis II.

      The discovery of the interaction between BRG1 and AGO3 is exciting. They should assess BRG1 localization in later sub-stages, including late diplonema and diakinesis.

      __Response: __BRG1(SMARCA4) was analyzed throughout prophase I, as shown in image 5G, including quantification of fluorescence intensity included the analysis of diplonema (5H-I). However, diakinesis was not included here since there was no observable signal of BRG1 in these cells. We have explained this in lines 459.

      ATF2 should have been assessed in more detail, as was done for BRG1 in Figure 5.

      __Response: __We agree with the Reviewer, however, staining of chromosome spreads with the anti ATF2 antibody was not possible in our hands after several attempts and changes in staining conditions. However, as staining of sections was successful, we showed localization of ATF2 on spermatocytes by co staining sections with SYCP3 and ATF2.

      Reviewer #3 (Significance (Required)): Overall, this paper is very well constructed with mechanistic insights, as described in my reviewer comments, that make this a very impactful contribution to the research community.

    1. For example n∑i=1xiyi=x1y1+x2y2+…+xnyn,(10.8)(10.8)∑i=1nxiyi=x1y1+x2y2+…+xnyn,\begin{equation} \sum^n_{i=1}x_iy_i = x_1y_1 + x_2y_2 + \ldots + x_ny_n, \tag{10.8} \end{equation} which, following PEMDAS, we recognize multiplication of xixix_i and yiyiy_i should come before the summation.

      This isn't a sentence. Is it supposed to be?

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors have used full-length single-cell sequencing on a sorted population of human fetal retina to delineate expression patterns associated with the progression of progenitors to rod and cone photoreceptors. They find that rod and cone precursors contain a mix of rod/cone determinants, with a bias in both amounts and isoform balance likely deciding the ultimate cell fate. Markers of early rod/cone hybrids are clarified, and a gradient of lncRNAs is uncovered in maturing cones. Comparison of early rods and cones exposes an enriched MYCN regulon, as well as expression of SYK, which may contribute to tumor initiation in RB1 deficient cone precursors.

      Strengths:

      (1) The insight into how cone and rod transcripts are mixed together at first is important and clarifies a long-standing notion in the field.

      (2) The discovery of distinct active vs inactive mRNA isoforms for rod and cone determinants is crucial to understanding how cells make the decision to form one or the other cell type. This is only really possible with full-length scRNAseq analysis.

      (3) New markers of subpopulations are also uncovered, such as CHRNA1 in rod/cone hybrids that seem to give rise to either rods or cones.

      (4) Regulon analyses provide insight into key transcription factor programs linked to rod or cone fates.

      (5) The gradient of lncRNAs in maturing cones is novel, and while the functional significance is unclear, it opens up a new line of questioning around photoreceptor maturation.

      (6) The finding that SYK mRNA is naturally expressed in cone precursors is novel, as previously it was assumed that SYK expression required epigenetic rewiring in tumors.

      We thank the reviewer for describing the study’s strengths, reflecting the major conclusions of the initially submitted manuscript.  However, based on new analyses – including the requested analyses of other scRNA-seq datasets, our revision clarifies that:

      -  related to point (1), cone and rod transcripts do not appear to be mixed together at first (i.e., in immediately post-mitotic immature cone and rod precursors) but appear to be coexpressed in subsequent cone and rod precursor stages; and 

      - related to point (3), CHRNA1 appears to mark immature cone precursors that are distinct from the maturing cone and rod precursors that co-express cone- and rod-related RNAs (despite the similar UMAP positions of the two populations in our dataset). 

      Weaknesses:

      (1) The writing is very difficult to follow. The nomenclature is confusing and there are contradictory statements that need to be clarified.

      (2) The drug data is not enough to conclude that SYK inhibition is sufficient to prevent the division of RB1 null cone precursors. Drugs are never completely specific so validation is critical to make the conclusion drawn in the paper.

      We thank the reviewer for noting these important issues. Accordingly, in the revised manuscript:

      (1) We improve the writing and clarify the nomenclature and contradictory statements, particularly those noted in the Reviewer’s Recommendations for Authors. 

      (2) We scale back claims related to the role of SYK in the cone precursor response to RB1 loss, with wording changes in the Abstract, Results, and Discussion, which now recognize that the inhibitor studies only support the possibility that cone-intrinsic SYK expression contributes to retinoblastoma initiation, as detailed in our responses to Reviewer’s Recommendations for Authors. We agree and now mention that genetic perturbation of SYK is required to prove its role.  

      Reviewer #2 (Public review):

      Summary:

      The authors used deep full-length single-cell sequencing to study human photoreceptor development, with a particular emphasis on the characteristics of photoreceptors that may contribute to retinoblastoma.

      Strengths:

      This single-cell study captures gene regulation in photoreceptors across different developmental stages, defining post-mitotic cone and rod populations by highlighting their unique gene expression profiles through analyses such as RNA velocity and SCENIC. By leveraging fulllength sequencing data, the study identifies differentially expressed isoforms of NRL and THRB in L/M cone and rod precursors, illustrating the dynamic gene regulation involved in photoreceptor fate commitment. Additionally, the authors performed high-resolution clustering to explore markers defining developing photoreceptors across the fovea and peripheral retina, particularly characterizing SYK's role in the proliferative response of cones in the RB loss background. The study provides an in-depth analysis of developing human photoreceptors, with the authors conducting thorough analyses using full-length single-cell RNA sequencing. The strength of the study lies in its design, which integrates single-cell full-length RNA-seq, longread RNA-seq, and follow-up histological and functional experiments to provide compelling evidence supporting their conclusions. The model of cell type-dependent splicing for NRL and THRB is particularly intriguing. Moreover, the potential involvement of the SYK and MYC pathways with RB in cone progenitor cells aligns with previous literature, offering additional insights into RB development.

      We thank the reviewer for summarizing the main findings and noting the compelling support for the conclusions, the intriguing cell type-dependent splicing of rod and cone lineage factors, and the insights into retinoblastoma development.  

      Weaknesses:

      The manuscript feels somewhat unfocused, with a lack of a strong connection between the analysis of developing photoreceptors, which constitutes the bulk of the manuscript, and the discussion on retinoblastoma. Additionally, given the recent publication of several single-cell studies on the developing human retina, it is important for the authors to cross-validate their findings and adjust their statements where appropriate.

      We agree that the manuscript covers a range of topics resulting from the full-length scRNAseq analyses and concur that some studies of developing photoreceptors were not well connected to retinoblastoma. However, we also note that the connection to retinoblastoma is emphasized in several places in the Introduction and throughout the manuscript and was a significant motivation for pursuing the analyses. We suggest that it was valuable to highlight how deep, fulllength scRNA-seq of developing retina provides insights into retinoblastoma, including i) the similar biased expression of NRL transcript isoforms in cone precursors and RB tumors, ii) the cone precursors’ co-expression of rod- and cone-related genes such as NR2E3 and GNAT2, which may explain similar co-expression in RB cells, and iii) the expression of  SYK in early cones and RB cells.  While the earlier version had mainly highlighted point (iii), the revised Discussion further refers to points (i) and (ii) as described further in the response to the Reviewer’s Recommendations for Authors. 

      We address the Reviewer’s request to cross-validate our findings with those of other single-cell studies of developing human retina by relating the different photoreceptor-related cell populations identified in our study to those characterized by Zuo et al (PMID 39117640), which was specifically highlighted by the reviewer and is especially useful for such cross-validation given the extraordinarily large ~ 220,000 cell dataset covering a wide range of retinal ages (pcw 8–23) and spatiotemporally stratified by macular or peripheral retina location. Relevant analyses of the Zuo et al dataset are shown in Supplementary Figures S3G-H, S10B, S11A-F, and S13A,B. 

      Reviewer #3 (Public review):

      Summary:

      The authors use high-depth, full-length scRNA-Seq analysis of fetal human retina to identify novel regulators of photoreceptor specification and retinoblastoma progression.

      Strengths:

      The use of high-depth, full-length scRNA-Seq to identify functionally important alternatively spliced variants of transcription factors controlling photoreceptor subtype specification, and identification of SYK as a potential mediator of RB1-dependent cell cycle reentry in immature cone photoreceptors.

      Human developing fetal retinal tissue samples were collected between 13-19 gestational weeks and this provides a substantially higher depth of sequencing coverage, thereby identifying both rare transcripts and alternative splice forms, and thereby representing an important advance over previous droplet-based scRNA-Seq studies of human retinal development.

      Weaknesses:

      The weaknesses identified are relatively minor. This is a technically strong and thorough study, that is broadly useful to investigators studying retinal development and retinoblastoma.

      We thank the reviewer for describing the strengths of the study. Our revision addresses the concerns raised separately in the Reviewer’s Recommendations for Authors, as detailed in the responses below.  

      Recommendations for the authors:

      Reviewing Editor Comments:

      The reviewers have completed their reviews. Generally, they note that your work is important and that the evidence is generally convincing. The reviewers are in general agreement that the paper adds to the field. The findings of rod/cone fate determination at a very early stage are intriguing. Generally, the paper would benefit from clarifications in the writing and figures. Experimentally, the paper would benefit from validation of the drug data, for example using RNAi or another assay. Alternatively, the authors could note the caveats of the drug experiments and describe how they could be improved. In terms of analysis, the paper would be improved by additional comparisons of the authors' data to previously published datasets.

      We thank the reviewing editor for this summary. As described in the individual reviewer responses, we clarify the writing and figures and provide comparisons to previously published datasets (in particular, the large snRNA-seq dataset of Zuo et al., 2024 (PMID 39117640).  With regard to the drug (i.e., SYK inhibitor) studies, we opted to provide caveats and describe the need for genetic approaches to validate the role of SYK, owing to the infeasibility of completing genetic perturbation experiments in the appropriate timeframe.  We are grateful for the opportunity to present our findings with appropriate caveats. 

      Reviewer #1 (Recommendations for the authors):

      Shayler cell sort human progenitor/rod/cone populations then full-length single cell RNAseq to expose features that distinguish paths towards rods or cones. They initially distinguish progenitors (RPCs), immature photoreceptor precursors (iPRPs), long/medium wavelength (LM) cones, late-LM cones, short wavelength (S) cones, early rods (ER) and late rods (LR), which exhibit distinct transcription factor regulons (Figures 1, 2). These data expose expected and novel enriched genes, and support the notion that S cones are a default state lacking expression of rod (NRL) or cone (THRB) determinants but retaining expression of generic photoreceptor drivers (CRX/OTX2/NEUROD1 regulons). They identify changes in regulon activity, such as increasing NRL activity from iPRP to ER to LR, but decreasing from iPRP to cones, or increasing RAX/ISL2/THRB regulon activity from iPRP to LM cones, but decreasing from iPRP to S cones or rods.

      They report co-expression of rod/cone determinants in LM and ER clusters, and the ratios are in the expected directions (NRLTHRB or RXRG in ER). A novel insight from the FL seq is that there are differing variants generated in each cell population. Full-length NRL (FL-NRL) predominates in the rod path, whereas truncated NRL (Tr-NRL) does so in the cone path, then similar (but opposite) findings are presented for THRB (Fig 3, 4), whereas isoforms are not a feature of RXRG expression, just the higher expression in cones.

      The authors then further subcluster and perform RNA velocity to uncover decision points in the tree (Figure 5). They identify two photoreceptor precursor streams, the Transitional Rods (TRs) that provide one source for rod maturation and (reusing the name from the initial clustering) iPRPs that form cones, but also provide a second route to rods. TR cells closest to RPCs (immediately post-mitotic) have higher levels of the rod determinant NR2E3 and NRL, whereas the higher resolution iPRPs near RPCs lack NR2E3 and have higher levels of ONECUT1, THRB, and GNAT2, a cone bias. These distinct rod-biased TR and cone-biased high-resolution iPRPs were not evident in published scRNAseq with 3′ end-counting (i.e. not FL seq). Regulon analysis confirmed higher NRL activity in TR cells, with higher THRB activity in highresolution iPRP cells.

      Many of the more mature high-resolution iPRPs show combinations of rod (GNAT1, NR2E3) and cone (GNAT2, THRB) paths as well as both NRL and THRB regulons, but with a bias towards cone-ness (Figure 6). Combined FISH/immunofluorescence in fetal retina uncovers cone-biased RXRG-protein-high/NR2E3-protein-absent cone-fated cells that nevertheless expressed NR2E3 mRNA. Thus early cone-biased iPRP cells express rod gene mRNA, implying a rod-cone hybrid in early photoreceptor development. The authors refer to these as "bridge region iPRP cells".

      In Figure 7, they identify CHRNA1 as the most specific marker of these bridge cells (overlapping with ATOH7 and DLL3, previously linked to cone-biased precursors), and FISH shows it is expressed in rod-biased NRL protein-positive and cone-biased RXRG proteinpositive cones at fetal week 12.

      Figure 8 outlines the graded expression of various lncRNAs during cone maturation, a novel pattern.

      Finally (Figure 9), the authors identify differential genes expressed in early rods (ER cluster from Figure 1) vs early cones (LM cluster, excluding the most mature opsin+ cells), revealing high levels of MYCN targets in cones. They also find SYK expression in cones. SYK was previously linked to retinoblastoma, so intrinsic expression may predispose cone precursors to transformation upon RB loss. They finish by showing that a SYK inhibitor blocks the proliferation of dividing RB1 knockdown cone precursors in the human fetal retina.

      Overall, the authors have uncovered interesting patterns of biased expression in cone/rod developmental paths, especially relating to the isoform differences for NRL and THRB which add a new layer to our understanding of this fate choice. The analyses also imply that very soon after RPCs exit the cell cycle, they generate post-mitotic precursors biased towards a rod or cone fate, that carry varying proportions of mixed rod/cone determinants and other rod/cone marker genes. They also introduce new markers that may tag key populations of cells that precede the final rod/cone choice (e.g. CHRNA1), catalogue a new lncRNA gradient in cone maturation, and provide insight into potential genes that may contribute to retinoblastoma initiation, like SYK, due to intrinsic expression in cone precursors. However, as detailed below, the text needs to be improved considerably, and overinterpretations need to be moderated, removed, or tested more rigorously with extra data.

      Major Comments

      The manuscript is very difficult to follow. The nomenclature is at times torturous, and the description of hybrid rod/cone hybrid cells is confusing in many aspects.

      (1) A single term, iPRP, is used to refer to an initial low-resolution cluster, and then to a subset of that cluster later in the paper.

      We agree that using immature photoreceptor precursor (iPRP) for both high-resolution and lowresolution clusters was confusing. We kept this name for the low-resolution cluster (which includes both immature cone and immature rod precursors), renamed the high-resolution iPRP cluster immature cone precursors (iCPs). and renamed their transitional rod (TR) counterparts immature rod precursors (iRPs). These designations are based on 

      - the biased expression of THRB, ONECUT1, and the THRB regulon in iCPs (Fig. 5D,E);

      - the biased expression of NRL, NR2E3, and NRL regulon iRPs (Fig. 5D,E);

      - the partially distinct iCP and iRP UMAP positions (Figure 5C); and 

      - the evidence of similar immature cone versus rod precursor populations in the Zuo et al 3’ snRNA-seq dataset, as noted below and described in two new paragraphs starting at the bottom of p. 12.

      (2) To complicate matters further, the reader needs to understand the subset within the iPRP referred to as bridge cells, and we are told at one point that the earliest iPRPs lack NR2E3, then that they later co-express NR2E3, and while the authors may be referring to protein and RNA, it serves to further confuse an already difficult to follow distinction. I had to read and re-read the iPRP data many times, but it never really became totally clear.

      We agree that the description of the high-resolution iPRP (now “iCP”) subsets was unclear, although our further analyses of a large 3’ snRNA-seq dataset in Figure S11 support the impression given in the original manuscript that the earliest iCPs lack NR2E3 and then later coexpress NR2E3 while the earliest iRPs lack THRB and then later express THRB. As described in new text in the Two post-mitotic immature photoreceptor precursor populations section (starting on line 7 of p. 13): 

      When considering only the main cone and rod precursor UMAP regions, early (pcw 8 – 13) cone precursors expressed THRB and lacked NR2E3 (Figure S11D,E, blue arrows), while early (pcw 10 – 15) rod precursors expressed NR2E3 and lacked THRB (Figure S11D,E, red arrows), similar to RPC-localized iCPs and iRPs in our study (Figure 5D).

      Next, as summarized in new text in the Early cone and rod precursors with rod- and conerelated RNA co-expression section (new paragraph at top of p. 16): 

      Thus, a 3’ snRNA-seq analysis confirmed the initial production of immature photoreceptor precursors with either L/M cone-precursor-specific THRB or rod-precursor-specific NR2E3 expression, followed by lower-level co-expression of their counterparts, NR2E3 in cone precursors and THRB in rod precursors. However, in the Zuo et al. analyses, the co-expression was first observed in well-separated UMAP regions, as opposed to a region that bridges the early cone and early rod populations in our UMAP plots. These findings are consistent with the notion that cone- and rod-related RNA co-expression begins in already fate-determined cone and rod precursors, and that such precursors aberrantly intermixed in our UMAP bridge region due to their insufficient representation in our dataset.  

      Importantly, and as noted in our ‘Public response’ to Reviewer 1, “CHRNA1 appears to mark immature cone precursors that are distinct from the maturing cone and rod precursors that coexpress cone- and rod-related RNAs (despite the similar UMAP positions of the two populations in our dataset).” In support of this notion, the immature cone precursors expressing CHRNA1  and other  populations did not overlap in UMAP space in the Zuo et al dataset. We hope the new text cited above along with other changes will significantly clarify the observations.

      (3) The term "cone/rod precursor" shows up late in the paper (page 12), but it was clear (was it not?) much earlier in this manuscript that cone and rod genes are co-expressed because of the coexpressed NRL and THRB isoforms in Figures 3/4.

      We thank the reviewer for noting that the differential NRL and THRB isoform expression already implies that cone and rod genes are co-expressed. However, as we now state, the co-expression of RNAs encoding an additional cone marker (GNAT2) and rod markers (GNAT1, NR2E3) was 

      “suggestive of a proposed hybrid cone/rod precursor state more extensive than implied by the coexpression of different THRB and NRL isoforms” (first paragraph of “Early cone and rod …” section on p. 14; new text underlined). 

      (4) The (incorrect) impression given later in the manuscript is that the rod/cone transcript mixture applies to just a subset of the iPRP cells, or maybe just the bridge cells (writing is not clear), but actually, neither of those is correct as the more abundant and more mature LM and ER populations analyzed earlier coexpress NRL and THRB mRNAs (Figures 2, 3). Overall, the authors need to vastly improve the writing, simplify/clarify the nomenclature, and better label figures to match the text and help the reader follow more easily and clearly. As it stands, it is, at best, obtuse, and at worst, totally confusing.

      We thank the reviewer for bringing the extent of the confusing terminology and wording to our attention. We revised the terminology (as in our response to point 1) and extensively revised the text.  We also performed similar analyses of the Zuo et al. data (as described in more detail in our response to Reviewer 2), which clarifies the distinct status of cells with the “rod/cone transcript mixture” and cells co-expressing early cone and rod precursor markers.  

      To more clearly describe data related to cells with rod- and cone-related RNA co-expression, we divided the former Figure 6 into two figures, with Figure 6 now showing the cone- and rodrelated RNA co-expression inferred from scRNA-seq and Figure 7 showing GNAT2 and NR2E3 co-expression in FISH analyses of human retina plus a new schematic in the new panel 7E.

      To separate the conceptually distinct analyses of cone and rod related RNA co-expression and the expression of early photoreceptor precursor markers (which were both found in the so-called bridge region – yet now recognized to be different subpopulations), we separated the analyses of the early photoreceptor precursor markers to form a new section, “Developmental expression of photoreceptor precursor markers and fate determinants,” starting on p. 16. 

      Additionally, we further review the findings and their implications in four revised Discussion paragraphs starting at the bottom of p. 23).

      (5) The data showing that overexpressing Tr-NRL in murine NIH3T3 fibroblasts blocks FL-NRL function is presented at the end of page 7 and in Figure 3G. Subsequent analysis two paragraphs and two figures later (end page 8, Figure 5C + supp figs) reveal that Tr-NRL protein is not detectable in retinoblastoma cells which derive from cone precursors cells and express Tr-NRL mRNA, and the protein is also not detected upon lentiviral expression of Tr-NRL in human fetal retinal explants, suggesting it is unstable or not translated. It would be preferable to have the 3T3 data and retinoblastoma/explant data juxtaposed. E.g. they could present the latter, then show the 3T3 that even if it were expressed (e.g. briefly) it would interfere with FL-NRL. The current order and spacing are somewhat confusing.

      We thank the reviewer for this suggestion and moved the description of the luciferase assays to follow the retinoblastoma and explant data and switched the order of Figure panels 3G and 3H.  

      (6) On page 15, regarding early rod vs early cone gene expression, the authors state: "although MYCN mRNA was not detected....", yet on the volcano plot in Figure S14A MYCN is one of the marked genes that is higher in cones than rods, meaning it was detected, and a couple of sentences later: "Concordantly, the LM cluster had increased MYCN RNA". The text is thus confusing.

      With respect, we note that the original text read, “although MYC RNA was not detected,” which related to a statement in the previous sentence that the gene ontology analysis identified “MYC targets.” However, given that this distinction is subtle and may be difficult for readers to recognize, we revised the text (now on p. 19) to more clearly describe expression of MYCN (but not MYC) as follows:

      “The upregulation of MYC target genes was of interest given that many MYC target genes are also targets of MYCN, that MYCN protein is highly expressed in maturing (ARR3+) cone precursors but not in NRL+ rods (Figure 10A), and that MYCN is critical to the cone precursor proliferative response to pRB loss8–10.  Indeed, whereas MYC RNA was not detected, the LM cone cluster had increased MYCN RNA …”

      (7) The authors state that the SYK drug is "highly specific". They provide no evidence, but no drug is 100% specific, and it is possible that off-target hits are important for the drug phenotype. This data should be removed or validated by co-targeting the SYK gene along with RB1.

      We agree that our data only show the potential for SYK to contribute to the cone proliferative response; however, we believe the inhibitor study retains value in that a negative result (no effect of the SYK inhibitor) would disprove its potential involvement. To reflect this, we changed wording related to this experiment as follows:

      In the Abstract, we changed:

      (1) “SYK, which contributed to the early cone precursors’ proliferative response to RB1 loss” To: “SYK, which was implicated in the early cone precursors’ proliferative response to RB1 loss.”  

      (2) “These findings reveal … and a role for early cone-precursor-intrinsic SYK expression.” To:  “These findings reveal … and suggest a role for early cone-precursor-intrinsic SYK expression.”

      In the last paragraph of the Results, we changed:

      (1) “To determine if SYK contributes…” To:  “To determine if SYK might contribute…”

      (2) “the highly specific SYK inhibitor” To:  “the selective SYK inhibitor”  

      (3)  “indicating that cone precursor intrinsic SYK activity is critical to the proliferative response” To: “consistent with the notion that cone precursor intrinsic SYK activity contributes to the proliferative response.”

      In the Results, we added a final sentence: 

      “However, given potential SYK inhibitor off-target effects, validation of the role of SYK in retinoblastoma initiation will require genetic ablation studies.”

      In the Discussion (2nd-to-last paragraph), we changed: 

      “SYK inhibition impaired pRB-depleted cone precursor cell cycle entry, implying that native SYK expression rather than de novo induction contributes to the cone precursors’ initial proliferation.” To: “…the pRB-depleted cone precursors’ sensitivity to a SYK inhibitor suggests that native SYK expression rather than de novo induction contributes to the cone precursors’ initial proliferation, although genetic ablation of SYK is needed to confirm this notion.” In the Discussion last sentence, we changed:

      “enabled the identification of developmental stage-specific cone precursor features that underlie retinoblastoma predisposition.” To: “enabled the identification of developmental stage-specific cone precursor features that are associated with the cone precursors’ predisposition to form retinoblastoma tumors.”

      Minor/Typos

      Figure 7 legend, H should be D.

      We corrected the figure legend (now related to Figure 8).

      Reviewer #2 (Recommendations for the authors):

      (1) The author should take advantage of recently published human fetal retina data, such as PMID:39117640, which includes a larger dataset of cells that could help validate the findings. Consequently, statements like "To our knowledge, this is the first indication of two immediately post-mitotic photoreceptor precursor populations with cone versus rod-biased gene expression" may need to be revised.

      We thank the reviewer for noting the evidence of distinct immediately post-mitotic rod and cone populations published by others after we submitted our manuscript. In response, we omitted the sentence mentioned and extensively cross-checked our results including:

      - comparison of our early versus late cone and rod maturation states to the cone and rod precursor versus cone and rod states identified by Zuo et al (new paragraph on the top half of p. 6 and new figure panels S3G,H);

      - detection of distinct immediately post-mitotic versus later cone and rod precursor populations (two new paragraphs on pp. 12-13 and new Figures S10B and S11A-E); 

      - identification of cone and rod precursor populations that co-express cone and rod marker genes (two new paragraphs starting at the bottom of p. 15 and new Figures S11D-F);

      - comparison of expression patterns of immature cone precursor (iCP) marker genes in our and the Zuo et al dataset (new paragraph on top half of p. 17 and new Figure S13).

      We also compare the cell states discerned in our study and the Zuo et al. study in a new Discussion paragraph (bottom of p. 23) and new Figure S17.

      (2) The data generated comes from dissociated cells, which inherently lack spatial context. Additionally, it is unclear whether the dataset represents a pool of retinas from multiple developmental stages, and if so, whether the developmental stage is known for each cell profiled. If this information is available, the authors should examine the distribution of developmental stages on the UMAP and trajectory analysis as part of the quality control process. 

      We thank the reviewer for highlighting the importance of spatial context and developmental stage. 

      Related to whether the dataset represents a pool of retinae from multiple developmental stages, the different cell numbers examined at each time point are indicated in Figure S1A. To draw the readers’ attention to this detail, Figure S1A is now cited in the first sentence of the Results. 

      Related to the age-related cell distributions in UMAP plots, the distribution of cells from each retina and age was (and is) shown in Fig. S1F. In addition, we now highlight the age distributions by segregating the FW13, FW15-17, and FW17-18-19 UMAP positions in the new Figure 1C. We describe the rod temporal changes in a new sentence at the top of  p. 5:

      “Few rods were detected at FW13, whereas both early and late rods were detected from FW15-19 (Figure 1C), corroborating prior reports [15,20].”  

      We describe the cone temporal changes and note the likely greater discrimination of cell state changes that would be afforded by separately analyzing macula versus peripheral retina at each age in a new sentence at the bottom of p. 5:

      “L/M cone precursors from different age retinae occupied different UMAP regions, suggesting age-related differences in L/M cone precursor maturation (Figure 1C).”

      Moreover, they should assess whether different developmental stages impact gene expression and isoform ratios. It is well established that cone and rod progenitors typically emerge at different developmental times and in distinct regions of the retina, with minimal physical overlap. Grouping progenitor cells based solely on their UMAP positioning may lead to an oversimplified interpretation of the data.

      (2a) We agree that different developmental stages may impact gene expression and isoform ratios, and evaluated stages primarily based on established Louvain clustering rather than UMAP position. However, we also used UMAP position to segregate so-called RPC-localized and nonRPC-localized iCPs and iRPs, as well as to characterize the bridge region iCP sub-populations. In the revision, we examine whether cell groups defined by UMAP positions helped to identify transcriptomically distinct populations and further examine the spatiotemporal gene expression patterns of the same genes in the Zuo et al. 3’ snRNA-seq dataset. 

      (2b) Related to analyses of immediately post-mitotic iRPs and iCPs, the new Figure S10A expanded the violin plots first shown in Figure 5D to compare gene expression in RPC-localized versus non-RPC-localized iCPs and iRPs and subsequent cone and rod precursor clusters (also presented in response to Reviewer 3). The new Figure S10C, shows a similar analysis of UMAP region-specific regulon activities. These figures support the idea that there are only subtle UMAP region-related differences in the expression of the selected gene and regulons. 

      To further evaluate early cone and rod precursors, we compared expression patterns in our cluster- and UMAP-defined cell groups to those of the spatiotemporally defined cell groups in the Zuo et al. 3’ snRNA-seq study. The results revealed similar expression timing of the genes examined, although the cluster assignments of a subset of cells were brought into question, especially the assigned rod precursors at pcw 10 and 13, as shown in new Figures S10B (grey columns) and S11, and as described in two new paragraphs starting near the bottom of p.12. 

      (2c) Related to analyses of iCPs in the so-called bridge region, our analyses of the Zuo et al dataset helped distinguish early cone and rod precursor populations (expressing early markers such as ATOH7 and CHRNA1) from the later stages exhibiting rod- and cone-related gene coexpression, which had intermixed in the UMAP bridge region in our dataset. Further parsing of early cone precursor marker spatiotemporal expression revealed intriguing differences as now described in the second half of a new paragraph at the top of p. 17, as follows:

      “Also, different iCP markers had different spatiotemporal expression: CHRNA1 and ATOH7 were most prominent in peripheral retina with ATOH7 strongest at pcw 10 and CHRNA1 strongest at pcw 13; CTC-378H22.2 was prominently expressed from pcw 10-13 in both the macula and the periphery; and DLL3 and ONECUT1 showed the earliest, strongest, and broadest expression (Figure S13B). The distinct patterns suggest spatiotemporally distinct roles for these factors in cone precursor differentiation.”

      (3) I would commend the authors for performing a validation experiment via RNA in situ to validate some of the findings. However, drawing conclusions from analyzing a small number of cells can still be dangerous. Furthermore, it is not entirely clear how the subclustering is done. Some cells change cell type identities in the high-resolution plot. For example, some iPRP cells from the low-resolution plots in Figure 1 are assigned as TR in high-resolution plots in Figure 5.

      The authors should provide justification on the identifies of RPC localized iPRP and TR.

      Comparison of their data with other publicly available data should strengthen their annotation

      We agree that drawing conclusions from scRNA-seq or in situ hybridization analysis of a small number of cells can be dangerous and have followed the reviewer’s suggestion to compare our data with other publicly available data, focusing on the 3’ snRNA-seq of Zuo et al. given its large size and extensive annotation. Our analysis of  the Zuo et al. dataset helped clarify cell identities by segregating cone and rod precursors with similar gene expression properties in distinct UMAP regions. However, we noted that the clustering of early cone and rod precursors likely gave numerous mis-assigned cells (as noted in response 2b above and shown in the new Figure S11). It would appear that insights may be derived from the combination of relatively shallow sequencing of a high number of cells and deep sequencing of substantially fewer cells. 

      Related to how subclustering was done, the Methods state, “A nearest-neighbors graph was constructed from the PCA embedding and clusters were identified using a Louvain algorithm at low and high resolutions (0.4 and 1.6)[70],” citing the Blondel et al reference for the Louvain clustering algorithm used in the Seurat package.  To clarify this, the results text was revised such that it now indicates the levels used to cluster at low resolution (0.4, p. 4, 2nd paragraph) and at high resolution (1.6, top of p. 11) .

      Related to the assignment of some iPRP cells from the low-resolution plots in Figure 1 to the TR cluster (now called the ‘iRP’ ‘cluster) in the high-resolution plots in Figure 5, we suggest that this is consistent with Louvain clustering, which does not follow a single dendrogram hierarchy. 

      The justification for referring to these groups as RPC-localized iCPs and iRPs relates to their biased gene and regulon expression in Fig. 5D and 5E, as stated on p. 12: 

      “In the RPC-localized region, iCPs had higher ONECUT1, THRB, and GNAT2, whereas iRPs trended towards higher NRL and NR2E3 (p= 0.19, p=0.054, respectively).”

      (4) Late-stage LM5 cluster Figure 9 is not defined anywhere in previous figures, in which LM clusters only range from 1 to 4. The inconsistency in cluster identification should be addressed.

      We revised the text related to this as follows: 

      “Indeed, our scRNA-seq analyses revealed that SYK RNA expression increased from the iCP stage through cluster LM4, in contrast to its minimal expression in rods (Figure 10E).  Moreover, SYK expression was abolished in the five-cell group with properties of late maturing cones (characterized in Figure 1E), here displayed separately from the other LM4 cells and designated LM5 (Figure 10E).”  (p. 19-20)

      (5) Syk inhibitor has been shown to be involved in RB cell survival in previous studies. The manuscript seems to abruptly make the connection between the single-cell data to RB in the last figure. The title and abstract should not distract from the bulk of the manuscript focusing on the rod and cone development, or the manuscript should make more connection to retinoblastoma.

      We appreciate the reviewer’s concern that the title may seem to over-emphasize the connection to retinoblastoma based solely on the SYK inhibitor studies. However, we suggest the title also emphasizes the identification and characterization of early human photoreceptor states, per se, and that there are a number of important connections beyond the SYK studies that could warrant the mention of cell-state-specific retinoblastoma-related features in the title.

      Most importantly, a prior concern with the cone cell-of-origin theory was that retinoblastoma cells express RNAs thought to mark retinal cell types other than cones, especially rods. The evidence presented here, that cone precursors also express the rod-related genes helps resolve this issue. The issue is noted numerous times in the manuscript, as follows:  

      In the Introduction, we write:

      “However, retinoblastoma cells also express rod lineage factor NRL RNAs, which – along with other evidence – suggested a heretofore unexplained connection between rod gene expression and retinoblastoma development[12,13]. Improved discrimination of early photoreceptor states is needed to determine if co-expression of rod- and cone-related genes is adopted during tumorigenesis or reflects the co-expression of such genes in the retinoblastoma cell of origin.” (bottom, p. 2) And: 

      “In this study, we sought to further define the transcriptomic underpinnings of human  photoreceptor development and their relationship to retinoblastoma tumorigenesis.” (last paragraph, p. 3)

      The Discussion also alluded to this issue and in the revised Discussion, we aimed to make the connection clearer.  We previously ended the 3rd-to-last paragraph with,  

      “iPRP [now iCP] and early LM cone precursors’ expression of NR2E3 and NRL RNAs suggest that their presence in retinoblastomas[12,13] reflects their normal expression in the L/M cone precursor cells of origin.” 

      We now separate and elaborate on this point in a new paragraph as follows: 

      “Our characterization of cone and rod-related RNA co-expression may help resolve questions about the retinoblastoma cell of origin. Past studies suggested that retinoblastoma cells co-express RNAs associated with rods, cones, or other retinal cells due to a loss of lineage fidelity[12]. However, the early L/M cone precursors’ expression of NR2E3 and NRL RNAs suggest that their presence in retinoblastomas[12,13] reflects their normal expression in the L/M cone precursor cells of origin. This idea is further supported by the retinoblastoma cells’ preferential expression of cone-enriched NRL transcript isoforms (Figure S5B).” (middle of p. 24) Based on the above, we elected to retain the title.  

      Minor comments:

      (1) It is difficult to see the orange and magenta colors in the Fig 3E RNA-FISH image. The colors should be changed, or the contrast threshold needs to be adjusted to make the puncta stand out more.

      We re-assigned colors, with red for FL-NRL puncta and green for Tr-NRL puncta. 

      (2) Figure 5C on page 8 should be corrected to Supplementary Figure 5C.

      We thank the reviewer for noting this error and changed the figure citation.

      Reviewer #3 (Recommendations for the authors):

      (1) Minor concerns

      a. Abbreviation of some words needs to be included, example: FW. 

      We now provide abbreviation definitions for FW and others throughout the manuscript.  

      b. Cat # does not matches with the 'key resource table' for many reagents/kits. Some examples are: CD133-PE mentioned on Page # 22 on # 71, SMART-Seq V4 Ultra Low Input RNA Kit and SMARTer Ultra Low RNA Kit for the Fluidigm C1 Sytem on Page # 22 on # 77, Nextera XT DNA Library preparation kit on Page # 23 on # 77.

      We thank the reviewer for noting these discrepancies. We have now checked all catalog numbers and made corrections as needed.

      c. Cat # and brand name of few reagents & kits is missing and not mentioned either in methods or in key resource table or both. Eg: FBS, Insulin, Glutamine, Penicillin, Streptomycin, HBSS, Quant-iT PicoGreen dsDNA assay, Nextera XT DNA LibraryPreparation Kit, 5' PCR Primer II A with CloneAmp HiFi PCR Premix. 

      Catalog numbers and brand names are now provided for the tissue culture and related reagents within the methods text and for kits in the Key Resources Table. Additional descriptions of the primers used for re-amplification and RACE were added to the Methods (p. 28-29).

      d. Spell and grammar check is needed throughout the manuscript is needed. Example. In Page # 46 RXRγlo is misspelled as RXRlo.

      Spelling and grammar checks were reviewed.

      (2) Methods & Key Resource table.

      a. In Page # 21, IRB# needs to be stated.      

      The IRB protocols have been added, now at top of p. 26.

      b. In Page # 21, Did the authors dissociate retinae in ice-cold phosphate-buffered saline or papain?   

      The relevant sentence was corrected to “dissected while submerged in ice-cold phosphatebuffered saline (PBS) and dissociated as described10.” ( p. 26)

      c. In Page # 21, How did the authors count or enumerate the cell count? Provide the details.

      We now state, “… a 10 µl volume was combined with 10 µl trypan blue and counted using a hemocytometer” (top of p. 27)

      d. Why did the authors choose to specifically use only 8 cells for cDNA preparation in Page # 22? State the reason and provide the details.

      The reasons for using 8 cells (to prevent evaporation and to manually transfer one slide-worth of droplets to one strip of PCR tubes) and additional single cell collection details are now provided as follows (new text underlined): 

      “Single cells were sorted on a BD FACSAria I at 4°C using 100 µm nozzle in single-cell mode into each of eight 1.2 µl lysis buffer droplets on parafilm-covered glass slides, with droplets positioned over pre-defined marks … .  Upon collection of eight cells per slide, droplets were transferred to individual low-retention PCR tubes (eight tubes per strip) (Bioplastics K69901, B57801) pre-cooled on ice to minimize evaporation. The process was repeated with a fresh piece of parafilm for up to 12 rounds to collect 96 cells). (p. 27, new text underlined)

      e. Key resource table does not include several resources used in this study. Example - NR2E3 antibody.

      We added the NR2E3 antibody and checked for other omissions.

      (3) Results & Figures & Figure Legends

      a. Regulon-defined RPC and photoreceptor precursor states

      i. On page # 4, 1 paragraph - Clarify the sentence 'Exclusion of all cells with <100,000 cells read and 18 cells.........Emsembl transcripts inferred'. Did the authors use 18 cells or 18FW retinae? 

      The sentence was changed to:

      “After sequencing, we excluded all cells with <100,000 read counts and 18 cells expressing one or more markers of retinal ganglion, amacrine, and/or horizontal cells (POU4F1, POU4F2, POU4F3, TFAP2A, TFAP2B, ISL1) and concurrently lacking photoreceptor lineage marker OTX2. This yielded 794 single cells with averages of 3,750,417 uniquely aligned reads, 8,278 genes detected, and 20,343 Ensembl transcripts inferred (Figure S1A-C).” (p. 4, new words underlined)

      To clarify that 18 retinae were used, the first sentence of the Results was revised as follows:

      “To interrogate transcriptomic changes during human photoreceptor development, dissociated RPCs and photoreceptor precursors were FACS-enriched from 18 retinae, ages FW13-19 …” (p. 4).

      Why did the authors 'exclude cells lacking photoreceptor lineage marker OTX2' from analysis especially when the purpose here was to choose photoreceptor precursor states & further results in the next paragraph clearly state that 5 clusters were comprised of cells with OTX2 and CRX expression. This is confusing.

      We apologize for the imprecise diction. We divided the evidently confusing sentence into two sentences to more clearly indicate that we removed cells that did not express OTX2, as in the first response to the previous question.

      ii. In Page # 5, the authors reported the number of cell populations (363 large and 5 distal) identified in the THRB+ L/M-cone cluster. What were the # of cell populations identified in the remaining 5 clusters of the UMAP space?

      We added the cell numbers in each group to Fig. 1B. We corrected the large LM group to 366 cells (p. 5) and note 371 LM cells , which includes the five distal cells, in Figure 1B.

      b. Differential expression of NRL and THRB isoforms in rod and cone precursors

      i. In Figure 3B, the authors compare and show the presence of 5 different NRL isoforms for all the 6 clusters that were defined in 3A. However, in the results, the ENST# of just 2 highly assigned transcript isoforms is given. What are the annotated names of the three other isoforms which are shown in 3B? Please explain in the Results.

      As requested, we now annotate the remaining isoforms as encoding full-length or truncated NRL in Fig. 3B and show isoform structures in new Supplementary Figure S4B.  We also refer to each transcript isoform in the Results (p. 7, last paragraph) and similarly evaluate all isoforms in RB31 cells (Fig. S5B).

      ii. What does the Mean FPM in the y-axis of Fig 3C refer to?

      Mean FPM represents mean read counts (fragments per million, FPM) for each position across Ensembl NRL exons for each cluster, as now stated in the 6th line of the Fig. 3 legend.

      iii. A clear explanation of the results for Figures 3E-3F is missing.

      We revised the text to more clearly describe the experiment as follows:

      “The cone cells’ higher proportional expression of Tr-NRL first exon sequences was validated by RNA fluorescence in situ hybridization (FISH) of FW16 fetal retina in which NRL immunofluorescence was used to identify rod precursors, RXRg immunofluorescence was used to identify cone precursors, and FISH probes specific to truncated Tr-NRL exon 1T or FL-NRL exons 1 and 2 were used to assess Tr-NRL and FL-NRL expression (Figure 3E,F).” (p. 8, new text underlined).

      c. Two post-mitotic photoreceptor precursor populations

      i. Although deep-sequencing and SCENIC analysis clarified the identities of four RPC-localized clusters as MG, RPC, and iPRP indicative of cone-bias and TR indicative of rod-bias. It would be interesting to see the discriminating determinant between the TR and ER by SCENIC and deep-sequencing gene expression violin/box plots.

      We agree it is of interest to see the discriminating determinant between the TR [now termed iRP] and ER clusters by SCENIC and deep-sequencing gene expression violin/box plots. We now provide this information for selected genes and regulons of interest in the new Supplementary Figures S10A and S10C, along with a similar comparison between the prior high-resolution iPRP (now termed iCP) cluster and the first high-resolution LM cluster, LM1, as described for gene expression on p. 12:

      “Notably, THRB and GNAT2 expression did not significantly change while ONECUT1 declined in the subsequent non-RPC-localized iCP and LM1 stages, whereas NR2E3 and NRL dramatically increased on transitioning to the ER state (Figure S10A).”

      And as described for regulon activities on pp. 13-14:

      “Finally, activities of the cone-specific THRB and ISL2 regulons, the rod-specific NRL regulon, and the pan-photoreceptor LHX3, OTX2, CRX, and NEUROD1 regulons increased to varying extents on transitioning from the immature iCP or iRP states to the early-maturing LM1 or ER states (Figure 10C).”

      We also show expression of the same genes for spatiotemporally grouped cells from the Zuo et al. dataset in the new Figure S10B, which displays a similar pattern (apart from the possibly mixed pcw 10 and pcw13 designated rod precursors).

      d. Early cone precursors with cone- and rod-related RNA expression

      i. On page #12, the last paragraph where the authors explain the multiplex RNA FISH results of RXRγ and NR2E3 by citing Figure S8E. However, in Fig S8E, the authors used NRL to identify the rods. Please clarify which one of the rod markers was used to perform RNA FISH?

      Figure S8E (where NRL was used as a rod marker) was cited to remind readers that RXRg has low expression in rods and high expression in cones, rather than to describe the results of this multiplex FISH section. To avoid confusion on this point, Figure S8E is now cited using “(as earlier shown in Figure S8E).” With this issue clarified, we expect the markers used in the FISH + IF analysis will be clear from the revised explanation, 

      “… we examined GNAT2 and NR2E3 RNA co-expression in RXRg+ cone precursors in the outermost NBL and in RXRg+ rod precursors in the middle NBL … .” (p. 14-15).

      To provide further clarity, we provide a diagram of the FISH probes, protein markers, and expression patterns in the new Figure 7E.

      ii. The Y-axis of Fig 6G-6H needs to be labelled.

      The axes have been re-labeled from “Nb of cells” to “Number of RXRg+ outermost NBL cells in each region” (original Fig. 6G, now Fig. 7C) and “Number of RXRg+ middle NBL cells in each region” (original Fig. 6H, now Fig. 7D).

      iii. The legends of Figures 6G and 6H are unclear. In the Figure 6G legend, the authors indicate 'all cells are NR2E3 protein-'. Does that imply the yellow and green bars alone? Similarly, clarify the Figure 6H legend, what does the dark and light magenta refer to? What does the light magenta color referring to NR2E3+/ NR2E3- and the dark magenta color referring to NR2E3+/ NR2E3+ indicate? 

      We regret the insufficient clarity. We revised the Fig. 6G (now Fig. 7C) key, which now reads

      “All outermost NBL cells are NR2E3 protein-negative.”  We added to the figure legend for panel 7C,D “(n.b., italics are used for RNAs, non-italics for proteins).”  The new scheme in Figure 7E shows the RNAs in italics proteins in non-italics. We hope these changes will clarify when RNA or protein are represented in each histogram category.

      Overall, the results (on page # 13) reflecting Figures 6E-6H & Figure S11 are confusing and difficult to understand. Clear descriptions and explanations are needed.

      We revised this results section described in the paragraph now spanning p. 14:

      -  We now refer to the bar colors in Figures 7C and 7D that support each statement. 

      -  We provide an illustration of the findings in Figure 7E.

      iv. Previously published literature has shown that cells of the inner NBL are RXRγ+ ganglion cells. So, how were these RXRγ+ ganglion cells in the inner NBL discriminated during multiplex RNA FISH (in Fig 6E-6H and in Fig S11)?

      We thank the reviewer for requesting this clarification. We agree that “inner NBL” is the incorrect term for the region in which we examined RXRg+ photoreceptor precursors, as this could include RXRγ+ nascent RGCs. We now clarify that 

      “we examined GNAT2 and NR2E3 RNA co-expression in RXRg+ cone precursors in the outermost NBL and in RXRg+ rod precursors in the middle NBL … .”  (p. 14-15) We further state, 

      “Limiting our analysis to the outer and middle NBL allowed us to disregard RXRγ+ retinal ganglion cells in the retinal ganglion cell layer or inner NBL (top of p. 15)”

      Figure 7E is provided to further aid the reader in understanding the positions examined, and the legend states “RXRg+ retinal ganglion cells in the inner NBL and ganglion cell layer not shown. 

      v. In Figure 6E, what marker does each color cell correspond to?

      In this figure (now panel 7A), we declined to provide the color key since the image is not sufficiently enlarged to visualize the IF and FISH signals. The figure is provided solely to document the regions analyzed and readers are now referred to “see Figure S12 for IF + FISH images” (2nd line, p. 15), where the marker colors are indicated.

      vi. In Figure S11 & 6E, Protein and RNA transcript color of NR2E3, GNAT2 are hard to distinguish. Usage of other colors is recommended.  

      We appreciate the reviewer’s concern related to the colors (in the now redesignated Figure S12 and 7A); however, we feel this issue is largely mitigated by our use of arrows to point to the cells needed to illustrate the proposed concepts in Figure S12B. All quantitation was performed by examining each color channel separately to ensure correct attribution, which is now mentioned in the Methods (2nd-to-last line of Quantitation of FISH section, p. 35).

      vii. 

      With due respect, we suggest that labeling each box (now in Figure 8B) makes the figure rather busy and difficult to infer the main point, which is that boxed regions were examined at various distanced from the center (denoted by the “C” and “0 mm”) with distances periodically indicated. We suggest the addition of such markers would not improve and might worsen the figure for most readers.    

      e. An early L/M cone trajectory marked by successive lncRNA expression

      i. In Figure 8C - color-coded labelling of LM1-4 clusters is recommended.

      We note Fig. 8C (now 9C) is intended to use color to display the pseudotemporal positions of each cell. We recognize that an additional plot with the pseudotime line imposed on LM subcluster colors could provide some insights, yet we are unaware of available software for this and are unable to develop such software at present. To enable readers to obtain a visual impression of the pseudotime vs subcluster positions, we now refer the reader to Figure 5A in the revised figure legend, as follows:  (“The pseudotime trajectory may be related to LM1-LM4 subcluster distributions in Figure 5A.”).

      ii. In Figure 8G - what does the horizontal color-coded bar below the lncRNAs name refer to? These bars are similar in all four graphs of the 8G figure.

      As stated in the Fig. 8G (now 9G) legend, “Colored bars mark lncRNA expression regions as described in the text.”  We revised the text to more clearly identify the color code. (p. 18-19)   

      f. Cone intrinsic SYK contributions to the proliferative response to pRB loss

      i. In Fig 9F - The expression of ARR3+ cells (indicated by the green arrow in FW18) is poorly or rarely seen in the peripheral retina.

      We thank the reviewer for finding this oversight. In panel 9F (now 10F), we removed the green arrows from the cells in the periphery, which are ARR3- due to the immaturity of cones in this region. 

      ii. In Figure 9F - Did the authors stain the FW16 retina with ARR3?

      Unfortunately, we did not stain the FW16 retina for ARR3 in this instance.

      iii. Inclusion of DAPI staining for Fig 9F is recommended to justify the ONL & INL in the images.

      We regret that we are unable to merge the DAPI in this instance due to the way in which the original staining was imaged.  A more detailed analysis corroborating and extending the current results is in progress. 

      iv. Immunostaining images for Figure 9G are missing & are required to be included. What does shSCR in Fig 9G refer to?

      We now provide representative immunostaining images below the panel (now 10G). The legend was updated: “Bottom: Example of Ki67, YFP, and RXRg co-immunostaining with DAPI+ nuclei (yellow outlines). Arrows: Ki67+, YFP+, RXRg+ nuclei.”  The revised legend now notes that shSCR refers to the scrambled control shRNA.

      v. For Figure 9H - Is the presence and loss of SYK activity consistent with all the subpopulations (S & LM) of early maturing and matured cones?

      We appreciate the reviewer’s question and interest (relating to the redesignated Figure 10H); however, we have not yet completed a comprehensive evaluation of SYK expression in all the subpopulations (S & LM) of early maturing and matured cones and will reserve such data for a subsequent study. We suggest that this information is not critical to the study’s major conclusions.

      vi. Figure 9A is not explained in the results. Why were MYCN proteins assessed along with ARR3 and NRL? What does this imply?

      We thank the reviewer for noting that this figure (now Figure 10A) was not clearly described. 

      As per the response to Reviewer 1, point 6 , the text now states,  

      “The upregulation of MYC target genes was of interest given that many MYC target genes are also MYCN targets, that MYCN protein is highly expressed in maturing (ARR3+) cone precursors but not in NRL+ rods (Figure 10A), and that MYCN is critical to the cone precursor proliferative response to pRB loss [8–10].” (middle, p. 19, new text underlined).

      Hence, the figure demonstrates the cone cell specificity of high MYCN protein.  This is further noted in the Fig. 10a legend: “A. Immunofluorescent staining shows high MYCN in ARR3+ cones but not in NRL+ rods in FW18 retina.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      First, the authors would like to thank the reviewers and editors for their thoughtful comments. The comments were used to guide our revision, which is substantially improved over our initial submission. We have addressed all comments in our responses below, through a combination of clarification, new analyses and new experimental data.

      Reviewer #1 (Public Review):

      In this manuscript, the authors identified and characterized the five C-terminus repeats and a 14aa acidic tail of the mouse Dux protein. They found that repeat 3&5, but not other repeats, contribute to transcriptional activation when combined with the 14aa tail. Importantly, they were able to narrow done to a 6 aa region that can distinguish "active" repeats from "inactive" repeats. Using proximal labeling proteomics, the authors identified candidate proteins that are implicated in Dux-mediated gene activation. They were able to showcase that the C-terminal repeat 3 binds to some proteins, including Smarcc1, a component of SWI/SNF (BAF) complex. In addition, by overexpressing different Dux variants, the authors characterized how repeats in different combinations, with or without the 14aa tail, contribute to Dux binding, H3K9ac, chromatin accessibility, and transcription. In general, the data is of high quality and convincing. The identification of the functionally important two C-terminal repeats and the 6 aa tail is enlightening. The work shined light on the mechanism of DUX function.

      A few major comments that the authors may want to address to further improve the work:

      We thank the reviewer for their efforts and constructive comments, which have guided our revisions.

      1) The summary table for the Dux domain construct characteristics in Fig. 6a could be more accurate. For example, C3+14 clearly showed moderate weaker Dux binding and H3K9ac enrichment in Fig 3c and 3e. However, this is not illustrated in Fig. 6a. The authors may consider applying statistical tests to more precisely determine how the different Dux constructs contribute to DNA binding (Fig. 3c), H3K9ac enrichment (Fig. 3e), Smarcc1 binding (Fig. 5e), and ATAC-seq signal (Fig. 5f).

      We thank the reviewer for this comment, and agree that there were some modest differences in construct characteristics that were not captured in the Summary Table (6a). To better reflect the differences between constructs, we added additional dynamic range to our depiction/scoring, and believe that the new scoring system provides sufficient qualitative range to capture the difference without imposing a statistical approach.

      2) Another concern is that exogenous overexpressed Dux was used throughout the experiments. The authors may consider validating some of the protein-protein interactions using spontaneous or induced 2CLCs (where Dux is expressed).

      We agree that it would be helpful to determine endogenous DUX interaction with our BioID candidates. Here, we attempted co-IPs for endogenous DUX protein with the DUX antibody and were unsuccessful, which indicated that the DUX antibody is useful for detection but not efficient in the primary IP. This is why we utilized the mCherry tag for DUX IP experiments, which worked exceptionally well.

      3) It could be technically challenging, but the authors may consider to validate Dux and Smarcc1 interaction in a biologically more relevant context such as mouse 2-cell embryos where both proteins are expressed. Whether Smarcc1 binding will be dramatically reduced at 4-cell embryos due to loss of Dux expression?

      While we agree that it would be interesting to validate the in vivo interaction of DUX and SMARCC1 in the early embryo, it is not technically feasible for us to conduct the experiment, as the IP would require thousands of two-cell embryos, and we have the issue of poor co-IP quality with the DUX antibody.

      Reviewer #2 (Public Review):

      In this manuscript, Smith et al. delineated novel mechanistic insights into the structure-function relationships of the C-terminal repeat domains within the mouse DUX protein. Specifically, they identified and characterised the transcriptionally active repeat domains, and narrowed down to a critical 6aa region that is required for interacting with key transcription and chromatin regulators. The authors further showed how the DUX active repeats collaborate with the C-terminal acidic tail to facilitate chromatin opening and transcriptional activation at DUX genomic targets.

      Although this study attempts to provide mechanistic insights into how DUX4 works, the authors will need to perform a number of additional experiments and controls to bolster their claims, as well as provide detailed analyses and clarifications.

      We thank this reviewer for their constructive comments, and have conducted several new analyses, additional experiments and clarifications – which have strengthened the manuscript in several locations. Highlights include a statistical approach to the similarity of mouse repeats to themselves and to orthologs (Figure S1d) and clarified interpretations, a wider dynamic range to better reflect changes in DUX construct behaviors (Figure 6a), and additional data on construct behavior, including ‘inactive’ constructs (e.g C1+14aa in Figure 1a,d, new ATAC-seq in Figure S1g), and active constructs such as C3+C5+14aa and C3+C514aa (in Figure S1b).

      Reviewer #3 (Public Review):

      Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.

      By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.

      The experiments are of high quality, with appropriate controls, thus providing a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).

      A critical question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function on activation (and thus may have been selected for under an "adaptationist" paradigm), it is also possible that they are simply the result of Jacobian evolutionary bricolage (tinkering) that happens to work in mice. The finding that Dux itself is not essential, in fact appears to be redundant (or cooperates with) the OBOX4 factor, in addition to the absence of these repeats in the DUX protein of all other mammals (as pointed out by the authors), might indeed argue for the second, perhaps less attractive possibility.

      In summary, while the present work provides a valuable resource for future study of Dux and its interactors, it fails, however, to tell a compelling story that could link the obtained data together.

      We appreciated the reviewer’s views regarding the high quality of the work and our generation of an important dataset of DUX interactors. We also appreciate the comments provided to improve the work, and have performed and included in the revised version a set of clarifications, additional analyses and additional experiments that have served to reinforce our main points and provide additional mechanistic links. We also agree that more remains to be done to understand the function and evolution of repeats C1, C2 and C4.

      Reviewer #1 (Recommendations For The Authors):

      1) For immuno-blots, authors may indicate the expected bands to help readers better understand the results.

      Agreed, and we have included the predicted molecular weight of proteins in the Figure Legends. We note that our work shows that the C-terminal domains confer anomalous migration in SDS-PAGE.

      2) Fig. 5b, a blot missing for the mCherry group?

      Figure 5b is a volcano blot, so we believe the reviewer is referring to Figure 5d, which is a coimmunoprecipitation experiment between SMARCC1 and mCherry-tagged DUX constructs. However, we are unsure of the comment as an anti mCherry sample is present in that panel.

      3) Line 99-100, Fig. S1d, it seems that repeat2, but not repeat3, is more similar to human DUX4 C-terminal region.

      This comment and one by another reviewer have prompted us to re-examine the similarities of the DUX repeats, and we have new analyses (Figure S1d) and an alternative framing in the manuscript as a result. We have expanded on this in our response to Reviewer #2, point #1 – and direct the reviewer there for our expanded treatment.

      4) There are a few references are misplaced. For example, line 48, the studies that reported the role of Dux in inducing 2CLCs should be from Hendrickson et al., 2017, De Iaco et al., 2017, and Whiddon et al., 2017. The authors may want to double check all references.

      Thanks for pointing these out. These issues have been corrected in the manuscript.

      5) In the materials & methods section, a few potential errors are noticed. For example, concentrations of PD0325901 and CHIR99021 in mESC medium appear ~1000-fold higher than standards.

      Thanks – corrected.

      Reviewer #2 (Recommendations For The Authors):

      Major Points

      1) Line 99 - The authors claimed that the "human DUX4 C-terminal region is most similar to the 3rd repeat of mouse DUX", but based on Supp. Fig. 1d, the human DUX4 C-term should be most similar to the 2nd repeat of mouse DUX. If this is indeed the case, it will undermine the rest of this study, since the authors claim that the 3rd repeat is transcriptionally active, whereas the 2nd repeat is transcriptionally inactive, and the bulk of this study largely focused on how the active repeats, not the inactive repeats, are critical in recruiting key transcriptional and chromatin regulators to induce the embryonic gene expression program.

      We thank the reviewer for their comments here. Since submission,and as mentioned above for reviewer #1 we have revisited the issue of similarity of the DUX4 C-terminal region to the mouse C-terminal repeats, with a BLAST-based approach that is more rigorous and informed by statistics – which is in Author response table 1 and now in the manuscript as Figure S1d, and has affected our interpretation. Our prior work involved a simple % identity comparison table and we now appreciate that some of the similarity analyses did not meet statistical significance, and therefore we are unable to draw certain conclusions. We make the appropriate modifications in the text. For example, we no longer state that the DUX4 C-terminus appears to be most similar to mouse repeats 3 and 5. This does not affect the main conclusions of the paper regarding interactions of the C-terminus with chromatin-related proteins, only our speculation on which repeat might have represented the original single repeat in the mouse – an issue we think of some interest, but did not rise to the level of mentioning in the original or current abstract.

      Author response table 1.

      Parameters: PAM250 matrix. Gap costs of existence: 15 and extension: 3. Numbers represent e-value of each pairwise comparison

      *No significant similarities found (>0.05).

      2) In Supp Fig 1d, it seems that the rat DUX4 C-terminal region is most similar to the 4th repeat of mouse DUX, which according to the author is supposedly transcriptionally inactive. This weakens the authors justification that the 3rd or 5th repeat is likely the "parental repeat for the other four", and further echoes my concern in point 1 where the human DUX4 C-term is most similar to the 2nd (inactive) repeat of mouse DUX.

      The reviewer’s point is well taken and is addressed in point #1 above.

      3) In Fig. 1d, the authors showed that DUX4-containing C3 and C5, but lacking acidic tail, can promote MERVL::GFP expression, albeit to a slightly lower extent compared to FL. However, in Fig. 2b, C3 or C5 alone (lacking acidic tail) completely failed to promote MERVL::GFP expression. However, in the presence of the acidic tail, both versions were able to promote MERVL::GFP expression, similar to that of FL. The latter would suggest that it is the acidic tail that is crucial for MERVL::GFP expression, and this does not quite agree with Fig 1b, where C12345 (lacking acidic tail) was able to promote MERVL::GFP expression. Although C12345 did not activate MERVL to a similar level as FL, it is clearly proficient, compared to C3 or C5 alone (lacking acidic tail) where there is no increase in MERVL at all. Additional constructs will be helpful to clarify these points. For example, 'C3+C5 minus acidic tail' and 'HD1+HD2+acidic tail only' constructs.

      We agree that constructs such as those mentioned would add to the work. First, we have done the additional construct HD1+HD2+14aa tail, which is presented as ΔC12345+14aa in Figure 2a and in S2a. Additionally, we performed experiments on the requested C3+C5+14aa and C3+C5Δ14aa (see samples 6 and 7 in Author response image 1, which are now included in Supplemental Figure 2b). The results reinforce our hypothesis of an additive effect toward DUX target gene activation by increasing C-terminal repeats and including the 14aa tail.

      Author response image 1.

      4) Related to the above, the flow cytometry data for the MERVL::GFP reporter as presented in Figures 1 and 2, as well as in Supp. Fig. 2, show a considerably large difference in the %GFP|mCherry for the FL construct, ranging from ~6-26%. This makes it difficult to convince the reader which of the different DUX domain constructs cannot or can partially induce GFP|mCherry signal when compared to FL, and hence it is tough to definitively ascertain the exact contribution of each of the 5 C-terminal repeats with high confidence, as it appears that there exists a significant amount of variability in this MERVL::GFP reporter system. The authors need to address this issue since this is their primary method to elucidate the transcriptional activity of each of the mouse DUX repeat domains.

      We note that with the Dux-/- cell lines we used throughout the timeline of the study, the percent of %GFP|mCherry expression progressively and slowly decreased – possibly due to slow/modest epigenetic silencing of the reporter. However, we always used the full-length DUX construct to establish the dynamic range. We emphasize that the relative differences between constructs over multiple cell line replicates remained relatively consistent. However, we elected to show absolute values in each experiment, rather than simply normalizing the full-length to 100% and showing relative.

      5) Lines 140-142 - The authors claimed that the functional difference between the transcriptionally active and inactive repeats could be narrowed down to a "6aa region which is conserved between repeats C3 and C5, but not conserved in C1, C2 and C4". Assuming the 6aa sequence is DPLELF, why does C1C3a elicit almost twice the intensity of GFP|mCherry signal compared to C3C1c, despite both constructs having the exact same 6aa sequence?

      Indeed, C1C3a and C3C1c both containing the ‘active’ DPL sequence but having different relative levels of %GFP|mCherry. This is consistent with these sequences having a positive role in DUX target gene regulation – but likely in combination with other other regions which potentiate its affect, possibly through interacting proteins or post-translational modifications.

      Why does DPLEPL (the intermediate C3C1b construct) induce a similar extent of GFP|mCherry signal as the FL construct, even though the former includes 3aa from a transcriptionally inactive repeat? In contrast, GSLELF (the other intermediate C1C3b construct) that also includes 3aa from a transcriptionally inactive repeat is almost completely deficient in inducing any GFP|mCherry signal. Why is that so? Is DPL the most crucial sequence? It will be important to mutate these 3 (or the above 6) residues on FL DUX4 to examine if its transcriptional activity is abolished.

      These are interesting points. DPL does appear to be the most important region in the mouse DUX repeats. However, DPL is not shared in the C-terminus of human DUX4. Notably, the DUX4 C-terminus is sufficient to activate the mouse MERVL::GFP reporter when cloned to mouse homeodomains (see Author response image 2, second sample) and other DUX target genes (initially published in Whiddon et al. 2017). One clear possibility is that the DPL region is helping to coordinate the additive effects of multiple DUX repeats, which only exist in the mouse protein.

      Author response image 2.

      6) Line 154 - The intermediate DUX domain construct C1C3b occupied a different position on the PCA plot from the C1C3c construct that does not contain any of the critical 6aa sequence, as shown in Fig. 2e. However, both these constructs appear to be similarly deficient in inducing any GFP|mCherry signal, as seen in Fig. 2c. Why is that so?

      The PCA plot assesses the impact on the whole transcriptome and not just the MERVL::GFP reporter, suggesting the 3aa region has transcriptional effects on the genome beyond what is detected in the MERVL::GFP reporter.

      7) To strengthen the claim that "Chromatin alterations at DUX bindings sites require a transcriptionally active DUX repeat", the authors should also perform CUT&Tag for constructs containing transcriptionally inactive DUX repeats (e.g. C1+14aa), and show that such constructs fail to occupy DUX binding sites, as well as are deficient in H3K9ac accumulation.

      This is a good comment. We elected to control this with constructs containing or lacking an active repeat. Although we have not pursued this by CUT&TAG, we have examined the impact of DUX constructs with inactive repeats (including the requested C1+14aa, new Figure S1g) by ATAC-seq (see #12, ATAC-seq section, below), and observe no chromatin opening, suggesting that the lack of transcriptional activity is rooted in the inability to open chromatin.

      8) It would be good if the authors could also include CUT&Tag data for some of the C1C3 chimeric constructs that were used in Fig. 2, since the authors argued that the minimal 6aa region is sufficient to activate many of the DUX target genes. This would also strengthen the authors’ case that the transcriptionally active, not inactive, repeats are critical for binding at DUX binding sites and ensuring H3K9ac occupancy.

      We agree that these would be helpful, and have examined the inactive repeats in transcription and ATAC-seq formats during revision (new data in Figures 1d and S1g), but not yet the CUT&TAG format.

      9) Line 213 - "SMARCA4" should have been "SMARCA5"? Based on Fig. 4d, SMARCA5 is picked up in the BirA*-DUX interactome, not SMARCA4.

      Thanks – corrected.

      10) Lines 250-252 - The authors compared the active BirA-C3 against the inactive BirA-C1 to elucidate the interactome of the transcriptionally active C3 repeat, as illustrated in Fig. 5c. They found 12 proteins more enriched in C1 and 154 proteins in C3. This information should be presented clearly as a separate tab in Supp Table 2. What are the proteins common to both constructs, i.e. enriched to a similar extent? Do they include chromatin remodellers too? Although the authors sought to identify differential interactors between the 2 constructs, it is also meaningful to perform 2 separate comparisons - active BirA-C3 against BirA alone control, and inactive BirA-C1 against BirA alone control - like in Fig. 4d, so as to more accurately define whether the active C3 repeat, and not the inactive C1 repeat, interacts with proteins involved in chromatin remodeling.

      We thank the reviewer for this comment, and we have modified the manuscript by adding a second sheet in Supplementary Table 2 including the results for enriched proteins in BirA-C1 vs. C3. Additionally, due to limitations of annotation between BirA alone and BirA*-C3 being sequenced in different mass spectrometry experiments, it is difficult to quantitatively compare the two datasets with pairwise comparisons.

      11) Fig 5d: The authors mentioned in the legend that endogenous IP was performed for SMARCC1. However, in line 266, they stated Flag-tagged SMARCC1. Is SMARCC1 overexpressed? The reciprocal IP should also be presented. More importantly, C1 constructs (e.g. C1+14aa and C1Δ14aa) should also be included.

      To clarify, Figure 4e used exogenously overexpressed FLAG-SMARCC1 in HEK-293T cells to confirm the results of the full-length DUX BioID experiment. Figure 5d was performed with overexpressed DUX construct, but involved endogenous SMARCC1 in mESCs. This has now been made clearer in the revised manuscript.

      12) For both the SMARCC1 CUT&Tag and ATAC-seq experiments shown in Figures 5e and 5f respectively, the authors need to include DUX derivatives that contain transcriptionally inactive repeats with and without the 14aa acidic tail, i.e. C1+14aa and C1Δ14aa, and show that these constructs prevent the binding/recruitment of SMARCC1 to DUX genomic targets, and correspondingly display a decrease in chromatin accessibility. Only then can they assert the requirement of the transcriptionally active repeat domains for proper DUX protein interaction, occupancy and target activation.

      We agree that examination of an inactive repeat in certain approaches would improve the manuscript. Importantly, we have now included C1+14 in our ATAC-seq experiments, and in Author response image 3 two individual replicates, which constitute a new Figure S1g. Compared to the transcriptionally active DUX constructs, which see opening at DUX binding sites, we do not see chromatin opening at DUX binding sites with transcriptionally inactive C1+14.

      Author response image 3.

      13) To prove that DUX-interactors are important for embryonic gene expression, it will be important to perform loss of function studies. For instance, will the knockdown/knockout of SMARCC1 in cells expressing the active DUX repeat(s) lead to a loss of DUX target gene occupancy and activation?

      We agree that it would be interesting to better understand SMARCC1 cooperation with DUX function in the embryo, but we believe this is beyond the scope of this paper.

      Minor Points

      1) Lines 124-126 - What is the reason/rationale for why the authors used one linker (GGGGS2) for constructs with a single internal deletion, but 2 different linkers (GGGGS2 and GAGAS2) for constructs with 2 internal deletions?

      With Gibson cloning, there are homology overhang arms for each PCR amplicon that are required to be specific for each overlap. Additionally, each PCR amplicon needs to be specific enough from one another so that all inserts (up to 5 in this manuscript) are included and oriented in the right order. The linker sequences were included in the homology arm overlaps, so the nucleotide sequences for each linker needed to be specific enough to include all inserts. This is a general rule to Gibson cloning. Additionally, both GGGGS2 and GAGAS2 are common linker sequences used in molecular biology and the amino acids structures are similar to one another, suggesting there is no functional difference between linkers.

      2) Line 704 - 705: In the figure legend, the authors stated that 'Constructs with a single black line have the linker GGGGS2 and constructs with two black lines have linkers with GGGGS2 and GAGAS2, respectively.'. This was not obvious in the figures.

      Constructs used for flow and genomics experiments that are depicted in Figure 2, Supplementary Figure 2, Figure 3, Figure 4, and Figure 5 have depicted black lines where deletions are present. Where these deletions are present, there are linkers in order to preserve spacing and mobility for the protein.

      3) Line 160 - Clusters #1 and #2 are likely written in the wrong order. It should have been "activating the majority of DUX targets in cluster #2, not cluster #1" and "failed to activate those in cluster #1, not cluster #2", based on the RNA-seq heatmap in Fig. 2f.

      We thank the reviewer for this comment, and the error has been corrected in the manuscript.

      4) Line 188 - Delete the word "of" in the following sentence fragment: "DUX binding sites correlating with the of transcriptional".

      Thanks – corrected.

      5) Line 191 - Delete the word "aids" in the following sentence fragment: "important for conferring H3K9ac aids at bound".

      Thanks – corrected.

      6) Line 711 - "C1-C3 a,b,d" should be "C1-C3 a,b,c".

      Thanks – corrected.

      7) Lines 711-712 - The colors "pink to blue" and "blue to pink" are likely written in the wrong order. Based on Fig. 2c, the blue to pink bar graphs should represent C1-C3 a,b,c in that order, and likewise the pink to blue bar graphs should represent C3-C1 a,b,c in that order.

      Thanks – corrected.

      8) There is an overload of data presented in Fig. 2c, such that it is difficult to follow which part of the figure represents each data segment as written in the figure legend. It is recommended that the data presented here is split into 2 sub-figures.

      Figure 2c has a supporting figure in Supplementary Figure 2b. While there is both a graphical depiction of the constructions and the data both in the main panel of Figure 2C, we have depicted it as so to be as clear as possible for the reader to interpret the complexity and presentence of amino acids in each of the constructs.

      9) Line 717 - "following" is misspelt.

      Thanks – corrected.

      10) Lines 720-721 - "(Top)" and "(Bottom)" should be replaced with "(Left)" and "(Right)", as the 2 bar graphs presented in Fig. 2d are placed side by side to each other, not on the top and bottom.

      Thanks – corrected.

      11) Lines 725 and 839 - "Principle" is misspelt. It should be "Principal".

      Thanks – corrected.

      12) In Figures 3d and 3e, the sample labeled "C3+14_1" should be re-labeled to "C3+14", in accordance with the other sub-figures. Additionally, for the sake of consistency, "aa" should be appended to the relevant constructs, e.g. "C3+14aa" and "C3Δ14aa".

      Thanks – corrected.

      13) Line 773 - Were the DUX domain constructs over-expressed for 12hr (as written in the figure legend) or 18hr (as labeled in Fig. 5d)?

      Thanks – corrected.

      14) Related to minor point 19 above, is there a reason/rationale for why some of the experiments used 12hr over-expression of DUX domain constructs (e.g. for CUT&TAG in Fig. 3), whereas in other experiments 18hr over-expression was chosen instead (e.g. flow cytometry for MERVL::GFP reporter in Figures 1 and 2, and co-IP validations of BirA*-DUX interactions in Fig. 4)?

      Thanks for the opportunity to explain. In this work, experiments that reported on proteins that are translated following DUX gene activation (e.g. MERVL:GFP via flow) were done at 18hr to allow for enough time for transcription and translation of GFP (or other DUX target genes). For experiments that report on the impact of DUX on chromatin and transcription, such as RNA-seq, CUT&Tag, and ATAC-seq, we induced DUX domain constructs for 12 hours.

      15) Line 804 - "ΔHDs" is missing between "C2345+14aa" and "ΔHD1".

      Thanks – corrected.

      16) In Fig. 5c, "Chromatin remodelers" is misspelt.

      Thanks – corrected.

      17) There is no reference in the manuscript to the proposed model that is presented in Fig. 6b.

      Thanks – corrected.

      Reviewer #3 (Recommendations For The Authors):

      Given the uncertainty of the function of the Dux peptide repeats in mice, could it not also be possible that the underlying repeated nature of the (coding) DNA? That is, could these DNA repeats exert a regulatory function on Dux transcription itself (also given the dire consequences of misregulated DUX4 expression as seen in FSHD, for example).

      Yes, it remains possible that the internal coding repeats within Dux are playing a role in locus regulation, and might be interesting to examine. However, we consider this question as being outside the scope of the current paper.

      Finally, it would be interesting to know whether these repeats are, in fact, present in all mouse species. Already no longer present in rat, do they exist, or not, in more "distant" mice, e.g. M. caroli?

      Determining whether all mouse strains contain C-terminal repeats in DUX is a question we also considered. However, Dux and its orthologs are present in long and very complex repeat arrays that are not present in the sequencing data or annotation in other mouse strains. Therefore, we are not unable to answer this question from existing sequencing data. Answering would require a considerable genome sequencing and bioinformatics effort, or alternatively a considerable effort aimed at cloning ortholog cDNAs from 2-cell embryos.

      Minor points:

      line 169: here it seems, in fact, that the 'inactive' C2, C4 repeats are more similar to each other (my calculation: 91 and 96% identity at the protein and DNA level, respectively) than the active C3 and C5 repeats (82 and 89% identity, resp.), the outlier being C1.

      Thanks for this comment, which was mentioned by other reviewers as well and has been addressed through new statistical analyses and interpretation (see new Figure S1d).

      line 191: I'm not sure this sentence parses correctly ("...14AA tail is important for conferring H3K9Ac aids at bound sites...")

      We thank the reviewer for this comment, and we have corrected the sentence in the manuscript.

    1. For this, N-terminal GST-tag or C-terminal GFP-tag TRPV1 was transiently transfected into human embryonic kidney (HEK) 293 cells.

      This is a very intriguing idea linking TRPV1-mediated calpain activation to downregulation of TRPV1! While your engineered HEK and CHO cell systems work well, can you perform this assay in more biologically relevant cells, such as DRGs, or cells more closely related to neurons, like keratinocytes, and examine endogenous proteins?

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      While very positive towards our manuscript, this reviewer also points out three suggestions for improvement.

      Overall, there are not many weaknesses. The main one I noticed is with the lipidomic analysis shown in Figs 3C, 7C, S1 and S3. While these data are an essential part of the analysis and provide strong evidence for the conclusions of the study, it is unfortunate that the methods used did not enable the distinction between two 18:1 isomers. These two isomers of 18:1 are important in C. elegans biology, because one is a substrate for FAT-2 (18:1n-9, oleic acid) and the other is not (18:1n-7, cis vaccenic acid). Although rarer in mammals, cisvaccenic acid is the most abundant fatty acid in C. elegans and is likely the most important structural MUFA. The measurement of these two isomers is not essential for the conclusions of the study, but the manuscript should include a comment about the abundance of oleic vs vaccenic acid in C. elegans (authors can find this information, even in the fat-2 mutant, in other publications of C. elegans fatty acid composition). Otherwise, readers who are not familiar with C. elegans might assume the 18:1 that is reported is likely to be mainly oleic acid, as is common in mammals.

      Excellent point. As suggested by the reviewer, we now include a clarification of this in the text: "Consistent with previous publications [10], the levels of 18:1 fatty acids were greatly increased in the fat-2(wa17) mutant. It is important to note that the majority of these 18:1 fatty acids is likely 18:1n7 (vaccenic acid) and not 18:1n9 (OA) [10,23], which is the substrate of FAT-2; the lipid analysis methods used here are not able to distinguish between the two 18:1 species."

      The title could be less specific; it might be confusing to readers to include the allele name in the title.

      We thank the reviewer for the suggestion, and we have now modified the title:

      "Forward Genetics In C. elegans Reveals Genetic Adaptations To Polyunsaturated Fatty Acid Deficiency"

      There are two errors in the pathway depicted in Figure 1A. The16:0-16:1 desaturation can be performed by FAT-5, FAT-6, and FAT-7. The 18:0-18:1 desaturation can only be performed by FAT-6 and FAT-7.

      We thank the reviewer for pointing out this mistake. The pathway in Fig. 1A has been corrected.

      Reviewer #2:

      This reviewer was also very positive towards our manuscript but also pointed out several suggestions for additional experiments or changes to the manuscript.

      Major recommendations

      (1) To conclude that membrane rigidification is not the major cause of defects associated with fat-2 mutations, the authors need to show that fluidity is rescued by their treatments (oleic acid or NP-40). I honestly doubt that it is the case, as oleic acid is already abundant in fat-2 mutants. It is possible that the treatments, which are effective in rescuing fluidity in paqr-2 mutants, do not have the same effects in fat-2 mutants.

      The reviewer raises an important point. In an effort to address this, we have now performed a FRAP study on fat-2(wa17) mutants with/without NP40 as a fluidizing agent (with wild-type and paqr-2 mutants as controls). The new data, now included as Fig. 2J, shows that NP40 did improve the fluidity of the intestinal cell membrane in the fat-2(wa17) mutant, though not to the same degree as in the paqr-2 mutant. This is now cited in the text as follows:

      "However, cultivating the fat-2(wa17) mutant in the presence of the non-ionic detergent NP40, which improves the growth of the paqr-2(tm3410) mutant [17], did not suppress the poor growth phenotype of the fat-2(wa17) mutant even though it did improve membrane fluidity as measured using FRAP (Fig. 2I-J). Similarly, supplementing the fat-2(wa17) mutant with the MUFA oleic acid (OA, 18:1), which also suppresses paqr-2(tm3410) phenotypes [17], did not suppress the poor growth phenotype of the fat-2(wa17) mutant (Fig 2K)."

      (2) It is not validated experimentally that the mutations converge into FTN-2 repression. This can be verified by analyzing mRNA or protein expression of FTN-2 in the egl-9 and hif-1 mutants obtained in the screening.

      Our manuscript does lean on several publications that previously established the HIF-1 pathway in C. elegans. Additionally, we now added a qPCR experiment showing that the newly isolated hif-1(et69) allele indeed suppresses the expression of ftn-2. This was an especially valuable experiment since the hif-1(et69) is proposed to act as a gain-of-function allele that would constitutively suppress ftn-2 expression. This new result is included as Fig. 6C and mentioned in the text:

      "Inhibition of egl-9 promotes HIF-1 activity [41], which we here verified for the egl-9(et60) allele using western blots (Fig 6A). Additionally, we found by qPCR that ftn-2 mRNA levels are as expected reduced by the proposed gain-of-function hif-1(et69) allele (Fig 6C). We conclude that the egl-9 and hif-1 suppressor mutations likely converge on inhibiting ftn-2 and thus act similarly to the ftn-2 loss-of-function alleles."

      (3) In the hif-1(et69) and ftn-2(et68) mutants, the rescues in lipid composition seem to be minor, with eicosapentaenoic acid (EPA) levels remaining low. The ftn-2 mutant data is especially concerning, as it suggests that egl-9 mutants rescue lipid composition via distinct mechanisms not including ftn-2 suppression. I suggest that the authors test the minimal doses of linoleic acid or EPA required to rescue fat-2 mutants and perform lipidomics to test which is the degree of EPA restoration that is needed. If a low level of restoration is sufficient, the hif-1 and ftn-2 mutants might indeed rescue phenotypes via a restoration of EPA levels. Otherwise, other mechanisms have to be considered.

      In line with the above issue, the low level or EPA restoration in hif-1 and ftn-2 mutants raise the possibility that the mutations rescue fat-2 mutants downstream of lipid changes. The reduction in HIF-1 levels in fat-2 mutants also suggest that lipid changes affect HIF-1 expression. Thus, the "impossibility to genetically compensate PUFA deficiency" might be wrong. The above experiment would answer to this point too.

      The reviewer is entirely correct to consider alternative explanations. In the lipidomics in Fig 3, we see that fat-2(wa17) worms on NGM have only ~1.5-2%mol EPA in phosphatidylcholines. When treated with 2 mM LA, the levels of EPA rise to ~10%mol, still below the ~ 25% observed in N2 but perhaps this is sufficient cause for restoring fat-2(wa17) health. Similarly, the hif-1(et69) and ftn-2(et68) mutant alleles elevate EPA levels to 5- 7% in fat-2(wa17). Thus, we have a correlation where a significant increase in EPA, obtained either through LA supplementation or through suppressor mutations (e.g. egl-9 (et60), hif-1(et69) or ftn-2(et68)), is associated with improved growth and health of the fat-2(wa17) mutant. However, correlation is of course not proof. The suggested experiment to titrate EPA to its lowest fat-2(wa17) rescuing levels and then perform lipidomics analysis was not possible in a reasonable time frame during this revision. However, preliminary experiments showed that even 25 μM LA (most of which will be converted to EPA by the worms) is enough to rescue the fat-2(wa17) or null mutant (Author response image 1), suggesting that even tiny amounts (much below the >250 μM used in our article) bring great benefits.

      Author response image 1.

      Nevertheless, we now acknowledge in the discussion that alternative explanations exist:

      "Other mechanisms are also possible. For example, mutations in the HIF-1 pathway could somehow reduce EPA turnover rates in the fat-2(wa17) mutant and allow its levels to rise above an essential threshold. This hypothesis is consistent with the observation that the suppressors can rescue both the fat-2(wa17) mutant and fat-2 RNAi-treated worms but not the fat-2 null mutant. It is even possible, though deemed unlikely, that the fat-2(wa17) suppressors act by compensating for the PUFA shortage via some undefined separate process downstream of the lipid changes and that they only indirectly result in elevated EPA levels."

      Additionally, another possible mechanism of action of the fat-2(wa17) suppressors could have been that they all cause upregulation of the FAT-2 protein. We have now explored this possibility using Western blots and found that this is an unlikely mechanism. This is presented in Fig. 6D-E and S3C-D, mentioned in the text as follows:

      "We also used Western blots to evaluate the abundance of the FAT-2 protein expressed from endogenous wild-type or mutant loci but to which a HA tag was fused using CRISPR/Cas9. We found that the FAT-2::HA levels are severely reduced when the locus contains the S101F substitution present in the wa17 allele, but restored close to wild-type levels by the fat2(et65) suppressor mutation (Fig 6D-E, S3C-D Fig). The levels of FAT-2 in the HIF-1 pathway suppressors varied between experiments, with the suppressors sometimes restoring FAT-2 levels and sometimes not even when the worms were growing well (Fig 6D-E, S3C-D Fig). The fat-2(wa17) suppressors, except for the intragenic fat-2 alleles, likely do not act by increasing FAT-2 protein levels."

      (4) It should be tested how Fe2+ levels are changed in the mutants, and how effective the ferric ammonium citrate treatment is. The authors might use a ftn-1::GFP reporter for this purpose.

      We did obtain a strain carrying the ftn-1::GFP reporter but could not generate conclusive data with it. In particular, we saw no increase in fluorescence in fat-2(wa17) worms carrying suppressor mutations. However, we also found that even FAC treatment that rescue the fat2(wa17) mutant did not result in a measurable increased GFP levels suggesting that the reporter is not sensitive enough.

      Minor comments

      (1) I think that putting Figure 6A in Figure 5 would be helpful for the readers, so that they understand that the mutations converge in the same pathway.

      This is now done.

      (2) Page 3: While it is clear that paqr-2 regulates lipid composition, I believe that it remains unclear if it "promote the production and incorporation of PUFAs into phospholipids to restore membrane homeostasis".

      A reference was missing to support that statement. Ruiz et al. (2023) is now cited for this (ref. 7).

      (3) C. elegans is extremely rich in EPA (see for example DOI: 10.3390/jcm5020019), but the lipidomics data in this study rather suggest that oleic acid is predominant. I recommend to check why this discrepancy occurs.

      OA (18:1n9) makes up only ~2%, but vaccenic acid (18:1n7) is ~21% in WT worms, EPA is slightly less at ~19% (Watts et al. 2002). These match with our lipidomics results although we cannot distinguish between 18:1n9 and n7. See also answer to Reviewer #1, comment 1.

      (4) Abstract: The authors write that mammals do not synthesize PUFAs, which is almost correct, but they still produce the PUFA mead acid. Thus, the statement is not completely right.

      Didn't know that! From literature, it is our understanding that mammals synthesize mead acid during FA deficiency but not in normal conditions, so they are not regularly producing mead acid. We have now updated the introduction:

      "An exception to this exists during severe essential fatty acid deficiency when mammals can synthesize mead acid (20:3n9), though this is not a common occurrence [11]"

      (5) Page 10: Eicosanoids are C20 lipid mediators, thus those produced from docosahexaenoic acid are not eicosanoids. Correct the statement.

      We thank the reviewer for pointing this out. We now write:

      " EPA and DHA, being long chain PUFAs should have similar fluidizing effects on membrane properties (though in vitro experiments challenge this view [78]), and both can serve as precursors of eicosanoids or docosanoids, particularly inflammatory ones [79]."

      (6) Page 7: "hif-1(et69) is similarly able to suppress fat-2(wa17) when ftn-2 is knocked out" I am not sure that the data agrees with this statement, and it is unclear what we can conclude from such observation.

      Fig. 2D shows that ftn-2(et68) suppresses fat-2(wa17) even in the presence of a hif-1(ok2654) null allele, showing that no HIF-1 function is required once ftn-2 is mutated. Conversely, Fig S2E shows that combining both the hif-1(et69) and the ftn-2(ok404) null allele also suppresses fat-2(wa17) (the worms do not fully reach N2 length, but they are significantly longer and were fertile adults); this is merely the expected outcome if the pathway converges on loss of ftn-2 function, though other interpretations could be possible from this experiment alone.

      (7) S3 Fig: in panel B, is the last column ftn-2;egl-9 mutant? I would imagine that it is ftn2;fat-2.

      We thank the reviewer for pointing this out. This has been corrected.

      (8) Fig 6B, how many times has been this experiment done?

      With these exact conditions (6h and 20h hypoxia) and order of strains the blot was done once, but the blot overall was done 5 times. We now added another replicate in Fig. S3A.

      Note also that a few minor modifications have been made throughout the text, which can be seen in the Word file with tracked changes.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Hussain and collaborators aims at deciphering the microtubule-dependent ribbon formation in zebrafish hair cells. By using confocal imaging, pharmacology tools, and zebrafish mutants, the group of Katie Kindt convincingly demonstrated that ribbon, the organelle that concentrates glutamate-filled vesicles at the hair cell synapse, originates from the fusion of precursors that move along the microtubule network. This study goes hand in hand with a complementary paper (Voorn et al.) showing similar results in mouse hair cells.

      Strengths:

      This study clearly tracked the dynamics of the microtubules, and those of the microtubule-associated ribbons and demonstrated fusion ribbon events. In addition, the authors have identified the critical role of kinesin Kif1aa in the fusion events. The results are compelling and the images and movies are magnificent.

      Weaknesses:

      The lack of functional data regarding the role of Kif1aa. Although it is difficult to probe and interpret the behavior of zebrafish after nocodazole treatment, I wonder whether deletion of kif1aa in hair cells may result in a functional deficit that could be easily tested in zebrafish?

      We have examined functional deficits in kif1aa mutants in another paper that was recently accepted: David et al. 2024. https://pubmed.ncbi.nlm.nih.gov/39373584/

      In David et al., we found that in addition to a subtle role in ribbon fusion during development, Kif1aa plays a major role in enriching glutamate-filled synaptic vesicles at the presynaptic active zone of mature hair cells. In kif1aa mutants, synaptic vesicles are no longer enriched at the hair cell base, and there is a reduction in the number of synaptic vesicles associated with presynaptic ribbons. Further, we demonstrated that kif1aa mutants also have functional defects including reductions in spontaneous vesicle release (from hair cells) and evoked postsynaptic calcium responses. Behaviorally, kif1aa mutants exhibit impaired rheotaxis, indicating defects in the lateral-line system and an inability to accurately detect water flow. Because our current paper focuses on microtubule-associated ribbon movement and dynamics early in hair-cell development, we have only discussed the effects of Kif1aa directly related to ribbon dynamics during this time window. In our revision, we have referenced this recent work. Currently it is challenging to disentangle how the subtle defects in ribbon formation in kif1aa mutants contribute to the defects we observe in ribbon-synapse function.

      Added to results:

      “Recent work in our lab using this mutant has shown that Kif1aa is responsible for enriching glutamate-filled vesicles at the base of hair cells. In addition this work demonstrated that loss of Kif1aa results in functional defects in mature hair cells including a reduction in evoked post-synaptic calcium responses (David et al., 2024). We hypothesized that Kif1aa may also be playing an earlier role in ribbon formation.”

      Impact:

      The synaptogenesis in the auditory sensory cell remains still elusive. Here, this study indicates that the formation of the synaptic organelle is a dynamic process involving the fusion of presynaptic elements. This study will undoubtedly boost a new line of research aimed at identifying the specific molecular determinants that target ribbon precursors to the synapse and govern the fusion process.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors set out to resolve a long-standing mystery in the field of sensory biology - how large, presynaptic bodies called "ribbon synapses" migrate to the basolateral end of hair cells. The ribbon synapse is found in sensory hair cells and photoreceptors, and is a critical structural feature of a readily-releasable pool of glutamate that excites postsynaptic afferent neurons. For decades, we have known these structures exist, but the mechanisms that control how ribbon synapses coalesce at the bottom of hair cells are not well understood. The authors addressed this question by leveraging the highly-tractable zebrafish lateral line neuromast, which exhibits a small number of visible hair cells, easily observed in time-lapse imaging. The approach combined genetics, pharmacological manipulations, high-resolution imaging, and careful quantifications. The manuscript commences with a developmental time course of ribbon synapse development, characterizing both immature and mature ribbon bodies (defined by position in the hair cell, apical vs. basal). Next, the authors show convincing (and frankly mesmerizing) imaging data of plus end-directed microtubule trafficking toward the basal end of the hair cells, and data highlighting the directed motion of ribbon bodies. The authors then use a series of pharmacological and genetic manipulations showing the role of microtubule stability and one particular kinesin (Kif1aa) in the transport and fusion of ribbon bodies, which is presumably a prerequisite for hair cell synaptic transmission. The data suggest that microtubules and their stability are necessary for normal numbers of mature ribbons and that Kif1aa is likely required for fusion events associated with ribbon maturation. Overall, the data provide a new and interesting story on ribbon synapse dynamics.

      Strengths:

      (1) The manuscript offers a comprehensive Introduction and Discussion sections that will inform generalists and specialists.

      (2) The use of Airyscan imaging in living samples to view and measure microtubule and ribbon dynamics in vivo represents a strength. With rigorous quantification and thoughtful analyses, the authors generate datasets often only obtained in cultured cells or more diminutive animal models (e.g., C. elegans).

      (3) The number of biological replicates and the statistical analyses are strong. The combination of pharmacology and genetic manipulations also represents strong rigor.

      (4) One of the most important strengths is that the manuscript and data spur on other questions - namely, do (or how do) ribbon bodies attach to Kinesin proteins? Also, and as noted in the Discussion, do hair cell activity and subsequent intracellular calcium rises facilitate ribbon transport/fusion?

      These are important strengths and as stated we are currently investigating what other kinesins and adaptors and adaptor’s transport ribbons. We have ongoing work examining how hair-cell activity impacts ribbon fusion and transport!

      Weaknesses:

      (1) Neither the data or the Discussion address a direct or indirect link between Kinesins and ribbon bodies. Showing Kif1aa protein in proximity to the ribbon bodies would add strength.

      This is a great point. Previous immunohistochemistry work in mice demonstrated that ribbons and Kif1a colocalize in mouse hair cells (Michanski et al, 2019). Unfortunately, the antibody used in study work did not work in zebrafish. To further investigate this interaction, we also attempted to create a transgenic line expressing a fluorescently tagged Kif1aa to directly visualize its association with ribbons in vivo. At present, we were unable to detect transient expression of Kif1aa-GFP or establish a transgenic line using this approach. While we will continue to work towards understanding whether Kif1aa and ribbons colocalize in live hair cells, currently this goal is beyond the scope of this paper. In our revision we discuss this caveat.

      Added to discussion:

      “In addition, it will be useful to visualize these kinesins by fluorescently tagging them in live hair cells to observe whether they associate with ribbons.”

      (2) Neither the data or Discussion address the functional consequences of loss of Kif1aa or ribbon transport. Presumably, both manipulations would reduce afferent excitation.

      Excellent point. Please see the response above to Reviewer #1 public response weaknesses.

      (3) It is unknown whether the drug treatments or genetic manipulations are specific to hair cells, so we can't know for certain whether any phenotypic defects are secondary.

      This is correct and a caveat of our Kif1aa and drug experiments. In our recently published work, we confirmed that Kif1aa is expressed in hair cells and neurons, while kif1ab is present just is neurons. Therefore, it is likely that the ribbon formation defects in kif1aa mutants are restricted to hair cells. We added this expression information to our results:

      “ScRNA-seq in zebrafish has demonstrated widespread co-expression of kif1ab and kif1aa mRNA in the nervous system. Additionally, both scRNA-seq and fluorescent in situ hybridization have revealed that pLL hair cells exclusively express kif1aa mRNA (David et al., 2024; Lush et al., 2019; Sur et al., 2023).”

      Non-hair cell effects are a real concern in our pharmacology experiments. To mitigate this in our pharmacological experiments, we have performed drug treatments at 3 different timescales: long-term (overnight), short-term (4 hr) and fast (30 min) treatments. The fast experiments were done after 30 min nocodazole drug treatment, and after this treatment we observed reduced directional motion and fusions. This fast drug treatment should not incur any long-term changes or developmental defects as hair-cell development occurs over 12-16 hrs. However, we acknowledge that drug treatments could have secondary phenotypic effects or effects that are not hair-cell specific. In our revision, we discuss these issues.

      Added to discussion:

      “Another important consideration is the potential off-target effects of nocodazole. Even at non-cytotoxic doses, nocodazole toxicity may impact ribbons and synapses independently of its effects on microtubules. While this is less of a concern in the short- and medium-term experiments (30-70 min and 4 hr), long-term treatments (16 hrs) could introduce confounding effects. Additionally, nocodazole treatment is not hair cell-specific and could disrupt microtubule organization within afferent terminals as well. Thus, the reduction in ribbon-synapse formation following prolonged nocodazole treatment may result from microtubule disruption in hair cells, afferent terminals, or a combination of the two.”

      Reviewer #3 (Public Review):

      Summary:

      The manuscript uses live imaging to study the role of microtubules in the movement of ribeye aggregates in neuromast hair cells in zebrafish. The main findings are that

      (1) Ribeye aggregates, assumed to be ribbon precursors, move in a directed motion toward the active zone;

      (2) Disruption of microtubules and kif1aa increases the number of ribeye aggregates and decreases the number of mature synapses.

      The evidence for point 2 is compelling, while the evidence for point 1 is less convincing. In particular, the directed motion conclusion is dependent upon fitting of mean squared displacement that can be prone to error and variance to do stochasticity, which is not accounted for in the analysis. Only a small subset of the aggregates meet this criteria and one wonders whether the focus on this subset misses the bigger picture of what is happening with the majority of spots.

      Strengths:

      (1) The effects of Kif1aa removal and nocodozole on ribbon precursor number and size are convincing and novel.

      (2) The live imaging of Ribeye aggregate dynamics provides interesting insight into ribbon formation. The movies showing the fusion of ribeye spots are convincing and the demonstrated effects of nocodozole and kif1aa removal on the frequency of these events is novel.

      (3) The effect of nocodozole and kif1aa removal on precursor fusion is novel and interesting.

      (4) The quality of the data is extremely high and the results are interesting.

      Weaknesses:

      (1) To image ribeye aggregates, the investigators overexpressed Ribeye-a TAGRFP under the control of a MyoVI promoter. While it is understandable why they chose to do the experiments this way, expression is not under the same transcriptional regulation as the native protein, and some caution is warranted in drawing some conclusions. For example, the reduction in the number of puncta with maturity may partially reflect the regulation of the MyoVI promoter with hair cell maturity. Similarly, it is unknown whether overexpression has the potential to saturate binding sites (for example motors), which could influence mobility.

      We agree that overexpression of transgenes under using a non-endogenous promoter in transgenic lines is an important consideration. Ideally, we would do these experiments with endogenously expressed fluorescent proteins under a native promoter. However, this was not technically possible for us. The decrease in precursors is likely not due to regulation by the myo6a promoter. Although the myo6a promoter comes on early in hair cell development, the promoter only gets stronger as the hair cells mature. This would lead to a continued increase rather than a decrease in puncta numbers with development.

      Protein tags such as tagRFP always have the caveat of impacting protein function. This is in partly why we complemented our live imaging with analyses in fixed tissue without transgenes (kif1aa mutants and nocodazole/taxol treatments).

      In our revision, we did perform an immunolabel on myo6b:riba-tagRFP transgenic fish and found that Riba-tagRFP expression did not impact ribbon synapse numbers or ribbon size. This analysis argues that the transgene is expressed at a level that does not impact ribbon synapses. This data is summarized in Figure 1-S1.

      Added to the results:

      “Although this latter transgene expresses Riba-TagRFP under a non-endogenous promoter, neither the tag nor the promoter ultimately impacts cell numbers, synapse counts, or ribbon size (Figure 1-S1A-E).”

      Added to methods:

      Tg(myo6b:ctbp2a-TagRFP)<sup>idc11Tg</sup> reliably labels mature ribbons, similar to a pan-CTBP immunolabel at 5 dpf (Figure 1-S1B). This transgenic line does not alter the number of hair cells or complete synapses per hair cell (Figure 1-S1A-D). In addition, myo6b:ctbp2a-TagRFP does not alter the size of ribbons (Figure 1-S1E).”

      (2) The examples of punctae colocalizing with microtubules look clear (Figures 1 F-G), but the presentation is anecdotal. It would be better and more informative, if quantified.

      We did attempt a co-localization analysis between microtubules and ribbons but did not move forward with it due to several issues:

      (1) Hair cells have an extremely crowded environment, especially since the nucleus occupies the majority of the cell. All proteins are pushed together in the small space surrounding the nucleus and ultimately, we found that co-localization analyses were not meaningful because the distances were too small.

      (2) We also attempted to segment microtubules in these images and quantify how many ribbons were associated with microtubules, but 3D microtubule segmentation was not accurate in hair cells due to highly varying filament intensities, filament dynamics and the presence of diffuse cytoplasmic tubulin signal.

      Because of these challenges we concluded the best evidence of ribbon-microtubule association is through visualization of ribbons and their association with microtubules over time (in our timelapses). We see that ribbons localize to microtubules in all our timelapses, including the examples shown (Movies S2-S10). The only instance of ribbon dissociation it when ribbons switch from one filament to another. We did not observe free-floating ribbons in our study.

      (3) It appears that any directed transport may be rare. Simply having an alpha >1 is not sufficient to declare movement to be directed (motor-driven transport typically has an alpha approaching 2). Due to the randomness of a random walk and errors in fits in imperfect data will yield some spread in movement driven by Brownian motion. Many of the tracks in Figure 3H look as though they might be reasonably fit by a straight line (i.e. alpha = 1).

      (4) The "directed motion" shown here does not really resemble motor-driven transport observed in other systems (axonal transport, for example) even in the subset that has been picked out as examples here. While the role of microtubules and kif1aa in synapse maturation is strong, it seems likely that this role may be something non-canonical (which would be interesting).

      Yes, it is true, that directed transport of ribbon precursors is relatively rare. Only a small subset of the ribbon precursors moves directionally (α > 1, 20 %) or have a displacement distance > 1 µm (36 %) during the time windows we are imaging. The majority of the ribbons are stationary. To emphasize this result we have added bar graphs to Figure 3I,K to illustrate this result and state the numbers behind this result more clearly.

      “Upon quantification, 20.2 % of ribbon tracks show α > 1, indicative of directional motion, but the majority of ribbon tracks (79.8 %) show α < 1, indicating confinement on microtubules (Figure 3I, n = 10 neuromasts, 40 hair cells, and 203 tracks).

      To provide a more comprehensive analysis of precursor movement, we also examined displacement distance (Figure 3J). Here, as an additional measure of directed motion, we calculated the percent of tracks with a cumulative displacement > 1 µm. We found 35.6 % of tracks had a displacement > 1 µm (Figure 3K; n = 10 neuromasts, 40 hair cells, and 203 tracks).”

      We cannot say for certain what is happening with the stationary ribbons, but our hypothesis is that these ribbons eventually exhibit directed motion sufficient to reach the active zone. This idea is supported by the fact that we see ribbons that are stationary begin movement, and ribbons that are moving come to a stop during the acquisition of our timelapses (Movies S4 and S5). It is possible that ribbons that are stationary may not have enough motors attached, or there may be a ‘seeding’ phase where Ribeye aggregates are condensing on the ribbon.

      We also reexamined our MSD a values as the a values we observed in hair cells were lower than those seen canonical motor-driven transport (where a approaches 2). One reason for this difference may arise from the dynamic microtubule network in developing hair cells, which could affect directional ribbon movement. In our revision we plotted the distribution of a values which confirmed that in control hair cells, the majority of the a values we see are typically less than 2 (Figure 7-S1A). Interestingly we also compared the distribution a values between control and taxol-treated hair cells, where the microtubule network is more stable, and found that the distribution shifted towards higher a values (Figure 7-S1A). We also plotted only ‘directional’ tracks (with a > 1) and observed significantly higher a values in taxol-treated hair cells (Figure 7-S1B). This is an interesting result which indicates that although the proportion of directional tracks (with a > 1) is not significantly different between control and taxol-treated hair cells (which could be limited by the number of motor/adapter proteins), the ribbons that move directionally do so with greater velocities when the microtubules are more stable. This supports our idea that the stability of the microtubule network could be why ribbon movement does not resemble canonical motor transport. This analysis is presented as a new figure (Figure 7-S1A-B) and is referred to in the text in the results and the discussion.

      Results:

      “Interestingly, when we examined the distribution of α values, we observed that taxol treatment shifted the overall distribution towards higher α a values (Figure 7-S1A). In addition, when we plotted only tracks with directional motion (α > 1), we found significantly higher α values in hair cells treated with taxol compared to controls (Figure 7-S1B). This indicates that in taxol-treated hair cells, where the microtubule network is stabilized, ribbons with directional motion have higher velocities.”

      Discussion:

      “Our findings indicate that ribbons and precursors show directed motion indicative of motor-mediated transport (Figure 3 and 7). While a subset of ribbons moves directionally with α values > 1, canonical motor-driven transport in other systems, such as axonal transport, can achieve even higher α values approaching 2 (Bellotti et al., 2021; Corradi et al., 2020). We suggest that relatively lower α values arise from the highly dynamic nature of microtubules in hair cells. In axons, microtubules form stable, linear tracks that allow kinesins to transport cargo with high velocity. In contrast, the microtubule network in hair cells is highly dynamic, particularly near the cell base. Within a single time frame (50-100 s), we observe continuous movement and branching of these networks. This dynamic behavior adds complexity to ribbon motion, leading to frequent stalling, filament switching, and reversals in direction. As a result, ribbon transport appears less directional than the movement of traditional motor cargoes along stable axonal filaments, resulting in lower α values compared to canonical motor-mediated transport. Notably, treatment with taxol, which stabilizes microtubules, increased α values to levels closer to those observed in canonical motor-driven transport (Figure 7-S1). This finding supports the idea that the relatively lower α values in hair cells are a consequence of a more dynamic microtubule network. Overall, this dynamic network gives rise to a slower, non-canonical mode of transport.”

      (5) The effect of acute treatment with nocodozole on microtubules in movie 7 and Figure 6 is not obvious to me and it is clear that whatever effect it has on microtubules is incomplete.

      When using nocodazole, we worked to optimize the concentration of the drug to minimize cytotoxicity, while still being effective. While the more stable filaments at the cell apex remain largely intact after nocodazole treatment, there are almost no filaments at the hair cell base, which is different from the wild-type hair cells. In addition, nocodazole-treated hair cells have more cytoplasmic YFP-tubulin signal compared to wild type. We have clarified this in our results. To better illustrate the effect of nocodazole and taxol we have also added additional side-view images of hair cells expressing YFP-tubulin (Figure 4-S1F-G), that highlight cytoplasmic YFP-tubulin and long, stabilized microtubules after 3-4 hr treatment with nocodazole and taxol respectively. In these images we also point out microtubules at the apical region of hair cells that are very stable and do not completely destabilize with nocodazole treatment at concentrations that are tolerable to hair cells.

      “We verified the effectiveness of our in vivo pharmacological treatments using either 500 nM nocodazole or 25 µM taxol by imaging microtubule dynamics in pLL hair cells (myo6b:YFP-tubulin). After a 30-min pharmacological treatment, we used Airyscan confocal microscopy to acquire timelapses of YFP-tubulin (3 µm z-stacks, every 50-100 s for 30-70 min, Movie S8). Compared to controls, 500 nM nocodazole destabilized microtubules (presence of depolymerized YFP-tubulin in the cytosol, see arrows in Figure 4-S1F-G) and 25 µM taxol dramatically stabilized microtubules (indicated by long, rigid microtubules, see arrowheads in Figure 4-S1F,H) in pLL hair cells. We did still observe a subset of apical microtubules after nocodazole treatment, indicating that this population is particularly stable (see asterisks in Figure 4-S1F-H).”

      To further address concerns about verifying the efficacy of nocodazole and taxol treatment on microtubules, we added a quantification of our immunostaining data comparing the mean acetylated-a-tubulin intensities between control, nocodazole and taxol-treated hair cells. Our results show that nocodazole treatment reduces the mean acetylated-a-tubulin intensity in hair cells. This is included as a new figure (Figure 4-S1D-E) and this result is referred to in the text. To better illustrate the effect of nocodazole and taxol we have also added additional side-view images of hair cells after overnight treatment with nocodazole and taxol (Figure 4-S1A-C).

      “After a 16-hr treatment with 250 nM nocodazole we observed a decrease in acetylated-a-tubulin label (qualitative examples: Figure 4A,C, Figure 4-S1A-B). Quantification revealed significantly less mean acetylated-a-tubulin label in hair cells after nocodazole treatment (Figure 4-S1D). Less acetylated-a-tubulin label indicates that our nocodazole treatment successfully destabilized microtubules.”

      “Qualitatively more acetylated-a-tubulin label was observed after treatment, indicating that our taxol treatment successfully stabilized microtubules (qualitative examples: Figure 4-S1A,C). Quantification revealed an overall increase in mean acetylated-a-tubulin label in hair cells after taxol treatment, but this increase did not reach significance (Figure 4-S1E).”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The manuscript is fairly dense. For instance, some information is repeated (page 3 ribbon synapses form along a condensed timeline in zebrafish hair cells: 12-18 hrs, and on .page 5. These hair cells form 3-4 ribbon synapses in just 12-18 hrs). Perhaps, the authors could condense some of the ideas? The introduction could be shortened.

      We have eliminated this repeated text in our revision. We have shortened the introduction 1275 to 1038 words (with references)

      (2) The mechanosensory structure on page 5 is not defined for readers outside the field.

      Great point, we have added addition information to define this structure in the results:

      “We staged hair cells based on the development of the apical, mechanosensory hair bundle. The hair bundle is composed of actin-based stereocilia and a tubulin-based kinocilium. We used the height of the kinocilium (see schematic in Figure 1B), the tallest part of the hair bundle, to estimate the developmental stage of hair cells as described previously…”

      (3) Figure 1E is quite interesting but I'd rather show Figure S1 B/C as they provide statistics. In addition, the authors define 4 stages : early, intermediate, late, and mature for counting but provide only 3 panels for representative examples by mixing late/mature.

      We were torn about which ribbon quantification graph to show. Ultimately, we decided to keep the summary data in Figure 1E. This is primarily because the supplementary Figure will be adjacent to the main Figure in the Elife format, and the statistics will be easy to find and view.

      Figure 1 now provides a representative image for both late and mature hair cells.

      (4.) The ribbon that jumps from one microtubule to another one is eye-catching. Can the authors provide any statistics on this (e.g. percentage)?

      Good point. In our revision, we have added quantification for these events. We observe 2.8 switching events per neuromast during our fast timelapses. This information is now in the text and is also shown in a graph in Figure 3-S1D.

      “Third, we often observed that precursors switched association between neighboring microtubules (2.8 switching events per neuromast, n= 10 neuromasts; Figure 3-S1C-D, Movie S7).”

      (5) With regard to acetyl-a-tub immunocytochemistry, I would suggest obtaining a profile of the fluorescence intensity on a horizontal plane (at the apical part and at the base).

      (6) Same issue with microtubule destruction by nocodazole. Can the authors provide fluorescence intensity measurements to convince readers of microtubule disruption for long and short-term application.

      Regarding quantification of microtubule disruption using nocodazole and taxol. We did attempt to create profiles of the acetylated tubulin or YFP-tubulin label along horizontal planes at the apex and base, but the amount variability among cells and the angle of the cell in the images made this type of display and quantification challenging. In our revision we as stated above in our response to Reviewer #1’s public comment, we have added representative side-view images to show the disruptions to microtubules more clearly after short and long-term drug experiments (Figure 4-S1A-C, F-H). In addition, we quantified the reduction in acetylated tubulin label after overnight treatment with nocodazole and found the signal was significantly reduced (Figure 3-S1D-E). Unfortunately, we were unable to do a similar quantification due to the variability in YFP-tubulin intensity due to variations in mounting. The following text has been added to the results:

      “Quantification revealed significantly less mean acetylated-a-tubulin label in hair cells after nocodazole treatment (Figure 4-S1D).”

      “Quantification revealed an overall increase in mean acetylated-a-tubulin label in hair cells after taxol treatment, but this increase did not reach significance (Figure 4-S1A,C,E).”

      (7) It is a bit difficult to understand that the long-term (overnight) microtubule destabilization leads to a reduction in the number of synapses (Figure 4F) whereas short-term (30 min) microtubule destabilization leads to the opposite phenotype with an increased number of ribbons (Figure 6G). Are these ribbons still synaptic in short-term experiments? What is the size of the ribbons in the short-term experiments? Alternatively, could the reduction in synapse number upon long-term application of nocodazole be a side-effect of the toxicity within the hair cell?

      Agreed-this is a bit confusing. In our revision, we have changed our analyses, so the comparisons are more similar between the short- and long-term experiments–we examined the number of ribbons and precursor per cells (apical and basal) in both experiments (Changed the panel in Figure 4G, Figure 4-S2G and Figure 5G). In our live experiments we cannot be sure that ribbons are synaptic as we do not have a postsynaptic co-label. Also, we are unable to reliably quantify ribbon and precursor size in our live images due to variability in mounting. We have changed the text to clarify as follows:

      Results:

      “In each developing cell, we quantified the total number of Riba-TagRFP puncta (apical and basal) before and after each treatment. In our control samples we observed on average no change in the number of Riba-TagRFP puncta per cell (Figure 6G). Interestingly, we observed that nocodazole treatment led to a significant increase in the total number of Riba-TagRFP puncta after 3-4 hrs (Figure 6G). This result is similar to our overnight nocodazole experiments in fixed samples, where we also observed an increase in the number of ribbons and precursors per hair cell. In contrast to our 3-4 hr nocodazole treatment, similar to controls, taxol treatment did not alter the total number of Riba-TagRFP puncta over 3-4 hrs (Figure 6G). Overall, our overnight and 3-4 hr pharmacology experiments demonstrate that microtubule destabilization has a more significant impact on ribbon numbers compared to microtubule stabilization.”

      Discussion:

      “Ribbons and microtubules may interact during development to promote fusion, to form larger ribbons. Disrupting microtubules could interfere with this process, preventing ribbon maturation. Consistent with this, short-term (3-4 hr) and long-term (overnight) nocodazole increased ribbon and precursor numbers (Figure 6AG; Figure 4G), suggesting reduced fusion. Long-term treatment (overnight) resulted in a shift toward smaller ribbons (Figure 4H-I), and ultimately fewer complete synapses (Figure 4F).”

      Nocodazole toxicity: in response to Reviewer # 2’s public comment we have added the following text in our discussion:

      Discussion:

      “Another important consideration is the potential off-target effects of nocodazole. Even at non-cytotoxic doses, nocodazole toxicity may impact ribbons and synapses independently of its effects on microtubules. While this is less of a concern in the short- and medium-term experiments (30 min to 4 hr), long-term treatments (16 hrs) could introduce confounding effects. Additionally, nocodazole treatment is not hair cell-specific and could disrupt microtubule organization within afferent terminals as well. Thus, the reduction in ribbon-synapse formation following prolonged nocodazole treatment may result from microtubule disruption in hair cells, afferent terminals, or a combination of the two.”

      (8) Does ribbon motion depend on size or location?

      It is challenging to reliability quantify the actual area of precursors in our live samples, as there is variability in mounting and precursors are quite small. But we did examine the location of ribbon precursors (using tracks > 1 µm as these tracks can easily be linked to cell location in Imaris) with motion in the cell. We found evidence of ribbons with tracks > 1 µm throughout the cell, both above and below the nucleus. This is now plotted in Figure 3M. We have also added the following test to the results:

      “In addition, we examined the location of precursors within the cell that exhibited displacements > 1 µm. We found that 38.9 % of these tracks were located above the nucleus, while 61.1 % were located below the nucleus (Figure 3M).”

      Although this is not an area or size measurement, this result suggests that both smaller precursors that are more apical, and larger precursors/ribbons that are more basal all show motion.

      (9) The fusion event needs to be analyzed in further detail: when one ribbon precursor fuses with another one, is there an increase in size or intensity (this should follow the law of mass conservation)? This is important to support the abstract sentence "ribbon precursors can fuse together on microtubules to form larger ribbons".

      As mentioned above it is challenging accurately estimate the absolute size or intensity of ribbon precursors in our live preparation. But we did examine whether there is a relative increase in area after ribbon fuse. We have plotted the change in area (within the same samples) for the two fusion events in shown in Figure 8-S1A-B. In these examples, the area of the puncta after fusion is larger than either of the two precursors that fuse. Although the areas are not additive, these plots do provide some evidence that fusion does act to form larger ribbons. To accompany these plots, we have added the following text to the results:

      “Although we could not accurately measure the areas of precursors before and after fusion, we observed that the relative area resulting from the fusion of two smaller precursors was greater than that of either precursor alone. This increase in area suggests that precursor fusion may serve as a mechanism for generating larger ribbons (see examples: Figure 8-S1A-B).”

      Because we were unable to provide more accurate evidence of precursor fusion resulting in larger ribbons, we have removed this statement from our abstract and lessened our claims elsewhere in the manuscript.

      (10) The title in Figure 8 is a bit confusing. If fusion events reflect ribbon precursors fusion, it is obvious it depends on ribbon precursors. I'd like to replace this title with something like "microtubules and kif1aa are required for fusion events"

      We have changed the figure title as suggested, good idea.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 1C. The purple/magenta colors are hard to distinguish.

      We have made the magenta color much lighter in the Figure 1C to make it easier to distinguish purple and magenta.

      (2) There are places where some words are unnecessarily hyphenated. Examples: live-imaging and hair-cell in the abstract, time-course in the results.

      In our revision, we have done our best to remove unnecessary hyphens, including the ones pointed out here.

      (3) Figure 4H and elsewhere - what is "area of Ribeye puncta?" Related, I think, in the Discussion the authors refer to "ribbon volume" on line 484. But they never measured ribbon volume so this needs to be clarified.

      We have done best to clarify what is meant by area of Ribeye puncta in the results and the methods:

      Results:

      “We also observed that the average of individual Ribeyeb puncta (from 2D max-projected images) was significantly reduced compared to controls (Figure 4H). Further, the relative frequency of individual Ribeyeb puncta with smaller areas was higher in nocodazole treated hair cells compared to controls (Figure 4I).”

      Methods:

      “To quantify the area of each ribbon and precursor, images were processed in a FIJI ‘IJMacro_AIRYSCAN_simple3dSeg_ribbons only.ijm’ as previously described (Wong et al., 2019). Here each Airyscan z-stack was max-projected. A threshold was applied to each image, followed by segmentation to delineate individual Ribeyeb/CTBP puncta. The watershed function was used to separate adjacent puncta. A list of 2D objects of individual ROIs (minimum size filter of 0.002 μm2) was created to measure the 2D areas of each Ribeyeb/CTBP puncta.”

      We did refer to ribbon volume once in the discussion, but volume is not reflected in our analyses, so we have removed this mention of volume.

      (4) More validation data showing gene/protein removal for the crispants would be helpful.

      Great suggestion. As this is a relatively new method, we have created a figure that outlines how we genotype each individual crispant animal analyzed in our study Figure 6-S1. In the methods we have also added the following information:

      “fPCR fragments were run on a genetic analyzer (Applied Biosystems, 3500XL) using LIZ500 (Applied Biosystems, 4322682) as a dye standard. Analysis of this fPCR revealed an average peak height of 4740 a.u. in wild type, and an average peak height of 126 a.u. in kif1aa F0 crispants (Figure 6-S1). Any kif1aa F0 crispant without robust genomic cutting or a peak height > 500 a.u. was not included in our analyses.”

      Reviewer #3 (Recommendations For The Authors):

      Lines 208-209--should refer to the movie in the text.

      Movie S1 is now referenced here.

      It would be helpful if the authors could analyze and quantify the effect of nocodozole and taxol on microtubules (movie 7).

      See responses above to Reviewer #1’s similar request.

      Figure 7 caption says "500 mM" nocodozole.

      Thank you, we have changed the caption to 500 nM.

      One problem with the MSD analysis is that it is dependent upon fits of individual tracks that lead to inaccuracies in assigning diffusive, restricted, and directed motion. The authors might be able to get around these problems by looking at the ensemble averages of all the tracks and seeing how they change with the various treatments. Even if the effect is on a subset of ribeye spots, it would be reassuring to see significant effects that did not rely upon fitting.

      We are hesitant to average the MSD tracks as not all tracks have the same number of time steps (ribbon moving in and out of the z-stack during the timelapse). This makes it challenging for us to look at the ensembles of all averages accurately, especially for the duration of the timelapse. This is the main reason why added another analysis, displacements > 1µm as another readout of directional motion, a measure that does not rely upon fitting.

      The abstract states that directed movement is toward the synapse. The only real evidence for this is a statement in the results: "Of the tracks that showed directional motion, while the majority move to the cell base, we found that 21.2 % of ribbon tracks moved apically." A clearer demonstration of this would be to do the analysis of Figure 2G for the ribeye aggregates.

      If was not possible to do the same analysis to ribbon tracks that we did for the EB3-GFP analysis in Figure 2. In Figure 2 we did a 2D tracking analysis and measured the relative angles in 2D. In contrast, the ribbon tracking was done in 3D in Imaris not possible to get angles in the same way. Further the MSD analysis was outside of Imaris, making it extremely difficult to link ribbon trajectories to the 3D cellular landscape in Imaris. Instead, we examined the direction of the 3D vectors in Imaris with tracks > 1µm and determined the direction of the motion (apical, basal or undetermined). For clarity, this data is now included as a bar graph in Figure 3L. In our results, we have clarified the results of this analysis:

      “To provide a more comprehensive analysis of precursor movement, we also examined displacement distance (Figure 3J). Here, as an additional measure of directed motion, we calculated the percent of tracks with a cumulative displacement > 1 µm. We found 35.6 % of tracks had a displacement > 1 µm (Figure 3K; n = 10 neuromasts, 40 hair cells and 203 tracks). Of the tracks with displacement > 1 µm, the majority of ribbon tracks (45.8 %) moved to the cell base, but we also found a subset of ribbon tracks (20.8 %) that moved apically (33.4 % moved in an undetermined direction) (Figure 3L).”

      Some more detail about the F0 crispants should be provided. In particular, what degree of cutting was observed and what was the criteria for robust cutting?

      See our response to Reviewer 2 and the newly created Figure 6-S1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Several concerns are raised from the current study.

      1) Previous studies showed that iTregs generated in vitro from culturing naïve T cells with TGF-b are intrinsically unstable and prone to losing Foxp3 expression due to lack of DNA demethylation in the enhancer region of the Foxp3 locus (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). It is known that removing TGF-b from the culture media leads to rapid loss of Foxp3 expression. In the current study, TGF-b was not added to the media during iTreg restimulation, therefore, the primary cause for iTreg instability should be the lack of the positive signal provided by TGF-b. NFAT signal is secondary at best in this culturing condition.

      In restimulation, void of TGFb is necessary to cause iTreg instability. Otherwise, the setup is similar to the iTreg-inducing environment (Author response image 1). On the other hand, the ultimate goal of this study is to provide a scenario that bears some resemblance of clinical treatment, where TGFb may not be available. The reviewer is correct in stating that TGFb is essential for iTreg stability, we are studying the role played by NFAT in iTreg instability in vitro, and possibly in potential clinical use of iTreg .

      Author response image 1.

      Restimulation with TGFb will persist iTreg inducing environment, resulting in less pronounced instability. Sorted Foxp3-GFP+ iTregs were rested for 1d, and then rested or restimulated in the presence of TGF-β for 2 d. Percentages of Foxp3+ cells were analyzed by intracellular staining of Foxp3 after 2 d.

      2) It is not clear whether the NFAT pathway is unique in accelerating the loss of Foxp3 expression upon iTreg restimulation. It is also possible that enhancing T cell activation in general could promote iTreg instability. The authors could explore blocking T cell activation by inhibiting other critical pathways, such as NF-kb and c-Jun/c-Fos, to see if a similar effect could be achieved compared to CsA treatment.

      We thank the reviewer for this suggestion. We performed this experiment according to see extent of the role that NFAT plays, or whether other major pathways are involved. As Author response image 2 shows, solely inhibiting NFAT effectively rescued the instability of iTreg. The inhibition of NFkB (BAY 11-7082), c-Jun (SP600125), or a c-Jun/c-Fos complex (T5224) had no discernable effect, or in one case, possibly further reduction in stability. These results may indicate that NFAT plays a crucial and special role in TCR activation, which leads to iTreg instability. Other pathways, as far as how this experiment is designed, do not appear to be significantly involved.

      Author response image 2.

      Comparing effects of NFAT, NF-kB and c-Jun/c-Fos inhibitors on iTreg instability. Sorted Foxp3-GFP+ iTregs were rested for 1d, then restimulated by anti-CD3 and CD28 in the presence of listed inhibitors. Percentages of Foxp3+ cells were analyzed by intracellular staining after 2d restimulation.

      3) The authors linked chromatin accessibility and increased expression of T helper cell genes to the loss of Foxp3 expression and iTreg instability. However, it is not clear how the former can lead to the latter. It is also not clear whether NFAT binds directly to the Foxp3 locus in the restimulated iTregs and inhibits Foxp3 expression.

      T helper gene activation is likely to cause instability in iTregs by secreting more inflammatory cytokines, as shown in Figure Q9, for example, IL-21 secretion. Further investigation is needed to understand how these genes contribute to Foxp3 gene instability exactly. With our limited insight, there may be two possibilities. 1. IL-21 directly affects Foxp3 through its impact on certain inflammation-related transcription factors (TFs). 2. There could be an indirect relationship where NFAT has a greater tendency to bind to those inflammatory TFs when iTreg instability appears, promoting the upregulation of these Th genes like in activated T cells, while being less likely to bind to SMAD and Foxp3, representing a competitive behavior. We at the moment cannot comprehend the intricacies that lead to the differential effects on T helper genes and Treg related genes.

      With that said, we have previously attempted to explore the direct effect of NFAT on Foxp3 gene locus. Foxp3 transcription in iTregs primarily relies on histone modifications such as H3K4me3 (Tone et al., 2008; Lu et al., 2011) rather than DNA demethylation (Ohkura et al., 2012; Hilbrands et al., 2016). Previous studies have reported that NFAT and SMAD3 can together promote the histone acetylation of Foxp3 genes (Tone et al., 2008). In our previous set of experiments, we simultaneously obtained information of NFAT binding sites and H3K4me3. In Foxp3 locus, we observed a decreasing trend in NFAT binding to the CNS3 region of Foxp3 in restimulated iTregs compared to resting iTregs (Author response image 3). Additionally, the H3K4me3 modification in the CNS3 region of Foxp3 decreased upon iTreg restimulation, but inhibiting NFAT nuclear translocation with CsA could maintain this modification at its original level (Author response image 3).

      Author response image 3.

      The NFAT binding and histone modification on Foxp3 gene locus. Genome track visualization of NFAT binding profiles and H3K4me3 profiles in Foxp3 CNS3 locus in two batches of dataset.

      Based on these preliminary explorations, it is concluded that NFAT can directly bind to the Foxp3 locus, and it appears that NFAT decreases upon restimulation, resulting in a decrease in H3K4me3, ultimately leading to the close association of NFAT and Foxp3 instability. However, due to limited sample replicates, these data need to be verified for more solid conclusions. We speculate that during the induction of iTregs, NFAT may recruit histone-modifying enzymes to open the Foxp3 CNS3 region, and this effect is synergistic with SMAD. When instability occurs upon restimulation, NFAT binding to Foxp3 weakens due to the absence of SMAD's assistance, subsequently reducing the recruitment of histone modifications enzyme and ultimately inhibiting Foxp3 transcription.

      Reviewer #2 (Public Review):

      (1) Some concerns about data processing and statistic analysis.

      The authors did not provide sufficient information on statistical data analysis; e.g. lack of detailed descriptions about

      -the precise numbers of technical/biological replicates of each experiment

      -the method of how the authors analyze data of multiple comparisons... Student t-test alone is generally insufficient to compare multiple groups; e.g. figure 1.

      These inappropriate data handlings are ruining the evidence level of the precious findings.

      We thank the reviewer for pointing out this important aspect. In the figure legend, numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n. Student’s t test was used for comparing statistical significance between two groups. In this manuscript, all calculations of significant differences were based on comparisons between two groups. There were no multiple conditions compared simultaneously within a single group, and thus, no other calculation methods were used.

      (2) Untransparent data production; e.g. the method of Motif enrichment analysis was not provided. Thus, we should wait for the author's correction to fully evaluate the significance and reliability of the present study.

      Per this reviewer’s request, we have provided detailed descriptions of the data analysis for Fig 5, including both the method section and the Figure legend, as presented below:

      “The peaks annotations were performed with the “annotatePeak” function in the R package ChIPseeker (Yu et al, 2015).

      The plot of Cut&Tag signals over a set of genomic regions were calculated by using “computeMatrix” function in deepTools and plotted by using “plotHeatmap” and “plotProfile” functions in deepTools. The motif enrichment analysis was performed by using the "findMotifsGenome.pl" command in HOMER with default parameters.

      The motif occurrences in each peak were identified by using FIMO (MEME suite v5.0.4) with the following settings: a first-order Markov background model, a P value cutoff of 10-4, and PWMs from the mouse HOCOMOCO motif database (v11).”

      Additionally, we have also supplemented the method section with further details on the analysis of RNA-seq and ATAC-seq data.

      (3) Lack of evidence in human cells. I wonder whether human PBMC-derived iTreg cells are similarly regulated.

      This is a rather complicated issue, human T cells express FoxP3 upon TCR stimulation (PNAS, 103(17): 6659–6664), whose function is likely to protect T cells from activation induced cell death, and does not offer Treg like properties. In contrast in mice, FoxP3 can be used as an indicator of Treg. Currently, this is not a definitive marker for Treg in human, our FoxP3 based readouts do not apply. Nevertheless, we have now investigated whether inhibiting calcium signaling or NFAT could enhance the stability of human iTreg. As shown in Author response image 4, we found that the proportion of Foxp3-expressing cells did not show significant changes across the different conditions, while the MFI analysis revealed that CsA-treated iTreg exhibited higher Foxp3 expression levels compared to both restimulated iTreg and rest iTreg. However, CM4620 had no significant effect on Foxp3 stability, consistent with the observation of its limited efficacy in suppressing human iTreg long term activation. In summary, our results suggest that inhibiting NFAT signaling through CsA treatment can help maintain higher levels of Foxp3 expression in human iTreg.

      Author response image 4.

      Effect of inhibiting NFAT and calcium on human iTreg stability. Human naïve CD4 cells from PBMC were subjected to a two-week induction process to generate human iTreg. Subsequently, human iTreg were restimulated for 2 days with dynabeads followed by 2 days of rest in the prescence of CsA and CM-4620. Four days later, percentages of Foxp3+ cells and Foxp3 mean fluorescence intensity (MFI) were analyzed by intracellular staining.

      (4) NFAT regulation did not explain all of the differences between iTregs and nTregs, as the authors mentioned as a limitation. Also, it is still an open question whether NFAT can directly modulate the chromatin configuration on the effector-type gene loci, or whether NFAT exploits pre-existing open chromatin due to the incomplete conversion of Treg-type chromatin landscape in iTreg cells. The authors did not fully demonstrate that the distinct pattern of chromatin regional accessibility found in iTreg cells is the direct cause of an effector-type gene expression.

      To our surprise, the inhibition of NFkB (BAY 11-7082), c-Jun (SP600125), and the c-Jun/c-Fos complex (T5224) resulted in minimal alterations, as shown in Fig Q1. This seems to argue that NFAT may play a more special role in events leading iTreg instability.

      We hypothesize that NFAT takes advantage of pre-existing open chromatin state due to the incomplete conversion of chromatin landscape in iTreg cells. Because iTreg cells, after induction, already exhibit inherent chromatin instability, with highly-open inflammatory genes. Furthermore, when iTreg cells were restimulated, the subsequent change in chromatin accessibility was relatively limited and not rescued by NFAT inhibitor treatment (Author response image 5). Therefore, in the case of iTreg cells, we propose that NFAT exploits the easy access of those inflammatory genes, leading to rapid destabilization of iTreg cells in the short term.

      In contrast, tTreg cells possess a relatively stable chromatin structure in the beginning, it would be interesting to investigate whether NFAT or calcium signaling could disrupt chromatin accessibility during the activation or expansion of tTreg cells. It is possible that NFAT might cause the loss of the originally established demethylation map and open up inflammatory loci, thereby inducing a shift in gene transcriptional profiles, equally leading to instability.

      Author response image 5.

      Chromatin accessibility of Rest, Retimulated, CsA/ORAIinh treated restimulated iTreg. PCA visualization of chromatin accessibility profiles of different cell types. Color indicates cell type.

      To establish a direct relationship between gene locus accessibility and its overexpression, a controlled experimental approach can be employed. One such method involves precise manipulation of the accessibility of a specific genomic locus using CRISPR-mediated epigenetic modifications at targeted loci. Subsequently, the impact of this manipulation on the expression level of the target gene can be precisely examined. By conducting these experiments, it will be possible to determine whether the augmented gene accessibility directly causes the observed gene overexpression.

      Reviewer #1 (Recommendations For The Authors):

      1) It might be helpful to add TGF-b to the iTreg restimulation culture to remove the influence of the lack of TGF-b from the equation, and measure the influence of SOCE/NFAT on iTreg instability.

      Please refer to Author response image 1.

      2) Alternatively, authors can also culture iTreg cells with TGF-b for 2 weeks when they undergo epigenetic changes and become more stabilized (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). At this point, the stabilized iTregs can be used to measure the influence of SOCE/NFAT on iTreg instability.

      In the study conducted by Polansky, it was observed in Figure 1 that prolonged exposure to TGF-β fails to induce stable Foxp3 expression and demethylation of the Treg-specific demethylated region (TSDR). Based on this finding, we could consider exploring alternative approaches to obtain a more stabilized iTreg population. One such approach could be isolating Foxp3+helios-Nrp1- iTreg cells directly from the peripheral in vivo, which are also known as pTregs. Generally, pTreg cells generated in vivo tend to be more stable compared to iTreg cells induced in vitro, and they already exhibit partial demethylation of the Treg signature, as shown in Fig 6C (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). Investigating the role of NFAT and calcium signaling in pTreg cells would provide further insights into the additional roles of NFAT in Treg phenotypical transitions, particularly its role in chromatin accessibility.

      3) In Figure 3, NFAT binding to the inflammatory genes in iTreg cells was even stronger than in activated T conventional cells. This is possibly due to Tconv cells being stimulated only once while iTregs were restimulated. A fair comparison should be conducted with restimulated activated conventional T cells.

      Figure 3 demonstrates the accessibility of inflammatory gene loci, rather than NFAT binding. Comparing restimulated Tconvs with restimulated iTreg cells is indeed a valuable suggestion, as their activation state and polarization in iTreg directions could lead to distinct chromatin accessibility. Although one is activated long term regularly and the other is activated long term under iTreg polarization, it is highly likely that the chromatin state of both activated Tconvs and iTreg cells is highly open, especially in terms of the accessibility of inflammatory genes. This may provide us with a new perspective to understand iTreg cells, but will unlikely affect our central conclusion.

      4) In the in vivo experiment in Figure 6, a control condition without OVA immunization should be included as a baseline.

      We have performed this experiment in the absence of OVA, as depicted in Author response image 6. In the absence of OVA immunization, both WT-ORAI and DN-ORAI iTreg exhibited substantial stability, although DN-ORAI demonstrated a slightly less stable trend. Upon activation with 40ug and 100ug of OVA, DN-ORAI iTreg demonstrated enhanced stability than WT-ORAI iTreg, maintaining a higher proportion of Foxp3 expression.

      Author response image 6.

      Stability of DN-ORAI iTreg in vivo with or without OVA immunization. WT-ORAI/DN-ORAI-GFP+-transfected CD45.2+ Foxp3-RFP+ OT-II iTregs were transferred i.v. into CD45.1 mice. Recipients were left or immunized with OVA323-339 in Alum adjuvant. On day 5, mLN were harvested and analyzed for Foxp3 expression by intracellular staining.

      Reviewer #2 (Recommendations For The Authors):

      Major

      Some concerns about the data processing and statistic analysis, as mentioned in the public review. In the figure legend, what does it mean e.g. n=3, N=3? Technical triplicate experiments? Three mice? Independently-performed three experiments? The authors should define it at least in the "Statistical analysis" in the method section otherwise the readers cannot determine the reason why they mainly use SEM for the data description.

      Moreover, in some cases, the number of experiments was not sure; e.g., Fig.1B, Fig. 5.

      How did the authors analyze data including multiple comparisons? Student t-test alone is generally insufficient to compare multiple groups; e.g. figure 1.

      We thank the reviewer for pointing out this omission. Now, in the figure legend, numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n. For Fig. 1B, N=2, and for Fig 5, we have acquired NFAT Cut&Tag data for 2 times, N=2. Student’s t test was used for comparing statistical significance between two groups. In this manuscript, all calculations of significant differences were based on comparisons between two groups. There were no multiple conditions compared simultaneously within a single group, and thus, no other calculation methods were involved apart from the Student's t-test.

      In Figure 1A, the difference in suppressiveness seemed subtle. Data collection of multiple doses of Tconv:Treg ratio will enhance the reliability of such kind of analysis.

      We have now attempted the suppression assay with varying Treg:Tconv ratios and observed that the suppressive effect of iTreg was more obvious than that of tTreg when co-cultured at a 1:1 ratio with Tconv cells. However, as the cell number of tTreg and iTreg decreased, the inhibitory effects converged.

      Author response image 7.

      Compare multiple dose of Tconv:Treg ratio in suppression function CFSE-labelled OT-II T cells were stimulated with OVA-pulsed DC, then different number of Foxp3-GFP+ iTregs and tTregs were added to the culture to suppress the OT-II proliferation. After 4 days, CFSE dilution were analyzed. Left, Representative histograms of CFSE in divided Tconvs. Right, graph for the percentage of divided Tconvs.

      In Figure 3F, to which group did the shaded peaks belong? In this context, the authors should focus on "Activation Region" peaks (open chromatin signature in both TcAct & iTreg defined in Fig. 4D) but I did not find the peak in the focusing DNA regions in TcAct (e.g. the shaded regions in IL-4 loci). The clear attribution of the peaks to the heatmap will enhance the visibility and understanding of readers.

      We have selected some typical peaks that belong to Fig 3D. These genes encompass some T-cell activation-associated transcription factors, such as Irf4, Atf3, as well as multiple members of the Tnf family including Lta, Tnfsf4, Tnfsf8, and Tnfsf14. Additionally, genes related to inflammation such as Il12rb2, Il9, and Gzmc are included. These genes show elevated accessibility upon T-cell activation, partially open in activated nTreg cells, referred to as the "Activation Region." They collectively exhibit high accessibility in iTreg cells, which may contribute to their instability.

      Author response image 8.

      Chromatin accessibility of some “Activation Region”. Genomic track showing chromatin accessibility of Irf4, Atf3, Lta, Tnfsf8, Tnfsf4, Tnsfsf14, Il12rb2, Il9, Gzmc in activated Tconv and iTreg.

      In Figure 4A/S4A, the information on cell death will help the understanding of readers because the sustained SOCE is associated with cell survival as shown in Fig. S2. The authors can discuss the relationships between cell death and Foxp3 retention, which potentially leads to a further interesting question; e.g. the selective/resistance to activation-induced cell death as the identity of Treg cells.

      As shown in Author response image 9, activated iTreg cells indeed exhibit a certain degree of cell death compared to resting iTreg cells. The inhibition of NFAT by CsA enhances the survival rate of iTreg cells, but the inhibition of ORAI by CM-4620 leads to more severe cell death. The cell death induced by CsA and CM-4620 is not consistent, indicating that there may not be a direct proportional relationship between cell death and the expression of Foxp3 and Treg identity.

      Author response image 9.

      Relationship of cell death and Foxp3 stability in restimulated iTregs. Sorted Foxp3-GFP+ iTregs were rested for 1d, then restimulated by anti-CD3 and CD28 in the presence of CsA or CM-4620. After 2d restimulation, live cell percentage were analyzed by staining of Live/Dead fixable Aqua, and percentages of Foxp3+ cells were analyzed by intracellular staining of Foxp3. Upper, live cell percentage of iTregs. Lower, percentages of Foxp3 in iTregs.

      In Figure 5, the information for the data interpretation was insufficient.

      We have provided detailed descriptions of the data analysis for Fig 5, including both the method section and the Figure legend, as presented below:

      “The peaks annotations were performed with the “annotatePeak” function in the R package ChIPseeker (Yu et al, 2015). The plot of Cut&Tag signals over a set of genomic regions were calculated by using “computeMatrix” function in deepTools and plotted by using “plotHeatmap” and “plotProfile” functions in deepTools. The motif enrichment analysis was performed by using the "findMotifsGenome.pl" command in HOMER with default parameters. The motif occurrences in each peak were identified by using FIMO (MEME suite v5.0.4) with the following settings: a first-order Markov background model, a P value cutoff of 10-4, and PWMs from the mouse HOCOMOCO motif database (v11).”

      Additionally, we have also supplemented the method section with further details on the analysis of RNA-seq and ATAC-seq data.

      The correlation between the open chromatin status of the gene loci described in Fig.5E and the expression at mRNA level? e.g.; Do iTreg-Act cells produce a higher level of IL-21 than nTreg-act? The analysis in Fig.5F-G should be performed in parallel with nTreg cells to emphasize the distinct NFAT-chromatin regulation in iTreg cells.

      We have now compared the secretion levels of IL-21 in tTreg and iTreg upon activation and treated with CsA by ELISA. As shown in Author response image 10, tTreg did not secrete IL-21 regardless of activation status (undetectable), while iTreg did not secrete IL-21 at resting state but exhibited IL-21 secretion after 48 h of activation. Moreover, the secretion of IL-21 was inhibited by CsA and CM-4620 treatment. This observation aligns with our earlier findings where we observed nuclear binding of NFAT to gene loci of these cytokines, enhancing their expression and pushing iTreg unstable under inflammatory conditions. These findings further underscore the likelihood that the inhibition of calcium and NFAT signaling might contribute to the stabilization of iTreg by suppressing the secretion of inflammatory cytokines.

      Author response image 10.

      IL-21 secretion in tTreg and iTreg upon activation. iTregs and tTregs were sorted and restimulated with anti-CD3 and anti-CD28 antibodies, in the presence of CsA and CM-4620. Cell culture supernatant were harvested after 2 d restimulation and IL-21 secretion was analyzed by ELISA.

      Performing a parallel comparison of NFAT activity between tTreg and iTreg cells was initially part of our experimental plan. However, it proved challenging in practice, as we encountered difficulties in efficiently infecting tTreg cells with NFAT-flag. Consequently, we could not obtain a sufficient number of tTreg cells for conducting Cut&Tag experiments.

      Based on our observations, we speculate that there might be substantial differences in the accessibility of genes in tTreg cells, leading to considerable variations in the repertoire of genes available for NFAT to regulate. As a result, we expect significant differences in the nuclear localization and activity of NFAT between iTreg and tTreg cells.

      In Figure 6C, what does the FCM plot between Foxp3-CFSE look like?

      The authors can discuss the mechanism of ORAI-DN-mediated through such analysis; e.g. the possibility that selective proliferation defect by ORAI-DN in Foxp3- cells led to an increased percentage of Foxp3, not only just unstable transcription of Foxp3.

      This is an in vitro experiment to assess the suppressive effect of iTreg on Tconv proliferation. Therefore, CFSE is used to stain Tconv cells, but not iTreg cells, so we did not detect proliferation feature of iTreg.

      Minor

      Confusing terminology of "tTreg" at line 47, etc. "natural Treg" contains both thymic-derived Treg and periphery-derived Treg cells. (A Abbas et al. Nat Immunol. 2013)

      We have now changed the designation to tTreg at line 47. tTreg refers to thymus-derived regulatory T cells, while nTreg includes both tTreg and pTreg. However, it is important to note that the Treg cells used in our study were isolated from the spleen of 2-4-month-old Foxp3-GFP or Foxp3-RFP mice. The CD4+ T cells were first enriched using the CD4 Isolation kit, and the FACSAriaII was utilized to collect CD4+ Foxp3-GFP/RFP+ Treg cells. Subsequently, Helios and Nrp-1 staining revealed that the majority of these cells were nTreg, with only approximately 6% being pTreg. Overall, we consider the cells we used as tTreg.

      In all FCM analyses, the authors should clarify how to detect Foxp3 expression; Foxp3-GFP/Foxp3-RFP/Intracellular staining like Figure S5A (but not specified in the other FCM plots)

      All Foxp3 expressions in the article were assessed using intracellular staining, as described in the methods section, and we have added specific descriptions to each figure legend. The reason for employing intracellular staining is that we used Foxp3-IRES-GFP mice, where GFP and Foxp3 are not fused into a single protein, existing as separate proteins after expression. Therefore, during induction, the appearance of GFP protein might potentially represent the presence of Foxp3. However, in cases of Foxp3 instability, the degradation of GFP protein may not be entirely synchronized with that of Foxp3 protein, making GFP an unreliable indicator of Foxp3 expression levels. As a result, for the purification of pure iTreg cells, we used Foxp3-GFP/RFP fluorescence, while for observing instability, we employed intranuclear staining of Foxp3.

      In Figure 6B, the captions were lacking in the two graphs on the right side

      The two restimulation conditions, 0.125+0.25 and 0.25+0.5, have been added into Fig 6B right side.

      In Figure S2, the annotation of the x-y axis was missing.

      Added.

      Lack of reference at line 292.

      Reference 42-46 were added.

      In the method section, the authors should note the further product information of antibodies and reagents to enhance reproducibility and transparency. Making a list that clarifies the suppliers, Ab clone, product IDs, etc. is encouraged. The authors did not specify the supplier of recombinant proteins and which type of TGF-beta (TGF-beta 1, 2, or 3?).

      A detailed description of the mice, antibodies, Peptide recombinant protein, commercial kit, and software has been provided and incorporated into the methods section.

      In the method section, the authors should clarify which Foxp3-reporter strain. There are many strains of Foxp3-reporter mice in the world. In line 373, is the "FoxP3-IRES-GFP transgenic mice" true? Knock-in strain or BAC-transgene?

      This mouse is a gift from Hai Qi Lab in Tsinghua University. They acquired this mouse strain from Jackson Laboratory, and the strain name is B6.Cg-Foxp3tm2Tch/J, Strain #:006772. An IRES-EGFP-SV40 poly A sequence was inserted immediately downstream of the endogenous Foxp3 translational stop codon, but upstream of the endogenous polyA signal, generating a bicistronic locus encoding both Foxp3 and EGFP.

      The age of mice used in the experiments should be specified, and confusing words such as "young" should not be used in any method descriptions; e.g. line 405.

      The detailed mouse age has been added in the methods section. “To prepare Tconv, tTreg and iTreg for experiments, spleen was isolated from 2-4-month-old Foxp3-GFP mice for Tconv and tTreg sorting, and 6-week-old mice for iTreg induction.”

      The method of how the original ATAC-seq/Cut & Tag data were generated was not described in the method section.

      Added in method section.

      The reference section was incomplete, and the style was not unified. e.g.; ref 7, 24, 25, 26 ... I gave up checking all.

      The style of ref 7, 22, 24, 26, 28, 31, 33, 35 were modified.

      Changes in manuscript:

      Author Name: “Huiyun Lv” to “Huiyun Lyu”.

      Fig 1A was updated according to Reviwer 2’s suggestion.

      Fig S3E and associated description was added according to Reviwer 2’s suggestion.

      Fig S4C and associated description was added according to Reviwer 1’s suggestion.

      Fig 5H and associated description was added according to Reviwer 2’s suggestion.

      Fig 6D were updated according to Reviwer 1’s suggestion.

      Fig 2D was corrected, the labels for gapdh and actin in the iTreg panel were inadvertently switched. The mistake has been rectified, and the original gel image will be provided.

      Fig 2A and Fig 4A was updated.

      The style of Fig 6B and Fig S2A was modified.

      Method:

      Mice: FoxP3-IRES-GFP with more description.

      Flow Cytometry sorting and FACS: the detailed mouse age has been added. RNA-seq analysis, ATAC-sequencing, ATAC-seq analysis, Cut&Tag assay, Cut&Tag data analysis: more description was added.

      Statistical analysis: “Numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n.” were added.

      Reference: Ref 42-46 and 49-52 were added. The style of ref 7, 22, 24, 26, 28, 31, 33, 35 were corrected.

      A detailed description of the mice, antibodies, Peptide recombinant protein, commercial kit, and software has been provided.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In their manuscript, Yu et al. describe the chemotactic gradient formation for CCL5 bound to - i.e. released from - glycosaminoglycans. The authors provide evidence for phase separation as the driving mechanism behind chemotactic gradient formation. A conclusion towards a general principle behind the finding cannot be drawn since the work focuses on one chemokine only, which is particularly prone to glycan-induced oligomerisation.

      Strengths:

      The principle of phase separation as a driving force behind and thus as an analytical tool for investigating protein interactions with strongly charged biomolecules was originally introduced for protein-nucleic acid interactions. Yu et al. have applied this in their work for the first time for chemokine-heparan sulfate interactions. This opens a novel way to investigate chemokine-glycosaminoglycan interactions in general.

      Response: Thanks for the encouragement of the reviewer.

      Weaknesses:

      As mentioned above, one of the weaknesses of the current work is the exemplification of the phase separation principle by applying it only to CCL5-heparan sulfate interactions. CCL5 is known to form higher oligomers/aggregates in the presence of glycosaminoglycans, much more than other chemokines. It would therefore have been very interesting to see, if similar results in vitro, in situ, and in vivo could have been obtained by other chemokines of the same class (e.g. CCL2) or another class (like CXCL8).

      Response: We share the reviewer’s opinion that to investigate more molecules/cytokines that interact with heparan sulfate in the system should be of interesting. We expect that researchers in the field will adapt the concept to continue the studies on additional molecules. Nevertheless, our earlier study has demonstrated that bFGF was enriched to its receptor and triggered signaling transduction through phase separation with heparan sulfate (PMID: 35236856; doi: 10.1038/s41467-022-28765-z), which supports the concept that phase separation with heparan sulfate on the cell surface may be a common mechanism for heparan sulfate binding proteins. The comment of the reviewer that phase separation is related to oligomerization is demonstrated in (Figure 1—figure supplement 2C and D), showing that the more easily aggregated mutant, A22K-CCL5, does not undergo phase separation.

      In addition, the authors have used variously labelled CCL5 (like with the organic dye Cy3 or with EGFP) for various reasons (detection and immobilisation). In the view of this reviewer, it would have been necessary to show that all the labelled chemokines yield identical/similar molecular characteristics as the unlabelled wildtype chemokine (such as heparan sulfate binding and chemotaxis). It is well known that labelling proteins either by chemical tags or by fusion to GFPs can lead to manifestly different molecular and functional characteristics.

      Response: We agree with the reviewer that labeling may lead to altered property of a protein, thus, we have compared chemotactic activity of CCL5 and CCL5-EGFP (Figure 2—figure supplement 1). To further verify this, we performed additional experiment to compare chemotactic activity between CCL5 and Cy3-CCL5 (see Author response image 1). For the convenience of readers, we have combined the original Figure 2—figure supplement 1 with the new data (Figure R1), which replaced original Figure 2—figure supplement 1.

      Author response image 1.

      Chemotactic function of CCL5-EGFP and CCL5-Cy3. Cy3-Labeled CCL5 has similar activity as CCL5, 50 nM CCL5 or CCL5-Cy3 were added to the lower chamber of the Transwell. THP-1 cells were added to upper chambers. Data are mean ± s.d. n=3. P values were determined by unpaired two-tailed t-tests. NS, Not Significant.

      Reviewer #2 (Public Review):

      Although the study by Xiaolin Yu et al is largely limited to in vitro data, the results of this study convincingly improve our current understanding of leukocyte migration.

      (1) The conclusions of the paper are mostly supported by the data although some clarification is warranted concerning the exact CCL5 forms (without or with a fluorescent label or His-tag) and amounts/concentrations that were used in the individual experiments. This is important since it is known that modification of CCL5 at the N-terminus affects the interactions of CCL5 with the GPCRs CCR1, CCR3, and CCR5 and random labeling using monosuccinimidyl esters (as done by the authors with Cy-3) is targeting lysines. Since lysines are important for the GAG-binding properties of CCL5, knowledge of the number and location of the Cy-3 labels on CCL5 is important information for the interpretation of the experimental results with the fluorescently labeled CCL5. Was the His-tag attached to the N- or C-terminus of CCL5? Indicate this for each individual experiment and consider/discuss also potential effects of the modifications on CCL5 in the results and discussion sections.

      Response: We agree with the reviewer that labeling may lead to altered property of a protein, thus, we have compared chemotactic activity of CCL5 and CCL5-EGFP (Figure 2—figure supplement 1). To further verify this, we performed additional experiment to compare chemotactic activity between CCL5 and Cy3-CCL5 (see Author response image 1). For the convenience of readers, we have combined the original Figure 2—figure supplement 1 with the new data (Author response image 1), which replaced original Figure 2—figure supplement 1.

      The His-tag is attached to the C-terminus of CCL5, in consideration of the potential impact on the N-terminus.

      (2) In general, the authors appear to use high concentrations of CCL5 in their experiments. The reason for this is not clear. Is it because of the effects of the labels on the activity of the protein? In most biological tests (e.g. chemotaxis assays), unmodified CCL5 is active already at low nM concentrations.

      Response: We agree with the reviewer that the CCL5 concentrations used in our experiments were higher than reported chemotaxis assays and also higher than physiological levels in normal human plasma. In fact, we have performed experiments with lower concentration of CCL5, where the effect of LLPS was not seen though the chemotactic activity of the cytokine was detected. Thus, LLPS-associated chemotactic activity may represent a scenario of acute inflammatory condition when the inflammatory cytokines can increase significantly.

      (3) For the statistical analyses of the results, the authors use t-tests. Was it confirmed that data follow a normal distribution prior to using the t-test? If not a non-parametric test should be used and it may affect the conclusions of some experiments.

      Response: We thank the reviewer for pointing out this issue. As shown in Author response table 1, The Shapiro-Wilk normality test showed that only two control groups (CCL5 and 44AANA47-CCL5+CHO K1) in Figure 3 did not conform to the normal distribution. The error was caused by using microculture to count and calculate when there were very few cells in the microculture. For these two groups, we re-counted 100 μL culture medium to calculate the number of cells. The results were consistent with the positive distribution and significantly different from the experimental group (Author response image 3). The original data for the number of cells chemoattractant by 500 nM CCL5 was revised from 0, 247, 247 to 247, 123, 370 and 500 nM 44AANA47 +CHO-K1 was revised from 1111, 1111, 98 to 740, 494, 617. The revised data does not affect the conclusion.

      Author response table 1.

      Table R1 Shapiro-Wilk test results of statistical data in the manuscript

      Author response image 3.

      Quantification of THP-1collected from the lower chamber. Data are mean ± s.d. n=3. P values were determined by unpaired two-tailed t-tests.

      Recommendations for the authors:

      Reviewer #1:

      See the weaknesses section of the Public Review. In addition, the authors should discuss the X-ray structure of CCL5 in complex with a heparin disaccharide in comparison with their docked structure of CCL5 and a heparin tetrasaccharide.

      Response: Our study, in fact, is strongly influenced by the report (Shaw, Johnson et al., 2004) that heparin disaccharide interaction with CCL5, which is highlighted in the text (page5, line100-102).

      Reviewer #2:

      (1) Clearly indicate in the results section and figure legends (also for the supplementary figures) which form and concentration of CCL5 is used.

      Response: The relevant missing information is indicated across the manuscript.

      (2) Clearly indicate which GAG was used. Was it heparin or heparan sulfate and what was the length (e.g. average molecular mass if known) or source (company?)?

      Response: Relevant information is added in the section “Materials and Methods.

      (3) Line 181: What do you mean exactly with "tiny amounts"?

      Response: “tiny amounts” means 400 transfected cells. This is described in the section of Materials and Methods. It is now also indicated in the text and legend to the figure.

      (4) Lines 216-217: This is a very general statement without a link to the presented data. No combination of chemokines is used, in vivo testing is limited (and I agree very difficult). You may consider deleting this sentence (certainly as an opening sentence for the Discussion).

      Response: We appreciate very much for the thoughtful suggestion of the reviewer. This sentence is deleted in the revised manuscript.

      (5) Why was 5h used for the in vitro chemotaxis assay? This is extremely long for an assay with THP-1 cells.

      Response: We apologize for the unclear description. The 5 hr includes 1 hr pre- incubation of CCL5 with the cells enable to form phase separation. After transferring the cells into the upper chamber, the actual chemotactic assay was 4 hr. This is clarified in the Materials and Methods section and the legend to each figure.

      (6) Define "Sec" in Sec-CCL5-EGFP and "Dil" in the legend of Figure 4.

      Response: The Sec-CCL5-EGFP should be “CCL5-EGFP’’, which has now been corrected. Dil is a cell membrane red fluorescent probe, which is now defined.

      (7) Why are different cell concentrations used in the experiment described in Figure 5?

      Response: The samples were from three volunteers who exhibited substantially different concentrations of cells in the blood. The experiment was designed using same amount of blood, so we did not normalize the number of the cell used for the experiment. Regardless of the difference in cell numbers, all three samples showed the same trend.

      (8) Check the text for some typos: examples are on line 83 "ratio of CCL5"; line 142 "established cell lines"; line 196 "peripheral blood mononuclear cells"; line 224 "to mediate"; line 226 "bind"; line 247 "to form a gradient"; line 248 "of the glycocalyx"; line 343 and 346 "tetrasaccharide"; line 409-410 "wild-type"; line 543 "on the surface of CHO-K1 and CHO-677"; line 568 "white".

      Response: Thanks for the careful reading. The typo errors are corrected and Manuscript was carefully read by colleagues.

  5. May 2025
    1. Reviewer #3 (Public review):

      Summary

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation to the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network, constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience.

      Strengths

      Adaptive optics imaging of murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is a benefit for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used: a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. This model would potentially allow for controlling the size, depth and severity of the laser injury opening interesting avenues for future study.

      The time-course, 2D and 3D spatial activation pattern of microglial activation are striking and provide an unprecedented view of the retinal response to mild injury.

      Editor's note: The authors have addressed all the previous concerns raised by the reviewers.

    2. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #2 (Public review):

      Summary:

      This study uses in vivo multimodal high-resolution imaging to track how microglia and neutrophils respond to light-induced retinal injury from soon after injury to 2 months post-injury. The in vivo imaging finding was subsequently verified by ex vivo study. The results suggest that despite the highly active microglia at the injury site, neutrophils were not recruited in response to acute light-induced retinal injury.

      Strengths:

      An extremely thorough examination of the cellular-level immune activity at the injury site. In vivo imaging observations being verified using ex vivo techniques is a strong plus.

      Thank you!

      Weaknesses:

      This paper is extremely long, and in the perspective of this reviewer, needs to be better organized. Update: Modifications have been made throughout, which has made the manuscript easier to follow.

      Thank you!

      Study weakness: though the finding prompts more questions and future studies, the findings discussed in this paper is potentially important for us to understand how the immune cells respond differently to different severity level of injury. The study also demonstrated an imaging technology which may help us better understand cellular activity in living tissue during earlier time points.

      We agree that AOSLO has much to offer and this represents some of the earliest reports of its kind.  

      Comments on revisions:

      I appreciate the thorough clarification and re-organization by the authors, and the messages in the manuscript are now more apparent. I recommend also briefly discussing limitations/future improvements in the discussion or conclusion.

      We have added a section to the discussion entitled “Limitations and future improvements”, please see lines 665 – 677.

      Reviewer #3 (Public review):

      Summary

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation to the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network, constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience.

      Strengths

      Adaptive optics imaging of murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is a benefit for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      Thank you!

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used, a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      Thank you!

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. This model would potentially allow for controlling the size, depth and severity of the laser injury opening interesting avenues for future study.

      Thank you!

      The time-course, 2D and 3D spatial activation pattern of microglial activation are striking and provide an unprecedented view of the retinal response to mild injury.

      We agree that this more complete spatial and temporal evaluation made possible by in vivo imaging is novel.

      Weaknesses

      Generalization of the (lack of) neutrophil response to photoreceptor loss - there is ample evidence in literature that neutrophils are heavily recruited in response to severe retinal damage that includes photoreceptor loss. Why the same was not observed here in this article remains an open question. One could hypothesize that neutrophil recruitment might indeed occur under conditions that are more in line with the more extreme damage models, for example, with a stronger and global ablation (substantially more photoreceptor loss over a larger area). This parameter space is unwieldy and sufficiently large to address the question conclusively in the current article, i.e. how much photoreceptor loss leads to neutrophil recruitment? By the same token, the strong and general conclusion in the title - Photoreceptor loss does not recruit neutrophils - cannot be made until an exhaustive exploration be made of the same parameter space. A scaling back may help here, to reflect the specific, mild form of laser damage explored here, for instance - Mild photoreceptor loss does not recruit neutrophils despite...

      We are striving for clarity and accuracy in our title without adding too many qualifiers.  At present, we feel that the title as submitted is consistent and aligned with the central finding of our manuscript.  The nuance that the reviewer points to is elaborated in the body of the manuscript and we hope the general readership appreciates the same level of detail as appreciated by reviewer #3.

      EIU model - The EIU model was used as a positive control for neutrophil extravasation. Prior work with flow cytometry has shown a substantial increase in neutrophil counts in the EIU model. Yet, in all, the entire article shows exactly 2 examples in vivo and 3 ex vivo (Figure 7) of extravasated neutrophils from the EIU model (n = 2 mice). The general conclusion made about neutrophil recruitment (or lack thereof) is built partly upon this positive control experiment. But these limited examples, especially in the case where literature reports a preponderance of extravasated neutrophils, raise a question on the paradigm(s) used to evaluate this effect in the mild laser damage model.

      This is a helpful suggestion. We agree that readers should see more evidence of the positive control. Therefore we have now included two more supplementary files that show that there is a strong neutrophil response to EIU.  In Figure 7 – supplementary figure 1, we show many Ly-6G-positive neutrophils in the retina seen with histology at the 24 hour time point. In Figure 7 – video 3, we show massive Catchup-positive neutrophil presence in vivo at 24hrs as well.  This aligns with our positive control and also the literature.

      Overall, the strengths outweigh the weaknesses, provided the conclusions/interpretations are reconsidered.

      With the added clarification about the magnitude of the neutrophil response in EIU, we feel that the conclusions presented in the manuscript as-is are valid and appropriate.

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      The authors are applauded for embracing the reviewers' feedback and making substantial revisions. Some minor comments below:

      The weakness noted in the public review encourages the authors to reconsider the interpretations drawn based on the results. One would have expected to see far more examples of extravasated neutrophils from the EIU model. That this was not seen weakens the neutrophil recruitment claim substantially. Even without this claim, the methods, laser damage model, time-course and spatial activation pattern of microglial activation are all striking and unprecedented. So, as stated in the public review, the strengths do indeed outweigh the weaknesses once the neutrophil claim is softened.

      We address this in the response above. A strong neutrophil response was observed to EIU. This was confirmed with both histology and in vivo imaging.

      This was alluded to by Reviewer 1 in the prior review - at times, there is an overemphasis on imaging technology that distracts from the scientific questions. The imaging is undoubtedly cutting-edge but also documented in prior work by the authors. Any efforts to reduce or balance the emphasis would help with the general flow.

      Given that these discoveries are made possible partly through new technology, we prefer to keep the details of the innovation in the current manuscript. Given the exceptionally large readership of eLife, we feel some description of the AOSLO imaging is warranted in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer 1 (Public review):

      Summary:

      Gene transfer agent (GTA) from Bartonella is a fascinating chimeric GTA that evolved from the domestication of two phages. Not much is known about how the expression of the BaGTA is regulated. In this manuscript, Korotaev et al noted the structural similarity between BrrG (a protein encoded by the ror locus of BaGTA) to a well-known transcriptional anti-termination factor, 21Q, from phage P21. This sparked the investigation into the possibility that BaGTA cluster is also regulated by anti-termination. Using a suite of cell biology, genetics, and genome-wide techniques (ChIP-seq), Korotaev et al convincingly showed that this is most likely the case. The findings offer the first insight into the regulation of GTA cluster (and GTA-mediated gene transfer) particularly in this pathogen Bartonella. Note that anti-termination is a well-known/studied mechanism of transcriptional control. Anti-termination is a very common mechanism for gene expression control of prophages, phages, bacterial gene clusters, and other GTAs, so in this sense, the impact of the findings in this study here is limited to Bartonella.

      Strengths:

      Convincing results that overall support the main claim of the manuscript.

      Weaknesses:

      A few important controls are missing.

      We sincerely appreciate reviewer #1's positive assessment of our manuscript. In response to the concern regarding control samples/experiments, we have addressed this issue in our revision, by providing data of the replicates of our experiments. We acknowledge that antitermination is a well-established mechanism of expression control in bacteria, including bacterial gene clusters, phages, prophages, and at least one other GTA. As reviewer #2 also noted, our study presents a unique example of phage co-domestication, where antitermination integrates both phage remnants at the regulatory level. We have emphasized this original aspect more clearly in the revised manuscript.

      Reviewer 1 (Recommendations for the authors):

      (1) Provide Rsmd and DALI scores to show how similar the AlphaFold-predicted structures of BrrG are to other anti-termination factors. This should be done for Fig1B and also for Suppl. Fig 1 to support the claim that BrrG, GafA, GafZ, Q21 share structural features.

      In the revised manuscript we provide Rsmd and DALI scores in the supplementary Fig. 1A (Suppl. Fig. 1A). In Suppl. Fig. 1B we further include a heatmap of similiarity values.

      (2) Throughout the manuscript, flow cytometry data of gfp expression was used and shown as single replicate. Korotaev et al wrote in the legends that error bars are shown (that is not true for e.g. Figs. 3, 4, and 5). It is difficult for reviewers/readers to gauge how reliable are their experiments.

      In the revised manuscript we show all replicates for the flow cytometry histograms.

      For Fig. 2C, all replicates are provided in Suppl. Fig. 3.

      For Fig. 3B, all replicates are provided in Suppl. Fig. 4.

      For Fig. 4B, all replicates are provided in Suppl. Fig. 5.

      For Fig. 5B, all replicates are provided in Suppl. Fig. 6.

      (3) I am unsure how ChIP-seq in Fig. 2A was performed (with anti-FLAG or anti-HA antibodies? I cannot tell from the Materials & Methods). More importantly, I did not see the control for this ChIP-seq experiment. If a FLAG-tagged BrrG was used for ChIP-seq, then a WT non-tagged version should be used as a negative control (not sequencing INPUT DNA), this is especially important for anti-terminator that can co-travel with RNA polymerase. Please also report the number of replicates for ChIP-seq experiments.

      Fig. 2A presents the coverage plot from the ChIP-Seq of ∆brrG +pPtet:3xFLAG-brrG (N’ in green). As anticipated by the referee, we had used ∆brrG +pTet:brrG (untagged) as control (grey). Each strain was tested in a single replicate. The C-terminal tag produced results similar to the untagged version, suggesting it is non-functional. All tested tags are shown in Supplementary Figure 2.

      (4) Korotaev et al mentioned that BrrG binds to DNA (as well as to RNA polymerase). With the availability of existing ChIP-seq data, the authors should be able to locate the DNA-binding element of BrrG, this additional information will be useful to the community.

      We identified a putative binding site of BrrG using our ChIP-Seq data. The putative binding site is indicated in Fig. 2D of the revised manuscript.

      (5) Mutational experiments to break the potential hairpin structure are required to strengthen the claim that this putative hairpin is the potential transcriptional terminator.

      We did not claim the identified hairpin is a confirmed terminator, but proposed it as a candidate. We agree with the referee that the suggested experiment would be necessary to definitively establish its function. However, our main objective was to show that BrrG acts as a processive terminator, which we demonstrated by replacing the putative terminator with a well-characterized synthetic one that BrrG successfully bypassed. Therefore, we chose not to perform the proposed experiment and have accordingly softened our conclusions regarding the hairpin’s potential terminator function.

      Reviewer 2 (Public review):

      Summary:

      In this study, the authors identified and characterized a regulatory mechanism based on transcriptional anti-termination that connects the two gene clusters, capsid and run-off replication (ROR) locus, of the bipartite Bartonella gene transfer agent (GTA). Among genes essential for GTA functionality identified in a previous transposon sequencing project, they found a potential antiterminatior of phage origin within the ROR locus. They employed fluorescence reporter and gene transfer assays of overexpression and knockout strains in combination with ChiPSeq and promoter-fusions to convincingly show that this protein indeed acts as an antiterminator counteracting attenuation of the capsid gene cluster expression.

      Impact on the field:

      The results provide valuable insights into the evolution of the chimeric BaGTA, a unique example of phage co-domestication by bacteria. A similar system found in the other broadly studied Rhodobacterales/Caulobacterales GTA family suggests that antitermination could be a general mechanism for GTA control.

      Strengths:

      Results of the selected and carefully designed experiments support the main conclusions.

      Weaknesses:

      It remains open why overexpression of the antiterminator does not increase the gene transfer frequency.

      We are grateful for reviewer #2's thoughtful and encouraging feedback on our manuscript. The reviewer raises an important question about why overexpression of the antiterminator does not increase gene transfer frequency. While we acknowledge this point, we consider it beyond the scope of the current study. Our findings clearly demonstrate that the antiterminator induces capsid component expression in a large proportion of cells. However, the fact that this expression plateaus at high levels rather than exhibiting a transient peak, as seen in the wild type, suggests that antiterminators do not regulate GTA particle release via lysis. We are actively investigating this further through additional experiments, which we plan to publish separately from this study.

      Reviewer 2 (Recommendations for the authors):

      (1) The authors wrote "GTAs are not self-transmitting because the DNA packaging capacity of a GTA particle is too small to package the entire gene cluster encoding it" (page 3). I thought that at least the Bartonella capsid gene cluster should be self-transmissible within the 14 kb packaged DNA (https://doi.org/10.1371/journal.pgen.1003393, https://doi.org/10.1371/journal.pgen.1000546). This was also concluded by Lang et al (https://doi.org/10.1146/annurev-virology-101416-041624). In this case the presented results would have important implications. As the gene cluster and the anti-terminator required for its expression are separated on the chromosome, it would not be possible to transfer an active GTA gene cluster, although the DNA coding for the genes required for making the packaging agent itself, theoretically fits into a BaGTA particle. Could the authors comment on that? I think it would be helpful to add the sizes of the different gene clusters and the distance between them in Fig. 2A. The ROR amplified region spans 500kb, is the capsid gene cluster within this region?

      We thank the reviewer for bringing up this interesting point. The ror gene cluster, which encodes the antiterminator BrrG, is approximately 9.2 kb in size and could feasibly be packaged in its entirety into a GTA particle. In contrast, the bgt cluster (capsid cluster) is approximately 20 kb in size —exceeding the packaging limit of GTA particles—and is separated from the bgt cluster by approximately 35 kb. Consequently, if the ror cluster is transferred via a GTA particle into a recipient host that does not encode the bgt gene cluster, the ror cluster would not be expressed.

      We added the sizes of the gene clusters to Fig. 1A.

      (2) Another side-note regarding the introduction: On page three the authors write: "GTAs encode bacteriophage-like particles and in contrast to phages transfer random pieces of host bacterial DNA". While packaging is not specific, certain biases in the packaging frequency are observed in both studied GTA families. For Bartonella this is ROR. In the two GTA-producing strains D. shibae and C. crescentus origin and terminus of replication are not packaged and certain regions are overrepresented (https://doi.org/10.1093/gbe/evy005, https://doi.org/10.1371/journal.pbio.3001790). Furthermore, D. shibae plasmids are not packaged but chromids are. I think the term "random" does not properly describe these observations. I would suggest using "not specific" instead.

      We thank the reviewer for this suggestion and adjusted the wording on p. 3 accordingly.

      (3) Page 5: Remove "To address this". It is not needed as you already state "To test this hypothesis" in the previous sentence.

      We adjusted the working on p.5 accordingly.

      (4) I think the manuscript would greatly benefit from a summary figure to visualize the Q-like antiterminator-dependent regulatory circuit for GTA control and its four components described on pages 15 and 16.

      We thank the reviewer for this valuable suggestion. We included a summary figure (Fig. 6) in the discussion section of the revised manuscript.

      (5) Page 17: It might be worth noting that GafA is highly conserved along GTAs in Rhodobacterales (https://doi.org/10.3389/fmicb.2021.662907) and so is probably regulatory integration into the ctrA network (https://doi.org/10.3389/fmicb.2019.00803). It's an old mechanism. It would be also interesting to know if it is a common feature of the two archetypical GTAs that the regulator is not part of the cluster itself.

      We agree with the reviewer’s comments and have revised the wording to state that GafA is highly conserved.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the authors aim to understand why decision formation during behavioural tasks is distributed across multiple brain areas. They hypothesize that multiple areas are used in order to implement an information bottleneck (IB). Using neural activity recorded from monkey DLPFC and PMd performing a 2-AFC task, they show that DLPFC represents various task variables (decision, color, target configuration), while downstream PMd primarily represents decision information. Since decision information is the only information needed to make a decision, the authors point out that PMd has a minimal sufficient representation (as expected from an IB). They then train 3-area RNNs on the same task and show that activity in the first and third areas resemble the neural representations of DLPFC and PMd, respectively. In order to propose a mechanism, they analyse the RNN and find that area 3 ends up with primarily decision information because feedforward connections between areas primarily propagate decision information.

      The paper addresses a deep, normative question, namely why task information is distributed across several areas.

      Overall, it reads well and the analysis is well done and mostly correct (see below for some comments). My major problem with the paper is that I do not see that it actually provides an answer to the question posed (why is information distributed across areas?). I find that the core problem is that the information bottleneck method, which is evoked throughout the paper, is simply a generic compression method.

      Being a generic compressor, the IB does not make any statements about how a particular compression should be distributed across brain areas - see major points (1) and (2).

      If I ignore the reference to the information bottleneck and the question of why pieces of information are distributed, I still see a more mechanistic study that proposes a neural mechanism of how decisions are formed, in the tradition of RNN-modelling of neural activity as in Mante et al 2013. Seen through this more limited sense, the present study succeeds at pointing out a good model-data match, and I could support a publication along those lines. I point out some suggestions for improvement below.

      We thank the reviewer for their comments, feedback and suggestions. We are glad to hear you support the good model-data match for this manuscript.  With your helpful comments, we have clarified the connections to the information bottleneck principle and also contrasted it against the information maximization principle (the InfoMax principle), an alternative hypothesis. We elaborate on these issues in response to your points below, particularly major points (1) and (2). We also address all your other comments below.

      Major points

      (1) It seems to me that the author's use of the IB is based on the reasoning that deep neural networks form decisions by passing task information through a series of transformations/layers/areas and that these deep nets have been shown to implement an IB. Furthermore, these transformations are also loosely motivated by the data processing inequality.

      On Major Point 1 and these following subpoints, we first want to make a high-level statement before delving into a detailed response to your points as it relates to the information bottleneck (IB). We hope this high-level statement will provide helpful context for the rest of our point-by-point responses. 

      We want to be clear that we draw on the information bottleneck (IB) principle as a general principle to explain why cortical representations differ by brain area. The IB principle, as applied to cortex, is only stating that a minimal sufficient representation to perform the task is formed in cortex, not how it is formed. The alternative hypothesis to the IB is that brain areas do not form minimal sufficient representations. For example, the InfoMax principle states that each brain area stores information about all inputs (even if they’re not necessary to perform the task). InfoMax isn’t unreasonable: it’s possible that storing as much information about the inputs, even in downstream areas, can support flexible computation and InfoMax also supports redundancy in cortical areas. Indeed, many studies claim that action choice related signals are in many cortical areas, which may reflect evidence of an InfoMax principle in action for areas upstream of PMd.

      While we observe an IB in deep neural networks and cortex in our perceptual decision-making task, we stress that its emergence across multiple areas is an empirical result. At the same time, multiple areas producing an IB makes intuitive sense: due to the data processing inequality, successive transformations typically decrease the information in a representation (especially when, e.g., in neural networks, every activation passes through the Relu function, which is not bijective). Multiple areas are therefore a sufficient and even ‘natural’ way to implement an IB, but multiple areas are not necessary for an IB. That we observe an IB in deep neural networks and cortex emerge through multi-area computation is empirical, and, contrasting InfoMax, we believe it is an important result of this paper. 

      Nevertheless, your incisive comments have helped us to update the manuscript that when we talk about the IB, we should be clear that the alternative hypothesis is non-minimal representations, a prominent example of which is the InfoMax principle. We have now significantly revised our introduction to avoid this confusion. We hope this provides helpful context for our point-by-point replies, below.

      However, assuming as a given that deep neural networks implement an IB does not mean that an IB can only be implemented through a deep neural network. In fact, IBs could be performed with a single transformation just as well. More formally, a task associates stimuli (X) with required responses (Y), and the IB principle states that X should be mapped to a representation Z, such that I(X;Z) is minimal and I(Y,Z) is maximal. Importantly, the form of the map Z=f(X) is not constrained by the IB. In other words, the IB does not impose that there needs to be a series of transformations. I therefore do not see how the IB by itself makes any statement about the distribution of information across various brain areas.

      We agree with you that an IB can be implemented in a single transformation. We wish to be clear that we do not intend to argue necessity: that multiple areas are the only way to form minimal sufficient representations. Rather, multiple areas are sufficient to induce minimal sufficient representations, and moreover, they are a natural and reasonably simple way to do so. By ‘natural,’ we mean that minimal sufficient representations empirically arise in systems with multiple areas (more than 2), including deep neural networks and the cortex at least for our task and simulations. For example, we did not see minimal sufficient representations in 1- or 2-area RNNs, but we did see them emerge in RNNs with 3 areas or more. One potential reason for this result is that sequential transformations through multiple areas can never increase information about the input; it can only maintain or reduce information due to the data processing inequality.

      Our finding that multiple areas facilitate IBs in the brain is therefore an empirical result: like in deep neural networks, we observe the brain has minimal sufficient representations that emerge in output areas (PMd), even as an area upstream (DLPFC) is not minimal. While the IB makes a statement that this minimal sufficient representation emerges, to your point, the fact that it emerges over multiple areas is not a part of the IB – as you have pointed out, the IB doesn’t state where or how the information is discarded, only that it is discarded. Our RNN modeling later proposes one potential mechanism for how it is discarded. We updated the manuscript introduction to make these points:

      “An empirical observation from Machine Learning is that deep neural networks tend to form minimal sufficient representations in the last layers. Although multi-layer computation is not necessary for an IB, they provide a sufficient and even “natural” way to form an IB. A representation z = f(x) cannot contain more information than the input x itself due to the data processing inequality[19]. Thus, adding additional layers typically results in representations that contain less information about the input.”

      And later in the introduction:

      “Consistent with these predictions of the IB principle, we found that DLPFC has information about the color, target configuration, and direction. In contrast, PMd had a minimal sufficient representation of the direction choice. Our recordings therefore identified a cortical IB. However, we emphasize the IB does not tell us where or how the minimal sufficient representation is formed. Instead, only our empirical results implicate DLPFC-PMd in an IB computation. Further, to propose a mechanism for how this IB is formed, we trained a multi-area RNN to perform this task. We found that the RNN faithfully reproduced DLPFC and PMd activity, enabling us to propose a mechanism for how cortex uses multiple areas to compute a minimal sufficient representation.”

      In the context of our work, we want to be clear the IB makes these predictions:

      Prediction 1: There exists a downstream area of cortex that has a minimal and sufficient representation to perform a task (i.e.,. I(X;Z) is minimal while preserving task information so that I(Z;Y) is approximately equal to  I(X;Y)). We identify PMd as an area with a minimal sufficient representation in our perceptual-decision-making task. 

      Prediction 2 (corollary if Prediction 1 is true): There exists an upstream brain area that contains more input information than the minimal sufficient area. We identify DLPFC as an upstream area relative to PMd, which indeed has more input information than downstream PMd in our perceptual decision-making task. 

      Note: as you raise in other points, it could have been possible that the IB is implemented early on, e.g., in either the parietal cortex (dorsal stream) or inferotemporal cortex (ventral stream), so that DLPFC and PMd both contained minimal sufficient representations. The fact that it doesn’t is entirely an empirical result from our data. If DLPFC had minimal sufficient representations for the perceptual decision making task, we would have needed to record in other regions to identify brain areas that are consistent with Prediction 2. But, empirically, we found that DLPFC has more input information relative to PMd, and therefore the DLPFC-PMd connection is implicated in the IB process.

      What is the alternative hypothesis to the IB? We want to emphasize: it isn’t single-area computation. It’s that the cortex does not form minimal sufficient representations. For example, an alternative hypothesis (“InfoMax”) would be for all engaged brain areas to form representations that retain all input information. One reason this could be beneficial is because each brain area could support a variety of downstream tasks. In this scenario, PMd would not be minimal, invalidating Prediction 1. However, this is not supported by our empirical observations of the representations in PMd, which has a minimal sufficient representation of the task. We updated our introduction to make this clear:

      “But cortex may not necessarily implement an IB. The alternative hypothesis to IB is that the cortex does not form minimal sufficient representations. One manifestation of this alternative hypothesis is the “InfoMax” principle, where downstream representations are not minimal but rather contain maximal input information22. This means information about task inputs not required to perform the task are present in downstream output areas. Two potential benefits of an InfoMax principle are (1) to increase redundancy in cortical areas and thereby provide fault tolerance, and (2) for each area to support a wide variety of tasks and thereby improve the ability of brain areas to guide many different behaviors. In contrast to InfoMax, the IB principle makes two testable predictions about cortical representations. Prediction 1: there exists a downstream area of cortex that has a minimal and sufficient representation to perform a task (i.e., I(X; Z) is minimal while preserving task information so that I(Z; Y) ≈ I(X; Y)). Prediction 2 (corollary if Prediction 1 is true): there exists an upstream area of cortex that has more task information than the minimal sufficient area.”

      Your review helped us realize we should have been clearer in explaining that these are the key predictions of the IB principle tested in our paper. We also realized we should be much clearer that these predictions aren’t trivial or expected, and there is an alternative hypothesis. We have re-written the introduction of our paper to highlight that the key prediction of the IB is minimal sufficient representations for the task, in contrast to the alternative hypothesis of InfoMax.

      A related problem is that the authors really only evoke the IB to explain the representation in PMd: Fig 2 shows that PMd is almost only showing decision information, and thus one can call this a minimal sufficient representation of the decision (although ignoring substantial condition independent activity).

      However, there is no IB prediction about what the representation of DLPFC should look like.

      Consequently, there is no IB prediction about how information should be distributed across DLPFC and PMd.

      We agree: the IB doesn’t tell us how information is distributed, only that there is a transformation that eventually makes PMd minimal. The fact that we find input information in DLPFC reflects that this computation occurs across areas, and is an empirical characterization of this IB in that DLPFC has direction, color and context information while PMd has primarily direction information. To be clear: only our empirical recordings verified that the DLPFC-PMd circuit is involved in the IB. As described above, if not, we would have recorded even further upstream to identify an inter-areal connection implicated in the IB.

      We updated the text to clearly state that the IB predicts that an upstream area’s activity should contain more information about the task inputs. We now explicitly describe this in the introduction, copy and pasted again here for convenience.

      “In contrast to InfoMax, the IB principle makes two testable predictions about cortical representations. Prediction 1: there exists a downstream area of cortex that has a minimal and sufficient representation to perform a task (i.e., I(X; Z) is minimal while preserving task information so that I(Z; Y) ≈ I(X; Y)). Prediction 2 (corollary if Prediction 1 is true): there exists an upstream area of cortex that has more task information than the minimal sufficient area.

      Consistent with the predictions of the IB principle, we found that DLPFC has information about the color, target configuration, and direction. In contrast, PMd had a minimal sufficient representation of the direction choice. Our recordings therefore identified a cortical IB. However, we emphasize the IB does not tell us where or how the minimal sufficient representation is formed. Instead, only our empirical results implicate DLPFC-PMd in an IB computation Further, to propose a mechanism for how this IB is formed, we trained a multi-area RNN to perform this task.”  

      The only way we knew DLPFC was not minimal was through our experiments. Please also note that the IB principle does not describe how information could be lost between areas or layers, whereas our RNN simulations show that this may occur through preferential propagation of task-relevant information with respect to the inter-area connections.  

      (2) Now the authors could change their argument and state that what is really needed is an IB with the additional assumption that transformations go through a feedforward network. However, even in this case, I am not sure I understand the need for distributing information in this task. In fact, in both the data and the network model, there is a nice linear readout of the decision information in dPFC (data) or area 1 (network model). Accordingly, the decision readout could occur at this stage already, and there is absolutely no need to tag on another area (PMd, area 2+3).

      Similarly, I noticed that the authors consider 2,3, and 4-area models, but they do not consider a 1-area model. It is not clear why the 1-area model is not considered. Given that e.g. Mante et al, 2013, manage to fit a 1-area model to a task of similar complexity, I would a priori assume that a 1-area RNN would do just as well in solving this task.

      While decision information could indeed be read out in Area 1 in our multi-area model, we were interested in understanding how the network converged to a PMd-like representation (minimal sufficient) for solving this task. Empirically, we only observed a match between our model representations and animal cortical representations during this task when considering multiple areas. Given that we empirically observed that our downstream area had a minimal sufficient representation, our multi-area model allowed how this minimal sufficient representation emerged (through preferential propagation of task-relevant information).

      We also analyzed single-area networks in our initial manuscript, though we could have highlighted these analyses more clearly to be sure they were not overlooked. We are clearer in this revision that we did consider a 1-area network (results in our Fig 5). While a single-area RNN can indeed solve this task, the single area model had all task information present in the representation, and did not match the representations in DLPFC or PMd. It would therefore not allow us to understand how the network converged to a PMd-like representation (minimal sufficient) for solving this task. We updated the schematic in Fig 5 to add in the single-area network (which may have caused the confusion).

      We have added an additional paragraph commenting on this in the discussion. We also added an additional supplementary figure with the PCs of the single area RNN (Fig S15). We highlight that single area RNNs do not resemble PMd activity because they contain strong color and context information. 

      In the discussion:

      “We also found it was possible to solve this task with single area RNNs, although they did not resemble PMd (Figure S15) since it did not form a minimal sufficient representation. Rather, for our RNN simulations, we found that the following components were sufficient to induce minimal sufficient representations: (1) RNNs with at least 3 areas, following Dale’s law (independent of the ratio of feedforward to feedback connections).”

      I think there are two more general problems with the author's approach. First, transformations or hierarchical representations are usually evoked to get information into the right format in a pure feedforward network. An RNN can be seen as an infinitely deep feedforward network, so even a single RNN has, at least in theory, and in contrast to feedforward layers, the power to do arbitrarily complex transformations. Second, the information coming into the network here (color + target) is a classical xor-task. While this task cannot be solved by a perceptron (=single neuron), it also is not that complex either, at least compared to, e.g., the task of distinguishing cats from dogs based on an incoming image in pixel format.

      An RNN can be viewed as an infinitely deep feedforward network in time. However, we wish to clarify two things. First, our task runs for a fixed amount of time, and therefore this RNN in practice is not infinitely deep in time. Second, if it were to perform an IB operation in time, we would expect to see color discriminability decrease as a function of time. Indeed, we considered this as a mechanism (recurrent attenuation, Figure 4a), but as we show in Supplementary Figure S9, we do not observe it to be the case that discriminability decreases through time. This is equivalent to a dynamical mechanism that removes color through successive transformations in time, which our analyses reject (Fig 4). We therefore rule out that an IB is implemented through time via an RNN’s recurrent computation (viewed as feedforward in time). Rather, as we show, the IB comes primarily through inter-areal connections between RNN areas. We clarified that our dynamical hypothesis is equivalent to rejecting the feedforward-in-time filtering hypothesis in the Results: 

      “We first tested the hypothesis that the RNN IB is implemented primarily by recurrent dynamics (left side of Fig. 4a). These recurrent dynamics can be equivalently interpreted as the RNN implementing a feedforward neural network in time.”  

      The reviewer is correct that the task is a classical XOR task and not as complex as e.g., computer vision classification. That said, our related work has looked at IBs for computer vision tasks and found them in deep feedforward networks (Kleinman et al., ICLR 2021). Even though the task is relatively straightforward, we believe it is appropriate for our conclusions because it does not have a trivial minimal sufficient representation: a minimal sufficient representation for XOR must contain only target, but not color or target configuration information. This can only be solved via a nonlinear computation. In this manner, we favor this task because it is relatively simple, and the minimal sufficient representations are interpretable, while at the same time not being so trivially simple (the minimal sufficient representations require nonlinearity to compute).  

      Finally, we want to note that this decision-making task is a logical and straightforward way to add complexity to classical animal decision-making tasks, where stimulus evidence and the behavioral report are frequently correlated. In tasks such as these, it may be challenging to untangle stimulus and behavioral variables, making it impossible to determine if an area like premotor cortex represents only behavior rather than stimulus. However, our task decorrelates both the stimulus and the behaviors. 

      (3) I am convinced of the author's argument that the RNN reproduces key features of the neural data. However, there are some points where the analysis should be improved.

      (a) It seems that dPCA was applied without regularization. Since dPCA can overfit the data, proper regularization is important, so that one can judge, e.g., whether the components of Fig.2g,h are significant, or whether the differences between DLPFC and PMd are significant.

      We note that the dPCA codebase optimizes the regularization hyperparameter through cross-validation and requires single-trial firing rates for all neurons, i.e., data matrices of the form (n_Neurons x Color x Choice x Time x n_Trials), which are unavailable for our data. We recognized that you are fundamentally asking whether differences are significant or not. We therefore believe it is possible to address this through a statistical test, described further below. 

      In order to test whether the differences of variance explained by task variables between DLPFC and PMd are significant, we performed a shuffle test. For this test, we randomly sampled 500 units from the DLPFC dataset and 500 units from the PMd dataset. We then used dPCA to measure the variance explained by target configuration, color choice, and reach direction (e.g., Var<sup>True</sup><sub>DLPFC,Color</sub>, Var<sup>True</sup><sub>PMd,Color</sub>).

      To test if this variance was significant, we performed the following shuffle test. We combined the PMd and DLPFC dataset into a pool of 1000 units and then randomly selected 500 units from this pool to create a surrogate PMd dataset and used the remaining 500 units as a surrogate DLPFC dataset. We then again performed dPCA on these surrogate datasets and estimated the variance for the various task variables (e.g., Var<sub>ShuffledDLPFC,Color</sub>  ,Var<sub>ShuffledPMd,Color</sub>).

      We repeated this process for 100 times and estimated a sampling distribution for the true difference in variance between DLPFC and PMd for various task variables (e.g., Var<sup>True</sup><sub>DLPFC,Color</sub> - Var<sup>True</sup><sub>PMd,Color</sub>). At the same time, we estimated the distribution of the variance difference between surrogate PMd and DLPFC dataset for various task variables (e.g., Var<sub>ShuffleDLPFC,Color</sub> - Var<sub>ShufflePMd,Color</sub>). 

      We defined a p-value as the number of shuffles in which the difference in variance was higher than the median of the true difference and divided it by 100. Note, for resampling and shuffle tests with n shuffles/bootstraps, the lowest theoretical p-value is given as 2/n, even in the case that no shuffle was higher than the median of the true distribution. Thus, the differences were statistically significant (p < 0.02) for color and target configuration but not for direction (p=0.72). These results are reported in Figure S6 and show both the true sampling distribution and the shuffled sampling distributions.

      (b) I would have assumed that the analyses performed on the neural data were identical to the ones performed on the RNN data. However, it looked to me like that was not the case. For instance, dPCA of the neural data is done by restretching randomly timed trials to a median trial. It seemed that this restretching was not performed on the RNN. Maybe that is just an oversight, but it should be clarified. Moreover, the decoding analyses used SVC for the neural data, but a neural-net-based approach for the RNN data. Why the differences?

      Thanks for bringing up these points. We want to clarify that we did include SVM decoding for the multi-area network in the appendix (Fig. S4), and the conclusions are the same. Moreover, in previous work, we also found that training with a linear decoder led to analogous conclusions (Fig. 11 of Kleinman et al, NeurIPS 2021).  As we had a larger amount of trials for the RNN than the monkey, we wanted to allow a more expressive decoder for the RNN, though this choice does not affect our conclusions. We clarified the text to reflect that we did use an SVM decoder.

      “We also found analogous conclusions when using an SVM decoder (Fig. S4).”

      dPCA analysis requires trials of equal length. For the RNN, this is straightforward to generate because we can set the delay lengths to be equal during inference (although the RNN was trained on various length trials and can perform various length trials). Animals must have varying delay periods, or else they will learn the timing of the task and anticipate epoch changes. Because animal trial lengths were therefore different, their trials had to be restretched. We clarified this in the Methods.

      “For analyses of the RNN, we fixed the timing of trials, obviating the need to to restretch trial lengths. Note that while at inference, we generated RNN trials with equal length, the RNN was trained with varying delay periods.” 

      (4) The RNN seems to fit the data quite nicely, so that is interesting. At the same time, the fit seems somewhat serendipitous, or at least, I did not get a good sense of what was needed to make the RNN fit the data. The authors did go to great lengths to fit various network models and turn several knobs on the fit. However, at least to me, there are a few (obvious) knobs that were not tested.

      First, as already mentioned above, why not try to fit a single-area model? I would expect that a single area model could also learn the task - after all, that is what Mante et al did in their 2013 paper and the author's task does not seem any more complex than the task by Mante and colleagues.

      Thank you for bringing up this point. As mentioned in response to your prior point, we did analyze a single-area RNN (Fig. 5d). We updated the schematic to clarify that we analyzed a single area network. Moreover, we also added a supplementary figure to qualitatively visualize the PCs of the single area network (Fig. S15). While a single area network can solve the task, it does not allow us to study how representations change across areas, nor did it empirically resemble our neural recordings. Single-area networks contain significant color, context, and direction information. They therefore do not form minimal representations and do not resemble PMd activity.

      Second, I noticed that the networks fitted are always feedforward-dominated. What happens when feedforward and feedback connections are on an equal footing? Do we still find that only the decision information propagates to the next area? Quite generally, when it comes to attenuating information that is fed into the network (e.g. color), then that is much easier done through feedforward connections (where it can be done in a single pass, through proper alignment or misalignment of the feedforward synapses) than through recurrent connections (where you need to actively cancel the incoming information). So it seems to me that the reason the attenuation occurs in the inter-area connections could simply be because the odds are a priori stacked against recurrent connections. In the real brain, of course, there is no clear evidence that feedforward connections dominate over feedback connections anatomically.

      We want to clarify that we did pick feedforward and feedback connections based on the following macaque atlas, reference 27 in our manuscript: 

      Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L., Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M. A., Sallet, J., Gamanut, R., Huissoud, C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z., … Kennedy, H. (2014). A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cerebral Cortex , 24(1), 17–36.

      We therefore believe there is evidence for more feedforward than feedback connections. Nevertheless, as stated in response to your next point below, we ran a simulation where feedback and feedforward connectivity were matched.

      More generally, it would be useful to clarify what exactly is sufficient:

      (a) the information distribution occurs in any RNN, i.e., also in one-area RNNs

      (b) the information distribution occurs when there are several, sparsely connected areas

      (c) the information distribution occurs when there are feedforward-dominated connections between areas

      We better clarify what exactly is sufficient. 

      - We trained single-area RNNs and found that these RNNs contained color information; additionally two area RNNs also contained color information in the last area (Fig 5d). 

      - We indeed found that the minimal sufficient representations emerged when we had several areas, with Dale’s law constraint on the connectivity. When we had even sparser connections, without Dale’s law, there was significantly more color information, even at 1% feedforward connections; Fig 5a.

      - When we matched the percentage of feedforward and feedback connections with Dale’s law constraint on the connectivity (10% feedforward and 10% feedback), we also observed minimal sufficient representations (Fig S9). 

      Together, we found that minimal sufficient representations emerged when we had several areas (3 or greater), with Dale’s law constraint on the connectivity, independent of the ratio of feedforward/feedback connections. We thank the reviewer for raising this point about the space of constraints leading to minimal sufficient representations in the late area. We clarified this in the Discussion.

      “We also found it was possible to solve this task with single area RNNs, although they did not resemble PMd (Figure S15) since it did not form a minimal sufficient representation. Rather, for our RNN simulations, we found that the following components were sufficient to induce minimal sufficient representations: RNNs with at least 3 areas, following Dale’s law (independent of the ratio of feedforward to feedback connections).”

      Thank you for your helpful and constructive comments!

      Reviewer #2 (Public Review):

      Kleinman and colleagues conducted an analysis of two datasets, one recorded from DLPFC in one monkey and the other from PMD in two monkeys. They also performed similar analyses on trained RNNs with various architectures.

      The study revealed four main findings. (1) All task variables (color coherence, target configuration, and choice direction) were found to be encoded in DLPFC. (2) PMD, an area downstream of PFC, only encoded choice direction. (3) These empirical findings align with the celebrated 'information bottleneck principle,' which suggests that FF networks progressively filter out task-irrelevant information. (4) Moreover, similar results were observed in RNNs with three modules.

      We thank the reviewer for their comments, feedback and suggestions, which we address below.

      While the analyses supporting results 1 and 2 were convincing and robust, I have some concerns and recommendations regarding findings 3 and 4, which I will elaborate on below. It is important to note that findings 2 and 4 had already been reported in a previous publication by the same authors (ref. 43).

      Note the NeurIPS paper only had PMd data and did not contain any DLPFC data. That manuscript made predictions about representations and dynamics upstream of PMd, and subsequent experiments reported in this manuscript validated these predictions. Importantly, this manuscript observes an information bottleneck between DLPFC and PMd.

      Major recommendation/comments:

      The interpretation of the empirical findings regarding the communication subspace in relation to the information bottleneck theory is very interesting and novel. However, it may be a stretch to apply this interpretation directly to PFC-PMd, as was done with early vs. late areas of a FF neural network.

      In the RNN simulations, the main finding indicates that a network with three or more modules lacks information about the stimulus in the third or subsequent modules. The authors draw a direct analogy between monkey PFC and PMd and Modules 1 and 3 of the RNNs, respectively. However, considering the model's architecture, it seems more appropriate to map Area 1 to regions upstream of PFC, such as the visual cortex, since Area 1 receives visual stimuli. Moreover, both PFC and PMd are deep within the brain hierarchy, suggesting a more natural mapping to later areas. This contradicts the CCA analysis in Figure 3e. It is recommended to either remap the areas or provide further support for the current mapping choice.

      We updated the Introduction to better clarify the predictions of the information bottleneck (IB) principle. In particular, the IB principle predicts that later areas should have minimal sufficient representations of task information, whereas upstream areas should have more information. In PMd, we observed a minimal sufficient representation of task information during the decision-making task. In DLPFC, we observed more task information, particularly more information about the target colors and the target configuration.

      In terms of the exact map between areas, we do not believe or intend to claim the DLPFC is the first area implicated in the sensorimotor transformation during our perceptual decision-making task. Rather, DLPFC best matches Area 1 of our model. It is important to note that we abstracted our task so that the first area of our model received checkerboard coherence and target configuration as input (and hence did not need to transform task visual inputs). Indeed, in Figure 1d we hypothesize that the early visual areas should contain additional information, which we do not model directly in this work. Future work could model RNNs to take in an image or video input of the task stimulus. In this case, it would be interesting to assess if earlier areas resemble visual cortical areas. We updated the results, where we first present the RNN, to state the inputs explicitly and be clear the inputs are not images or videos of the checkerboard task.

      “The RNN input was 4D representing the target configuration and checkerboard signed coherence, while the RNN output was 2D, representing decision variables for a left and right reach (see Methods).”

      Another reason that we mapped Area 1 to DLPFC is because anatomical, physiological and lesion studies suggest that DLPFC receives inputs from both the dorsal and ventral stream (Romanski, et, al, 2007; Hoshi, et al, 2006; Wilson, at al, 1993). The dorsal stream originates from the occipital lobe, passes through the posterior parietal cortex, to DLPFC, which carries visuospatial information of the object. The ventral stream originates from the occipital lobe, passes through the inferior temporal cortex, ventrolateral prefrontal cortex to DLPFC, which encodes the identity of the object, including color and texture. In our RNN simulation, Area 1 receives processed inputs of the task: target configuration and the evidence for each color in the checkerboard. Target configuration contains information of the spatial location of the targets, which represents the inputs from the dorsal stream, while evidence for each color by analogy is the input from the ventral stream. Purely visual areas would not fit this dual input from both the dorsal and ventral stream. A potential alternative candidate would be the parietal cortex which is largely part of the dorsal stream and is thought to have modest color inputs (although there is some shape and color selectivity in areas such as LIP, e.g., work from Sereno et al.). On balance given the strong inputs from both the dorsal and ventral stream, we believe Area 1 maps better on to DLPFC than earlier visual areas.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Line 35/36: Please specify the type of nuisance that the representation is robust to. I guess this refers to small changes in the inputs, not to changes in the representation itself.

      Indeed it refers to input variability unrelated to the task. We clarified the text.

      (2) For reference, it would be nice to have a tick for the event "Targets on" in Fig.2c.

      In this plot, the PSTHs are aligned to the checkerboard onset. Because there is a variable time between target and checkerboard onset, there is a trial-by-trial difference of when the target was turned on, so there is no single place on the x-axis where we could place a “Targets on” tick. In response to this point, we generated a plot with both targets on and check on alignment, with a break in the middle, shown in Supplementary Figure S5. 

      (3) It would strengthen the comparison between neural data and RNN if the DPCA components of the RNN areas were shown, as they are shown in Fig.2g,h for the neural data.

      We include the PSTHs plotted onto the dPCA components here for Area 1 of the exemplar network. Dashed lines indicate a left reach, while solid lines indicate a right reach, and the color corresponds to the color of the selected target. As expected, we find that the dPCA components capture the separation between components. We emphasize that the trajectory paths along the decoder axes are not particularly meaningful to interpret, except to demonstrate whether variables can be decoded or not (as in Fig 2g,h, comparing DLPFC and PMd). The decoder axes of dPCA are not constrained in any way, in contrast to the readout (encoder) axis (see Methods). This is why our manuscript focuses on analyzing the readout axes. However, if the reviewer strongly prefers these plots to be put in the manuscript, we will add them.   

      Author response image 1.

      (4) The session-by-session decode analysis presented in Fig.2i suggests that DLPFC has mostly direction information while in Area 1 target information is on top, as suggested by Fig.3g. An additional decoding analysis on trial averaged neural data, i.e. a figure for neural data analogous to Fig.3g,h, would allow for a more straightforward and direct comparison between RNN and neural data. 

      We first clarify that we did not decode trial-averaged neural data for either recorded neural data or RNNs. In Fig 3g, h (for the RNN) all decoding was performed on single trial data and then averaged. We have revised the main manuscript to make this clear. Because of this, the mean accuracies we reported for DLPFC and PMd in the text are therefore computed in the same way as the mean accuracies presented in Fig 3g, h. We believe this likely addresses your concern: i.e., the mean decode accuracies presented for both neural data and the RNN were computed the same way. 

      If the above paragraph did not address your concern, we also wish to be clear that we presented the neural data as histograms, rather than a mean with standard error, because we found that accuracies were highly variable depending on electrode insertion location. For example, some insertions in DLPFC achieved chance-levels of decoding performance for color and target configuration. For this reason, we prefer to keep the histogram as it shows more information than reporting the mean, which we report in the main text. However, if the reviewer strongly prefers us to make a bar plot of these means, we will add them.

      (5) Line 129 mentions an analysis of single trials. But in Fig.2i,j sessions are analyzed. Please clarify.

      For each session, we decode from single trials and then average these decoding accuracies, leading to a per-session average decoding accuracy. Note that for each session, we record from different neurons. In the text, we also report the average over the sessions. We clarified this in the text and Methods.

      (6) Fig.4c,f show how color and direction axes align with the potent subspaces. We assume that the target axis was omitted here because it highly aligns with the color axis, yet we note that this was not pointed out explicitly.

      You are correct, and we revised the text to point this out explicitly.

      “We quantified how the color and direction axis were aligned with these potent and null spaces of the intra-areal recurrent dynamics matrix of Area 1 ($\W^1_{rec}$). We did not include the target configuration axis for simplicity, since it highly aligns with the color axis for this network.”

      (7) The caption of Fig.4c reads: "Projections onto the potent space of the intra-areal dynamics for each area." Yet, they only show area 1 in Fig.4c, and the rest in a supplement figure. Please refer properly.

      Thank you for pointing this out. We updated the text to reference the supplementary figure.

      (8) Line 300: "We found the direction axis was more aligned with the potent space and the color axis was more aligned with the null space." They rather show that the color axis is as aligned to the potent space as a random vector, but nothing about the alignments with the null space. Contrarily, on line 379 they write "...with the important difference that color information isn't preferentially projected to a nullspace...". Please clarify.

      Thank you for pointing this out. We clarified the text to read: “We found the direction axis was more aligned with the potent space”. The text then describes that the color axis is aligned like a random vector: “In contrast, the color axis was aligned to a random vector.”

      (9) Line 313: 'unconstrained' networks are mentioned. What constraints are implied there, Dale's law? Please define and clarify.

      Indeed, the constraint refers to Dale’s law constraints. We clarified the text: “Further, we found that W<sub>21</sub> in unconstrained 3 area networks (i.e., without Dale's law constraints) had significantly reduced…”

      (10) Line 355 mentions a 'feedforward bottleneck'. What does this exactly mean? No E-I feedforward connections, or...? Please define and clarify.

      This refers to sparser connections between areas than within an area, as well as a smaller fraction of E-I connections. We clarified the text to read:

      “Together, these results suggest  that a connection bottleneck in the form of neurophysiological architecture constraints (i.e., sparser connections between areas than within an area, as well as a smaller fraction of E-I connections) was the key design choice leading to RNNs with minimal color representations and consistent with the information bottleneck principle.”

      (11) Fig.5c is supposedly without feedforward connections, but it looks like the plot depicts these connections (i.e. identical to Fig.5b).

      In Figure 5, we are varying the E to I connectivity in panel B, and the E-E connectivity in panel C. We vary the feedback connections in Supp Fig. S12. We updated the caption accordingly. 

      (12) For reference, it would be nice to have the parameters of the exemplar network indicated in the panels of Fig.5.

      We updated the caption to reference the parameter configuration in Table 1 of the Appendix.

      (13) Line 659: incomplete sentence

      Thank you for pointing this out. We removed this incomplete sentence.

      (14) In the methods section "Decoding and Mutual information for RNNs" a linear neural net decoder as well as a nonlinear neural net decoder are described, yet it was unclear which one was used in the end.

      We used the nonlinear network, and clarified the text accordingly. We obtained consistent conclusions using a linear network, but did not include these results in the text. (These are reported in Fig. 11 of Kleinman et al, 2021). Moreover, we also obtain consistent results by using an SVM decoder in Fig. S4 for our exemplar parameter configuration.

      (15) In the discussion, the paragraph starting from line 410 introduces a new set of results along with the benefits of minimal representations. This should go to the results section.

      We prefer to leave this as a discussion, since the task was potentially too simplistic to generate a clear conclusion on this matter. We believe this remains a discussion point for further investigation.

      (16) Fig S5: hard to parse. Show some arrows for trajectories (a) (d) is pretty mysterious: where do I see the slow dynamics?

      Slow points are denoted by crosses, which forms an approximate line attractor. We clarified this in the caption.

      Reviewer #2 (Recommendations For The Authors):

      Minor recommendations (not ordered by importance)

      (1) Be more explicit that the recordings come from different monkeys and are not simultaneously recorded. For instance, say 'recordings from PFC or PMD'. Say early on that PMD recordings come from two monkeys and that PFC recordings come from 1 of those monkeys. Furthermore, I would highlight which datasets are novel and which are not. For instance, I believe the PFC dataset is a previously unpublished dataset and should be highlighted as such.

      We added: “The PMd data was previously described in a study by Chandrasekaran and colleagues” to the main text which clarifies that the PMd data was previously recorded and has been analyzed in other studies.

      (2) I personally feel that talking about 'optimal', as is done in the abstract, is a bit of a stretch for this simple task.

      In using the terminology “optimal,” we are following the convention of IB literature that optimal representations are sufficient and minimal. The term “optimal” therefore is task-specific; every task will have its own optimal representation. We clarify in the text that this definition comes from Machine Learning and Information Theory, stating:

      “The IB principle defines an optimal representation as a representation that is minimal and sufficient for a task or set of tasks.”

      In this way, we take an information-theoretic view for describing multi-area representations. This view was satisfactory for explaining and reconciling the multi-area recordings and simulations for this task, and we think it is helpful to provide a normative perspective for explaining the differences in cortical representations by brain area. Even though the task is simple, it still allows us to study how sensory/perceptual information is represented, and well as how choice-related information is being represented.

      (3) It is mentioned (and even highlighted) in the abstract that we don't know why the brain distributes computations. I agree with that statement, but I don't think this manuscript answers that question. Relatedly, the introduction mentions robustness as one reason why the brain would distribute computations, but then raises the question of whether there is 'also a computational benefit for distributing computations across multiple areas'. Isn't the latter (robustness) a clear 'computational benefit'?

      We decided to keep the word “why” in the abstract, because this is a generally true statement (it is unclear why the brain distributes computation) that we wish to convey succinctly, pointing to the importance of studying this relatively grand question (which could only be fully answered by many studies over decades). We consider this the setting of our work. However, to avoid confusion that we are trying to give a full answer to this question, we are now more precise in the first paragraph of our introduction as to the particular questions we ask that will take a step towards this question. In particular, the first paragraph now asks these questions, which we answer in our study.

      “For example, is all stimuli and decision-related information present in all brain areas, or do the cortical representations differ depending on their processing stage? If the representations differ, are there general principles that can explain why the cortical representations differ by brain area?”

      We also removed the language on robustness, as we agree it was confusing. Thank you for these suggestions. 

      (4) Figure 2e and Fig. 3d, left, do not look very similar. I suggest zooming in or rotating Figure 2 to highlight the similarities. Consider generating a baseline CCA correlation using some sort of data shuffle to highlight the differences.

      The main point of the trajectories is to demonstrate that both Area 1 and DLPFC represent both color and direction. We now clarify this in the manuscript. However, we do not intend for these two plots to be a rigorous comparison of similarity. Rather, we quantify similarity using CCA and our decoding analysis. We also better emphasize the relative values of the CCA, rather than the absolute values.

      (5) Line 152: 'For this analysis, we restricted it to sessions with significant decode accuracy with a session considered to have a significant decodability for a variable if the true accuracy was above the 99th percentile of the shuffled accuracy for a session.' Why? Sounds fishy, especially if one is building a case on 'non-decodability'. I would either not do it or better justify it.

      The reason to choose only sessions with significant decoding accuracy is that we consider those sessions to be the sessions containing information of task variables. In response to this comment, we also now generate a plot with all recording sessions in Supplementary Figure S7. We modified the manuscript accordingly.

      “For this analysis, we restricted it to sessions with significant decode accuracy with a session considered to have a significant decodability for a variable if the true accuracy was above the 99th percentile of the shuffled accuracy for a session. This is because these sessions contain information about task variables. However, we also present the same analyses using all sessions in Fig. S7.”

      (6) Line 232: 'The RNN therefore models many aspects of our physiological data and is therefore'. Many seems a stretch?

      We changed “many” to “key.”

      (7) The illustration in Fig. 4B is very hard to understand, I recommend removing it.

      We are unsure what this refers to, as Figure 4B represents data of axis overlaps and is not an illustration. 

      (8) At some point the authors use IB instead of information bottleneck (eg line 288), I would not do it.

      We now clearly write that IB is an abbreviation of Information Bottleneck the first time it is introduced.  

      (9) Fig. 5 caption is insufficient to understand it. Text in the main document does not help. I would move most part of this figure, or at least F, to supplementary. Instead, I would move the results in S11 and S10 to the main document.

      We clarified the caption to summarize the key points. It now reads: 

      “Overall, neurophysiological architecture constraints in the form of multiple areas, sparser connections between areas than within an area, as well as a smaller fraction of E-I connections lead to a minimal color representation in the last area.”

      (10) Line 355: 'Together, these results suggest that a connection bottleneck in the form of neurophysiological architecture constraints was the key design choice leading to RNNs with minimal color representations and consistent with the information bottleneck principle.' The authors show convincingly that increased sparsity leads to the removal of irrelevant information. There is an alternative model of the communication subspace hypothesis that uses low-rank matrices, instead of sparse, to implement said bottlenecks (https://www.biorxiv.org/content/10.1101/2022.07.21.500962v2)

      We thank the reviewer for pointing us to this very nice paper. Indeed, a low-rank connectivity matrix is another mechanism to limit the amount of information that is passed to subsequent areas. In fact, the low-rank matrix forms a hard-version of our observations as we found that task-relevant information was preferentially propagated along the top singular mode of the inter-areal connectivity matrix. In our paper we observed this tendency naturally emerges through training with neurophysiological architecture constraints. In the paper, for the multi-area RNN, they hand-engineered the multi-area network, whereas our network is trained. We added this reference to our discussion. 

      Thank you for your helpful and constructive comments.

    1. CH and CN

      This seems mostly due to the methylcellulose, correct? I'm wondering if there is a way to determine the actual number of anchor points in the liposome? Perhaps some staining against the His tag? It might be interesting to see where deformations lie in relation to clusters of anchor points.

    2. F-actin is 1.4 μM

      Do you also have the Kd of untagged actinin for F-actin? It could be nice to know if the tag has any impact on binding. I'm also curious if the membrane tethered actinin has a different affinity for actin filaments compared to free-floating actinin.

    1. WWF-Pacific / Tom Vierus

      This image lacks a descriptive alt tag. According to the WCAG guidelines and our course, this makes the content inaccessible to users relying on screen readers, a violation of the Perceivable principle.

    1. Leisure's opportunity cost skyrockets. When an hour of work generates what once took days, rest becomes luxury taxed by your own conscience. Every pause carries an invisible price tag that flickers in your peripheral vision.Productivity breeds new demand. Like efficient engines creating new energy uses, AI can create entirely new work categories and expectations.Competition intensifies. The game theory is unforgiving: when everyone can produce 10x more, the baseline resets, leaving us all running faster just to stay in place.

      Consequences

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Kito et al follow up on previous work that identified Drosophila GCL as a mitotic substrate recognition subunit of a CUL3-RING ubiquitin ligase (CRL3) complex.

      Here they characterize mutants of the human ortholog of GCL, GMCL1, that disrupt the interaction with CUL3 (GMCL1E142K) and that lack the substrate interaction domain (GMCL1 BBO). Immunoprecipitation followed by mass spectrometry identified 9 proteins that interacted with wild-type FLAG-GMCL1 and GMCL1 EK but not GMCL1 BBO. These proteins included 53BP1, which plays a well-characterized role in double-strand break repair but also functions in a USP28-p53-53BP1 "mitotic stopwatch" complex that arrests the cell cycle after a substantially prolonged mitosis. Consistent with the IP-MS results, FLAG-GMCL1 immunoprecipitated 53BP1. Depletion of GMCL1 during mitotic arrest increased protein levels of 53BP1, and this could be rescued by wild-type GMCL1 but not the E142K mutant or a R433A mutant that failed to immunoprecipitate 53BP1.

      Using a publicly available dataset, the authors identified a relatively small subset of cell lines with high levels of GMCL1 mRNA that were resistant to the taxanes paclitaxel, cabazitaxel, and docetaxel. This type of analysis is confounded by the fact that paclitaxel and other microtubule poisons accumulate to substantially different levels in various cell lines (DOI: 10.1073/pnas.90.20.9552 , DOI: 10.1091/mbc.10.4.947 ), so careful follow-up experiments are required to validate results. The correlation between increased GMCL1 mRNA and taxane resistance was not observed in lung cancer cell lines. The authors propose this was because nearly half of lung cancers harbor p53 mutations, and lung cancer cell lines with wild-type but not mutant p53 showed the correlation between increased GMCL1 mRNA and taxane resistance. However, the other cancer cell types in which they report increased GMCL1 expression correlates with taxane sensitivity also have high rates of p53 mutation. Furthermore, p53 status does not predict taxane response in patients (DOI: 10.1002/1097-0142(20000815)89:4<769::aid-cncr8>3.0.co;2-6 , DOI: 10.1002/(SICI)1097-0142(19960915)78:6<1203::AID-CNCR6>3.0.CO;2-A , PMID: 10955790).

      The authors then depleted GMCL1 and reported that it increased apoptosis in two cell lines with wild-type p53 (MCF7 and U2OS) due to activation of the mitotic stopwatch. This is surprising because the mitotic stopwatch paper they cite (DOI: 10.1126/science.add9528 ) reported that U2OS cells have an inactive stopwatch and that activation of the stopwatch results in cell cycle arrest rather than apoptosis in most cell types, including MCF7. Beyond this, it has recently been shown that the level of taxanes and other microtubule poisons achieved in patient tumors is too low to induce mitotic arrest (DOI: 10.1126/scitranslmed.3007965 , DOI: 10.1126/scitranslmed.abd4811 , DOI: 10.1371/journal.pbio.3002339 ), raising concerns about the relevance of prolonged mitosis to paclitaxel response in cancer. The findings here demonstrating that GMCL1 mediates degradation of 53BP1 during mitotic arrest are solid and of interest to cell biologists, but it is unclear that these findings are relevant to paclitaxel response in patients.

      Strengths:

      This study identified 53BP1 as a target of CRL3GMCL1-mediated degradation during mitotic arrest. AlphaFold3 predictions of the binding interface, followed by mutational analysis, identified mutants of each protein (GMCL1 R433A and 53BP1 IEDI1422-1425AAAA) that disrupted their interaction. Knock-in of a FLAG tag into the C-terminus of GMCL1 in HCT116 cells, followed by FLAG immunoprecipitation, confirmed that endogenous GMCL1 interacts with endogenous CUL3 and 53BP1 during mitotic arrest.

      Weaknesses:

      The clinical relevance of the study is overinterpreted. The authors have not taken relevant data about the clinical mechanism of taxanes into account. Supraphysiologic doses of microtubule poisons cause mitotic arrest and can activate the mitotic stopwatch. However, in physiologic concentrations of clinically useful microtubule poisons, cells proceed through mitosis and divide their chromosomes on mitotic spindles that are at least transiently multipolar. Though these low concentrations may result in a brief mitotic delay, it is substantially shorter than the arrest caused by high concentrations of microtubule poisons, and the one mimicked here by 16 hours of 0.4 mg/mL nocodazole, which is not used clinically and does not induce multipolar spindles. Resistance to mitotic arrest occurs through different mechanisms than resistance to multipolar spindles. No evidence is presented in the current version of the manuscript that GMCL1 affects cellular response to clinically relevant doses of paclitaxel.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Mackie and colleagues compare chemosensory preferences between C. elegans and P. pacificus, and the cellular and molecular mechanisms underlying them. The nematodes have overlapping and distinct preferences for different salts. Although P. pacificus lacks the lsy-6 miRNA important for establishing asymmetry of the left/right ASE salt-sensing neurons in C. elegans, the authors find that P. pacificus ASE homologs achieve molecular (receptor expression) and functional (calcium response) asymmetry by alternative means. This work contributes an important comparison of how these two nematodes sense salts and highlights that evolution can find different ways to establish asymmetry in small nervous systems to optimize the processing of chemosensory cues in the environment.

      Strengths:

      The authors use clear and established methods to record the response of neurons to chemosensory cues. They were able to show clearly that ASEL/R are functionally asymmetric in P. pacificus, and combined with genetic perturbation establish a role for che-1-dependent gcy-22.3 in in the asymmetric response to NH<sub>4</sub>Cl.

      Weaknesses:

      The mechanism of lsy-6-independent establishment of ASEL/R asymmetry in P. pacificus remains uncharacterized.

      We thank the reviewer for recognizing the novel contributions of our work in revealing the existence of alternative pathways for establishing neuronal lateral asymmetry without the lsy-6 miRNA in a divergent nematode species. We are certainly encouraged now to search for genetic factors that alter the exclusive asymmetric expression of gcy-22.3.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Mackie et al. investigate gustatory behavior and the neural basis of gustation in the predatory nematode Pristionchus pacificus. First, they show that the behavioral preferences of P. pacificus for gustatory cues differ from those reported for C. elegans. Next, they investigate the molecular mechanisms of salt sensing in P. pacificus. They show that although the C. elegans transcription factor gene che-1 is expressed specifically in the ASE neurons, the P. pacificus che-1 gene is expressed in the Ppa-ASE and Ppa-AFD neurons. Moreover, che-1 plays a less critical role in salt chemotaxis in P. pacificus than C. elegans. Chemogenetic silencing of Ppa-ASE and Ppa-AFD neurons results in more severe chemotaxis defects. The authors then use calcium imaging to show that both Ppa-ASE and Ppa-AFD neurons respond to salt stimuli. Calcium imaging experiments also reveal that the left and right Ppa-ASE neurons respond differently to salts, despite the fact that P. pacificus lacks lsy-6, a microRNA that is important for ASE left/right asymmetry in C. elegans. Finally, the authors show that the receptor guanylate cyclase gene Ppa-gcy-23.3 is expressed in the right Ppa-ASE neuron (Ppa-ASER) but not the left Ppa-ASE neuron (Ppa-ASEL) and is required for some of the gustatory responses of Ppa-ASER, further confirming that the Ppa-ASE neurons are asymmetric and suggesting that Ppa-GCY-23.3 is a gustatory receptor. Overall, this work provides insight into the evolution of gustation across nematode species. It illustrates how sensory neuron response properties and molecular mechanisms of cell fate determination can evolve to mediate species-specific behaviors. However, the paper would be greatly strengthened by a direct comparison of calcium responses to gustatory cues in C. elegans and P. pacificus, since the comparison currently relies entirely on published data for C. elegans, where the imaging parameters likely differ. In addition, the conclusions regarding Ppa-AFD neuron function would benefit from additional confirmation of AFD neuron identity. Finally, how prior salt exposure influences gustatory behavior and neural activity in P. pacificus is not discussed.

      Strengths:

      (1) This study provides exciting new insights into how gustatory behaviors and mechanisms differ in nematode species with different lifestyles and ecological niches. The results from salt chemotaxis experiments suggest that P. pacificus shows distinct gustatory preferences from C. elegans. Calcium imaging from Ppa-ASE neurons suggests that the response properties of the ASE neurons differ between the two species. In addition, an analysis of the expression and function of the transcription factor Ppa-che-1 reveals that mechanisms of ASE cell fate determination differ in C. elegans and P. pacificus, although the ASE neurons play a critical role in salt sensing in both species. Thus, the authors identify several differences in gustatory system development and function across nematode species.

      (2) This is the first calcium imaging study of P. pacificus, and it offers some of the first insights into the evolution of gustatory neuron function across nematode species.

      (3) This study addresses the mechanisms that lead to left/right asymmetry in nematodes. It reveals that the ASER and ASEL neurons differ in their response properties, but this asymmetry is achieved by molecular mechanisms that are at least partly distinct from those that operate in C. elegans. Notably, ASEL/R asymmetry in P. pacificus is achieved despite the lack of a P. pacificus lsy-6 homolog.

      Weaknesses:

      (1) The authors observe only weak attraction of C. elegans to NaCl. These results raise the question of whether the weak attraction observed is the result of the prior salt environment experienced by the worms. More generally, this study does not address how prior exposure to gustatory cues shapes gustatory responses in P. pacificus. Is salt sensing in P. pacificus subject to the same type of experience-dependent modulation as salt sensing in C. elegans?

      We tested if starving animals in the presence of a certain salt will result in those animals avoiding it. However, under our experimental conditions we were unable to detect experiencedependent modulation either in P. pacificus or in C. elegans.

      Author response image 1.

      (2) A key finding of this paper is that the Ppa-CHE-1 transcription factor is expressed in the PpaAFD neurons as well as the Ppa-ASE neurons, despite the fact that Ce-CHE-1 is expressed specifically in Ce-ASE. However, additional verification of Ppa-AFD neuron identity is required. Based on the image shown in the manuscript, it is difficult to unequivocally identify the second pair of CHE-1-positive head neurons as the Ppa-AFD neurons. Ppa-AFD neuron identity could be verified by confocal imaging of the CHE-1-positive neurons, co-expression of Ppa-che1p::GFP with a likely AFD reporter, thermotaxis assays with Ppa-che-1 mutants, and/or calcium imaging from the putative Ppa-AFD neurons.

      In the revised manuscript, we provide additional and, we believe, conclusive evidence for our correct identification of Ppa-AFD neuron being another CHE-1 expressing neuron. Specifically, we have constructed and characterized 2 independent reporter strains of Ppa-ttx-1, a putative homolog of the AFD terminal selector in C. elegans. There are two pairs of ttx-1p::rfp expressing amphid neurons. The anterior neuronal pair have finger-like endings that are unique for AFD neurons compared to the dendritic endings of the 11 other amphid neuron pairs (no neuron type has a wing morphology in P. pacificus). Their cell bodies are detected in the newly tagged TTX-1::ALFA strain that co-localize with the anterior pair of che-1::gfp-expressing amphid neurons (n=15, J2-Adult).

      We note that the identity of the posterior pair of amphid neurons differs between the ttx-1p::rfp promoter fusion reporter and TTX-1::ALFA strains– the ttx-1p::rfp posterior amphid pair overlaps with the gcy-22.3p::gfp reporter (ASER) but the TTX-1::ALFA posterior amphid pair do not overlap with the posterior pair of che-1::gfp-expressing amphid neurons (n=15). Given that there are 4 splice forms detected by RNAseq (Transcriptome Assembly Trinity, 2016; www.pristionchus.org), this discrepancy between the Ppa-ttx-1 promoter fusion reporter and the endogenous expression of the Ppa-TTX-1 C-terminally tagged to the only splice form containing Exon 18 (ppa_stranded_DN30925_c0_g1_i5, the most 3’ exon) may be due to differential expression of different splice variants in AFD, ASE, and another unidentified amphid neuron types.  

      Although we also made reporter strains of two putative AFD markers, Ppa-gcy-8.1 (PPA24212)p::gfp; csuEx101 and Ppa-gcy-8.2 (PPA41407)p::gfp; csuEx100, neither reporter showed neuronal expression.

      (3) Loss of Ppa-che-1 causes a less severe phenotype than loss of Ce-che-1. However, the loss of Ppa-che-1::RFP expression in ASE but not AFD raises the question of whether there might be additional start sites in the Ppa-che-1 gene downstream of the mutation sites. It would be helpful to know whether there are multiple isoforms of Ppa-che-1, and if so, whether the exon with the introduced frameshift is present in all isoforms and results in complete loss of Ppa-CHE-1 protein.

      According to www.pristionchus.org (Transcriptome Assembly Trinity), there is only a single detectable splice form by RNAseq. Once we have a Ppa-AFD-specific marker, we would be able to determine how much of the AFD terminal effector identify (e.g. expression of gcy-8 paralogs) is effected by the loss of Ppa-che-1 function.

      (4) The authors show that silencing Ppa-ASE has a dramatic effect on salt chemotaxis behavior. However, these data lack control with histamine-treated wild-type animals, with the result that the phenotype of Ppa-ASE-silenced animals could result from exposure to histamine dihydrochloride. This is an especially important control in the context of salt sensing, where histamine dihydrochloride could alter behavioral responses to other salts.

      We have inadvertently left out this important control. Because the HisCl1 transgene is on a randomly segregating transgene array, we have scored worms with and without the transgene expressing the co-injection marker (Ppa-egl-20p::rfp, a marker in the tail) to show that the presence of the transgene is necessary for the histamine-dependent knockdown of NH<sub>4</sub>Br attraction. This control is added as Figure S2.

      (5) The calcium imaging data in the paper suggest that the Ppa-ASE and Ce-ASE neurons respond differently to salt solutions. However, to make this point, a direct comparison of calcium responses in C. elegans and P. pacificus using the same calcium indicator is required. By relying on previously published C. elegans data, it is difficult to know how differences in growth conditions or imaging conditions affect ASE responses. In addition, the paper would be strengthened by additional quantitative analysis of the calcium imaging data. For example, the paper states that 25 mM NH<sub>4</sub>Cl evokes a greater response in ASEL than 250 mM NH<sub>4</sub>Cl, but a quantitative comparison of the maximum responses to the two stimuli is not shown.

      We understand that side-by-side comparisons with C. elegans using the same calcium indicator would lend more credence to the differences we observed in P. pacificus versus published findings in C. elegans from the past decades, but are not currently in a position to conduct these experiments in parallel.

      (6) It would be helpful to examine, or at least discuss, the other P. pacificus paralogs of Ce-gcy22. Are they expressed in Ppa-ASER? How similar are the different paralogs? Additional discussion of the Ppa-gcy-22 gene expansion in P. pacificus would be especially helpful with respect to understanding the relatively minor phenotype of the Ppa-gcy-22.3 mutants.

      In P. pacificus, there are 5 gcy-22-like paralogs and 3 gcy-7-like paralogs, which together form a subclade that is clearly distinct from the 1-1 Cel-gcy-22, Cel-gcy-5, and Cel-gcy-7 orthologs in a phylogenetic tree containing all rGCs in P. pacificus, C. elegans, and C. briggssae (Hong et al, eLife, 2019). In Ortiz et al (2006 and 2009), Cel-gcy-22 stands out from other ASER-type gcy genes (gcy-1, gcy-4, gcy-5) in being located on a separate chromosome (Chr. V) as well as in having a wider range of defects in chemoattraction towards salt ions. Given that the 5 P. pacificus gcy-22-like paralogs are located on 3 separate chromosomes without clear synteny to their C. elegans counterparts, it is likely that the gcy-22 paralogs emerged from independent and repeated gene duplication events after the separation of these Caenorhabditis and Pristionchus lineages. Our reporter strains for two other P. pacificus gcy-22-like paralogs either did not exhibit expression in amphid neurons (Ppa-gcy-22.1p::GFP, ) or exhibited expression in multiple neuron types in addition to a putative ASE neuron (Ppa-gcy-22.4p::GFP). We have expanded the discussion on the other P. pacificus gcy-22 paralogs.

      (7) The calcium imaging data from Ppa-ASE is quite variable. It would be helpful to discuss this variability. It would also be helpful to clarify how the ASEL and ASER neurons are being conclusively identified during calcium imaging.

      For each animal, the orientation of the nose and vulva were recorded and used as a guide to determine the ventral and dorsal sides of the worm, and subsequently, the left and right sides of the worm. Accounting for the plane of focus of the neuron pairs as viewed through the microscope, it was then determined whether the imaged neuron was the worm’s left or right neuron of each pair. We added this explanation to the Methods.

      (8) More information about how the animals were treated prior to calcium imaging would be helpful. In particular, were they exposed to salt solutions prior to imaging? In addition, the animals are in an M9 buffer during imaging - does this affect calcium responses in Ppa-ASE and Ppa-AFD? More information about salt exposure, and how this affects neuron responses, would be very helpful.

      Prior to calcium imaging, animals were picked from their cultivation plates (using an eyelash pick to minimize bacteria transfer) and placed in loading solution (M9 buffer with 0.1% Tween20 and 1.5 mM tetramisole hydrochloride, as indicated in the Method) to immobilize the animals until they were visibly completely immobilized.

      (9) In Figure 6, the authors say that Ppa-gcy-22.3::GFP expression is absent in the Ppa-che1(ot5012) mutant. However, based on the figure, it looks like there is some expression remaining. Is there a residual expression of Ppa-gcy-22.3::GFP in ASE or possibly ectopic expression in AFD? Does Ppa-che-1 regulate rGC expression in AFD? It would be helpful to address the role of Ppa-che-1 in AFD neuron differentiation.

      In Figure 6C, the green signal is autofluorescence in the gut, and there is no GFP expression detected in any of the 55 che-1(-) animals we examined. We are currently developing AFDspecific rGC markers (gcy-8 homologs) to be able to examine the role of Ppa-CHE-1 in regulating AFD identity.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Abstract: 'how does sensory diversity prevail within this neuronal constraint?' - could be clearer as 'numerical constraint' or 'neuron number constraint'.

      We have clarified this passage as ‘…constraint in neuron number’.

      (2) 'Sensory neurons in the Pristionchus pacificus' - should get rid of the 'the'.

      We have removed the ‘the’.

      (3) Figure 2: We have had some good results with the ALFA tag using a similar approach (tagging endogenous loci using CRISPR). I'm not sure if it is a Pristionchus thing, or if it is a result of our different protocols, but our staining appears stronger with less background. We use an adaptation of the Finney-Ruvkin protocol, which includes MeOH in the primary fixation with PFA, and overcomes the cuticle barrier with some LN2 cracking, DTT, then H2O2. No collagenase. If you haven't tested it already it might be worth comparing the next time you have a need for immunostaining.

      We appreciate this suggestion. Our staining protocol uses paraformaldehyde fixation. We observed consistent and clear staining in only 4 neurons in CHE-1::ALFA animals but more background signals from TTX-1::ALFA in Figure 2I-J in that could benefit from improved immunostaining protocol.

      (4) Page 6: 'By crossing the che-1 reporter transgene into a che-1 mutant background (see below), we also found that che-1 autoregulates its own expression (Figure 2F), as it does in C. elegans' - it took me some effort to understand this. It might make it easier for future readers if this is explained more clearly.

      We understand this confusion and have changed the wording along with a supporting table with a more detailed account of che-1p::RFP expression in both ASE and AFD neurons in wildtype and che-1(-) backgrounds in the Results.

      (5) Line numbers would make it easier for reviewers to reference the text.

      We have added line numbers.

      (6) Page 7: is 250mM NH<sub>4</sub>Cl an ecologically relevant concentration? When does off-target/nonspecific activation of odorant receptors become an issue? Some discussion of this could help readers assess the relevance of the salt concentrations used.

      This is a great question but one that is difficult to reconcile between experimental conditions that often use 2.5M salt as point-source to establish salt gradients versus ecologically relevant concentrations that are very heterogenous in salinity. Efforts to show C. elegans can tolerate similar levels of salinity between 0.20-0.30 M without adverse effects have been recorded previously (Hu et al., Analytica Chimica Acta 2015; Mah et al. Expedition 2017).

      (7) It would be nice for readers to have a short orientation to the ecological relevance of the different salts - e.g. why Pristionchus has a particular taste for ammonium salts.

      Pristionchus species are entomophilic and most frequently found to be associated with beetles in a necromenic manner. Insect cadavers could thus represent sources of ammonium in the soil. Additionally, ammonium salts could represent a biological signature of other nematodes that the predatory morphs of P. pacificus could interpret as prey. We have added the possible ecological relevance of ammonium salts into the Discussion.

      (8) Page 11: 'multiple P. pacificus che-1p::GCaMP strains did not exhibit sufficient basal fluorescence to allow for image tracking and direct comparison'. 500ms exposure to get enough signal from RCaMP is slow, but based on the figures it still seems enough to capture things. If image tracking was the issue, then using GCaMP6s with SL2-RFP or similar in conjunction with a beam splitter enables tracking when the GCaMP signal is low. Might be an option for the future.

      These are very helpful suggestions and we hope to eventually develop an improved che1p::GCaMP strain for future studies.

      (9) Sometimes C. elegans genes are referred to as 'C. elegans [gene name]' and sometimes 'Cel [gene name]'. Should be consistent. Same with Pristionchus.

      We have now combed through and corrected the inconsistencies in nomenclature.

      (10) Pg 12 - '...supports the likelihood that AFD receives inputs, possibly neuropeptidergic, from other amphid neurons' - the neuropeptidergic part could do with some justification.

      Because the AFD neurons are not exposed directly to the environment through the amphid channel like the ASE and other amphid neurons, the calcium responses to salts detected in the AFD likely originate from sensory neurons connected to the AFD. However, because there is no synaptic connection from other amphid neurons to the AFD neurons in P. pacificus (unlike in C. elegans; Hong et al, eLife, 2019), it is likely that neuropeptides connect other sensory neurons to the AFDs. To avoid unnecessary confusion, we have removed “possibly neuropeptidergic.”

      (11) Pg16: the link to the Hallam lab codon adaptor has a space in the middle. Also, the paper should be cited along with the web address (Bryant and Hallam, 2021).

      We have now added the proper link, plus in-text citation. https://hallemlab.shinyapps.io/Wild_Worm_Codon_Adapter/ (Bryant and Hallem, 2021)

      Full citation:

      Astra S Bryant, Elissa A Hallem, The Wild Worm Codon Adapter: a web tool for automated codon adaptation of transgenes for expression in non-Caenorhabditis nematodes, G3 Genes|Genomes|Genetics, Volume 11, Issue 7, July 2021, jkab146, https://doi.org/10.1093/g3journal/jkab146

      Reviewer #2 (Recommendations for the authors):

      (1) In Figure 1, the legend states that the population tested was "J4/L4 larvae and young adult hermaphrodites," whereas in the main text, the population was described as "adult hermaphrodites." Please clarify which ages were tested.

      We have tested J4-Adult stage hermaphrodites and have made the appropriate corrections in the text.

      (2) The authors state that "in contrast to C. elegans, we find that P. pacificus is only moderately and weakly attracted to NaCl and LiCl, respectively." However, this statement does not reflect the data shown in Figure 1, where there is no significant difference between C. elegans and P. pacificus - both species show at most weak attraction to NaCl.

      Although there is no statistically significant difference in NaCl attraction between P. pacificus and C. elegans, NaCl attraction in P. pacificus is significantly lower than its attraction to all 3 ammonium salts when compared to C. elegans. We have rephrased this statement as relative differences in the Results and updated the Figure legend.

      (3) In Figure 1, the comparisons between C. elegans and P. pacificus should be made using a two-way ANOVA rather than multiple t-tests. Also, the sample sizes should be stated (so the reader does not need to count the circles) and the error bars should be defined.

      We performed the 2-way ANOVA to detect differences between C. elegans and P. pacificus for the same salt and between salts within each species. We also indicated the sample size on the figure and defined the error bars.

      Significance:

      For comparisons of different salt responses within the same species:

      - For C. elegans, NH<sub>4</sub>Br vs NH<sub>4</sub>Cl (**p<0.01), NH<sub>4</sub>Cl vs NH<sub>4</sub>I (* p<0.05), and NH<sub>4</sub>Cl vs NaCl (* p<0.05). All other comparisons are not significant.

      - For P. pacificus, all salts showed (****p<0.0001) when compared to NaAc and to NH<sub>4</sub>Ac, except for NH<sub>4</sub>Ac and NaAc compared to each other (ns). Also, NH<sub>4</sub>Cl showed (*p<0.05) and NH<sub>4</sub>I showed (***p<0.001) when compared with LiCl and NaCl. All other comparisons are not significant.

      For comparisons of salt responses between different species (N2 vs PS312):

      - NH<sub>4</sub>I and LiCl (*p<0.05); NaAc and NH<sub>4</sub>Ac (****p<0.0001)

      (4) It might be worth doing a power analysis on the data in Figure 3B. If the data are underpowered, this might explain why there is a difference in NH<sub>4</sub>Br response with one of the null mutants but not the other.

      For responses to NH<sub>4</sub>Cl, since both che-1 mutants (rather than just one) showed significant difference compared to wildtype, we conducted a power analysis based on the effect size of that difference (~1.2; large). Given this effect size, the sample size for future experiments should be 12 (ANOVA).

      For responses to NH<sub>4</sub>Br and given the effect size of the difference seen between wildtype (PS312) and ot5012 (~0.8; large), the sample size for future experiments should be 18 (ANOVA) for a power value of 0.8. Therefore, it is possible that the sample size of 12 for the current experiment was too small to detect a possible difference between the ot5013 alleles and wildtype.

      (5) It would be helpful to discuss why silencing Ppa-ASE might result in a switch from attractive to repulsive responses to some of the tested gustatory cues.

      For similar assays using Ppa-odr-3p::HisCl1, increasing histamine concentration led to decreasing C.I. for a given odorant (myristate, a P. pacificus-specific attractant). It is likely that the amount of histamine treatment for knockdown to zero (i.e. without a valence change) will differ depending on the attractant.

      (6) The statistical tests used in Figure 3 are not stated.

      Figure 3 used Two-way ANOVA with Dunnett’s post hoc test. We have now added the test in the figure legend.

      (7) It would be helpful to examine the responses of ASER to the full salt panel in the Ppa-gcy-22.3 vs. wild-type backgrounds.

      We understand that future experiments examining neuron responses to the full salt panel for wildtype and gcy-22.3 mutants would provide further information about the salts and specific ions associated with the GCY-22.3 receptor. However, we have tested a broader range of salts (although not yet the full panel) for behavioral assays in wildtype vs gcy-22.3 mutants, which we have included as part of an added Figure 8.

      (8) The controls shown in Figure S1 may not be adequate. Ideally, the same sample size would be used for the control, allowing differences between control worms and experimental worms to be quantified.

      Although we had not conducted an equal number of negative controls using green light without salt stimuli due to resource constraints (6 control vs ~10-19 test), we provided individual recordings with stimuli to show that conditions we interpreted as having responses rarely showed responses resembling the negative controls. Similarly, those we interpreted as having no responses to stimuli mostly resembled the no-stimuli controls (e.g. WT to 25 mM NH<sub>4</sub>Cl, gcy22.3 mutant to 250 mM NH<sub>4</sub>Cl).

      (9) An osmolarity control would be helpful for the calcium imaging experiments.

      We acknowledge that future calcium imaging experiments featuring different salt concentrations could benefit from osmolarity controls.

      (10) In Figure S7, more information about the microfluidic chip design is needed.

      The chip design features a U-shaped worm trap to facilitate loading the worm head-first, with a tapered opening to ensure the worm fits snugly and will not slide too far forward during recording. The outer two chip channels hold buffer solution and can be switched open (ON) or closed (OFF) by the Valvebank. The inner two chip channels hold experimental solutions. The inner channel closer to the worm trap holds the control solution, and the inner channel farther from the worm trap holds the stimulant solution.

      We have added an image of the chip in Figure S7 and further description in the legend.

      (11) Throughout the manuscript, the discussion of the salt stimuli focuses on the salts more than the ions. More discussion of which ions are eliciting responses (both behavioral and neuronal responses) would be helpful.

      In Figure 7, the gcy-22.3 defect resulted in a statistically significant reduction in response only towards NH<sub>4</sub>Cl but not towards NaCl, which suggests ASER is the primary neuron detecting NH<sub>4</sub><sup>+</sup> ions. To extend the description of the gcy-22.3 mutant defects to other ions, we have added a Figure 8: chemotaxis on various salt backgrounds. We found only a mild increase in attraction towards NH<sub>4</sub><sup>+</sup> by both gcy-22.3 mutant alleles, but wild-type in their responses toward Cl<sup>-</sup>, Na<sup>+</sup>, or I<sup>-</sup>. The switch in the direction of change between the behavioral (enhanced) and calcium imaging result (reduced) suggests the behavioral response to ammonium ions likely involves additional receptors and neurons.

      Minor comments:

      (1) The full species name of "C. elegans" should be written out upon first use.

      We have added ‘Caenorhabditis elegans’ to its first mention.

      (2) In the legend of Figure 1, "N2" should not be in italics.

      We have made the correction.

      (3) The "che-1" gene should be in lowercase, even when it is at the start of the sentence.

      We have made the correction.

      (4) Throughout the manuscript, "HisCl" should be "HisCl1."

      We have made these corrections to ‘HisCl1’.

      (5) Figure 3A would benefit from more context, such as the format seen in Figure 7A. It would also help to have more information in the legend (e.g., blue boxes are exons, etc.).

      (6) "Since NH<sub>4</sub>I sensation is affected by silencing of che-1(+) neurons but is unaffected in che-1 mutants, ASE differentiation may be more greatly impacted by the silencing of ASE than by the loss of che-1": I don't think this is exactly what the authors mean. I would say, "ASE function may be more greatly impacted...".

      We have changed ‘differentiation’ to ‘function’ in this passage.

      (7) In Figure 7F-G, the AFD neurons are referred to as AFD in the figure title but AM12 in the graph. This is confusing.

      Thank you for noticing this oversight. We have corrected “AM12” to “AFD”.

      (8) In Figure 7, the legend suggests that comparisons within the same genotype were analyzed. I do not see these comparisons in the figure. In which cases were comparisons within the same genotype made?

      Correct, we performed additional tests between ON and OFF states within the same genotypes (WT and mutant) but did not find significant differences. To avoid unnecessary confusion, we have removed this sentence.

      (9) The nomenclature used for the transgenic animals is unconventional. For example, normally the calcium imaging line would be listed as csuEx93[Ppa-che-1p::optRCaMP] instead of Ppache-1p::optRCaMP(csuEx93).

      We have made these corrections to the nomenclature.

      (10) Figure S6 appears to come out of order. Also, it would be nice to have more of a legend for this figure. The format of the figure could also be improved for clarity.

      We have corrected Figure S6 (now S8) and added more information to the legend.

      (11) Methods section, Chemotaxis assays: "Most assays lasted ~3.5 hours at room temperature in line with the speed of P. pacificus without food..." It's not clear what this means. Does it take the worms 3.5 hours to crawl across the surface of the plate?

      Correct, P. pacificus requires 3-4 hours to crawl across the surface of the plate, which is the standard time for chemotaxis assays for some odors and all salts. We have added this clarification to the Methods.

    1. 3:43 wir haben jetzt den Beginn der Massenarbeitlosigkeit, und das war in jeder einzelnen Revolution immer die allerwichtigste Komponente, weil wenn die Leute nichts mehr zu essen haben und sich auch nicht mehr ihr Netflix Abo leisten können, dann gehen sie auf die Straße. diese Rekordsarbeitslosigkeit, das wird das Todesurteil der neuen Regierung sein, und ab jetzt geht es Berg ab, vor allem es ist ja auch kein Ende in Sicht, jeden Tag haben wir neue Schocknachrichten.

      7:29 und deswegen könnte man jetzt sagen, naja die werden schon nicht auf die Straße gehen, die bekommen ja schließlich Bürgergeld und Sozialhilfe, aber nichts da, wie vorher gesagt implodiert jetzt ja gerade alles gleichzeitig, also auch der ganze Staatshaushalt, weil immer mehr Arbeitslose bedeutet auch weniger Steuereinnahmen und immer mehr Sozialkosten, und mit der Geschwindigkeit wie es gerade ansteigt ist das irgendwann nicht mehr zu bezahlen. und wenn unsere "Goldstücke" dann irgendwann kein Geld mehr bekommen dann geht's richtig Ramba Zamba.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Comments

      Reviewer 1

      (1) Despite the well-established role of Netrin-1 and UNC5C axon guidance during embryonic commissural axons, it remains unclear which cell type(s) express Netrin-1 or UNC5C in the dopaminergic axons and their targets. For instance, the data in Figure 1F-G and Figure 2 are quite confusing. Does Netrin-1 or UNC5C express in all cell types or only dopamine-positive neurons in these two mouse models? It will also be important to provide quantitative assessments of UNC5C expression in dopaminergic axons at different ages.

      Netrin-1 is a secreted protein and in this manuscript we did not examine what cell types express Netrin-1. This question is not the focus of the study and we consider it irrelevant to the main issue we are addressing, which is where in the forebrain regions we examined Netrin-1+ cells are present. As per the reviewer’s request we include below images showing Netrin-1 protein and Netrin-1 mRNA expression in the forebrain. In Figure 1 below, we show a high magnification immunofluorescent image of a coronal forebrain section showing Netrin-1 protein expression.

      Author response image 1.

      This confocal microscope image shows immunofluorescent staining for Netrin-1 (green) localized around cell nuclei (stained by DAPI in blue). This image was taken from a coronal section of the lateral septum of an adult male mouse. Scale bar = 20µm

      In Figures 2 and 3 below we show low and high magnification images from an RNAscope experiment confirming that cells in the forebrain regions examined express Netrin-1 mRNA.

      Author response image 2.

      This confocal microscope image of a coronal brain section of the medial prefrontal cortex of an adult male mouse shows Netrin-1 mRNA expression (green) and cell nuclei (DAPI, blue). Brain regions are as follows: Cg1: Anterior cingulate cortex 1, DP: dorsopeduncular cortex, fmi: forceps minor of the corpus callosum, IL: Infralimbic Cortex, PrL: Prelimbic Cortex

      Author response image 3.

      A higher resolution image from the same sample as in Figure 2 shows Netrin-1 mRNA (green) and cell nuclei (DAPI; blue). DP = dorsopeduncular cortex

      Regarding UNC5c, this receptor homologue is expressed by dopamine neurons in the rodent ventral tegmental area (Daubaras et al., 2014; Manitt et al., 2010; Phillips et al., 2022). This does not preclude UNC5c expression in other cell types. UNC5c receptors are ubiquitously expressed in the brain throughout development, performing many different developmental functions (Kim and Ackerman, 2011; Murcia-Belmonte et al., 2019; Srivatsa et al., 2014). In this study we are interested in UNC5c expression by dopamine neurons, and particularly by their axons projecting to the nucleus accumbens. We therefore used immunofluorescent staining in the nucleus accumbens, showing UNC5 expression in TH+ axons. This work adds to the study by Manitt et al., 2010, which examined UNC5 expression in the VTA. Manitt et al. used Western blotting to demonstrate that UNC5 expression in VTA dopamine neurons increases during adolescence, as can be seen in the following figure:

      References:

      Daubaras M, Bo GD, Flores C. 2014. Target-dependent expression of the netrin-1 receptor, UNC5C, in projection neurons of the ventral tegmental area. Neuroscience 260:36–46. doi:10.1016/j.neuroscience.2013.12.007

      Kim D, Ackerman SL. 2011. The UNC5C Netrin Receptor Regulates Dorsal Guidance of Mouse Hindbrain Axons. J Neurosci 31:2167–2179. doi:10.1523/jneurosci.5254-10.20110.2011

      Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C. 2010. Peri-Pubertal Emergence of UNC-5 Homologue Expression by Dopamine Neurons in Rodents. PLoS ONE 5:e11463-14. doi:10.1371/journal.pone.0011463

      Murcia-Belmonte V, Coca Y, Vegar C, Negueruela S, Romero C de J, Valiño AJ, Sala S, DaSilva R, Kania A, Borrell V, Martinez LM, Erskine L, Herrera E. 2019. A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Current Biology 29:1149-1160.e4. doi:10.1016/j.cub.2019.02.052

      Phillips RA, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, Day JJ. 2022. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Reports 39:110616. doi:10.1016/j.celrep.2022.110616

      Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo A-L, Ackerman SL, Richards LJ, Tarabykin V. 2014. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun 5:3708. doi:10.1038/ncomms4708

      (2) Figure 1 used shRNA to knockdown Netrin-1 in the Septum and these mice were subjected to behavioral testing. These results, again, are not supported by any valid data that the knockdown approach actually worked in dopaminergic axons. It is also unclear whether knocking down Netrin-1 in the septum will re-route dopaminergic axons or lead to cell death in the dopaminergic neurons in the substantia nigra pars compacta?

      First we want to clarify and emphasize, that our knockdown approach was not designed to knock down Netrin-1 in dopamine neurons or their axons. Our goal was to knock down Netrin-1 expression in cells expressing this guidance cue gene in the dorsal peduncular cortex.

      We have previously established the efficacy of the shRNA Netrin-1 knockdown virus used in this experiment for reducing the expression of Netrin-1 (Cuesta et al., 2020). The shRNA reduces Netrin-1 levels in vitro and in vivo.

      We agree that our experiments do not address the fate of the dopamine axons that are misrouted away from the medial prefrontal cortex. This research is ongoing, and we have now added a note regarding this to our manuscript.

      Our current hypothesis, based on experiments being conducted as part of another line of research in the lab, is that these axons are rerouted to a different brain region which they then ectopically innervate. In these experiments we are finding that male mice exposed to tetrahydrocannabinol in adolescence show reduced dopamine innervation in the medial prefrontal cortex in adulthood but increased dopamine input in the orbitofrontal cortex. In addition, these mice show increased action impulsivity in the Go/No-Go task in adulthood (Capolicchio et al., Society for Neuroscience 2023 Abstracts)

      References:

      Capolicchio T., Hernandez, G., Dube, E., Estrada, K., Giroux, M., Flores, C. (2023) Divergent outcomes of delta 9 - tetrahydrocannabinol in adolescence on dopamine and cognitive development in male and female mice. Society for Neuroscience, Washington, DC, United States [abstract].

      Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. 2020. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers Cell Dev Biology 8:487. doi:10.3389/fcell.2020.00487

      (3) Another issue with Figure1J. It is unclear whether the viruses were injected into a WT mouse model or into a Cre-mouse model driven by a promoter specifically expresses in dorsal peduncular cortex? The authors should provide evidence that Netrin-1 mRNA and proteins are indeed significantly reduced. The authors should address the anatomic results of the area of virus diffusion to confirm the virus specifically infected the cells in dorsal peduncular cortex.

      All the virus knockdown experiments were conducted in wild type mice, we added this information to Figure 1k.

      The efficacy of the shRNA in knocking down Netrin-1 was demonstrated by Cuesta et al. (2020) both in vitro and in vivo, as we show in our response to the reviewer’s previous comment above.

      We also now provide anatomical images demonstrating the localization of the injection and area of virus diffusion in the mouse forebrain. In Author response image 4 below the area of virus diffusion is visible as green fluorescent signal.

      Author response image 4.

      Fluorescent microscopy image of a mouse forebrain demonstrating the localization of the injection of a virus to knock down Netrin-1. The location of the virus is in green, while cell nuclei are in blue (DAPI). Abbreviations: DP: dorsopeduncular cortex IL: infralimbic cortex

      References:

      Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. 2020. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers Cell Dev Biology 8:487. doi:10.3389/fcell.2020.00487

      (4) The authors need to provide information regarding the efficiency and duration of knocking down. For instance, in Figure 1K, the mice were tested after 53 days post injection, can the virus activity in the brain last for such a long time?

      In our study we are interested in the role of Netrin-1 expression in the guidance of dopamine axons from the nucleus accumbens to the medial prefrontal cortex. The critical window for these axons leaving the nucleus accumbens and growing to the cortex is early adolescence (Reynolds et al., 2018b). This is why we injected the virus at the onset of adolescence, at postnatal day 21. As dopamine axons grow from the nucleus accumbens to the prefrontal cortex, they pass through the dorsal peduncular cortex. We disrupted Netrin-1 expression at this point along their route to determine whether it is the Netrin-1 present along their route that guides these axons to the prefrontal cortex. We hypothesized that the shRNA Netrin-1 virus would disrupt the growth of the dopamine axons, reducing the number of axons that reach the prefrontal cortex and therefore the number of axons that innervate this region in adulthood.

      We conducted our behavioural tests during adulthood, after the critical window during which dopamine axon growth occurs, so as to observe the enduring behavioral consequences of this misrouting. This experimental approach is designed for the shRNa Netrin-1 virus to be expressed in cells in the dorsopeduncular cortex when the dopamine axons are growing, during adolescence.

      References:

      Capolicchio T., Hernandez, G., Dube, E., Estrada, K., Giroux, M., Flores, C. (2023) Divergent outcomes of delta 9 - tetrahydrocannabinol in adolescence on dopamine and cognitive development in male and female mice. Society for Neuroscience, Washington, DC, United States [abstract].

      Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette M-P, Arvanitogiannis A, Flores C. 2018b. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral cortex 29:3676–3686. doi:10.1093/cercor/bhy247

      (5) In Figure 1N-Q, silencing Netrin-1 results in less DA axons targeting to infralimbic cortex, but why the Netrin-1 knocking down mice revealed the improved behavior?

      This is indeed an intriguing finding, and we have now added a mention of it to our manuscript. We have demonstrated that misrouting dopamine axons away from the medial prefrontal cortex during adolescence alters behaviour, but why this improves their action impulsivity ability is something currently unknown to us. One potential answer is that the dopamine axons are misrouted to a different brain region that is also involved in controlling impulsive behaviour, perhaps the dorsal striatum (Kim and Im, 2019) or the orbital prefrontal cortex (Jonker et al., 2015).

      We would also like to note that we are finding that other manipulations that appear to reroute dopamine axons to unintended targets can lead to reduced action impulsivity as measured using the Go No Go task. As we mentioned above, current experiments in the lab, which are part of a different line of research, are showing that male mice exposed to tetrahydrocannabinol in adolescence show reduced dopamine innervation in the medial prefrontal cortex in adulthood, but increased dopamine input in the orbitofrontal cortex. In addition, these mice show increased action impulsivity in the Go/No-Go task in adulthood (Capolicchio et al., Society for Neuroscience 2023 Abstracts)

      References

      Capolicchio T., Hernandez, G., Dube, E., Estrada, K., Giroux, M., Flores, C. (2023) Divergent outcomes of delta 9 - tetrahydrocannabinol in adolescence on dopamine and cognitive development in male and female mice. Society for Neuroscience, Washington, DC, United States [abstract].

      Jonker FA, Jonker C, Scheltens P, Scherder EJA. 2015. The role of the orbitofrontal cortex in cognition and behavior. Rev Neurosci 26:1–11. doi:10.1515/revneuro2014-0043 Kim B, Im H. 2019. The role of the dorsal striatum in choice impulsivity. Ann N York Acad Sci 1451:92–111. doi:10.1111/nyas.13961

      (6) What is the effect of knocking down UNC5C on dopamine axons guidance to the cortex?

      We have found that mice that are heterozygous for a nonsense Unc5c mutation, and as a result have reduced levels of UNC5c protein, show reduced amphetamine-induced locomotion and stereotypy (Auger et al., 2013). In the same manuscript we show that this effect only emerges during adolescence, in concert with the growth of dopamine axons to the prefrontal cortex. This is indirect but strong evidence that UNC5c receptors are necessary for correct adolescent dopamine axon development.

      References

      Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. 2013. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. European Journal of Neuroscience 38:2853–2863. doi:10.1111/ejn.12270

      (7) In Figures 2-4, the authors only showed the amount of DA axons and UNC5C in NAcc. However, it remains unclear whether these experiments also impact the projections of dopaminergic axons to other brain regions, critical for the behavioral phenotypes. What about other brain regions such as prefrontal cortex? Do the projection of DA axons and UNC5c level in cortex have similar pattern to those in NAcc?

      UNC5c receptors are expressed throughout development and are involved in many developmental processes (Kim and Ackerman, 2011; Murcia-Belmonte et al., 2019; Srivatsa et al., 2014). We cannot say whether the pattern we observe here is unique to the nucleus accumbens, but it is certainly not universal throughout the brain.

      The brain region we focus on in our manuscript, in addition to the nucleus accumbens, is the medial prefrontal cortex. Close and thorough examination of the prefrontal cortices of adult mice revealed practically no UNC5c expression by dopamine axons. However, we did observe very rare cases of dopamine axons expressing UNC5c. It is not clear whether these rare cases are present before or during adolescence.

      Below is a representative set of images of this observation, which is now also included as Supplementary Figure 4:

      Author response image 5.

      Expression of UNC5c protein in the medial prefrontal cortex of an adult male mouse. Low (A) and high (B) magnification images demonstrate that there is little UNC5c expression in dopamine axons in the medial prefrontal cortex. Here we identify dopamine axons by immunofluorescent staining for tyrosine hydroxylase (TH, see our response to comment #9 regarding the specificity of the TH antibody for dopamine axons in the prefrontal cortex). This figure is also included as Supplementary Figure 4 in the manuscript. Abbreviations: fmi: forceps minor of the corpus callosum, mPFC: medial prefrontal cortex.

      References:

      Kim D, Ackerman SL. 2011. The UNC5C Netrin Receptor Regulates Dorsal Guidance of Mouse Hindbrain Axons. J Neurosci 31:2167–2179. doi:10.1523/jneurosci.5254- 10.20110.2011

      Murcia-Belmonte V, Coca Y, Vegar C, Negueruela S, Romero C de J, Valiño AJ, Sala S, DaSilva R, Kania A, Borrell V, Martinez LM, Erskine L, Herrera E. 2019. A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Current Biology 29:1149-1160.e4. doi:10.1016/j.cub.2019.02.052

      Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo A-L, Ackerman SL, Richards LJ, Tarabykin V. 2014. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun 5:3708. doi:10.1038/ncomms4708

      (8) Can overexpression of UNC5c or Netrin-1 in male winter hamsters mimic the observations in summer hamsters? Or overexpression of UNC5c in female summer hamsters to mimic the winter hamster? This would be helpful to confirm the causal role of UNC5C in guiding DA axons during adolescence.

      This is an excellent question. We are very interested in both increasing and decreasing UNC5c expression in hamster dopamine axons to see if we can directly manipulate summer hamsters into winter hamsters and vice versa. We are currently exploring virus-based approaches to design these experiments and are excited for results in this area.

      (9) The entire study relied on using tyrosine hydroxylase (TH) as a marker for dopaminergic axons. However, the expression of TH (either by IHC or IF) can be influenced by other environmental factors, that could alter the expression of TH at the cellular level.

      This is an excellent point that we now carefully address in our methods by adding the following:

      In this study we pay great attention to the morphology and localization of the fibres from which we quantify varicosities to avoid counting any fibres stained with TH antibodies that are not dopamine fibres. The fibres that we examine and that are labelled by the TH antibody show features indistinguishable from the classic features of cortical dopamine axons in rodents (Berger et al., 1974; 1983; Van Eden et al., 1987; Manitt et al., 2011), namely they are thin fibres with irregularly-spaced varicosities, are densely packed in the nucleus accumbens, sparsely present only in the deep layers of the prefrontal cortex, and are not regularly oriented in relation to the pial surface. This is in contrast to rodent norepinephrine fibres, which are smooth or beaded in appearance, relatively thick with regularly spaced varicosities, increase in density towards the shallow cortical layers, and are in large part oriented either parallel or perpendicular to the pial surface (Berger et al., 1974; Levitt and Moore, 1979; Berger et al., 1983; Miner et al., 2003). Furthermore, previous studies in rodents have noted that only norepinephrine cell bodies are detectable using immunofluorescence for TH, not norepinephrine processes (Pickel et al., 1975; Verney et al., 1982; Miner et al., 2003), and we did not observe any norepinephrine-like fibres.

      Furthermore, we are not aware of any other processes in the forebrain that are known to be immunopositive for TH under any environmental conditions.

      To reduce confusion, we have replaced the abbreviation for dopamine – DA – with TH in the relevant panels in Figures 1, 2, 3, and 4 to clarify exactly what is represented in these images. As can be seen in these images, fluorescent green labelling is present only in axons, which is to be expected of dopamine labelling in these forebrain regions.

      References:

      Berger B, Tassin JP, Blanc G, Moyne MA, Thierry AM (1974) Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res 81:332–337.

      Berger B, Verney C, Gay M, Vigny A (1983) Immunocytochemical Characterization of the Dopaminergic and Noradrenergic Innervation of the Rat Neocortex During Early Ontogeny. In: Proceedings of the 9th Meeting of the International Neurobiology Society, pp 263–267 Progress in Brain Research. Elsevier.

      Levitt P, Moore RY (1979) Development of the noradrenergic innervation of neocortex. Brain Res 162:243–259.

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C (2011) The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394.

      Miner LH, Schroeter S, Blakely RD, Sesack SR (2003) Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J Comp Neurol 466:478–494.

      Pickel VM, Joh TH, Field PM, Becker CG, Reis DJ (1975) Cellular localization of tyrosine hydroxylase by immunohistochemistry. J Histochem Cytochem 23:1–12.

      Van Eden CG, Hoorneman EM, Buijs RM, Matthijssen MA, Geffard M, Uylings HBM (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neurosci 22:849–862.

      Verney C, Berger B, Adrien J, Vigny A, Gay M (1982) Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using anti-tyrosine hydroxylase antibodies. Dev Brain Res 5:41–52.

      (10) Are Netrin-1/UNC5C the only signal guiding dopamine axon during adolescence? Are there other neuronal circuits involved in this process?

      Our intention for this study was to examine the role of Netrin-1 and its receptor UNC5C specifically, but we do not suggest that they are the only molecules to play a role. The process of guiding growing dopamine axons during adolescence is likely complex and we expect other guidance mechanisms to also be involved. From our previous work we know that the Netrin-1 receptor DCC is critical in this process (Hoops and Flores, 2017; Reynolds et al., 2023). Several other molecules have been identified in Netrin-1/DCC signaling processes that control corpus callosum development and there is every possibility that the same or similar molecules may be important in guiding dopamine axons (Schlienger et al., 2023).

      References:

      Hoops D, Flores C. 2017. Making Dopamine Connections in Adolescence. Trends in Neurosciences 1–11. doi:10.1016/j.tins.2017.09.004

      Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau L-É, Kolb B, Day JJ, Flores C. 2023. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 14:4035. doi:10.1038/s41467-023-39665-1

      Schlienger S, Yam PT, Balekoglu N, Ducuing H, Michaud J-F, Makihara S, Kramer DK, Chen B, Fasano A, Berardelli A, Hamdan FF, Rouleau GA, Srour M, Charron F. 2023. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control. Sci Adv 9:eadd5501. doi:10.1126/sciadv.add5501

      (11) Finally, despite the authors' claim that the dopaminergic axon project is sensitive to the duration of daylight in the hamster, they never provided definitive evidence to support this hypothesis.

      By “definitive evidence” we think that the reviewer is requesting a single statistical model including measures from both the summer and winter groups. Such a model would provide a probability estimate of whether dopamine axon growth is sensitive to daylight duration. Therefore, we ran these models, one for male hamsters and one for female hamsters.

      In both sexes we find a significant effect of daylength on dopamine innervation, interacting with age. Male age by daylength interaction: F = 6.383, p = 0.00242. Female age by daylength interaction: F = 21.872, p = 1.97 x 10-9. The full statistical analysis is available as a supplement to this letter (Response_Letter_Stats_Details.docx).

      Reviewer 3

      (1) Fig 1 A and B don't appear to be the same section level.

      The reviewer is correct that Fig 1B is anterior to Fig 1A. We have changed Figure 1A to match the section level of Figure 1B.

      (2) Fig 1C. It is not clear that these axons are crossing from the shell of the NAC.

      We have added a dashed line to Figure 1C to highlight the boundary of the nucleus accumbens, which hopefully emphasizes that there are fibres crossing the boundary. We also include here an enlarged image of this panel:

      Author response image 6.

      An enlarged image of Figure1c in the manuscript. The nucleus accumbens (left of the dotted line) is densely packed with TH+ axons (in green). Some of these TH+ axons can be observed extending from the nucleus accumbens medially towards a region containing dorsally oriented TH+ fibres (white arrows).

      (3) Fig 1. Measuring width of the bundle is an odd way to measure DA axon numbers. First the width could be changing during adult for various reasons including change in brain size. Second, I wouldn't consider these axons in a traditional bundle. Third, could DA axon counts be provided, rather than these proxy measures.

      With regards to potential changes in brain size, we agree that this could have potentially explained the increased width of the dopamine axon pathway. That is why it was important for us to use stereology to measure the density of dopamine axons within the pathway. If the width increased but no new axons grew along the pathway, we would have seen a decrease in axon density from adolescence to adulthood. Instead, our results show that the density of axons remained constant.

      We agree with the reviewer that the dopamine axons do not form a traditional “bundle”. Therefore, throughout the manuscript we now avoid using the term bundle.

      Although we cannot count every single axon, an accurate estimate of this number can be obtained using stereology, an unbiassed method for efficiently quantifying large, irregularly distributed objects. We used stereology to count TH+ axons in an unbiased subset of the total area occupied by these axons. Unbiased stereology is the gold-standard technique for estimating populations of anatomical objects, such as axons, that are so numerous that it would be impractical or impossible to measure every single one. Here and elsewhere we generally provide results as densities and areas of occupancy (Reynolds et al., 2022). To avoid confusion, we now clarify that we are counting the width of the area that dopamine axons occupy (rather than the dopamine axon “bundle”).

      References:

      Reynolds LM, Pantoja-Urbán AH, MacGowan D, Manitt C, Nouel D, Flores C. 2022. Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods 31–63. doi:10.1007/978-1-0716-2799-0_2

      (4) TH in the cortex could also be of noradrenergic origin. This needs to be ruled out to score DA axons

      This is the same comment as Reviewer 1 #9. Please see our response below, which we have also added to our methods:

      In this study we pay great attention to the morphology and localization of the fibres from which we quantify varicosities to avoid counting any fibres stained with TH antibodies that are not dopamine fibres. The fibres that we examine and that are labelled by the TH antibody show features indistinguishable from the classic features of cortical dopamine axons in rodents (Berger et al., 1974; 1983; Van Eden et al., 1987; Manitt et al., 2011), namely they are thin fibres with irregularly-spaced varicosities, are densely packed in the nucleus accumbens, sparsely present only in the deep layers of the prefrontal cortex, and are not regularly oriented in relation to the pial surface. This is in contrast to rodent norepinephrine fibres, which are smooth or beaded in appearance, relatively thick with regularly spaced varicosities, increase in density towards the shallow cortical layers, and are in large part oriented either parallel or perpendicular to the pial surface (Berger et al., 1974; Levitt and Moore, 1979; Berger et al., 1983; Miner et al., 2003). Furthermore, previous studies in rodents have noted that only norepinephrine cell bodies are detectable using immunofluorescence for TH, not norepinephrine processes (Pickel et al., 1975; Verney et al., 1982; Miner et al., 2003), and we did not observe any norepinephrine-like fibres.

      References:

      Berger B, Tassin JP, Blanc G, Moyne MA, Thierry AM (1974) Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res 81:332–337.

      Berger B, Verney C, Gay M, Vigny A (1983) Immunocytochemical Characterization of the Dopaminergic and Noradrenergic Innervation of the Rat Neocortex During Early Ontogeny. In: Proceedings of the 9th Meeting of the International Neurobiology Society, pp 263–267 Progress in Brain Research. Elsevier.

      Levitt P, Moore RY (1979) Development of the noradrenergic innervation of neocortex. Brain Res 162:243–259.

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C (2011) The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394.

      Miner LH, Schroeter S, Blakely RD, Sesack SR (2003) Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J Comp Neurol 466:478–494.

      Pickel VM, Joh TH, Field PM, Becker CG, Reis DJ (1975) Cellular localization of tyrosine hydroxylase by immunohistochemistry. J Histochem Cytochem 23:1–12.

      Van Eden CG, Hoorneman EM, Buijs RM, Matthijssen MA, Geffard M, Uylings HBM (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neurosci 22:849–862.

      Verney C, Berger B, Adrien J, Vigny A, Gay M (1982) Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using anti-tyrosine hydroxylase antibodies. Dev Brain Res 5:41–52.

      (5) Netrin staining should be provided with NeuN + DAPI; its not clear these are all cell bodies. An in situ of Netrin would help as well.

      A similar comment was raised by Reviewer 1 in point #1. Please see below the immunofluorescent and RNA scope images showing expression of Netrin-1 protein and mRNA in the forebrain.

      Author response image 7.

      This confocal microscope image shows immunofluorescent staining for Netrin-1 (green) localized around cell nuclei (stained by DAPI in blue). This image was taken from a coronal section of the lateral septum of an adult male mouse. Scale bar = 20µm

      Author response image 8.

      This confocal microscope image of a coronal brain section of the medial prefrontal cortex of an adult male mouse shows Netrin-1 mRNA expression (green) and cell nuclei (DAPI, blue). RNAscope was used to generate this image. Brain regions are as follows: Cg1: Anterior cingulate cortex 1, DP: dorsopeduncular cortex, IL: Infralimbic Cortex, PrL: Prelimbic Cortex, fmi: forceps minor of the corpus callosum

      Author response image 9.

      A higher resolution image from the same sample as in Figure 2 shows Netrin-1 mRNA (green) and cell nuclei (DAPI; blue). DP = dorsopeduncular cortex

      (6) The Netrin knockdown needs validation. How strong was the knockdown etc?

      This comment was also raised by Reviewer 1 #1.

      We have previously established the efficacy of the shRNA Netrin-1 knockdown virus used in this experiment for reducing the expression of Netrin-1 (Cuesta et al., 2020). The shRNA reduces Netrin-1 levels in vitro and in vivo.

      References:

      Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. 2020. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers Cell Dev Biology 8:487. doi:10.3389/fcell.2020.00487

      (7) If the conclusion that knocking down Netrin in cortex decreases DA innervation of the IL, how can that be reconciled with Netrin-Unc repulsion.

      This is an intriguing question and one that we are in the planning stages of addressing with new experiments.

      Although we do not have a mechanistic answered for how a repulsive receptor helps guide these axons, we would like to note that previous indirect evidence from a study by our group also suggests that reducing UNC5c signaling in dopamine axons in adolescence increases dopamine innervation to the prefrontal cortex (Auger et al, 2013).

      References

      Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. 2013. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. European Journal of Neuroscience 38:2853–2863. doi:10.1111/ejn.12270

      (8) The behavioral phenotype in Fig 1 is interesting, but its not clear if its related to DA axons/signaling. IN general, no evidence in this paper is provided for the role of DA in the adolescent behaviors described.

      We agree with the reviewer that the behaviours we describe in adult mice are complex and are likely to involve several neurotransmitter systems. However, there is ample evidence for the role of dopamine signaling in cognitive control behaviours (Bari and Robbins, 2013; Eagle et al., 2008; Ott et al., 2023) and our published work has shown that alterations in the growth of dopamine axons to the prefrontal cortex leads to changes in impulse control as measured via the Go/No-Go task in adulthood (Reynolds et al., 2023, 2018a; Vassilev et al., 2021).

      The other adolescent behaviour we examined was risk-like taking behaviour in male and female hamsters (Figures 4 and 5), as a means of characterizing maturation in this behavior over time. We decided not to use the Go/No-Go task because as far as we know, this has never been employed in Siberian Hamsters and it will be difficult to implement. Instead, we chose the light/dark box paradigm, which requires no training and is ideal for charting behavioural changes over short time periods. Indeed, risk-like taking behavior in rodents and in humans changes from adolescence to adulthood paralleling changes in prefrontal cortex development, including the gradual input of dopamine axons to this region.

      References:

      Bari A, Robbins TW. 2013. Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in neurobiology 108:44–79. doi:10.1016/j.pneurobio.2013.06.005

      Eagle DM, Bari A, Robbins TW. 2008. The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199:439–456. doi:10.1007/s00213-008-1127-6

      Ott T, Stein AM, Nieder A. 2023. Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons. Nat Commun 14:7537. doi:10.1038/s41467-023-43271-6

      Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau L-É, Kolb B, Day JJ, Flores C. 2023. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 14:4035. doi:10.1038/s41467-023-39665-1

      Reynolds LM, Pokinko M, Torres-Berrío A, Cuesta S, Lambert LC, Pellitero EDC, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C. 2018a. DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biological psychiatry 83:181–192. doi:10.1016/j.biopsych.2017.06.009

      Vassilev P, Pantoja-Urban AH, Giroux M, Nouel D, Hernandez G, Orsini T, Flores C. 2021. Unique effects of social defeat stress in adolescent male mice on the Netrin-1/DCC pathway, prefrontal cortex dopamine and cognition (Social stress in adolescent vs. adult male mice). Eneuro ENEURO.0045-21.2021. doi:10.1523/eneuro.0045-21.2021

      (9) Fig2 - boxes should be drawn on the NAc diagram to indicate sampled regions. Some quantification of Unc5c would be useful. Also, some validation of the Unc5c antibody would be nice.

      The images presented were taken medial to the anterior commissure and we have edited Figure 2 to show this. However, we did not notice any intra-accumbens variation, including between the core and the shell. Therefore, the images are representative of what was observed throughout the entire nucleus accumbens.

      To quantify UNC5c in the accumbens we conducted a Western blot experiment in male mice at different ages. A one-way ANOVA analyzing band intensity (relative to the 15-day-old average band intensity) as the response variable and age as the predictor variable showed a significant effect of age (F=5.615, p=0.01). Posthoc analysis revealed that 15-day-old mice have less UNC5c in the nucleus accumbens compared to 21- and 35-day-old mice.

      Author response image 10.

      The graph depicts the results of a Western blot experiment of UNC5c protein levels in the nucleus accumbens of male mice at postnatal days 15, 21 or 35 and reveals a significant increase in protein levels at the onset adolescence.

      Our methods for this Western blot were as follows: Samples were prepared as previously (Torres-Berrío et al., 2017). Briefly, mice were sacrificed by live decapitation and brains were flash frozen in heptane on dry ice for 10 seconds. Frozen brains were mounted in a cryomicrotome and two 500um sections were collected for the nucleus accumbens, corresponding to plates 14 and 18 of the Paxinos mouse brain atlas. Two tissue core samples were collected per section, one for each side of the brain, using a 15-gauge tissue corer (Fine surgical tools Cat no. NC9128328) and ejected in a microtube on dry ice. The tissue samples were homogenized in 100ul of standard radioimmunoprecipitation assay buffer using a handheld electric tissue homogenizer. The samples were clarified by centrifugation at 4C at a speed of 15000g for 30 minutes. Protein concentration was quantified using a bicinchoninic acid assay kit (Pierce BCA protein assay kit, Cat no.PI23225) and denatured with standard Laemmli buffer for 5 minutes at 70C. 10ug of protein per sample was loaded and run by SDS-PAGE gel electrophoresis in a Mini-PROTEAN system (Bio-Rad) on an 8% acrylamide gel by stacking for 30 minutes at 60V and resolving for 1.5 hours at 130V. The proteins were transferred to a nitrocellulose membrane for 1 hour at 100V in standard transfer buffer on ice. The membranes were blocked using 5% bovine serum albumin dissolved in tris-buffered saline with Tween 20 and probed with primary (UNC5c, Abcam Cat. no ab302924) and HRP-conjugated secondary antibodies for 1 hour. a-tubulin was probed and used as loading control. The probed membranes were resolved using SuperSignal West Pico PLUS chemiluminescent substrate (ThermoFisher Cat no.34579) in a ChemiDoc MP Imaging system (Bio-Rad). Band intensity was quantified using the ChemiDoc software and all ages were normalized to the P15 age group average.

      Validation of the UNC5c antibody was performed in the lab of Dr. Liu, from whom it was kindly provided. Briefly, in the validation study the authors showed that the anti-UNC5C antibody can detect endogenous UNC5C expression and the level of UNC5C is dramatically reduced after UNC5C knockdown. The antibody can also detect the tagged-UNC5C protein in several cell lines, which was confirmed by a tag antibody (Purohit et al., 2012; Shao et al., 2017).

      References:

      Purohit AA, Li W, Qu C, Dwyer T, Shao Q, Guan K-L, Liu G. 2012. Down Syndrome Cell Adhesion Molecule (DSCAM) Associates with Uncoordinated-5C (UNC5C) in Netrin-1mediated Growth Cone Collapse. The Journal of biological chemistry 287:27126–27138. doi:10.1074/jbc.m112.340174

      Shao Q, Yang T, Huang H, Alarmanazi F, Liu G. 2017. Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules Mediates Netrin-1 Repulsion. J Neurosci 37:5620–5633. doi:10.1523/jneurosci.2617-16.2017

      (10) "In adolescence, dopamine neurons begin to express the repulsive Netrin-1 receptor UNC5C, and reduction in UNC5C expression appears to cause growth of mesolimbic dopamine axons to the prefrontal cortex".....This is confusing. Figure 2 shows a developmental increase in UNc5c not a decrease. So when is the "reduction in Unc5c expression" occurring?

      We apologize for the mistake in this sentence. We have corrected the relevant passage in our manuscript as follows:

      In adolescence, dopamine neurons begin to express the repulsive Netrin-1 receptor UNC5C, particularly when mesolimbic and mesocortical dopamine projections segregate in the nucleus accumbens (Manitt et al., 2010; Reynolds et al., 2018a). In contrast, dopamine axons in the prefrontal cortex do not express UNC5c except in very rare cases (Supplementary Figure 4). In adult male mice with Unc5c haploinsufficiency, there appears to be ectopic growth of mesolimbic dopamine axons to the prefrontal cortex (Auger et al., 2013). This miswiring is associated with alterations in prefrontal cortex-dependent behaviours (Auger et al., 2013).

      References:

      Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. 2013. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. European Journal of Neuroscience 38:2853–2863. doi:10.1111/ejn.12270

      Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C. 2010. Peri-Pubertal Emergence of UNC-5 Homologue Expression by Dopamine Neurons in Rodents. PLoS ONE 5:e11463-14. doi:10.1371/journal.pone.0011463

      Reynolds LM, Pokinko M, Torres-Berrío A, Cuesta S, Lambert LC, Pellitero EDC, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C. 2018a. DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biological psychiatry 83:181–192. doi:10.1016/j.biopsych.2017.06.009

      (11) In Fig 3, a statistical comparison should be made between summer male and winter male, to justify the conclusions that the winter males have delayed DA innervation.

      This analysis was also suggested by Reviewer 1, #11. Here is our response:

      We analyzed the summer and winter data together in ANOVAs separately for males and females. In both sexes we find a significant effect of daylength on dopamine innervation, interacting with age. Male age by daylength interaction: F = 6.383, p = 0.00242. Female age by daylength interaction: F = 21.872, p = 1.97 x 10-9. The full statistical analysis is available as a supplement to this letter (Response_Letter_Stats_Details.docx).

      (12) Should axon length also be measured here (Fig 3)? It is not clear why the authors have switched to varicosity density. Also, a box should be drawn in the NAC cartoon to indicate the region that was sampled.

      It is untenable to quantify axon length in the prefrontal cortex as we cannot distinguish independent axons. Rather, they are “tangled”; they twist and turn in a multitude of directions as they make contact with various dendrites. Furthermore, they branch extensively. It would therefore be impossible to accurately quantify the number of axons. Using unbiased stereology to quantify varicosities is a valid, well-characterized and straightforward alternative (Reynolds et al., 2022).

      References:

      Reynolds LM, Pantoja-Urbán AH, MacGowan D, Manitt C, Nouel D, Flores C. 2022. Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods 31–63. doi:10.1007/978-1-0716-2799-0_2

      (13) In Fig 3, Unc5c should be quantified to bolster the interesting finding that Unc5c expression dynamics are different between summer and winter hamsters. Unc5c mRNA experiments would also be important to see if similar changes are observed at the transcript level.

      We agree that it would be very interesting to see how UNC5c mRNA and protein levels change over time in summer and winter hamsters, both in males, as the reviewer suggests here, and in females. We are working on conducting these experiments in hamsters as part of a broader expansion of our research in this area. These experiments will require a lengthy amount of time and at this point we feel that they are beyond the scope of this manuscript.

      (14) Fig 4. The peak in exploratory behavior in winter females is counterintuitive and needs to be better discussed. IN general, the light dark behavior seems quite variable.

      This is indeed a very interesting finding, which we have expanded upon in our manuscript as follows:

      When raised under a winter-mimicking daylength, hamsters of either sex show a protracted peak in risk taking. In males, it is delayed beyond 80 days old, but the delay is substantially less in females. This is a counterintuitive finding considering that dopamine development in winter females appears to be accelerated. Our interpretation of this finding is that the timing of the risk-taking peak in females may reflect a balance between different adolescent developmental processes. The fact that dopamine axon growth is accelerated does not imply that all adolescent maturational processes are accelerated. Some may be delayed, for example those that induce axon pruning in the cortex. The timing of the risk-taking peak in winter female hamsters may therefore reflect the amalgamation of developmental processes that are advanced with those that are delayed – producing a behavioural effect that is timed somewhere in the middle. Disentangling the effects of different developmental processes on behaviour will require further experiments in hamsters, including the direct manipulation of dopamine activity in the nucleus accumbens and prefrontal cortex.

      Full Reference List

      Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. 2013. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. European Journal of Neuroscience 38:2853–2863. doi:10.1111/ejn.12270

      Bari A, Robbins TW. 2013. Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in neurobiology 108:44–79. doi:10.1016/j.pneurobio.2013.06.005

      Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrío A, White A, Hernandez G, Cooper HM, Flores C. 2020. Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers Cell Dev Biology 8:487. doi:10.3389/fcell.2020.00487

      Daubaras M, Bo GD, Flores C. 2014. Target-dependent expression of the netrin-1 receptor, UNC5C, in projection neurons of the ventral tegmental area. Neuroscience 260:36–46. doi:10.1016/j.neuroscience.2013.12.007

      Eagle DM, Bari A, Robbins TW. 2008. The neuropsychopharmacology of action inhibition: crossspecies translation of the stop-signal and go/no-go tasks. Psychopharmacology 199:439– 456. doi:10.1007/s00213-008-1127-6

      Hoops D, Flores C. 2017. Making Dopamine Connections in Adolescence. Trends in Neurosciences 1–11. doi:10.1016/j.tins.2017.09.004

      Jonker FA, Jonker C, Scheltens P, Scherder EJA. 2015. The role of the orbitofrontal cortex in cognition and behavior. Rev Neurosci 26:1–11. doi:10.1515/revneuro-2014-0043

      Kim B, Im H. 2019. The role of the dorsal striatum in choice impulsivity. Ann N York Acad Sci 1451:92–111. doi:10.1111/nyas.13961

      Kim D, Ackerman SL. 2011. The UNC5C Netrin Receptor Regulates Dorsal Guidance of Mouse Hindbrain Axons. J Neurosci 31:2167–2179. doi:10.1523/jneurosci.5254-10.2011

      Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C. 2010. Peri-Pubertal Emergence of UNC-5 Homologue Expression by Dopamine Neurons in Rodents. PLoS ONE 5:e11463-14. doi:10.1371/journal.pone.0011463

      Murcia-Belmonte V, Coca Y, Vegar C, Negueruela S, Romero C de J, Valiño AJ, Sala S, DaSilva R, Kania A, Borrell V, Martinez LM, Erskine L, Herrera E. 2019. A Retino-retinal Projection Guided by Unc5c Emerged in Species with Retinal Waves. Current Biology 29:1149-1160.e4. doi:10.1016/j.cub.2019.02.052

      Ott T, Stein AM, Nieder A. 2023. Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons. Nat Commun 14:7537. doi:10.1038/s41467-023-43271-6

      Phillips RA, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, Day JJ. 2022. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Reports 39:110616. doi:10.1016/j.celrep.2022.110616

      Purohit AA, Li W, Qu C, Dwyer T, Shao Q, Guan K-L, Liu G. 2012. Down Syndrome Cell Adhesion Molecule (DSCAM) Associates with Uncoordinated-5C (UNC5C) in Netrin-1-mediated Growth Cone Collapse. The Journal of biological chemistry 287:27126–27138. doi:10.1074/jbc.m112.340174

      Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau L-É, Kolb B, Day JJ, Flores C. 2023. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 14:4035. doi:10.1038/s41467-023-39665-1

      Reynolds LM, Pantoja-Urbán AH, MacGowan D, Manitt C, Nouel D, Flores C. 2022. Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods 31–63. doi:10.1007/978-1-0716-2799-0_2

      Reynolds LM, Pokinko M, Torres-Berrío A, Cuesta S, Lambert LC, Pellitero EDC, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C. 2018a. DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biological psychiatry 83:181–192. doi:10.1016/j.biopsych.2017.06.009

      Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette M-P, Arvanitogiannis A, Flores C. 2018b. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral cortex 29:3676–3686. doi:10.1093/cercor/bhy247

      Schlienger S, Yam PT, Balekoglu N, Ducuing H, Michaud J-F, Makihara S, Kramer DK, Chen B, Fasano A, Berardelli A, Hamdan FF, Rouleau GA, Srour M, Charron F. 2023. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control. Sci Adv 9:eadd5501. doi:10.1126/sciadv.add5501

      Shao Q, Yang T, Huang H, Alarmanazi F, Liu G. 2017. Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules Mediates Netrin-1 Repulsion. J Neurosci 37:5620–5633. doi:10.1523/jneurosci.2617-16.2017

      Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo A-L, Ackerman SL, Richards LJ, Tarabykin V. 2014. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun 5:3708. doi:10.1038/ncomms4708

      Torres-Berrío A, Lopez JP, Bagot RC, Nouel D, Dal-Bo G, Cuesta S, Zhu L, Manitt C, Eng C, Cooper HM, Storch K-F, Turecki G, Nestler EJ, Flores C. 2017. DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218. Biological psychiatry 81:306–315. doi:10.1016/j.biopsych.2016.08.017

      Vassilev P, Pantoja-Urban AH, Giroux M, Nouel D, Hernandez G, Orsini T, Flores C. 2021. Unique effects of social defeat stress in adolescent male mice on the Netrin-1/DCC pathway, prefrontal cortex dopamine and cognition (Social stress in adolescent vs. adult male mice). Eneuro ENEURO.0045-21.2021. doi:10.1523/eneuro.0045-21.2021

      Private Comments

      Reviewer #1

      (12) The language should be improved. Some expression is confusing (line178-179). Also some spelling errors (eg. Figure 1M).

      We have removed the word “Already” to make the sentence in lines 178-179 clearer, however we cannot find a spelling error in Figure 1M or its caption. We have further edited the manuscript for clarity and flow.

      Reviewer #2

      (1) The authors claim to have revealed how the 'timing of adolescence is programmed in the brain'. While their findings certainly shed light on molecular, circuit and behavioral processes that are unique to adolescence, their claim may be an overstatement. I suggest they refine this statement to discuss more specifically the processes they observed in the brain and animal behavior, rather than adolescence itself.

      We agree with the reviewer and have revised the manuscript to specify that we are referring to the timing of specific developmental processes that occur in the adolescent brain, not adolescence overall.

      (2) Along the same lines, the authors should also include a more substantiative discussion of how they selected their ages for investigation (for both mice and hamsters), For mice, their definition of adolescence (P21) is earlier than some (e.g. Spear L.P., Neurosci. and Beh. Reviews, 2000).

      There are certainly differences of opinion between researchers as to the precise definition of adolescence and the period it encompasses. Spear, 2000, provides one excellent discussion of the challenges related to identifying adolescence across species. This work gives specific ages only for rats, not mice (as we use here), and characterizes post-natal days 28-42 as being the conservative age range of “peak” adolescence (page 419, paragraph 1). Immediately thereafter the review states that the full adolescent period is longer than this, and it could encompass post-natal days 20-55 (page 419, paragraph 2).

      We have added the following statement to our methods:

      There is no universally accepted way to define the precise onset of adolescence. Therefore, there is no clear-cut boundary to define adolescent onset in rodents (Spear, 2000). Puberty can be more sharply defined, and puberty and adolescence overlap in time, but the terms are not interchangeable. Puberty is the onset of sexual maturation, while adolescence is a more diffuse period marked by the gradual transition from a juvenile state to independence. We, and others, suggest that adolescence in rodents spans from weaning (postnatal day 21) until adulthood, which we take to start on postnatal day 60 (Reynolds and Flores, 2021). We refer to “early adolescence” as the first two weeks postweaning (postnatal days 21-34). These ranges encompass discrete DA developmental periods (Kalsbeek et al., 1988; Manitt et al., 2011; Reynolds et al., 2018a), vulnerability to drug effects on DA circuitry (Hammerslag and Gulley, 2014; Reynolds et al., 2018a), and distinct behavioral characteristics (Adriani and Laviola, 2004; Makinodan et al., 2012; Schneider, 2013; Wheeler et al., 2013).

      References:

      Adriani W, Laviola G. 2004. Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 15:341–352. doi:10.1097/00008877-200409000-00005

      Hammerslag LR, Gulley JM. 2014. Age and sex differences in reward behavior in adolescent and adult rats. Dev Psychobiol 56:611–621. doi:10.1002/dev.21127

      Hoops D, Flores C. 2017. Making Dopamine Connections in Adolescence. Trends in Neurosciences 1–11. doi:10.1016/j.tins.2017.09.004

      Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HBM. 1988. Development of the Dopaminergic Innervation in the Prefrontal Cortex of the Rat. The Journal of Comparative Neurology 269:58–72. doi:10.1002/cne.902690105

      Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experiencedependent oligodendrocyte maturation and myelination. Science 337:1357–1360. doi:10.1126/science.1220845

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C. 2011. The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394. doi:10.1523/jneurosci.0606-11.2011

      Reynolds LM, Flores C. 2021. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuit 15:735625. doi:10.3389/fncir.2021.735625

      Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette MP, Arvanitogiannis A, Flores C. 2018. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral cortex 29:3676–3686. doi:10.1093/cercor/bhy247

      Schneider M. 2013. Adolescence as a vulnerable period to alter rodent behavior. Cell and tissue research 354:99–106. Doi:10.1007/s00441-013-1581-2

      Spear LP. 2000. Neurobehavioral Changes in Adolescence. Current directions in psychological science 9:111–114. doi:10.1111/1467-8721.00072

      Wheeler AL, Lerch JP, Chakravarty MM, Friedel M, Sled JG, Fletcher PJ, Josselyn SA, Frankland PW. 2013. Adolescent Cocaine Exposure Causes Enduring Macroscale Changes in Mouse Brain Structure. J Neurosci 33:1797–1803. doi:10.1523/jneurosci.3830-12.2013

      (3) Figure 1 - the conclusions hinge on the Netrin-1 staining, as shown in panel G, but the cells are difficult to see. It would be helpful to provide clearer, more zoomed images so readers can better assess the staining. Since Netrin-1 expression reduces dramatically after P4 and they had to use antigen retrieval to see signal, it would be helpful to show some images from additional brain regions and ages to see if expression levels follow predicted patterns. For instance, based on the allen brain atlas, it seems that around P21, there should be high levels of Netrin-1 in the cerebellum, but low levels in the cortex. These would be nice controls to demonstrate the specificity and sensitivity of the antibody in older tissue.

      We do not study the cerebellum and have never stained this region; doing so now would require generating additional tissue and we’re not sure it would add enough to the information provided to be worthwhile. Note that we have stained the forebrain for Netrin-1 previously, providing broad staining of many brain regions (Manitt et al., 2011)

      References:

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C. 2011. The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394. doi:10.1523/jneurosci.0606-11.2011

      (4) Figure 3 - Because mice tend to avoid brightly-lit spaces, the light/dark box is more commonly used as a measure of anxiety-like behavior than purely exploratory behavior (including in the paper they cited). It is important to address this possibility in their discussion of their findings. To bolster their conclusions about the coincidence of circuit and behavioral changes in adolescent hamsters, it would be useful to add an additional measure of exploratory behaviors (e.g. hole board).

      Regarding the light/dark box test, this is an excellent point. We prefer the term “risk taking” to “anxiety-like” and now use the former term in our manuscript. Furthermore, our interest in the behaviour is purely to chart the development of adolescent behaviour across our treatment groups, not to study a particular emotional state. Regardless of the specific emotion or emotions governing the light/dark box behaviour, it is an ideal test for charting adolescent shifts in behaviour as it is well-characterized in this respect, as we discuss in our manuscript.

      (5) Supplementary Figure 4,5 The authors defined puberty onset using uterine and testes weights in hamsters. While the weights appear to be different for summer and winter hamsters, there were no statistical comparison. Please add statistical analyses to bolster claims about puberty start times. Also, as many studies use vaginal opening to define puberty onset, it would be helpful to discuss how these measurements typically align and cite relevant literature that described use of uterine weights. Also, Supplementary Figures 4 and 5 were mis-cited as Supp. Fig. 2 in the text (e.g. line 317 and others).

      These are great suggestions. We have added statistical analyses to Supplementary Figures 5 and 6 and provided Vaginal Opening data as Supplementary Figure 7. The statistical analyses confirm that all three characters are delayed in winter hamsters compared to summer hamsters.

      We have also added the following references to the manuscript:

      Darrow JM, Davis FC, Elliott JA, Stetson MH, Turek FW, Menaker M. 1980. Influence of Photoperiod on Reproductive Development in the Golden Hamster. Biol Reprod 22:443–450. doi:10.1095/biolreprod22.3.443

      Ebling FJP. 1994. Photoperiodic Differences during Development in the Dwarf Hamsters Phodopus sungorus and Phodopus campbelli. Gen Comp Endocrinol 95:475–482. doi:10.1006/gcen.1994.1147

      Timonin ME, Place NJ, Wanderi E, Wynne-Edwards KE. 2006. Phodopus campbelli detect reduced photoperiod during development but, unlike Phodopus sungorus, retain functional reproductive physiology. Reproduction 132:661–670. doi:10.1530/rep.1.00019

      (6) The font in many figure panels is small and hard to read (e.g. 1A,D,E,H,I,L...). Please increase the size for legibility.

      We have increased the font size of our figure text throughout the manuscript.

      Reviewer #3

      (15) Fig 1 C,D. Clarify the units of the y axis

      We have now fixed this.

      Full Reference List

      Adriani W, Laviola G. 2004. Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 15:341–352. doi:10.1097/00008877-200409000-00005

      Hammerslag LR, Gulley JM. 2014. Age and sex differences in reward behavior in adolescent and adult rats. Dev Psychobiol 56:611–621. doi:10.1002/dev.21127

      Hoops D, Flores C. 2017. Making Dopamine Connections in Adolescence. Trends in Neurosciences 1–11. doi:10.1016/j.tins.2017.09.004

      Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HBM. 1988. Development of the Dopaminergic Innervation in the Prefrontal Cortex of the Rat. The Journal of Comparative Neurology 269:58–72. doi:10.1002/cne.902690105

      Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experiencedependent oligodendrocyte maturation and myelination. Science 337:1357–1360. doi:10.1126/science.1220845

      Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C. 2011. The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. J Neurosci 31:8381–8394. doi:10.1523/jneurosci.0606-11.2011

      Reynolds LM, Flores C. 2021. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuit 15:735625. doi:10.3389/fncir.2021.735625 Reynolds LM, Yetnikoff L, Pokinko M, Wodzinski M, Epelbaum JG, Lambert LC, Cossette M-P, Arvanitogiannis A, Flores C. 2018. Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral cortex 29:3676–3686. doi:10.1093/cercor/bhy247

      Schneider M. 2013. Adolescence as a vulnerable period to alter rodent behavior. Cell and tissue research 354:99–106. doi:10.1007/s00441-013-1581-2

      Spear LP. 2000. Neurobehavioral Changes in Adolescence. Current directions in psychological science 9:111–114. doi:10.1111/1467-8721.00072

      Wheeler AL, Lerch JP, Chakravarty MM, Friedel M, Sled JG, Fletcher PJ, Josselyn SA, Frankland PW. 2013. Adolescent Cocaine Exposure Causes Enduring Macroscale Changes in Mouse Brain Structure. J Neurosci 33:1797–1803. doi:10.1523/jneurosci.3830-12.2013

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study combines a range of advanced ultrastructural imaging approaches to define the unusual endosomal system of African trypanosomes. Compelling images show that instead of a distinct set of compartments, the endosome of these protists comprises a continuous system of membranes with functionally distinct subdomains as defined by canonical markers of early, late and recycling endosomes. The findings suggest that the endocytic system of bloodstream stages has evolved to facilitate the extraordinarily high rates of membrane turnover needed to remove immune complexes and survive in the blood, which is of interest to anyone studying infectious diseases.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Bloodstream stages of the parasitic protist, Trypanosoma brucei, exhibit very high rates of constitutive endocytosis, which is needed to recycle the surface coat of Variant Surface Glycoproteins (VSGs) and remove surface immune complexes. While many studies have shown that the endo-lysosomal systems of T. brucei BF stages contain canonical domains, as defined by classical Rab markers, it has remained unclear whether these protists have evolved additional adaptations/mechanisms for sustaining these very high rates of membrane transport and protein sorting. The authors have addressed this question by reconstructing the 3D ultrastructure and functional domains of the T. brucei BF endosome membrane system using advanced electron tomography and super-resolution microscopy approaches. Their studies reveal that, unusually, the BF endosome network comprises a continuous system of cisternae and tubules that contain overlapping functional subdomains. It is proposed that a continuous membrane system allows higher rates of protein cargo segregation, sorting and recycling than can otherwise occur when transport between compartments is mediated by membrane vesicles or other fusion events.

      Strengths:

      The study is a technical tour-de-force using a combination of electron tomography, super-resolution/expansion microscopy, immune-EM of cryo-sections to define the 3D structures and connectivity of different endocytic compartments. The images are very clear and generally support the central conclusion that functionally distinct endocytic domains occur within a dynamic and continuous endosome network in BF stages.

      Weaknesses:

      The authors suggest that this dynamic endocytic network may also fulfil many of the functions of the Golgi TGN and that the latter may be absent in these stages. Although plausible, this comment needs further experimental support. For example, have the authors attempted to localize canonical makers of the TGN (e.g. GRIP proteins) in T. brucei BF and/or shown that exocytic carriers bud directly from the endosomes?

      We agree with the criticism and have shortened the discussion accordingly and clearly marked it as speculation. However, we do not want to completely abandon our hypothesis.

      The paragraph now reads:

      Lines 740 – 751:

      “Interestingly, we did not find any structural evidence of vesicular retrograde transport to the Golgi. Instead, the endosomal ‘highways’ extended throughout the posterior volume of the trypanosomes approaching the trans-Golgi interface. It is highly plausible that this region represents the convergence point where endocytic and biosynthetic membrane trafficking pathways merge. A comparable merging of endocytic and biosynthetic functions has been described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019). As we could not find structural evidence for the existence of a TGN we tentatively propose that trypanosomes may have shifted the central orchestrating function of the TGN as a sorting hub at the crossroads of biosynthetic and recycling pathways to the endosome. Although this is a speculative scenario, it is experimentally testable.”

      Furthermore, we removed the lines 51 - 52, which included the suggestion of the TGN as a master regulator, from the abstract.

      Reviewer #2 (Public Review):

      The authors suggest that the African trypanosome endomembrane system has unusual organisation, in that the entire system is a single reticulated structure. It is not clear if this is thought to extend to the lysosome or MVB. There is also a suggestion that this unusual morphology serves as a trans-(post)Golgi network rather than the more canonical arrangement.

      The work is based around very high-quality light and electron microscopy, as well as utilising several marker proteins, Rab5A, 11 and 7. These are deemed as markers for early endosomes, recycling endosomes and late or pre-lysosomes. The images are mostly of high quality but some inconsistencies in the interpretation, appearance of structures and some rather sweeping assumptions make this less easy to accept. Two perhaps major issues are claims to label the entire endosomal apparatus with a single marker protein, which is hard to accept as certainly this reviewer does not really even know where the limits to the endosomal network reside and where these interface with other structures. There are several additional compartments that have been defined by Rob proteins as well, and which are not even mentioned. Overall I am unconvinced that the authors have demonstrated the main things they claim.<br /> The endomembrane system in bloodstream form T. brucei is clearly delimited. Compared to mammalian cells it is tidy and confined to the posterior part of the spindleshaped cell. The endoplasmic reticulum is linked to one side of the longitudinal cell axis, marked by the attached flagellum, while the mitochondrion locates to the opposite side. Glycosomes are easily identifiable as spheres, as are acidocalcisomes, which are smaller than glycosomes and – in electron micrographs – are characterized by high electron density. All these organelles extend beyond the nucleus, which is not the case for the endosomal compartment, the lysosome and the Golgi. The vesicles found in the posterior half of the trypanosome cell are quantitatively identifiable as COP1, CCVI or CCVII vesicles, or exocytic carriers. The lysosome has a higher degree of morphological plasticity, but this is not topic of the present work. Thus, the endomembrane system in T. brucei is comparatively well structured and delimited, which is why we have chosen trypanosomes as cell biological model.

      We have published EP1::GFP as marker for the endosome system and flagellar pocket back in 2004. We have defined the fluid phase volume of the trypanosome endosome in papers published between 2002 and 2007. This work was not intended to represent the entirety of RAB proteins. We were only interested in 3 canonical markers for endosome subtypes. We do not claim anything that is not experimentally tested, we have clearly labelled our hypotheses as such, and we do not make sweeping assumptions.

      The approaches taken are state-of-the-art but not novel, and because of the difficulty in fully addressing the central tenet, I am not sure how much of an impact this will have beyond the trypanosome field. For certain this is limited to workers in the direct area and is not a generalisable finding.

      To the best of our knowledge, there is no published research that has employed 3D Tokuyasu or expansion microscopy (ExM) to label endosomes. The key takeaway from our study, which is the concept that "endosomes are continuous in trypanosomes" certainly is novel. We are not aware of any other report that has demonstrated this aspect.

      The doubts formulated by the reviewer regarding the impact of our work beyond the field of trypanosomes are not timely. Indeed, our results, and those of others, show that the conclusions drawn from work with just a few model organisms is not generalisable. We are finally on the verge of a new cell biology that considers the plethora of evolutionary solutions beyond ophistokonts. We believe that this message should be widely acknowledged and considered. And we are certainly not the only ones who are convinced that the term "general relevance" is unscientific and should no longer be used in biology.

      Reviewer #3 (Public Review):

      Summary:

      As clearly highlighted by the authors, a key plank in the ability of trypanosomes to evade the mammalian host’s immune system is its high rate of endocytosis. This rapid turnover of its surface enables the trypanosome to ‘clean’ its surface removing antibodies and other immune effectors that are subsequently degraded. The high rate of endocytosis is likely reflected in the organisati’n and layout of the endosomal system in these parasites. Here, Link et al., sought to address this question using a range of light and three-dimensional electron microscopy approaches to define the endosomal organisation in this parasite.

      Before this study, the vast majority of our information about the make-up of the trypanosome endosomal system was from thin-section electron microscopy and immunofluorescence studies, which did not provide the necessary resolution and 3D information to address this issue. Therefore, it was not known how the different structures observed by EM were related. Link et al., have taken advantage of the advances in technology and used an impressive combination of approaches at the LM and EM level to study the endosomal system in these parasites. This innovative combination has now shown the interconnected-ness of this network and demonstrated that there are no ‘classical’ compartments within the endosomal system, with instead different regions of the network enriched in different protein markers (Rab5a, Rab7, Rab11).

      Strengths:

      This is a generally well-written and clear manuscript, with the data well-presented supporting the majority of the conclusions of the authors. The authors use an impressive range of approaches to address the organisation of the endosomal system and the development of these methods for use in trypanosomes will be of use to the wider parasitology community.

      I appreciate their inclusion of how they used a range of different light microscopy approaches even though for instance the dSTORM approach did not turn out to be as effective as hoped. The authors have clearly demonstrated that trypanosomes have a large interconnected endosomal network, without defined compartments and instead show enrichment for specific Rabs within this network.

      Weaknesses:

      My concerns are:

      i) There is no evidence for functional compartmentalisation. The classical markers of different endosomal compartments do not fully overlap but there is no evidence to show a region enriched in one or other of these proteins has that specific function. The authors should temper their conclusions about this point.

      The reviewer is right in stating that Rab-presence does not necessarily mean Rabfunction. However, this assumption is as old as the Rab literature. That is why we have focused on the 3 most prominent endosomal marker proteins. We report that for endosome function you do not necessarily need separate membrane compartments. This is backed by our experiments.

      ii) The quality of the electron microscopy work is very high but there is a general lack of numbers. For example, how many tomograms were examined? How often were fenestrated sheets seen? Can the authors provide more information about how frequent these observations were?

      The fenestrated sheets can be seen in the majority of the 37 tomograms recorded of the posterior volume of the parasites. Furthermore, we have randomly generated several hundred tiled (= very large) electron micrographs of bloodstream form trypanosomes for unbiased analyses of endomembranes. In these 2D-datasets the “footprint” of the fenestrated flat and circular cisternae is frequently detectable in the posterior cell area.

      We now have included the corresponding numbers in all EM figure legends.

      iii) The EM work always focussed on cells which had been processed before fixing. Now, I understand this was important to enable tracers to be used. However, given the dynamic nature of the system these processing steps and feeding experiments may have affected the endosomal organisation. Given their knowledge of the system now, the authors should fix some cells directly in culture to observe whether the organisation of the endosome aligns with their conclusions here.

      This is a valid criticism; however, it is the cell culture that provides an artificial environment. As for a possible effect of cell harvesting by centrifugation on the integrity and functionality of the endosome system, we consider this very unlikely for one simple reason. The mechanical forces acting in and on the parasites as they circulate in the extremely crowded and confined environment of the mammalian bloodstream are obviously much higher than the centrifugal forces involved in cell preparation. This becomes particularly clear when one considers that the mass of the particle to be centrifuged determines the actual force exerted by the g-forces. Nevertheless, the proposed experiment is a good control, although much more complex than proposed, since tomography is a challenging technique. We have performed the suggested experiment and acquired tomograms of unprocessed cells. The corresponding data is now included as supplementary movie 2, 3 and 4. We refer to it in lines 202 – 206: To investigate potential impacts of processing steps (cargo uptake, centrifugation, washing) on endosomal organization, we directly fixed cells in the cell culture flask, embedded them in Epon, and conducted tomography. The resulting tomograms revealed endosomal organization consistent with that observed in cells fixed after processing (see Supplementary movie 2, 3, and 4).

      We furthermore thank the reviewer for the experiment suggestion in the acknowledgments.

      iv) The discussion needs to be revamped. At the moment it is just another run through of the results and does not take an overview of the results presenting an integrated view. Moreover, it contains reference to data that was not presented in the results.

      We have improved the discussion accordingly.

      Recommendations for the authors:

      The reviewers concurred about the high calibre of the work and the importance of the findings.

      They raised some issues and made some suggestions to improve the paper without additional experiments - key issues include

      (1) Better referencing of the trypanosome endocytosis/ lysosomal trafficking literature.

      The literature, especially the experimental and quantitative work, is very limited. We now provide a more complete set of references. However, we would like to mention that we had cited a recent review that critically references the trypanosome literature with emphasis on the extensive work done with mammalian cells and yeast.

      (2) Moving the dSTORM data that detracts from otherwise strong data in a supplementary figure.

      We have done this.

      (3) Removal of the conclusion that the continuous endosome fulfils the functions of TGN, without further evidence.

      As stated above, this was not a conclusion in our paper, but rather a speculation, which we have now more clearly marked as such. Lines 740 to 751 now read:

      “Interestingly, we did not find any structural evidence of vesicular retrograde transport to the Golgi. Instead, the endosomal ‘highways’ extended throughout the posterior volume of the trypanosomes approaching the trans-Golgi interface. It is highly plausible that this region represents the convergence point where endocytic and biosynthetic membrane trafficking pathways merge. A comparable merging of endocytic and biosynthetic functions was already described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019). As we could not find structural evidence for the existence of a TGN we tentatively propose that trypanosomes may have shifted the central orchestrating function of the TGN as a sorting hub at the crossroads of biosynthetic and recycling pathways to the endosome. Although this is a speculative scenario, it is experimentally testable.”

      (4) Broader discussion linking their findings to other examples of organelle maturation in eukaryotes (e.g cisternal maturation of the Golgi)

      We have improved the discussion accordingly.

      Reviewer #1 (Recommendations For The Authors):

      What are the multi-vesicular vesicles that surround the marked endosomal compartments in Fig 1. Do they become labelled with fluid phase markers with longer incubations (e.g late endosome/ lysosomal)?

      The function of MVBs in trypanosomes is still far from being clear. They are filled with fluid phase cargo, especially ferritin, but are devoid of VSG. Hence it is likely that MVBs are part of the lysosomal compartment. In fact, this part of the endomembrane system is highly dynamic. MVBs can be physically connected to the lysosome or can form elongated structures. The surprising dynamics of the trypanosome lysosome will be published elsewhere.

      Figure 2. The compartments labelled with EP1::Halo are very poorly defined due to the low levels of expression of the reporter protein and/or sensitivity of detection of the Halo tag. Based on these images, it would be hard to conclude whether the endosome network is continuous or not. In this respect, it is unclear why the authors didn't use EP1-GFP for these analyses? Given the other data that provides more compelling evidence for a single continuous compartment, I would suggest removing Fig 2A.

      We have used EP1::GFP to label the entire endosome system (Engstler and Boshart, 2004). Unfortunately, GFP is not suited for dSTORM imaging. By creating the EP1::Halo cell line, we were able to utilize the most prominent dSTORM fluorescent dye, Alexa 647. This was not primarily done to generate super resolution images, but rather to measure the dynamics of the GPI-anchored, luminal protein EP with single molecule precision. The results from this study will be published separately. But we agree with the reviewer and have relocated the dSTORM data to the supplementary material.

      The observation that Rab5a/7 can be detected in the lumen of lysosome is interesting. Mechanistically, this presumably occurs by invagination of the limiting membrane of the lysosome. Is there any evidence that similar invagination of cytoplasmic markers occurs throughout or in subdomains of the endocytic network (possibly indicative of a 'late endosome' domain)?

      So far, we have not observed this. The structure of the lysosome and the membrane influx from the endosome are currently being investigated.

      The authors note that continuity of functionally distinct membrane compartments in the secretory/endocytic pathways has been reported in other protists (e.g T. cruzi). A particular example that could be noted is the endo-lysosomal system of Dictyostelium discoideum which mediates the continuous degradation and eventual expulsion of undigested material.

      We tried to include this in the discussion but ultimately decided against it because the Dictyostelium system cannot be easily compared to the trypanosome endosome.

      Reviewer #2 (Recommendations For The Authors):

      Abstract

      Not sure that 'common' is the correct term here. Frequent, near-universal..... it would be true that endocytosis is common across most eukaryotes.

      We have changed the sentence to “common process observed in most eukaryotes” (line 33).

      Immune evasion - the parasite does not escape the immune system, but does successfully avoid its impact, at least at the population level.

      We have replaced the word “escape” with “evasion” (line 35).

      The third sentence needs to follow on correctly from the second. Also, more than Igs are internalised and potentially part of immune evasion, such as C3, Factor H, ApoL1 etcetera.

      We believe that there may be a misunderstanding here. The process of endocytic uptake and lysosomal degradation has so far only been demonstrated in the context of VSGbound antibodies, which is why we only refer to this. Of course, the immune system comprises a wide range of proteins and effector molecules, all of which could be involved in immune evasion.

      I do not follow the logic that the high flux through the endocytic system in trypanosomes precludes distinct compartmentalisation - one could imagine a system where a lot of steps become optimised for example. This idea needs expanding on if it is correct.

      Membrane transport by vesicle transfer between several separate membrane compartments would be slower than the measured rate of membrane flux.

      Again I am not sure 'efficient' on line 40. It is fast, but how do you measure efficiency? Speed and efficiency are not the same thing.

      We have replaced the word “efficient” with “fast” (line 42).

      The basis for suggesting endosomes as a TGN is unclear. Given that there are AP complexes, retromer, exocyst and other factors that are part of the TGN or at least post-G differentiation of pathways in canonical systems, this seems a step too far. There really is no evidence in the rest of the MS that seems to support this.

      Yes, we agree and have clarified the discussion accordingly. We have not completely removed the discussion on the TGN but have labelled it more clearly as speculation.

      I am aware I am being pedantic here, but overall the abstract seems to provide an impression of greater novelty than may be the case and makes several very bold claims that I cannot see as fully valid.

      We are not aware of any claim in the summary that we have not substantiated with experiments, or any hypothesis that we have not explained.

      Moreover, the concept of fused or multifunctional endosomes (or even other endomembrane compartments) is old, and has been demonstrated in metazoan cells and yeast. The concept of rigid (in terms of composition) compartments really has been rejected by most folks with maturation, recycling and domain structures already well-established models and concepts.

      We agree that the (transient) presence of multiple Rab proteins decorating endosomes has been demonstrated in various cell types. This finding formed the basis for the endosomal maturation model in mammals and yeast, which has replaced the previous rigid compartment model.

      However, we do not appreciate attempts to question the originality of our study by claiming that similar observations have been made in metazoans or yeast. This is simply wrong. There are no reports of a functionally structured, continuous, single and large endosome in any other system. The only membrane system that might be similar was described in the American parasite Trypanosoma cruzi, however, without the use of endosome markers or any functional analysis. We refer to this study in the discussion.

      In summary, the maturation model falls short in explaining the intricacies of the membrane system we have uncovered in trypanosomes. Therefore, one plausible interpretation of our data is that the overall architecture of the trypanosome endosomes represents an adaptation that enables the remarkable speed of plasma membrane recycling observed in these parasites. In our view, both our findings and their interpretation are novel and worth reporting. Again, modern cell biology should recognize that evolution has developed many solutions for similar processes in cells, about whose diversity we have learned almost nothing because of our reductionist view. A remarkable example of this are the Picozoa, tiny bipartite eukaryotes that pack the entire nutritional apparatus into one pouch and the main organelles with the locomotor system into the other. Another one is the “extreme” cell biology of many protozoan parasites such as Giardia, Toxpoplasma or Trypanosoma.

      Higher plants have been well characterised, especially at the level of Rab/Arf proteins and adaptins.

      We now mention plant endosomes in our brief discussion of the trypanosome TGN. Lines 744 – 747:

      “A comparable merging of endocytic and biosynthetic functions was already described for the TGN in plants. Different marker proteins for early and recycling endosomes were shown to be associated and/ or partially colocalized with the TGN suggesting its function in both secretory and endocytic pathways (reviewed in Minamino and Ueda, 2019).”

      The level of self-citing in the introduction is irritating and unscholarly. I have no qualms with crediting the authors with their own excellent contributions, but work from Dacks, Bangs, Field and others seems to be selectively ignored, with an awkward use of the authors' own publications. Diversity between organisms for example has been a mainstay of the Dacks lab output, Rab proteins and others from Field and work on exocytosis and late endosomal systems from Bangs. These efforts and contributions surely deserve some recognition?

      This is an original article and not a review. For a comprehensive overview the reviewer might read our recent overview article on exo- and endocytic pathways in trypanosomes, in which we have extensively cited the work of Mark Field, Jay Bangs and Joel Dacks. In the present manuscript, we have cited all papers that touch on our results or are otherwise important for a thorough understanding of our hypotheses. We do not believe that this approach is unscientific, but rather improves the readability of the manuscript. Nevertheless, we have now cited additional work.

      For the uninitiated, the posterior/anterior axis of the trypanosome cell as well as any other specific features should be defined.

      In lines 102 - 110 we wrote:

      “This process of antibody clearance is driven by hydrodynamic drag forces resulting from the continuous directional movement of trypanosomes (Engstler et al., 2007). The VSG-antibody complexes on the cell surface are dragged against the swimming direction of the parasite and accumulate at the posterior pole of the cell. This region harbours an invagination in the plasma membrane known as the flagellar pocket (FP) (Gull, 2003; Overath et al., 1997). The FP, which marks the origin of the single attached flagellum, is the exclusive site for endo- and exocytosis in trypanosomes (Gull, 2003; Overath et al., 1997). Consequently, the accumulation of VSG-antibody complexes occurs precisely in the area of bulk membrane uptake.”

      We think this sufficiently introduces the cell body axes.

      I don't understand the comment concerning microtubule association. In mammalian cells, such association is well established, but compartments still do not display precise positioning. This likely then has nothing to do with the microtubule association differences.

      We have clarified this in the text (lines 192 – 199). There is no report of cytoplasmic microtubules in trypanosomes. All microtubules appear to be either subpellicular or within the flagellum. To maintain the structure and position of the endosomal apparatus, they should be associated either with subpellicular microtubules, as is the case with the endoplasmic reticulum, or with the more enigmatic actomyosin system of the parasites. We have been working on the latter possibility and intend to publish a follow-up paper to the present manuscript.

      The inability to move past the nucleus is a poor explanation. These compartments are dynamic. Even the nucleus does interesting things in trypanosomes and squeezes past structures during development in the tsetse fly.

      The distance between the nucleus and the microtubule cytoskeleton remains relatively constant even in parasites that squeeze through microfluidic channels. This is not unexpected as the nucleus can be highly deformed. A structure the size of the endosome will not be able to physically pass behind the nucleus without losing its integrity. In fact, the recycling apparatus is never found in the anterior part of the trypanosome, most probably because the flagellar pocket is located at the posterior cell pole.

      L253 What is the evidence that EP1 labels the entire FP and endosomes? This may be extensive, but this claim requires rather more evidence. This is again suggested at l263. Again, please forgive me for being pedantic, but this is an overstatement unless supported by evidence that would be incredibly difficult to obtain. This is even sort of acknowledged on l271 in the context of non-uniform labelling. This comes again in l336.

      The evidence that EP1 labels the entire FP and endosomes is presented here: Engstler and Boshart, 2004; 10.1101/gad.323404).

      Perhaps I should refrain from comments on the dangers of expansion microscopy, or asking what has actually been gained here. Oddly, the conclusion on l290 is a fair statement that I am happy with.

      An in-depth discussion regarding the advantages and disadvantages of expansion microscopy is beyond the manuscript's intended scope. Our approach involved utilizing various imaging techniques to confirm the validity of our findings. We appreciate that our concluding sentence is pleasing.

      F2 - The data in panel A seem quite poor to me. I also do not really understand why the DAPI stain in the first and second columns fails to coincide or why the kinetoplast is so diffuse in the second row. The labelling for EP1 presents as very small puncta, and hence is not evidence for a continuum. What is the arrow in A IV top? The data in panel B are certainly more in line with prior art, albeit that there is considerable heterogeneity in the labelling and of the FP for example. Again, I cannot really see this as evidence for continuity. There are gaps.... Albeit I accept that labelling of such structures is unlikely to ever be homogenous.

      We agree that the dSTORM data represents the least robust aspect of the findings we have presented, and we concur with relocating it to the supplementary material.

      F3 - Rather apparent, and specifically for Rab7, that there is differential representation - for example, Cell 4 presents a single Rab7 structure while the remaining examples demonstrate more extensive labelling. Again, I am content that these are highly dynamic strictures but this needs to be addressed at some level and commented upon. If the claim is for continuity, the dynamics observed here suggest the usual; some level of obvious overlap of organellar markers, but the representation in F3 is clever but not sure what I am looking at. Moreover, the title of the figure is nothing new. What is also a bit odd is that the extent of the Rab7 signal, and to some extent the other two Rabs used, is rather variable, which makes this unclear to me as to what is being detected. Given that the Rab proteins may be defining microdomains or regions, I would also expect a region of unique straining as well as the common areas. This needs to at least be discussed.

      The differences in the representation result from the dynamics of the labelled structures. Therefore, we have selected different cells to provide examples of what the labelling can look like. We now mention this in the results section.

      The overlap of the different Rab signals was perhaps to be expected, but we now have demonstrated it experimentally. Importantly, we performed a rigorous quantification by calculating the volume overlaps and the Pearson correlation coefficients.

      In previous studies the data were presented as maximal intensity projections, which inherently lack the complete 3D information.

      We found that Rab proteins define microdomains and that there are regions of unique staining as well as common areas, as shown in Figure 3. The volumes do not completely overlap. This is now more clearly stated in lines 315 – 319:

      “These objects showed areas of unique staining as well as partially overlapping regions. The pairwise colocalization of different endosomal markers is shown in Figure 3 A, XI - XIII and 3 B. The different cells in Figure 3 B were selected to represent the dynamic nature of the labelled structures. Consequently, the selected cells provide a variety of examples of how the labelling can appear.”

      This had already been stated in lines 331 – 336:

      “In summary, the quantitative colocalization analyses revealed that on the one hand, the endosomal system features a high degree of connectivity, with considerable overlap of endosomal marker regions, and on the other hand, TbRab5A, TbRab7, and TbRab11 also demarcate separated regions in that system. These results can be interpreted as evidence of a continuous endosomal membrane system harbouring functional subdomains, with a limited amount of potentially separated early, late or recycling endosomes.”

      F4-6 - Fabulous images. But a couple of issues here; first, as the authors point out, there is distance between the gold and the antigen. So, this of course also works in the z-plane as well as the x/y-planes and some of the gold may well be associated with membraneous figures that are out of the plane, which would indicate an absence of colinearity on one specific membrane. Secondly, in several instances, we have Rab7 essentially mixed with Rab11 or Rab5 positive membrane. While data are data and should be accepted, this is difficult to reconcile when, at least to some level, Rab7 is a marker for a late-endosomal structure and where the presence of degradative activity could reside. As division of function is, I assume, the major reason for intracellular compartmentalisation, such a level of admixture is hard to rationalise. A continuum is one thing but the data here seem to be suggesting something else, i.e. almost complete admixture.

      We are grateful for the positive feedback regarding the image quality. It is true that the "linkage error," representing the distance between the gold and the antigen, also functions to some extent in the z-axis. However, it's important to note that the zdimension of the section in these Figures is 55 nm. Nevertheless, it's interesting to observe that membranes, which may not be visible within the section itself but likely the corresponding Rab antigen, is discernible in Figure 4C (indicated by arrows).

      We have clarified this in lines 397 – 400:

      “Consequently, gold particles located further away may represent cytoplasmic TbRab proteins or, as the “linkage error” can also occur in the z-plane, correspond to membranes that are not visible within the 55 nm thickness of the cryosection (Figure 4, panel C, arrows). “

      The coexistence of different Rabs is most likely concentrated in regions where transitions between different functions are likely. Our focus was primarily on imaging membranes labelled with two markers. We wanted to show that the prevailing model of separate compartments in the trypanosome literature is not correct.

      F7 - Not sure what this adds beyond what was published by Grunfelder.

      First, this figure is an important control that links our results to published work (Grünfelder et al. (2003)). Second, we include double staining of cargo with Rab5, Rab7, and Rab11, whereas Grünfelder focused only on Rab11. Therefore, our data is original and of such high quality that it warrants a main figure.

      F8 - and l583. This is odd as the claim is 'proof' which in science is a hard thing to claim (and this is definitely not at a six sigma level of certainty, as used by the physics community). However, I am seeing structures in the tomograms which are not contiguous - there are gaps here between the individual features (Green in the figure).

      We have replaced the term "proof". It is important to note that the structures in individual tomograms cannot all be completely continuous because the sections are limited to a thickness of 250 nm. Therefore, it is likely that they have more connectivity above and below the imaged section. Nevertheless, we believe that the quality of the tomograms is satisfactory, considering that 3D Tokuyasu is a very demanding technique and the production of serial Tokuyasu tomograms is not feasible in practice.

      Discussion - Too long and the self-citing of four papers from the corresponding author to the exclusion of much prior work is again noted, with concerns about this as described above. Moreover, at least four additional Rab proteins are known associated with the trypanosome endosomal system, 4, 5B, 21 and 28. These have been completely ignored.

      We have outlined our position on referencing in original articles above. We also explained why we focused on the key marker proteins associated with early (Rab5), late (Rab7) and recycling endosomes (Rab11). We did not ignore the other Rabs, we just did not include them in the present study.

      Overall this is disappointing. I had expected a more robust analysis, with a clearer discussion and placement in context. I am not fully convinced that what we have here is as extreme as claimed, or that we have a substantial advance. There is nothing here that is mechanistic or the identification of a new set of gene products, process or function.

      We do not think that this is constructive feedback.

      This MS suggests that the endosomal system of African trypanosomes is a continuum of membrane structures rather than representing a set of distinct compartments. A combination of light and electron microscopy methods are used in support. The basic contention is very challenging to prove, and I'm not convinced that this has been. Furthermore, I am also unclear as to the significance of such an organisation; this seems not really addressed.

      We acknowledge and respect varying viewpoints, but we hold a differing perspective in this matter. We are convinced that the data decisively supports our interpretation. May future work support or refute our hypothesis.

      Reviewer #3 (Recommendations For The Authors):

      Line 81 - delete 's

      Done.

      Generally, the introduction was very well written and clearly summarised our current understanding but the paragraph beginning line 134 felt out of place and repeated some of the work mentioned earlier.

      We have removed this paragraph.

      For the EM analysis throughout quantification would be useful as highlighted in the public review. How many tomograms were examined, and how often were types of structures seen? I understand the sample size is often small but this would help the reader appreciate the diversity of structures seen.

      We have included the numbers.

      Following on from this how were the cells chosen for tomogram analysis? For example, the dividing cell in 1D has palisades associating with the new pocket - is this commonly seen? Does this reflect something happening in dividing cells. This point about endosomal division was picked up in the discussion but there was little about in the main results.

      This issue is undoubtedly inherent to the method itself, and we have made efforts to mitigate it by generating a series of tomograms recorded randomly. We have refrained from delving deeper into the intricacies of the cell cycle in this manuscript, as we believe that it warrants a separate paper.

      As the authors prosecute, the co-localisation analysis highlights the variable nature of the endosome and the overlap of different markers. When looking at the LM analysis, I was struck by the variability in the size and number of labelled structures in the different cells. For example, in 3A Rab7 is 2 blobs but in 3B Cell 1 it is 4/5 blobs. Is this just a reflection of the increase in the endosome during the cell cycle?

      The variability in representation is a direct consequence of the dynamic nature of the labelled structures. For this reason, we deliberately selected different cells to represent examples of how the labelling can look like. We have decided not to mention the dynamics of the endosome during the cell cycle. This will be the subject of a further report.

      Moreover, Rab 11 looks to be the marker covering the greatest volume of the endosomal system - is this true? I think there's more analysis of this data that could be done to try and get more information about the relative volumes etc of the different markers that haven't been drawn out. The focus here is on the co-localisation.

      Precisely because we recognize the importance of this point, we intend to turn our attention to the cell cycle in a separate publication.

      I appreciate that it is an awful lot of work to perform the immuno-EM and the data is of good quality but in the text, there could be a greater effort to tie this to the LM data. For example, from the Rab11 staining in LM you would expect this marker to be the most extensive across the networks - is this reflected in the EM?

      For the immuno-EM there were no numbers, the authors had measured the position of the gold but what was the proportion of gold that was in/near membranes for each marker? This would help the reader understand both the number of particles seen and the enrichment of the different regions.

      Our original intent was to perform a thorough quantification (using stereology) of the immuno-EM data. However, we later realized that the necessary random imaging approach is not suitable for Tokuyasu sections of trypanosomes. In short, the cells are too far apart, and the cell sections are only occasionally cut so that the endosomal membranes are sufficiently visible. Nevertheless, we continue to strive to generate more quantitative data using conventional immuno-EM.

      The innovative combination of Tokuyasu tomograms with immuno-EM was great. I noted though that there was a lack of fenestration in these models. Does this reflect the angle of the model or the processing of these samples?

      We are grateful to the referee, as we have asked ourselves the same question. However, we do not attribute the apparent lack of fenestration to the viewing angle, since we did not find fenestration in any of the Tokuyasu tomograms. Our suspicion is more directed towards a methodological problem. In the Tokuyasu workflow, all structures are mainly fixed with aldehydes. As a result, lipids are only effectively fixed through their association with membrane proteins. We suggest that the fenestration may not be visible because the corresponding lipids may have been lost due to incomplete fixation.

      We now clearly state this in the lines 563 – 568.

      “Interestingly, these tomograms did not exhibit the fenestration pattern identified in conventional electron tomography. We suspect that this is due to methodological reasons. The Tokuyasu procedure uses only aldehydes to fix all structures. Consequently, effective fixation of lipids occurs only through their association with membrane proteins. Thus, the lack of visible fenestration is likely due to possible loss of lipids during incomplete fixation.”

      The discussion needs to be reworked. Throughout it contains references to results not in the main results section such as supplementary movie 2 (line 735). The explicit references to the data and figures felt odd and more suited to the results rather than the discussion. Currently, each result is discussed individually in turn and more effort needs to be made to integrate the results from this analysis here but also with previous work and the data from other organisms, which at the moment sits in a standalone section at the end of the discussion.

      We have improved the discussion and removed the previous supplementary movies 2 and 3. Supplementary movie 1 is now mentioned in the results section.

      Line 693 - There was an interesting point about dividing cells describing the maintenance of endosomes next to the old pocket. Does that mean there was no endosome by the new pocket and if so where is this data in the manuscript? This point relates back to my question about how cells were chosen for analysis - how many dividing cells were examined by tomography?

      The fate of endosomes during the cell cycle is not the subject of this paper. In this manuscript we only show only one dividing cell using tomography. An in-depth analysis focusing on what happens during the cell cycle will be published separately.

      Line 729 - I'm unclear how this represents a polarization of function in the flagellar pocket. The pocket I presume is included within the endosomal system for this analysis but there was no specific mention of it in the results and no marker of each position to help define any specialisation. From the results, I thought the focus was on endosomal co-localisation of the different markers. If the authors are thinking about specialisation of the pocket this paper from Mark Field shows there is evidence for the exocyst to be distributed over the entire surface of the pocket, which is relevant to the discussion here. Boehm, C.M. et al. (2017) The trypanosome exocyst: a conserved structure revealing a new role in endocytosis. PLoS Pathog. 13, e1006063

      We have formulated our statement more cautiously. However, we are convinced that membrane exchange cannot physically work without functional polarization of the pocket. We know that Rab11, for example, is not evenly distributed on the pocket. By the way, in Boehm et al. (2017) the exocyst is not shown to cover the entire pocket (as shown in Supplementary Video 1).

      We now refer to Boehm et al. (Lines 700 – 703):

      “Boehm et al (2017) report that in the flagellar pocket endocytic and exocytic sites are in close proximity but do not overlap. We further suggest that the fusion of EXCs with the flagellar pocket membrane and clathrin-mediated endocytosis take place on different sites of the pocket. This disparity explains the lower colocalization between TbRab11 and TbRab5A.”

      Line 735 - link to data not previously mentioned I think. When I looked at this data I couldn't find a key to explain what all the different colours related to.

      We have removed the previous supplementary movies 2 and 3. We now reference supplementary movie 1 in the results section.

    1. Grappling with Grendel. To God I am thankful To be suffered to see thee safe from thy journey.

      Annotation by: Samuel Godinho CC License: CC- BY-NC Tag: #SP2025-LIT211

      I find the religious tension within the poem to be very interesting. The narrator and Beowulf frequently reference God and divine justice, but the poem still upholds Paganism and pagan ideals like fate and blood vengeance. This also shows the transitional period in which it was written, showing a cultural tug of war with the merging of old beliefs and emerging Christian values. The original poem shows many pagan values but once it was transcribed and translated it took on more Christian characteristics. This is an example of how religious values influenced this text.

    2. When my earth-joys were over, thou wouldst evermore serve me In stead of a father; my faithful thanemen, My trusty retainers, protect thou and care for, Fall I in battle: and, Hrothgar belovèd,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Hall’s translation is from the 1800s, so it uses older and fancier words to describe Beowulf and how his characteristics make him a hero. Gummere’s translation is from the early 1900s and is easier to read using more of modern texts and descriptions. These differences show how ideas of heroism and masculinity can change over time, even though Beowulf is always a strong, brave hero.

    3. Beowulf spake, Ecgtheow’s son: “Recall now, oh, famous kinsman of Healfdene, Prince very prudent, now to part I am ready, Gold-friend of earlmen, what erst we agreed on

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Beowulf as a brave and respectful hero, but Hall’s version is more poetic, which makes Beowulf seem like a legendary figure. Gummere’s version is simpler and makes Beowulf seem more like a real person narrating the story. Both connect to gender politics by highlighting how a hero must be strong but also respectful.

    4. Beowulf spake, Ecgtheow’s son: “Recall now, oh, famous kinsman of Healfdene,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Beowulf is shown as a respectful hero where we can see here how he talks to the king to get approval before taking action. This shows male characteristics that are liked such as polite, honarable and being loyal. These connect to political gender as it emphasizes the qualities of traditional male characteristics.

    1. Renewal for children under 15 ½Submit your renewal application online

      These two headings and generally all other headings on the page are using appropriate HTML tags to signify their semantic order and flow on the page. "Renewal for children under 15 and 1/2" is using an h2 tag while the sub-heading "Submit your renewal application online" is using an appropriate semantically correct h3 tag, which was found on inspection using dev tools. This allows screen readers to properly parse the page and also gives proper visual indication that one is a heading and the other is a sub-heading. This corresponds to the principle of "perceivable" because information is clearly being presented to users in a way they can perceive whether via the screen reader correctly parsing the text, or by visually with clear visual differences indicating the semantics and order of the content.

    2. Learn how to renew an Ontario health card. You need a valid card to get coverage through the Ontario Health Insurance Plan (OHIP).

      (Reference to the image to the right of this text) The image of the Ontario Health Card on the top of the page has an alt attribute (inspected using dev tools) less than 125 characters that reads "Ontario health card" which is concise and describes the image. (Screen readers will detect it is an img tag and say something along the lines of "image of" and then read the alt attribute text). This corresponds to the web accesibility principle of "robust" as the descriptive and concise alt attribute allows the image to be interpreted by a wide variety of assistive technologies.

    1. Joseph’s life is a series of highs and lows — literally and figuratively. In his father’s house, Joseph is the favored son: “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). Joseph likely also has this status because he is the eldest child of Jacob’s favorite (deceased) wife, Rachel. To demonstrate this preference, Jacob gifts Joseph with the famous kitonet passim, translated as both a garment with long sleeves, or a fine woolen tunic. (Commentators extrapolate that it had stripes of different colors.) This preferential treatment from their father elicits much jealousy from Joseph’s 10 older brothers.

      Annotation about josey's favoritism towards him by his father. Author: David Sanchez CC License: CC BY-NC Tag: #SP2025-Lit211

      The story of Joseph in the book of Genesis shows us some of the aspects that marked the present and future of his life. The book of Genesis tells us about the favoritism and devotion that his father Jacob always had towards him, being the favorite son of 12 brothers. “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). This favoritism towards Joseph on the part of Jacob was because Joseph was the firstborn of the woman that Jacob had loved the most, who was Rachel. As a sign of his love and affection, Jacob gave him a colorful tonic (ketones passim), which symbolized a gesture of favoritism towards Joseph and aroused the anger and fury of his brothers. These texts show us how favoritism towards certain members of a family is something bad and unnecessary, even for the beneficiary who in this case was Joseph, because this blatant favoritism on the part of Jacob was what somehow caused Joseph to be sold by his brothers to the Ishmaelites, thus causing a very tragic situation for Jacob's family.

      References: The Holy Bible: New Revised Standard Version. Genesis 37:3.

      Roth, Elana. “The Story of Joseph.” My Jewish Learning, 20 June 2023, www.myjewishlearning.com/article/the-story-of-joseph/.

    2. Joseph’s life is a series of highs and lows — literally and figuratively. In his father’s house, Joseph is the favored son: “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). Joseph likely also has this status because he is the eldest child of Jacob’s favorite (deceased) wife, Rachel. To demonstrate this preference, Jacob gifts Joseph with the famous kitonet passim, translated as both a garment with long sleeves, or a fine woolen tunic. (Commentators extrapolate that it had stripes of different colors.) This preferential treatment from their father elicits much jealousy from Joseph’s 10 older brothers.

      Annotation about josey's favoritism towards him by his father. Author: David Sanchez CC License: CC BY-NC Tag: #SP2025-Lit211

      The story of Joseph in the book of Genesis shows us some of the aspects that marked the present and future of his life. The book of Genesis tells us about the favoritism and devotion that his father Jacob always had towards him, being the favorite son of 12 brothers. “Israel (another name for Jacob) loved Joseph more than all his sons since he was a child of his old age” (Genesis 37:3). This favoritism towards Joseph on the part of Jacob was because Joseph was the firstborn of the woman that Jacob had loved the most, who was Rachel. As a sign of his love and affection, Jacob gave him a colorful tonic (ketones passim), which symbolized a gesture of favoritism towards Joseph and aroused the anger and fury of his brothers. These texts show us how favoritism towards certain members of a family is something bad and unnecessary, even for the beneficiary who in this case was Joseph, because this blatant favoritism on the part of Jacob was what somehow caused Joseph to be sold by his brothers to the Ishmaelites, thus causing a very tragic situation for Jacob's family.

      References: The Holy Bible: New Revised Standard Version. Genesis 37:3.

      Roth, Elana. “The Story of Joseph.” My Jewish Learning, 20 June 2023, www.myjewishlearning.com/article/the-story-of-joseph/.

    1. You may have come across the tag "BURNBABY" in connection with the LM powered flight software. That was us. We might not have been out on the streets, but we did listen to the news, and the two biggest news stories were Viet Nam and Black Power, the latter including H. Rap Brown and his exhortations to 'Burn Baby, Burn' -- this was 1967, after all.

      Not the Magnificent Montgue

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02887

      Corresponding author(s): Philippe Bastin

      1. General Statements [optional]

      • *

      We thank the reviewers for their constructive suggestions. We are delighted to see that they appreciated our work and its interest for the broad cell biology community, as well as the potential impact of the inducible expression of tagged tubulin as a new tool to investigate microtubule assembly at large.

      We are now providing a full revision that contains two major modifications and that addresses all the minor points detailed below. The two major modifications are:

      • A simplification and a shortening of the text as requested by reviewers 1 and 3
      • The addition of a new experiment evaluating the role of the locking protein CEP164C to gain insight into the mechanism, as suggested by reviewers 1 and 2 Briefly, CEP164C is a protein localised to the transition fibres (structures that dock the basal body of the flagellum to the membrane) of only the old flagellum. Its depletion leads to an excessive elongation of the old flagellum and the production of a shorter new flagellum, suggesting competition between the two flagella for tubulin incorporation (Atkins et al., 2021). In the new figure 5, we have expressed tagged tubulin in the CEP164CRNAi cell line and formally demonstrated simultaneous incorporation in both flagella. Unexpectedly, the new flagellum incorporated more tubulin than the old one, suggesting a bias of tubulin targeting in favour of the new flagellum and the existence of additional contributors to the Grow-and-Lock model.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1

      Evidence, reproducibility and clarity

      The manuscript by Daniel Abbühl on "A novel approach to tagging tubulin reveals MT assembly dynamics of the axoneme in Trypanosoma brucei" uses an innnovative approach to label tubulin, which allows the authors to unveil new mechanisms in flagellar length regulation.

      The manuscript is very nice and will be very interesting for the cell biology community and therefore should be accepted. In some parts it becames a bit complex with all the models and complex phrasing, I wonder whether the text could be simplified to be more appealing. I have a few minor comments:

      We agree that some of the explanations are lengthy and complex. We have simplified the explanations and hopefully made the models more accessible. Complexity comes from the fact that trypanosomes do not have a synchronized cell cycle.

      -From the model the authors show in Figure 8- there should be a way of pulsing the cells in G1 for a short amount of time -2 hours- and getting both flagella tips labelled. But the authors seem to require longer labelling to get that result. This should be better explained.

      We are not quite sure what is meant here with both flagella as in G1-phase, all cells are mono-flagellated. We do see mono-flagellated cells with a labelled tip after 2 hours, both with the HALO-tag or the Ty-1-tubulin system.

      In regard to bi-flagellate cells, we believe that incorporation in the OF happened at the beginning of G1-phase when the cell was mono-flagellated. If tubulin is present at that point, it will be incorporated at the tip. This cell then approaches the end of G1-phase and starts to initiate NF assembly. Since tagged tubulin is already present it will be incorporated along the whole length of the NF.

      A short induction of 2h would not suffice as it wouldn't cover the duration of the G1-phase and the initiation of a NF (duration of G1-phase is ~4h). We attempted to explain this in Fig. 4 and reworked the text to make this clearer.

      -Why do some cells not express the construct? Weren´t they all selected?

      We never managed to get a cell line where inducible expression is present in 100% of cells. Here, around 95% of cells were positive for Ty-1-tubulin after 24h of induction. Non-expression is not a phenomenon restricted to this tubulin cell line but also observed with other ectopically expressed proteins (e.g. Sunter et al. JCS 2015, Bastin et al. MCB 1999). All these cell lines represent clonal populations and are resistant to antibiotic treatment, however not all cells express the respective protein. For each experiment where we believed the number of expressing cells matter (for example the washout), we quantified in how many cells Ty-1-tubulin was present in the cell body microtubules.

      -"The linear regression line in Fig. 3C was corrected by subtracting 45 minutes from each timepoint due to the previously reported delay between addition of tetracycline and the expression of the respective protein". However, in the authors data the delay may amount to one hour (western analysis- S4). Shouldn´t they use their data.

      Indeed, the western blot shows expression after 1-hour, however we did not take a 45-minute timepoint, so we don't know if the protein was detectable at that time. In addition, IFA is more sensitive than western blot. We cannot say exactly when the average cell starts to express the induced protein.

      -Fig 3: To measure the timepoints of flagella growth, wouldn´t it be better to do it with NF that started to grow before induction, rather than starting to grow after induction, to be sure that the timing of incorporation is fully accounted for?

      We indeed did consider only NFs, which started to grow before induction, as suggested by the reviewer. In the revised version the description of the experiment can be found on page 9 line 22 - 28.

      -Although it is not the focus of the manuscript it would have been very interesting to use the CEP164C mutant to see whether it would change the dynamics of incorporation and fully test their model and discussion.

      This is a great suggestion, so we performed some experiments to address this issue. When CEP164C was knocked down before Ty-1-tubulin expression, integration is seen at the distal tip of both NF and OF. This is coherent with the idea of removal of the locking protein from the OF. However, lengths of the green segments in NF and OF do not have the same length (NF ~6 µm, OF ~2 µm), which indicates that CEP164C might not be the only protein involved in regulating flagellum length. A new figure explaining this experiment was added (Fig. 5, Fig. S6). We believe this data provides novel insight on the locking mechanism and strengthens the manuscript.

      -In some parts of the manuscript/supplemental material the authors say they insert the Ty-1- tag one aminoacid after the acetylated lysine- other parts they say two aminoacids after- this should be consistent.

      We thank the reviewer for spotting these mistakes, we have changed the text accordingly.

      -Fig. S1: 'Binding epitope of the TAT-1 antibody is highlighted in red'. There is no highlighting in red in this figure?

      This sentence was removed.

      -Fig. S2: Western blots are not very clear. What is the 'X' present in the C (first lane)? Weight of markers should be shown also in S4.

      Molecular weight markers have been added. X is an empty lane, we have now indicated this in the figure legend.

      -Fig 5: 'C: Frequency of bi-flagellated cells grouped by the different types of' The authors didn't finish the sentence.

      Previous Fig. 5 is now Fig. 6. Sentence has been completed. "Frequency of bi-flagellated cells grouped by different types of old flagella"

      -Fig. S7: The 'B' is missing in both picture and legend.

      This has been added


      Significance

      This study advances our knowledge of flagellar length regulation and maintenance. Moreover, the tools designed in this work will be very useful for the cell biology community in general.


      Reviewer #2

      Evidence, reproducibility and clarity

      Summary: The length of the old flagellum of Trypanosome is constant during G1 phase as well as during cell cycle progression when the new flagellum is assembled. The authors have previously proposed a "Grow and Lock" model for the flagellar length control in which no flagellar building blocks are incorporated. To test this hypothesis, the authors used a tagging strategy for alpha-tubulin and tracking its incorporation. The authors showed that the new flagellum incorporates new tubulins, as is expected. For the mature flagellum, tubulins are incorporated at the flagellar tip and only when the cells start to assemble the new flagellum. Thus, it shows that old flagellum is stable but not completely locked for the incorporation of tubulins.

      Major comments: The study is methodologically rigorous, integrating fluorescence microscopy, biochemical approaches, and proteomic analyses to validate the functionality of the tagged tubulin. The use of both inducible expression and endogenous protein tagging (HaloTag) strengthens the conclusions. This study has supported the "Grow-and-Lock" model" that the authors previously proposed. In addition, they have revealed that the stability of the old flagellum is temporally controlled.

      The data showed that brief incorporation of tubulins at the tip of the old flagellum occurs when the cells start to form the new flagellum. I thought the assembly of the new flagellum occurs during the cell division. However, in the abstract, it says that "The restriction is lifted briefly after the bi-flagellated cell has divided." Is my understanding wrong?

      We believe incorporation at the tip of the "OF" occurred after the cell has divided, when the OF daughter is mono-flagellated. It happens before this daughter cells starts assembling its new flagellum is formed. Of course, when looking at biflagellated cells, the NF as well as the tip of the OF will be green, but our data supports that incorporation happened in G1-phase and not during the biflagellated stage as the lock seals the OF before the NF emerges. To clarify on terminology: The bi-flagellate stage begins when basal bodies are duplicated, shortly after the beginning of S-phase and ends with cytokinesis. This means G1-phase and the mono-flagellated stage are nearly the same (Woodward and Gull, JCS1990) and occupy ~40% of the cell cycle.

      P12, "The cartoon in Fig. 5A illustrates the progression of the cells in scenario 2 (Fig. 4A) over the duration of one cell cycle (~9 hours)" I thought that one cell cycle should start with cell with only one flagellum, followed by assembly of a new flagellum during cell division, the cell then divides when the new flagellum is almost completely assembled. If my understanding is correct, perhaps the cartoon should be modified accordingly.

      Indeed, the cell cycle starts with a cell in G1-phase. Here, we have chosen the initiation of a NF assembly as our starting point because we focused the investigation on bi-flagellated cells. We have now illustrated the cell cycle (adapted from Woodward and Gull 1990) and when cells are biflagellated in Fig. 6A (revised version).

      Minor comments:

      1) Several references are not correctly formatted. P3: (Flavin and Slaughter, 1974) (Rosenbaum 1969). P10, (Sherwin et al., 1987)(Sheriff et al., 2014) 2) In several places there are no space between the number and the unit. For eample, P3, 9 - 24µm/h. 7, 1μg/m; P8, 50kDa; P9, 1M; 8-9h; P11, 2.9µm/h and etc. 3) P11, Flagella were extracted. I thought the cells were extracted.

      Thank you for pointing these out, we have changed these in the text.


      Significance

      Cilia and eukaryotic flagella are considered dynamic structures in which the flagellar components especially tubulins under constant turnovers even in steady state. This work demonstrates that in Trypanosome the stable old flagellum is temporally controlled for tubulin turnovers, suggesting a tight regulation of microtubule dynamics. Future elucidation of the regulatory mechanism will be more interesting. This work will be interesting to the field of cilia and microtubules. In addition, the new technique used for tracking tubulins will also be interesting.

      I am an expert on ciliary biology.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      This study seeks to investigate the mechanism by which the length of an eukaryotic cilium is set and maintained in a constant state. The flagellated protist Trypanosoma brucei serves as the study model and the authors take advantage of the genetic tools that allow precise modification and tagging of flagellar proteins and they build on prior knowledge about the well-characterised flagellar assembly cycle, which allows tracking the assembly of a new flagellum alongside an existing old one in the course of one cell cycle. The group of Bastin has previously reported a very interesting "Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes" and this current manuscript provides a test of this model, and a refinement. Key to this is an advance in technique, reported here, namely expression of an epitope tagged version of alpha tubulin. The epitope is inserted in an internal loop, which apparently for the first time provides a traceable tubulin that is reliably incorporated into the cytoskeleton (subpellicular array, spindle and cilium). Expressing an inducible version of this Ty-1-tubulin allows for a set of experiments that measure the place and timing of tubulin incorporation into cilia. The results are largely confirmatory of previous findings (incorporation exclusively into the new flagellum, at the distal end, linear growth rate that matches previous estimates). Examination of tubulin incorporation patterns then reveal additional information about the old flagellum: evidence from Ty-1-tubulin labelling, corroborated by incorporation patterns of another ciliary protein (RSP 4/6) suggest that the "lock" on the old flagellum is relieved for short periods after cell division, leading to a refined model presented in Figure 8.

      Major comments:

      This study provides an elegant test of the grow-and-lock model and the major conclusions are supported by the data. I have no major concerns.

      Minor comments:

      There are several minor points that could be addressed to make the manuscript easier to follow (and adding line numbers to the manuscript would help with reviewing).

      The introduction is quite long. Some of the well-established background information on the T. brucei cell cycle could be shortened. If the paper is intended for a broader audience, it would be valuable instead to cite studies that have succeeded in tagging tubulin and tracing its incorporation in other cilia. Could the Ty-1-tubulin approach be relevant more broadly or are simpler methods already established?

      The introduction has been shortened, we now also cite two published studies that tracked tubulin integration in Chlamydomonas and C. elegans respectively.

      On p.6 the rationale for endogenous tagging was to "reduce the risk of artifacts portentially due to untimely expression or unnatural protein levels". However most of the experiments were done with ectopically expressed inducible Ty-1-tubulin. For the experiments it is crucial to use an inducible system but the authors may wish to comment why the risk of artifacts was no longer a concern.

      The reasoning here was that in case the Ty-1-tubulin would not have been incorporated into MTs, we could have attributed it solely to the presence of the tag and no other factors, but this was not the case. This therefore allowed us to move to the inducible expression system.

      On p.7 / Fig S2A-B there appears to be a mistake in the presentation. Spindles are mentioned in the text - I can't see any in the figure. Fig S2A and B both show cytoskeletons, but the text suggests only B is about cytoskeletons. None of the blot shows BB2 staining of different cell fractions, contrary to statements in the text. The letter codes in the panel (T, C, D) don't match the codes in the legend (T, P, S).

      We thank the reviewer for spotting the mistakes. A panel with the spindle was added in Fig. S2. We did not stain fraction blots of the in-situ tagged cell lines with BB2. However, this was done with the inducible cell line and is shown in Fig. 1D. Letter code in the legend was adapted to match the figure.

      Figure 1. The evidence for incorporation into spindles is not strong. The structure indicated by the arrive could be a spindle but it's not very clear. There is a great example of a labelled spindle only in figure S5A. Here, at the start, it would be good to show a panel of cells in successive cell cycle stages (best, whole cells and cytoskeletons) to clearly show the structures that are labelled with Ty-1-tubulin.

      The current Fig. 1B (Fig. 1A before) depicts whole cells of an induced and a non-induced culture; we show whole cells to provide a complete picture of tubulin integration. A panel with detergent extracted cytoskeletons from the in situ tagged cell line has been added to Fig. 1A. We chose to show cytoskeletons or isolated flagella instead of whole cells because (1) the flagella are easier to see and (2) it formally demonstrates that tagged tubulin is incorporated in MTs.

      In general, tubulin labelling of the spindle was more consistently observed in whole cells as we did not use spindle preserving extraction buffers when preparing cytoskeletons. However, we did observe clear spindles in cytoskeletons as well (see Fig. S5 for example). The same was observed for the beta-tubulin specific KMX1 antibody in the past which is the gold standard to visualize the spindle (Sasse and Gull JCS1988). Regardless, a panel depicting spindle progression through mitosis using staining of Ty-1-tubulin has been added in Fig. S2 (The panel is a mix of whole cells and cytoskeletons).

      On p.8 (end of first paragraph) there is reference to cell cycle analyses, but no data is shown. Also on p.8, please clarify what the evidence is that "a fraction of cells did not respond to tetracycline". The fact that they remain unstained by Ty-1-tubulin is not in itself evidence they did not respond to tetracycline.

      We did not show the cell cycle data as it was similar to non-induced and does not provide any new information in our opinion. Hence, the sentence has been removed.

      The reviewer is correct that we do not have evidence that these cells did not respond to tetracycline. Some cells remained completely devoid of Ty-1-tubulin even after multiple days of induction. This was typically between 5-10% of cells. In experiments where the exact number is important, we counted the amount of "non-expressers" in whole cells.

      Figure S4A. The blot for the soluble fraction is not of great quality. I don't see how the conclusion was reached that the Ty-1-tubulin bands were faint.

      The blot of the soluble fraction that was stained with BB2 had to be exposed a lot longer compared to the blot stained with TAT-1. The soluble blots were repeated with the same result (lots of background noise when using BB2, a clear blot with TAT-1). In the TAT-1 blot only the endogenous tubulin band is clearly visible, with some very faint signal above corresponding to the Ty-1-tubulin. Soluble Ty-1-tubulin with BB2 or TAT-1 is visible in Fig. 1D after longer inductions.

      On p.11, it would be interesting to compare measured elongation rates with previously measured estimates for flagellum growth, comparing the growth rates, and relating them to cell cycle times in the corresponding experiments (which vary slightly between labs and studies).

      We attempted to address this in the discussion by comparing our experiments to the assembly rate measured with the PFR as reporter (Bastin et al. 1999). We could mention the corresponding doubling times in correlation to how many cells are bi-flagellated, but this was only done with the Ty-1-tubulin cell line and not with the PFR. In our experiments the average doubling time was ~9 hours with 52% of cells being bi-flagellated. This was measured with FTZC (marker of the transition zone at the base of the flagellum) and Mab25 (marker of the axoneme of the flagellum) which will lead to a slight underestimate of the real number of bi-flagellated cells, as the NF is initially very close which makes it difficult to notice/differentiate from the old one.

      Figure S6. I find the presentation of this figure confusing. It should be revised with clearer labelling of "cell cycle 1", "cell cycle 2", and the precise meaning of "type 3" should be clarified. There are two instances of "type 1" in the drawing, but one of these seems to fulfil the criteria of "type 3" (OF 1-4µm).

      We agree with the reviewer and therefore decided to remove this figure. We also considered the comments of the other two reviewers about complexity of the manuscript and changed the text of figure 5 to make it more approachable. This includes a simpler explanation for the expected amounts of flagella.

      Figure 7. In panel A, the absence of label at the NF distal end is not total, a purple line is still visible. Was any quantitation attempted (signal intensity, changes in length of labelled fragments over time?). Minimally, say how many cells were analysed for the numbers in panels D and E, and how many times this experiment was done.

      We agree with the reviewer that the decrease in the TMR signal in the NF of the cell in the original Fig. 7A (currently Fig. 8A) is gradual and not abrupt. Similarly to the Ty-1-tubulin experiments where the tagged protein becomes progressively more available (increasing intensity), the intensity of TMR-ligand becomes progressively less abundant (gradually decreasing intensity) as new (not TMR labelled) protein gets synthesized during the period of NF construction, progressively diluting the initially fully labeled population of RSP4/6. The slope of the gradient may differ between axonemal constituents, as it reflects the kinetics of protein synthesis, degradation, its incorporation into the axoneme, as well as the size of the soluble protein pool in the cytosol. We classify this type of signal as gradients, as opposed to the sharp decrease. At initial times after TMR-ligand washout (e.g. 4 hours in Fig. 8C), this long gradient is observed at the distal end of NFs and in some uniflagellated cells (NF-inheriting daughters). The distal ends of OFs in these experiments (if not fully labelled) display a sharp decrease, as do frequent uniflagellated cells, likely OF-inheriting daughters. The existence of these two different patterns demonstrates that two different mechanisms are responsible for incorporation of fresh RSP4/6 into the NF and OF axoneme, respectively. While incorporation into the NF is gradual, incorporation into the distal region of the OF is stepwise (restricted in time). Numbers of cells quantified for the table in Fig. 8 have been added. The NFs and OFs displaying the patterns of the gradient and sharp decrease, respectively, were observed in multiple experiments.

      Reviewer #3 (Significance (Required)):

      • General assessment: strengths and limitations

      Strengths: Trypanosoma brucei is a powerful model system in which to ask detailed questions about the assembly dynamics and hierarchy of microtubule-based cytoskeletal structures in general and cilia in particular. This elegant and well-designed study overcomes a previous technical limitation by allowing for the direct labelling of alpha tubulin, one of the main building blocks of the ciliary axoneme. The study sets out to test a specific hypothesis (grow-and-lock model) and provides evidence in support, leading to a refined model for cilia length regulation in trypanosomes.

      Limitations: With this system, visualisation of new tubulin incorporation requires de novo synthesis. There is a time lag between inducing expression of Ty-1-tubulin with tetracycline and being able to visualize the tagged proteins that needs to be taken into consideration. This time lag was estimated based on previous studies and the relatively quick appearance of Ty-1-tubulin on Western blots (within hours). This inevitably creates a situation where levels of tagged tubulin change rapidly, creating gradients of signal intensity (and variations in levels) that lead to some uncertainty in estimations of length of labelled microtubule fragments. Furhtermore, the epitope label is not compatible with live cell imaging, restricting analyses to fixed cells. The Ty-1-tubulin data is well ducmented; the RSP4/6 data appear to corroborate these findings but are less extensively documented.

      • Advance: The results succeed in integrating several recent findings from different research groups into a refined coherent model about cilia length regulation in trypanosomes. The tubulin tagging method could be gainfully transferred to other systems (although the state of the field in tubulin tagging in other systems is not clearly laid out in the paper).

      This paper could be of interest to a broad cell biology community interested in cilia and cytoskeletal dynamics.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The manuscript by Daniel Abbühl on "A novel approach to tagging tubulin reveals MT assembly dynamics of the axoneme in Trypanosoma brucei" uses an innnovative approach to label tubulin, which allows the authors to unveil new mechanisms in flagellar length regulation.

      The manuscript is very nice and will be very interesting for the cell biology community and therefore should be accepted. In some parts it becames a bit complex with all the models and complex phrasing, I wonder whether the text could be simplified to be more appealing. I have a few minor comments:

      • From the model the authors show in Figure 8- there should be a way of pulsing the cells in G1 for a short amount of time -2 hours- and getting both flagella tips labelled. But the authors seem to require longer labelling to get that result. This should be better explained.
      • Why do some cells not express the construct? Weren´t they all selected?
      • "The linear regression line in Fig. 3C was corrected by subtracting 45 minutes from each timepoint due to the previously reported delay between addition of tetracycline and the expression of the respective protein". However, in the authors data the delay may amount to one hour (western analysis- S4). Shouldn´t they use their data.
      • Fig 3: To measure the timepoints of flagella growth, wouldn´t it be better to do it with NF that started to grow before induction, rather than starting to grow after induction, to be sure that the timing of incorporation is fully accounted for?
      • Although it is not the focus of the manuscript it would have been very interesting to use the CEP164C mutant to see whether it would change the dynamics of incorporation and fully test their model and discussion.
      • In some parts of the manuscript/supplemental material the authors say they insert the Ty-1- tag one aminoacid after the acetylated lysine- other parts they say two aminoacids after- this should be consistent.
      • Fig. S1: 'Binding epitope of the TAT-1 antibody is highlighted in red'. There is no highlighting in red in this figure?
      • Fig. S2: Western blots are not very clear. What is the 'X' present in the C (first lane)? Weight of markers should be shown also in S4.
      • Fig 5: 'C: Frequency of bi-flagellated cells grouped by the different types of' The authors didn't finish the sentence.
      • Fig. S7: The 'B' is missing in both picture and legend.

      Significance

      This study advances our knowledge of flagellar length regulation and maintenance. Moreover the tools designed in this work will be very useful for the cell biology community in general.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study focuses on characterizing a previously identified gene, encoding the secreted protein Ppe1, that may play a role in rice infection by the blast fungus Magnaporthe oryzae. Magnaporthe oryzae is a hemibiotrophic fungus that infects living host cells before causing disease. Infection begins with the development of a specialized infection cell, the appressorium, on the host leaf surface. The appressorium generates enormous internal turgor that acts on a thin penetration peg at the appressorial base, forcing it through the leaf cuticle. Once through this barrier, the peg elaborates into bulbous invasive hyphae that colonizes the first infected cell before moving to neighboring cells via plasmodesmata. During this initial biotrophic growth stage, invasive hyphae invaginate the host plasma membrane, which surrounds growing hyphae as the extra-invasive hyphae membrane (EIHM). To avoid detection, the fungus secretes apoplastic effectors into the EIHM matrix via the conventional ER-Golgi secretion pathway. The fungus also forms a plant-derived structure called the biotrophic interfacial complex (BIC) that receives cytoplasmic effectors through an unconventional secretion route before they are delivered into the host cell. Together, these secreted effector proteins act to evade or suppress host innate immune responses. Here the authors contribute to our understanding of M. oryzae infection biology by showing how Ppe1, which localizes to both the appressorial penetration peg and to the appressorial-like transpressoria associated with invasive hyphal movements into adjacent cells, maximizes host cell penetration and disease development and is thus a novel contributor to rice blast disease.

      We sincerely appreciate the reviewer’s thoughtful evaluation of our work. We are grateful for your recognition of Ppe1 as a novel contributor to M. oryzae infection biology and your insightful summary of its spatio-temporal localization and functional importance in host penetration. We also appreciate devoting your time to provide us with constructive feedback, which greatly strengthens our manuscript.

      Strengths:

      A major goal of M. oryzae research is to understand how the fungus causes disease, either by determining the physiological underpinnings of the fungal infection cycle or by identifying effectors and their host targets. Such new knowledge may point the way to novel mitigation strategies. Here, the authors make an interesting discovery that bridges both fungal physiology and effector biology research by showing how a secreted protein Ppe1, initially considered an effector with potential host targets, associates with its own penetration peg (and transpressoria) to facilitate host invasion. In a previous study, the authors had identified a small family of small secreted proteins that may function as effectors. Here they suggest Ppe1 (and, later in the manuscript, Ppe2/3/5) localizes outside the penetration peg when appressoria develops on surfaces that permit penetration, but not on artificial hard surfaces that prevent peg penetration. Deleting the PPE1 gene reduced (although did not abolish) penetration, and a fraction of those that penetrated developed invasive hyphae that were reduced in growth compared to WT. Using fluorescent markers, the authors show that Ppe1 forms a ring underneath appressoria, likely where the peg emerges, which remained after invasive hyphae had developed. The ring structure is smaller than the width of the appressorium and also lies within the septin ring known to form during peg development. This so-called penetration ring also formed at the transpressorial penetration point as invasive hyphae moved to adjacent cells. This structure is novel, and required for optimum penetration during infection. Furthermore, Ppe1, which carries a functional signal peptide, may form on the periphery of the peg, together suggesting it is secreted and associated with the peg to facilitate penetration. Staining with aniline blue also suggests Ppe1 is outside the peg. Together, the strength of the work lies in identifying a novel appressorial penetration ring structure required for full virulence.

      We are deeply grateful to the reviewer for the clear understanding and insightful evaluation of our work. Your recognition of the novel contribution and scientific merit of our study is both encouraging and motivating. We sincerely appreciate the time, expertise and constructive feedback dedicated to reviewing our manuscript, as the comments have been instrumental in enhancing the quality of this work.

      Weaknesses:

      The main weakness of the paper is that, although Ppe1 is associated with the peg and optimizes penetration, the function of Ppe1 is not known. The work starts off considering Ppe1 a secreted effector, then a facilitator of penetration by associating with the peg, but what role it plays here is only often speculated about. For example, the authors consider at various times that it may have a structural role, a signaling role orchestrating invasive hyphae development, or a tethering role between the peg and the invaginated host plasma membrane (called throughout the host cytoplasmic membrane, a novel term that is not explained). However, more effort should be expended to determine which of these alternative roles is the most likely. Otherwise, as it stands, the paper describes an interesting phenomenon (the appressorial ring) but provides no understanding of its function.

      We sincerely appreciate the reviewer’s comments. We have revised "host cytoplasmic membrane" to "host plasma membrane" throughout the manuscript for consistency. To further investigate the role of the Ppe1 in the interaction between M. oryzae and rice, we overexpressed PPE1 in rice ZH11. A pCXUN-SP-GFP-Ppe1 vector containing a signal peptide and an N-terminal GFP tag was constructed (pCXUN-SP-GFP-Ppe1), and 35 GFP-PPE1-OX plants (T0) were subsequently obtained through Agrobacterium-mediated rice transformation. Subsequently, PCR and qRT-PCR validation were performed on the T0 transgenic plants. The PCR results showed that the inserted plasmid could be amplified from the genomic DNA extracted from the leaves of all the resulting T0 plants (Author response image 1A). qRT-PCR results indicated that most T0 transgenic plants could transcriptionally express PPE1 (Author response image 1B). T0 plants with higher expression levels were selected for western blot analysis, which confirmed the presence of GFP-Ppe1 bands of the expected size (Author response image 1C). To further explore the targets of Ppe1 in rice, the leaf sheaths of T0 plants were inoculated with M. oryzae strain Guy11. Total proteins were extracted at 24 hours post-inoculation (hpi) and subjected to immunoprecipitation using GFP magnetic beads. Silver staining revealed more interacting protein bands in T0 plants compared to ZH11 and GFP-OX controls (Author response image 1D). These samples were then analyzed by mass spectrometry in which 331 rice proteins that potentially interact with Ppe1 were identified (Author response image 1E). Subsequently, yeast two-hybrid assays were performed on 13 putative interacting proteins with higher coverage, but no interaction was detected between Ppe1 and these proteins (Author response image 1F-G). Considering that the identification and functional validation of interacting proteins is a labor-intensive and time-consuming endeavor, we will focus our future efforts on in-depth studies of Ppe1's function in rice.

      Author response image 1.

      Screening of Ppe1 candidate targets in rice. (A) The determination of GFP-PPE1 construct in transgenic rice. (B) The expression of PPE1 transgenic rice (T0) was verified by qRT-PCR. (C) Western blot analysis of Ppe1 expression in transgenic rice. (D) Rapid silver staining for detection of the purified proteins captured by the GFP-beads. (E) Venn diagram comparing the number of proteins captured in the different samples. (F) Identity of the potential targets of Ppe1 in rice. (G) Yeast two-hybrid assay showing negative interaction of Ppe1 with rice candidate proteins.

      The inability to nail down the function of Ppe1 likely stems from two underlying assumptions with weak support. Firstly, the authors assume that Ppe1 is secreted and associated with the peg to form a penetration ring between the plant cell wall and cytoplasm membrane. However, the authors do not demonstrate it is secreted (for instance by blocking Ppe1 secretion and its association with the peg using brefeldin A).

      To investigate the secretion pathway of Ppe1 in M. oryzae, we determined the inhibitory effects of Brefeldin A (BFA) on conventional ER-to-Golgi secretion in fungi as suggested by the reviewer. We inoculated rice leaf sheaths with conidia suspensions from the Ppe1-mCherry and PBV591 strains (containing a Pwl2-mCherry-NLS and Bas4-GFP co-expressing constructs) and treated them with BFA. We found that, even after exposure to BFA for 5 to 11 hours, the Ppe1-mCherry still formed its characteristic ring conformation (Author response image 2). Similarly, in the BFA-treated samples, the cytoplasmic effector Pwl2-mCherry accumulated at the BIC, while the apoplastic effector Bas4-GFP was retained in the invasive hyphae (Author response image 2). These results indicate that Ppe1 is not secreted through the conventional ER-Golgi secretion pathway.

      Author response image 2.

      The secretion of Ppe1 is not affected by BFA treatment. (A) and (B) The Ppe1-mCherry fluorescent signal was still observed both in the presence and absence of BFA. (C) Following BFA treatment, the secretion of the apoplastic effector Bas4-GFP was blocked while that of the cytoplasmic effector Pwl2-mCherry was not affected. The rice leaf sheath tissue was inoculated with 50 μg/mL BFA (0.1% DMSO) at 17 hpi. Images were captured at 22 hpi for A and 28 hpi for B and C. Scale bars = 10 µm.

      Also, they do not sufficiently show that Ppe1 localizes on the periphery of the peg. This is because confocal microscopy is not powerful enough to see the peg. The association they are seeing (for example in Figure 4) shows localization to the bottom of the appressorium and around the primary hyphae, but the peg cannot be seen. Here, the authors will need to use SEM, perhaps in conjunction with gold labeling of Ppe1, to show it is associating with the peg and, indeed, is external to the peg (rather than internal, as a structural role in peg rigidity might predict). It would also be interesting to repeat the microscopy in Figure 4C but at much earlier time points, just as the peg is penetrating but before invasive hyphae have developed - Where is Ppe1 then? Finally, the authors speculate, but do not show, that Ppe1 anchors penetration pegs on the plant cytoplasm membrane. Doing so may require FM4-64 staining, as used in Figure 2 of Kankanala et al, 2007 (DOI: 10.1105/tpc.106.046300), to show connections between Ppe1 and host membranes. Note that the authors also do not show that the penetration ring is a platform for effector delivery, as speculated in the Discussion.

      We sincerely appreciate the reviewer's valuable suggestion regarding SEM with immunogold labeling to precisely visualize Ppe1's association with penetration peg. While we fully acknowledge this would be an excellent approach, after consulting several experts in the field, we realized that the specialized equipment and technical expertise required for fungal immunogold-SEM are currently unavailable to us. We sincerely hope that the reviewer will understand this technical limitation.

      To further strengthen our evidence for the role of Ppe1's in anchoring penetration peg to the plant plasma membrane, we provided new co-localization images of Ppe1 and penetration peg (Fig. S7). At 16 hours post-inoculation (hpi), when the penetration peg was just forming and prior to the development of invasive hyphae, the Ppe1-mCherry fluorescence forms a tight ring-like structure closely associated with the base of the appressorium. As at 23 hpi, the circular Ppe1-mCherry signal was still detectable beneath the appressorium, and around the penetration peg which differentiated into the primary invasive hyphae. Furthermore, we obtained 3D images of the strain expressing both Ppe1-mCherry and Lifeact-GFP during primary invasive hyphal development. The results revealed that Ppe1 forms a ring-like structure that remains anchored to the penetration peg during fungal invasion (Fig. S6).

      We also conducted FM4-64 staining experiment as recommended by the reviewer. Although the experiment provided valuable insights, we found that the resolution was insufficient to precisely delineate the spatial relationship between Ppe1 and host membranes at the penetration peg (Author response image 3). To optimize this colocalization, we tested the localization between Ppe1-mCherry ring and rice plasma membrane marker GFP-OsPIP2 (Fig. S8). These new results provide compelling complementary evidence supporting our conclusion that Ppe1 functions extracellularly at the host-pathogen interface. We hope these additional data will help address the reviewer's concerns regarding Ppe1's localization.

      Author response image 3.

      FM4-64-stained rice leaf sheath inoculated with M. oryzae strain expressing Ppe1-GFP. Ppe1-GFP ring was positioned above the primary invasive hyphae. Scale bar = 5 µm.

      Secondly, the authors assume Ppe1 is required for host infection due to its association with the peg. However, its role in infection is minor. The majority of appressoria produced by the mutant strain penetrate host cells and elaborate invasive hyphae, and lesion sizes are only marginally reduced compared to WT (in fact, the lesion density of the 70-15 WT strain itself seems reduced compared to what would be expected from this strain). The authors did not analyze the lesions for spores to confirm that the mutant strains were non-pathogenic (non-pathogenic mutants sometimes form small pinprick-like lesions that do not sporulate). Thus, the pathogenicity phenotype of the knockout mutant is weak, which could contribute to the inability to accurately define the molecular and cellular function of Ppe1.

      We appreciate the reviewer’s comments. To ensure the reliability of our findings, we conducted spray inoculation experiments with multiple independent repeats. Our results consistently demonstrated that deletion of the PPE1 gene significantly attenuates the virulence of M. oryzae. Further analysis of lesion development and sporulation in the Δ_ppe1_ mutant revealed that it retains the ability to produce conidia. To validate these observations, we generated a PPE1 knockout in the wild-type reference strain Guy11. Similarly, we observed a significant decrease in the pathogenicity of the Δ_ppe1_ mutants generated from the wild-type Guy11 strain compared to Guy11 in the spray assay (Fig S2). These results collectively indicate the importance of Ppe1 in the pathogenicity of M. oryzae to rice.

      In summary, it is important that the role of Ppe1 in infection be determined.

      Reviewer #2 (Public review):

      The article focuses on the study of Magnaporthe oryzae, the fungal pathogen responsible for rice blast disease, which poses a significant threat to global food security. The research delves into the infection mechanisms of the pathogen, particularly the role of penetration pegs and the formation of a penetration ring in the invasion process. The study highlights the persistent localization of Ppe1 and its homologs to the penetration ring, suggesting its function as a structural feature that facilitates the transition of penetration pegs into invasive hyphae. The article provides a thorough examination of the infection process of M. oryzae, from the attachment of conidia to the development of appressoria and the formation of invasive hyphae. The discovery of the penetration ring as a structural element that aids in the invasion process is a significant contribution to the understanding of plant-pathogen interactions. The experimental methods are well-documented, allowing for reproducibility and validation of the results.

      We sincerely appreciate the thoughtful and insightful evaluation of our work. Thank you for recognizing the significance of our findings regarding the penetration ring and the functional role of Ppe1 during host invasion.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Line 48: "after appressorium- or transpressorium-mediated penetration of plant cell wall" - transpressoria do not penetrate the plant cell wall.

      Thank you for your valuable suggestion. For improved clarity, we have rephrased the sentence as follows: In this study, we showed that a penetration ring is formed by penetration pegs after appressorium-mediated penetration of plant cell wall.

      Line 143: "approximately 25% of the 143 appressoria formed by the Δppe1 mutant had no penetration peg" - It is not possible to see the penetration peg by confocal microscopy.

      Thank you for your valuable suggestion. We have revised the sentence as follows: In contrast, approximately 25% of the appressoria formed by the Δ_ppe1_ mutant had no penetration.

      Line 159: "inner cycle" -should be inner circle?

      We gratefully acknowledge the reviewer's careful reading. The typographical error has been corrected throughout the revised manuscript.

      Line 255: "These results indicate that initiation of penetration peg formation is necessary for the formation of the penetration ring." Actually, more precisely, they indicate that penetration is necessary.

      We appreciate this suggestion and have revised the text to be more concise: These results indicate that penetration is necessary for the formation of the penetration ring.

      Line 282: "unlike subcellular localizations of other effectors"- is this an effector if no plant targets are known?

      We appreciate this suggestion and have revised the text as follows: unlike subcellular localizations of Bas4, Slp1, Pwl2, and AvrPiz-t.

      Line 299: "it may function as a novel physical structure for anchoring penetration pegs on the surface of plant cytoplasm membrane after cell wall penetration" - an interaction with the plant plasma membrane was not shown and this is speculative.

      We have provided new evidence to show the spatial positioning of Ppe1-mCherry ring with the rice plasma membrane (see figure S8)

      Line 301: "It is also possible that this penetration ring functions as a collar or landmark that is associated with the differentiation of penetration pegs (on the surface of cytoplasm membrane) into primary invasive hyphae enveloped in the EIHM cytoplasm membrane (Figure 7)." The alternative conclusions for Ppe1 function, either interacting with host membranes or acting as a developmental landmark, need to be resolved here.

      We appreciate this suggestion and have revised the text as follows: It is also possible that this penetration ring functions as a collar that is associated with the differentiation of penetration pegs into primary invasive hyphae enveloped in the EIHM (Figure 7).

      Line 317: "is likely a structural feature or component for signaling the transition of penetration pegs to invasive hyphae",- if the authors think Ppe1 has these roles, why do they refer to Ppe1 as an effector?

      Many thanks for these comments. We have revised this and refer to Ppe1 as a secreted protein throughout the revised manuscript.

      Line 337: "After the penetration of plant cell wall, the penetration ring may not only function as a physical structure but also serve as an initial effector secretion site for the release of specific effectors to overcome plant immunity in early infection stages"- which is it? Also, no evidence is provided to suggest it is a platform for effector secretion.

      We sincerely appreciate your valuable suggestion. We have revised this sentence as follows: After the penetration of plant cell wall, the penetration ring may not only function as a physical structure but also serve as a secretion site for the release of specific proteins to overcome plant immunity during the early infection stages.

      Reviewer #2 (Recommendations for the authors):

      (1) While the study suggests the penetration ring as a structural feature, it remains unclear whether it also serves as a secretion site for effectors. Further exploration of this aspect would strengthen the conclusions.

      We thank the reviewer for this useful suggestion. In this study, we demonstrated that Ppe1 proteins form a distinct penetration ring structure at the site where the penetration peg contacts the plant plasma membrane prior to differentiation into primary invasive hyphae (Figs. 2 and 7). Thus, we reasoned that penetration ring may function as a novel physical structure. Notably, additional Ppe family members (Ppe2, Ppe3, and Ppe5) were also found to localize to this penetration ring (Fig. 6B), suggesting that it also serves as a secretion site for releasing proteins. To test whether Ppe1 and Ppe2 label to the same site, we analyzed the colocalization between Ppe1-GFP and Ppe2-mCherry. The results showed that Ppe1-GFP and Ppe2-mCherry are well colocalized (Author response image 4). This study primarily focuses on the discovery and characterization of the penetration ring. The potential role of this structure in effector translocation will be investigated in future studies.

      Author response image 4.

      Ppe1 co-localizes with Ppe2 at the penetration ring in M. oryzae. Line graphs were generated at the directions pointed by the white arrows. Scale bar = 2μm.

      (2) The article could benefit from a discussion on the broader implications of these findings for developing resistant crop varieties or new fungicidal strategies.

      We have incorporated this discussion as suggested (lines 358-360).

      (3) What is the significance of the formation of the penetration ring in the pathogenicity of the rice blast fungus? Or, how does it assist the fungus in its infection process?

      Our findings have several significant implications. First, we believe that the discovery of the penetration ring as a novel physical structure associated with the differentiation of invasive hyphae represents a breakthrough in plant-pathogen interactions that will be of interest to fungal biologists, pathologists and plant biologists. Secondly, our study presents new role of the peg as a specialized platform for secretory protein deployment, in addition to its commonly known role as a physical penetration tool for the pathogen. Thirdly, we identify Ppe1 as a potential molecular target for controlling the devastating rice blast disease, as Ppe homologs are absent in plants and mammals. We have incorporated this discussion in the revised manuscript (lines 354-362).

    1. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me. For even in the race of gods this feeling finds a home, even pleasure at the honour men pay them. And the truth of this I soon will show; for that son of Theseus, born of the Amazon, Hippolytus, whom holy Pittheus taught, alone of all the dwellers in this land of Troezen, calls me vilest of the deities. Love he scorns, and, as for marriage, will none of it; but Artemis, daughter of Zeus, sister of Phoebus, he doth honour, counting her the chief of goddesses, and ever through the greenwood, attendant on his virgin goddess, he clears the earth of wild beasts with his fleet hounds, enjoying the comradeship of one too high for mortal ken. 'Tis not this I grudge him, no! why should I? But for his sins against me

      Annotation by: [Your Full Name] CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Aphrodite talks in a super fancy way here. She talks and acts like a queen to make herself sound more powerful. This is because she’s a goddess, and in Greek plays, gods were always shown as being really important. The way she talks is all about showing off her power. She says she can help people who respect her or destroy people who don’t. This kind of serious, dramatic language is normal for Greek gods in plays because it makes them seem way bigger and more important than normal people.

    2. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: In this quote, Aphrodite declares her vast influence over both mortals and gods, emphasizing that she rewards those who honor her and punishes those who don't. This showcases her as a powerful female deity who demands respect and can control the fates of individuals. Her power over love and desire contrasts with Hippolytus' self-control and rejection of passion, highlighting the different ways power is portrayed in the play.

    3. Wide o'er man my realm extends, and proud the name that I, the goddess Cypris, bear, both in heaven's courts and 'mongst all those who dwell within the limits of the sea and the bounds of Atlas, beholding the sun-god's light; those that respect my power I advance to honour, but bring to ruin all who vaunt themselves at me.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Aphrodite talks about how powerful she is. She controls love and desire everywhere, and she makes it clear that if people respect her, she will help them. But if they ignore her or disrespect her, she will punish them. This shows that even though she is a goddess of love, she is not just kind and gentle but that she can also be dangerous if people make her angry. This makes her a really powerful female character in the story because she can control people’s feelings and lives.

    1. I honor those who reverence my power, but I lay low all those who think proud thoughts against me. For in the gods as well one finds this trait: they enjoy receiving honor from mortals.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Aphrodite talks about how she rewards people who respect her but punishes anyone who disrespects her. This shows how powerful she is because everyone has to listen to her, even though she’s a goddess of love. It also shows how women, especially goddesses, were expected to be respected but could also be blamed if something went wrong.

    1. He waswise, lie saw mysteries and knew secret things, he brought us a tale of the daysbefore the flood.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Kovacs’ version is written in modern and clear English, which makes it easy to understand and focuses on Gilgamesh’s journey. Sandars’ version is written in a more poetic style, making him look like a hero. These two styles show how translators can change the way we see a character, depending on whether they want him to look like a brave man or a famous hero.

    2. e went on a long journey, was weary, worn-out with labour,returning he rested, he engraved on a stone the whole story

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Gilgamesh as a hero, but they focus on different things. Kovacs’ version shows him as someone who goes on a tough journey and learns a lot, while Sandars’ version makes him look like a famous legend whose story should be told to everyone. This connects to gender politics because it shows two ways of being a "great man", first is about bravery and wisdom, and the other is about being remembered.

    3. WILL proclaim to the world the deeds of Gilgamesh. This was the man to whomall things were known; this was the king who knew the countries of the world. He waswise, lie saw mysteries and knew secret things, he brought us a tale of the daysbefore the flood. He went on a long journey, was weary, worn-out with labour,returning he rested, he engraved on a stone the whole story.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Gilgamesh is shown as a hero who had come back from a journey and shares his stories from these adventures. This connects to gender politics because it shows how men were expected to be strong leaders who were remembered for their work and achievements.

    1. He went on a distant journey, pushing himself to exhaustion,but then was brought to peace

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Kovacs’ version is written in modern and clear English, which makes it easy to understand and focuses on Gilgamesh’s journey. Sandars’ version is written in a more poetic style, making him look like a hero. These two styles show how translators can change the way we see a character, depending on whether they want him to look like a brave man or a famous hero.

    2. He carved on a stone stela all of his toils,and built the wall of Uruk-Haven,the wall of the sacred Eanna Temple, the holy sanctuary

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Gilgamesh as a hero, but they focus on different things. Kovacs’ version shows him as someone who goes on a tough journey and learns a lot, while Sandars’ version makes him look like a famous legend whose story should be told to everyone. This connects to gender politics because it shows two ways of being a "great man", first is about bravery and wisdom, and the other is about being remembered.

    3. He saw the Secret, discovered the Hidden,he brought information of (the time) before the Flood.He went on a distant journey, pushing himself to exhaustion,but then was brought to peace

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211 In this version, Gilgamesh is shown as a hero who goes on a long journey, learns a lot, and brings back stories from the past. This makes him look like the a good hero where he has characteristics of someone who is brave, curious, and always trying to learn more. This connects to gender politics because it shows how men were expected to be strong, adventurous, and wise.

    1. “This was my thought, when my thanes and I bent to the ocean and entered our boat, that I would work the will of your people fully, or fighting fall in death, in fiend’s gripe fast. I am firm to do an earl’s brave deed, or end the days of this life of mine in the mead-hall here.”

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Hall’s translation is from the 1800s, so it uses older and fancier words to describe Beowulf and how his characteristics make him a hero. Gummere’s translation is from the early 1900s and is easier to read using more of modern texts and descriptions. These differences show how ideas of heroism and masculinity can change over time, even though Beowulf is always a strong, brave hero.

    2. I would work the will of your people fully, or fighting fall in death,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Beowulf as a brave and respectful hero, but Hall’s version is more poetic, which makes Beowulf seem like a legendary figure. Gummere’s version is simpler and makes Beowulf seem more like a real person narrating the story. Both connect to gender politics by highlighting how a hero must be strong but also respectful.

    3. This was my thought, when my thanes and I bent to the ocean and entered our boat, that I would work the will of your people fully, or fighting fall in death,

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this quote, Beowulf shows his bravery by talking about how he and his men sailed across the sea to help Hrothgar and his people, knowing that they might die. This is a big part of gender politics because it shows the traditional idea of masculinity of being strong, fearless, and willing to sacrifice yourself for honor.

    1. multitude of dreams at night

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Potter's version is more descriptive in her feelings of her son's departure. It shows more of an emotional side of the story. Smyth's version tells the story like a book where it does not show as much emotion and gets to the point. These two stories show how different emotions can be shown of the same character based on different writing.

    2. I have been haunted by a multitude of dreams at night since the time when my son, having despatched his army, departed with intent to lay waste the land of the Ionians. But never yet have I beheld so distinct a vision [180] as that of the last night. This I will describe to you.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Atossa being upset, but in different ways. In Potter’s version, she’s emotional and scared, which makes her seem vulnerable. In Smyth’s version, she’s more controlled, which makes her look strong.

    3. I have been haunted by a multitude of dreams at night since the time when my son, having despatched his army, departed with intent to lay waste the land of the Ionians.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: This version of Atossa is different. She’s still worried, but instead of showing it publicly, she keeps her feelings inside. She instead tells us about the dreams she has about her son. This connects to the view of women as she is showing us a different version of her being more strong as she isn't showing her emotions publically but has dreams instead.

    1. Haunting my dreams, how plainly did you show

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Linguistic and Cultural Context: Potter's version is more descriptive in her feelings of her son's departure. It shows more of an emotional side of the story. Smyth's version tells the story like a book where it does not show as much emotion and gets to the point. These two stories show how different emotions can be shown of the same character based on different writing.

    2. Ah me, what sorrows for our ruin'd host Oppress my soul! Ye visions of the night

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Analysis: In this version, Atossa is emotional as she talks about nightmares that keep haunting her, and it shows how worried she is for her son and the Persian army. It shows a traditional view of women that show emotions as she shows her emotions of sad, fear, anxious, etc when it comes to her son and the people.

    3. Ah me, what sorrows for our ruin'd host Oppress my soul! Ye visions of the night Haunting my dreams, how plainly did you show These ills!-You set them in too fair a light.

      Annotation by: Jatnna Sanchez CC License: CC BY-NC-SA 4.0 Tag: #SP2025-Lit211

      Comparative Insight: Both versions show Atossa being upset, but in different ways. In Potter’s version, she’s emotional and scared, which makes her seem vulnerable. In Smyth’s version, she’s more controlled, which makes her look strong.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study puts forth the model that under IFN-B stimulation, liquid-phase WTAP coordinates with the transcription factor STAT1 to recruit MTC to the promoter region of interferon-stimulated genes (ISGs), mediating the installation of m<sup>6</sup>A on newly synthesized ISG mRNAs. This model is supported by strong evidence that the phosphorylation state of WTAP, regulated by PPP4, is regulated by IFN-B stimulation, and that this results in interactions between WTAP, the m<sup>6</sup>A methyltransferase complex, and STAT1, a transcription factor that mediates activation of ISGs. This was demonstrated via a combination of microscopy, immunoprecipitations, m<sup>6</sup>A sequencing, and ChIP. These experiments converge on a set of experiments that nicely demonstrate that IFN-B stimulation increases the interaction between WTAP, METTL3, and STAT1, that this interaction is lost with the knockdown of WTAP (even in the presence of IFN-B), and that this IFN-B stimulation also induces METTL3-ISG interactions.

      Strengths:

      The evidence for the IFN-B stimulated interaction between METTL3 and STAT1, mediated by WTAP, is quite strong. Removal of WTAP in this system seems to be sufficient to reduce these interactions and the concomitant m<sup>6</sup>A methylation of ISGs. The conclusion that the phosphorylation state of WTAP is important in this process is also quite well supported.

      Weaknesses:

      The evidence that the above mechanism is fundamentally driven by different phase-separated pools of WTAP (regulated by its phosphorylation state) is weaker. These experiments rely relatively heavily on the treatment of cells with 1,6-hexanediol, which has been shown to have some off-target effects on phosphatases and kinases (PMID 33814344).

      Given that the model invoked in this study depends on the phosphorylation (or lack thereof) of WTAP, this is a particularly relevant concern.

      We are grateful for the reviewer’s positive comment and constructive feedback. 1,6-hexanediol (hex) was considered an inhibitor of hydrophobic interaction, thereby capable of dissolving protein phase separation condensates. Hex (5%-10% w/v) was still widely used to explore the phase separation characteristic and function on various protein, including some phosphorylated proteins such as pHSF1, or kinases such as NEMO1-3. Since hydrophobic interactions involved in various types of protein-protein interaction, the off-target effects of hex were inevitable. It has been reported that hex impaired RNA polymerase II CTD-specific phosphatase and kinase activity at 5% concentration4, which led to the reviewer’s concern. In response to this concern, we investigated the phosphorylation level of WTAP under hex concentration gradient treatment. Surprisingly, we found that both 2% and 5% hex maintained the PPP4c-mediated dephosphorylation level of WTAP but still led to the dissolution of WTAP LLPS condensates (Figure 5-figure supplement 1H; Author response image 1), indicating that hex dispersed WTAP phase separation in a phosphorylation-independent manner. Consistent with our findings, Ge et al. used 10% hex to dissolve WTAP phase separation condensates5. Additionally, we found the phosphorylation level of STAT1 was not affected by both 2% and 5% hex, revealing the off-target and impairment function of hex on kinases or phosphatases might not be universal (Figure 5-figure supplement 1H). Collectively, since the 5% hex we used did not influence the de-phosphorylation event of WTAP, function of WTAP LLPS mediating interaction between methylation complex and STAT1 revealed by our results was independent from its phosphorylation status.

      Author response image 1.

      mCherry-WTAP-rescued HeLa cells were treated with 10 ng/mL IFN-β together with or without 2% or 5% hex and 20 μg/mL digitonin for 1 hour or left untreated. Phase separation of mCherry-WTAP was observed through confocal microscopy. The number of WTAP condensates that diameter over 0.4 μm of n = 20 cells were counted through ImageJ and shown. Scale bars indicated 10 μm. All error bars, mean values ± SD, P-values were determined by unpaired two-tailed Student’s t-test of n = 20 cells in (B). For (A), similar results were obtained for three independent biological experiments.

      Related to this point, it is also interesting (and potentially concerning for the proposed model) that the initial region of WTAP that was predicted to be disordered is in fact not the region that the authors demonstrate is important for the different phase-separated states.

      A considerable number of proteins undergo phase separation via interactions between intrinsically disordered regions (IDRs). IDR contains more charged and polar amino acids to present multiple weakly interacting elements, while lacking hydrophobic amino acids to show flexible conformations6. In our study, we used PLAAC websites (http://plaac.wi.mit.edu/) to predict IDR domain of WTAP, and a fragment (234-249 amino acids) was predicted as prion-like domain (PLD). However, deletion of this fragment failed to abolish the phase separation properties of WTAP, which might be the main confusion to reviewers. To explain this issue, we checked the WTAP structure (within part of MTC complex) from protein data bank (https://www.rcsb.org/structure/7VF2) and found that the prediction of IDR has been renewed due to the update of different algorithm. IDR of WTAP expanded to 245-396 amino acids, encompassing the entire CTD region. Our results demonstrate that the CTD was critical for WTAP LLPS, as CTD deficiency significantly inhibited the formation of liquid condensates both in vitro and in cells. Also, phosphorylation sites on CTD were important for the phase transition of WTAP. These observations highlight the phosphorylation status on CTD region as a key driving force of phase separation, consistent with the established role of IDR in regulating LLPS. We have revised our description on WTAP IDR in our article following the reviewers’ suggestion.

      Taking all the data together, it is also not clear to me that one has to invoke phase separation in the proposed mechanism.

      In this article, we observed that WTAP underwent phase transition during virus infection and IFN-β treatment, and proposed a novel mechanism whereby post translational modification (PTM)-driven WTAP LLPS was required for the m<sup>6</sup>A modification of ISG mRNAs. To verify the hypothesis, we first demonstrated the relationship between PTM and phase separation of WTAP. We constructed WTAP 5ST-D and 5ST-A mutant to mimic WTAP phosphorylation and dephosphorylation status respectively, and figured out that dephosphorylated WTAP underwent LLPS. We also found that PPP4 was the main phosphatase to regulate WTAP dephosphorylation. To further investigation, we introduced the potent PPP4 inhibitor, fostriecin. Consistent with our findings in PPP4 deficient model, fostriecin treatment significantly inhibited the IFN-β-induced dephosphorylation of WTAP and disrupted its LLPS condensates, indicating that PPP4 was the key phosphatase recruited by IFN-β to regulate WTAP, confirming that PTM governs WTAP LLPS dynamics (Figure 2-figure supplement 1C and H). Furthermore, fostriecin-induced impairment of WTAP phosphorylation and phase separation correlated with reduced m<sup>6</sup>A modification level and elevated ISGs expression level (Figure 4C and Figure 4-figure supplement 1E). These findings together emphasized that dephosphorylation is required for WTAP LLPS.

      As for the function of WTAP LLPS, we assumed that WTAP might undergo LLPS to sequester STAT1 together with m<sup>6</sup>A methyltransferase complex (MTC) for mediating m<sup>6</sup>A deposition on ISG mRNAs co-transcriptionally under IFN-β stimulation. Given that hex dissolved WTAP LLPS condensates without affecting dephosphorylation status (Figure 5-figure supplement 1H; Author response image 1), various experiments we performed previously actually confirmed the critical role of WTAP LLPS during m<sup>6</sup>A modification (Figure 4A), as well as the mechanism that WTAP phase separation enhanced the interaction between MTC and STAT1 (Figure 5E-F). Subsequent to reviewer’s comments, more experiments were conducted for further validation. We found the WTAP liquid condensates formed by wild type (WT) WTAP or WTAP 5ST-A mutant (which mimics dephosphorylated-WTAP) could be dissembled by hex, which also led to the impairment of the interaction between STAT1, METTL3 and WTAP (Figure 5-figure supplement 1E). In addition, in vitro experiments demonstrated that hex treatment significantly disrupted the interaction between recombinant GFP-STAT1 and mCherry-WTAP which expressed in the E. coli system (Figure 5F and Figure 5-figure supplement 1G). Notably, this prokaryotic expression system lacks endogenous phosphorylation machinery, resulting in non-phosphorylated mCherry-WTAP. For further validation, we performed the interaction of WTAP WT or 5ST-A with the promoter regions of ISG as well as the m<sup>6</sup>A modification of ISG mRNAs were attenuated by WTAP LLPS dissolution (Figure 4E and Figure 6E). These findings together revealed that WTAP LLPS were the critical mediators of the STAT1-MTC interactions, ISG promoter regions binding and the co-transcription m<sup>6</sup>A modification.

      Collectively, our results demonstrated that IFN-β treatment recruited PPP4c to dephosphorylate WTAP, thereby driving the formation of WTAP liquid condensates which were essential for facilitating STAT1-MTC interaction and m<sup>6</sup>A deposition, subsequently mediated ISG expression. Since we revealed a strong association between PTM-regulated WTAP phase transition and its m<sup>6</sup>A modification function, WTAP LLPS was a novel and functionally distinct mechanism that must be reckoned with in this study.

      Author response image 2.

      Wild type (WT) WTAP or 5ST-A mutant-rescued WTAP<sup>sgRNA</sup> THP-1-derived macrophages are stimulated with or without with 10 ng/mL IFN-β together followed with 2% or 5% 1,6-hexanediol (hex) and 20 μg/mL digitonin for 1 hour or left untreated. antibody and imaged using confocal microscope. Scale bars indicated 10 μm.

      Reviewer #2 (Public review):

      In this study, Cai and colleagues investigate how one component of the m<sup>6</sup>A methyltransferase complex, the WTAP protein, responds to IFNb stimulation. They find that viral infection or IFNb stimulation induces the transition of WTAP from aggregates to liquid droplets through dephosphorylation by PPP4. This process affects the m<sup>6</sup>A modification levels of ISG mRNAs and modulates their stability. In addition, the WTAP droplets interact with the transcription factor STAT1 to recruit the methyltransferase complex to ISG promoters and enhance m<sup>6</sup>A modification during transcription. The investigation dives into a previously unexplored area of how viral infection or IFNb stimulation affects m<sup>6</sup>A modification on ISGs. The observation that WTAP undergoes a phase transition is significant in our understanding of the mechanisms underlying m<sup>6</sup>A's function in immunity. However, there are still key gaps that should be addressed to fully accept the model presented.

      Major points:

      (1) More detailed analyses on the effects of WTAP sgRNA on the m<sup>6</sup>A modification of ISGs:

      a. A comprehensive summary of the ISGs, including the percentage of ISGs that are m<sup>6</sup>A-modified. merip-isg percentage

      b. The distribution of m<sup>6</sup>A modification across the ISGs. Topology

      c. A comparison of the m<sup>6</sup>A modification distribution in ISGs with non-ISGs. Topology

      In addition, since the authors propose a novel mechanism where the interaction between phosphorylated STAT1 and WTAP directs the MTC to the promoter regions of ISGs to facilitate co-transcriptional m<sup>6</sup>A modification, it is critical to analyze whether the m<sup>6</sup>A modification distribution holds true in the data.

      We appreciate the reviewer’s summary of our manuscript and the constructive assessment. We have conducted the related analysis accordingly to present the m<sup>6</sup>A modification in ISGs in our model as reviewers suggested. Our results showed that about 64.29% of core ISGs were m<sup>6</sup>A modified under IFN-β stimulation (Figure 3-figure supplement 1B; Figure 3G), which was consistent with the similar percentage in previous studies[7,8]. The m<sup>6</sup>A distribution of the ISGs transcripts including IFIT1, IFIT2, OAS1 and OAS2 was validated (Figure 3-figure supplement 1H).

      Generally, m<sup>6</sup>A deposition preferentially located in the vicinity of stop codon, while m<sup>6</sup>A modification was highly dynamic under different cellular condition. However, we compared the topology of m<sup>6</sup>A deposition of ISGs with non-ISGs, and found that m<sup>6</sup>A modification of ISG mRNAs showed higher preference of coding sequences (CDS) localization compared to global m<sup>6</sup>A deposition (Figure 3H). Similarly, various researches uncovered the m<sup>6</sup>A deposition regulated by co-transcriptionally m<sup>6</sup>A modification preferred to locate in the CDS [9-11]. Since our results of m<sup>6</sup>A modification distribution of ISGs was consistent with the co-transcriptional m<sup>6</sup>A modification characteristics, we believed that our hypothesis and results were correlated and consistent.

      (2) Since a key part of the model includes the cytosol-localized STAT1 protein undergoing phosphorylation to translocate to the nucleus to mediate gene expression, the authors should focus on the interaction between phosphorylated STAT1 and WTAP in Figure 4, rather than the unphosphorylated STAT1. Only phosphorylated STAT1 localizes to the nucleus, so the presence of pSTAT1 in the immunoprecipitate is critical for establishing a functional link between STAT1 activation and its interaction with WTAP.

      Thank you for the constructive comments. As we showed in Figure 4, we found the enhanced interaction between phase-separated WTAP and the nuclear-translocated STAT1 which were phosphorylated under IFN-β stimulation, indicating the importance of phosphorylation of STAT1. We repeated the immunoprecipitation experiments to clarify the function of pSTAT1 in WTAP interaction. Our results showed that IFN-β stimulation induced the interaction of WTAP with both pSTAT1 and STAT1 (Figure 5-figure supplement 1C), indicating that most of the WTAP-associated STAT1 was phosphorylated. Taken together, our data proved that LLPS WTAP bound with nuclear-translocated pSTAT1 under IFN-β stimulation.

      (3) The authors should include pSTAT1 ChIP-seq and WTAP ChIP-seq on IFNb-treated samples in Figure 5 to allow for a comprehensive and unbiased genomic analysis for comparing the overlaps of peaks from both ChIP-seq datasets. These results should further support their hypothesis that WTAP interacts with pSTAT1 to enhance m<sup>6</sup>A modifications on ISGs.

      Thank you for raising this thoughtful comment. In this study, MeRIP-seq and RNA-seq along with immunoprecipitation and immunofluorescence experiments supported that phase transition of WTAP enhanced its interaction to pSTAT1, thus mediating ISGs m<sup>6</sup>A modification and expression by enhancing its interaction with nuclear-translocated pSTAT1 during virus infection and IFN-β stimulation. However, how WTAP-mediated m<sup>6</sup>A modification was related to STAT1-mediated transcription remained unclear. Several researches have revealed the recruitment of m<sup>6</sup>A methyltransferase complex (MTC) to transcription start sites (TSS) of coding genes and R-loop structure by interacting with transcriptional factors STAT5B, SMAD2/3, DNA helicase DDX21, indicating the engagement of MTC mediated m<sup>6</sup>A modification on nascent transcripts at the very beginning of transcription [11-13]. These researches inspired us that phase-separated WTAP could be recruited to the ISG promoter regions via interacting with nuclear-translocated pSTAT1. To validate this mechanism, we have conducted ChIP-qPCR experiments targeting STAT1 and WTAP, revealed that IFN-β induced the comparable recruitment dynamics of both STAT1 and WTAP to ISG promoter regions (Figure 6A-B). Notably, STAT1 deficiency significantly abolished the bindings between WTAP and ISG promoter regions (Figure 6C). These findings established nuclear-translocated STAT1-dependent recruitment of phase separated WTAP and ISG promoter region, substantiated our hypothesis within the current study. We totally agree that ChIP-seq data will be more supportive to explore the mechanism in depth. We will continuously focus on the whole genome chromatin distribution of WTAP and explore more functional effect of transcriptional factor-dependent WTAP-promoter regions interaction in the future.

      Minor points:

      (1) Since IFNb is primarily known for modulating biological processes through gene transcription, it would be informative if the authors discussed the mechanism of how IFNb would induce the interaction between WTAP and PPP4.

      Protein phosphatase 4 (PPP4) is a multi-subunit serine/threonine phosphatase complex that participates in diverse biologic process, including DDR, cell cycle progression, and apoptosis[14]. Several signaling pathway such as NF-κB and mTOR signaling, can be regulated by PPP4. Previous research showed that deficiency of PPP4 enhanced IFN-β downstream signaling and ISGs expression, which was consistent with our findings that knockdown of PPP4C impaired WTAP-mediated m<sup>6</sup>A modification, enhanced the ISGs expression[15,16]. Since there was no significant enhancement in PPP4 expression level during 0-3 hours of IFN-β stimulation in our results, we explored the PTM that may influence the protein-protein interaction, such as ubiquitination. Intriguingly, we found the ubiquitination level of PPP4 was enhanced after IFN-β stimulation, which may affect the interaction between PPP4 and WTAP (Author response image 3). Further investigation between PPP4 and WTAP will be conducted in our future study.

      Author response image 3.

      HEK 293T transfected with HA-ubiquitin (HA-Ub) and Flag-PPP4 were treated with 10 ng/mL IFN-β or left untreated. Whole cell lysate (WCL) was collected and immunoprecipitation (IP) experiment using anti-Flag antibody was performed, followed with immunoblot. Similar results were obtained for three independent biological experiments.

      (2) The authors should include mCherry alone controls in Figure 1D to demonstrate that mCherry does not contribute to the phase separation of WTAP. Does mCherry have or lack a PLD?

      According to the crystal structure of mCherry protein in protein structure database RCSB-PDB, mCherry protein presents as a β-barrel protein, with no IDRs or multivalent interaction domains including PLD, indicating that mCherry protein has no capability to undergo phase separation. This characteristic makes it a suitable protein to tag and trace the localization or expression levels of proteins, and a negative control for protein phase separation studies. As the reviewer suggested, we include mCherry alone controls in the revised version (Figure 1D).

      (3) The authors should clarify the immunoprecipitation assays in the methods. For example, the labeling in Figure 2A suggests that antibodies against WTAP and pan-p were used for two immunoprecipitations. Is that accurate?

      Due to the lack of phosphorylated-WTAP antibody, the detection of phosphorylation of WTAP was conducted by WTAP-antibody-mediated immunoprecipitation. We conducted immunoprecipitation to pull-down WTAP protein by WTAP antibody, then used antibody against phosphoserine/threonine/tyrosine (pan-p) to detect the phosphorylation level of WTAP. To avoid the misunderstanding, we have modified the description from pan-p to pWTAP (pan-p) in figures and revised the figure legends.

      (4) The authors should include overall m<sup>6</sup>A modification levels quantified of GFP<sup>sgRNA</sup> and WTAP<sup>sgRNA</sup> cells, either by mass spectrometry (preferably) or dot blot.

      We thank reviewer for raising these useful suggestions. As we showed in Figure 3F and J-K, the m<sup>6</sup>A modification event and degradation of ISG mRNAs were significantly depleted in WTAP<sup>sgRNA</sup> cell lines, indicating that function of WTAP was deficient. Thus, we used the WTAP<sup>sgRNA</sup> #2 cell line to perform most of our experiment. Furthermore, we also found 46.4% of global m<sup>6</sup>A modification was decreased in WTAP<sup>sgRNA</sup> THP-1 cells than that of control cells with or without IFN-β stimulation (Author response image 4), further validating that level of m<sup>6</sup>A modification was significantly affected in WTAP<sup>sgRNA</sup> cells. Taken together, our data confirmed that m<sup>6</sup>A methyltransferase activity was efficiently inhibited in our WTAP<sup>sgRNA</sup> cells.

      Author response image 4.

      Control (GFP<sup>sgRNA</sup>) and WTAP<sup>sgRNA</sup> #2 THP-1-derived macrophages were treated with 10 ng/mL IFN-β for 4 hours. Global m<sup>6</sup>A level was detected and quantified through ELISA assays. All error bars, mean values ± SEM, P-values were determined by two-way ANOVA test independent biological experiments.

      Reviewer #3 (Public review):

      Summary:

      This study presents a valuable finding on the mechanism used by WTAP to modulate the IFN-β stimulation. It describes the phase transition of WTAP driven by IFN-β-induced dephosphorylation. The evidence supporting the claims of the authors is solid, although major analysis and controls would strengthen the impact of the findings. Additionally, more attention to the figure design and to the text would help the reader to understand the major findings.

      Strength:

      The key finding is the revelation that WTAP undergoes phase separation during virus infection or IFN-β treatment. The authors conducted a series of precise experiments to uncover the mechanism behind WTAP phase separation and identified the regulatory role of 5 phosphorylation sites. They also succeeded in pinpointing the phosphatase involved.

      Weaknesses:

      However, as the authors acknowledge, it is already widely known in the field that IFN and viral infection regulate m<sup>6</sup>A mRNAs and ISGs. Therefore, a more detailed discussion could help the reader interpret the obtained findings in light of previous research.

      We are grateful for the positive comments and the unbiased advice by the reviewer. To interpret our findings in previous research, we have revised the manuscript carefully and added more detailed discussion on ISG mRNAs m<sup>6</sup>A modification during virus infection or IFN stimulation.

      It is well-known that protein concentration drives phase separation events. Similarly, previous studies and some of the figures presented by the authors show an increase in WTAP expression upon IFN treatment. The authors do not discuss the contribution of WTAP expression levels to the phase separation event observed upon IFN treatment. Similarly, METTL3 and METTL14, as well as other proteins of the MTC are upregulated upon IFN treatment. How does the MTC protein concentration contribute to the observed phase separation event?

      We thank reviewer for pointing out the importance of the concentration dependent phase transition. Previously, Ge et al. discovered that expression level of WTAP was up-regulated during LPS stimulation, thereby promoting WTAP phase separation ability and m<sup>6</sup>A modification, indicating that WTAP concentration indeed affects the phase separation event. In our article, we have generated the phase diagram with different concentration of recombinant mCherry-WTAP in vitro (Figure 1-figure supplement 1C). For in cells experiments, we constructed the TRE-mCherry-WTAP HeLa cells in which the expression of mCherry-WTAP was induced by doxycycline (Dox) in a dose-dependent manner (Author response image 5A). We detected the LLPS of mCherry-WTAP at different concentrations by increasing the doses of Dox, and found that WTAP automatically underwent LLPS only in an artificially high expression level (Author response image 5B). However, the cells we used to detect the WTAP phase separation in our article was mCherry-WTAP-rescued HeLa cells, in which mCherry-WTAP was introduced in WTAP<sup>sgRNA</sup> HeLa cells to stably express mCherry-WTAP. We had adjusted and verified the mCherry-WTAP expression level precisely to make the protein abundance similar to endogenous WTAP in wild type (WT) HeLa cells (Author response image 5C). We also repeated the IFN-β stimulation experiments and found no significant increase of WTAP protein level (Figure 5-figure supplement 1A). These findings indicated the phase separation of WTAP in our article was not artificially induced due to the extremely high protein expression level.

      MTC protein expression level was crucial for m<sup>6</sup>A modification during virus infection event. Rubio et al. and Winkler et al. revealed that WTAP, METTL3 and METTL14 were up-regulated after 24 hours of HCMV infection[8,17]. Recently, Ge et al. proposed that WTAP protein was degraded after 12 hours of VSV and HSV stimulation5,18. However, these studies only focused on the virus infection event, how the MTC protein expression change after direct IFN-β stimulation was still unclear. Our study investigated the transition change of WTAP under IFNβ stimulation in a short time, we detected the expression level of MTC proteins within 6 hours of IFN-β treatment, and found no significant enhancement of WTAP, METTL3 or METTL14 protein level and mRNA level (Figure 5-figure supplement 1B and Figure 5-figure supplement 1A;). Our in vitro experiments showed that introducing CFP-METTL3 protein have no significant influence on WTAP phase separation (Figure 4H). Additionally, we performed in cells experiments and found that increased expression of METTL3 had no effect on WTAP phase separation event (Author response image 5D). Taken together, WTAP phase separation can be promoted by dramatically increased concentration of WTAP both in vitro and in cells, but the phase separation of WTAP under IFN-β stimulation in our study was not related with the expression level of MTC proteins.

      Author response image 5.

      (A) Immunoblot analysis of the expression of mCherry-WTAP in TRE-mCherry-WTAP HeLa cells treated with different doses of doxycycline (Dox). Protein level of mCherry-WTAP was quantified and normalized to β-actin of n=3 independent biological experiments. Results were obtained for three independent biological experiments. (B) Phase separation diagram of mCherry-WTAP in TRE-mCherry-WTAP HeLa cells treated with different doses of Dox were observed through confocal microscopy. Representative images for three independent biological experiments were shown in b while number of WTAP condensates that diameter over 0.4 μm of n=80 cells were counted and shown as medium with interquartile range. Dotted white lines indicated the location of nucleus. Scale bars indicated 10 μm. (C) Immunoblot analysis of the expression of endogenous WTAP in wildtype (WT) HeLa cells and mCherry-WTAP-rescued WTAP<sup>sgRNA</sup> HeLa cells. (D) mCherry-WTAP-rescued HeLa cells were transfected with 0, 200 or 400 ng of Flag-METTL3, followed with 10 ng/mL IFN-β for 1 hour or left untreated (UT). Phase separation of mCherry-WTAP was observed through confocal microscopy. The number of WTAP condensates that diameter over 0.4 μm of n = 20 cells were counted through ImageJ and shown. Representative images of n=20 cells were shown. All error bars, mean values ± SD were determined by unpaired two-tailed Student’s t-test of n = 3 independent biological experiments in (A). For (A, C), similar results were obtained for three independent biological experiments.

      How is PP4 related to the IFN signaling cascade?

      Both reviewer #2 and reviewer #3 raised a similar point on the relationship between PPP4 and IFN signaling. In short, protein phosphatase 4 (PPP4) participates in diverse biologic process, including DDR, cell cycle progression and apoptosis14 and several signaling pathway. Previous research showed that deficiency of PPP4 enhanced IFN-β downstream signaling and ISGs expression, which was consistent with our findings that knockdown of PPP4C impaired WTAP-mediated m<sup>6</sup>A modification, and enhanced the ISGs expression[15,16]. Since there was no significant enhancement in PPP4C expression level during 0-3 hours of IFN-β stimulation in our results, we tried to explore the post-translation modification which may influence the protein-protein interaction, such as ubiquitination. Intriguingly, we found the ubiquitination level of PPP4 was enhanced after IFN-β stimulation, which may affect the interaction between PPP4 and WTAP (Author response image 4). Investigation between PPP4 and WTAP will be conducted in our further study (also see minor points 1 of reviewer#2).

      In general, it is very confusing to talk about WTAP KO as WTAPgRNA.

      As we describe above, all WTAP-deficient THP-1 cells were generated using the CRISPR-Cas9 system with WTAP-specific sgRNA, and used bulk cells instead of the monoclonal knockout cell for further experiments. Since monoclonal knockout cells were not obtained, we refer it as WTAP<sup>sgRNA</sup> THP-1 cells rather than WTAP-KO THP-1 cells. We confirmed that WTAP expression was efficiently knocked down in WTAP<sup>sgRNA</sup> THP-1 cells, and the m<sup>6</sup>A modification level was significantly impaired (Figure 3I, Figure 3-figure supplement 1A and Author response image 4), which was suitable for mechanism investigation.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Related to the points raised in 'weaknesses' above, if the authors want to claim that this mechanism is reliant on WTAP phase-separated states, additional controls should be done to demonstrate this. Based on the available data it seems that it is just as likely that the phosphorylation state of WTAP is mediating interactions with other factors and/or altering its subcellular localization, which may or may not be related to phase separation.

      We are grateful for the constructive suggestions. As we showed in , Figure 5-figure supplement 1H; Author response image 1 along with the explanation above, 5% hex dispersed the phase separation condensates of WTAP without affecting its phosphorylation status, proving the interaction between STAT1 and methylation complex impaired by hex was depended on WTAP LLPS but not its phosphorylation status (Figure 5E-H). To further confirmed the recruitment of WTAP LLPS on ISG promoter region, we performed the immunoprecipitation and ChIP-qPCR experiments of wild type (WT) WTAP, 5ST-D and 5ST-A rescued THP-1 cells. Our results uncovered the interaction between de-phosphorylated-mimic WTAP mutant and STAT1, and its binding ability with ISG promoter regions were depleted by hex without affecting its phosphorylation status (Author response image 2, Figure 5-figure supplement 1 F, Figure 6E). Taken together, we identified the de-phosphorylation event that regulated phase transition of WTAP during IFN-β stimulation, and proposed that LLPS of WTAP mediated by dephosphorylation was the key mechanism to bind with STAT1 and mediate the m<sup>6</sup>A modification on ISG mRNAs.

      Reviewer #2 (Recommendations for the authors):

      The author order is different for the main text and the supplementary file.

      Thank you for pointing out this mistake. We have corrected it in our revised version.

      Reviewer #3 (Recommendations for the authors):

      Signaling molecules? Do you mean RNA or protein post-translational modification?

      Thank you for pointing out this problem. In this sentence, we mean the post-translational modification of signaling proteins. We have corrected this mistake in our revised version.

      Line 145: Do you mean Figure 1C?

      We have corrected it in our revised version.

      Line 214: Are the cells KO for WTAP? Do you mean CRISPR KO? In general, it is easier to present WTAPgRNA as WTAPKO.

      Thank you for the constructive suggestion. As we explained above, in this project, all WTAP-deficient THP-1 cells were generated using the CRISPR-Cas9 system with WTAP-specific sgRNA, and used bulk cells instead of the monoclonal knockout cells. We confirmed that WTAP expression was efficiently knocked down in WTAP<sup>sgRNA</sup> THP-1 cells, and the m<sup>6</sup>A modification level was significantly impaired (Figure 3I, Figure3-figure supplement 1A and Author response image 4). Since monoclonal knockout cells were not obtained, we refer it as WTAP<sup>sgRNA</sup> THP-1 cells rather than WTAP-KO THP-1 cells.

      Line 221: WTAP KO has no effect on the expression level of transcription factors?

      Thank you for pointing out the uncritical expression. We have corrected this in our revised version.

      Figure 3C: I would suggest removing the tracks and showing the expression levels in TPMs.

      According to the reviewer’s suggestion, we have analyzed the results and showed the ISGs expression levels in fold change of TPMs (Figure 3D).

      Figure 4C: It seems that the IP efficiency from METTL3 is lower in WTAP KO cells. That may impact the author's conclusions.

      We have repeated the immunoprecipitation experiments of METTL3 and confirmed the immunoprecipitation (IP) efficiency from METTL3 had no difference between WTAP<sup>sgRNA</sup> cells and the control cells (Figure 5C).

      I would suggest performing an IP of WTAP with the 5StoA mutation to confirm the missing interaction with WTAP.

      According to the reviewer’s suggestion, we investigated the interaction between STAT1 and WTAP in WT cells and WTAP 5ST-A-rescued THP-1 cells. Our results showed that interaction between STAT1, METTL3 and WTAP were enhanced with WTAP 5ST-A mutation, which was depleted by hex treatment (Figure 5-figure supplement 1E). Thus, the interaction of WTAP WT or 5ST-A with the promoter regions of ISG were attenuated by WTAP LLPS dissolution (Figure 6E). Taken together, the interaction between STAT1 and MTC were relied on LLPS of WTAP.

      In the graphical abstract, it is confusing to represent WTAP as a line. All other proteins are presented as circles. It is easy to confuse WTAP protein with an RNA. Additionally, m<sup>6</sup>A is too big in size. It should be smaller than a protein.

      We thank the reviewer for raising this suggestion. We have modified the graphical abstract to avoid the confusion in our revised version (Figure 6F).

      References

      (1) Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K.M., Bennett, R.E., Dujardin, S., Laskowski, P.R., MacKenzie, D., Kamath, T., Commins, C., et al. (2018). Tau protein liquid-liquid phase separation can initiate tau aggregation. The EMBO journal 37. 10.15252/embj.201798049.

      (2) Lu, Y., Wu, T., Gutman, O., Lu, H., Zhou, Q., Henis, Y.I., and Luo, K. (2020). Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol 22, 453-464. 10.1038/s41556-020-0485-0.

      (3) Zhang, H., Shao, S., Zeng, Y., Wang, X., Qin, Y., Ren, Q., Xiang, S., Wang, Y., Xiao, J., and Sun, Y. (2022). Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat Cell Biol 24, 340-352. 10.1038/s41556-022-00846-7.

      (4) Duster, R., Kaltheuner, I.H., Schmitz, M., and Geyer, M. (2021). 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities. J Biol Chem 296, 100260. 10.1016/j.jbc.2021.100260.

      (5) Ge, Y., Chen, R., Ling, T., Liu, B., Huang, J., Cheng, Y., Lin, Y., Chen, H., Xie, X., Xia, G., et al. (2024). Elevated WTAP promotes hyperinflammation by increasing m<sup>6</sup>A modification in inflammatory disease models. J Clin Invest 134. 10.1172/JCI177932.

      (6) Hou, S., Hu, J., Yu, Z., Li, D., Liu, C., and Zhang, Y. (2024). Machine learning predictor PSPire screens for phase-separating proteins lacking intrinsically disordered regions. Nat Commun 15, 2147. 10.1038/s41467-024-46445-y.

      (7) McFadden, M.J., McIntyre, A.B.R., Mourelatos, H., Abell, N.S., Gokhale, N.S., Ipas, H., Xhemalce, B., Mason, C.E., and Horner, S.M. (2021). Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine. Cell Rep 34, 108798. 10.1016/j.celrep.2021.108798.

      (8) Winkler, R., Gillis, E., Lasman, L., Safra, M., Geula, S., Soyris, C., Nachshon, A., Tai-Schmiedel, J., Friedman, N., Le-Trilling, V.T.K., et al. (2019). m(6)A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20, 173-182. 10.1038/s41590-018-0275-z.

      (9) Li, Y., Xia, L., Tan, K., Ye, X., Zuo, Z., Li, M., Xiao, R., Wang, Z., Liu, X., Deng, M., et al. (2020). N(6)-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 52, 870-877. 10.1038/s41588-020-0677-3.

      (10) Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B.S., Sun, M., Chen, Z., Deng, X., Xiao, G., Auer, F., et al. (2019). Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567, 414-419. 10.1038/s41586-019-1016-7.

      (11) Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millan-Zambrano, G., Robson, S.C., Aspris, D., Migliori, V., Bannister, A.J., Han, N., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552, 126-131. 10.1038/nature24678.

      (12) Hao, J.D., Liu, Q.L., Liu, M.X., Yang, X., Wang, L.M., Su, S.Y., Xiao, W., Zhang, M.Q., Zhang, Y.C., Zhang, L., et al. (2024). DDX21 mediates co-transcriptional RNA m(6)A modification to promote transcription termination and genome stability. Mol Cell 84, 1711-1726 e1711. 10.1016/j.molcel.2024.03.006.

      (13) Bhattarai, P.Y., Kim, G., Lim, S.C., and Choi, H.S. (2024). METTL3-STAT5B interaction facilitates the co-transcriptional m(6)A modification of mRNA to promote breast tumorigenesis. Cancer Lett 603, 217215. 10.1016/j.canlet.2024.217215.

      (14) Dong, M.Z., Ouyang, Y.C., Gao, S.C., Ma, X.S., Hou, Y., Schatten, H., Wang, Z.B., and Sun, Q.Y. (2022). PPP4C facilitates homologous recombination DNA repair by dephosphorylating PLK1 during early embryo development. Development 149. 10.1242/dev.200351.

      (15) Zhan, Z., Cao, H., Xie, X., Yang, L., Zhang, P., Chen, Y., Fan, H., Liu, Z., and Liu, X. (2015). Phosphatase PP4 Negatively Regulates Type I IFN Production and Antiviral Innate Immunity by Dephosphorylating and Deactivating TBK1. J Immunol 195, 3849-3857. 10.4049/jimmunol.1403083.

      (16) Raja, R., Wu, C., Bassoy, E.Y., Rubino, T.E., Jr., Utagawa, E.C., Magtibay, P.M., Butler, K.A., and Curtis, M. (2022). PP4 inhibition sensitizes ovarian cancer to NK cell-mediated cytotoxicity via STAT1 activation and inflammatory signaling. J Immunother Cancer 10. 10.1136/jitc-2022-005026.

      (17) Rubio, R.M., Depledge, D.P., Bianco, C., Thompson, L., and Mohr, I. (2018). RNA m(6) A modification enzymes shape innate responses to DNA by regulating interferon beta. Genes Dev 32, 1472-1484. 10.1101/gad.319475.118.

      (18) Ge, Y., Ling, T., Wang, Y., Jia, X., Xie, X., Chen, R., Chen, S., Yuan, S., and Xu, A. (2021). Degradation of WTAP blocks antiviral responses by reducing the m(6) A levels of IRF3 and IFNAR1 mRNA. EMBO Rep 22, e52101. 10.15252/embr.202052101.

    1. eLife Assessment

      TDP-43 mislocalization is a key feature of some neurodegenerative diseases, but cellular models are lacking. The authors endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs, followed by expression of an intrabody-NES that targeted GFP to the cytosol. They convincingly report physical mislocalization and functional depletion of TDP-43, as measured by microscopy and RNAseq. This method will be valuable to investigators studying the biological consequences of TDP-43 mislocalization and the methodology is in line with the current state-of-the-art.

    2. Reviewer #2 (Public review):

      Summary:

      TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain of function and loss of function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:

      A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the author see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:

      The method and supporting data have some limitations.

      • Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example, phase separation properties and functions within complex ribonucleoprotein complexes. The authors show that normal splicing function of GFP-TDP-43 is maintained, suggesting that physiology is largely preserved, but other functions and properties of TDP-43 that were not directly tested could be altered.

      • Potential differences in splicing and micro RNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown and can differ in different batches of experiments, thus it is difficult to asses whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance or batch effects.

    3. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Nuclear depletion and cytoplasmic mislocalization/aggregation of the DNA and RNA binding protein TDP-43 are pathological hallmarks of multiple neurodegenerative diseases. Prior work has demonstrated that depletion of TDP-43 from the nucleus leads to alterations in transcription and splicing. Conversely, cytoplasmic mislocalization/aggregation can contribute to toxicity by impairing mRNA transport and translation as well as miRNA dysregulation. However, to date, models of TDP-43 proteinopathy rely on artificial knockdown- or overexpression-based systems to evaluate either nuclear loss or cytoplasmic gain of function events independently. Few model systems authentically reproduce both nuclear depletion and cytoplasmic miscloalization/aggregation events. In this manuscript, the authors generate novel iPSC-based reagents to manipulate the localization of endogenous TDP-43. This is a valuable resource for the field to study pathological consequences of TDP-43 proteinopathy in a more endogenous and authentic setting. However, in the current manuscript, there are a number of weaknesses that should be addressed to further validate the ability of this model to replicate human disease pathology and demonstrate utility for future studies.

      Strengths:

      The primary strength of this paper is the development of a novel in vitro tool.

      Weaknesses:

      There are a number of weaknesses detailed below that should be addressed to thoroughly validate these new reagents as more authentic models of TDP-43 proteinopathy and demonstrate their utility for future investigations.

      (1) The authors should include images of their engineered TDP-43-GFP iPSC line to demonstrate TDP-43 localization without the addition of any nanobodies (perhaps immediately prior to addition of nanobodies). Additionally, it is unclear whether simply adding a GFP tag to endogenous TDP-43 impact its normal function (nuclear-cytoplasmic shuttling, regulation of transcription and splicing, mRNA transport etc).

      We have included images of the untransduced day 20 MNs derived from the engineered TDP43-GFP iPSC lines and the unedited line (Supplementary Fig. 1B).

      We acknowledge the reviewer’s concern about the potential impact of the GFP tag on TDP43's normal function. To address this, we have validated the functionality of TDP43 by assessing the inclusion of cryptic exons in highly sensitive targets such as UNC13A and STMN2, both of which are known to be directly regulated by TDP43.

      We compared MNs derived from the unedited parent line with the TDP43-GFP MNs prior to nanobody addition. As measured by qPCR, cryptic exon inclusion in UNC13A and STMN2 was not observed in the unedited or edited TDP43-GFP MNs (Supplementary Fig.1C), confirming that the tagging does not induce splicing defects by itself. The cryptic exon inclusion in UNC13A and STMN2 were only observed in TDP43-GFP MNs expressing the NES nanobody (Supplementary Fig. 2D). These findings were further supported by our next-generation sequencing data, which also showed that cryptic exon inclusion was specific to the TDP43 mislocalization condition (Supplementary Fig.3 and 4).

      Thus, we have strong evidence that the GFP-tagged TDP43 behaves similarly to the wild-type protein and does not interfere with its function in our model.

      (2) Can the authors explain why there is a significant discrepancy in time points selected for nanobody transduction and immunostaining or cell lysis throughout Figure 1 and 2? This makes interpretation and overall assessment of the model challenging.

      For the phenotypic data shown in Fig.1, we added the AAVs at day 18 or 20 and analyzed the cells at day 40. For the phosphorylated TDP43 western blot (revised Fig. 3D), cells were treated with doxycycline at day 20 to induce nanobody expression and samples were harvested at day 40. Thus, cells were harvested between days 20 or 22 after adding the nanobodies. The onset of transgene expression when using AAVs in neurons typically display slow kinetics. We observed TDP43 mislocalization in less than 50% of the neurons after 7 days post-transduction that peaked at 10-12 days after addition of the nanobodies, when more than 80% of the cells displayed TDP43 mislocalization. Hence, we do not believe that a two-day difference significantly alters the interpretation of the data.

      The decision to harvest neurons at day 30 for the qPCR data was taken to investigate whether the splicing changes seen at day 40 from the transcriptomics analysis can be detected well before the phenotypes observed at day 40.

      (3) The authors should further characterize their TDP-43 puncta. TDP-43 immunostaining is typically punctate so it is unclear if the puncta observed are physiologic or pathologic based on the analyses carried out in the current version of this manuscript. Additionally, do these puncta co-localize with stress granule markers or RNA transport granule markers? Are these puncta phosphorylated (which may be more reminiscent of end-stage pathologic observations in humans)?

      We have tried immunostaining neurons for phosphorylated TDP43. However, our immunostaining attempts were unsuccessful. Depending on the antibody, we either saw no signal (antibody from Cosmo Bio, TIP-PTD-M01A) or even the control neurons displayed detectable phosphorylation within the nucleus (antibody from Proteintech 22309-1-AP). Consequently, we performed western blot analysis using an antibody from Cosmo Bio, (TIP-PTD-M01A) that clearly shows hyperphosphorylation of TDP43 in whole cell lysates (Fig. 3D, E). Hence, we have referred to these structures as puncta and not aggregates (Page 4).

      To assess co-localization of the puncta with stress granules, we immunostained for the stress granule marker G3BP1. This was done in MNs that were treated with sodium arsenite (SA) or PBS as a control. In the PBS treated control MN cultures, TDP43 mislocalization alone did not induce stress granule formation. G3BP1+ stress granules were only observed following SA stress (0.5 mM, 60 minutes). Further, only a subset of TDP43 puncta overlapped with these stress granules (Supplementary Fig. 7) (Page 6).

      (4) The authors should include multiple time points in their evaluation of TDP-43 loss of function events and aggregation. Does loss of function get worse over time? Is there a time course by which RNA misprocessing events emerge or does everything happen all at once? Does aggregation get worse over time? Do these neurons die at any point as a result of TDP-43 proteinopathy?

      We agree that a time course to analyze TDP43 mislocalization and its consequences would be ideal. However, the mislocalization of TDP43 across neurons is not a coordinated process. At each given time instance, neurons display varying levels of TDP43 mislocalization. Answering the questions raised by the reviewer would require tracking individual neurons in real time in a controlled environment over weeks. Unfortunately, we currently do not have the hardware to run these experiments. However, we do observe increased levels of cleaved caspase 3 in MNs expressing the NES nanobody, indicating that these neurons indeed undergo apoptosis by day 40 (Fig.1).

      We have, however, analyzed changes in splicing using qPCR for 12 genes over a time course starting as early as 4 hours after inducing mislocalization. We detect time-dependent cryptic splicing events in all genes as early as 8 hours after doxycycline addition, coinciding with the appearance TDP43 mislocalization (Fig. 4A, B).

      (5) Can the authors please comment on whether or not their model is "tunable"? In real human disease, not every neuron displays complete nuclear depletion of TDP-43. Instead there is often a gradient of neurons with differing magnitudes of nuclear TDP-43 loss. Additionally, very few neurons (5-10%) harbor cytoplasmic TDP-43 aggregates at end-stage disease. These are all important considerations when developing a novel authentic and endogenous model of TDP-43 proteinopathy which the current manuscript fails to address.

      As shown in Fig .1, the neurons expressing the NES-nanobody display a wide range of mislocalization as assessed by the % of nuclear TDP43 present. By titrating the amount of AAVs added to the culture, the model can be tuned to achieve a wide gradient of TDP43 mislocalization.

      We calculated the size and percentage of neurons displaying TDP43 puncta. The size and the number of aggregates varies across the neurons that display TDP43 mislocalization. Around 50% of the neurons displayed small (1  um<sup>2</sup>) puncta while large puncta (> 5  um<sup>2</sup>) were observed in <10% of the cells, similar to observations in patient tissue (Fig. 1F).

      Reviewer #2 (Public Review):

      Summary:

      TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain-of-function and loss-of-function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC-derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:

      A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the authors see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:

      The method and supporting data have limitations in its current form, outlined below, and in its current form the findings are rather preliminary.

      (1) Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example phase separation properties and functions within complex ribonucleoprotein complexes. In addition, alternative isoforms of TDP-43 (e.g. "short" TDP-43, would not be GFP tagged and therefore these species would not be directly manipulatable or visualizable with the tools currently employed in the manuscript.

      With reference to our answer above, we have confirmed using qPCR and RNA-seq analysis that adding a GFP tag to the C-terminus of TDP43 does not result in an appreciable loss of functionality. We do not observe any cryptic exon inclusion in STMN2 and UNC13A. Cryptic exon inclusion in these genes, especially STMN2, has been recognized as a very sensitive indicator of TDP43 loss of function (Supplementary Fig 1C, Supplementary 2D, Fig. 3, Fig.4)

      We acknowledge that truncated alternatively spliced versions of TDP43 will lose the GFP-tag and cannot be manipulated with our system. Since our GFP tag is positioned on the C-terminus, our system cannot manipulate these truncated fragments as the tag is lost in these isoforms. But these isoforms, if present, should be detectable using the Proteintech antibody against total TDP43, which recognizes N-terminal TDP43 epitopes. However, western blot analysis, even 20 days after inducing TDP43 mislocalization, showed no truncated fragments. This suggests that TDP43 mislocalization alone is insufficient to generate significant levels of truncated isoforms. We have added this section to the Limitations paragraph (page 9).

      (2) The data regarding potential mislocalization of endogenous TDP-43 in the heterozygous TDP-43-GFP lines is especially intriguing and important, yet very little characterization was done. Does untagged TDP-43 co-aggregate with the tagged TDP-43? Is localization of TDP-43 immunostaining the same as the GFP signal in these cells?

      The purpose of the heterozygous experiments was to see whether mislocalized TDP43 could potentially trap the untagged TDP43. If this was not the case, we would have seen a maximum of 50% of the TDP43 signal mislocalized to the cytoplasm. The fact that a sizeable proportion of cells had significantly higher levels of TDP43 loss from the nucleus, indicates that mislocalized TDP43 can indeed trap the untagged protein fraction. We used GFP immunostaining to identify the tagged TDP43 while an antibody against the endogenous TDP43 protein was used to detect total TDP43 levels. In the cells that show near complete loss of nuclear TDP43, the total TDP43 signal coincides with the GFP (tagged TDP43) signal. We are unable to distinguish the untagged fraction selectively as we do not have an antibody that can detect this directly.  

      But we agree with the reviewer that these observations need further detailed follow-up that we are unable to provide currently. Hence, we have removed this figure from the manuscript.

      (3) The experiments in which dox was used to induce the nanobody-NES, then dox withdrawn to study potential longer-lasting or self-perpetuating inductions of aggregation is potentially interesting. However, the nanobody was only measured at the RNA level. We know that protein half lives can be very long in neurons, and therefore residual nanobody could be present at these delayed time points. The key measurement to make would be at the protein level of the nanobody if any conclusions are be made from this experiment.

      The reviewer has highlighted an important point. To address this issue, we tagged the nanobodies with a V5 tag that allowed us to directly measure nanobody levels within cells. After Dox withdrawal, we indeed observed significant expression of the nanobody within cells even after two weeks of Dox withdrawal. Extending the time point to three weeks allowed complete loss of the nanobody in most neurons. However, in contrast to our observations at two weeks, this was accompanied by a reversal of TDP43 mislocalization in these neurons at three weeks (Fig. 5).

      Surprisingly, in less than 10% of the neurons, we observed >80% of the total TDP43 still mislocalized to the cytoplasm, despite nearly undetectable levels of the nanobody. Super-resolution microscopy further revealed persistent cytoplasmic TDP43 in these neurons that did not overlap with residual nanobody signal. This suggests that in these neurons, the nanobody was no longer required to maintain TDP43 mislocalization (Fig. 5, page 7)

      (4) Potential differences in splicing and microRNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown, thus it is difficult to assess whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance.

      This a fair point. It is possible that microRNA dysregulation might require a greater loss of nuclear TDP43 and maybe more resilient to TDP43 loss as compared to splicing. We have acknowledged this in the discussion section (page 9).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) It would be helpful to include nuclear vs cytoplasmic ratios of TDP-43 instead of simply "% nuclear TDP-43"

      We have used % nuclear TDP43 as these values have biologically meaningful upper and lower bounds, which makes it easier to compare across experiments. We found that using a ratio of nuclear vs cytoplasmic TDP43 intensities displayed higher variability and a wider range.

      We have re-labelled the y-axis as “% Nuclear TD43 / soma TDP43” to make our quantification clearer. The conversion from % nuclear TDP43 to N/C is straightforward. If the % nuclear TDP43 is X, then the N/C ratio can be calculated as X / (100-X). For example, a % nuclear TDP43 of 80% would amount to an N/C ratio of 80/20 = 4.

      (2) The axis descriptions in Figure 1D are very unclear. While this is described better in the figure legend, it would be beneficial to have a more descriptive y-axis title in the figure (which may mean increasing the number of graphs).

      Axis descriptions and figures changed as recommended.

      (3) In Figure 1, the time points at which iPSNs were transduced with nanobody and/or fixed for immunostaining is somewhat inconsistent across all panels. This hinders interpretation of the figure as a whole. The authors should use same transduction and immunostaining time points for consistency or demonstrate that the same phenotype is observed regardless of transduction and immunostaining day as long as the time in between (time of nano body expression) is consistent. Subsequently, in Figure 2, a different set of time points is used.

      Please see our response in the public comments above

      (4) In Figure 1, please show individual data points for each independent differentiation to demonstrate the level of reproducibility from batch to batch.

      Data points have been shown per replicate (Supplementary Fig. 2)

      We have refined our approach for phenotypic analysis to improve consistency across different clones. Previously, we set thresholds on % nuclear TDP43 to distinguish MNs with nuclear versus mislocalized TDP43. This was done by ranking all cells based on % nuclear TDP43 and applying quantile-based thresholds—designating the top 25% as control and the bottom 25% as mislocalized, ensuring equal number of cells per category. However, we observed significant variability in thresholds across clones. For instance, the E8 clone had thresholds of 96% and 29%, while the E5 clone had 93% and 40%.

      To address this, we reanalysed the data using a standardized three-bin approach:

      (1) Control: MNs expressing the control nanobody.

      (2) Low-Moderate Mislocalization: MNs expressing the NES nanobody with > 40% nuclear TDP43.

      (3) Severe Mislocalization: MNs expressing the NES nanobody with < 40% nuclear TDP43.

      This approach ensured a more reliable comparison of TDP43 mislocalization effects across experiments. The conclusions remain the same.

      (5) In Figure 2, please show individual data points.

      Data points for all the qPCR analyses in the paper have been included as a supplementary text file.

      (6) In Figure 3, please show individual data points.

      Data points for the western blot data have been included as a supplementary data file.

      All other comments are within the public review.

      Reviewer #2 (Recommendations For The Authors):

      (1) In general more robust quantification of many of the described phenotypes are necessary. In particular, no apparent quantification of cytosolic mislocalization was performed in Figure 1, or quantification of mislocalization of Figure 3F. It is unclear in the western blot in Fig 1G if TDP-43 signal were normalized to total protein, and of note it seems that expression of the intrabody-NES reduced total proteins in the western blots that were shown. No quantification or measurement of the insoluble material was done or shown.

      We have quantified cytosolic mislocalization of TDP43 (Fig. 1C). The y-axis indicates the total TDP43 signal observed in the nucleus as a percentage of the total signal observed in the soma (including the nucleus). This value has the advantage of ranging between 100% (perfectly nuclear) to 0% (complete nuclear loss). The boxplots indicate that expression of the NES-nanobody results in a range of cytosolic mislocalization with a median value around 40% of the TDP43 remaining in the nucleus.

      Western blot data in previous Fig. 1G was normalized to alpha-tubulin. We were unable to get a good signal for the insoluble fraction. From the alpha-tubulin alone, it cannot be concluded that NES-nanobody results in a decrease in total protein levels. In the revised western blot for phosphorylated TDP43 (Fig. 3D, E), we have quantified total and phosphorylated TDP43. Here, we observe a six-fold increase in the levels of phosphorylated TDP43 without a significant change in total TDP43 protein levels.

      To avoid potential mis-interpretation of our results, we have now removed the previous Fig. 1G.

      (2) Additional images of nearly all microscopy data at higher magnifications would be required to better evaluate TDP-43 localization. Ideally including images for each channel in addition to merged images, and especially for key figures such as Figure 1B, 3B, 3F.

      Better images have been provided.

      (3) No control images were shown for Figure 1F and 3F. It is unclear what the bright punctate spots of cytoplasmic TDP-43 GFP signal represent. Are these true aggregates? If so, additional characterization would be required before such conclusions can be made, beyond the relatively superficial western blot analysis that was done in Figure 1.

      Control images have now been provided (Figure 1E). As we mentioned above, immunostaining analysis to characterize whether the aggregates are phosphorylated failed to provide a clear signal. However, we have now confirmed that the mislocalized TDP43 is indeed hyper-phosphorylated (Figure 3D, E). We have acknowledged this in the main text, and have referred to these as puncta reminiscent of aggregates (Page 4, Page 6).

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors set out to explore the role of upstream open reading frames (uORFs) in stabilizing protein levels during Drosophila development and evolution. By utilizing a modified ICIER model for ribosome translation simulations and conducting experimental validations in Drosophila species, the study investigates how uORFs buffer translational variability of downstream coding sequences. The findings reveal that uORFs significantly reduce translational variability, which contributes to gene expression stability across different biological contexts and evolutionary timeframes.

      We thank the reviewer for carefully reading our manuscript and providing thoughtful and constructive feedback. We believe the manuscript has been significantly improved by incorporating your suggestions. Please find our detailed responses and corresponding revisions below.

      Strengths:

      (1) The study introduces a sophisticated adaptation of the ICIER model, enabling detailed simulation of ribosomal traffic and its implications for translation efficiency.

      (2) The integration of computational predictions with empirical data through knockout experiments and translatome analysis in Drosophila provides a compelling validation of the model's predictions.

      (3) By demonstrating the evolutionary conservation of uORFs' buffering effects, the study provides insights that are likely applicable to a wide range of eukaryotes.

      We appreciate your positive feedback and thoughtful summary of the strengths of our study.

      Weaknesses:

      (1) Although the study is technically sound, it does not clearly articulate the mechanisms through which uORFs buffer translational variability. A clearer hypothesis detailing the potential molecular interactions or regulatory pathways by which uORFs influence translational stability would enhance the comprehension and impact of the findings.

      Thanks for your constructive comments. In the Discussion section of our previous submission (Original Lines 470-489), we proposed that uORFs function as “molecular dams” to smooth out fluctuations in ribosomal flow toward downstream CDS regions, primarily via mechanisms involving ribosome collision and dissociation. To further address your concern, we have expanded the Discussion and included a new model figure (Fig. 9) to more clearly articulate the potential biological and mechanistic basis by which translating 80S ribosomes may induce the dissociation of 40S ribosomes. The revised section (Lines 540–557) now reads:

      “Ribosome slowdown or stalling on mRNA due to rare codons [56,96-98] or nascent blocking peptides [99-102] frequently triggers ribosome collisions genome-wide [103-105]. Such collisions, especially among elongating 80S ribosomes, often activate ribosome quality control (RQC) pathways that recognize collision interfaces on the 40S subunit, leading to ribosomal subunit dissociation and degradation [106-108]. In mammals, ZNF598 specifically identifies collided ribosomes to initiate ubiquitin-dependent protein and mRNA quality control pathways [109-113]. Analogously, yeast employs Hel2-mediated ubiquitination of uS10, initiating dissociation via the RQC-trigger complex (RQT) [114]. Furthermore, the human RQT (hRQT) complex recognizes ubiquitinated ribosomes and induces subunit dissociation similarly to yeast RQT [115]. However, transient ribosome collisions can evade RQC by promoting resumed elongation through mechanical force provided by trailing ribosomes, thereby mitigating stalling [116]. Beyond 80S collisions, evidence increasingly highlights a distinct collision type involving scanning 40S subunits or pre-initiation (43S) complexes. Recently, an initiation RQC pathway (iRQC) targeting the small ribosomal subunit (40S) has been described, particularly involving collisions between scanning 43S complexes or between stalled 43S and elongating 80S ribosomes (Figure 9B) [117,118]. During iRQC, E3 ubiquitin ligase RNF10 ubiquitinates uS3 and uS5 proteins, resulting in 40S degradation [118]. This mechanism aligns closely with our ICIER model, proposing collision-driven 43S dissociation in the 5' UTRs. Future studies exploring these mechanisms in greater detail will clarify how uORFs modulate translational regulation through buffering effects.”

      (2) The study could be further improved by a discussion regarding the evolutionary selection of uORFs. Specifically, it would be beneficial to explore whether uORFs are favored evolutionarily primarily for their role in reducing translation efficiency or for their capability to stabilize translation variability. Such a discussion would provide deeper insights into the evolutionary dynamics and functional significance of uORFs in genetic regulation.

      Thank you for this insightful suggestion. We agree that understanding whether uORFs are evolutionarily favored for their role in translational repression or for their capacity to buffer translational variability is a compelling and unresolved question. Our study suggests that translational buffering, rather than translational repression alone, can also drive evolutionary selection favoring uORFs, although it remains challenging to empirically disentangle these functions due to their inherent linkage. We have expanded the discussion in the revised manuscript to address this point in more detail (Lines 494-513), which is reproduced as follows:

      “Previous studies have shown that a significant fraction of fixed uORFs in the populations of D. melanogaster and humans were driven by positive Darwinian selection 63,67, suggesting active maintenance through adaptive evolution rather than purely neutral or deleterious processes. While uORFs have traditionally been recognized for their capacity to attenuate translation of downstream CDSs, accumulating evidence now underscores their critical role in stabilizing gene expression under fluctuating cellular and environmental conditions [43,55,56]. Whether the favored evolutionary selection of uORFs acts primarily through their role in translational repression or translational buffering remains a compelling yet unresolved question, as these two functions are inherently linked. Indeed, highly conserved uORFs tend to be translated at higher levels, resulting not only in stronger inhibition of CDS translation [34,45,67] but also in a more pronounced buffering effect, as demonstrated in this study. This buffering capacity of uORFs potentially provides selective advantages by reducing fluctuations in protein synthesis, thus minimizing gene-expression noise and enhancing cellular homeostasis. This suggests that selection may favor uORFs that contribute to translational robustness, a hypothesis supported by findings in yeast and mammals showing that uORFs are significantly enriched in stressresponse genes and control the translation of certain master regulators of stress responses [41,42,94,95]. Our study suggests that translational buffering, rather than translational repression alone, can also drive evolutionary selection favoring uORFs, although it remains challenging to empirically disentangle these functions. Future comparative genomic analyses, coupled with experimental approaches such as ribosome profiling and functional mutagenesis, will be crucial in elucidating the precise evolutionary forces driving uORF conservation and adaptation.”

      Reviewer #2 (Public review):

      uORFs, short open reading frames located in the 5' UTR, are pervasive in genomes. However, their roles in maintaining protein abundance are not clear. In this study, the authors propose that uORFs act as "molecular dam", limiting the fluctuation of the translation of downstream coding sequences. First, they performed in silico simulations using an improved ICIER model, and demonstrated that uORF translation reduces CDS translational variability, with buffering capacity increasing in proportion to uORF efficiency, length, and number. Next, they analzed the translatome between two related Drosophila species, revealing that genes with uORFs exhibit smaller fluctuations in translation between the two species and across different developmental stages within the same specify. Moreover, they identified that bicoid, a critical gene for Drosophila development, contains a uORF with substantial changes in translation efficiency. Deleting this uORF in Drosophila melanogaster significantly affected its gene expression, hatching rates, and survival under stress condition. Lastly, by leveraging public Ribo-seq data, the authors showed that the buffering effect of uORFs is also evident between primates and within human populations. Collectively, the study advances our understanding of how uORFs regulate the translation of downstream coding sequences at the genome-wide scale, as well as during development and evolution.

      The conclusions of this paper are mostly well supported by data, but some definitions and data analysis need to be clarified and extended.

      We thank the reviewer for the thoughtful and constructive review. Your summary accurately captures the key findings of our study. We have carefully addressed all your concerns in the revised manuscript, and we believe it has been significantly improved based on your valuable input.

      (1) There are two definitions of translation efficiency (TE) in the manuscript: one refers to the number of 80S ribosomes that complete translation at the stop codon of a CDS within a given time interval, while the other is calculated based on Ribo-seq and mRNA-seq data (as described on Page 7, line 209). To avoid potential misunderstandings, please use distinct terms to differentiate these two definitions.

      Thank you for highlighting this important point, and we apologize for the confusion. The two definitions of translation efficiency (TE) in our manuscript arise from methodological differences between simulation and experimental analyses. To clarify, in the revised manuscript, we use “translation rate” in the context of simulations to describe the number of 80S ribosomes completing translation at the CDS stop codon per unit time. We retain the conventional “translation efficiency (TE)” for Ribo-seq–based measurements. 

      In this revised manuscript, we have added a more detailed explanation of TE in the revised manuscript (Lines 202–206), which now reads:

      “For each sample, we followed established procedures [62-66] to calculate the translational efficiency (TE) for each feature (CDS or uORF). TE serves as a proxy for the translation rate at which ribosomes translate mRNA into proteins, typically quantified by comparing the density of ribosome-protected mRNA fragment (RPF) to the mRNA abundance for that feature (see Materials and Methods).”

      (2) Page 7, line 209: "The translational efficiencies (TEs) of the conserved uORFs were highly correlated between the two species across all developmental stages and tissues examined, with Spearman correlation coefficients ranging from 0.478 to 0.573 (Fig. 2A)." However, the authors did not analyze the correlation of translation efficiency of conserved CDSs between the two species, and compare this correlation to the correlation between the TEs of CDSs. These analyzes will further support the authors conclusion regarding the role of conserved uORFs in translation regulation.

      In the revised manuscript, we have incorporated a comparison of translational efficiency (TE) correlations for conserved CDSs between the two species. We found that CDSs exhibit significantly higher interspecific TE correlations than uORFs, with Spearman’s rho ranging from 0.588 to 0.806. This suggests that uORFs tend to show greater variability in TE than CDSs, consistent with our model in which uORFs buffer fluctuations in downstream CDS translation. The updated results were included in the revised manuscript (Lines 223-227) as follows:

      “In contrast, TE of CDSs exhibited a significantly higher correlation between the two species in the corresponding samples compared to that of uORFs, with Spearman’s rho ranging from 0.588 to 0.806 (P = 0.002, Wilcoxon signed-rank test; Figure 2A). This observation is consistent with our simulation results, which indicate that uORFs experience greater translational fluctuations than their downstream CDSs.”

      (3) Page 8, line 217: "Among genes with multiple uORFs, one uORF generally emerged as dominant, displaying a higher TE than the others within the same gene (Fig. 2C)." The basis for determining dominance among uORFs is not explained and this lack of clarification undermines the interpretation of these findings.

      Thank you for pointing this out. We apologize for the confusion. In our study, a “dominant” uORF is defined as the one with the highest translation efficiency (TE) among all uORFs within the same gene. This designation is based solely on TE, which we consider a key metric for uORF activity, as it directly reflects translational output and potential regulatory impact. We have revised the manuscript to clarify this definition (Lines 232–244), now stating:

      “Among genes with multiple uORFs, we defined the uORF with the highest TE as the dominant uORF for that gene, as TE is one of the most relevant metrics for assessing uORF function 45,67…… These results suggest that genes with multiple uORFs tend to retain the same dominant uORF across developmental stages, indicating that the dominant uORFs may serve as the key translational regulator of the downstream CDS.

      (4) According to the simulation, the translation of uORFs should exhibit greater variability than that of CDSs. However, the authors observed significantly fewer uORFs with significant TE changes compared to CDSs. This discrepancy may be due to lower sequencing depth resulting in fewer reads mapped to uORFs. Therefore, the authors may compare this variability specifically among highly expressed genes.

      Thank you for this thoughtful observation. We agree that the lower proportion of uORFs showing significant TE changes compared to CDSs, as reported in Table 1, appears inconsistent with our conclusion that uORFs exhibit greater translational variability. However, this discrepancy is largely attributable to differences in sequencing depth and feature length—uORFs are generally much shorter and more weakly expressed than CDSs, resulting in fewer mapped reads and reduced statistical power (Figure S18A).

      To address this issue, we first followed your suggestion and restricted our analysis to genes with both mRNA and RPF RPKM values above the 50th percentile in D. melanogaster and D. simulans. While this filtering increased the total proportion of features with significant TE changes (due to improved read coverage), the proportion of significant uORFs still remained lower than that of CDSs (Table R1). This suggests that even among highly expressed genes, the disparity in read counts between uORFs and CDSs persists (Figure S18B), and thus the issue is not fully resolved.

      To better capture biological relevance, we compared the absolute values of log2(TE changes) between D. melanogaster and D. simulans for uORFs and their corresponding CDSs. Across all samples, uORFs consistently exhibit larger TE shifts than their downstream CDSs, supporting our model that uORFs act as translational buffers (Figure 3B).

      We have made relevant changes to report the new analysis in this revised manuscript. Specifically, in our original submission, we stated this observation with the sentence “The smaller number of uORFs showing significant TE changes compared to CDSs between D. melanogaster and D. simulans likely reflects their shorter length and reduced statistical power, rather than indicating that uORFs are less variable in translation than CDSs.” To make this point clearer, in the revised version (Lines 275-284), we rephrased this sentence which read as follows: 

      “Note that due to their shorter length and generally lower TE, uORFs had considerably lower read counts than CDSs, limiting the statistical power to detect significant interspecific TE differences for uORFs. This trend consistently holds whether analyzing all expressed uORFs (Figure S18A) or only highly expressed genes (Figure S18B). Thus, the fewer uORFs showing significant TE divergence likely reflects lower read counts and statistical sensitivity rather than reduced translational variability relative to CDSs. In fact, the absolute values of log2(fold change) of TE for uORFs between D. melanogaster and D. simulans were significantly greater than those observed for corresponding CDSs across all samples (P < 0.001, Wilcoxon signed-rank test; Figure 3B), suggesting that the magnitude of

      TE changes in CDSs is generally smaller than that in uORFs, due to the buffering effect of uORF.”

      Author response table 1.

      Proportion of uORFs and CDSs with significant TE changes before and after selecting HEGs

      (5) If possible, the author may need to use antibodies against bicoid to test the effect of ATG deletion on bicoid expression, particularly under different developmental stages or growth conditions.

      According to the authors' conclusions, the deletion mutant should exhibit greater variability in bicoid protein abundance. This experiment could provide strong support for the proposed mechanisms.

      Thank you for this excellent suggestion. We fully agree that testing Bcd protein levels across developmental stages or stress conditions using antibodies would be a strong validation of our model, which predicts greater variability in Bcd protein abundance upon uORF deletion.

      In fact, we attempted such experiments in both wild-type and mutant backgrounds. However, we encountered substantial difficulties in obtaining a reliable anti-Bcd antibody. Some Bcd antibodies referenced in the published literature were homemade and often shared among research groups as gifts [1-3] and some commercially available antibodies cited in previous studies are no longer supplied by vendors [4-6]. We managed to obtain a custom-made antibody from Professor Feng Liu, but unfortunately, it produced inconsistent and unsatisfactory results. Despite considerable effort—including during the COVID-19 pandemic—we were unable to identify a reagent suitable for robust and reproducible detection of Bcd protein.

      As an alternative, we used sucrose gradient fractionation followed by qPCR to directly measure the translation efficiency of bicoid in vivo. We believe this approach offers a clear and quantitative readout of translational activity, and it avoids potential confounding from protein degradation, which may vary across conditions and developmental stages. Nonetheless, we recognize the value of antibody-based validation and will pursue this direction in future work if reliable antibodies become available. We have added this limitation to the revised Discussion section (Lines 563–568) as follows:

      “We demonstrated that the bcd uORF represses CDS translation using sucrose gradient fractionation followed by qPCR—an approach that directly measures translation efficiency while minimizing confounding from RNA/protein degradation. However, detecting Bcd protein levels with antibodies across developmental stages or conditions in the mutants and wild-type controls would provide an even stronger validation of our model and should be explored in future studies.”

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors):

      (1) The authors should provide a more detailed explanation for the modifications made to the ICIER model. Specifically, an explanation of the biological or mechanistic rationale behind the ability of the 80S ribosome to cause upstream 40S ribosomes to dissociate from mRNA would help clarify this aspect of the model.

      Thank you for this suggestion. In the original submission, we described our modifications to the ICIER model in the section titled “An extended ICIER model for quantifying uORF buffering in CDS translation” (Lines 88-124 of the revised manuscript). 

      To further clarify the biological rationale behind this mechanism, we have now included a conceptual model figure (Figure 9) illustrating mechanistically how uORF translation can buffer downstream translation within a single mRNA molecule. Additionally, we expanded the Discussion to summarize the current understanding of how collisions between translating 80S ribosomes and scanning 40S subunits may lead to dissociation, referencing known initial ribosome quality control (iRQC) pathways. These revisions provide a clearer mechanistic framework for interpreting the buffering effects modeled in our simulations. The relevant part is reproduced from Discussion (Lines 540-557) which reads as follows:

      “Ribosome slowdown or stalling on mRNA due to rare codons [56,96-98] or nascent blocking peptides [99-102] frequently triggers ribosome collisions genome-wide [103-105]. Such collisions, especially among elongating 80S ribosomes, often activate ribosome quality control (RQC) pathways that recognize collision interfaces on the 40S subunit, leading to ribosomal subunit dissociation and degradation [106-108]. In mammals, ZNF598 specifically identifies collided ribosomes to initiate ubiquitin-dependent protein and mRNA quality control pathways [109-113]. Analogously, yeast employs Hel2-mediated ubiquitination of uS10, initiating dissociation via the RQC-trigger complex (RQT) [114]. Furthermore, the human RQT (hRQT) complex recognizes ubiquitinated ribosomes and induces subunit dissociation similarly to yeast RQT [115]. However, transient ribosome collisions can evade RQC by promoting resumed elongation through mechanical force provided by trailing ribosomes, thereby mitigating stalling [116]. Beyond 80S collisions, evidence increasingly highlights a distinct collision type involving scanning 40S subunits or pre-initiation (43S) complexes. Recently, an initiation RQC pathway (iRQC) targeting the small ribosomal subunit (40S) has been described, particularly involving collisions between scanning 43S complexes or between stalled 43S and elongating 80S ribosomes (Figure 9B) [117,118]. During iRQC, E3 ubiquitin ligase RNF10 ubiquitinates uS3 and uS5 proteins, resulting in 40S degradation [118]. This mechanism aligns closely with our ICIER model, proposing collision-driven 43S dissociation in the 5' UTRs. Future studies exploring these mechanisms in greater detail will clarify how uORFs modulate translational regulation through buffering effects.”

      (2) The figure legend references Figure 5C; however, this figure appears to be missing from the document.

      We apologize for the oversight. The missing panel previously referred to as Figure 5C has now been incorporated into the revised Figure 6A. The figure and its corresponding legend have been corrected accordingly in the updated manuscript.

      Reviewer #2 (Recommendations for the authors):

      This is an important study that enhances our understanding of the roles of uORFs in translational regulation. In addition to the suggestions provided in the public review, the following minor points should be addressed before publication in eLife:

      (1) Page 7, line 207: "We identified 18,412 canonical uORFs shared between the two species (referred to as conserved uORFs hereafter)." The term "canonical uORFs" requires clarification. Does this refer to uORFs with specific sequence features, conservation, or another defining characteristic?

      Thank you for pointing this out. We apologize for the lack of clarity. In our study, a canonical uORF is defined as an open reading frame (ORF) that initiates with a canonical AUG start codon located in the 5′ untranslated region (UTR) and terminates with a stop codon (UAA, UAG, or UGA) within the same mRNA. Conservation of uORFs is defined solely based on the presence of AUG start codons at orthologous positions in the 5′ UTR across species, regardless of differences in the stop codon.

      To clarify this definition, we have revised the sentence as follows (Lines 213-219): “We focused on canonical uORFs that initiate with an ATG start codon in the 5′ UTR and terminate with a stop codon (TAA, TAG, or TGA). Because the ATG start codon is the defining feature of a canonical uORF and tends to be more conserved than its downstream sequence [67], we defined uORF conservation based on the presence of the ATG start codon in the 5′ UTR of D. melanogaster and its orthologous positions in D. simulans, regardless of differences in the stop codon. Using this criterion, we identified 18,412 canonical uORFs with conserved start codons between the two species.”

      (2) Page 8, line 227: "Furthermore, the dominant uORFs showed a higher proportion of conserved uATGs than the other translated uORFs." There appears to be a typographical error. Should "other uATGs" instead read "other uORFs"?

      Thank you for pointing this out. As we addressed in response to your previous concern, in this study, we defined uORF conservation primarily based on the presence of their start codon (uATG) both in D. melanogaster and the orthologous sites of D. simulans, as the start codon is the defining feature of a uORF and tends to be more conserved than the remaining sequence, as demonstrated in our previous study [7]. We used the term “conserved uATGs” to reflect this definition and believe it accurately conveys the intended meaning in this context.

      (3) Page 8, line 240: "uORFs exhibited a significant positive correlation with the TE of their downstream CDSs in all samples analyzed (P < 0.001, Spearman's correlation)." A Spearman's rho of 0.11 or 0.21 may not practically represent a "significant" positive correlation. Consider rephrasing this as "a positive correlation."

      Thank you for the suggestion. We have revised the sentence in the manuscript to read (Lines 257-259): “uORFs exhibited a modest, yet statistically significant, positive correlation with the TE of their downstream CDSs across all samples analyzed (P < 0.001, Spearman’s correlation).”

      (4) Page 9, line 269: The analysis of interspecific TE changes between uORFs and their corresponding CDSs is a crucial piece of evidence supporting the authors' conclusions. Presenting this analysis as part of the figures, rather than in "Table 1," would improve clarity and accessibility.

      Thank you for this suggestion. In Table 1, we originally presented the number of uORFs and CDSs that showed significant differences in TE between D. melanogaster and D. simulans during various developmental stages. One key point we aimed to emphasize was that, although TE changes in uORFs and their downstream CDSs are positively correlated, there is a notable difference in the magnitude of these changes. To better convey this, we have summarized the core findings of Table 1 in graphical form.

      In Figure 3B of the revised version, we compared the absolute values of interspecific TE changes between CDS and uORF, showing that CDSs consistently exhibit smaller shifts than their upstream uORFs. This result further supports the translational buffering effect of uORFs on downstream CDS expression. We have included the updated results in the revised manuscript (Lines 281-284) as follows:

      “In fact, the absolute values of log2(fold change) of TE for uORFs between D. melanogaster and D. simulans was significantly greater than that observed for corresponding CDSs across all samples (P < 0.001, Wilcoxon signed-rank test; Figure 3B), suggesting that the magnitude of TE changes in CDSs is generally smaller than that in uORFs, due to the buffering effect of uORF.”

      (5) Page 9, line 279: The phrase "dominantly translated" needs clarification. Does it refer to Figure 2C, where one uORF is dominantly translated within a gene, or does it mean that the uORF's translation is higher than that of its corresponding CDS?

      We apologize for the obscurity. The phrase "dominantly translated" means one uORF with the highest TE compared to other uORFs within a gene. We have rephrased the relevant sentence in the revised version (Lines 299-304), which now reads:

      “To investigate how the conservation level and translation patterns of uORFs influence their buffering capacity on CDS translation, we categorized genes expressed in each pair of samples into three classes:

      Class I, genes with conserved uORFs that are dominantly translated (i.e., exhibiting the highest TE among all uORFs within the same gene) in both Drosophila species; Class II, genes with conserved uORFs that are translated in both species but not dominantly translated in at least one; and Class III, the remaining expressed genes.”

      (6) The sequencing data and analysis code should be made publicly available before publication to ensure transparency and reproducibility.

      Thank you for this suggestion. As described in the Data availability section, all deepsequencing data generated in this study, including single-ended mRNA-Seq and Ribo-Seq data of 10 developmental stages and tissues of Drosophila simulans and paired-end mRNA-Seq data of 0-2 h, 26 h, 6-12 h, and 12-24 h Drosophila melanogaster embryos, were deposited in the China National Genomics Data Center Genome Sequence Archive (GSA) under accession numbers CRA003198, CRA007425, and CRA007426. The mRNA-Seq and Ribo-Seq data for the different developmental stages and tissues of Drosophila melanogaster were published in our previous paper [8] and were deposited in the Sequence Read Archive (SRA) under accession number SRP067542.

      All original code has been deposited on GitHub: https://github.com/lujlab/uORF_buffer; https://github.com/lujlab/Buffer_eLife2025.

      Response reference

      (1) Li, X.Y., MacArthur, S., Bourgon, R., Nix, D., Pollard, D.A., Iyer, V.N., Hechmer, A., Simirenko, L., Stapleton, M., Luengo Hendriks, C.L., et al. (2008). Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6, e27. 10.1371/journal.pbio.0060027.

      (2) Horner, V.L., Czank, A., Jang, J.K., Singh, N., Williams, B.C., Puro, J., Kubli, E., Hanes, S.D., McKim, K.S., Wolfner, M.F., and Goldberg, M.L. (2006). The Drosophila calcipressin sarah is required for several aspects of egg activation. Curr Biol 16, 1441-1446. 10.1016/j.cub.2006.06.024.

      (3) Lee, K.M., Linskens, A.M., and Doe, C.Q. (2022). Hunchback activates Bicoid in Pair1 neurons to regulate synapse number and locomotor circuit function. Curr Biol 32, 2430-2441 e2433. 10.1016/j.cub.2022.04.025.

      (4) Wharton, T.H., Nomie, K.J., and Wharton, R.P. (2018). No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo. PLoS One 13, e0194865. 10.1371/journal.pone.0194865.

      (5) Wang, J., Zhang, S., Lu, H., and Xu, H. (2022). Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction. Nat Commun 13, 2714. 10.1038/s41467-022-30315-6.

      (6) Xu, H., Sepulveda, L.A., Figard, L., Sokac, A.M., and Golding, I. (2015). Combining protein and mRNA quantification to decipher transcriptional regulation. Nat Methods 12, 739-742. 10.1038/nmeth.3446.

      (7) Zhang, H., Wang, Y., Wu, X., Tang, X., Wu, C., and Lu, J. (2021). Determinants of genomewide distribution and evolution of uORFs in eukaryotes. Nat Commun 12, 1076. 10.1038/s41467-021-21394-y.

      (8) Zhang, H., Dou, S., He, F., Luo, J., Wei, L., and Lu, J. (2018). Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biol 16, e2003903. 10.1371/journal.pbio.2003903.

    1. Reviewer #1 (Public review):

      Summary:

      Wang et al. identify Hamlet, a PR-containing transcription factor, as a master regulator of reproductive development in Drosophila. Specifically, the fusion between the gonad and genital disc that is necessary for development of a continuous testes and seminal vesicle tissue essential for fertility. To do so, the authors generate novel Hamlet null mutants by CRISPR/Cas9 gene editing and characterize the morphological, physiological, and gene expression changes of the mutants using immunofluorescence, RNA-seq, cut-tag, and in-situ analysis. Thus, Hamlet is discovered to regulate a unique expression program, which includes Wnt2 and Tl, that is necessary for testis development and fertility.

      Strengths:

      This is a rigorous and comprehensive study that identifies the Hamlet dependent gene expression program mediating reproductive development in Drosophila. The Hamlet transcription targets are further characterized by Gal4/UAS-RNAi confirming their role in reproductive development. Finally, the study points to a role for Wnt2 and Tl as well as other Hamlet transcriptionally regulated genes in epithelial tissue fusion.

      Weaknesses:

      None noted.

    2. Reviewer #2 (Public review):

      Strengths:

      Wang and colleagues successfully uncovered an important function of the Drosophila PRDM16/PRDM3 homolog Hamlet (Ham) - a PR domain containing transcription factor with known roles in the nervous system in Drosophila. To do so, they generated and analyzed new mutants lacking the PR domain, and also employed diverse preexisting tools. In doing so, they made a fascinating discovery: They found that PR-domain containing isoforms of ham are crucial in the intriguing development of the fly genital tract. Wang and colleagues found three distinct roles of Ham: (1) Specifying the position of the testis terminal epithelium within the testis, (2) allowing normal shaping and growth of the anlagen of the seminal vesicles and paragonia and (3) enabling the crucial epithelial fusion between the seminal vesicle and the testis terminal epithelium. The mutant blocks fusion even if the parts are positioned correctly. The last finding is especially important, as there are few models allowing one to dissect the molecular underpinnings of heterotypic epithelial fusion in development. Their data suggest that they found a master regulator of this collective cell behavior. Further, they identified some of the cell biological players downstream of Ham, like for example E-Cadherin and Crumbs. In a holistic approach, they performed RNAseq and intersected them with the CUT&TAG-method, to find a comprehensive list of downstream factors directly regulated by Ham. Their function in the fusion process was validated by a tissue-specific RNAi screen. Meticulously, Wang and colleagues performed multiplexed in situ hybridization and analyzed different mutants, to gain a first understanding of the most important downstream-pathways they characterized - which are Wnt2 and Toll.

      This study pioneers a completely new system. It is a model for exploring a process crucial in morphogenesis across animal species, yet not well-understood. Wang and colleagues not only identified a crucial regulator of heterotypic epithelial fusion but took on the considerable effort of meticulously pinning down functionally important downstream effectors by using many state-of-the-art methods. This is especially impressive, as dissection of pupal genital discs before epithelial fusion is a time-consuming and difficult task. This promising work will be the foundation future studies build on, to further elucidate how this epithelial fusion works, for example on a cell biological and biomechanical level.

      Weaknesses:

      The developing testis-genital disc system has many moving parts. Myotube migration was previously shown to be crucial for testis shape. This means, that there is the potential of non-tissue autonomous defects upon knockdown of genes in the genital disc or the terminal epithelium, affecting myotube behavior which in turn affects epithelial fusion, as myotubes might create the first "bridge" bringing the two epithelia together. Nevertheless, this is outside the scope of this work and could be addressed in the future.

    3. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      Summary: 

      Wang et al. identify Hamlet, a PR-containing transcription factor, as a master regulator of reproductive development in Drosophila. Specifically, the fusion between the gonad and genital disc is necessary for the development of continuous testes and seminal vesicle tissue essential for fertility. To do this, the authors generate novel Hamlet null mutants by CRISPR/Cas9 gene editing and characterize the morphological, physiological, and gene expression changes of the mutants using immunofluorescence, RNA-seq, cut-tag, and in-situ analysis. Thus, Hamlet is discovered to regulate a unique expression program, which includes Wnt2 and Tl, that is necessary for testis development and fertility. 

      Strengths: 

      This is a rigorous and comprehensive study that identifies the Hamlet-dependent gene expression program mediating reproductive development in Drosophila. The Hamlet transcription targets are further characterized by Gal4/UAS-RNAi confirming their role in reproductive development. Finally, the study points to a role for Wnt2 and Tl as well as other Hamlet transcriptionally regulated genes in epithelial tissue fusion. 

      We appreciate that the reviewer thinks our study is rigorous.

      Weaknesses: 

      The image resolution and presentation of figures is a major issue in this study. As a nonexpert, it is nearly impossible to see the morphological changes as described in the results. Quantification of all cell biological phenotypes is also lacking therefore reducing the impact of this study to those familiar with tissue fusion events in Drosophila development. 

      In the revised version, we have improved the image presentation and resolution. For all the images with more than two channels, we included single-channel images, changed the green color to lime and the red to magenta, highlighted the testis (TE) and seminal vescicles to make morphological changes more visible.  

      We had quantification for marker gene expression in the original version, and now also included quantification for cell biological phenotypes which are generally with 100% penetrance.  

      Reviewer #2 (Public review): 

      Strengths: 

      Wang and colleagues successfully uncovered an important function of the Drosophila PRDM16/PRDM3 homolog Hamlet (Ham) - a PR domain-containing transcription factor with known roles in the nervous system in Drosophila. To do so, they generated and analyzed new mutants lacking the PR domain, and also employed diverse preexisting tools. In doing so, they made a fascinating discovery: They found that PR-domain containing isoforms of ham are crucial in the intriguing development of the fly genital tract. Wang and colleagues found three distinct roles of Ham: (1) specifying the position of the testis terminal epithelium within the testis, (2) allowing normal shaping and growth of the anlagen of the seminal vesicles and paragonia and (3) enabling the crucial epithelial fusion between the seminal vesicle and the testis terminal epithelium. The mutant blocks fusion even if the parts are positioned correctly. The last finding is especially important, as there are few models allowing one to dissect the molecular underpinnings of heterotypic epithelial fusion in development. Their data suggest that they found a master regulator of this collective cell behavior. Further, they identified some of the cell biological players downstream of Ham, like for example E-Cadherin and Crumbs. In a holistic approach, they performed RNAseq and intersected them with the CUT&TAG-method, to find a comprehensive list of downstream factors directly regulated by Ham. Their function in the fusion process was validated by a tissue-specific RNAi screen. Meticulously, Wang and colleagues performed multiplexed in situ hybridization and analyzed different mutants, to gain a first understanding of the most important downstream pathways they characterized, which are Wnt2 and Toll. 

      This study pioneers a completely new system. It is a model for exploring a process crucial in morphogenesis across animal species, yet not well understood. Wang and colleagues not only identified a crucial regulator of heterotypic epithelial fusion but took on the considerable effort of meticulously pinning down functionally important downstream effectors by using many state-of-the-art methods. This is especially impressive, as the dissection of pupal genital discs before epithelial fusion is a time-consuming and difficult task. This promising work will be the foundation future studies build on, to further elucidate how this epithelial fusion works, for example on a cell biological and biomechanical level. 

      We appreciate that the reviewer thinks our study is orginal and important.

      Weaknesses: 

      The developing testis-genital disc system has many moving parts. Myotube migration was previously shown to be crucial for testis shape. This means, that there is the potential of non-tissue autonomous defects upon knockdown of genes in the genital disc or the terminal epithelium, affecting myotube behavior which in turn affects fusion, as myotubes might create the first "bridge" bringing the epithelia together. The authors clearly showed that their driver tools do not cause expression in myoblasts/myotubes, but this does not exclude non-tissue autonomous defects in their RNAi screen. Nevertheless, this is outside the scope of this work. 

      We thank the reviewer’s consideration of non-tissue autonomous defects upon gene knockdown. The driver, hamRSGal4, drives reporter gene expression mainly in the RS epithelia, but we did observe weak expression of the reporter in the myoblasts before they differentiate into myotubes. Thus, we could not rule out a non-tissue autonomou effect in the RNAi screen. So we now included a statement in the result, “Given that the hamRSGal4 driver is highly expressed in the TE and SV epithelia, we expect highly effective knockdown occurs only in these epithelial cells. However, hamRSGal4 also drives weak expression in the myoblasts before they differentiated into myotubes (Supplementary Fig. 5B), which may result in a non-tissue autonomous effect when knocking down the candidate genes expressed in myoblasts.”

      However, one point that could be addressed in this study: the RNAseq and CUT&TAG experiments would profit from adding principal component analyses, elucidating similarities and differences of the diverse biological and technical replicates. 

      Thanks for the suggestion. We now have included the PCA analyses in supplementary figure 6A-B and the corresponding description in the text. The PCA graphs validated the consistency between biological replicates of the RNA-seq samples. The Cut&Tag graphs confirm the consistency between the two biological replicates from the GFP samples, but show a higher variability between the w1118 replicates. Importantly, we only considered the overlapped peaks pulled by the GFP antibody from the ham_GFP genotype and the Ham antibody from the wildtype (w1118) sample as true Ham binding sites. 

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors): 

      Major Concern: 

      (1) The image resolution and presentation of figures (Figures 2, 5, 6, and 7) is a major issue in this study. As a non-expert, it is nearly impossible to see the morphological changes as described in the results. Images need to be captured at higher resolution and zoomed in with arrows denoting changes as described. Individual channels, particularly for intensity measurement need to be shown in black and white in addition to merged images. Images also need pseudo-colored for color-blind individuals (i.e. no red-green staining). 

      The images were captured at a high resolution, but somehow the resolution was drammaticlly reduced in the BioRxiv PDF. We try to overcome this by directly submitting the PDF in the Elife submission system. In the revised version, we have included single-channel images, changed the green and red colors to lime and magenta for color blindness. We also highlighted the testis (TE) and seminal vescicle structures in the images to make morphological changes more visible.  

      (2) The penetrance of morphological changes observed in RT development is also unclear and needs to be rigorously quantified for data in Figures 2, 5, and 7. 

      We now included quantification for cell biological phenotypes which are generally with 100% penetrance. The percentage of the penetrance and the number of animals used are indicated in each corresponding image.  

      Reviewer #2 (Recommendations for the authors): 

      Major Points 

      (1) Lines 193- 220 I would strongly suggest pointing out the obvious shape defects of the testes visible in Figure 2A ("Spheres" instead of "Spirals"). These are probably a direct consequence of a lack in the epithelial connection that myotubes require to migrate onto the testis (in a normal way) as depicted in the cartoons, allowing the testis to adopt a spiral shape through myotube-sculpting (Bischoff et al., 2021), further confirming the authors' findings! 

      Good point. In the revised text, we have added more description of the testis shape defects and pointed out a potential contribution from compromised myotube migration.   

      (2) Line 216: "Often separated from each other". Here it would be important to mention how often. If the authors cannot quantify that from existing data, I suggest carrying it out in adult/pharate adult genital tracts (if there is no strong survivor bias due to the lethality of stronger affected animals), as this is much easier than timing prepupae. This should be a quick and easy experiment. 

      Because it is hard to tell whether the separation of the SV and TE was caused by developmental defects or sometimes could be due to technical issues (bad dissection), we now change the description to, “control animals always showed connected TE and SV, whereas ham mutant TE and SV tissues were either separated from each other, or appeared contacted but with the epithelial tubes being discontinuous (Fig. 2B).” Additionally, we quantified the disconnection phenotype, which is 100% penetrance in 18 mutant animals. This quantification is now included in the figure. 

      (3) Lines 289-305, Figure 3. I could only find how many replicates were analyzed in the RNAseq/CUT&Tag experiments in the Material & Methods section. I would add that at least in the figure legends, and perhaps even in the main text. Most importantly, I would add a Principal Component Analysis (one for RNAseq and one for the CUT&TAG experiment), to demonstrate the similarity of biological replicates (3x RNaseq, 4x Cut&Tag) but also of the technical replicates (RNAseq: wt & wt/dg, ham/ham & ham/df, GD & TE; CUT&TAG: Antibody & GFP-Antibody, TG&TE...). This should be very easy with the existing data, and clearly demonstrate similarities & differences in the different types of replicates and conditions. 

      Principle component analysis and its description are now added to Supplementary Fig 6 and the main text respectively. 

      (4) Line 321; Supplementary Table 1: In the table, I cannot find which genes are down- or upregulated - something that I think is very important. I would add that, and remove the "color" column, which does not add any useful information. 

      In Supplementary table 1, the first sheet includes upregulated genes while the second sheet includes downregulated genes. We removed the column “color” as suggested.  

      (5) Line 409: SCRINSHOT was carried out with candidate genes from the screen. One gene I could not find in that list was the potential microtubule-actin crosslinker shot. If shot knockdown caused a phenotype, then I would clearly mention and show it. If not, I would mention why a shot is important, nonetheless. 

      shot is one of the candidate target genes selected from our RNA-seq and Cut&Tag data. However, in the RNAi screen, knocking down shot with the available RNAi lines did not cause any obvious phenotype. These could be due to inefficient RNAi knockdown or redundancy with other factors. We anyway wanted to examine shot expression pattern in the developing RS, give the important role of shot in epithelial fusion (Lee S., 2002). Using SCRINSHOT, we could detect epithelial-specific expression of shot, implying its potential function in this context. We now revised the text to clarify this point. 

      Minor points 

      (1) Cartoons in Figure 1: The cartoons look like they were inspired by the cartoon from Kozopas et al., 1998 Fig. 10 or Rothenbusch-Fender et al., 2016 Fig 1. I think the manuscript would greatly profit from better cartoons, that are closer to what the tissue really looks like (see Figure 1H, 2G), to allow people to understand the somewhat complicated architecture. The anlagen of the seminal vesicles/paragonia looks like a butterfly with a high columnar epithelium with a visible separation between paragonia/seminal vesicles (upper/lower "wing" of the "butterfly"). Descriptions like "unseparated" paragonia/seminal vesicle anlagen, would be much easier to understand if the cartoons would for example reflect this separation. It would even be better to add cartoons of the phenotypic classes too, and to put them right next to the micrographs. (Another nitpick with the cartoons: pigment cells are drastically larger and fewer in number (See: Bischoff et al., 2021 Figure 1E & MovieM1).) 

      Thanks for the suggestion. We have updated Figure 1 by adding additional illustrations showing the accessory gland and seminal vesicle structures in the pupal stage and changing the size of pigment cells.

      (2) Line 95-121 I would also briefly introduce PR domains, here. 

      We have added a brief descripition of the PR domains.

      (3) Line 152, 158, 160, 162. When first reading it, I was a bit confused by the usage of the word sensory organ. I would at least introduce that bristles are also known as external mechanosensory organs. 

      We have now revised the description to “mechano-sensory organ”.

      eg. Line 184, 194, and many more. Most times, the authors call testis muscle precursors "myoblasts". This is correct sometimes, but only when referring to the stage before myoblast-fusion, which takes place directly before epithelial fusion (28 h APF). Postmyoblast-fusion (eg. during migration onto the testis), these cells should be called myotubes or nascent myotubes, as the fly muscle community defined the term myoblast as the singlenuclei precursors to myotubes. 

      We have now revised the description accordingly.  

      (4) Line 217/Figure 2B. It looks like there is a myotube bridge between the testis and the genital disc. I would point that out if it's true. If the authors have a larger z-stack of this connection, I suggest creating an MIP, and checking if there are little clusters of two/three/four nuclei packed together. This would clearly show that the cells in between are indeed myotubes (granted that loss of ham does not introduce myoblast-fusion-defects). 

      We do not have a Z-stack of this connection, and thus can not confirm whether the cells in this image are myotubes. However, we found that mytubes can migrate onto the testis and form the muscular sheet in the ham mutant despite reduced myotube density. At the junction there are myotubes, suggesting that loss of ham does not introduce myoblast-fusion defects. These results are now included in the revised manuscript, supplementary Fig. 5 C-D.

      (5) Line 231/Supplementary Fig. 3C-G: I would add to the cartoons, where the different markers are expressed. 

      We have added marker gene expression in the cartoons.

      (6) Line 239. I don't see what Figure 1A/1H refers to, here. I would perhaps just remove it. 

      Yes, we have removed it.

      (7) Line 232. I would rephrase the beginning of the sentence to: Our data suggest Ham to be... 

      Yes, we have revised it.

      (8) Line 248-250/Figure 2F. Clonal analyses are great, but I think single channels should be shown in black and white. Also, a version without the white dashed line should be shown, to clearly see the differences between wt and ham-mutant cells. 

      Now single channel images from the green and red images are presented in Supplementary Figures. This particular one is in Supplementary Figure 3B. 

      (9) Line 490. The Toll-9 phenotype was identified on the sterility effect/lack-of-spermphenotype alone, and it was deduced, that this suggests connection defects. By showing the right focus plane in Fig S8B (lower right), it should be easy to directly show whether there is a connection defect or not. Also, one would expect clearer testis-shaping defects, like in ham-mutants, as a loss of connection should also affect myotube migration to shape the testis. This is just a minor point, as it only affects supplementary data with no larger impact on the overall findings, even if Toll-9 is shown not to have a defect, after all. 

      We find that scoring defects at the junction site at the adult stage is difficult and may not be always accurate. Instead, we score the presence of sperms in the SV, which indirectly but firmly suggests successful connection between the TE and SV. We have now included a quantification graph, showing the penetrance of the phentoype in the new Supplementary Fig.14C. There were indeed morphological defects of TE in Toll-9 RNAi animals. We now included the image and quantification in the new Supplementary Fig.14B.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public Review): 

      This study investigates the role of microtubules in regulating insulin secretion from pancreatic islet beta cells. This is of great importance considering that controlled secretion of insulin is essential to prevent diabetes. Previously, it has been shown that KIF5B plays an essential role in insulin secretion by transporting insulin granules to the plasma membrane. High glucose activates KIF5B to increase insulin secretion resulting in the cellular uptake of glucose. In order to prevent hypoglycemia, insulin secretion needs to be tightly controlled. Notably, it is known that KIF5B plays a role in microtubule sliding. This is important, as the authors described previously that beta cells establish a peripheral sub-membrane microtubule array, which is critical for the withdrawal of excessive insulin granules from the secretion sites. At high glucose, the sub-membrane microtubule array is destabilized to allow for robust insulin secretion. Here the authors aim to answer the question of how the peripheral array is formed. Based on the previously published data the authors hypothesize that KIF5B organizes the sub-membrane microtubule array via microtubule sliding. 

      General comment: 

      This manuscript provides data that indicate that KIF5B, like in many other cells, mediates microtubule sliding in beta cells. This study is limited to in vitro assays and one cell line. Furthermore, the authors provide no link to insulin secretion and glucose uptake and the overall effects described are moderate. Finally, the overall effect of microtubule sliding upon glucose stimulation is surprisingly low considering the tight regulation of insulin secretion. Moreover, the authors state "the amount of MT polymer on every glucose stimulation changes only slightly, often undetectable…. In fact, we observe a prominent effect of peripheral MT loss only after a long-term kinesin depletion (three-four days)". This challenges the view that a KIF5Bdependent mechanism regulating microtubule sliding plays a major role in controlling insulin secretion. 

      (1) Our initial study was indeed done in a cell line, which is a normal approach to addressing molecular mechanisms of a phenomenon in a challenging cell model: primary pancreatic beta cells are prone to rapidly dedifferentiate outside of the organism and are hard to genetically modify. To address this reviewer’s comment, in the revised manuscript we now confirm the phenotype in beta cells within intact pancreatic islets from a KIF5B KO mouse model (New Figure 2 – Supplemental Figure 1).

      (2) We agree that testing the effect of microtubule sliding on insulin secretion is an important question. Unfortunately, the experimental design needed to accomplish this task is not straighDorward. Importantly, besides microtubule sliding, KIF5B is heavily engaged in insulin granule transport, and GSIS deficiency upon KIF5B inactivation is well documented (e.g. Varadi et al 2002). In this study, we choose not to repeat this GSIS assay because of ample existing data. However, this reported GSIS deficiency could result from a combination of lack of insulin granule delivery to the periphery (previous data) and from the depletion of insulin granules from the periphery due to the loss of the submembrane MT bundle (this study and Bracey et al 2020).  In order to exclusively test the role of MT sliding in secretion, a significant investment in mutant tool development would be needed. Ideally, a new mutant mouse model where insulin granule transport is allowed by MT sliding in blocked must be developed to specifically address this question. To conclude, answering this question will be the subject for another, follow-up study. 

      (3) We respecDully disagree with the reviewer’s opinion that the effect of MT sliding in beta cells is moderate. As MT networks go, even a slight change in MT configuration often has dramatic consequences. For example, in mitotic spindles, a tiny overgrowth of microtubule ends during metaphase, which causes them to attach to both kinetochores rather than just one, is very significant for the efficiency of chromosome segregation, causing aneuploidy and cancer. The changes in beta-cell MT networks that we are reporting are much stronger: the effect on the peripheral MT network accumulated over three days of KIF5B depletion is dramatic (Fig 2 B, C). Short-term gross MT network configurations after a single glucose stimulation are harder to detect, but MTs at the cell periphery are, in fact, destabilized and fragmented, as we and others have previously reported (Ho et al 2020, Mueller et al 2021). Preventing this MT rearrangement completely blocks GSIS (Zhu et al 2015, Ho et al 2020). 

      One of the most fascinating features of insulin secretion regulation is that the amount of generated insulin granules significantly exceeds the normal physiological needs for insulin secretion (~100 times more than needed). At the same time, even slightly facilitated glucose depletion can be devastating. Accordingly, the excessive insulin content of a beta cell resulted in the development of multiple levels of control, preventing excessive secretion. Our previous data suggest that the peripheral MT array provides one of those mechanisms. This study indicates that microtubule sliding is necessary to form the proper peripheral network in the long term. Short-term glucose-induced changes in the peripheral MT array likely need to be subtle to prevent over-secretion. Thus, we are not surprised that a dramatic effect of sliding inhibition is only detectable by our approaches after the changes in the MT network accumulate over time. In the revised paper, we now discuss the potential impact of peripheral MT sliding on positive and negative regulation of secretion and add a schematic model illustrating these processes.

      Specific comments: 

      (1) Notably, the authors have previously reported that high glucose-induced remodeling of microtubule networks facilitates robust glucose-stimulated insulin secretion. This remodeling involves the disassembly of old microtubules and the nucleation of new microtubules. Using real-time imaging of photoconverted microtubules, they report that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Here, they state that the sub-membrane microtubule array is destabilized via microtubule sliding. What is the relevance of the different processes? 

      In this comment, the summary of our previous conclusions is correct, but the conclusion of this current study is re-stated incorrectly. Indeed, we have previously shown that in high glucose, MTs are destabilized at the cell periphery and nucleated in the cell interior. However, this current paper does not state that “the sub-membrane microtubule array is destabilized via microtubule sliding”. To answer this reviewer’s question, our data support a model where, during glucose stimulation, MT sliding within the peripheral bundle might move fragments of MTs severed by other mechanisms. Importantly, we propose that MT sliding restores the partially destabilized peripheral bundle by delivery of MTs that are nucleated at the cell interior and incorporating them into that bundle. In our overall model, three processes (destabilization, nucleation, and sliding to restore the bundle) are coordinated to maintain beta cell fitness on each GSIS cycle.

      (2) On one hand the authors describe how KIF5B depletion prevents sliding and the transport of microtubules to the plasma membrane to form the sub-membrane microtubule array. This indicates KIF5B is required to form this structure. On the other hand, they describe that at high glucose concentration, KIF5B promotes microtubule sliding to destabilize the sub-membrane microtubule array to allow robust insulin secretion. This appears contradictory. 

      We never intended to make an impression that MT sliding destabilized the sub-membrane bundle. Apologies if there was a reason in our wording that caused this misunderstanding of our model. We propose that while the bundle is destabilized downstream of glucose signaling (e.g. due to tau phosphorylation, please see Ho et al Diabetes 2020), MT sliding remodels the bundle and thereafter rebuilds it to prevent over-secretion. In the revised manuscript, we have doublechecked the whole text to make sure that such misunderstanding is avoided. 

      (3) Previously, it has been shown that KIF5B induces tubulin incorporation along the microtubule shaft in a concentration-dependent manner. Moreover, running KIF5B increases microtubule rescue frequency and unlimited growth of microtubules. Notably, KIF5B regulates microtubule network mass and organization in cells (PMID: 34883065). Consequently, it appears possible that the here observed phenomena of changes in the microtubule network might be due to alterations in these processes. 

      We thank the reviewer for proposing this alternative explanation to the observed change in microtubule networks after KIF5B depletion. We have now directly tested this possibility. Namely, we have re-expressed the kinesin-1 motor domain in MIN6 cells depleted of KIF5B. This motor domain construct by itself is not capable of driving microtubule sliding because it lacks the tail domain. At the same time, it is known to move very efficiently at microtubules and should provide the effects as reported in the article cited by the reviewer. We found that the reexpression of the kinesin motor domain does not rescue microtubule network defects in beta cells (see new Figure 2 – Supplemental Figure 2). Thus, we conclude that the effects of kinesin depletion on the microtubule network in beta cells are due to the lack of microtubule sliding, as reported here.

      (4) The authors provide data that indicate that microtubule sliding is enhanced upon glucose stimulation. They conclude that these data indicate that microtubule sliding is an integral part of glucose-triggered microtubule remodeling. Yet, the authors fail to provide any evidence that this process plays a role in insulin secretion or glucose uptake. 

      We would like to point out that we do not “fail” but rather choose not to overload our study by repeating insulin secretion assays in KIF5B-inactivated cells because this would not have been very informative. It has been found previously that kinesin-1 inactivation or knockout significantly attenuates insulin secretion because kinesin-1 is actively transporting insulin granules and kinesin-1 activity is enhanced under high glucose conditions (e.g. Varadi et al 2002, Cui et al., 2011, Donelan et al, 2002). That said, our current finding is very much in line with these previous data. When kinesin is depleted, two things would be happening at the same time: in the absence of sub-membrane microtubule bundle pre-existing insulin granules would be over-secreted, and new insulin would not be delivered to the periphery, both decreasing GSIS. Unfortunately, we do not have tools yet that would allow us to dissect which part of the insulin secretion defect is due to prior over-secretion (the consequence of deficient MT sliding) and which part is due to the lack of new granule delivery. We plan to develop such tools in the future and elaborate on them in a follow-up study. Here, our goal is to understand microtubule organization principles in beta cells, and we choose not to extend the scope of the current study to metabolic assays.  

      (5) The authors speculate that the sub-membrane microtubule array prevents the over-secretion of insulin. Would one not expect in this case a change in the distribution of insulin granules at the plasma membrane when this array is affected? Or after glucose stimulation? Notably, it has been reported that "the defects of β-cell function in KIF5B mutant mice were not coupled with observable changes in islet morphology, islet cell composition, or β-cell size" and "the subcellular localization of insulin vesicles was found to not be affected significantly by the decreased Kif5b level. The cytoplasm of both wild-type and mutant β-cells was filled with insulin vesicles. Insulin vesicle numbers per square μm were determined by counting all insulin vesicles in randomly photographed β-cells. More insulin granules were found in Kif5b knockout β-cells compared with control cells. This phenomenon is consistent with the observation that insulin secretion by β-cells is affected" whereby "Insulin vesicles (arrowheads) were distributed evenly in both mutant and control cells" (PMID: 20870970).  

      Quantitative analyses in the study cited by the reviewer do not include assays that would be relevant to our study. Particularly, in that study neither the amount of insulin granules at the cell periphery nor the ratio between the number of granules at the periphery and the beta cell interior has been analyzed. In addition, in our preliminary observations not shown here, insulin content in beta cells in KIF5B KO mice is highly heterogeneous, with a subpopulation of cells severely depleted of insulin. This opens a new avenue of investigation into beta cell heterogeneity, which is out of the scope of this current study. Thus, we chose to restrict this current study to microtubule organization data.   

      (6) Does the sub-membrane microtubule array exist in primary beta cells (in vitro and/or in vivo) and how it is affected in KIF5B knockout mice?  

      Yes, it does exist. In fact, we have first reported it in mouse islets (Bracey et al 2020, Ho et al 2020). Now, we report that the sub-membrane bundle is defective, and microtubules are misaligned in KIF5B KO mice (new Figure 2 – Supplemental Figure 1).

      Reviewer #2 (Public Review): 

      In this article, Bracey et al. provide insights into the factors contributing to the distinct arrangement observed in sub-membrane microtubules (MTs) within mouse β-cells of the pancreas. Specifically, they propose that in clonal mouse pancreatic β-cells (MIN6), the motor protein KIF5B plays a role in sliding existing MTs towards the cell periphery and aligning them with each other along the plasma membrane. Furthermore, similar to other physiological features of β-cells, this process of MTs sliding is enhanced by a high glucose stimulus. Because a precise alignment of MTs beneath the cell membrane in β-cells is crucial for the regulated secretion of pancreatic enzymes and hormones, KIF5B assumes a significant role in pancreatic activity, both in healthy conditions and during diseases. 

      The authors provide evidence in support of their model by demonstrating that the levels of KIF5B mRNA in MIN6 cells are higher compared to other known KIFs. They further show that when KIF5B is genetically silenced using two different shRNAs, the MT sliding becomes less efficient. Additionally, silencing of KIF5A in the same cells leads to a general reorganization of MTs throughout the cell. Specifically, while control cells exhibit a convoluted and non-radial arrangement of MTs near the cell membrane, KIF5B-depleted cells display a sparse and less dense sub-membrane array of MTs. Based on these findings, the Authors conclude that the loss of KIF5B strongly affects the localization of MTs to the periphery of the cell. Using a dominant-negative approach, the authors also demonstrate that KIF5B facilitates the sliding of MTs by binding to cargo MTs through the kinesin-1 tail binding domain. Additionally, they present evidence suggesting that KIF5B-mediated MT sliding is dependent on glucose, similar to the activity levels of kinesin-1, which increase in the presence of glucose. Notably, when the glucose concentrations in the culturing media of MIN6 cells are reduced from 20 mM to 5 mM, a significant decrease in MT sliding is observed. 

      Strengths:

      This study unveils a previously unexplained mechanism that regulates the specific rearrangement of MTs beneath the cell membrane in pancreatic β-cells. The findings of this research have implications and are of significant interest because the precise regulation of the MT array at the secretion zone plays a critical role in controlling pancreatic function in both healthy and diseased states. In general, the author's conclusions are substantiated by the provided data, and the study demonstrates the utilization of state-of-the-art methodologies including quantification techniques, and elegant dominant-negative experiments. 

      Weaknesses:

      A few relatively minor issues are present and related to data interpretation and the conclusions drawn in the study. Namely, some inconsistencies between what appears to be the overall and sub-membrane MT array in scramble vs. KIF5B-depleted cells, the lack of details about the sub-cellular localization of KIF5B in these cells and the physiological significance of the effect of glucose levels in beta-cells of the pancreas. 

      We thank the reviewer for this insighDul review. In the revised version, we provided re-worded and extended interpretations and conclusions to prevent any issues or misunderstandings.  We trust that while some noted apparent inconsistencies may reflect the intrinsic heterogeneity of the beta cell population, all data presented here indicate the same trend in phenotypes.  In the revised version, we have provided additional cell views and, in places, alternative representative images and videos, to clear out any apparent inconsistencies. We also would like to point out that we in fact reported KIF5B localization: not surprisingly, KIF5B predominantly localized to insulin granules and the punctate staining fills the whole cytoplasm (Figure 2A, bottom panel). However, as pointed out in detail in our response to reviewer 1, we choose to leave out an extensive study of the physiological and metabolic consequences of the reported microtubule network dynamics to a follow-up study. 

      Reviewer #3 (Public Review): 

      Prior work from the Kaverina lab and others had determined that beta-cells build a microtubule network that differs from the canonical radial organization typical in most mammalian cell types and that this organization facilitates the regulated secretion of insulin-containing secretory granules (IGs). In this manuscript, the authors tested the hypothesis that kinesin-driven microtubule sliding is an underlying mechanism that establishes a sub-membranous microtubule array that regulates IG secretion. They employed knock-down and dominant-negative strategies to convincingly show microtubule sliding does, in fact, drive the assembly of the sub-membranous microtubule band. They also used live cell imaging assays to demonstrate that kinesin-mediated microtubule sliding in beta-cells is triggered by extracellular high glucose. Overall, this is an interesting and important study that relates microtubule dynamics to an important physiological process. The experiments were rigorous and well-controlled. 

      We truly appreciate this reviewer’ opinion. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Figures: 

      (1) Figure 1: 

      a) Why can one not see here, and in most following images, the peripheral sub-membrane microtubule array? One can also not see an accumulation of microtubules in the cell interior. 

      Microtubule pattern in beta cells is variable, and the sub-membrane array is seen in the whole population to a variable extent (see directionality histogram in Figure 2E for statistics). In fact, an array of peripheral MTs parallel to the cell border is present in the example shown in Figure 1 and in all following control images. To make it clearer, we now show the pre-bleach images in Figure 1 D-F at a lower magnification, so that the differences in MT density at the cell periphery and cell center are more clearly seen: MTs lack at the periphery in KF5B-depleted but not the control cells.  

      b) 5 min appears to be a long time and enough time to polymerize a significant number of new microtubules. 

      We interpret this comment as the reviewer’s concern that in FRAP assays, fluorescently-labeled MTs moving into the bleached area might be newly polymerizing MTs rather than preexisting MT relocated into that area. However, this is not the case because newly polymerized MTs contain predominantly quenched “dark” tubulin molecules and only a small percent of fluorescent tubulin. These dim MTs are not included in MT sliding assay analysis, where a threshold for bright MTs is introduced. Now, we added more details for the quantification of these data to Materials and Methods section.

      c) The overall effects appear minor. It is unclear how Fig. 1-Suppl-Fig.1, where no significant difference is shown, is translated into Figure 1 J and K showing a significant difference. 

      With all due respect, we do not agree that the effect is minor. Please see our response to the Public Review where we discuss the major consequences of MT defects in detail. 

      To answer this specific comment, we show that there are significant differences in the number of rapidly moving MTs (5-sec displacement over 0.3 µm) and in the amount of stationary MTs (5sec displacement is below 0.15 µm). There is no significant difference in the amount of slightly displaced MTs (displacements between 0.15 and 0.3 µm; the central part of the histogram). This might indicate that these slight displacements do not depend on kinesin-1 motor but rather are caused by experimental noise, pushing by moving organelles, and/or myosin-dependent forces in the cell. In the revised manuscript, we have this quantification more clearly detailed in Methods and included in Figure legends.

      d) The authors utilize single molecule tracking to further strengthen their conclusion that KIF5B promotes microtubule sliding. The observed effects are weaker than the data obtained from photobleaching experiments. The videos clearly show that there is still significant movement also in KIF5B-depleted cells. If K560RigorE236A binds irreversibly to a microtubule and this microtubule is growing (not only by the addition of tubulin dimers to the plus end; see PMID: 34883065) wouldn't that also result in movement of the tagged K560RigorE236A? As KIF5B is also required in the transport of insulin granules, it should also label "interior microtubules". And in Video 2 it appears that pretty much all "labeled" microtubules are moving. 

      K560RigorE236A forms fiducial marks along the whole MTs lattice, as previously shown in (Tanenbaum et al., 2014). When it is bound to MT lattice, K560RigorE236A moves with the whole MT if it is being relocated. The mechanism described in (PMID: 34883065) appears to be absent or minor in beta cells (see Figure 2- Supplemental Figure 2), thus, even if this mechanism would displace already polymerized MTs, this is not happening in this cell type.

      The reviewer is correct, K560RigorE236A does mark all MTs throughout a beta cell. All MTs are moving slightly in a living cell because they are pushed around by moving organelles, actin contractility, etc. MTs may also be slid by other MT-dependent motors (dynein against the membrane and such). So, it is not surprising that the MT network is “breezing,” and kinesindependent sliding is only a part of MT movement. What we show here is that the KIF5Bdependent MT sliding is responsible for a relatively “long-distance” relocation of MTs manifested in long, directional displacement of fiducial marks.  This does not exclude other movements. This makes extraction of kinesin-dependent MT movements somewhat challenging, of course, that is why we needed to do those extensive analyses. 

      e) Figure 1 G to K is misleading, at least in the context of the provided videos. There are several microtubules that move extensively in shRNA#2-treated cells and overall there appears more movement in this cell as in the control cell. Figure 1I is clearly not representative of the movement shown in Video 2. 

      We apologize if our selection of representative movies/figures for this experiment was imperfect. Indeed, in all depleted cells, SunTag puncta still move to a certain extent, either due to incomplete depletion or to alternative intracellular forces dislocating microtubules. However, there is a clear difference in the fraction of persistently moving puncta (please see Figure 1K and  histogram in Figure 1 - Supplemental Figure 1B). Unfortunately, when the number of SunTag puncta per a cell is variable, it sometimes prevents a good visual perception of the actual distribution of moving versus stationary microtubules. We now show an alternative representative movie for the Figure 1I and the corresponding Video 2, with a goal to compare cells with more consistent numbers of Sun-Tag puncta.

      (2) Figure 2A. 

      a) This is the only image that clearly shows the existence of a sub-membrane microtubule array and the concentration of microtubules in the cell interior. The differences are unclear between the experimental setups including the length of cultivation and knockdown of KIF5B or expression of mutants. 

      We now provide a more detailed description of each image acquisition and processing in Materials and Methods. In brief, while the morphology of MT patterns is intrinsically variable in beta cells, all control cells have populated peripheral MTs that exhibit a more parallel configuration as compared to depletions and mutants.

      b) The authors state "While control cells had convoluted non-radial MTs with a prominent sub-membrane array, typical for beta cells (Fig. 2A), KIF5B-depleted cells featured extra-dense MTs in the cell center and sparse reseeding MTs at the periphery (Fig. 2B, C)". Could that not be explained with the observation that "Kinesin-1 controls microtubule length" (PMID: 34883065)? 

      Thank you for this interesting alternative idea. It does not appear to be the case for beta cells.

      Please see Figure 2-Supplemental Figure 2  and our response to Public Review Comment #3.

      Also, our apologies for the typo in the original manuscript: this is “receding” nor “reseeding”.

      (3) Figure 3: 

      a) This is an elegant way to determine whether KIF5B is involved in microtubule sliding independent of the fact that the effect appears very small. 

      Thank you!            

      b) The assay depends on ectopic expression of a dominant negative mutant. It appears important to show that KIFDNwt is high enough expressed to indeed block the binding of endogenous KIF5B. The authors need to provide a control for this. Furthermore, authors need to provide evidence that other functions of KIF5B are not impaired such as transport of insulin granules and tubulin incorporation or microtubule stability and length.

      Expression of cargo-binding motor domains routinely causes a dominant-negative effect of their cargo transport. This exact construct has been used for the purpose of dominant-negative action previously (Ravindran et al., 2017). It does prevent the membrane cargo binding of KIF5B (Ravindran et al., 2017), thus the transport of insulin granules is also impaired in overexpression cells. Confirming this fact would not influence our study conclusions, so we chose not to repeat these assays for the sake of time.

      c) N-numbers should be similar. The data for KIFDNmut are difficult to interpret with possibly 2 experiments showing little to no displacement and 3 showing displacement. 

      In the revised manuscript, additional data have been added to increase N-numbers.

      (4) Figure 4 and supplements: The morphology of the KIFDNwt cells is greatly affected and this makes it difficult to say whether the effect on microtubules at the cell periphery is a direct or indirect effect. 

      Yes, these cells often have less spread appearance, obscuring visual perception of MT distribution. We have now replaced the image of KIFDNwt cell (Figure 4, Supplemental Figure 1 A) to a more visually representative example.

      Things to do: 

      (1) Notably, the authors have previously reported that high glucose-induced remodeling of microtubule networks facilitates robust glucose-stimulated insulin secretion. This remodeling involves the disassembly of old microtubules and the nucleation of new microtubules. Here, they state that the sub-membrane microtubule array is destabilized via microtubule sliding. What is the relevance of the different processes? Please discuss these in the manuscript. 

      Thank you, we have now extended our discussion of these points and our prior findings. We have also added a schematic model figure for clarity (Figure 7).  

      (2) 5 min appears to be a long time and enough time to polymerize a significant number of new microtubules. Do the authors have any information about the speed of MT formation in MIN6 cells? Can the authors repeat this experiment by preventing MT polymerization? Or repeat the experiment with EB1/EB3 reporter to visualize microtubule growth in the same experimental setting? 

      While some MT polymerization will happen in this timeframe, newly polymerized MTs contain predominantly quenched “dark” tubulin molecules and only a small percent of fluorescent tubulin. These dim MTs are not included in MT sliding assay analysis, where a threshold for bright MTs is introduced. We apologize for initially omitting certain details from the FRAP assay analysis. Now these details have been added.   

      Are the microtubules shown on the cell surface (TIRF microscopy) or do we see here all microtubules? 

      Please see Materials and Methods for microscopy methods and image processing for each figure. Specifically, FRAP assays show a maximum intensity projection of spinning disk confocal stacks over 2.4µm in height (approximately the ventral half of a cell).

      (3) Previously, it has been shown that KIF5B induces tubulin incorporation along the microtubule shaft in a concentration-dependent manner. Moreover, running KIF5B increases microtubule rescue frequency and unlimited growth of microtubules. Notably, KIF5B regulates microtubule network mass and organization in cells (PMID: 34883065). Consequently, it appears possible that the here observed phenomena of changes in the microtubule network might be due to alterations in these processes. Authors need to exclude these possibilities and discuss them. 

      Thank you for this interesting alternative idea. It does not appear to be the case for beta cells. Please see Figure 2-Supplemental Figure 2  and our response to Public Review Comment #3.

      (4) It is important that the authors describe in the text and possibly in the figure legends the differences between the experimental set-ups including the length of cultivation and knock down of KIF5B or expression of mutants. 

      Thank you, please see these details in the text (Materials and Methods section).

      (5) Figure 5: Does KIF5B depletion rescue the kinesore-induced defects 

      Thank you for suggesting this control. We have now conducted corresponding experiments. The answer is yes, it does. Kinesore does not induce detectable changes in MT patterns in KIF5Bdepleted cells (new Figure 5-Supplemental Figure 2). 

      (6) Can the authors block kinesin-1 resulting in microtubule accumulation in the cell center and then release the block, and best inhibiting microtubule formation, to see whether the microtubules accumulated in the cell center will be transported to the periphery? 

      This proposed experiment would have been a nice illustration to the study, however it has proven to be too challenging. Unfortunately we have to leave it for the future studies. However,  the experiments already included in the paper are sufficient to prove our conclusions. 

      Minor comments: 

      (1) The English needs to be improved. Oaen it is unclear what the authors try to convey. The manuscript is difficult to read and contains several overstatements. 

      The revised manuscript has been through several rounds of proof-reading for clarity.

      (2) It is important to describe in more detail in the introduction what is known about KIF5B in beta cells. Previously, it has been demonstrated that silencing, or inactivation by a dominant negative form of KIF5B, blocks the sustained phase of glucose-stimulated insulin secretion (PMID: 9112396, PMID: 12356920, PMID: 20870970). 

      Yes, this is of course very important and have been cited in the original manuscript. Now, we have expanded the discussion on the matter.

      (3) Figure 1B and Fig. 1 Suppl Fig.1: Please provide band sizes and provide information on the size of KIF5B. 

      We have replaced Fig. 1B and Suppl Fig 1A with quantitative analysis of KIF5B depletion, not found in new Fig. 1B and Suppl Fig. 1A-C. 

      (4) It is important to state the used glucose concentrations in Figure 1D (based on the methods section it is probably 25 mM glucose) and all subsequent experiments. Is this correct and comparable to Figure 6A or B? For the non-specialized reader, more information should be provided on why initial glucose starvation is performed.  

      Cell culture models of pancreatic beta cells are routinely maintained at glucose levels that at considered “high”, or stimulatory for secretion. This is needed to prevent the loss of cells’ capacity to respond to glucose stimulation over generations. In order to test GSIS, cells need to be equilibrated at low (fasting, standardly 2.8mM) glucose levels for several hours, so that they are capable of secreting insulin upon glucose addition. 25mM glucose is normally used to stimulate GSIS in cell culture models of beta cells, like MIN6. This is a higher concentration as compared to what is needed to stimulate primary beta cells in islets.

      Reviewer #2 (Recommendations For The Authors): 

      I have the following specific questions that pertain to data interpretation and the conclusions drawn.

      (1) The morphology of the overall MT array before the bleach treatment in both control cells and KIF5B-KD cells depicted in Figure 1D-F and Figure 2A-C appears to be distinct. In Figure 1, it seems that the absence of KIF5B results in a general augmentation of MT mass, whereas the arrangement presented in Figure 2 indicates the contrary. Even in the sub-membrane areas, this phenomenon appears to hold true. However, the images used in this study, which depict entire cells or a significant portion of cells, may not be ideal for visualizing the sub-membrane regions.

      It would be beneficial if the author could offer some explanations for this apparent inconsistency. 

      While beta cell population is intrinsically heterogeneous, all data presented here indicate the same trend in phenotypes. Possibly, some apparent inconsistency between figure 1 and 2 appeared because in the original manuscript we did not show the pre-bleach whole-cell overview in Figure 1. In the revised version, we now show the whole cells for pre-bleach so that MT organization at the cell periphery can be assessed. Please note that in the control cell, MTs are more or less equally distributed over the cell, while in KIF5B depletions the cell periphery is significantly less populated than the cell center. Furthermore, we did not detect MT mass augmentation or increase in KIF5B depletions. One possible explanation for such reviewer’s impression from Figure 2 is that Figure 2 F-H shows thresholded images where threshold was adjusted to highlight peripheral MTs in each cell. Please note that this is not the same threshold for each cell (see Figure 2 - Supplemental Figure 2 and 3). Thus, KIF5B-depleted cells that have fewer MTs at the periphery appear brighter in these thresholded images. For the true comparison of MT intensity, please see Figure 2 A-C (grayscale image, not the threshold).

      (2) It would be helpful if the author could provide a visual representation or comment on the sub-cellular localization of KIF5B in MIN6 cells. Is it predominantly localized in the submembrane region, or is it more evenly distributed throughout the cytoplasm? 

      Please see Fig 2A, lower panel. KIF5B is seen across the cell as a punctate staining, in agreement with previous findings that it mostly localize at IGs.

      (3) The alteration in microtubule (MT) organization and sliding in the absence of KIF5B seems to initiate in proximity to the apparent microtubule organizing center (MTOC) depicted in Figure 2A, and then "simply" extends towards the sub-membrane region. Although the authors acknowledge it, it would be advantageous for the readers to have a clearer indication that the sub-membrane microtubule (MT) reorganization in the absence of KIF5B is a result of a broader MT reorganization rather than a specific occurrence restricted to the sub-membrane regions. 

      Thank you for this comment. We now extend our discussion to clearer state our conclusions and interpretations of this point. We also have added a schematic Figure 7 as an illustration. 

      (4) Regarding the "glucose experiments," it is common to add 20-25 mM glucose to culture media, but physiological concentrations of glucose typically hover around 5 mM. Therefore, it is somewhat unclear what the implications are when investigating the impact of KIF5B depletion on MT sliding at 2.8 mM of glucose. It would be helpful if the authors could provide some commentary on this matter, particularly in relation to physiological and pathological conditions. 

      2.8 mM glucose is a standard low glucose condition used to model glucose deprivation/fasting. For functional primary beta cells within pancreatic islets, GSIS can be triggered by glucose stimulation as low as 8-12 mM glucose. However, for glucose stimulation of cultured beta cells such as MIN6 used in this paper, 20-25 mM glucose is standardly used because these cell lines have a higher threshold of stimulation compared to primary beta cells and whole islets.

      (5) In supplementary Figure 1A, it would be helpful if the lanes in the WB were marked indicating what is what. In my observation, it appears that Supplementary Figure 1A, particularly lanes #2, 3, and 4, display the GAPDH protein (MW 36 kDa) (or is it alpha-tubulin, as mentioned in the Material and Methods section and indicated in lane #409?) relative to Figure 1A. I am curious about KIF5B (MW 108 kDa). Is it represented by the upper band? Did the author probe the same membrane simultaneously with two different primary antibodies? This should be clarified, and the author should indicate the molecular weight of the ladder. 

      Indeed, in the original WB two antibodies have been used together, due to a challenge in collecting a sufficient number of shRNA-expressing beta cells. It caused a confusion and improper interpretation of the loading control. We thank the reviewer for catching this.  We have now replaced old Fig. 1B and Suppl. Fig. 1A with quantitative analysis of KIF5B depletion based on single-cell immunofluorescent staining. It is now found in new Fig. 1B and Suppl Fig. 1A-C.  

      Reviewer #3 (Recommendations For The Authors): 

      In all of the figures that present microtubule orientations (e.g. Figure 2E) the error bars obscure the vertical bins making them difficult to read or interpret. If they were rendered at a larger scale, it would be easier to read and interpret these results. 

      Thank you pointing this out. We now show these histograms with a different format of error bars and without outliers that obscure the view. A variant with outliers is now shown in the supplement. 

      Some of the callouts to the videos in the paper are inaccurate. Perhaps the authors reordered sections of the paper but failed to correctly renumber the video citations? 

      Thank you for this comment, we have corrected all callouts now.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      Summary: Chitin is a critical component of the extracellular matrix of arthropods and plays an essential role in the development and protection of insects. There are two chitin synthases in insects: Type A (exoskeletons) and Type B (for the peritrophic matrix in the gut). The study aims to investigate the specificity and mechanisms of the two chitin synthases in D. melanogaster and to clarify whether they are functionally interchangeable. Various genetic manipulations and fluorescence-based labeling were used to analyze the expression, localization, and function of Kkv and Chs2 in different tissues. Chs2 is expressed in the PR cells of the proventriculus and is required for chitin deposition in the peritrophic matrix. Kkv can deposit chitin in ectodermal tissues but not in the peritrophic matrix, whereas Chs2 can deposit chitin in the peritrophic matrix but not in ectodermal tissues. The subcellular localization of chitin synthases is specific to the tissues in which they are expressed. Kkv localizes apically in ectodermal tissues, whereas Chs2 localizes apically in the PR cells of the proventriculus. Altogether, Kkv and Chs2 cannot replace each other. The specificity of chitin synthases in D. melanogaster relies on distinct cellular and molecular mechanisms, including intracellular transport pathways and the specific molecular machinery for chitin deposition.*

      • *

      Congratulations on this incredible story and manuscript, which is straightforward and well-written. However, I have some comments that may help to improve it.

      We thank the reviewer for this very positive comment. We have addressed all comments to clarify and improve our manuscript.

      Major comments: 1.) Funny thing: the Chs2 mutant larva shows a magenta staining below the chitin accumulation of the esophagus, which looks like a question mark in 1H but cannot be found in control. Is that trachea reaching the pv?

      We assume that the reviewer refers to Fig 1N. As the reviewer suspects, this corresponds to a piece of trachea. Figure 1N shows a single section, making it difficult to identify what this staining corresponds to. We are providing below a projection of several sections where it is easier to identify the staining as tracheal tissue (arrow).

      We are now marking this pattern as trachea (tr) in the manuscript Figure 1N

      2.) Also, though it is evident that the PM chitin is lost in Ch2 mutants, could it be that the region is disturbed and cells express somewhere else chitin? There are papers by Fuß and Hoch (e.g., Mech of Dev, 79, 1998; Josten, Fuß et al., Dev. Biol.267, 2004) using markers such as Dve, Fkh, Wg, Delta, and Notch, etc. for precisely marking the endodermal/ectodermal region in the embryonic foregut/proventriculus. It would be beneficial to show, along with chitin and Chs expression patterns, the ectoderm/endoderm cells. This is particularly important as the authors report endodermal expression of Chs2 in embryos but don't use co-markers of the endodermal cells.

      We agree with the reviewer that this is an important issue and we note that Reviewer 2 also raised the same point. Therefore, we have addressed this issue.

      We obtained an antibody against Dve, kindly provided by Dr. Hideki Nakagoshi. Dve marks the endodermal region in the proventriculus (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998).This antibody worked nicely in our dissected L3 digestive tracts and allowed us to mark the endodermal region. We also obtained an antibody against Fkh, kindly provided by Dr. Pilar Carrera. Fkh marks the ectodermal foregut cells (Fuss and Hoch, 1998, Fuss et al., 2004). While, in our hands, this antibody performed well in embryonic tissues, we observed no staining in our dissected L3 digestive tracts. The reason for this is unclear, but we suspect technical limitations may be responsible (the ectodermal region of the proventriculus is very internal, potentially hindering antibody penetration). To circumvent this inconvenience, we tested a FkhGFP tagged allele available in Bloomington Stock Center. Fortunately, we were able to detect GFP in ectodermal cells of L3 carrying this allele. Using this approach, we conducted experiments to detect Fkh and Dve in the wild type or in Df(Chs2) conditions (Fig S1). In addition, we used these markers to map the expression of Kkv and Chs2 in the proventriculus (Fig 4).

      Altogether the results using these endodermal/ectodermal markers confirmed the presence of a cuticle adjacent to the FkhGFP-positive cells and a PM adjacent to the PR cells, marked by Dve. This PM is absent in Df(Chs2) L3 escapers, however, the general pattern of Fkh/Dve expression is not affected. Finally, we show that Chs2-expressing cells are positive for Dve while Kkv-expressing cells are not. We were unable to conduct an experiment demonstrating Kkv and Fkh co-expression due to technical incompatibilities, as both genes require the use of GFP-tagged alleles to visualise their expression. However, we believe that our imaging of Dve/Kkv clearly shows that Kkv expressing cells lack Dve expression and are localised in the internal (ectodermal) region of the proventriculus (Fig 4E).

      3.) The origin of midgut chitin accumulation is unclear. Chitin can come from yeast paster. Can the authors check kkv and chs2 mutants for food passage and test starving L1 larvae to detect chitin accumulation in the midgut without feeding them?

      This is a very interesting point that has also intrigued us.

      We observed that, in addition to the PM layer lining the midgut epithelium, CBP staining also revealed a distinct luminal pattern. Our initial hypothesis was that this pattern corresponded to the PM. However, its presence in Df(Chs2) larval escapers clearly indicates that this is not the case. Unfortunately, we cannot assess this pattern in kkv mutants, as these die at eclosion and do not proceed to larva stages.

      As the reviewer suggests, a likely possibility is that the luminal pattern originates from components in the food. These could correspond to yeast, as suggested by the reviewer, or possibly remnants of dead larvae present in the media (although Drosophila is considered herbivore in absence of nutritional stress).

      To assess whether the luminal pattern originates from the food we conducted two independent experiments. In experiment 1, we collected larvae reared under normal food conditions. Newly emerged L3 larvae were transferred in small numbers to minimise cannibalism (Ahmad et al., 2015) to new Petri plates containing moist paper. Larvae were starved for 3,4 or 5 days. Larvae starved for more than 5 days did not survive. We then dissected the guts and analysed CBP staining. We observed the presence of luminal CBP staining in these larvae, along with the typical PM signal in the proventriculus and along the midgut. In experiment 2, we collected larvae directly on agar plates containing only agar (without yeast or any other nutrients). We allowed the larvae to develop. These larvae showed minimal growth. We dissected the guts of these small larvae (which were challenging to dissect) and analysed CBP staining. Again, we detected presence of luminal CBP staining.

      These experiments indicate that, despite starvation, a luminal chitin pattern is still detected, suggesting that it is unlikely to originate from food. However, we cannot unequivocally rule out the possibility that the cannibalistic, detrivorous or carnivorous behavior of the nutrionally stressed larvae (Ahmad et al., 2015) in our experiments may influence the results. Therefore, more experiments would be required to address this point.

      In summary, while we cannot provide a definitive answer to the reviewer's question, nor fully satisfy our own curiosity, we would like to note that this specific observation is unrelated to the main focus of our study, as we have confirmed that the luminal pattern is not dependent on Chs2 function.

      Portions of midgut of starved larvae under the regimes indicated, stained for chitin (CBP, magenta). Note the presence of the luminal chitin pattern in the midgut

      4.) Subcellular localization assays require improved analysis, such as a co-marker for the apical membrane and statistical analysis with co-localization tools, showing the overlap at the membrane and intracellularly with membrane co-markers and KDEL.

      We have addressed the point raised by the reviewer. To analyse and quantify Chs2 subcellular localisation, particularly considering the observed pattern, we decided to use both a membrane and an ER marker. As a membrane marker we used srcGFP expressed in tracheal cells (see answer to point 7 of Reviewer 1) and as an ER marker we used KDEL. In this analysis, tracheal cells also expressed Chs2, which was visualised using the Chs2 antibody generated in the lab.

      To assess the colocalisation of Chs2 with each marker we used the JaCop pluggin in Fiji. We analysed individual cells from different embryos stained for membrane/ER/Chs2 using single confocal sections (to avoid artificial colocalisation). Images were processed as described in Materials and Methods. We obtained the Pearson's correlation coefficient (r), which measures the degree of colocalisation, for Chs2/srcGFP and Chs2/KDEL, n=36 cells from 9 different embryos. The average r value for Chs2/srcGFP was 0,064, while the average for Chs2/KDEL was around 0,7. r ranges between -1 and 1, where 1 indicates perfect correlation, 0 no correlation, and -1 perfect anti-correlation. Typically, an r value of 0.7 and above is considered a strong positive correlation, whereas a value below 0,1 is regarded as very weak or no correlation. Thus, our colocalisation analysis supports the hypothesis that Chs2 is primarily retained in the ER when expressed in non-endogenous tissues, likely unable to reach the membrane.

      We have reorganised the figures and now present an example of Chs2/srcGFP/KDEL subcellular localisation in tracheal cells and the colocalisation analysis in Fig 5H. The colocalisation analysis is described in the Materials and Methods section.

      Minor comments:

      5.) The authors used "L3 larval escapers." It would be interesting to know if the lack of Chs2 and the peritrophic matrix cause any physiological defects or lethality.

      The point raised by the reviewer is very interesting and relevant. The peritrophic matrix is proposed to play several important physiological roles, including the spatial organisation of the digestive process, increasing digestive efficiency, protection against toxins and pathogens, and serving as a mechanical barrier. Therefore, it is expected that the absence of chitin in the PM of the Df(Chs2) larval escapers may cause various physiological effects.

      Analysing these effects is a complex task, and it constitutes an entire research project on its own. In addressing the physiological requirements of the PM, we aim to analyse adult flies and assess various parameters, including viability, digestive transit dynamics, gut integrity, resistance to infections, fitness and fertility.

      A critical initial challenge in conducting a comprehensive analysis of the physiological requirements of the PM is identifying a suitable condition to evaluate the absence of Chs2. In this work we are using a combination of two overlapping deficiencies that uncover Chs2, along with a few additional genes (as indicated in Fig S1F). This deficiency condition presents two major inconveniences: first, the observed defects could be caused or influenced by the absence of genes other than Chs2, preventing us from conclusively attributing the defects to Chs2 loss (unless we rescued the defects by adding Chs2 back as we did in the manuscript). Second, the larva escapers, which are rare, do not survive to adulthood (indicating lethality but preventing us from analysing specific physiological aspects).

      To overcome these limitations, we are currently working to identify a genetic condition in which we can specifically analyse the absence of Chs2. We have identified several available RNAi lines and we are testing their efficiency in preventing chitin deposition in the PM. Additionally, we are characterising a putative null Chs2 allele, Chs2CR60212-TG4.0. This stock contains a Trojan-GAL4 gene trap sequence in the third intron, inserted via CRISPR/Cas9. As described in Flybase (https://flybase.org/), the inserted cassette contains a 'Trojan GAL4' gene trap element composed of a splice acceptor site followed by the T2A peptide, the GAL4 coding sequence and an SV40 polyadenylation signal. When inserted in a coding intron in the correct orientation, the cassette should result in truncation of the trapped gene product and expression of GAL4 under the control of the regulatory sequences of the trapped gene. We already know that, when crossed to a reporter line (e.g. UAS-GFP or UAS-nlsCherry) this line reproduces the Chs2 expression pattern, suggesting that the insertion may generate a truncated Chs2 protein. This line would represent an ideal tool to assess the absence of Chs2, and we are currently characterising it for further analysis

      In summary, we fully agree with the reviewer that investigating the physiological requirements of the PM is a compelling area of research, and we are actively addressing this question. However, this investigation constitutes a substantial and independent research effort that we believe is beyond the scope of the current manuscript at this stage.

      6.) The order identifiers are missing for materials and antibodies, e.g., anti-GFP (Abcam), but Abcam provides several ant-GFP; which was used? Please provide order numbers that guarantee the repeatability for others.

      We have now added all identifiers for materials and reagents used, in the materials and methods section.

      7.) Figure S5C, C', what marks GFP (blue) in the trachea? Maybe I have overlooked the description. What is UASsrcGFP? What is the origin of this line?

      We apologise for not providing a more detailed description of the UASsrcGFP line. This line corresponds to RRID BDSC#5432, as now indicated in Materials and Methods section.

      In this transgene, the UAS regulatory sequences drive the expression of GFP fused to Tag:Myr(v-src). As described in Flybase (https://flybase.org/), the P(UAS-srcEGFP) construct contains the 14 aa myristylation domain of v-src fused to EGFP. This tag is commonly used to target proteins of interest to the plasma membrane. The construct was generated by Eric Spana and is available in Drosophila stock centers.

      We typically use this transgene as a plasma membrane marker to outline cell membrane contours. In our experiments, srcGFP, under the control of the btlGal4 promoter, was used to visualise the membrane of tracheal cells in relation to Chs2 accumulation. As indicated in point 4, we have now transferred the images of srcGFP/Chs2/KDEL to the main Figures and used it for colocalisation analyses.

      8.) The authors claim that they validated the anti-Chs2 antibody. However, they show only that it recognizes a Cht2 epitope via ectopic expression. For more profound validation, immune staining is required in deletion mutants, upon knockdown, or upon expression of recombinant proteins, which is not shown.

      We generated an antibody against Chs2. We found that the antibody does not reliably detect the endogenous Chs2 protein, and so we find no pattern in the proventriculus or any other tissue in our immunostainings. It is very possible that the combination of low endogenous levels of Chs2 with a sub-optimal antibody (or low titer) leads to this result. In any case, as the antibody does not detect endogenous Chs2, it cannot be validated by analysing the expression upon Chs2 knockdown. In contrast, our antibody clearly detects specific staining in various tissues (e.g. trachea, salivary glands, gut) when Chs2 is expressed using the Gal4/UAS system, confirming its specificity for Chs2. It is worth to point that it is not unusual to find antibodies that are not sensitive enough to detect endogenous proteins but can detect overexpressed proteins (e.g

      (Lebreton and Casanova, 2016)).

      As an additional way to validate the specificity of our antibody, we have used the chimeras generated, as suggested by the reviewer. As indicated in the Materials and Methods section, the Anti-Chs2 was generated against a region comprising 1222-1383 aa in Chs2, with low homology to Kkv. This region is present in the kkv-Chs2GFP chimera but absent in Chs2-KkvGFP (see Fig 7A). Accordingly, our antibody recognises kkv-Chs2GFP but does not recognise Chs2-KkvGFP (Fig S7).

      We have revised the text in chapter 6 (6. Subcellular localisation of Chs2 in endogenous and ectopic tissues) to clarify these points and we have added the validation of the antibody using the chimeras in chapter 8 (8. Analysis of Chs2-Kkv chimeras) and Fig S7

      9) The legend and text explaining Fig. 4 D-E' can be improved. The authors used the Crimic line, which is integrated into the third ("coding") intron. This orientation can lead to the expression of Gal4 and cause a truncated version of the protein (according to Flybase). Is Chs2 expression reduced in the crimic mutant? If the mutation causes expression of a truncated version, the Chs2 antibody may not be able to detect it as it recognizes a fragment between 1222 and 1383 aa? Also, I'm unsure whether the Chs2 antibody or GFP was used to detect expression in PR cells. The authors describe using Ch2CR60212>SrcGFP together with Chs2+ specific antibodies.

      We apologise for the confusion.

      As the reviewer points, Chs2CR60212-TG4.0 contains a Trojan-GAL4 gene trap sequence in the third intron, inserted via CRISPR/Cas9. As described in Flybase (https://flybase.org/), the inserted cassette contains a 'Trojan GAL4' gene trap element composed of a splice acceptor site followed by the T2A peptide, the GAL4 coding sequence and an SV40 polyadenylation signal. When inserted in a coding intron in the correct orientation, the cassette should result in truncation of the trapped gene product and expression of GAL4 under the control of the regulatory sequences of the trapped gene.

      We found that when crossed to UAS-GFP or UAS-nlsCherry, this line reproduces a expression pattern that must correspond to Chs2. As the antibody that we generated is not suitable for detecting Chs2 endogenous expression, we resorted to using this combination, Chs2CR60212-TG4.0 crossed to a reporter line (such asUAS-GFP or UAS-nlsCherry), to visualise Chs2 expression by staining for GFP/Cherry in the intestinal tract and in the embryo (Figures 4 and S4).

      We realise that the Figure labelling we used in our original submission is very misleading, and we apologise for this. In the original figures we had labelled the staining combination with Kkv, Chs2, Exp as if we had used these antibodies. However, in all cases, we used GFP to visualise the pattern of these proteins in the genetic combinations indicated in the figures. We have corrected this in our revised version. We have also updated the text (Chapter 5), figures and figure legends.

      As the reviewer points, the insertion in Chs2CR60212-TG4.0 is likely to generate a truncated Chs2 protein. We cannot confirm this using the Chs2 antibody we generated because it does not recognise the endogenous Chs2 pattern. Nevertheless, as indicated in point 5, we are currently characterising this line. Our preliminary results indicate a high complexity of effects from this allele that require thorough analysis, as it may be acting as a dominant negative.

      Reviewer #1 (Significance (Required)):

      Significance: The manuscript's strength and most important aspects are the genetic analysis, expression, and localization studies of the two Chitin synthases in Drosophila embryos and larvae. However, beyond this manuscript, the development of mechanistic details, such as interaction partners that trigger secretion and action at the apical membranes and the role of the coiled-coil domain, will be interesting.

      The manuscript uses "first-class" genetics to describe the different roles of the two Chitin synthases in Drosophila, comparing ectodermal chitin (tracheal and epidermal chitin) with endodermal (midgut) chitin. Such a precise analysis has not been investigated before in insects. Therefore, the study deeply extends knowledge about the role of Chitin synthases in insects.

      The audience will specialize in basic research in zoology, developmental biology, and cell biology regarding - how the different Chitin synthases produce chitin. Nevertheless, as chitin is relevant to material research and medical and immunological aspects, the manuscript will be fascinating beyond the specific field and thus for a broader audience.

      I'm working on chitin in the tracheal system and epidermis in Drosophila.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ Drosophila have two different chitin synthase enzymes, Kkv and Chs2, and due to unique expression patterns and mutant phenotypes, it is relatively clear that they have different functions in producing either the cuticle-related chitin network (Kkv) or the chitin associated with the peritrophic matrix (PM). However, what is unknown is whether the different functions in making cuticle vs PM chitin is related to differences in cellular expression and/or enzyme properties within the cell. The authors exploit the genetic tractability of Drosophila and their ability to image cuticle vs PM chitin production to examine whether these 2 enzymes can substitute each other. They conclude that these two proteins are not equivalent in their capacity to generate chitin. The data are convincing; however, it is currently presented in a subjective fashion, which makes it difficult to interpret. Additionally, in my opinion there is some interpretation that requires softening or alternatively interpreted.

      We are pleased that the reviewer finds our data convincing. However, we acknowledge the reviewer's concern that our data was presented in a subjective manner, and we apologise for this. In response, we have carefully reviewed the entire manuscript and revised our data presentation to ensure a more objective tone. Numerous changes (including additional quantifications, new experiments and clarifications) have been incorporated throughout the text. These revisions are highlighted in the marked-up version. We hope that this revision provides a more accurate and objective presentation of our work.

      Major Comments:

      1- While the imaging is lovely, there are some things that are difficult to see in the figures. For example, the "continuous, thin and faint 'chitin' layer that lined the gut epithelium" is very difficult to visualise in the control images. Can they increase the contrast to help the reader appreciate this layer? This is particularly important as we are asked to appreciate a loss of this layer in the absence of Chs2.

      We have tried to improve the figures so that the PM layer in the midgut region is more clearly visible. We have added magnifications of small sections at the midgut lumen/epithelium border in grey to help visualise the PM. These improvements have been made in Figures 1,2,S1,S2,S3 and we believe that they better illustrate our results.

      2- All the mutant analysis is presented subjectively. For example, the authors state that they "found a consistent difference of CBP staining when they compared the 'Chs2' escapers to the controls". How consistent is consistent? Can this be quantified? What is the penetrance of this phenotype? They say that the thin layer is absent in the midgut and the guts are thinner. Could they provide more concrete data?

      As indicated above, we have reviewed the text to provide a more objective description of the phenotypes.

      We have quantified the defects in the Df(Chs2) mutant conditions. For this quantification we dissected intestinal tracts of control and Df(Chs2) larva escapers. We fixed, stained and mounted them together. The control guts expressed GFP in the midgut region as a way to distinguish control from mutants. We analysed the presence or absence of chitin in the PM. We found absence of chitin in the proventricular lumen and in the midgut in all Df(Chs2) guts and presence of chitin there in all control ones (n=12 Df(Chs2) guts, n=9 control guts, from 5 independent experiments). The results indicate a fully penetrant phenotype of lack of chitin in Df(Chs2) larva escapers (100% penetrance). We have added this quantification in the text, chapter 2 (2. Chs2 deposits chitin in the PM).

      To quantify the thickness of the guts, we took measurements of the diameter in control and Df(Chs2) guts at two comparable distance positions from the proventriculus (position 1, position 2, see image). Our quantifications indicated thinner tubes in mutant conditions.

      Image shows the anterior part of the intestinal tract, with the proventriculus encircled in white. Positions 1 and 2 indicate where the diameter quantifications were taken. Scatter plots quantifying the diameter at the two different positions in control and Chs2 larval escapers. Bars show mean {plus minus} SD. p=p value of unpaired t test two-tailed with Welch's correction.

      However, we are aware that our analysis of the thickness of the gut is not accurate, because we have not used markers to precisely measure at the same position in all guts and because we have not normalised the measurement position in relation to the whole intestinal tract (mainly due to technical issues).

      In relation to the fragility, we noticed that the guts of Chs2 larval escapers tended to break more easily during dissection than control guts, however, we have not been able to quantify this parameter in a reliable and objective manner.

      Since we consider that the requirement of Chs2 for PM deposition is sufficiently demonstrated, and that aspects such as gut morphology or fragility relate to the physiological requirements of the PM, which we are beginning to address as a new independent project (see our response to point 5 of Reviewer 1), we have decided to remove the sentence 'We also noticed that the guts of L3 escapers were thinner and more fragile at dissection." from the manuscript to avoid subjectivity.

      3- They state that Chs2 was able to restore accumulation of chitin in the PM of the proventriculus and the midgut. Please quantify. Additionally, does this restore the morphology of the guts (related to the comment above on the thinner guts in the absence of Chs2)?

      We have quantified the rescue of chitin deposition in the PM when Chs2 is expressed in PR cells in a Df(Chs2) mutant background. For this quantification we used the following genetic cross: PRGal4/Cyo; Df(Chs2)/TM6dfdYFP (females) crossed to UASChs2GFP or UASChs2/Cyo; Df(Chs2)/TM6dfdYFP. We selected Df(Chs2) larval escapers by the absence of TM6 (recognisable by the body shape). Among these larval escapers, we identified the presence of Chs2 in PR cells by the expression of GFP or Chs2. We found absence of chitin in the proventriculus and in the midgut in all Df(Chs2) guts that did not express Chs2 in PR cells (n=8/8 Df(Chs2)). In contrast, chitin was present in those intestinal tracts where Chs2 expression was detected in PR cells (n=8/8 PRGal4-UASChs2; Df(Chs2) guts, from 5 independent experiments). The results indicate a full rescue of chitin deposition by Chs2 expression in PR cells in Df(Chs2) mutant larvae. We have added this quantification in the text, chapter 2 (2. Chs2 deposits chitin in the PM).

      As requested by the reviewer, we have also conducted measurements to quantify gut thickness. We performed an analysis similar to the one described in point 2, this time comparing the diameter of Df(Chs2) and PRGal4-UASChs2;Df(Chs2) guts at positions 1 and 2 (see image in point 2 of Reviewer 2). Our quantifications indicated that guts were thicker when Chs2 is expressed in the PR region in Df(Chs2) larval escapers.

      As discussed in point 2, we have decided not to include these results in the manuscript, as this type of analysis requires a more comprehensive investigation.

      Scatter plots quantifying the diameter at the two different positions in Chs2 larval escapers and Chs2 larval escapers expressing Chs2 in PR cells. Bars show mean {plus minus} SD. p=p value of unpaired t test two-tailed with Welch's correction.

      4- This may be beyond the scope of this paper, but I find it interesting that the PM chitin is deposited in the proventricular lumen. Yet it forms a thin layer that lines the entire midgut? Any idea how this presumably dense chitin network gets transported throughout the midgut to line the epithelium? I imagine that this is unlikely due to diffusion, especially if they see an even distribution across the midgut. Do they see any evidence of a graded lining (i.e. is it denser in the midgut towards the proventriculus and does this progressively decrease as you look through the midgut?)?

      Insect peritrophic matrices have been classified into Type I and II (with some variations) depending on their origin (extensively reviewed in (Peters, 1992, Hegedus et al., 2019). Type I PMs are typically produced by delamination as concentric lamellae along the length of the midgut. Type II PMs, in contrast, are produced in a specialised region of the midgut that corresponds to the proventriculus and are typically more organised than Type I. In Type II PMs, distinct layers originate from distinct cell clusters in the proventriculus. It has been proposed that as food passes, it becomes encased by the extruded PM, which then slides down to ensheath the midgut. Drosophila larvae have been proposed to secrete a type II PM: through PM implantation experiments, Rizki proposed that the proventriculus is required to generate the PM in Drosophila larvae (Rizki, 1956). Our experiments confirmed this hypothesis: we show that expressing Chs2 exclusively in PR cells is sufficient to produce a PM along the midgut. Furthermore, we also show that expressing Chs2 in the midgut is not sufficient to produce a PM layer lining the midgut, at least at larval stages.

      The type II PM in Drosophila is proposed to be fully organised into four layers in the proventricular region (also referred as PM formation zone) before reaching the midgut (Peters, 1992, King, 1988, Rizki, 1956, Zhu et al., 2024). However, the mechanism by which the PM is subsequently transported into the midgut remains unclear. PM movement posteriorly is thought to depend on to the pressure exerted by continuous secretion of PM material (Peters, 1992). Early work by Wigglesworth (1929, 1930) proposed that the PM is secreted into the proventricular lumen, becomes fully organised, and is then pushed down by a press mechanism involving the aposed ectodermal/endodermal walls of the proventriculus. Rizki suggested that muscular contractions of the proventriculus walls may play a role, and that peristaltic movements of the gut add a pulling force to push the PM into the midgut (Rizki, 1956). Nevertheless, to our knowledge, the exact mechanism is still not fully understood.

      In response to the reviewer's question, the level of resolution of our analysis does not allow us to determine whether there is a graded PM lining along the midgut. However, available data using electron microscopy approaches suggest that the PM is a fully organised structure composed of four layers that is secreted and transported to line the midgut (King, 1988, Zhu et al., 2024).

      5- The authors state that expression of kkv in tracheal cells of kkv mutants perfectly restores accumulation of chitin in the luminal filaments. Is this really 100% restoration? They also reference a paper here, which may have quantified this result.

      We previously reported that the expression of kkv in tracheal cells restores chitin deposition in kkv mutants (Moussian et al,2015). However, our previous study did not quantify this rescue. As requested by the reviewer, we have now quantified the extent of the rescue.

      To perform this quantification, we used the following genetic cross:

      btlGa4/(Cyo); kkv/TM6dfdYFP (females) crossed to +/+; kkv UASkkvGFP/TM6dfdYFP (males)

      We stained the resulting embryos with CBP (to detect chitin) and GFP. GFP staining allowed us to identify the kkv mutants (by the absence of dfdYFP marker) and to simultaneously identify the embryos that expressed kkvGFP in tracheal cells (through btlGal4-driven expression). Since btlGal4 is homozygous viable, most females carried two copies of btlGal4.

      We compared the following embryo populations across 4 independent experiments:

      1. Cyo/+; kkv/kkv UASkkvGFP (kkv mutants not expressing kkv in the trachea)
      2. btlGal4/+; kkv/kkv UASkkvGFP (kkv mutants expressing kkv in the trachea) Results:

      3. Cyo/+; kkv/kkv UASkkvGFP ---- 0/6 embryos deposited chitin in trachea

      4. btlGal4/+; kkv/kkv UASkkvGFP ---- 27/27 embryos deposited chitin in trachea These results indicate complete restauration of chitin deposition in kkv mutants when kkv is expressed in tracheal cells (100% rescue).

      To further investigate whether Chs2 can compensate for kkv function in ectodermal tissues, we performed a similar quantification using the following genetic cross:

      btlGa4/(Cyo); kkv/TM6dfdYFP (females) crossed to UASChs2GFP/UASChs2GFP; kkv UASkkvGFP/TM6dfdYFP (males)

      We compared the following embryo populations across 2 independent experiments:

      1. Cyo/UASChs2GFP; kkv/kkv (kkv mutants not expressing Chs2 in the trachea)
      2. btlGal4/ UASChs2GFP; kkv/kkv (kkv mutants expressing Chs2 in the trachea) Results:

      3. Cyo/UASChs2GFP; kkv/kkv ---- 0/4 embryos deposited chitin in trachea

      4. btlGal4/ UASChs2GFP; kkv/kkv ---- 0/16 embryos deposited chitin in trachea These results indicate no restauration of chitin deposition in kkv mutants expressing Chs2 in the trachea (0% rescue).

      We have now incorporated these quantifications in the text, chapter 4 (4. Chs2 cannot replace Kkv and deposit chitin in ectodermal tissues.)

      6- They ask whether Kkv overexpression in the proventriculus can rescue Chs2 mutants... and vice versa, whether Chs2 overexpression in ectodermal cells can rescue kkv mutants. They show that kkv overexpression leads to an intracellular accumulation of chitin in the proventriculus. However, Chs2 overexpression in the trachea did not lead to any accumulation of chitin in the cells. They tailored their experiments and the associated discussion to address the hypothesis that there is potentially some difference in trafficking of these components. However, another possibility, which they have not ruled out, is that the different ability of kkv and Chs2 to produce chitin inside cells of the proventriculus and ectoderm, respectively, is potentially related to different enzymatic activities and cofactors required for chitin formation in these different cell types. Is this another potential explanation for the differences that they observe?

      We note that Kkv overexpression in any cell type (e.g. ectoderm, endoderm) consistently leads to chitin polymerisation. In ectodermal tissues, Kkv expression, in combination with Exp/Reb activity, results in extracellular chitin deposition. In the absence of Exp/Reb, Kkv expression leads to the accumulation of intracellular chitin punctae (De Giorgio et al., 2023, Moussian et al., 2015); this work). This correlates with the accumulation of Kkv at the apical membrane and presence of Kkv-containing vesicles, regardless of the presence of Exp/Reb (De Giorgio et al., 2023, Moussian et al., 2015); Figure 6, S6). In endodermal tissues, regardless of the presence of Exp/Reb, Kkv cannot deposit chitin extracellularly and instead produces intracellular chitin punctae. This correlates with a diffuse accumulation of Kkv in the endodermal cells (PR cells, or gut cells in the embryo) but presence of Kkv-containing vesicles (Figure 6, S6).

      In previous work we showed that Kkv's ability to polymerise chitin is completely abolished when it is retained in the ER. Indeed, we found that a mutation in a conserved WGTRE region leads to ER retention, the absence of Kkv-containing vesicles in the cell, and absence of intracellular chitin punctae or chitin deposition (De Giorgio et al., 2023).

      These findings indicate a correlation between Kkv subcellular localisation and chitin polymerisation/extrusion. Therefore, we hypothesise that intracellular trafficking and subsequent subcellular localisation play a crucial role in regulating Kkv activity (De Giorgio et al., 2023; this work).

      We find that Chs2 is expressed in PR cells (Figure 4) and observe that only in these PR cells does Chs2 localise apically (Fig 5A-D, S5A,B). This localisation correlates with the ability of Chs2 to deposit chitin in the PM and the presence of intracellular chitin punctae in PR cells (Fig 1F). When Chs2 is expressed in other cells types, we detect it primarily in the ER and observed no Chs2-containing vesicles (vesicles are suggestive of trafficking). This localisation correlates with the inability of Chs2 to produce intracellular chitin punctae or extracellular chitin deposition.

      Again, these results suggest a correlation between Chs2 subcellular localisation and chitin polymerisation/extrusion, aligning with the results observed for Kkv. Therefore, we hypothesise in this work that the intracellular trafficking and subsequent subcellular localisation of Chs2 play a crucial role in regulating its activity.

      Our hypothesis is consistent with seminal work in yeast chitin synthases, which has demonstrated the critical role of intracellular trafficking, and particularly ER exit, in regulating chitin synthase activity (reviewed in (Sanchez and Roncero, 2022).

      That said, we cannot exclude other explanations that are also compatible with the observed results. As pointed out by the reviewer, it is possible that Chs2 and Kkv require different enzymatic activities and/or cofactors for chitin polymerisation/deposition, which may be specific to different cell types. Indeed, we know that the auxiliary proteins Exp/Reb are specifically expressed in certain ectodermal tissues (Moussian et al., 2015). These mechanisms could act jointly or in parallel with the regulation of intracellular trafficking, or could even regulate this intracellular trafficking itself.

      Identifying the exact mechanisms controlling Kkv and Chs2 intracellular trafficking would be necessary to determine whether additional mechanisms (specific cofactors or enzymatic activities) are also involved or even serve as the primary regulatory elements.

      We have introduced these additional possibilities in the discussion section.

      7- They co-express Chs2 and Reb and show that this does not lead to chitin production or secretion. In the discussion they conclude that Chs2 does not "seem to be dependent on 'Reb' activity". I think that this statement potentially needs softening. They show that Reb is not sufficient in to induce Chs2 chitin production in cells that do not normally make a PM. However, they do not show that it is not essential in cells that normally express Chs2 and make PM.

      We fully agree with the reviewer's observation and thank her/him for pointing it out.

      As indicated by the reviewer, we show that co-expression of Reb and Chs2 in different tissues does not lead to an effect distinct from that observed with Chs2 expression alone. In addition, in the discussion we mention that we could not detect expression of reb/exp in PR cells, which aligns with the findings from Zhu et al, 2024, indicating no expression of reb/exp in the midgut cells of the adult proventriculus, as assessed by scRNAseq. We found that exp is expressed in the ectodermal cells of the larval proventriculus (Fig S4D), correlating with kkv expression in this region and cuticle deposition. These findings led us to propose that Chs2 does not seem to be dependent on Exp/Reb activity.

      However, in our original manuscript, we did not directly address whether Exp/Reb are required in the cells that normally express Chs2. As a result, we could not conclude that Chs2 relies on a set of auxiliary proteins different from Exp/Reb, and therefore a different molecular mechanism to that of Kkv in regulating chitin deposition.

      To address this specific point, we have conducted a new experiment to test Exp/Reb requirement in PR cells. We co-expressed RNAi lines for Exp/Reb in these cells and found that chitin deposition in the PM was not prevented. This further supports the hypothesis that Exp/Reb activity is not necessary for Chs2 function. We have added this experiment to Chapter 4 and Fig S3I,J.

      8- They looked at the endogenous expression pattern of kkv and Chs2 and say that they found accumulation of Kkv in the proventriculus and no accumulation in the midgut. Siimilarly, they look at the expression of Chs2 and detect it in cells of the proventriculus. Are there markers of these different cell types that they could use to colocalize these enzymes?

      We agree with the reviewer that this is an important issue and we note that Reviewer 1 also raised the same point. Therefore, we have addressed this issue.

      We obtained an antibody against Dve, kindly provided by Dr. Hideki Nakagoshi. Dve marks the endodermal region in the proventriculus (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998).This antibody worked nicely in our dissected L3 digestive tracts and allowed us to mark the endodermal region. We also obtained an antibody against Fkh, kindly provided by Dr. Pilar Carrera. Fkh marks the ectodermal foregut cells (Fuss and Hoch, 1998, Fuss et al., 2004, Nakagoshi et al., 1998). While, in our hands, this antibody performed well in embryonic tissues, we observed no staining in our dissected L3 digestive tracts. The reason for this is unclear, but we suspect technical limitations may be responsible (the ectodermal region of the proventriculus is very internal, potentially hindering antibody penetration). To circumvent this inconvenience, we tested a FkhGFP tagged allele available in Bloomington Stock Center. Fortunately, we were able to detect GFP in ectodermal cells of L3 carrying this allele. Using this approach, we conducted experiments to detect Fkh and Dve in relation to chitin accumulation in the wild type (Fig S1). In addition, we used these markers to map the expression of Kkv and Chs2 in the proventriculus (Fig 4). Our results using these endodermal/ectodermal markers confirmed the presence of a cuticle adjacent to the FkhGFP-positive cells and a PM adjacent to the PR cells, marked by Dve. Additionally, we show that Chs2-expressing cells are positive for Dve while Kkv-expressing cells are not. We could not conduct an experiment showing Kkv and Fkh co-expression due to technical incompatibilities, as we have to use GFP tagged alleles for both Kkv and Fkh to reveal their expression. However, we believe that our imaging of Dve/Kkv clearly shows that Kkv expressing cells lack Dve expression and localise in the internal (ectodermal) region of the proventriculus (Fig 4E).

      9- They overexpress Chs2 in cells of the midgut and see that it colocalises with an ER marker. They conclude that it is retained in the ER, which again, for them suggests that it has a trafficking problem in these cells. However, they are overexpressing it in these cells and this strong accumulation that they observe in the ER could simply be due to the massive expression levels. Additionally, they cannot conclude that it doesn't get out of the ER at all. They could be correct in thinking that there may be a trafficking issue, but this experiment does not conclusively show that Chs2 is entirely retained in the ER when expressed in ectopic tissues. I wonder if their interpretation needs softening or whether they should potentially address alternative hypotheses.

      The reviewer raises two distinct issues: 1) the localisation of overexpressed proteins 2) Chs2 ER retention.

      We agree that massive overexpression can lead to artifactual subcellular localisation due to saturation of the secretory pathway, causing ER accumulation. In our experiments, we overexpressed Kkv and Chs2 in different tissues (trachea, salivary glands, embryonic gut, and larval proventriculus), inducing high levels of both chitin synthases.

      For Kkv, we observed distinct subcellular localisation patterns in ectodermal versus endodermal tissues (illustrated in new Fig S6). In ectodermal tissues such as the trachea, large amounts of KkvGFP were detected, most of it localising apically. We also detected a more general KkvGFP distribution throughout the cell, including the ER, particularly at early stages. Additionally, we observed many KkvGFP-positive vesicles, reflecting exocytic and endocytic trafficking, as described previously (De Giorgio et al., 2023). The presence of these vesicles (as well as the apical localisation) indicates that KkvGFP is able to exit the ER. Indeed, our previous work demonstrated that when Kkv is retained in the ER, it does not localise apically or appear in vesicles (De Giorgio et al, 2023). In endodermal tissues, as described in our manuscript, KkvGFP did not exhibit polarised apical localisation and instead showed a diffuse pattern with some cortical enrichment. However, the presence of KkvGFP-containing vesicles still suggests that the protein is capable of exiting the ER also in these endodermal tissues.

      We observed a different subcellular pattern when we overexpressed Chs2GFP. In tissues where Chs2 is not normally expressed (e.g., trachea, salivary gland, embryonic gut), we did not detect apical or membrane accumulation (see Fig. 5,S5, S6 and response to point 4 of Reviewer #1). Nor did we observe accumulation of Chs2GFP in intracellular vesicles. Instead, Chs2GFP showed strong colocalisation with an ER marker (see Fig. 5,S5, S6 and response to point 4 of Reviewer #1). In contrast, when overexpressed in PR cells, we detected apical enrichment (Fig 5A-D, S5A,B). This indicates that despite massive expression levels, Chs2 can exit the ER in particular tissues.

      Taken together, our results strongly suggest that overexpressed Kkv can exit the ER in the different tissues analysed, whereas most Chs2GFP is retained in the ER in tissues other than PR cells. This correlates with the ability of overexpressed KkvGFP to polymerise chitin (either in intracellular puncta or deposited extracellularly depending on the presence of Exp/Reb) in all analysed tissues. Conversely, Chs2 was unable to polymerise chitin (either in intracellular puncta or extracellularly regardless of Exp/Reb presence) in tissues other than PR cells.

      Nevertheless, we acknowledge that we cannot definitively conclude that all Chs2 protein is entirely retained in the ER. We have included this caveat in our revised manuscript (Chapter 6 and Discussion section).

      Minor Comments: - No mention of Fig 3I in the results section and the order discussed in the results does not match the order in the figure.

      We apologise for these inconsistencies. We have addressed this issue in the text, figure legend, and the image order in Figure 3 and Figure S3.

      • In the results please provide some information on what the CRIMIC collection is and how it allows you to see Chs2 expression for non-experts.

      We have addressed this point in chapter 5 in the revised version, and we now provide a more detailed explanation of the CRIMIC Chs2CR60212-TG4.0 allele.

      Further details of this allele are also provided in our responses to points 5 and 9 of Reviewer 1.

      Reviewer #2 (Significance (Required)):

      Drosophila produce different types of chitinous structures that are required for either the exoskeleton of the animal or for proper gut function (peritrophic matrix). Additionally, most insects have two enzymes involved in the production of chitin and current data suggests that they have unique roles in producing either the exoskeleton or the peritrophic matrix. However, it is unclear whether their different functions are due to differences in cell type expression or differences in physiological activity of the enzymes. The authors exploit Drosophila to drive these 2 enzymes in different cell types that are known to produce the exoskeleton or the peritrophic matrix to determine whether they can functionally substitute mutant backgrounds. Their results give us a hint that these enzymes are not equivalent. What the authors were unable to address is why they are not equivalent. They hypothesise that the different physiological functions of the enzymes may be related to trafficking differences within their respective cell types. While this is an interesting hypothesis, the date are not really clear yet to make this conclusion.

      This work will be of interest to anyone interested in chitinous structures in insects and the cell biology of chitin-related enzymes.

      Literature


      AHMAD, M., CHAUDHARY, S. U., AFZAL, A. J. & TARIQ, M. 2015. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults. Sci Rep, 5__,__ 14285.

      DE GIORGIO, E., GIANNIOS, P., ESPINAS, M. L. & LLIMARGAS, M. 2023. A dynamic interplay between chitin synthase and the proteins Expansion/Rebuf reveals that chitin polymerisation and translocation are uncoupled in Drosophila. PLoS Biol, 21__,__ e3001978.

      FUSS, B. & HOCH, M. 1998. Drosophila endoderm development requires a novel homeobox gene which is a target of Wingless and Dpp signalling. Mech Dev, 79__,__ 83-97.

      FUSS, B., JOSTEN, F., FEIX, M. & HOCH, M. 2004. Cell movements controlled by the Notch signalling cascade during foregut development in Drosophila. Development, 131__,__ 1587-95.

      HEGEDUS, D. D., TOPRAK, U. & ERLANDSON, M. 2019. Peritrophic matrix formation. J Insect Physiol, 117__,__ 103898.

      KING, D. G. 1988. Cellular organization and peritrophic membrane formation in the cardia (proventriculus) of Drosophila melanogaster. J Morphol, 196__,__ 253-82.

      LEBRETON, G. & CASANOVA, J. 2016. Ligand-binding and constitutive FGF receptors in single Drosophila tracheal cells: Implications for the role of FGF in collective migration. Dev Dyn, 245__,__ 372-8.

      MOUSSIAN, B., LETIZIA, A., MARTINEZ-CORRALES, G., ROTSTEIN, B., CASALI, A. & LLIMARGAS, M. 2015. Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLoS Genet, 11__,__ e1004939.

      NAKAGOSHI, H., HOSHI, M., NABESHIMA, Y. & MATSUZAKI, F. 1998. A novel homeobox gene mediates the Dpp signal to establish functional specificity within target cells. Genes Dev, 12__,__ 2724-34.

      PETERS, W. 1992. Peritrophic Membranes, Springer Berlin, Heidelberg.

      RIZKI, M. T. M. 1956. The secretory activity of the proventriculus of Drosophila melanogaster. Journal of Experimental Zoology, 131__,__ 203-221.

      SANCHEZ, N. & RONCERO, C. 2022. Chitin Synthesis in Yeast: A Matter of Trafficking. Int J Mol Sci, 23.

      ZHU, H., LUDINGTON, W. B. & SPRADLING, A. C. 2024. Cellular and molecular organization of the Drosophila foregut. Proc Natl Acad Sci U S A, 121__,__ e2318760121.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public reviews:

      Reviewer #1:

      The authors attempted to replicate previous work showing that counterconditioning leads to more persistent reduction of threat responses, relative to extinction. They also aimed to examine the neural mechanisms underlying counterconditioning and extinction. They achieved both of these aims and were able to provide some additional information, such as how counterconditioning impacts memory consolidation. Having a better understanding of which neural networks are engaged during counterconditioning may provide novel pharmacological targets to aid in therapies for traumatic memories. It will be interesting to follow up by examining the impact of varying amounts of time between acquisition and counterconditioning phases, to enhance replicability to real-world therapeutic settings.

      Major strengths

      · This paper is very well written and attempts to comprehensively assess multiple aspects of counterconditioning and extinction processes. For instance, the addition of memory retrieval tests is not core to the primary hypotheses but provides additional mechanistic information on how episodic memory is impacted by counterconditioning. This methodical approach is commonly seen in animal literature, but less so in human studies.

      · The Group x Cs-type x Phase repeated measure statistical tests with 'differentials' as outcome variables are quite complex, however, the authors have generally done a good job of teasing out significant F test findings with post hoc tests and presenting the data well visually. It is reassuring that there is a convergence between self-report data on arousal and valence and the pupil dilation response. Skin conductance is a notoriously challenging modality, so it is not too concerning that this was placed in the supplementary materials. Neural responses also occurred in logical regions with regard to reward learning.

      · Strong methodology with regards to neuroimaging analysis, and physiological measures.

      ·The authors are very clear on documenting where there were discrepancies from their pre-registration and providing valid rationales for why.

      We thank reviewer 1 for the positive feedback and for pointing out the strengths of our work. We agree that future research should investigate varying times between acquisition and counterconditioning to assess its success in real-life applications.

      Major Weaknesses

      (1) The statistics showing that counterconditioning prevents differential spontaneous recovery are the weakest p values of the paper (and using one-tailed tests, although this is valid due to directions being pre-hypothesized). This may be due to a relatively small number of participants and some variability in responses. It is difficult to see how many people were included in the final PDR and neuroimaging analyses, with exclusions not clearly documented. Based on Figure 3, there are relatively small numbers in the PDR analyses (n=14 and n=12 in counterconditioning and extinction, respectively). Of these, each group had 4 people with differential PDR results in the opposing direction to the group mean. This perhaps warrants mention as the reported effects may not hold in a subgroup of individuals, which could have clinical implications.

      General exclusion criteria are described on page 17. We have added more detailed information on the reasons for exclusion (see page 17). All exclusions were in line with pre-registered criteria. For the analysis, the reviewer is referring to (PDR analysis that investigated whether CC can prevent the spontaneous recovery of differential conditioned threat responses), 18 participants were excluded from this analysis: 2 participants did not show evidence for successful threat acquisition as was already indicated on page 17, and 16 participants were excluded due to (partially) missing data. We now explicitly mention the exclusion of the additional 16 participants on page 7 and have updated Figure 3 to improve visibility of the individual data points. Therefore, for this analysis both experimental groups consisted of 15 participants (total N=30).

      It is true that in both groups a few participants show the opposite pattern. Although this may also be due to measurement error, we agree that it is relevant to further investigate this in future studies with larger sample sizes. It will be crucial to identify who will respond to treatments based on the principles of standard extinction or counterconditioning. We have added this point in the discussion on page 14.

      Reviewer #2:

      Summary:

      The present study sets out to examine the impact of counterconditioning (CC) and extinction on conditioned threat responses in humans, particularly looking at neural mechanisms involved in threat memory suppression. By combining behavioral, physiological, and neuroimaging (fMRI) data, the authors aim to provide a clear picture of how CC might engage unique neural circuits and coding dynamics, potentially offering a more robust reduction in threat responses compared to traditional extinction.

      Strengths:

      One major strength of this work lies in its thoughtful and unique design - integrating subjective, physiological, and neuroimaging measures to capture the various aspects of counterconditioning (CC) in humans. Additionally, the study is centered on a well-motivated hypothesis and the findings have the potential to improve the current understanding of pathways associated with emotional and cognitive control. The data presentation is systematic, and the results on behavioral and physiological measures fit well with the hypothesized outcomes. The neuroimaging results also provide strong support for distinct neural mechanisms underlying CC versus extinction.

      We thank reviewer 2 for the feedback and for valuing the thoughtfulness that went into designing the study.

      Weaknesses:

      (1) Overall, this study is a well-conducted and thought-provoking investigation into counterconditioning, with strong potential to advance our understanding of threat modulation mechanisms. Two main weaknesses concern the scope and decisions regarding analysis choices. First, while the findings are solid, the topic of counterconditioning is relatively niche and may have limited appeal to a broader audience. Expanding the discussion to connect counterconditioning more explicitly to widely studied frameworks in emotional regulation or cognitive control would enhance the paper's accessibility and relevance to a wider range of readers. This broader framing could also underscore the generalizability and broader significance of the results. In addition, detailed steps in the statistical procedures and analysis parameters seem to be missing. This makes it challenging for readers to interpret the results in light of potential limitations given the data modality and/or analysis choices.

      In this updated version of the manuscript, we included the notion that extinction has been interpreted as a form of implicit emotion regulation. In addition to our discussion on active coping (avoidance), we believe that our discussion has an important link to the more general framework of emotion regulation, while remaining within the scope of relevance. Please see pages 14 and 15 for the changes. In addition to being informative to theories of emotion regulation, our findings are also highly relevant for forms of psychotherapy that build on principles of counterconditioning (e.g. the use of positive reinforcement in cognitive behavioral therapy), as we point out in the introduction. We believe this relevance shows that counterconditioning is more than a niche topic. In line with the recommendation from reviewer 2, we added more details and explanations to the statistical procedures and analyses where needed (see responses to recommendations).

      Reviewer #3:

      Summary:

      In this manuscript, Wirz et al use neuroimaging (fMRI) to show that counterconditioning produces a longer lasting reduction in fear conditioning relative to extinction and appears to rely on the nucleus accumbens rather than the ventromedial prefrontal cortex. These important findings are supported by convincing evidence and will be of interest to researchers across multiple subfields, including neuroscientists, cognitive theory researchers, and clinicians.

      In large part, the authors achieved their aims of giving a qualitative assessment of the behavioural mechanisms of counterconditioning versus extinction, as well as investigating the brain mechanisms. The results support their conclusions and give interesting insights into the psychological and neurobiological mechanisms of the processes that underlie the unlearning, or counteracting, of threat conditioning.

      Strengths:

      · Mostly clearly written with interesting psychological insights

      · Excellent behavioural design, well-controlled and tests for a number of different psychological phenomena (e.g. extinction, recovery, reinstatement, etc).

      · Very interesting results regarding the neural mechanisms of each process.

      · Good acknowledgement of the limitations of the study.

      We thank reviewer 3 for the detailed feedback and suggestions.

      Weaknesses:

      (1) I think the acquisition data belongs in the main figure, so the reader can discern whether or not there are directional differences prior to CC and extinction training that could account for the differences observed. This is particularly important for the valence data which appears to differ at baseline (supplemental figure 2C).

      Since our design is quite complex with a lot of results, we left the fear acquisition results as a successful manipulation check in the Supplementary Information to not overload the reader with information that is not the main focus of this manuscript. If the editor would like us to add the figure to the main text, we are happy to do so. During fear acquisition, both experimental groups showed comparable differential conditioned threat responses as measured by PDRs and SCRs. Subjective valence ratings indeed differed depending on CS category. Importantly, however, the groups only differed with respect to their rating to the CS- category, but not the CS+ category, which suggests that the strength of the acquired fear is similar between the groups. To make sure that these baseline differences cannot account for the differences in valence after CC/Ext, we ran an additional group comparison with differential valence ratings after fear acquisition added as a covariate. Results show that despite the baseline difference, the group difference in valence after CC/Ext is still significant (main effect Group: F<sub>(1,43)</sub>=7.364, p=0.010, η<sup>2</sup>=0.146). We have added this analysis to the manuscript (see page 7).

      (2) I was confused in several sections about the chronology of what was done and when. For instance, it appears that individuals went through re-extinction, but this is just called extinction in places.

      We understand that the complexity of the design may require a clearer description. We therefore made some changes throughout the manuscript to improve understanding. Figure 1 is very helpful in understanding the design and we therefore refer to that figure more regularly (see pages 6-7). We also added the time between tasks where appropriate (e.g. see page 7). Re-extinction after reinstatement was indeed mentioned once in the manuscript. Given that the reinstatement procedure was not successful (see page 9), we could not investigate re-extinction and it is therefore indeed not relevant to explicitly mention and may cause confusion. We therefore removed it (see page 12).

      (3) I was also confused about the data in Figure 3. It appears that the CC group maintained differential pupil dilation during CC, whereas extinction participants didn't, and the authors suggest that this is indicative of the anticipation of reward. Do reward-associated cues typically cause pupil dilation? Is this a general arousal response? If so, does this mean that the CSs become equally arousing over time for the CC group whereas the opposite occurs for the extinction group (i.e. Figure 3, bottom graphs)? It is then further confusing as to why the CC group lose differential responding on the spontaneous recovery test. I'm not sure this was adequately addressed.

      Indeed, reward and reward anticipation also evoke an increase in pupil dilation. This was an important reason for including a separate valence-specific response characterization task. Independently from the conditioning task, this task revealed that both threat and reward-anticipation induced strong arousal-related PDRs and SCRs. This was also reflected in the explicit arousal ratings, which were stronger for both the shock-reinforced (negative valence) and reward-reinforced (positive valence) stimuli. Therefore, it is not surprising that reward anticipation leads to stronger PDRs for CS+ (which predict reward) compared to CS- stimuli (which do not predict reward) during CC, but is reduced during extinction due to a decrease in shock anticipation. During the spontaneous recovery test, a return of stronger PDRs for CS+ compared to CS- stimuli in the standard extinction group can only reflect a return of shock anticipation. Importantly, the CC group received no rewards during the spontaneous recovery task and was aware of this, so it is to be expected that the effect is weakened in the CC group. However, CS+ and CS- items were still rated of similar valence and PDRs did not differ between CS+ and CS- items in the CC group, whereas the Ext group rated the CS+ significantly more negative and threat responses to the CS+ did return. It therefore is reasonable to conclude that associating the CS+ with reward helps to prevent a return of threat responses. We have added some clarifications and conclusions to this section on page 8.

      (4) I am not sure that the memories tested were truly episodic

      In line with previous publications from Dunsmoor et al.[1-4], our task allows for the investigation of memory for elements of a specific episode. In the example of our task, retrieval of a picture probes retrieval of the specific episode, in which the picture was presented. In contrast, fear retrieval relies on the retrieval of the category-threat association, which does not rely on retrieval of these specific episodic elements, but could be semantic in nature, as retrieval takes place at a conceptual level. We have added a small note on what we mean with episodic in this context on page 4. We do agree that we cannot investigate other aspects of episodic memories here, such as context, as this was not manipulated in this experiment.

      (5) Twice as many female participants than males

      It is indeed unfortunate that there is no equal distribution between female and male participants. Investigating sex differences was not the goal of this study, but we do hope that future studies with the appropriate sample sizes are able to investigate this specifically. We have added this to the limitations of this study on page 17.

      (6) No explanation as to why shocks were varied in intensity and how (pseudo-randomly?)

      The shock determination procedure is explained on pages 18-19 (Peripheral stimulation). As is common in fear conditioning studies in humans (see references), an ascending staircase procedure was used. The goal of this procedure is to try and equalize the subjective experience of the electrical shocks to be “maximally uncomfortable but not painful”.

      Recommendations for the authors:

      Reviewer #1:

      Very well written. No additional comments

      We thank reviewer 1 for valuing our original manuscript version. To further improve the manuscript, we adapted the current version based on the reviewer’s public review (see response to reviewer #1 public review comment 1).

      Reviewer #2:

      (1) I feel that more justification/explanation is needed on why other regions highly relevant to different aspects of counterconditioning (e.g., threat, memory, reward processing) were not included in the analyses.

      We first performed whole-brain analyses to get a general idea of the different neural mechanisms of CC compared to Ext. Clusters revealing significant group differences were then further investigated by means of preregistered ROI analyses. We included regions that have previously been shown to be most relevant for affective processing/threat responding (amygdala), memory (hippocampus), reward processing (NAcc) and regular extinction (vmPFC). We restricted our analyses to these most relevant ROIs as preregistered to prevent inflated or false-positive findings[5]. Beyond these preregistered ROIs, we applied appropriate whole-brain FEW corrections. The activated regions are listed in Supplementary Table 1 and include additional regions that were expected, such as the ACC and insula.

      (2) Were there observed differences across participants in the experiment? Any information on variance in the data such as how individual differences might influence these findings would provide a richer understanding of counterconditioning and increase the depth of interpretation for a broad readership.

      We agree that investigating individual differences is crucial to gain a better understanding of treatment efficacy in the framework of personalized medicine. Specifically, future research should aim to identify factors that help predict which treatment will be most effective for a particular patient. The results of this study provide a good basis for this, as we could show that the vmPFC in contrast to regular extinction, is not required in CC to improve the retention of safety memory. Therefore, this provides a viable option for patients who are not responding to treatments that rely on the vmPFC. In addition, as noted by Reviewer 1, in both groups a few participants show the opposite pattern (see Figure 3). It will be crucial to identify who will respond to treatments based on the principles of standard extinction or counterconditioning. We have added this point in the discussion on page 14.

      (3) While most figures are informative and clear, Figure 3 would benefit from detailed axis labels and a more descriptive caption. Currently, it is challenging to navigate the results presented to support the findings related to differential PDRs. A supplementary figure consolidating key patterns across conditions might also further facilitate understanding of this rather complicated result.

      We have made some changes to the figure to improve readability and understanding. Specifically, we changed the figure caption to “Change from last 2 trials CC/Ext to first 2 trials Spontaneous recovery test”, to give more details on what exactly is shown here. We also simplified the x-axis labels to “counterconditioning”, “recovery test” and “extinction”. With the addition of a clearer figure description, we hope to have improved understanding and do not think that another supplemental figure is needed.

      (4) Additional details on the statistical tests are needed. For example, please clarify whether p-values reported were corrected across all experimental conditions. Also, it would be helpful for the authors to discuss why for example repeated measures ANOVA or mixed-effects conditions were not used in this study. Might those tests not capture variance across participants' PDRs and SCRs over time better?

      We added that significant interactions were followed by Bonferroni-adjusted post-hoc tests where applicable (see page 21). We have used repeated measures ANOVAs to capture early versus late phases of acquisition and CC/extinction, as well as to compare late CC/extinction (last 2 trials) compared to early spontaneous recovery (first 2 trials) as is often done in the literature. A trial-level factor in a small sample would cost too many degrees of freedom and is not expected to provide more information. We have added this information and our reasoning to the methods section on page 21.

      Reviewer #3:

      (1) Suggest putting acquisition data into the main figures. In fact many of the supplemental figures could be integrated into the main figures in my opinion.

      See response to reviewer #3 public review comment 1.

      (2) Include explanations for why shock intensity was varied

      See response to reviewer #3 public review comment 6.

      (3) Include a better explanation for the change in differential responding from training to spontaneous recovery in the CC group (I think the loss of such responding in extinction makes more sense and is supported by the notion of spontaneous recovery, but I'm not sure about the loss in the CC group. There is some evidence from the rodent literature - which I am most familiar with - regarding a loss in contextual gradient across time which could account for some loss in specificity, could it be something like this?).

      See response to reviewer #3 public review comment 3.

      If we understand the reviewer correctly in that the we see a loss of differential responding due to a generalization to the CS-, this would imply an increase in responding to the CS-, which is not what we see. Our data should therefore be correctly interpreted as a loss of the specific response to the CS+ from the CC phase to the recovery test. Therefore, there is no spontaneous recovery in the CC group, and also not a non-specific recovery. To clarify this we relabeled Figure 3 by indicating “recovery test” instead of “spontaneous recovery”.

      (4) Is there a possibility that baseline differences, particularly that in Supplemental Figure 2C, could account for later differences? If differences persist after some transformation (e.g. percentage of baseline responding) this would be convincing to suggest that it doesn't.

      See response to reviewer #3 public review comment 1.

      (5) As I mentioned, I got confused by the chronology as I read through. Maybe mention early on when reporting the spontaneous recovery results that testing occurred the next day and that participants were undergoing re-extinction when talking about it for the second time.

      See response to reviewer #3 public review comment 2.

      (6) Page 8 - I was confused as to why it is surprising that the CC group were more aroused than the extinction group, the latter have not had CSs paired with anything with any valence, so doesn't this make sense? Or perhaps I am misunderstanding the results - here in text the authors refer back to Figure 2B, but I'm not sure if this is showing data from the spontaneous recovery test or from CC/extinction. If it is the latter, as the caption suggests, why are the authors referring to it here?

      Participants in the CC group showed increased differential self-reported arousal after CC, whereas arousal ratings did not differ between CS+ and CS- items after extinction. We interpret this in line with the valence and PDR results as an indication of reward-induced arousal. At the start of the next day, however, participants from the CC and extinction groups gave comparable ratings. It may therefore be surprising why participants in the CC group do not still show stronger ratings since nothing happened between these two ratings besides a night’s sleep (see design overview in Figure 1A). We removed the “suprisingly” to prevent any confusion.

      (7) I suggest that the authors comment on whether there were any gender differences in their results.

      See response to reviewer #3 public review comment 5.

      (8) The study makes several claims about episodic memory, but how can the authors be sure that the memories they are tapping into are episodic? Episodic has a very specific meaning - a biographical, contextually-based memory, whereas the information being encoded here could be semantic. Perhaps a bit of clarification around this issue could be helpful.

      See response to reviewer #3 public review comment 4.

      References

      (1) Dunsmoor, J. E. & Kroes, M. C. W. Episodic memory and Pavlovian conditioning: ships passing in the night. Curr Opin Behav Sci 26, 32-39 (2019). https://doi.org/10.1016/j.cobeha.2018.09.019

      (2) Dunsmoor, J. E. et al. Event segmentation protects emotional memories from competing experiences encoded close in time. Nature Human Behaviour 2, 291-299 (2018). https://doi.org/10.1038/s41562-018-0317-4

      (3) Dunsmoor, J. E., Murty, V. P., Clewett, D., Phelps, E. A. & Davachi, L. Tag and capture: how salient experiences target and rescue nearby events in memory. Trends Cogn Sci 26, 782-795 (2022). https://doi.org/10.1016/j.tics.2022.06.009

      (4) Dunsmoor, J. E., Murty, V. P., Davachi, L. & Phelps, E. A. Emotional learning selectively and retroactively strengthens memories for related events. Nature 520, 345-348 (2015). https://doi.org/10.1038/nature14106

      (5) Gentili, C., Cecchetti, L., Handjaras, G., Lettieri, G. & Cristea, I. A. The case for preregistering all region of interest (ROI) analyses in neuroimaging research. Eur J Neurosci 53, 357-361 (2021). https://doi.org/10.1111/ejn.14954

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Dear Editor,

      Thank you for reviewing our article. We are happy to see that the reviewers are positive on our manuscript. We have tried to address nearly all their comments. Find below a point-by-point answer.

      With best regards,

      Bruno Lemaitre and Asya Dolgikh

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This work defines NimB1 protein as a PS binding bridging molecule but with a negative regulatory role in efferocytosis. Specifically, the authors demonstrate via a variety of genetic, cell biological, and other approaches that loss of NimB1 leads to Drosophila macrophages being more adherent to apoptotic targets and engulf them more robustly. The authors also nicely demonstrate that the function of NimB1 differs from NimB4, and the double mutant demonstrating PS-binding yet, distinct roles. Further, the authors show that NimB1 does not affect bacterial phagocytosis.

      Overall, this is a well-done study. The authors have already done a very thorough job addressing the key points and I congratulate the authors.

      My only minor comment is that the authors could try to make the comment better about whether or not such a 'negative regulatory' bridging molecules may exist in other species, and particularly mammals. If so, this is quite novel. The authors refer to CD47 but this is a membrane protein. The other minor comment is whether the authors ever tried express the PS binding domains as a fusion protein - this would provide a more direct evidence for the binding to PS (although the authors do competitive inhibition with Annexin V). This could be commented upon although testing this is not necessary if they have not already done so.

      We greatly appreciate the reviewer’s positive feedback. In the revised manuscript, we have now included a more detailed discussion of mammalian proteins with analogous roles, specifically referencing Draper isoforms (I and II), the CD300 receptor family, and surfactant proteins A and B (see page 16).

      Reviewer #1 (Significance (Required)):

      The identification of the negative regulator bridging protein NimB1 is novel and could be broadly interesting to those studying efferocytosis.

      Regarding the suggestion to overexpress just the putative PS-binding domain of NimB1, we agree this could strengthen the evidence for its PS-binding function. However, generating a new transgenic fly line would require significant additional time. Moreover, the presence of a PS-binding motif was also proposed in the recent study on Orion (Ji et al., 2023), which we have cited in our manuscript. The Orion binds PS through a conserved RRY motif. This motif is critical for Orion’s ability to directly interact with PS and facilitate its secretion. Mutagenesis experiments disrupting the RRY motif—specifically substituting arginine residues with alanines—abolished Orion’s PS-binding capacity, demonstrating the essential role of this sequence. Functional assays also validated that Orion competes with Annexin V, a well-established PS-binding protein, for access to PS-exposing surfaces (Ji et al., 2023).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this study, Dolgikh and colleagues propose a first investigation about the role of the drosophila Nimrod protein NimB1. Although the role of several members of the family in phagocytosis has been explored, the function of Nimrod type B proteins is less addressed. Within silico analysis, they first see a strong similarity between NimB1 and NimB4. They show that NimB1 is primarily expressed in phagocytes, and as NimB4 can bind phosphatidylserines (PS), leading to a possible shared role in efferocytosis. Using transgenic and null drosophila models, the authors then compare the impact of NimB1 overexpression or deficiency. They compare the effects shown to NimB4 and Draper deficient lines, as these two proteins were previously shown to play a role in efferocytosis. They propose that NimB1 is a secreted protein that binds apoptotic cells. They show that NimB1 deficiency changes the adhesion properties of macrophages. The major finding is that NimB1 delays the early stages of efferocytosis, contrary to NimB4 and Draper that on the contrary facilitate efferocytosis. In contrast, the authors propose that NimB1 increases the formation of phagosomes.

      We appreciate the reviewer’s acknowledgment that our key discovery centered around NimB1 functioning as a negative regulator of efferocytosis. This finding highlights NimB1’s distinct role compared to NimB4 and Draper, which instead promote the process.

      Major comments:

      One of the major technical challenges here was to generate models to allow the detection of the protein in cellulo and in vivo. Although the results are convincing in transgenic lines NimB1 expression is driven by the endogenous promoter, one could still argue that the GFP tags would lead to changes in the localization of the protein.

      We understand the concern regarding potential localization changes introduced by GFP tags. However, in previous studies, the same fosmid construct was applied to NimB4-sGFP, and produced a distinctly different expression pattern—NimB4-sGFP expression was more pronounced and clearly present in the glial cells in the brain (Petrignani et al, 2021: Figure EV1A). The fact that the NimB1-sGFP and NimB4-sGFP fosmids localized to different tissues suggests that possible any mis-localization changes due to the GFP tag do not override localization properties intrinsic to the proteins.

      In line with the previous comment, to show that NimB1 is a secreted protein, the authors use an overexpression model. How to be sure, that overexpression itself does not lead to increased secretion, or shedding from the membrane?

      The observation that uas-NimB1-RFP accumulates in the nephrocytes upon Lpp-Gal4 (fat body) expression, and the presence of a signal peptide suggests that this protein can be secreted.

      We cannot exclude that in endogenous condition, NimB1, remains attached to hemocytes. We have confirmed that the Lpp driver is not expressed in nephrocytes.

      Would an experiment with a control consisting in a known protein secreted by macrophages lead to the same staining pattern (positive control)? Could another methodology like a Western Blot on supernatants from hemocyte cell culture (over)expressing NimB1, with an anti-RFP staining, be envisaged?

      We have already performed similar experiment with other secreted proteins such as NimB4-GFP (Petrignani et al., 2021: Figure: 1B). In the revised article, we have added Viking-RFP as a positive control of a secreted protein (Figure S1F). Figure S2 shows a Western blot with hemolymph extract. We detected NimB1-RFP at its expected molecular weight of 44 kDa, verifying that is present into the hemolymph (Supplementary Document S2 C).

      It sems counterintuitive that phagocytes from Draper and NimB4 null mutants with defects in efferocytosis show increased load of apoptotic cells (Figure 6C and D in both unchallenged and injury condition). Do the authors have precedent data to cite going to the same direction? Are cell debris engulfed but not degraded efficiently?

      The observation that Draper and NimB4 null mutants have an increased load of apoptotic cells has already been reported in the literature. Several studies have now shown that Draper is not always required for the initial uptake of apoptotic corpses but is critical for phagosome maturation (Meehan et al., 2016; Serizier et al., 2022; Serizier & McCall, 2017). In our article on NimB4 (Petrignani et al., 2021), we have previously shown that the accumulation of immature phagosomes that are not properly eliminated indirectly impairs the uptake of new apoptotic corpses. This explains why efferocytosis is then impaired only at late time points, when unresolved phagosomes have accumulated to the threshold that prevents further phagocytosis.

      In Figure 6D it seems indeed that NimB4, NimB1/NimB4 and Draper mutants do not accumulate more apoptotic material upon injury. However, levels for NimB4 is close to the one obtained with NimB1 mutants. Is it statistically true? If yes, what could be the reason for this similarity? In any case, as some important conclusion relies on the comparison between UC and injury conditions, adequate statistics and representations could be proposed.

      We thank the reviewer for this pertinent observation and the opportunity to clarify. In the unchallenged (UC) condition, NimB4sk2 and draperΔ5 mutants indeed exhibit significantly elevated levels of apoptotic cell (AC) content in macrophages compared to wild-type and NimB1 mutant genotypes (****p crimic and NimB1229/NimB1crimic* mutants show significantly lower levels in the UC condition, consistent with a role for NimB1 in early recognition or regulation of phagocytic initiation, not in corpse degradation.

      In contrast, upon injury (90 minutes post-challenge) we observe a statistically significant increase in apoptotic material in NimB1 mutants compared to UC hemocytes of the same genotype (****p sk2 and draperΔ5* mutants between the UC and 90 min conditions (ns for NimB4). This is consistent with their known defect in corpse degradation, which results in saturation of phagocytic capacity at baseline, and an inability to respond further upon challenge with apoptotic cells.

      While the absolute levels of apoptotic material in injured NimB1 and UC NimB4 mutants appear similar at first glance, statistical testing confirms that they are significantly different. NimB4 mutant macrophages retain apoptotic debris due to defective degradation, whereas NimB1 mutants have an increase in newly acquired apoptotic content due to enhanced uptake.

      Additionally, NimB161, NimB4sk2 double mutants display a partial increase in apoptotic load upon injury (****p To directly address the reviewer’s suggestion, we have now recalculated and visualized key comparisons with appropriate statistical testing, as shown in Revision Figure 1. All statistical analyses were conducted using unpaired two-tailed Student’s t-tests. This additional figure allows clearer evaluation of genotype-specific differences at both baseline and post-injury conditions and supports our conclusions that NimB1 and NimB4 regulate distinct stages of phagocytosis. We have also clarified the text to better explain that both NimB4 and Draper mutants accumulate unresolved apoptotic material under baseline conditions, and do not accumulate further material upon challenge, due to a block in phagosome maturation.

      Revisions Figure 1.

      __Quantification of phagocytic events in wild-type and mutant macrophages under unchallenged and post-injury conditions __

      (A) Comparison of phagocytic events per frame in w1118 (wild-type), NimB1crimic, NimB1229/NimB1crimic, NimB4sk2, NimB161,NimB4 sk2, and draperΔ5 larvae under unchallenged conditions (UC) and 90 minutes after injury (90 min). Data are presented as individual data points with means. Statistical significance was determined using Student's t-test (*P (B) Direct comparison of phagocytic events between NimB1crimic (red) and NimB4sk2 (gray), and between NimB1229/crimic (dark red) and NimB4sk2 (gray) under both unchallenged (UC) and post-injury (90 min) conditions.

      The authors claim with analyses of Figure 8C and D, that NimB1 mutants show acidic vehicles normal in size and fluorescence intensity. However, statistical differences are still observed compared to control condition, which is also seen in representative images shown.

      In Figure 8C and D, we provide two quantitative measures to clarify the size and intensity of acidic vesicles. First, we show that mean fluorescence in hemocytes is elevated for all NimB and draper mutants compared to wild type, indicating an overall increase in internalized material. However, we also quantified the number of vesicles per hemocyte and found that NimB1 mutants exhibit significantly more vesicles. Despite this increase, the representative images do not show an obvious enlargement of individual vesicles, suggesting that while more material is being taken up, the vesicles themselves are not enlarged. The enlarged vesicles in case of NimB4 or draper mutant would result from the unresolved cargo (Petrignani et al., 2021). This distinction underscores that higher fluorescence values reflect increased cargo internalization, rather than the larger vesicular structures that result from impaired degradation as in NimB4 or draper mutants.

      Minor comments:

      In figure 2D, what allows to say the expression is restricted in macrophages? Is it the colocalization with SIMU being a macrophage-specific marker?

      In Figure 2D, we relied on SIMU as a macrophage-specific marker in Drosophila embryos to determine that NimB1 expression is restricted to macrophages. Previous research has demonstrated that SIMU is predominantly expressed in embryonic macrophages (where it is essential for apoptotic cell clearance) (Kurant et al., 2008; Roddie et al., 2019). Consequently, the colocalization of NimB1 signal with SIMU-positive cells strongly indicates that NimB1 is confined to macrophages during this developmental stage.

      In figure S3B and C, it appears that double NimB1/NimB4 mutants exhibit less spreading than single ones (especially NimB4). Is it the case (statistical significance). If yes what could be the explanation?

      Yes, the double NimB1, NimB4 mutants exhibit higher number of hemocytes and significantly reduced cell spreading compared to single mutants. The phenotype is similar to NimC1, eater double mutants (Melcarne et al., 2019) which also show higher number of hemocytes, reduced cell spreading and also diminished capacity to phagocytose apoptotic cells (and, in the case of NimC1, Eater, bacteria as well) (Melcarne et al., 2019). A likely explanation lies in impaired membrane remodeling critical for pseudopod extension and phagosome formation. Studies have shown that defects in actin polymerization or membrane tension can hinder pseudopod extension, reducing phagocytic efficiency (Lee et al., 2007; Masters et al., 2013). Same for the decreased ability of these mutants to form filopodium, a process essential for effective target engagement and engulfment. Filopodia play a significant role in capturing particles and directing them toward the macrophage body for engulfment (Horsthemke et al., 2017). Disruptions in these pathways lead to reduced phagocytic efficiency and a more rounded macrophage morphology, as the cells fail to spread properly (Horsthemke et al., 2017; Lillico et al., 2018). Other than these general observations, we do not have an explanation as to why NimB1, NimB4 double mutants specifically show a higher number of hemocytes and reduced cell spreading.

      Several graphs are identical between figure 4 and S4. It is probably not useful and complicates reading.

      We agree that duplicating these graphs complicates the presentation. Therefore, we have removed the redundant graphs in the supplementary materials, ensuring the data are shown only once to maintain clarity and ease of reading

      As TEM images shown in Figure 8B do not lead to quantitative data, I would put it as supplementary file.

      We agree that the TEM images in Figure 8B do not provide strictly quantitative data. To streamline the main manuscript, we have relocated these images to the supplementary section in the revised version

      Reviewer #2 (Significance (Required)):

      This study uses several approaches and models to address the role of NimB1 in efferocytosis. Both In Vitro and In Vivo approaches are proposed. They give insight into the role of this protein with unknown function so far. Some statistical analysis could be performed to improve the clarity of conclusions. One of the important aspects is the secreted nature of NimB1.However, additional approaches could be proposed to confirm this.

      Basic immunologists and cell biologists would be interested in reading this article that highlights the delicate equilibrium between pro and anti-efferocytosis molecules.

      I am an immunologist/cell biologist with expertise in lysosomal catabolism. As I work on mouse models or Human samples, my mastering of drosophila as a model is limited.

      We thank the reviewer for the positive evaluation of our work. In this revision, we have added further detail to clarify the properties of NimB1 as a secreted protein and strengthen our data presentation. By providing additional clarity on methods and interpretations, we hope immunologists and cell biologists—including those who do not routinely work with Drosophila—will find our findings more accessible.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This paper investigates the role of NimB1, a secreted member of the Nimrod family in Drosophila, in the process of efferocytosis, the clearance of apoptotic cells by macrophages. Previous studies have identified NimB4, another secreted Nimrod protein, as a positive regulator of efferocytosis, enhancing both apoptotic cell binding and phagosome maturation. In contrast, the authors propose that NimB1 functions as a negative regulator, slowing down the early stages of apoptotic cell binding and internalization. This regulatory balance is suggested to fine-tune efferocytosis to maintain homeostasis.

      The primary aim of this study was to characterize the function of NimB1 to better understand the roles of proteins within the NimB family.

      This study identifies a novel function for NimB1 in modulating the early stages of efferocytosis, adding to our understanding of how Nimrod proteins fine-tune apoptotic cell clearance. The authors establish a clear phenotypic contrast between NimB1 and NimB4, which provides a compelling framework for understanding how positive and negative regulators coordinate phagocytosis. It also highlights the multiple roles of the secreted members of the Nimrod scavenger receptor family, which have remained so far poorly investigated.

      This is an interesting study that could be strengthened by additional validation and broader experimental support. As the authors point out in the discussion, it is known that PS bridging molecules contribute to phagocytosis and that the contribution of positive and negative players finely tune phagocytosis in flies and mammals. Clarifying the mode of action of NimB1 in those processes would higher the impact of this interesting piece of work. For example, does NimB1 interact with NimB4 and if so, what is the role of this interaction? How does NimB1 integrate in the signaling cascade that allows scavenger receptors to bind PS? Does it act similar to Orion by enhancing the PS binding of a scavenger receptor?

      Key Findings • NimB1 and NimB4 are structurally similar, as supported by AlphaFold2 modeling, suggesting functional relatedness. • NimB1 is expressed in macrophages, secreted into the hemolymph, and binds apoptotic cells in a phosphatidylserine (PS)-dependent manner. • NimB1 is induced by challenge. • NimB1 mutants display a hyper-phagocytic phenotype, with faster recognition and internalization of apoptotic cells. • NimB1 loss enhances macrophage adhesion and actin remodeling, while bacterial phagocytosis remains unaffected, suggesting a specific role in apoptotic clearance. • NimB1 acts early in the phagocytic process, while NimB4 functions at later stages, particularly in phagosome maturation.

      We thank the reviewer for their positive assessment and are pleased that our findings identify NimB1 as a novel secreted negative regulator of efferocytosis, underscoring a greater level of regulatory complexity in apoptotic cell clearance.

      Unfortunately, attempts to produce functional NimB1 protein were not successful, limiting our ability to address some of the reviewer’s suggestions experimentally. Despite these challenges, the evidence we present—particularly from our genetic assays—clearly indicates that NimB1 exerts an inhibitory influence during the early steps of apoptotic cell binding, distinguishing it from the late-stage promoting function of NimB4.

      Major comments:

      Figure 1: AlphaFold is a valuable tool for generating hypotheses, however predicted structures should not be presented as definitive evidence of similarity, particularly without complementary experimental validation. This section would be stronger if the structural predictions were explicitly framed as predictions. In the absence of such data, the interpretation should be toned down.

      We agree with the reviewer and we have now framed our observation as prediction and toned down our interpretation. We also note that the similarities between NimB4 and NimB1 are also underlined by the phylogenetic analysis and expression pattern.

      Figure 2DE: Given its basal level in homeostatic conditions, it would have been useful to look at the NimB1-GFP upon challenge. Also, the authors show only a single larval macrophage with no comparison point. To strengthen this result, the authors could include another protein quantification method, such as western blotting. Alternatively, labelling of NimB1>UASmRFP in embryo that present the highest expression levels would also strengthen this result.

      Unfortunately, we cannot currently perform additional experiments on embryos within the scope of this project because those experiments were performed by our collaborators in Haifa (Estee Kurant Lab). Repeating them would require sending the lines to their lab and accommodating their experimental schedule and manpower constraints.

      In supplementary Figure S1F: the authors overexpress NimB1-RFP using the fat body driver Lpp-Gal4 and show larvae with RFP in the nephrocyte. Could filet preparations be shown? Could the authors present evidence that the Lpp driver is not expressed in the nephrocytes (or refer to literature)?

      The Lpp-Gal80 driver is described as fat body-specific and has been used to manipulate gene expression in the fat body in many other studies. We have checked Lpp-Gal80>UAS-GFP expression in larvae and did not observe expression in larval nephrocytes. The whole live larvae were observed under the microscope with no prior filet preparations. To provide the evidence that Lpp is not expressed in the nephrocytes we are providing the images of the whole larvae expressing GPF from the Lpp, as per genotype: Lgg-Gal80>UAS-GFP (see below, Revisions Figure 2).


      Revisions Figure 2.

      __Expression pattern of Lpp-Gal80>UAS-GFP in Drosophila larvae __

      Representative fluorescence microscopy images showing GFP expression driven by the Lpp-Gal80 system in Drosophila larvae. The images display dorsal (top) and ventral (bottom) views of the same larva, demonstrating the pattern of expression throughout the fat body tissue. Green fluorescence indicates cells expressing the GFP reporter under the control of the Lpp promoter, which is predominantly active in the larval fat body.

      The results on the increased number of hemocytes observed in the double NimB1, NimB4 mutant animals (Figure S3A) remains not only disconnected from the rest of the data but also unexplained. Providing a mechanistic view may require a significant amount of work that may indicate an additional role of the two NimBs but will not add to our understanding of the role of NimB1 in phagocytosis. Nevertheless, it would be at least useful to know whether in the double mutant the lymph gland is still intact, as its precocious histolysis could account for the elevated number of hemocytes. If that were the case, that could indicate that lacking the two NimBs triggers an inflammatory state that affects the lymph gland, meaning that the pathway controlling phagocytosis also has a systemic impact on development. When checking the representative Figure S4D, it seems that very large cells are present in the double mutants, even larger than in the single mutants. These could be (pre)lamellocytes, which constitute activated hemocytes, known to impact the status of the lymph gland. If the enhanced number of hemocytes does not depend on lymph gland histolysis, a simple immunolabeling with the anti-PH3 antibody would assess the proliferative phenotype of the double mutant hemocytes. At least this piece of data would provide a better explanation for the observed phenotype.

      We thank the reviewer for this interesting comment. We cannot explain why NimB1, NimB4 double mutants have more hemocytes. It is unclear to us if this is a secondary consequence of defects in efferocytosis or linked to another function of these two NimBs, such as a role in adhesion. We did look at the lymph gland and our preliminary observations suggest that NimB1, NimB4 double mutants have an easily ruptured or fragile lymph gland, which could explain the higher number and the roundish shape of hemocytes in circulation as proposed by the reviewer. Lacking expertise on lymph gland, we prefer not to include this data, as they are not central to the main message of this article on role of NimB1 on efferocytosis. We have also noted the presence of lamellocytes in unchallenged NimB1, NimB4 double mutant larvae, as well as excessive lamellocyte production compared to controls upon clean injury (see below, Revisions Figure 3). We have mentioned the presence of lamellocytes in NimB1, NimB4 double mutants in the revised version. We prefer not include this new data directly in the article because this not central to the main message of the article.


      __Revisions Figure 3. __

      A.

      B.

      Lamellocyte recruitment following a clean injury in L3 Drosophila larvae:

      (A) Quantification of lamellocytes per 50 frames of x63 microscopy lens in w1118 (wild-type), NimB1crimic, NimB4sk2, NimB161, NimB4sk2, and draperΔ5 larvae under unchallenged conditions (UC) and 3 hours after clean injury (3h). Arrowheads indicate lamellocytes.

      (B) Representative confocal microscopy images of hemocytes isolated from challenged NimB161, NimB4sk2 larvae. Cells were fixed and stained with Phalloidin (green) to label F-actin and DAPI (blue) to visualize nuclei. The smaller inset (40x magnification) shows a detailed view of individual lamellocytes with characteristic morphology, while the larger field (20x magnification) displays the overall view on the hemocytes. Scale bar = 50 μm.

      Figure 6: The connection between the ex-vivo (Figure 5) and in vivo (Figure 6) assays should be clarified. In the first type of assay, the lack of NimB4 results in reduced internalization (while lack of NimB1 enhances it). In the in vivo assay, more fragments are seen within the cell (hence internalized), using the NimB4 mutant. Also, in the ex-vivo assay, the lack of NimB1 does not affect the first steps ('attachment' and 'membrane'), while NimB4 does, yet it is proposed that NimB1 acts in the early steps (page 11-12). In that case, wouldn't we expect the double mutant NimB1 NmB4 to have the NimB1 phenotype?

      The apparent discrepancy between our ex vivo and in vivo assays reflects the different methodologies and what each assay measures. In the ex vivo assay (Figure 4), we add exogenous fluorescently-labeled apoptotic cells to measure new engulfment events. Here, NimB4 mutant macrophages show reduced phagocytic index because they are already saturated with unresolved phagosomes, limiting their capacity to uptake additional corpses, as previously described by (Petrignani et al., 2021). This reduced uptake capacity is reflected in the decreased phagocytic index observed.

      In contrast, our in vivo assay (Figure 6) uses DAPI staining to visualize all internalized material, including previously engulfed debris. As expected, we observe accumulation of DAPI signals in NimB4 mutant macrophages under unchallenged conditions, reflecting their inability to process and clear phagosomes rather than enhanced engulfment. This phenotype highlights the role of NimB4 in phagosome maturation rather than initial uptake.

      Regarding the role of NimB1 in early phagocytic steps, while attachment and membrane measurements in the ex vivo assay don't show significant differences in NimBcrimic mutants individually, our other experiments demonstrate that NimB1 functions as a negative regulator during early recognition phases. The predominance of the NimB4 phenotype in the NimB1crimic, NimB4 double mutant parallels observations in draper mutants, where double mutants lacking both Draper I (positive regulator) and Draper II (negative regulator) display the Draper I phenotype (Logan et al., 2012). This suggests that phagosome maturation defects (the NimB4 phenotype) present a more severe bottleneck in the phagocytic process than enhanced early uptake (the NimB1crimic phenotype), explaining why the double mutant primarily exhibits accumulation of unresolved phagosomes rather than accelerated uptake. We have re-written this part of the article to clarify these points (see page 11).

      Figure 8A: a definition of the phagocytic cup mentioned in the text (page 12, 2nd paragraph) as well as the homogenization of the scale bars in Figure 8A would clarify the interpretation of Figure 8A. The structures shown for w1118 seem quite distant from the structures highlighted for NimB1crimic.

      According to reviewer 2, we have now moved this figure to the supplement. The reviewer is correct and we have modified the associated text to clarify the interpretation of the images (see page 12-13).

      The same scale should be used across different panels in Figure 8. This is particularly important since the authors mention the size of the lysotracker vesicles to conclude on their levels of maturity. This data and conclusions would be strengthened by a quantification of the vacuole sizes and the combination with markers of phagosome/lysosome maturation levels. It would help disentangling the complementary roles of NimB1 and NimB4.

      The scale bar has been homogenized.

      Minor comments:

      Figure 2BC: is there a particular reason to shift from Rp49 to Rpl32 as normalizing gene in Figure 2B and C? This prevents the comparison of NimB1 expression levels across the different graphs.

      We thank the reviewer for highlighting this point. We changed the housekeeping gene from Rp49 to RPL32 in Figure 2C to unify the normalization strategy across all experiments and allow comparisons throughout the manuscript.

      Page 9, 2nd paragraph and Figure S3C: the authors mention "Actin structure revealed an increased ratio of filopodia to lamellipodia across all mutants". A clear definition of the parameters defining filopodia and lamellipodia is required to fully appreciate the meaning of the ratio.

      We thank the reviewer for the comment. To address this comment, we have included a clear definition of the parameters used to distinguish filopodia and lamellipodia on page 9. In particular, in the revised version we now specify that filopodia were defined as thin, spike-like actin-rich protrusions, while lamellipodia were defined as broad, sheet-like structures at the cell periphery. These criteria were applied consistently for quantification.

      Figure S5B: a bar is missing in the right graph (% of cells containing AC, NimB1>UAS-NimB1-RFP). Page 10 2nd paragraph. The authors mention "draper mutants displayed impaired apoptotic cell binding and engulfment" referring to Figure 4. Figure S4 provide a more convincing illustration of this statement, since the decreased phagocytic index in Drpr KO is mostly due to less cells phagocytosing and not less material phagocytosed.

      We thank the reviewer for the careful examination. In Figure S5B, the missing bar was due to its color being too close to the background color, making it difficult to distinguish. We have now corrected this by adjusting the color to ensure it is clearly visible.

      Regarding the comment on page 10, we agree that Figure S4 more clearly illustrates the impaired apoptotic cell binding and engulfment observed in draper mutants, particularly through the reduced percentage of hemocytes engaging in phagocytosis. We have now clarified the statement in the text to ensure consistency and to guide the reader appropriately to Figure S4 (10).

      Figure 6: not easy to distinguish the DAPI labelling relative to the nucleus vs. that of apoptotic fragments.

      This is a good point. We have changed the images for clearer demonstration of the DAPI labelling. See Figure 6.

      Figure 7B: the number of cells used to generate the violin plot should be indicated in the legend or the method section.

      We have mentioned the number of cells used in the quantification (n-50 per genotype) in the figure legend.

      A schematic figure recapitulating the data would help

      We have added a schematic figure recapitulating the data. See Figure 9 with associated text.

      Page 11 last line: homeostatic rather than hemostatic.

      Thank you for this comment. We have changed it.

      Reviewer #3 (Significance (Required)):

      This study identifies a novel function for NimB1 in modulating the early stages of efferocytosis, adding to our understanding of how Nimrod proteins fine-tune apoptotic cell clearance. The authors establish a clear phenotypic contrast between NimB1 and NimB4, which provides a compelling framework for understanding how positive and negative regulators coordinate phagocytosis. It also highlights the multiple roles of the secreted members of the Nimrod scavenger receptor family, which have remained so far poorly investigated.

      This is an interesting study that could be strengthened by additional validation and broader experimental support. As the authors point out in the discussion, it is known that PS bridging molecules contribute to phagocytosis and that the contribution of positive and negative players finally tune phagocytosis in flies and mammals. Clarifying the mode of action of NimB1 in those processes would higher the impact of this interesting piece of work. For example, does NimB1 interact with NimB4 and if so, what is the role of this interaction? How does NimB1 integrate in the signaling cascade that allows scavenger receptors to bind PS? Does it act similar to Orion by enhancing the PS binding of a scavenger receptor?

      We thank the reviewer for the insightful comments and suggestions. Indeed, understanding the mode of action of NimB1 in the regulation of efferocytosis would significantly strengthen the impact of our findings. Our data, supported by structural and phylogenetic analyses, indicate that NimB1 and NimB4 share a conserved phosphatidylserine (PS)-binding motif, suggesting that these proteins may interact functionally. Preliminary biochemical observations, together with structural predictions, raise the possibility of a direct or indirect interaction between NimB1 and NimB4, although this remains to be experimentally confirmed.

      Our observations from NimB1 and NimB4 double mutants reveal that the phenotype closely resembles that of NimB4 single mutants, indicating that NimB4 plays a dominant role in the downstream maturation steps of phagosome processing. These findings are consistent with a model in which NimB1 may modulate early phagocytic uptake, possibly by competing with NimB4 for PS binding or by limiting NimB4 accessibility to apoptotic cells, thereby fine-tuning the rate of efferocytosis.

      Regarding the integration into the signaling cascade, while NimB1 and Orion both recognize PS, our data suggest that they function through distinct mechanisms. Orion enhances PS binding to Draper receptor isoforms to promote apoptotic corpse recognition. In contrast, NimB1 appears to act as an inhibitory modulator, potentially masking PS or limiting receptor engagement, thus slowing the phagocytic response. Further functional studies, including receptor-binding assays, will be important to determine whether NimB1 acts by altering receptor-ligand interactions or through a different regulatory pathway.

      Future experiments investigating the potential direct interactions between NimB1 and NimB4, their respective affinities for PS, and their influence on phagocytic receptor dynamics will be necessary to better understand NimB1’s precise mode of action. Such studies will help clarify how secreted regulators fine-tune efferocytosis in Drosophila and may offer broader insights into conserved principles of phagocytic regulation across species.

      __ __

      List of References:

      Horsthemke, M., Bachg, A. C., Groll, K., Moyzio, S., Müther, B., Hemkemeyer, S. A., Wedlich-Söldner, R., Sixt, M., Tacke, S., Bähler, M., & Hanley, P. J. (2017). Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. The Journal of Biological Chemistry, 292(17), 7258–7273. https://doi.org/10.1074/jbc.M116.766923

      Ji, H., Wang, B., Shen, Y., Labib, D., Lei, J., Chen, X., Sapar, M., Boulanger, A., Dura, J.-M., & Han, C. (2023). The Drosophila chemokine–like Orion bridges phosphatidylserine and Draper in phagocytosis of neurons. Proceedings of the National Academy of Sciences, 120(24), e2303392120. https://doi.org/10.1073/pnas.2303392120

      Kurant, E., Axelrod, S., Leaman, D., & Gaul, U. (2008). Six-Microns-Under Acts Upstream of Draper in the Glial Phagocytosis of Apoptotic Neurons. Cell, 133(3), 498–509. https://doi.org/10.1016/j.cell.2008.02.052

      Lee, W. L., Mason, D., Schreiber, A. D., & Grinstein, S. (2007). Quantitative Analysis of Membrane Remodeling at the Phagocytic Cup. Molecular Biology of the Cell, 18(8), 2883–2892. https://doi.org/10.1091/mbc.E06-05-0450

      Lillico, D. M. E., Pemberton, J. G., & Stafford, J. L. (2018). Selective Regulation of Cytoskeletal Dynamics and Filopodia Formation by Teleost Leukocyte Immune-Type Receptors Differentially Contributes to Target Capture During the Phagocytic Process. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.01144

      Masters, T. A., Pontes, B., Viasnoff, V., Li, Y., & Gauthier, N. C. (2013). Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proceedings of the National Academy of Sciences, 110(29), 11875–11880. https://doi.org/10.1073/pnas.1301766110

      Meehan, T. L., Joudi, T. F., Timmons, A. K., Taylor, J. D., Habib, C. S., Peterson, J. S., Emmanuel, S., Franc, N. C., & McCall, K. (2016). Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing. PLOS ONE, 11(6), e0158217. https://doi.org/10.1371/journal.pone.0158217

      Melcarne, C., Ramond, E., Dudzic, J., Bretscher, A. J., Kurucz, É., Andó, I., & Lemaitre, B. (2019). Two Nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in Drosophila melanogaster. The FEBS Journal, 286(14), 2670–2691. https://doi.org/10.1111/febs.14857

      Petrignani, B., Rommelaere, S., Hakim-Mishnaevski, K., Masson, F., Ramond, E., Hilu-Dadia, R., Poidevin, M., Kondo, S., Kurant, E., & Lemaitre, B. (2021). A secreted factor NimrodB4 promotes the elimination of apoptotic corpses by phagocytes in Drosophila. EMBO Reports, 22(9), e52262. https://doi.org/10.15252/embr.202052262

      Roddie, H. G., Armitage, E. L., Coates, J. A., Johnston, S. A., & Evans, I. R. (2019). Simu-dependent clearance of dying cells regulates macrophage function and inflammation resolution. PLoS Biology, 17(5), e2006741. https://doi.org/10.1371/journal.pbio.2006741

      Serizier, S. B., & McCall, K. (2017). Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary. Frontiers in Immunology, 8, 1642. https://doi.org/10.3389/fimmu.2017.01642

      Serizier, S. B., Peterson, J. S., & McCall, K. (2022). Non-autonomous cell death induced by the Draper phagocytosis receptor requires signaling through the JNK and SRC pathways. Journal of Cell Science, 135(20), jcs250134. https://doi.org/10.1242/jcs.250134

    1. Once multiple accurate students enter the same tag for a new image, the system wouldbe confident that the tag is correct. In this manner, image tagging and vocabulary learning can becombined into a single activity.

      is this not how CAPTCHA is evaluated too?

  6. Apr 2025
    1. Allow you to save files from apps to any folder in drive

      That is quite something

      How would the code look like

      I am using "STORE_APP_DATA" permission so I can pass any path?

      Will try it straight away

    1. annotated tags point to a tag object in the object database. git tag -as -m msg annot cat .git/refs/tags/annot contains the SHA of the annotated tag object: c1d7720e99f9dd1d1c8aee625fd6ce09b3a81fef and then we can get its content with: git cat-file -p c1d7720e99f9dd1d1c8aee625fd6ce09b3a81fef
  7. social-media-ethics-automation.github.io social-media-ethics-automation.github.io
    1. We might want to avoid physical danger from a stalker, so we might keep our location private

      Keeping information private is vital but it is specifically interesting to see that having our location be private be interesting. I mention this as many of the people I know around me post where they are and tag their locations and have their social media accounts open to the public rather than having it private and closed only to their friends. People I believe do not realize how much they are exposing themselves by constantly posting their current or past locations on the internet which can later have issues be exposed (if they are like public figures) and have people attack them.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their thoughtful comments and suggestions. Our plans for revisions are first summarized. Below you can find the original reviews and our responses and detailed plans (indicated by "Response").

      Revision plan summary:

      1. Many of the concerns can be addressed by changes in the text and better explanations of how the experiments were done. These changes are detailed in the point-by-point responses.
      2. The reviewers suggested experiments such as ChIP-seq and immunoprecipitation which require collection of a large number of mutants. Since our mutants are sterile, the line needs to be maintained as heterozygotes, from which we can pick out individual mutant worms. Therefore, with the current reagents it is impossible to collect mutants in sufficient quantities for ChIP-seq or IP. We understand that it limits the conclusions that can be drawn.
      3. For some figures, additional quantification of fluorescence signal will be done to show differences between mutant and wild type.
      4. A few experiments will be repeated:
      5. We will repeat the ATPase assays shown on Fig 1 with additional independently prepared and purified protein samples.
      6. Additional replicates will be performed for the few immunofluorescence experiments that were only performed once. Point-by-point responses:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Dosage compensation (DC) in C. elegans involves halving the gene expression from the two hermaphrodite X chromosomes to match the output of the single X in male worms. The key regulator of this repression is a specialized condensin complex, which is defined by a dedicated SMC-4 paralog, termed DPY-27. SMC-4 in other animals is an ATPase that functions as a motor of loop extrusion in cohesion complexes. In their current manuscript, Chawla et al. assessed whether DPY-27 has ATPase function and whether this activity is required for dosage compensation. It had previously been shown that an ATPase-deficient 'EQ' mutant DPY-27 protein interacts with other DC complex members, yet fails to localize to the X. This observation was made with an extra copy of DPY-GFP expressed in addition to the endogenous wildtype protein [Ref 77]. No dominant negative effect was observed. The authors have now engineered the 'EQ' mutation into the endogenous gene locus and genetically generated hetero- and homozygous ATPase mutant worms. Their data suggest that the ATPase activity is required or X-chromosome localization, complex assembly, chromosome compaction as well as enrichment of H4K20me1 on the dampened X chromosome.

      Major comments: 1. ATPase assays, Figure 1.Preparations of individual recombinant proteins may vary significantly and may occasionally show much reduced enzymatic activity. A conclusion about the failure of an ATPase activity should not be concluded from a single preparation, but several protein preps need to be tested, which then serve as 'biological replicates' for the in vitro reaction. Apparently, the ATPase assays shown only involved technical replicates, which is not sufficient.

      Response: We will express and purify additional protein samples and will repeat the assay.

      CRISPR-mediated engineering may lead to unwanted reactions, exemplified by the 'indel' mutation that was recovered in one clone. As a good practice and important control, the sequences of the mutated alleles in the worms should be determined by sequencing of PCR products. Restrictions enzyme cleavage or gel electrophoresis of the PCR products is not sufficient to document the nature of the mutation.

      Response: The sequence of the edit was confirmed by Sanger sequencing. We will make it clear in the text.

      All IF data need to be collected from at least 2 biological replicates, i.e. the experiment must have been carried out independently on two different days. The replicates should deliver consistent results. The number of independent replicates should be mentioned in each figure legend.

      Response: Most of our experiments were performed multiple times. We will indicate the number of replicates in the figure legends. The one or two experiments that were only performed once, will be repeated an additional time.

      The expression levels of wildtype and mutant proteins are concluded from IFM. This is very qualitative; quantitative measurements would strengthen the paper.

      Response: We will quantify fluorescence intensity on our existing images to show differences between mutant and wild type.

      Figure 4B: What are the criteria for classification of the three classes of mutant nuclei? To the uninitiated eye they look very similar. I am a bit worried about the human bias, if such diffuse staining are to be categorized. The two categories of localization need be documented better.

      Response: We will provide more images to show the range of phenotypes and provide a better explanation of how they were classified. We will also try a few ways to quantify “diffuseness” to provide a numerical readout.

      Figure 5: volume of the X chromosome. Related to (5): Apparently, the mask that contains the X chromosome was drawn by hand on each individual nucleus? I find it very difficult to see how the X chromosomal territory would be assessed in the examples shown. I would be good to see a panel of nuclei, in which the masks are visible. I think the analysis should be blinded, in which a researcher not involved in the analysis draws masks on coded nuclei and their classes are only revealed later. The same concern holds for the FISH/IP overlaps or DPY-27/SDC-2 overlaps.

      Response: The masks used were not drawn by hand but were based on fluorescence intensity thresholds. We will make a supplementary figure that shows the masks used for quantification to help clarify how the experiment and quantification were performed.

      For figure 5, age-matched hermaphrodites were analyzed. How was the age determined and what would be the consequence of age-variations? What is the effect of the mutations on development?

      Response: For our staining experiments, we routinely use young adult which we define as 24 hr past larval L4 stage. At this stage, young adults have started laying eggs. We have unpublished data that shows that dosage compensation and chromosome compaction deteriorates with age. To avoid using old worms in our assays, we pick L4 larvae, and then use them for experiments the following day.

      Minor comments: 8. The labeling of p-values as a-f in the figures with the values listed in a supplemental table is not comfortable. The p-values corresponding to the letters should be listed in the corresponding legends.

      Response: p values can be added to the figure or the figure legend (they are currently in supplementary tables).

      How were the concentrations of the ATPase preparations determined? It would help to see a proteins gel in the supplement to assess their purity.

      Response: Concentrations were determined using a spectrometer. We can show protein gels of the preparations as a supplementary figure.

      In figure 1, heterodimers are assumed, but not shown. Do they dimerize under these conditions?

      Response: We can cite papers from others that show heterodimerization in these conditions (for example, Hassler et al, 2019).

      Reviewer #1 (Significance (Required)):

      Significance: The involvement of the ATPase function of DPY-27 was somewhat expected, in light of the earlier findings published in reference 77 using a transgene. The current study confirms and extends these earlier findings. In principle, the genetic experiment presented here is stronger, if documented better.

      Strengths: The study investigates endogenous proteins and measures different phenomena known to be correlated from previous work. The data are internally consistent.

      Limitations: The lack of biological replicates, and unclear procedures of how to draw the IF masks that underlie the conclusions about X chromosome (co)localization and nuclear volume determination render the argument less convincing. For this reviewer, who is not in the C. elegans field, the analysis of mutant phenotypes is difficult to follow. The conclusions are based on only one type of experiment. In reference 77, the X chromosome binding was done by ChIP-seq, clearly a superior, complementary method.

      Response: As explained above, since the strain has to be maintained as a heterozygote, we are unable to collect enough mutants for a ChIP-seq experiment. We can perform and better document the experimental replicates and we can better explain the quantification methods used.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The authors analyzed the ATPase function of an SMC-4 variant required for dosage compensation in C. elegans. They made a single amino acid mutation that significantly reduced ATPase activity of the protein as shown by in vitro ATP hydrolysis. They showed that the mutation results in the phenotypic consequences of those shown for other DC mutants, including viability assay, immunofluorescence and DNA FISH. These results demonstrate the important role of ATPase activity in transcription repression.

      Major comments: - Are the key conclusions convincing? The key conclusion that DPY-27 has ATPase activity and using a classic mutation that reduces it largely eliminates its function is convincing. The interpretation of the IF experiments to build the model in the final figure requires stronger evidence, as commented below in additional experiment section.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? Yes, as explained below.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      The main issue with the current model is that the authors assume that the EQ proteins that they are analyzing is in complex with the rest of the condensin IDC subunits. However, there is no evidence in the paper suggesting that this occurs. The results are consistent with the possibility that a large portion of the DPY27-EQ is not in a complex.

      IP-western experiments comparing the proportion of other subunits pulled down by the wild type versus the EQ mutant (perhaps extract from ~50% EQ containing population could be reached) is needed to understand the incorporation of the EQ mutant in the complex. This is particularly important for the interpretation of the data in Figure 4A, where 70% of the nuclei show diffuse CAPG-1 and DPY-27 EQ. Is this signal due to disassembled subunits diffusing freely, or as depicted in the model figure, bound less stably everywhere? The immunofluorescence results are consistent with both EQ mutation 1) forming a full complex and unstably binding or 2) destabilizing the complex but incompletely assembled complexes sustaining a pool of free EQ detected by the immunofluorescence experiments.

      Response: We agree that to conclusively show interactions, an IP would be necessary. However, as explained above for ChIP, it is not possible to collect enough mutants to make enough protein extract for an IP. An IP in heterozygous worms is also not ideal, as it would be nearly impossible to distinguish wild protein from the mutant. The antibody we used recognizes the N terminus, which is identical in the two proteins. The only way to distinguish them would be mass spec. However, during the fragmentation process for mass spec, Q can deaminate to E, which would complicate interpretation of our data. To do this experiment properly, we would need to introduce a different tag into the mutant protein. With the current reagents, an IP is not possible.

      Instead, we have to rely on indirect evidence. The fact that DPY-27 and CAPG-1 colocalize (figure 4) does provide some support for the hypothesis. From previous studies,including our recent publication Trombley et al PLoS Genetics 2025, we know that the condensin IDC complex is not stable unless all subunits are present. It is therefore highly unlikely, although not impossible, that what we detect is diffuse individual subunits.

      We can make changes in the text to soften this claim and better discuss the caveats of the experiment and the conclusions.

      Along the same point, authors show that EQ protein that binds to the X is incapable of bringing H4K20me1, which is consistent with the possibility that a large portion of the EQ protein is not in a complex. : "To our surprise, we observed that there was no discernable enrichment of H4K20me1, even though there is discernable enrichment of DPY-27 EQ on the X chromosomes in the dpy-27 EQ mutants (Figure 8A).

      Response: There is an important difference. CAPG-1 and DPY-27 are both members of condensin IDC. The five subunits of this complex depend on each other for stability. DPY-21, the protein that introduces the H4K20me1 mark, also localizes to the X chromosomes, but is not part of condensin IDC. Condensin IDC is able to localize to the X chromosomes in the absence of DPY-21, and is not dependent on DPY-21 for stability. However, DPY-21 is dependent on condensin IDC for X localization (Yonker et al 2003). It is then possible that the mutant condensin IDC is X-bound, but it is unable to recruit DPY-21. We can clarify this in the text.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments. It is unclear how long it would take to collect enough het/mutant worms can be collected for IP-western. Without additional evidence, interpretation of the data would be affected.

      Response: As explained above, collecting enough mutant worms is essentially impossible. Collecting enough heterozygotes is possible, but distinguishing the mutant protein from the wild type in hets is not.

      • Are the data and the methods presented in such a way that they can be reproduced? Yes
      • Are the experiments adequately replicated and statistical analysis adequate? Yes, except the presentation of the test (see minor comment below)

      Minor comments: - Specific experimental issues that are easily addressable. The use of letters for statistical test result is confusing and the figure legend is not clear about what actual p values were produced "Letters represent multiple comparison p values, with different letters indicating statistically significant differences, and any repeated letter demonstrating no significance. " Providing the values at a reasonably concise manner in the legend will help the reader a lot.

      Response: P values can be added to the figures, or the legend

      • Are prior studies referenced appropriately? The authors state that "Surprisingly, this mutant did not phenocopy the transgenic EQ mutant in [77], .." however in the previous paragraph, the authors state that the transgenic was expressed in the presence of wild type copy. Therefore, the endogenous mutant showing phenotypes rather than the transgenic is rather expected.

      Response: What we referred to were ways in which the protein behaved (for example in ability to bind to the X at all), and not mutant phenotypes of worms. We can clarify this in the text.

      The authors state that "One possible explanation could be that mitotic condensation has multiple drivers of equal consequence including changes in histone modifications [129], whereas condensation of dosage compensated X chromosomes is predominantly dependent on the DCC. " In a dpy-21 mutant, X chromosome decondenses but DPY-27 stays on the chromosome. Therefore, the effect of the EQ mutation may be due to lack of H4K20me1 enrichment in addition to the lack of loop extrusion.

      Response: We can add the role of H4K20me1 to the discussion.

      • Are the text and figures clear and accurate? Yes
      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions? The Pearson correlation coefficient for assessing colocalization between SDC-2 and DPY-27 was helpful for quantification, because there is a lot of background signal that makes the support for or lack of colocalization with the X in the other IF/FISH figures difficult to assess. Additionally, please provide information on how chromatic aberration was assessed when analyzing colocalization experiments.

      Response: Chromatic aberration was not considered for these experiments.

      Reviewer #2 (Significance (Required)):

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. Although long assumed to be a functional SMC, the demonstration of DPY-27 function depending on ATPase activity is important. This demonstrates that an X-specific condensin retained its SMC activity.

      • Place the work in the context of the existing literature (provide references, where appropriate). The authors do an adequate job in doing this in their discussion.

      • State what audience might be interested in and influenced by the reported findings. The field of 3D genome organization and function would be influenced by the reported findings.

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Genomic analyses of 3D genome organization and gene expression.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigated how the type-I interferon response (ISG) and antigen presentation (AP) pathways are repressed in luminal breast cancer cells and how this repression can be overcome. They found that a STING agonist can reactivate these pathways in breast cancer cells, but it also does so in normal cells, suggesting that this is not a good way to create a therapeutic window. Depletion of ADAR and inhibition of KDM5 also activate ISG and AP genes. The activation of ISG and AP genes is dependent on cGAS/STING and the JAK kinase. Interestingly, although both ADAR depletion and KDM5 inhibition activate ISG and AP genes, their effects on cell fitness are different. Furthermore, KDM5 inhibitor selectively activates ISG and AP genes in tumor cells but not normal cells, arguing that it may create a larger therapeutic window than the STING agonist. These results also suggest that KDM5 inhibition may activate ISG and AP genes in a way different from ADAR loss, and this process may affect tumor cell fitness independently of the activation of ISG and AP genes.

      The authors further showed that KDM5 inhibition increases R-loops and DNA damage in tumor cells, and XPF, a nuclease that cuts R-loops, is required for the activation of ISG and AP genes. Using H3K4me3 CUT&RUN, they found that KMD5 inhibition results in increased H3K4me3 not only at genes, but also at repetitive elements including SINE, LINE, LTR, telomeres, and centromeres. Using S9.6 CUT&TAG, they confirmed that R-loops are increased at SINE, LINE, and LTR repeated with increased H3K4me3. Together, the results of this study suggest that KMD5 inhibition leads to H3K4me3 and R-loop accumulation in repetitive elements, which induces DNA damage and cGAS/STING activation and subsequently activates AP genes. This provides an exciting approach to stimulate the anti-tumor immunity against breast tumors.

      KDM5 inhibition activates interferon and antigen presentation genes through R-loops.

      Strengths:

      Overall, this study was carefully designed and executed. This is a new approach to make breast tumors "hot" for anti-tumor immunity.

      Weaknesses:

      Future in vivo studies are needed to show the effects of KDM5 inhibitors on the immunotherapy responses of breast tumors.

    1. Have you witnessed different responses to trolling? What happened in those cases? What do you think is the best way to deal with trolling?

      I have witnessed trolling. I think in a day where social media is so popular trolling has become normalized because individuals can hide behind a username to make a comment about someone. Most trolling cases I see are with celebrities online because they have a large preseence and garner attention from trolls because of their following. Trolls will comment on their lifestyle choices in the comments of their posts or tag them in a video saying awful things about the individual. I think a good example of celebrities being trolled recently is a Blake Lively-Justin Baldoni drama. I agree with the rules of internet protocol to ignor trolls. Responding gives them attention which gives the trolls more power.

    1. If the immediate goal of the action of trolling is to cause disruption or provoke emotional reactions, what is it that makes people want to do this disruption or provoking of emotional reactions? Some reasons people engage in trolling behavior include: Amusement: Trolls often find the posts amusing, whether due to the disruption or emotional reaction. If the motivation is amusement at causing others’ pain, that is called doing it for the lulz [g6]. Gatekeeping: Some trolling is done in a community to separate out an ingroup from outgroup (sometimes called newbies or normies). The ingroup knows that a post is just trolling, but the outgroup is not aware and will engage earnestly. This is sometimes known as trolling the newbies. Feeling Smart: Going with the gatekeeping role above, trolling can make a troll or observer feel smarter than others, since they are able to see that it is trolling while others don’t realize it. Feeling Powerful: Trolling sometimes gives trolls a feeling of empowerment when they successfully cause disruption or cause pain.** Advance and argument / make a point: Trolling is sometimes done in order to advance an argument or make a point. For example, proving that supposedly reliable news sources are gullible by getting them to repeat an absurd gross story [g5]. Punish or stop: Some trolling is in service of some view of justice, where a person, group or organization is viewed as doing something “bad” or “deserving” of punishment, and trolling is a way of fighting back.

      I have always encountered such "trolling" online, some are for amusement purposes, but I felt like they have more kind than malice. Besides that, I believe it is also a way of gatekeeping, but as people "tag" their post, such gatekeeping post will only be pushed to the "ingroup" people.

    1. Welcome back, and in this video, I want to talk in general about application layer firewalls, also known as layer 7 firewalls, named after the layer of the OSI model that they operate at. I want to keep this video pretty generic and will talk about how AWS implements this within their product set in a separate video. So let's just jump in and get started.

      Before I talk about the high-level architecture and features of layer 7 firewalls, let's quickly refresh our knowledge of layers 3, 4, and 5. We start with a layer 3 and 4 firewall, which is helping to secure the Categorum application—now accessed by millions of people globally because it's that amazing. Because this is a layer 3 and 4 firewall, it sees packets and segments, IP addresses, and ports. It sees two flows of communication: requests from the laptop to the server, and then responses from the server back to the laptop. However, because this firewall is limited to layers 3 and 4 only, these are viewed as separate and unrelated streams of data—request and response—even though they’re part of the same communication from a human perspective.

      If we enhance the firewall by adding session capability, then the same communication between the laptop and server can be viewed as one. The firewall understands that the request and the response are part of the same session. This small difference reduces administrative overhead—allowing for one rule instead of two—and also lets you implement more contextual security, where you can treat response traffic in the context that it’s a response to an original request, rather than just arbitrary traffic in the same direction.

      Now, this next point is really important: in both cases, these firewalls don't understand anything above the layer at which they operate. The top firewall operates at layers 3 and 4, so it understands layers 1 through 4. The bottom firewall does this as well but additionally understands layer 5. What this means is that both firewalls can see IP addresses, ports, and flags, and the bottom one can also understand sessions. However, neither of them can understand the data that flows above this—they have no visibility into layer 7, such as HTTP. They can't see headers or any other data transferred over HTTP. To them, layer 7 traffic is opaque—a cat image is the same as a dog image or malware—and this is a significant limitation that exposes the systems we're protecting to a wide range of attacks.

      Layer 7 firewalls fix many of these limitations. Let’s consider the same architecture: a client on the left and a server or application on the right that we’re trying to protect. In the middle, we have a layer 7 firewall, and to help remember it, let’s add a smart robot to represent its capabilities. With this firewall, we still have the same flow of packets and segments, and a layer 7 firewall can understand all the lower layers—but it adds additional capabilities.

      Consider this example where the Categor application is connected using an HTTPS connection, which is encrypted HTTP, and HTTP is the layer 7 protocol. The first important thing to realize is that layer 7 firewalls understand various layer 7 protocols. In this example, we're focusing on HTTP, so the firewall understands how that protocol transfers data: its architecture, headers, data, hosts, and all other components happening at or below layer 7. This means it can identify normal or abnormal elements of a layer 7 connection and protect against various protocol-specific attacks or weaknesses.

      In the HTTPS connection to the Categor server, the HTTPS connection would be terminated at the layer 7 firewall. While the client believes it is connecting directly to the server, the firewall strips away the HTTPS tunnel, leaving plain HTTP, which it can analyze. Then, a new HTTPS connection is created between the layer 7 firewall and the backend server. From the server and client perspectives, this process is transparent. The crucial part is that, between the original and the new HTTPS connections, the firewall sees the unencrypted HTTP traffic in plain text. Because the firewall understands the layer 7 protocol, it can inspect, block, replace, or tag the data within that protocol stream.

      This inspection might involve protecting the integrity of the Categor application by logically allowing cat pictures while rejecting dog images or labeling sheep images as spam. You might choose to be inclusive and only block truly dangerous content such as malware or exploits. Because the firewall understands one or more application protocols, you can allow or block content with great precision. You can even replace content—for instance, adult images might be replaced with kitten pictures or baby animals. Moreover, you can block specific applications like Facebook or prevent business data from being uploaded to services such as Dropbox.

      The key thing to understand is that a layer 7 firewall retains all the capabilities of layers 3, 4, and 5 firewalls, but adds the ability to react to layer 7 elements. This includes DNS names, connection rates, content, headers—anything that exists in the specific layer 7 protocol that the firewall understands. Some layer 7 firewalls only support HTTP, while others might support SMTP, the protocol used for email delivery. The limit is defined only by what the firewall software is built to handle.

      That’s everything I wanted to cover at a high level. Coming up in future videos, I’ll discuss how AWS implements layer 7 firewall capability within its product set. For now, though, this high-level understanding is the main focus of this video. So go ahead and complete the video, and when you're ready, I’ll look forward to you joining me in the next.

    1. Author response:

      Reviewer #1 (Evidence, reproducibility and clarity):

      Authors has provided a mechanism by which how presence of truncated P53 can inactivate function of full length P53 protein. Authors proposed this happens by sequestration of full length P53 by truncated P53.

      In the study, performed experiments are well described.

      My area of expertise is molecular biology/gene expression, and I have tried to provide suggestions on my area of expertise. The study has been done mainly with overexpression system and I have included few comments which I can think can be helpful to understand effect of truncated P53 on endogenous wild type full length protein. Performing experiments on these lines will add value to the observation according to this reviewer.

      Major comments:

      (1) What happens to endogenous wild type full length P53 in the context of mutant/truncated isoforms, that is not clear. Using a P53 antibody which can detect endogenous wild type P53, can authors check if endogenous full length P53 protein is also aggregated as well? It is hard to differentiate if aggregation of full length P53 happens only in overexpression scenario, where lot more both of such proteins are expressed. In normal physiological condition P53 expression is usually low, tightly controlled and its expression get induced in altered cellular condition such as during DNA damage. So, it is important to understand the physiological relevance of such aggregation, which could be possible if authors could investigate effect on endogenous full length P53 following overexpression of mutant isoforms.

      Thank you very much for your insightful comments.

      (1) To address “what happens to endogenous wild-type full-length P53 in the context of mutant/truncated isoforms," we employed a human A549 cell line expressing endogenous wild-type p53 under DNA damage conditions such as an etoposide treatment(1). We choose the A549 cell line since similar to H1299, it is a lung cancer cell line (www.atcc.org). For comparison, we also transfected the cells with 2 μg of V5-tagged plasmids encoding FLp53 and its isoforms Δ133p53 and Δ160p53. As shown in Author response image 1A, lanes 1 and 2, endogenous p53 expression, remained undetectable in A549 cells despite etoposide treatment, which limits our ability to assess the effects of the isoforms on the endogenous wild-type FLp53. We could, however, detect the V5-tagged FLp53 expressed from the plasmid using anti-V5 (rabbit) as well as with antiDO-1 (mouse) antibody (Author response image 1). The latter detects both endogenous wildtype p53 and the V5-tagged FLp53 since the antibody epitope is within the Nterminus (aa 20-25). This result supports the reviewer’s comment regarding the low level of expression of endogenous p53 that is insufficient for detection in our experiments.   

      In summary, in line with the reviewer’s comment that ‘under normal physiological conditions p53 expression is usually low,’ we could not detect p53 with an anti-DO-1 antibody. Thus, we proceeded with V5/FLAG-tagged p53 for detection of the effects of the isoforms on p53 stability and function. We also found that protein expression in H1299 cells was more easily detectable than in A549 cells (Compare Author response image 1A and B). Thus, we decided to continue with the H1299 cells (p53-null), which would serve as a more suitable model system for this study.  

      (2) We agree with the reviewer that ‘It is hard to differentiate if aggregation of full-length p53 happens only in overexpression scenario’. However, it is not impossible to imagine that such aggregation of FLp53 happens under conditions when p53 and its isoforms are over-expressed in the cell. Although the exact physiological context is not known and beyond the scope of the current work, our results indicate that at higher expression, p53 isoforms drive aggregation of FLp53. Given the challenges of detecting endogenous FLp53, we had to rely on the results obtained with plasmid mediated expression of p53 and its isoforms in p53-null cells.

      Author response image 1.

      Comparative analysis of protein expression in A549 and H1299 cells. (A) A549 cells (p53 wild-type) were treated with etoposide to induce endogenous wild-type p53 expression. To assess the effects of FLp53 and its isoforms Δ133p53 and Δ160p53 on endogenous wild-type p53 aggregation, A549 cells were transfected with 2 μg of V5-tagged p53 expression plasmids, with or without etoposide (20μM for 8h) treatment. Western blot analysis was done with the anti-V5 (rabbit) to detect V5-tagged proteins and anti-DO-1 (mouse), the latter detects both endogenous wild-type p53 and V5-tagged FLp53. The merged image corresponds to the overlay between the V5 and DO1 antibody signals. (B) H1299 cells (p53-null) were transfected with 2 μg V5tagged p53 expression plasmids or the empty vector control pcDNA3.1. Western blot analysis was done with the anti-V5 (mouse) antibody. 

      (2) Can presence of mutant P53 isoforms can cause functional impairment of wild type full length endogenous P53? That could be tested as well using similar ChIP assay authors has performed, but instead of antibody against the Tagged protein if the authors could check endogenous P53 enrichment in the gene promoter such as P21 following overexpression of mutant isoforms. May be introducing a condition such as DNA damage in such experiment might help where endogenous P53 is induced and more prone to bind to P53 target such as P21.

      Thank you very much for your valuable comments and suggestions. To investigate the potential functional impairment of endogenous wild-type p53 by p53 isoforms, we initially utilized A549 cells (p53 wild-type), aiming to monitor endogenous wild-type p53 expression following DNA damage. However, as mentioned and demonstrated in Author response image 1, endogenous p53 expression was too low to be detected under these conditions, making the ChIP assay for analyzing endogenous p53 activity unfeasible. Thus, we decided to utilize plasmid-based expression of FLp53 and focus on the potential functional impairment induced by the isoforms.

      (3) On similar lines, authors described:

      "To test this hypothesis, we escalated the ratio of FLp53 to isoforms to 1:10. As expected, the activity of all four promoters decreased significantly at this ratio (Figure 4A-D). Notably, Δ160p53 showed a more potent inhibitory effect than Δ133p53 at the 1:5 ratio on all promoters except for the p21 promoter, where their impacts were similar (Figure 4E-H). However, at the 1:10 ratio, Δ133p53 and Δ160p53 had similar effects on all transactivation except for the MDM2 promoter (Figure 4E-H)."

      Again, in such assay authors used ratio 1:5 to 1:10 full length vs mutant. How authors justify this result in context (which is more relevant context) where one allele is Wild type (functional P53) and another allele is mutated (truncated, can induce aggregation). In this case one would except 1:1 ratio of full-length vs mutant protein, unless other regulation is going which induces expression of mutant isoforms more than wild type full length protein. Probably discussing on these lines might provide more physiological relevance to the observed data.

      Thank you for raising this point regarding the physiological relevance of the ratios used in our study.

      (1) In the revised manuscript (lines 193-195), we added in this direction that “The elevated Δ133p53 protein modulates p53 target genes such as miR‑34a and p21, facilitating cancer development(2, 3). To mimic conditions where isoforms are upregulated relative to FLp53, we increased the ratios to 1:5 and 1:10.” This approach aims to simulate scenarios where isoforms accumulate at higher levels than FLp53, which may be relevant in specific contexts, as also elaborated above.

      (2) Regarding the issue of protein expression, where one allele is wild-type and the other is isoform, this assumption is not valid in most contexts. First, human cells have two copies of TPp53 gene (one from each parent). Second, the TP53 gene has two distinct promoters: the proximal promoter (P1) primarily regulates FLp53 and ∆40p53, whereas the second promoter (P2) regulates ∆133p53 and ∆160p53(4, 5). Additionally, ∆133TP53 is a p53 target gene(6, 7) and the expression of Δ133p53 and FLp53 is dynamic in response to various stimuli. Third, the expression of p53 isoforms is regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational processing(8). Moreover, different degradation mechanisms modify the protein level of p53 isoforms and FLp53(8). These differential regulation mechanisms are regulated by various stimuli, and therefore, the 1:1 ratio of FLp53 to ∆133p53 or ∆160p53 may be valid only under certain physiological conditions. In line with this, varied expression levels of FLp53 and its isoforms, including ∆133p53 and ∆160p53, have been reported in several studies(3, 4, 9, 10). 

      (3) In our study, using the pcDNA 3.1 vector under the human cytomegalovirus (CMV) promoter, we observed moderately higher expression levels of ∆133p53 and ∆160p53 relative to FLp53 (Author response image 1B). This overexpression scenario provides a model for studying conditions where isoform accumulation might surpass physiological levels, impacting FLp53 function. By employing elevated ratios of these isoforms to FLp53, we aim to investigate the potential effects of isoform accumulation on FLp53.

      (4) Finally does this altered function of full length P53 (preferably endogenous one) in presence of truncated P53 has any phenotypic consequence on the cells (if authors choose a cell type which is having wild type functional P53). Doing assay such as apoptosis/cell cycle could help us to get this visualization.

      Thank you for your insightful comments. In the experiment with A549 cells (p53 wild-type), endogenous p53 levels were too low to be detected, even after DNA damage induction. The evaluation of the function of endogenous p53 in the presence of isoforms is hindered, as mentioned above. In the revised manuscript, we utilized H1299 cells with overexpressed proteins for apoptosis studies using the Caspase-Glo® 3/7 assay (Figure 7). This has been shown in the Results section (lines 254-269). “The Δ133p53 and Δ160p53 proteins block pro-apoptotic function of FLp53.

      One of the physiological read-outs of FLp53 is its ability to induce apoptotic cell death(11). To investigate the effects of p53 isoforms Δ133p53 and Δ160p53 on FLp53-induced apoptosis, we measured caspase-3 and -7 activities in H1299 cells expressing different p53 isoforms (Figure 7). Caspase activation is a key biochemical event in apoptosis, with the activation of effector caspases (caspase-3 and -7) ultimately leading to apoptosis(12). The caspase-3 and -7 activities induced by FLp53 expression was approximately 2.5 times higher than that of the control vector (Figure 7). Co-expression of FLp53 and the isoforms Δ133p53 or Δ160p53 at a ratio of 1: 5 significantly diminished the apoptotic activity of FLp53 (Figure 7). This result aligns well with our reporter gene assay, which demonstrated that elevated expression of Δ133p53 and Δ160p53 impaired the expression of apoptosis-inducing genes BAX and PUMA (Figure 4G and H). Moreover, a reduction in the apoptotic activity of FLp53 was observed irrespective of whether Δ133p53 or Δ160p53 protein was expressed with or without a FLAG tag (Figure 7). This result, therefore, also suggests that the FLAG tag does not affect the apoptotic activity or other physiological functions of FLp53 and its isoforms. Overall, the overexpression of p53 isoforms Δ133p53 and Δ160p53 significantly attenuates FLp53-induced apoptosis, independent of the protein tagging with the FLAG antibody epitope.”

      Referees cross-commenting

      I think the comments from the other reviewers are very much reasonable and logical.

      Especially all 3 reviewers have indicated, a better way to visualize the aggregation of full-length wild type P53 by truncated P53 (such as looking at endogenous P53# by reviewer 1, having fluorescent tag #by reviewer 2 and reviewer 3 raised concern on the FLAG tag) would add more value to the observation.

      Thank you for these comments. The endogenous p53 protein was undetectable in A549 cells induced by etoposide (Figure R1A). Therefore, we conducted experiments using FLAG/V5-tagged FLp53.  To avoid any potential side effects of the FLAG tag on p53 aggregation, we introduced untagged p53 isoforms in the H1299 cells and performed subcellular fractionation. Our revised results, consistent with previous FLAG-tagged p53 isoforms findings, demonstrate that co-expression of untagged isoforms with FLAG-tagged FLp53 significantly induced the aggregation of FLAG-FLp53, while no aggregation was observed when FLAG-tagged FLp53 was expressed alone (Supplementary Figure 6). These results clearly indicate that the FLAG tag itself does not contribute to protein aggregation. 

      Additionally, we utilized the A11 antibody to detect protein aggregation, providing additional validation (Figure 8 from Jean-Christophe Bourdon et al. Genes Dev. 2005;19:2122-2137). Given that the fluorescent proteins (~30 kDa) are substantially bigger than the tags used here (~1 kDa) and may influence oligomerization (especially GFP), stability, localization, and function of p53 and its isoforms, we avoided conducting these vital experiments with such artificial large fusions. 

      Reviewer #1 (Significance):

      The work in significant, since it points out more mechanistic insight how wild type full length P53 could be inactivated in the presence of truncated isoforms, this might offer new opportunity to recover P53 function as treatment strategies against cancer.

      Thank you for your insightful comments. We appreciate your recognition of the significance of our work in providing mechanistic insights into how wild-type FLp53 can be inactivated by truncated isoforms. We agree that these findings have potential for exploring new strategies to restore p53 function as a therapeutic approach against cancer. 

      Reviewer #2 (Evidence, reproducibility and clarity):

      The manuscript by Zhao and colleagues presents a novel and compelling study on the p53 isoforms, Δ133p53 and Δ160p53, which are associated with aggressive cancer types. The main objective of the study was to understand how these isoforms exert a dominant negative effect on full-length p53 (FLp53). The authors discovered that the Δ133p53 and Δ160p53 proteins exhibit impaired binding to p53-regulated promoters. The data suggest that the predominant mechanism driving the dominant-negative effect is the coaggregation of FLp53 with Δ133p53 and Δ160p53.

      This study is innovative, well-executed, and supported by thorough data analysis. However, the authors should address the following points:

      (1) Introduction on Aggregation and Co-aggregation: Given that the focus of the study is on the aggregation and co-aggregation of the isoforms, the introduction should include a dedicated paragraph discussing this issue. There are several original research articles and reviews that could be cited to provide context.

      Thank you very much for the valuable comments. We have added the following paragraph in the revised manuscript (lines 74-82): “Protein aggregation has become a central focus of modern biology research and has documented implications in various diseases, including cancer(13, 14, 15). Protein aggregates can be of different types ranging from amorphous aggregates to highly structured amyloid or fibrillar aggregates, each with different physiological implications. In the case of p53, whether protein aggregation, and in particular, co-aggregation with large N-terminal deletion isoforms, plays a mechanistic role in its inactivation is yet underexplored. Interestingly, the Δ133p53β isoform has been shown to aggregate in several human cancer cell lines(16). Additionally, the Δ40p53α isoform exhibits a high aggregation tendency in endometrial cancer cells(17). Although no direct evidence exists for Δ160p53 yet, these findings imply that p53 isoform aggregation may play a major role in their mechanisms of actions.”

      (2) Antibody Use for Aggregation: To strengthen the evidence for aggregation, the authors should consider using antibodies that specifically bind to aggregates.

      Thank you for your insightful suggestion. We addressed protein aggregation using the A11 antibody which specifically recognizes amyloid-like protein aggregates. We analyzed insoluble nuclear pellet samples prepared under identical conditions as described in Figure 6B. To confirm the presence of p53 proteins, we employed the anti-p53 M19 antibody (Santa Cruz, Cat No. sc-1312) to detect bands corresponding to FLp53 and its isoforms Δ133p53 and Δ160p53. The monomer FLp53 was not detected (Figure 8, lower panel, Jean-Christophe Bourdon et al. Genes Dev. 2005;19:2122-2137), which may be attributed to the lower binding affinity of the anti-p53 M19 antibody to it. These samples were also immunoprecipitated using the A11 antibody (Thermo Fischer Scientific, Cat No. AHB0052) to detect aggregated proteins. Interestingly, FLp53 and its isoforms, Δ133p53 and Δ160p53, were clearly visible with Anti-A11 antibody when co-expressed at a 1:5 ratio suggesting that they underwent co-aggregation. However, no FLp53 aggregates were observed when it was expressed alone (Author response image 2). These results support the conclusion in our manuscript that Δ133p53 and Δ160p53 drive FLp53 aggregation. 

      Author response image 2.

      Induction of FLp53 Aggregation by p53 Isoforms Δ133p53 and Δ160p53. H1299 cells transfected with the FLAG-tagged FLp53 and V5-tagged Δ133p53 or Δ160p53 at a 1:5 ratio. The cells were subjected to subcellular fractionation, and the resulting insoluble nuclear pellet was resuspended in RIPA buffer. The samples were heated at 95°C until the pellet was completely dissolved, and then analyzed by Western blotting. Immunoprecipitation was performed using the A11 antibody, which specifically recognizes amyloid protein aggregates, and the anti-p53 M19 antibody, which detects FLp53 as well as its isoforms Δ133p53 and Δ160p53. 

      (3) Fluorescence Microscopy: Live-cell fluorescence microscopy could be employed to enhance visualization by labeling FLp53 and the isoforms with different fluorescent markers (e.g., EGFP and mCherry tags).

      We appreciate the suggestion to use live-cell fluorescence microscopy with EGFP and mCherry tags for the visualization FLp53 and its isoforms. While we understand the advantages of live-cell imaging with EGFP / mCherry tags, we restrained us from doing such fusions as the GFP or corresponding protein tags are very big (~30 kDa) with respect to the p53 isoform variants (~30 kDa).  Other studies have shown that EGFP and mCherry fusions can alter protein oligomerization, solubility and aggregation(18, 19) Moreover, most fluorescence proteins are prone to dimerization (i.e. EGFP) or form obligate tetramers (DsRed)(20, 21, 22), potentially interfering with the oligomerization and aggregation properties of p53 isoforms, particularly Δ133p53 and Δ160p53.

      Instead, we utilized FLAG- or V5-tag-based immunofluorescence microscopy, a well-established and widely accepted method for visualizing p53 proteins. This method provided precise localization and reliable quantitative data, which we believe meet the needs of the current study. We believe our chosen method is both appropriate and sufficient for addressing the research question.

      Reviewer #2 (Significance):

      The manuscript by Zhao and colleagues presents a novel and compelling study on the p53 isoforms, Δ133p53 and Δ160p53, which are associated with aggressive cancer types. The main objective of the study was to understand how these isoforms exert a dominant negative effect on full-length p53 (FLp53). The authors discovered that the Δ133p53 and Δ160p53 proteins exhibit impaired binding to p53-regulated promoters. The data suggest that the predominant mechanism driving the dominant-negative effect is the coaggregation of FLp53 with Δ133p53 and Δ160p53.

      We sincerely thank the reviewer for the thoughtful and positive comments on our manuscript and for highlighting the significance of our findings on the p53 isoforms, Δ133p53 and Δ160p53. 

      Reviewer #3 (Evidence, reproducibility and clarity):

      In this manuscript entitled "Δ133p53 and Δ160p53 isoforms of the tumor suppressor protein p53 exert dominant-negative effect primarily by coaggregation", the authors suggest that the Δ133p53 and Δ160p53 isoforms have high aggregation propensity and that by co-aggregating with canonical p53 (FLp53), they sequestrate it away from DNA thus exerting a dominantnegative effect over it.

      First, the authors should make it clear throughout the manuscript, including the title, that they are investigating Δ133p53α and Δ160p53α since there are 3 Δ133p53 isoforms (α, β, γ), and 3 Δ160p53 isoforms (α, β, γ).

      Thank you for your suggestion. We understand the importance of clearly specifying the isoforms under study. Following your suggestion, we have added α in the title, abstract, and introduction and added the following statement in the Introduction (lines 57-59): “For convenience and simplicity, we have written Δ133p53 and Δ160p53 to represent the α isoforms (Δ133p53α and Δ160p53α) throughout this manuscript.” 

      One concern is that the authors only consider and explore Δ133p53α and Δ160p53α isoforms as exclusively oncogenic and FLp53 dominant-negative while not discussing evidences of different activities. Indeed, other manuscripts have also shown that Δ133p53α is non-oncogenic and non-mutagenic, do not antagonize every single FLp53 functions and are sometimes associated with good prognosis. To cite a few examples:

      (1) Hofstetter G. et al. D133p53 is an independent prognostic marker in p53 mutant advanced serous ovarian cancer. Br. J. Cancer 2011, 105, 15931599.

      (2) Bischof, K. et al. Influence of p53 Isoform Expression on Survival in HighGrade Serous Ovarian Cancers. Sci. Rep. 2019, 9,5244.

      (3) Knezovi´c F. et al. The role of p53 isoforms' expression and p53 mutation status in renal cell cancer prognosis. Urol. Oncol. 2019, 37, 578.e1578.e10.

      (4) Gong, L. et al. p53 isoform D113p53/D133p53 promotes DNA doublestrand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 2015, 25, 351-369.

      (5) Gong, L. et al. p53 isoform D133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Sci. Rep. 2016, 6, 37281.

      (6) Horikawa, I. et al. D133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ. 2017, 24, 1017-1028.

      (7) Gong, L. p53 coordinates with D133p53 isoform to promote cell survival under low-level oxidative stress. J. Mol. Cell Biol. 2016, 8, 88-90.

      Thank you very much for your comment and for highlighting these important studies. 

      We agree that Δ133p53 isoforms exhibit complex biological functions, with both oncogenic and non-oncogenic potentials. However, our mission here was primarily to reveal the molecular mechanism for the dominant-negative effects exerted by the Δ133p53α and Δ160p53α isoforms on FLp53 for which the Δ133p53α and Δ160p53α isoforms are suitable model systems. Exploring the oncogenic potential of the isoforms is beyond the scope of the current study and we have not claimed anywhere that we are reporting that. We have carefully revised the manuscript and replaced the respective terms e.g. ‘prooncogenic activity’ with ‘dominant-negative effect’ in relevant places (e.g. line 90). We have now also added a paragraph with suitable references that introduces the oncogenic and non-oncogenic roles of the p53 isoforms.

      After reviewing the papers you cited, we are not sure that they reflect on oncogenic /non-oncogenic role of the Δ133p53α isoform in different cancer cases.  Although our study is not about the oncogenic potential of the isoforms, we have summarized the key findings below:

      (1) Hofstetter et al., 2011: Demonstrated that Δ133p53α expression improved recurrence-free and overall survival (in a p53 mutant induced advanced serous ovarian cancer, suggesting a potential protective role in this context.

      (2) Bischof et al., 2019: Found that Δ133p53 mRNA can improve overall survival in high-grade serous ovarian cancers. However, out of 31 patients, only 5 belong to the TP53 wild-type group, while the others carry TP53 mutations.

      (3) Knezović et al., 2019: Reported downregulation of Δ133p53 in renal cell carcinoma tissues with wild-type p53 compared to normal adjacent tissue, indicating a potential non-oncogenic role, but not conclusively demonstrating it.

      (4) Gong et al., 2015: Showed that Δ133p53 antagonizes p53-mediated apoptosis and promotes DNA double-strand break repair by upregulating RAD51, LIG4, and RAD52 independently of FLp53.

      (5) Gong et al., 2016: Demonstrated that overexpression of Δ133p53 promotes efficiency of cell reprogramming by its anti-apoptotic function and promoting DNA DSB repair. The authors hypotheses that this mechanism is involved in increasing RAD51 foci formation and decrease γH2AX foci formation and chromosome aberrations in induced pluripotent stem (iPS) cells, independent of FL p53.

      (6) Horikawa et al., 2017: Indicated that induced pluripotent stem cells derived from fibroblasts that overexpress Δ133p53 formed noncancerous tumors in mice compared to induced pluripotent stem cells derived from fibroblasts with complete p53 inhibition. Thus, Δ133p53 overexpression is "non- or less oncogenic and mutagenic" compared to complete p53 inhibition, but it still compromises certain p53-mediated tumor-suppressing pathways. “Overexpressed Δ133p53 prevented FL-p53 from binding to the regulatory regions of p21WAF1 and miR-34a promoters, providing a mechanistic basis for its dominant-negative

      inhibition of a subset of p53 target genes.”

      (7) Gong, 2016: Suggested that Δ133p53 promotes cell survival under lowlevel oxidative stress, but its role under different stress conditions remains uncertain.

      We have revised the Introduction to provide a more balanced discussion of Δ133p53’s dule role (lines 62-73):

      “The Δ133p53 isoform exhibit complex biological functions, with both oncogenic and non-oncogenic potentials. Recent studies demonstrate the non-oncogenic yet context-dependent role of the Δ133p53 isoform in cancer development. Δ133p53 expression has been reported to correlate with improved survival in patients with TP53 mutations(23, 24), where it promotes cell survival in a nononcogenic manner(25, 26), especially under low oxidative stress(27). Alternatively, other recent evidences emphasize the notable oncogenic functions of Δ133p53 as it can inhibit p53-dependent apoptosis by directly interacting with the FLp53 (4, 6). The oncogenic function of the newly identified Δ160p53 isoform is less known, although it is associated with p53 mutation-driven tumorigenesis(28) and in melanoma cells’ aggressiveness(10). Whether or not the Δ160p53 isoform also impedes FLp53 function in a similar way as Δ133p53 is an open question. However, these p53 isoforms can certainly compromise p53-mediated tumor suppression by interfering with FLp53 binding to target genes such as p21 and miR-34a(2, 29) by dominant-negative effect, the exact mechanism is not known.” On the figures presented in this manuscript, I have three major concerns:

      (1) Most results in the manuscript rely on the overexpression of the FLAGtagged or V5-tagged isoforms. The validation of these construct entirely depends on Supplementary figure 3 which the authors claim "rules out the possibility that the FLAG epitope might contribute to this aggregation. However, I am not entirely convinced by that conclusion. Indeed, the ratio between the "regular" isoform and the aggregates is much higher in the FLAG-tagged constructs than in the V5-tagged constructs. We can visualize the aggregates easily in the FLAG-tagged experiment, but the imaging clearly had to be overexposed (given the white coloring demonstrating saturation of the main bands) to visualize them in the V5-tagged experiments. Therefore, I am not convinced that an effect of the FLAG-tag can be ruled out and more convincing data should be added. 

      Thank you for raising this important concern. We have carefully considered your comments and have made several revisions to clarify and strengthen our conclusions.

      First, to address the potential influence of the FLAG and V5 tags on p53 isoform aggregation, we have revised Figure 2 and removed the previous Supplementary Figure 3, where non-specific antibody bindings and higher molecular weight aggregates were not clearly interpretable. In the revised Figure 2, we have removed these potential aggregates, improving the clarity and accuracy of the data.

      To further rule out any tag-related artifacts, we conducted a coimmunoprecipitation assay with FLAG-tagged FLp53 and untagged Δ133p53 and Δ160p53 isoforms. The results (now shown in the new Supplementary Figure 3) completely agree with our previous result with FLAG-tagged and V5tagged Δ133p53 and Δ160p53 isoforms and show interaction between the partners. This indicates that the FLAG / V5-tags do not influence / interfere with the interaction between FLp53 and the isoforms. We have still used FLAGtagged FLp53 as the endogenous p53 was undetectable and the FLAG-tagged FLp53 did not aggregate alone. 

      In the revised paper, we added the following sentences (Lines 146-152): “To rule out the possibility that the observed interactions between FLp53 and its isoforms Δ133p53 and Δ160p53 were artifacts caused by the FLAG and V5 antibody epitope tags, we co-expressed FLAG-tagged FLp53 with untagged Δ133p53 and Δ160p53. Immunoprecipitation assays demonstrated that FLAGtagged FLp53 could indeed interact with the untagged Δ133p53 and Δ160p53 isoforms (Supplementary Figure 3, lanes 3 and 4), confirming formation of hetero-oligomers between FLp53 and its isoforms. These findings demonstrate that Δ133p53 and Δ160p53 can oligomerize with FLp53 and with each other.”

      Additionally, we performed subcellular fractionation experiments to compare the aggregation and localization of FLAG-tagged FLp53 when co-expressed either with V5-tagged or untagged Δ133p53/Δ160p53. In these experiments, the untagged isoforms also induced FLp53 aggregation, mirroring our previous results with the tagged isoforms (Supplementary Figure 5). We’ve added this result in the revised manuscript (lines 236-245): “To exclude the possibility that FLAG or V5 tags contribute to protein aggregation, we also conducted subcellular fractionation of H1299 cells expressing FLAG-tagged FLp53 along with untagged Δ133p53 or Δ160p53 at a 1:5 ratio. The results showed (Supplementary Figure 6) a similar distribution of FLp53 across cytoplasmic, nuclear, and insoluble nuclear fractions as in the case of tagged Δ133p53 or Δ160p53 (Figure 6A to D). Notably, the aggregation of untagged Δ133p53 or Δ160p53 markedly promoted the aggregation of FLAG-tagged FLp53 (Supplementary Figure 6B and D), demonstrating that the antibody epitope tags themselves do not contribute to protein aggregation.” 

      We’ve also discussed this in the Discussion section (lines 349-356): “In our study, we primarily utilized an overexpression strategy involving FLAG/V5tagged proteins to investigate the effects of p53 isoforms Δ133p53 and Δ160p53 on the function of FLp53. To address concerns regarding potential overexpression artifacts, we performed the co-immunoprecipitation (Supplementary Figure 6) and caspase-3 and -7 activity (Figure 7) experiments with untagged Δ133p53 and Δ160p53. In both experimental systems, the untagged proteins behaved very similarly to the FLAG/V5 antibody epitopecontaining proteins (Figures 6 and 7 and Supplementary Figure 6). Hence, the C-terminal tagging of FLp53 or its isoforms does not alter the biochemical and physiological functions of these proteins.”

      In summary, the revised data set and newly added experiments provide strong evidence that neither the FLAG nor the V5 tag contributes to the observed p53 isoform aggregation.

      (2) The authors demonstrate that to visualize the dominant-negative effect, Δ133p53α and Δ160p53α must be "present in a higher proportion than FLp53 in the tetramer" and the need at least a transfection ratio 1:5 since the 1:1 ration shows no effect. However, in almost every single cell type, FLp53 is far more expressed than the isoforms which make it very unlikely to reach such stoichiometry in physiological conditions and make me wonder if this mechanism naturally occurs at endogenous level. This limitation should be at least discussed.

      Thank you for your insightful comment. However, evidence suggests that the expression levels of these isoforms such as Δ133p53, can be significantly elevated relative to FLp53 in certain physiological conditions(3, 4, 9). For example, in some breast tumors, with Δ133p53 mRNA is expressed at a much levels than FLp53, suggesting a distinct expression profile of p53 isoforms compared to normal breast tissue(4). Similarly, in non-small cell lung cancer and the A549 lung cancer cell line, the expression level of Δ133p53 transcript is significantly elevated compared to non-cancerous cells(3). Moreover, in specific cholangiocarcinoma cell lines, the Δ133p53 /TAp53 expression ratio has been reported to increase to as high as 3:1(9). These observations indicate that the dominant-negative effect of isoform Δ133p53 on FLp53 can occur under certain pathological conditions where the relative amounts of the FLp53 and the isoforms would largely vary. Since data on the Δ160p53 isoform are scarce, we infer that the long N-terminal truncated isoforms may share a similar mechanism.

      (3) Figure 5C: I am concerned by the subcellular location of the Δ133p53α and Δ160p53α as they are commonly considered nuclear and not cytoplasmic as shown here, particularly since they retain the 3 nuclear localization sequences like the FLp53 (Bourdon JC et al. 2005; Mondal A et al. 2018; Horikawa I et al, 2017; Joruiz S. et al, 2024). However, Δ133p53α can form cytoplasmic speckles (Horikawa I et al, 2017) when it colocalizes with autophagy markers for its degradation.

      The authors should discuss this issue. Could this discrepancy be due to the high overexpression level of these isoforms? A co-staining with autophagy markers (p62, LC3B) would rule out (or confirm) activation of autophagy due to the overwhelming expression of the isoform.

      Thank you for your thoughtful comments. We have thoroughly reviewed all the papers you recommended (Bourdon JC et al., 2005; Mondal A et al., 2018; Horikawa I et al., 2017; Joruiz S. et al., 2024)(4, 29, 30, 31). Among these, only the study by Bourdon JC et al. (2005) provided data regarding the localization of Δ133p53(4). Interestingly, their findings align with our observations, indicating that the protein does not exhibit predominantly nuclear localization in the Figure 8 from Jean-Christophe Bourdon et al. Genes Dev. 2005;19:2122-2137. The discrepancy may be caused by a potentially confusing statement in that paper(4).

      The localization of p53 is governed by multiple factors, including its nuclear import and export(32). The isoforms Δ133p53 and Δ160p53 contain three nuclear localization sequences (NLS)(4). However, the isoforms Δ133p53 and Δ160p53 were potentially trapped in the cytoplasm by aggregation and masking the NLS. This mechanism would prevent nuclear import. 

      Further, we acknowledge that Δ133p53 co-aggregates with autophagy substrate p62/SQSTM1 and autophagosome component LC3B in cytoplasm by autophagic degradation during replicative senescence(33). We agree that high overexpression of these aggregation-prone proteins may induce endoplasmic reticulum (ER) stress and activates autophagy(34). This could explain the cytoplasmic localization in our experiments. However, it is also critical to consider that we observed aggregates in both the cytoplasm and the nucleus (Figures 6B and E and Supplementary Figure 6B). While cytoplasmic localization may involve autophagy-related mechanisms, the nuclear aggregates likely arise from intrinsic isoform properties, such as altered protein folding, independent of autophagy. These dual localizations reflect the complex behavior of Δ133p53 and Δ160p53 isoforms under our experimental conditions.

      In the revised manuscript, we discussed this in Discussion (lines 328-335): “Moreover, the observed cytoplasmic isoform aggregates may reflect autophagy-related degradation, as suggested by the co-localization of Δ133p53 with autophagy substrate p62/SQSTM1 and autophagosome component LC3B(33). High overexpression of these aggregation-prone proteins could induce endoplasmic reticulum stress and activate autophagy(34). Interestingly, we also observed nuclear aggregation of these isoforms (Figure 6B and E and Supplementary Figure 6B), suggesting that distinct mechanisms, such as intrinsic properties of the isoforms, may govern their localization and behavior within the nucleus. This dual localization underscores the complexity of Δ133p53 and Δ160p53 behavior in cellular systems.”

      Minor concerns:

      -  Figure 1A: the initiation of the "Δ140p53" is shown instead of "Δ40p53"

      Thank you! The revised Figure 1A has been created in the revised paper.

      -  Figure 2A: I would like to see the images cropped a bit higher, so the cut does not happen just above the aggregate bands

      Thank you for this suggestion. We’ve changed the image and the new Figure 2 has been shown in the revised paper.

      -  Figure 3C: what ratio of FLp53/Delta isoform was used?

      We have added the ratio in the figure legend of Figure 3C (lines 845-846) “Relative DNA-binding of the FLp53-FLAG protein to the p53-target gene promoters in the presence of the V5-tagged protein Δ133p53 or Δ160p53 at a 1: 1 ratio.”

      -  Figure 3C suggests that the "dominant-negative" effect is mostly senescencespecific as it does not affect apoptosis target genes, which is consistent with Horikawa et al, 2017 and Gong et al, 2016 cited above. Furthermore, since these two references and the others from Gong et al. show that Δ133p53α increases DNA repair genes, it would be interesting to look at RAD51, RAD52 or Lig4, and maybe also induce stress.

      Thank you for your thoughtful comments and suggestions. In Figure 3C, the presence of Δ133p53 or Δ160p53 only significantly reduced the binding of FLp53 to the p21 promoter. However, isoforms Δ133p53 and Δ160p53 demonstrated a significant loss of DNA-binding activity at all four promoters: p21, MDM2, and apoptosis target genes BAX and PUMA (Figure 3B). This result suggests that Δ133p53 and Δ160p53 have the potential to influence FLp53 function due to their ability to form hetero-oligomers with FLp53 or their intrinsic tendency to aggregate. To further investigate this, we increased the isoform to FLp53 ratio in Figure 4, which demonstrate that the isoforms Δ133p53 and Δ160p53 exert dominant-negative effects on the function of FLp53. 

      These results demonstrate that the isoforms can compromise p53-mediated pathways, consistent with Horikawa et al. (2017), which showed that Δ133p53α overexpression is "non- or less oncogenic and mutagenic" compared to complete p53 inhibition, but still affects specific tumor-suppressing pathways. Furthermore, as noted by Gong et al. (2016), Δ133p53’s anti-apoptotic function under certain conditions is independent of FLp53 and unrelated to its dominantnegative effects.

      We appreciate your suggestion to investigate DNA repair genes such as RAD51, RAD52, or Lig4, especially under stress conditions. While these targets are intriguing and relevant, we believe that our current investigation of p53 targets in this manuscript sufficiently supports our conclusions regarding the dominant-negative effect. Further exploration of additional p53 target genes, including those involved in DNA repair, will be an important focus of our future studies.

      - Figure 5A and B: directly comparing the level of FLp53 expressed in cytoplasm or nucleus to the level of Δ133p53α and Δ160p53α expressed in cytoplasm or nucleus does not mean much since these are overexpressed proteins and therefore depend on the level of expression. The authors should rather compare the ratio of cytoplasmic/nuclear FLp53 to the ratio of cytoplasmic/nuclear Δ133p53α and Δ160p53α.

      Thank you very much for this valuable suggestion. In the revised paper, Figure 5B has been recreated.  Changes have been made in lines 214215: “The cytoplasm-to-nucleus ratio of Δ133p53 and Δ160p53 was approximately 1.5-fold higher than that of FLp53 (Figure 5B).” 

      Referees cross-commenting

      I agree that the system needs to be improved to be more physiological.

      Just to precise, the D133 and D160 isoforms are not truncated mutants, they are naturally occurring isoforms expressed in almost every normal human cell type from an internal promoter within the TP53 gene.

      Using overexpression always raises concerns, but in this case, I am even more careful because the isoforms are almost always less expressed than the FLp53, and here they have to push it 5 to 10 times more expressed than the FLp53 to see the effect which make me fear an artifact effect due to the overwhelming overexpression (which even seems to change the normal localization of the protein).

      To visualize the endogenous proteins, they will have to change cell line as the H1299 they used are p53 null.

      Thank you for these comments. We’ve addressed the motivation of overexpression in the above responses. We needed to use the plasmid constructs in the p53-null cells to detect the proteins but the expression level was certainly not ‘overwhelmingly high’. 

      First, we tried the A549 cells (p53 wild-type) under DNA damage conditions, but the endogenous p53 protein was undetectable. Second, several studies reported increased Δ133p53 level compared to wild-type p53 and that it has implications in tumor development(2, 3, 4, 9). Third, the apoptosis activity of H1299 cells overexpressing p53 proteins was analyzed in the revised manuscript (Figure 7). The apoptotic activity induced by FLp53 expression was approximately 2.5 times higher than that of the control vector under identical plasmid DNA transfection conditions (Figure 7). These results rule out the possibility that the plasmid-based expression of p53 and its isoforms introduced artifacts in the results. We’ve discussed this in the Results section (lines 254269).

      Reviewer #3 (Significance):

      Overall, the paper is interesting particularly considering the range of techniques used which is the main strength.

      The main limitation to me is the lack of contradictory discussion as all argumentation presents Δ133p53α and Δ160p53α exclusively as oncogenic and strictly FLp53 dominant-negative when, particularly for Δ133p53α, a quite extensive literature suggests a not so clear-cut activity.

      The aggregation mechanism is reported for the first time for Δ133p53α and Δ160p53α, although it was already published for Δ40p53α, Δ133p53β or in mutant p53.

      This manuscript would be a good basic research addition to the p53 field to provide insight in the mechanism for some activities of some p53 isoforms.

      My field of expertise is the p53 isoforms which I have been working on for 11 years in cancer and neuro-degenerative diseases

      Thank you very much for your positive and critical comments. We’ve included a fair discussion on the oncogenic and non-oncogenic function of Δ133p53 in the Introduction following your suggestion (lines 62-73). 

      References

      (1) Pitolli C, Wang Y, Candi E, Shi Y, Melino G, Amelio I. p53-Mediated Tumor Suppression: DNA-Damage Response and Alternative Mechanisms. Cancers 11,  (2019).

      (2) Fujita K, et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nature cell biology 11, 1135-1142 (2009).

      (3) Fragou A, et al. Increased Δ133p53 mRNA in lung carcinoma corresponds with reduction of p21 expression. Molecular medicine reports 15, 1455-1460 (2017).

      (4) Bourdon JC, et al. p53 isoforms can regulate p53 transcriptional activity. Genes & development 19, 2122-2137 (2005).

      (5) Ghosh A, Stewart D, Matlashewski G. Regulation of human p53 activity and cell localization by alternative splicing. Molecular and cellular biology 24, 7987-7997 (2004).

      (6) Aoubala M, et al. p53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell death and differentiation 18, 248-258 (2011).

      (7) Marcel V, et al. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene 29, 2691-2700 (2010).

      (8) Zhao L, Sanyal S. p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers 14,  (2022).

      (9) Nutthasirikul N, Limpaiboon T, Leelayuwat C, Patrakitkomjorn S, Jearanaikoon P. Ratio disruption of the ∆133p53 and TAp53 isoform equilibrium correlates with poor clinical outcome in intrahepatic cholangiocarcinoma. International journal of oncology 42, 1181-1188 (2013).

      (10) Tadijan A, et al. Altered Expression of Shorter p53 Family Isoforms Can Impact Melanoma Aggressiveness. Cancers 13,  (2021).

      (11) Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell death and differentiation 25, 104-113 (2018).

      (12) Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Molecular and cellular biochemistry 479, 1599-1613 (2024).

      (13) Petronilho EC, et al. Oncogenic p53 triggers amyloid aggregation of p63 and p73 liquid droplets. Communications chemistry 7, 207 (2024).

      (14) Forget KJ, Tremblay G, Roucou X. p53 Aggregates penetrate cells and induce the coaggregation of intracellular p53. PloS one 8, e69242 (2013).

      (15) Farmer KM, Ghag G, Puangmalai N, Montalbano M, Bhatt N, Kayed R. P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer's disease. Acta neuropathologica communications 8, 132 (2020).

      (16) Arsic N, et al. Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells. Nature communications 12, 5463 (2021).

      (17) Melo Dos Santos N, et al. Loss of the p53 transactivation domain results in high amyloid aggregation of the Δ40p53 isoform in endometrial carcinoma cells. The Journal of biological chemistry 294, 9430-9439 (2019).

      (18) Mestrom L, et al. Artificial Fusion of mCherry Enhances Trehalose Transferase Solubility and Stability. Applied and environmental microbiology 85,  (2019).

      (19) Kaba SA, Nene V, Musoke AJ, Vlak JM, van Oers MM. Fusion to green fluorescent protein improves expression levels of Theileria parva sporozoite surface antigen p67 in insect cells. Parasitology 125, 497-505 (2002).

      (20) Snapp EL, et al. Formation of stacked ER cisternae by low affinity protein interactions. The Journal of cell biology 163, 257-269 (2003).

      (21) Jain RK, Joyce PB, Molinete M, Halban PA, Gorr SU. Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. The Biochemical journal 360, 645-649 (2001).

      (22) Campbell RE, et al. A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America 99, 7877-7882 (2002).

      (23) Hofstetter G, et al. Δ133p53 is an independent prognostic marker in p53 mutant advanced serous ovarian cancer. British journal of cancer 105, 1593-1599 (2011).

      (24) Bischof K, et al. Influence of p53 Isoform Expression on Survival in High-Grade Serous Ovarian Cancers. Scientific reports 9, 5244 (2019).

      (25) Gong L, et al. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell research 25, 351-369 (2015).

      (26) Gong L, et al. p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Scientific reports 6, 37281 (2016).

      (27) Gong L, Pan X, Yuan ZM, Peng J, Chen J. p53 coordinates with Δ133p53 isoform to promote cell survival under low-level oxidative stress. Journal of molecular cell biology 8, 88-90 (2016).

      (28) Candeias MM, Hagiwara M, Matsuda M. Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis. EMBO reports 17, 1542-1551 (2016).

      (29) Horikawa I, et al. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell death and differentiation 24, 1017-1028 (2017).

      (30) Mondal AM, et al. Δ133p53α, a natural p53 isoform, contributes to conditional reprogramming and long-term proliferation of primary epithelial cells. Cell death & disease 9, 750 (2018).

      (31) Joruiz SM, Von Muhlinen N, Horikawa I, Gilbert MR, Harris CC. Distinct functions of wild-type and R273H mutant Δ133p53α differentially regulate glioblastoma aggressiveness and therapy-induced senescence. Cell death & disease 15, 454 (2024).

      (32) O'Brate A, Giannakakou P. The importance of p53 location: nuclear or cytoplasmic zip code? Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 6, 313-322 (2003).

      (33) Horikawa I, et al. Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence. Nature communications 5, 4706 (2014).

      (34) Lee H, et al. IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Human molecular genetics 21, 101-114 (2012).

    1. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe.

      GapR-GFP marks overtwisted DNA and can be used to study rDNA morphology:

      GapR is a protein that binds to overtwisted DNA. It recruits a topoisomerase to release topological stress on DNA during transcription.

      When tagged with GFP, it functions as a fluorescent marker and tracker (live cell imaging) of overtwisted DNA.

      To identify overtwisted rDNA specifically, you can tag the nucleolus with a separate color and look at the merged fluorescent images of the nucleolus and overtwisted DNA. Alternatively, you could attach a nuclear localization sequence to GapR-GFP to primarily express it in the nucleus, increasing the probability of only marking rDNA.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In the manuscript entitled "Rtf1 HMD domain facilitates global histone H2B monoubiquitination and regulates morphogenesis and virulence in the meningitis-causing pathogen Cryptococcus neoformans" by Jiang et al., the authors employ a combination of molecular genetics and biochemical approaches, along with phenotypic evaluations and animal models, to identify the conserved subunit of the Paf1 complex (Paf1C), Rtf1, and functionally characterize its critical roles in mediating H2B monoubiquitination (H2Bub1) and the consequent regulation of gene expression, fungal development, and virulence traits in C. deneoformans or C. neoformans. Specially, the authors found that the histone modification domain (HMD) of Rtf1 is sufficient to promote H2B monoubiquitination (H2Bub1) and the expression of genes related to fungal mating and filamentation, and restores the fungal morphogenesis and pathogenicity defects caused by RTF1 deletion.

      Strengths:

      The manuscript is well-written and presents the findings in a clear manner. The findings are interesting and contribute to a better understanding of Rtf1-mediated epigenetic regulation of fungal morphogenesis and pathogenicity in a major human fungal pathogen, and potentially in other fungal species, as well.

      Weaknesses:

      A major limitation of this study is the absence of genome-wide information on Rtf1-mediated H2B monoubiquitination (H2Bub1), as well as a lack of detail regarding the function of the Plus3 domain. Although overexpression of HMD in the rtf1Δ mutant restored global H2Bub1 levels, it did not rescue certain critical biological functions, such as growth at 39 °C and melanin production (Figure 4C-D). This suggests that the precise positioning of H2Bub1 is essential for Rtf1's function. A comprehensive epigenetic landscape of H2Bub1 in the presence of HMD or full-length Rtf1 would elucidate potential mechanisms and shed light on the function of the Plus3 domain.

      We thank the reviewer (and other reviewers) for this excellent suggestion. We have conducted CUT&Tag assays with WT, _rtf1_Δ mutant, and complementary strains with the full length Rtf1 and only HMD domain cultured under 30 and 39 °C. We indeed found that the epigenetic landscape of H2Bub1 in the presence of HMD or full-length Rtf1 has variations. This results strongly suggest that the distribution of H2Bub1 is regulated by Rtf1, and H2B modifications at specific loci in the chromosome may contribute to thermal tolerance in C. neoformans. These new findings from CUT&Tag assays shed lights on understanding the mechanism of thermal tolerance, and we decided not to include these results in the current manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors set out to determine the role of Rtf1 in Cryptococcal biology, and demonstrate that Rtf1 acts independently of the Paf1 complex to exert regulation of Histone H2B monoubiquitylation (H2Bub1). The biological impact of the loss of H2Bub1 was observed in defects in morphogenesis, reduced production of virulence factors, and reduced pathogenic potential in animal models of cryptococcal infection.

      Strengths:

      The molecular data is quite compelling, demonstrating that the Rtf1-depednent functions require only this histone modifying domain of Rtf1, and are dependent on nuclear localization. A specific point mutation in a residue conserved with the Rtf1 protein in the model yeast demonstrates the conservation of that residue in H2Bub1 modification. Interestingly, whereas expression of the HMD alone suppressed the virulence defect of the rtf1 deletion mutant, it did not suppress defects in virulence factor production.

      Weaknesses:

      The authors use two different species of Cryptococcus to investigate the biological effect of Rtf1 deletion. The work on morphogenesis utilized C. deneoformans, which is well-known to be a robust mating strain. The virulence work was performed in the C. neoformans H99 background, which is a highly pathogenic isolate. The study would be more complete if each of these processes were assessed in the other strain to understand if these biological effects are conserved across the two species of Cryptococcus. H99 is not as robust in morphogenesis, but reproducible results assessing mating and filamentation in this strain have been performed. Similarly, C. deneoformans does produce capsule and melanin.

      We thank the reviewer for the suggestion. We have conducted assays to quantify both capsule and melanin production in both C. neoformans and C. deneoformans strain background. We found that capsule production was affected in the same pattern in these two serotypes. Interestingly, we found the cell size was significantly affected by deletion of RTF1 in both serotypes. In addition, melanin production was reduced due to the deletion of RTF1 in both serotypes; However, complementation with Plus3 or mutated alleles of HMD gave different phenotypes in these two serotypes. These new findings were included Figure 4 in the revised manuscript.

      There are some concerns with the conclusions related to capsule induction. The images reported in Figure B are purported to be grown under capsule-inducing conditions, yet the H99 panel is not representative of the induced capsule for this strain. Given the lack of a baseline of induction, it is difficult to determine if any of the strains may be defective in capsule induction. Quantification of a population of cells with replicates will also help to visualize the capsular diversity in each strain population.

      We thank the reviewer for raising this concern. We have tested capsule production under capsule-inducing condition on 10% fetal bovine serum (FBS) agar medium [1]. Under this condition, the capsule layers surrounding the cells were obvious. We also included noncapsule-producing control in our assay to help the visualization of capsule. In addition, we quantified the ratio between diameters of capsule layer and cell body to show the capsular diversity in each strain population. The results were included in the Figure 4 in the revised manuscript.

      The authors demonstrate that for specific mating-related genes, the expression of the HMD recapitulated the wild-type expression pattern. The RNA-seq experiments were performed under mating conditions, suggesting specificity under this condition. The authors raise the point in the discussion that there may be differences in Rtf1 deposition on chromatin in H99, and under conditions of pathogenesis. The data that overexpression of HMD restores H2Bub1 by western is quite compelling, but does not address at which promoters H2Bub1 is modulating expression under pathogenesis conditions, and when full-length Rtf1 is present vs. only the HMD.

      We thank the reviewer for raising these concerns. Please see our response to Reviewer #1.

      Reviewer #3 (Public Review):

      Summary:

      In this very comprehensive study, the authors examine the effects of deletion and mutation of the Paf1C protein Rtf1 gene on chromatin structure, filamentation, and virulence in Cryptococcus.

      Strengths:

      The experiments are well presented and the interpretation of the data is convincing.

      Weaknesses:

      Yet, one can be frustrated by the lack of experiments that attempt to directly correlate the change in chromatin structure with the expression of a particular gene and the observed phenotype. For example, the authors observed a strong defect in the expression of ZNF2, a known regulator of filamentation, mating, and virulence, in the rtf1 mutant. Can this defect explain the observed phenotypes associated with the RTF1 mutation? Is the observed defect in melanin production associated with altered expression of laccase genes and altered chromatin structure at this locus?

      We completely agree with the reviewer. We have conducted CUT&Tag assay, and checked the Rtf1-mediated H2Bub1 at these particular gene loci. We found that the distribution of H2Bub1 at the promoter region of ZNF2 and the gene body of laccase-encoding gene varied possibly due to RTF1 mutation. We would like to save those preliminary findings for another story and not to include in this manuscript as we mentioned in the response to Reviewer #1.

      (1) Jang, E.-H., et al., Unraveling Capsule Biosynthesis and Signaling Networks in Cryptococcus neoformans. Microbiology Spectrum, 2022. 10(6): p. e02866-22.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      (1) The rationale for performing genomics, transcriptional, and proteomics work in 293T cells is not discussed. Further, there are no functional readouts mentioned in the 293T cells with expression of the fusion-oncogenes. Did these cells have any phenotypes associated with fusion-oncogene expression (proliferation differences, morphological changes, colony formation capacity)? Further, how similar are the gene expression signatures from RNA-seq to rhabdomyosarcoma? This would help the reader interpret how similar these cell models are to human disease.

      We appreciate the reviewer’s comments and understand the limitation of HEK293T cell culture. HEK293T cells were used as a surrogate system that enabled us to systemically examine and compare the transcriptional activation mechanisms between VGLL2-NCOA2/TEAD1-NCOA2 and YAP/TAZ. HEK293T cells have previously been used as a model system to study the signaling and transcriptional mechanisms of the Hippo/YAP pathway (1,2). Our data also showed that the ectopic expression of VGLL2-NCOA2 and TEAD1-NCOA2 in HEK293 cells can promote proliferation (Figure 1-figure supplement 1B), consistent with their potential oncogenic function.

      (2) TEAD1::NCOA2 fusion-oncogene model was not credentialed past H&E, and expression of Desmin. Is the transcriptional signature in C2C12 or 293T similar to a rhabdomyosarcoma gene signature?

      We understand the reviewer’s concern. VGLL2-NCOA2 in vivo tumorigenesis model generated by C2C12 cell orthotopic transplantation has recently been reported, and it exhibits similar characteristics with zebrafish transgenic tumors as well as human scRMS samples that carry the VGLL2-NCOA2 fusion (3). Due to the similar transcriptional and oncogenic mechanisms employed by both VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins, we expect that the TEAD1-NCOA2 dependent C2C12 transplantation model will closely resemble that induced by VGLL2-NCOA2.

      (3) For the fusion-oncogenes, did the HA, FLAG, or V5 tag impact fusion-oncogene activity? Was the tag on the 3' or 5' of the fusion? This was not discussed in the methods.

      To address the reviewer’s concern, we carefully compared the transcriptional activity of the fusion proteins with the HA tag at the 5’ end or FLAG and V5 tag at the 3’ end. We found that neither the tag type nor its location significantly affects the ability of VGLL2-NCOA2 and TEAD1-NCOA2 to induce downstream gene transcription, measured by qPCR. The data is summarized in Figure 1-figure supplement 1 G-H.

      (4) Generally, the lack of details in the figures, figure legends, and methods make the data difficult to interpret. A few examples are below:

      a. Individual data points are not shown for figure bar plots (how many technical or biological replicates are present and how many times was the experiment repeated?).

      As requested, we have added the individual data points to the bar plots. The Method section now includes information on the number of biological replicates and the times the experiments were repeated.

      b. What exons were included in the fusion-oncogenes from VGLL2 and NCOA2 or TEAD1 and NCOA2?

      We have now included the exon structure organization of VGLL2-NCOA2 or TEAD1-NCOA2 fusions in Figure 1-figure supplement 1A.

      c. For how long were the colony formation experiments performed? Two weeks?

      We have included more detailed information about the colony formation assay in the Methods section.

      d. In Figure 2D, what concentration of CP1 was used and for how long?

      The CP1 concentration and treatment duration information has now been included in the figure legend and Methods section.

      e. How was A485 resuspended for cell culture and mouse experiments, what is the percentage of DMSO?

      The Methods section now includes detailed information on how A485 is prepared for in vitro and in vivo experiments.

      f. How many replicates were done for RNA-seq, CUT&RUN, and ATACseq experiments?

      RNA-seq was done with three biological replicates and CUT&RUN and ATAC-seq were performed with two biological replicates. This information is now included in the Methods section for clarification.

      Reviewer #2 (Public Review):

      In the manuscript entitled "VGLL2 and TEAD1 fusion proteins drive YAP/TAZ-independent transcription and tumorigenesis by engaging p300", Gu et al. studied two Hippo pathway-related gene fusion events (i.e., VGLL2-NCOA2, TEAD1-NCOA2) in spindle cell rhabdomyosarcoma (scRMS) and showed that their fusion proteins can activate Hippo downstream gene transcription independent of YAP/TAZ. Using the BioID-based mass spectrometry analysis, the authors revealed histone acetyltransferase CBP/p300 as specific binding proteins for VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins. Pharmacologically targeting p300 inhibited the fusion proteins-induced Hippo downstream gene transcription and tumorigenic events.

      Overall, this study provides mechanistic insights into the scRMS-associated gene fusions in tumorigenesis and reveals potential therapeutic targets for cancer treatment. The manuscript is well-written and easy to follow.

      Here, several suggestions are made for the authors to improve their study.

      Main points

      (1) The authors majorly focused on the Hippo downstream gene transcription in this study, while a significant portion of genes regulated by the VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins are non-Hippo downstream genes (Figure 3). The authors should investigate whether the altered Hippo pathway transcription is essential for VGLL2-NCOA2 and TEAD1-NCOA2-induced cell transformation and tumorigenesis. Specifically, they should test if treatment with the TEAD inhibitor can reverse the cell transformation and tumorigenesis caused by VGLL2-NCOA2 but not TEAD1-NCOA2. In addition, it is important to examine whether YAP-5SA expression can rescue the inhibitory effects of A485 on VGLL2-NCOA2 and TEAD1-NCOA2-induced colony formation and tumor growth. This will help clarify whether Hippo downstream gene transcription is important for the oncogenic activities of these two fusion proteins.

      We thank the reviewer for the comments. Although we have not tested the small molecular TEAD inhibitor on VGLL2-NCOA2 or TEAD1-NCOA2-induced cell transformation and tumorigenesis, we expect that TEAD inhibition will block VGLL2-NCOA2- but not TEAD1-NCOA2-induced oncogenic activity. It is because TEAD1-NCOA2 does not contain the auto-palmitoylation sites and the hydrophobic pocket in the C-terminal YAP-binding domain of TEAD1 that the TEAD small molecule inhibitor occupies (4). We also appreciate the reviewer’s suggestion of YAP5SA rescue experiments. However, due to its strong oncogenic activity, YAP5SA itself can induce robust downstream transcription and cell transformation with or without A485 treatment, as shown in Figure 5. Thus, it will be unlikely to address whether non-Hippo downstream genes induced by the fusions are important for cell transformation and tumorigenesis. Because of the distinct nature of transcriptional and chromatin landscapes controlled by VGLL2-NCOA2/TEAD-NCOA2 and YAP, we speculate that both Hippo and non-Hippo-related downstream genes contribute to the oncogenic activation and tumor phenotypes induced by the fusion proteins.

      (2) Rationale for selecting CBP/p300 for functional studies needs to be provided. The BioID-MS experiment identified many interacting proteins for VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins (Table S4). The authors should explain the scoring system used to identify the high-interacting proteins for VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins. Was CEP/p300 the top candidates on the list? Providing this information will help justify the focus on CBP/p300 and validate their importance in this study.

      We appreciate the reviewer’s point. CBP/P300 is among the top hits in our proteomics screens of both VGLL2-NCOA2 and TEAD1-NCOA2. Our focus on CBP/P300 is mainly due to the well-established interactions between CBP/P300 and the NCOA family transcriptional co-activators, in which the CBP/P300-NCOA complex plays a central role in mediating nuclear receptors-induced transcriptional activation (5). In addition, our data is consistent with another re-current Vgll2 fusion identified in scRMS, VGLL2-CITED2 (6) that has a C-term fusion partner from CITED2, which is a known CBP/P300 interacting protein (7).

      (3) p300 was revealed as a key driver for the VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins-induced transcriptome alteration and tumorigenesis. To strengthen the point, the authors should identify the p300 binding region on VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins. Mutants with defects in p300 binding/recruitment should be generated and included as a control in the related q-PCR and tumorigenic studies. This work will help confirm the crucial role of p300 in mediating the oncogenic effects of these two fusion proteins.

      We thank the reviewer for the suggestion. We have performed the co-immunoprecipitation assay using the deletion mutant form of VGLL2-NCOA2. We have performed additional co-immunoprecipitation experiments and demonstrated that the C-term NCOA2 part of the fusion is responsible for mediating the interaction between the fusion protein and CBP/P300. These results are now included in the new Figure 5A and are consistent with the reported structural analysis of CBP/P300-NCOA complex (8). In addition, our new data showed the inability of the VGLL2-NCOA2 ∆NCOA2 mutant to induce gene transcription (Figure 1-figure supplement 1D). Furthermore, our data using the small molecular CBP/P300 inhibitor clearly demonstrated that CBP/P300 is required to mediate cell transformation and tumorigenesis induced by the two fusion proteins in vitro and in vivo (Figure 5 and 6).

      (4) Another major issue is the overexpression system extensively used in this study. It is important to determine whether the VGLL2-NCOA2 and TEAD1-NCOA2 fusion genes are also amplified in cancer. If not, the expression levels of the VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins should be adjusted to endogenous levels to assess their oncogenic effects on gene transcription and tumorigenesis. This approach would make the study more relevant to the pathological conditions observed in scRMS cancer patients.

      We appreciate the reviewer’s input and acknowledge the limitation of the HEK293T and C2C12 cell-based models that rely on ectopic expression of VGLL2-NCOA2 and TEAD1-NCOA2 fusion proteins. It is currently unclear whether the VGLL2-NCOA2 and TEAD1-NCOA2 fusion genes are also amplified in sarcoma. As mentioned before, these surrogate cell culture systems allowed us to systemically compare the transcriptional regulation by the fusion proteins and YAP/TAZ and elucidate the molecular mechanism underlying the Hippo/YAP-independent oncogenic transformation induced by VGLL2-NCOA2 and TEAD1-NCOA2.

      References:

      (1) Genes Dev . 2007 Nov 1;21(21):2747-61. doi: 10.1101/gad.1602907. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control

      (2) Genes Dev . 2010 Jan 1;24(1):72-85. doi: 10.1101/gad.1843810. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP)

      (3) VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis. Watson S, LaVigne CA, Xu L, Surdez D, Cyrta J, Calderon D, Cannon MV, Kent MR, Cell Rep. 2023 Jan 31;42(1):112013.

      (4) Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription. Cell Stem Cell. 2020 May 7;26(5):675-692.e8.

      (5) Yi, P., Yu, X., Wang, Z., and O’Malley, B.W. (2021). Steroid receptor-coregulator transcriptional complexes: new insights from CryoEM. Essays Biochem. 65, 857–866.

      (6) A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am J Surg Pathol . 2016 Feb;40(2):224-35. doi: 10.1097/

      (7) CITED2 and the modulation of the hypoxic response in cancer. Fernandes MT, Calado SM, Mendes-Silva L, Bragança J.World J Clin Oncol. 2020 May 24;11(5):260-274.

      (8) Yu, X., Yi, P., Hamilton, R.A., Shen, H., Chen, M., Foulds, C.E., Mancini, M.A., Ludtke, S.J., Wang, Z., and O’Malley, B.W. (2020). Structural insights of transcriptionally active, full-length Androgen receptor coactivator complexes. Mol. Cell 79, 812–823.e4.

    1. Reviewer #3 (Public review):

      Summary

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation to the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network, constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience.

      Strengths

      Adaptive optics imaging of murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is a benefit for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used, a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. This model would potentially allow for controlling the size, depth and severity of the laser injury opening interesting avenues for future study.

      The time-course, 2D and 3D spatial activation pattern of microglial activation are striking and provide an unprecedented view of the retinal response to mild injury.

      Weaknesses

      Generalization of the (lack of) neutrophil response to photoreceptor loss - there is ample evidence in literature that neutrophils are heavily recruited in response to severe retinal damage that includes photoreceptor loss. Why the same was not observed here in this article remains an open question. One could hypothesize that neutrophil recruitment might indeed occur under conditions that are more in line with the more extreme damage models, for example, with a stronger and global ablation (substantially more photoreceptor loss over a larger area). This parameter space is unwieldy and sufficiently large to address the question conclusively in the current article, i.e. how much photoreceptor loss leads to neutrophil recruitment? By the same token, the strong and general conclusion in the title - Photoreceptor loss does not recruit neutrophils - cannot be made until an exhaustive exploration be made of the same parameter space. A scaling back may help here, to reflect the specific, mild form of laser damage explored here, for instance - Mild photoreceptor loss does not recruit neutrophils despite...

      EIU model - The EIU model was used as a positive control for neutrophil extravasation. Prior work with flow cytometry has shown a substantial increase in neutrophil counts in the EIU model. Yet, in all, the entire article shows exactly 2 examples in vivo and 3 ex vivo (Figure 7) of extravasated neutrophils from the EIU model (n = 2 mice). The general conclusion made about neutrophil recruitment (or lack thereof) is built partly upon this positive control experiment. But these limited examples, especially in the case where literature reports a preponderance of extravasated neutrophils, raise a question on the paradigm(s) used to evaluate this effect in the mild laser damage model.

      Overall, the strengths outweigh the weaknesses, provided the conclusions/interpretations are reconsidered.

    2. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate the interaction between tissue-resident immune cells (microglia) and circulating systemic neutrophils in response to acute, focal retinal injury. They induced retinal lesions using 488 nm light to ablate photoreceptor (PR) outer segments, then utilized various imaging techniques (AOSLO, SLO, and OCT) to study the dynamics of fluorescent microglia and neutrophils in mice over time. Their findings revealed that while microglia showed a dynamic response and migrated to the injury site within a day, neutrophils were not recruited to the area despite being nearby. Post-mortem confocal microscopy confirmed these in vivo results. The study concluded that microglial activation does not recruit neutrophils in response to acute, focal photoreceptor loss, a scenario common in many retinal diseases.

      Strengths:

      The primary strength of this manuscript lies in the techniques employed.

      In this study, the authors utilized advanced Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) to document immune cell interactions in the retina accurately. AOSLO's micron-level resolution and enhanced contrast, achieved through near-infrared (NIR) light and phase-contrast techniques, allowed visualization of individual immune cells without extrinsic dyes. This method combined confocal reflectance, phase-contrast, and fluorescence modalities to reveal various cell types simultaneously. Confocal AOSLO tracked cellular changes with less than 6 μm axial resolution, while phase-contrast AOSLO provided detailed views of vascular walls, blood cells, and immune cells. Fluorescence imaging enabled the study of labeled cells and dyes throughout the retina. These techniques, integrated with conventional histology and Optical Coherence Tomography (OCT), offered a comprehensive platform to visualize immune cell dynamics during retinal inflammation and injury.

      Thank you!

      Weaknesses:

      One significant weakness of the manuscript is the use of Cx3cr1GFP mice to specifically track GFP-expressing microglia. While this model is valuable for identifying resident phagocytic cells when the blood-retinal barrier (BRB) is intact, it is important to note that recruited macrophages also express the same marker following BRB breakdown. This overlap complicates the interpretation of results and makes it difficult to distinguish between the contributions of microglia and infiltrating macrophages, a point that is not addressed in the manuscript.

      We agree that greater emphasis is required that CX3CR1 mice exhibit fluorescence in not only microglia, but also other cells of macrophage origin including monocytes, perivascular macrophages and some hyalocytes.

      Through the advantages of in vivo AOSLO, however, we are able to establish that CX3CR1 cells are present within the tissue before the laser lesion is placed. This suggests they are tissue resident. We agree that it is possible that at later time points (days-weeks), systemic macrophages and/or monocytes may participate. Lack of rolling/crawling cells suggest they are not systemic. We elaborate on this point in a new section in the discussion:

      P29 L534-541:

      “CX3CR1-GFP mice exhibit fluorescence not only in microglia

      We recognize that the CX3CR1-GFP model can also label systemic cells such as monocytes/macrophages77. While it is possible these cells could infiltrate the retina in response to the lesion, we find it unlikely since there was no indication of the leukocyte extravasation cascade (rolling/crawling/stalled cells) within the nearest retinal vasculature. In addition to microglia, retinal perivascular macrophages and hyalocytes also exhibit GFP fluorescence and thus that these cells may also contribute toward damage resolution.”

      Another major concern is the time point chosen for analyzing the neutrophil response. The authors assess neutrophil activity 24 hours after injury, which may be too late to capture the initial inflammatory response. This delayed assessment could overlook crucial early dynamics that occur shortly after injury, potentially impacting the overall findings and conclusions of the study.

      The power of in vivo imaging makes these early assessments possible. Therefore, we have taken the reviewers concern and conducted an additional experiment which examines whether neutrophils are seen in the window of time between lesion and 24hrs. In a newly examined mouse, we find that within 3.5 hours post-lesion, neutrophils do not extravasate adjacent to the lesion site (see new “figure 8 – figure supplement 1”).

      Also see accompanying video (new “figure 8 – video 3”) for an example of nearby neutrophils flowing through OPL capillaries just microns away from the lesion site. Neutrophils are clearly contained within the vasculature and exhibit dynamics consistent with healthy retinal tissue. While it remains possible that the lesion may increase leukocyte stalling within the nearest capillaries, we are unable to confirm or deny this with a single experiment. We now submit this evidence as a new supplementary figure following the reviewer’s suggestion.

      Reviewer #2 (Public review):

      Summary:

      This study uses in vivo multimodal high-resolution imaging to track how microglia and neutrophils respond to light-induced retinal injury from soon after injury to 2 months post-injury. The in vivo imaging finding was subsequently verified by an ex vivo study. The results suggest that despite the highly active microglia at the injury site, neutrophils were not recruited in response to acute light-induced retinal injury.

      Strengths:

      An extremely thorough examination of the cellular-level immune activity at the injury site. In vivo imaging observations being verified using ex vivo techniques is a strong plus.

      We appreciate this recognition and hope that the reviewer considers the weaknesses below in the context of the papers identified strengths.

      Weaknesses:

      This paper is extremely long, and in the perspective of this reviewer, needs to be better organized.

      We agree and have taken the following steps to address this:

      (1) Paper has been shortened overall by 8%

      (2) We reorganized the following sections:

      a. Introduction: shortened

      b. Methods: merged section “Ex vivo confocal image processing” with “Ex vivo confocal imaging”.

      c. Results: most sections shortened, others simplified for concision

      d. Discussion: most sections shortened, removed “Microglial/neutrophil discrimination using label-free phase contrast”

      e. Figure references reorganized in order of their appearance.

      Study weakness: though the finding prompts more questions and future studies, the findings discussed in this paper are potentially important for us to understand how the immune cells respond differently to different severity levels of injury.

      On the heels of this burgeoning technology, we consider this report among the first studies of its kind. We are hopeful that it forms the foundation of many further investigations to come. We expect a rich parameter space to be explored with future studies including investigation of other time points, other injuries of varying degree and other immune cell populations (along with their interactions with each other). Each has the potential to reveal the complexities of the ocular immune system in action.

      Reviewer #3 (Public review):

      Summary:

      This work investigated the immune response in the murine retina after focal laser lesions. These lesions are made with close to 2 orders of magnitude lower laser power than the more prevalent choroidal neovascularization model of laser ablation. Histology and OCT together show that the laser insult is localized to the photoreceptors and spares the inner retina, the vasculature, and the pigment epithelium. As early as 1-day after injury, a loss of cell bodies in the outer nuclear layer is observed. This is accompanied by strong microglial proliferation at the site of injury in the outer retina where microglia do not typically reside. The injury did not seem to result in the extravasation of neutrophils from the capillary network constituting one of the main findings of the paper. The demonstrated paradigm of studying the immune response and potentially retinal remodeling in the future in vivo is valuable and would appeal to a broad audience in visual neuroscience. However, there are some issues with the conclusions drawn from the data and analysis that can be addressed to further bolster the manuscript.

      Strengths:

      Adaptive optics imaging of the murine retina is cutting edge and enables non-destructive visualization of fluorescently labeled cells in the milieu of retinal injury. As may be obvious, this in vivo approach is beneficial for studying fast and dynamic immune processes on a local time scale - minutes and hours, and also for the longer days-to-months follow-up of retinal remodeling as demonstrated in the article. In certain cases, the in vivo findings are corroborated with histology.

      Thank you!

      The analysis is sound and accompanied by stunning video and static imagery. A few different sets of mouse models are used, (a) two different mouse lines, each with a fluorescent tag for neutrophils and microglia, (b) two different models of inflammation - endotoxin-induced uveitis (EAU) and laser ablation are used to study differences in the immune interaction.

      Thank you!

      One of the major advances in this article is the development of the laser ablation model for 'mild' retinal damage as an alternative to the more severe neovascularization models. While not directly shown in the article, this model would potentially allow for controlling the size, depth, and severity of the laser injury opening interesting avenues for future study.

      We agree that there is an established community that is invested in developing titrated dosimetry for light damage models. As the reviewer recognizes, this parameter space is exceptionally large therefore we controlled this parameter by choosing a single wavelength that is commonly used in ophthalmoscopy (488nm), fixed duration and exposure regime that created a reproducible, mild damage of photoreceptors. At this titration we created a mild lesion that spares retina above and below.

      Weaknesses:

      (1) It is unclear based on the current data/study to what extent the mild laser damage phenotype is generalizable to disease phenotypes. The outer nuclear cell loss of 28% and a complete recovery in 2 months would seem quite mild, thus the generalizability in terms of immune-mediated response in the face of retinal remodeling is not certain, specifically whether the key finding regarding the lack of neutrophil recruitment will be maintained with a stronger laser ablation.

      It seems the concern here is whether our finding is generalizable to other damage regimes, especially more severe ones. While speculative, we would suspect that it is not generalizable across different lesions of greater severity. For example, puncturing Bruch’s membrane is an example of a more severe phenotype that is often encountered in laser damage. However, this creates a complicated model that not only induces inflammation, but also compromises BRB integrity and promotes CNV. The parameter space to be tested in the reviewer’s question is quite vast and therefore have tried to summarize the generalizability within our manuscript in

      P31 L586-588 “There are limitations on how generalizable this mild damage to more severe damage or disease phenotypes, but this acute damage model can begin to provide clues about how immune cells interact in response to PR loss. In this laser lesion model, we ablate 27% of the PRs in a 50 µm region.”

      (2) Mice numbers and associated statistics are insufficient to draw strong conclusions in the paper on the activity of neutrophils, some examples are below:

      a) 2 catchup mice and 2 positive control EAU mice are used to draw inferences about immune-mediated activity in response to injury. If the goal was to show 'feasibility' of imaging these mouse models for the purposes of tracking specific cell type behavior, the case is sufficiently made and already published by the authors earlier. It is possible that a larger sample size would alter the conclusion.

      We would like to highlight that the total number of mice studied in this report was 28 (18 in-vivo imaging, 10 ex-vivo histology, >40 lesions total). While power analysis is challenging as these are the first studies of their kind, we underscore that in vivo imaging allows those same mice to be studied multiple times longitudinally. This is not possible with traditional histology. Therefore, in vivo imaging not only reveals the temporal progression (unlike histology), but also increases the number of observations beyond a simple count of the “number of mice”.

      The goal of the study was not one of feasibility. The goal was to address a specific question in ocular biology: “do resident CX3CR1 cells recruit neutrophils in early, regional retinal injury”

      The low numbers that the reviewer points to, are not the primary data of the paper, rather, supportive control data. Moreover, we refocus the attention on the fact that our study is performed on 28 mice across multiple modalities and each corroborates a common finding that neutrophils do not appear to be recruited despite strong microglial response; a central finding of the paper.

      b) There are only 2 examples of extravasated neutrophils in the entire article, shown in the positive control EAU model. With the rare extravasation events of these cells and their high-speed motility, the chance of observing their exit from the vasculature is likely low overall, therefore the general conclusions made about their recruitment or lack thereof are not justified by these limited examples shown.

      The spirit of the challenge raised is that because nothing was seen, is not proof that nothing occurred. Said more commonly, “absence of evidence is not evidence of absence”- a quote often attributed to Carl Sagan. Yet we push back on this conjecture as we have shown, not only with cutting edge in vivo imaging, but also with ample histological controls as well as multiple transgenic animals (and corroborating IHC antibodies) that in none of these imaging modalities, at none of the time points we evaluated, did neutrophils aggregate or extravasate in response to photoreceptor ablation.

      Reviewer adds: “the chance of observing their exit from the vasculature is likely low overall…”

      This is the reason that we specifically chose a focal lesion model to increase any possible chance of imaging a rare event. The focal lesion provides both a time and a location for “where” to look. Small 50 micrometer lesions were sufficient to drive a strong local microglial response (figures 5,6,9). This was evidence that local inflammatory cues were present. Yet despite this activation, neutrophils were not recruited to this location. We emphasize that this is a strength of our approach over other pan-retinal damage models that may indeed miss the rare extravasation events that are geographically sparse and happen over hours.

      c) In Figure 3, the 3-day time point post laser injury shows an 18% reduction in the density of ONL nuclei (p-value of 0.17 compared to baseline). In the case of neutrophils, it is noted that "Control locations (n = 2 mice, 4 z-stacks) had 15 {plus minus} 8 neutrophils per sq.mm of retina whereas lesioned locations (n = 2 mice, 4 z-stacks) had 23 {plus minus} 5 neutrophils per sq.mm of retina (Figure 10b). The difference between control and lesioned groups was not statistically significant (p = 0.19)." These data both come from histology. While the p-values - 0.17 and 0.19 - are similar, in the first case a reduction in ONL cell density is concluded while in the latter, no difference in neutrophil density is inferred in the lesioned case compared to control. Why is there a difference in the interpretation where the same statistical test and methodology are used in both cases? Besides this statistical nuance, is there an alternate possibility that there is an increased, albeit statistically insignificant, concentration of circulating neutrophils in the lesioned model? The increase is nearly 50% (15 {plus minus} 8 vs. 23 {plus minus} 5 neutrophils per sq.mm) and the reader may wonder if a larger animal number might skew the statistic towards significance.

      The statistics and p-values will be dependent on the strategy of analysis performed. As described in the methods, we used a predetermined 50 micron cylinder for our counting analysis based on the average lesion size created. We used this circular window to roughly approximate the size of the common lesion size. However, recall that the damage is created in a single axis (a line projected on the retina) therefore it is possible that the analysis region is too generous to capture the exceptionally local damage.

      While the reviewer is focused on the nuance of statistics, we would like to refocus the conversation on our data that shows that very few neutrophils were observed at all (105 cells from 8 locations, P value reported). But missed in the above critique is that all neutrophils were contained within capillaries (Fig 10). We found no examples of extravasated neutrophils.  This is the major finding and is supported by our in vivo as well as ex vivo confirmation.

      (2) The conclusions on the relative activity of neutrophils and microglia come from separate animals. The reader may wonder why simultaneous imaging of microglia and neutrophils is not shown in either the EAU mice or the fluorescently labeled catchup mice where the non-labeled cell type could possibly be imaged with phase-contrast as has been shown by the authors previously. One might suspect that the microglia dynamics are not substantially altered in these mice compared to the CX3CR1-GFP mice subjected to laser lesions, but for future applicability of this paradigm of in vivo imaging assessment of the laser damage model, including documenting the repeatability of the laser damage model and the immune cell behavior, acquiring these data in the same animals would be critical.

      A double fluorescent mouse (neutrophils and microglia) is a logical next step of this research. In fact, we have now crossed these transgenic mice and are studying this double labeled mouse in a second manuscript in preparation. However, for this study, it was imperative that the fluorescent imaging light was kept at low levels as not to contribute or alter the lesion phenotype and accompanying immune response. Therefore, imaging two fluorescent channels to simultaneously view neutrophils and microglia in the same animal would have required at least 2X the visible light exposure for imaging. The imaging light levels used in the current study were carefully examined in our previous publications as to not create additional light damage (Joseph et al 2021).

      (3) Along the same lines as above, the phase contrast ONL images at time points from 3-day to 2-month post laser injury are not shown and the absence of this data is not addressed. This missing data pertains only to the in vivo imaging mice model but are conducted in histology that adequately conveys the time-course of cell loss in the ONL.

      The ocular preparation of the phase contrast data in figure 2, unfortunately developed an anesthesia induced cataract that precluded adequate image quality. This is not uncommon in long-term mouse ocular imaging preparations (Feng et al 2023). Instead, we chose to include the phase-contrast data to show the visually compelling intact and disrupted ONL damage for baseline and 1 day to show that the damage is not only focal, but also shows clear disruption to the somatic layers of the photoreceptors.

      It is suggested that the reason be elaborated for the exclusion of this data and the simultaneous imaging of microglia and neutrophils mentioned above.

      We agree and we have included the reason for the “not acquired” data within the figure 2 legend:

      “Phase contrast data was not acquired for time points 3 days-2 months due to development of cataract which obscured the phase contrast signal”

      Also, it would be valuable to further qualify and check the claims in the Discussion that "ex vivo analysis confirms in vivo findings" and "Microglial/neutrophil discrimination using label-free phase contrast"

      We maintain that ex vivo analysis both corroborates and in many cases, confirms our in vivo findings. We feel this is a strength of our manuscript rather than a qualifier. A) Damage localization is visible with OCT and confocal/phase contrast AOSLO in a region that matches the DAPI loss we see ex vivo. B) Disruption of the ONL seen with in vivo AOSLO is of the same size, shape and location as the ONL damage quantified ex vivo. C) No damage or disruption was seen in locations above the lesion with OCT or AOSLO, which matches our finding that only the ONL shows loss of nuclei whereas other more superficial layers are spared. D) Microglial localization is found both in vivo and ex vivo and E) lack of neutrophil aggregation or extravasation was neither seen in vivo or ex vivo. Given the evidence above, we contend that this strong synergistic and complementary approach corroborates the experimental data in two ways of studying this tissue.

      We agree that the claims made in the section entitled “Microglial/neutrophil discrimination using label-free phase contrast” are not strongly supported by the phase-contrast imaging presented in this paper. Accordingly, we have since removed this section based on reviewer suggestion.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Based on the title and abstract, the main focus of the manuscript appears to be the immune response. However, most of the manuscript is dedicated to the authors' imaging technique. Additionally, several important concerns regarding the investigation of the immune response in the retina need to be addressed.

      We understand that emphasis may appear to be on the imaging technique, however, because AOSLO is not a widely used technology, we are committed to explaining the technique so that it both builds awareness and confidence in the way this exciting new data is acquired.

      (2) The authors indicate '1 day post-injury' as a timeframe spanning between 18 and 28 hours post-injury. This is a rather wide window of time, which could potentially affect the analysis. It is necessary to demonstrate that there is no significant difference in the immune response, particularly in terms of microglial morphology and branch orientation, between 18 and 28 hours post-injury.

      We agree that a fine time scale may show even greater insight to the natural history of the inflammatory response. However, we feel that our chosen time points go above and beyond the temporal precision that is offered by other investigations, especially considering the novel multi-modal imaging performed here. Studies using finer temporal sampling are poised for future investigation.

      (3) The authors should consider using additional markers or complementary techniques to differentiate between microglia and recruited macrophages, such as incorporating immunohistochemistry with P2RY12, a specific marker for microglia that helps distinguish them from macrophages, and CD68 or F4/80, markers for recruited macrophages. It is also crucial for the authors to include a discussion addressing the limitations of using Cx3cr1GFP mice and the potential impact on result interpretation. It is fundamental to validate the findings and clarify the roles of microglia and macrophages.

      The wonders of current IHC is that there are myriad antibodies and labels that “could” be used. We used what we felt were the most compelling for this stage of early investigation. We look forward to studies that employ this wider range of labels. See our response to reviewer 1’s first comment above for addressing the limitations of using Cx3CR1 mice.

      (4) Analyzing neutrophil responses at 24 hours post-injury may be too late to capture the critical early dynamics of inflammation. By this time, the initial recruitment and activation phases of neutrophils may have already peaked or begun to resolve, potentially missing key insights into the immediate immune response. The authors should conduct additional analysis of neutrophil responses at earlier time points post-injury, such as 6 or 12 hours. Including these time points would provide a more comprehensive and conclusive analysis of the neutrophil response, helping to delineate the progression of inflammation and its implications for subsequent healing processes.

      This point has been addressed above. Briefly, we have now included a new experiment (and figure + video) that shows no neutrophil extravasation at earlier time points. We thank the reviewer for this helpful suggestion.

      Reviewer #2 (Recommendations for the authors):

      This paper is extremely long, and in the perspective of this reviewer, needs to be better organized.

      (1) There was a lengthy description and verification of light-induced injury and longitudinal tracking of healing, which I believe can be further cleaned up and made more succinct.

      We have cleaned-up and re-organized the manuscript (see above response for details). Manuscript has been reorganized and reduced by 8%.

      (2) The intention/goal of the paper can be further strengthened. On page 33: "to what extent do neutrophils respond to acute neural loss in the retina?" This particular statement is so clear and really brings out the purpose of this study, and it will be great to see something like this in the opening statement.

      We thank the reviewer for this excellent suggestion. We have modified the final paragraph of the introduction to strengthen our study’s intention.

      P4 L45-47: Here, we ask the question: “To what extent do microglia/neutrophils respond to acute neural loss in the retina?” To begin unraveling the complexities in this response, we deploy a deep retinal laser ablation model.

      (3) The figures are not mentioned in the manuscript in the order they were numbered. It makes it extremely challenging to follow along. The methods/results sections started with Figure 1, then on to Figure 4, then back to Figures 2 and 3, etc. This reviewer recommends re-organizing figures and their order of appearance so the contents of the figures are referred to in the paragraph in the most efficient and clear manner.

      We have re-organized the appearance of figure references throughout the paper.

      (4) Figure 2: phase contrast was not acquired on days 3, 7, and 2 months. Please briefly explain the reason in the caption.

      Addressed above.

      (5) Figure 4 OPL layer, the area highlighted in a dashed circle was meant to demonstrate that perfusion was intact, but I cannot see the flow in the highlighted area very well at day 7 and 2 months (especially 2 months). Please explain.

      Perfusion maps are often difficult to interpret as a static image. Therefore, we have additionally provided the raw video data (“OPL_vasculature_7d” and “OPL_vasculature_2mo”) which helps visualize active perfusion. To the reviewer’s point, videos reveal that RBC motion is maintained in the capillaries of this location.

      (6) While there's a thorough discussion of the biological impact of the finding, the uniqueness of the imaging technique can be better highlighted. Immune response toward injury is highly dynamic and is often the first step of wound healing. To observe such dynamic events longitudinally in the living eye at the cellular level, it requires a special imaging technique such as the type addressed here. The author can better address the technical uniqueness of studying this type of biological event for readers less familiar with AOSLO.

      We agree and following the reviewer’s suggestion have further emphasized the advance in the current manuscript in two additional places:

      (1) Within the introduction

      P3-4 L21-42: “A missed window of interaction is highly problematic in histological study where a single time point reveals a snapshot of the temporally complex immune response, which changes dynamically over time. Here, we use in vivo imaging to overcome these constraints.

      Documenting immune cell interactions in the retina over time has been challenged by insufficient resolution and contrast to visualize single cells in the living eye. The microscopic size of immune cells requires exceptional resolution for detection. Recently, advances in AOSLO imaging have provided micron-level resolution and enhanced contrast for imaging individual immune cells in the retina and without requiring extrinsic dyes(7,23). AOSLO provides multi-modal information from confocal reflectance, phase-contrast and fluorescence modalities, which can reveal a variety of cell types simultaneously in the living eye. Here, we used confocal AOSLO to track changes in reflectance at cellular scale. Phase-contrast AOSLO provides detail on highly translucent retinal structures such as vascular wall, single blood cells(27–29), PR somata(30), and is well-suited to image resident and systemic immune cells.(7,23) Fluorescence AOSLO provides the ability to study fluorescently-labeled cells(25,31,32) and exogenous dyes(27,33) throughout the living retina. These modalities used in combination have recently provided detailed images of the retinal response to a model of human uveitis.(23,34) Together, these innovations now provide a platform to visualize, for the first time, the dynamic interplay between many immune cell types, each with a unique role in tissue inflammation.”

      (2) Within the discussion

      P34-35 L656-662 “Beyond the context of this specific finding, we share this work with the excitement that AOSLO cellular level imaging may reveal the interaction of multiple immune cell types in the living retina. By using fluorophores associated with specific immune cell populations, the complex dynamics that orchestrate the immune response may be examined in this specialized tissue. This work and future studies may reveal further insights to the interactions of single immune cells in the living body in a non-invasive way.”

      Reviewer #3 (Recommendations for the authors):

      Some other comments:

      (1) The reader may wonder why if all findings are confirmed by histology would an in vivo imaging model be needed. This does not need a generalized explanation given the typical virtues of an in vivo model, but perhaps the authors may want to amplify their findings in the current context, for example, those on the shorter minutes to hours timescales (Figure 2, Supplement 1) that would have been resource and time intensive, and likely impossible, to gather via histology alone.

      The reviewer appropriately underscores the utility of in vivo imaging above histological-only investigation. In response, we have added text in the introduction to emphasize the nuanced, but important value of both longitudinal imaging as well as dynamic imaging which is not possible with conventional histology (e.g. blood perfusion status, immune cell interactions etc.)

      P3-4 L21-42 (these points also addressed in response to reviewer #2 above)

      (2) A few questions and comments on the laser ablation model<br /> - It is alluded to in the Discussion in Lines 519-521 that the procedure is highly reproducible (95%) but the associated data for this repeatability metric is not shown.

      We agree that the criterion for determining a “successful lesion” requires further elaboration. Therefore, we have now included the criteria for successful lesions in the methods as well as discussion (in bullet below):

      Methods:

      P9-10 L129-133: “This protocol produced a hyper-reflective phenotype in the >40 locations across 28 mice. In rare cases, the exposure yielded no hyper-reflective lesion and were often in mice with high retinal motion, where the light dosage was spread over a larger retinal area. These locations were not included in the in-vivo or histological analysis.”

      - The methods state that a 24 x 1-micron line is focused on the retina, but all lesions seem to appear elliptical where the major to minor axis ratio is a lot smaller than this intended size. One wonders what leads to this discrepancy.

      We expect that this observation is related to the response above, we have added the following:

      Discussion:

      P27 L497-505: “The damage took on an elliptical form, likely due to: 1) Eye motion from respiration and heart rate which spreads the light over a larger integrative area (rather than line). 2) The impact of focal light scatter. 3) A micron-thin line imparting damage on cells that are many microns across manifesting as an ellipse. The majority of light exposures produced lesions of this elliptical shape. In a few conditions, for the reasons described above, the exposure failed to produce a strong, focal damage phenotype. To improve lesion reproducibility, future experiments should control for subtle eye motion affecting light damage, especially for long exposures.”

      (3) Lastly, a thickening is noted in the ONL after laser injury that seems to cause a thinning of the INL as well (Figure 3) which may increase the apparent INL nuclei density.

      The reviewer’s careful eye finds local swelling after injury. However, despite swelling, the segregation between INL and ONL was maintained in all days we examined. Thus, no ONL cells were included in INL counts (see figure 3A & 3D).

      Also, the ONL - inner (panel B) seems to show a little reduction in cell density in the same elliptical shape as the outer ONL in panel C.

      We agree with this observation and was one of the reasons we included this detailed analysis of both the inner and outer half of the ONL. Our finding is that there is more prominent loss of nuclei in the outer half of the ONL. While the mechanism for this is not understood, we felt it was an important finding to include and further shows the axial specificity of the light damage we are inducing (especially at day 1 observation).

      Lastly, the reduction in nuclear density is visually obvious in the ONL at the 1 and 3-day time points but the p-statistic does not seem to convey this. One may consider performing the analysis on panel F on a smaller region surrounding the lesion to more reliably reveal these effects.

      Related to the response above, the ONL shows a persistence of nuclei in the upper half of that layer, whereas the outer half, shows a visible reduction. Therefore, we expect that the reviewer is correct that a statistical analysis that considers just the outer half of the ONL would likely show a strong statistical significance. The challenge, however, is that our analysis strategy counted all cells within a 50 micron diameter cylinder through the entirety of the ONL (meaning strong loss in the outer half was attenuated by weak loss in the inner half). A more detailed sub-layer analysis is challenging given the notable retinal remodeling over days-to-weeks that make it challenging to attribute layers within the ONL as viable landmarks for the requested analysis.

      (4) In Figure 6, the NIR confocal image and fluorescent microglia seem to share the same shape, starting from the OPL and posterior to it. This is particularly evident in the 3 and 7-day time points in the ONL and ONL/IS images. This departs from lines 567-577 where the claim is made that the hyperreflective phenotype in NIR images does not emerge from the microglia and neutrophils. This discrepancy should be clarified. It may be so that the hyperreflective phenotype as observed by Figure 2 at shorter timescales is not related to the microglia but the locus of hyper-reflections changes at longer time scales to involve the microglia as well as in Figure 6. One potential clue/speculation of the common shapes/size in confocal hyper-reflectance and fluorescent microglia of Figure 6 comes from Figure 9 where the microglia seem to engulf the photoreceptor phagosomes in the DAPI stains. It is possible that the hyper-reflections arise from the phagosomes but their co-localization with microglia seems to demonstrate a shared size/shape. As an addendum to the first point, such correlations are a power of the in vivo model and impossible to achieve in histology.

      The reviewer shows a deep understanding of our data. We agree with many of the points, but for the purpose of the paper many of the above offerings are speculative and we have chosen not to elaborate on these points as it is not definitive from the data. Instead, we direct the reader to an important finding that within hours, the hyper-reflective phenotype is seen in both OCT and AOSLO, whereas microglial somas/processes have not yet migrated into the hyper-reflective region. We have now emphasized this point in the discussion section:

      P29-30 L543-552: “A common speculation is that the increased backscatter may arise from local inflammatory cells that activate or move into the damage location. In our data, confocal AOSLO and OCT revealed a hyperreflective band at the OPL and ONL after 488 nm light exposure (Figure 2a, b). We found that the hyperreflective bands appeared within 30 minutes after the laser injury, preceding any detectable microglial migration toward the damage location (Figure 2 – figure supplement 1 and Figure 6 – figure supplement 1). We thus conclude that the initial hyperreflective phenotype is not caused by microglial cell activity or aggregation.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      To gain further insight into the dynamics of microglial aging in the hippocampus, the authors used a bioinformatics method known as "pseudotime" or "trajectory inference" to understand how cells may progress through different functional states, as defined by cellular transcriptome (15,16). These bioinformatics approaches can reveal key patterns in scRNAseq / snRNAseq datasets and, in the present study, the authors conclude that a "stress response" module characterized by expression of TGFb1 represents a key "checkpoint" in microglial aging in midlife, after which the cells can move along distinct transcriptional trajectories as aging progresses. This is an intriguing possibility. However, pseudotime analyses need to be validated via additional bioinformatics as well as follow-up experiments. Indeed, Heumos et al, in their Nature Genetics "Expert Guidelines" Review, emphasize that "inferred trajectories might not necessarily have biological meaning." They recommend that "when the expected topology is unknown, trajectories and downstream hypotheses should be confirmed by multiple trajectory inference methods using different underlying assumptions."(15) Numerous algorithms are available for trajectory inference (e.g. Monocle, PAGA, Slingshot, RaceID/StemID, among many others) and their performance and suitability depends on the individual dataset and nature of the trajectories that are to be inferred. It is recommended to use dynGuidelines(16) for the selection of optimal pseudotime analysis methods. In the present manuscript, the authors do not provide any justification for their use of Monocle 3 over other trajectory inference approaches, nor do they employ a secondary trajectory inference method to confirm observations made with Monocle 3. Finally, follow-up validation experiments that the authors carry out have their own limitations and caveats (see below). Hence, while the microglial aging trajectories identified by this study are intriguing, they remain hypothetical trajectories that need to be proven with additional follow-up experiments.

      We thank the reviewer for their suggestion. We have utilized the dynGuidelines kindly provided by the reviewer to utilize an additional trajectory inference tool to analyze our data. We selected Scorpius based on the structure of our data. The tool has provided additional support that microglia progress from a homeostatic state (Cx3cr1, Mef2c) to the induction of stress genes (Hspa1, Atf3) at an intermediate point during aging progression. Furthermore, we observe a concordant increase in ribosomal protein genes at a time point in the pseudotime analysis immediately prior to activation of inflammation-related genes (Il1b, Cst7). These additional analyses support the main findings of our original pseudotime analysis and have been added to the manuscript as Figure S3C,D. Additionally, in the statistical test that uncovers differentially expressed genes along the pseudotime trajectory in this analyses, we find that Tgfb1 is one of the genes that is differentially expressed with peak expression at an intermediate timepoint along the pseudotime trajectory. Furthermore, we have done some preliminary trajectory analysis with slingshot (Street et al, BMC Genomics, PMID: 29914354) that found a similar trajectory with analogous gene expression patterns and dynamic expression of Tgfb1.

      To follow up on the idea that TGFb1 signaling in microglia plays a key role in determining microglial aging trajectories, the authors use RNAscope to show that TGFb1 levels in microglia peak in middle age. They also treat primary LPS-activated microglia with TGFb1 and show that this restores expression of microglial homeostatic gene expression and dampens expression of stress response and, potentially, inflammatory genes. Finally, they utilize transgenic approaches to delete TGFb1 from microglia around 8-10mo of age and scRNAseq to show that homeostatic signatures are lost and inflammatory signatures are gained. Hence, findings in this study support the idea that TGFb1 can strongly regulate microglial phenotype. Loss of TGFb1 signaling to microglia in adulthood has already been shown to cause decreased microglial morphological complexity and upregulation of genes typically associated with microglial responses to CNS insults(17-19). TGFb1 signaling to microglia has also been implicated in microglial responses to disease and manipulations to increase this signaling can improve disease progression in some cases(19). In this light, the findings in the present study are largely confirmatory of previous findings in the literature. They also fall short of unequivocally demonstrating that TGFb1 signaling acts as a "checkpoint" for determining subsequent microglial aging trajectory. To show this clearly, one would need to perturb TGFb1 signaling around 12mo of age and carry out sequencing (bulkRNAseq or scRNAseq) of microglia at 18mo and 24mo. Such experiments could directly demonstrate whether the whole microglial population has been diverted to the TGFb1-low aging trajectory (that progresses through a translational burst state to an inflammation state as proposed). Future development of tools to tag TGFb1 high or low microglia could also enable fate tracing type experiments to directly show whether the TGFb1 state in middle age predicts cell state at later phases of aging.

      We apologize for the use of the term “checkpoint” when referring to the role of Tgfb1 in microglial aging. Instead, our model posits that Tgfb1 expression increases in response to the early insults of the aging process in an attempt to return microglia to homeostasis. Therefore, this would predict that increasing TGFB1 levels after an insult would decrease activation and age-related progression of microglia, which we demonstrate in vitro (Figure 3). Alternatively, the loss of TGFB1 should prevent microglia from returning to a homeostatic state after an age-related stressor, and thus increase the number of microglia in activated states. We observe this increase in activated microglia in our middle-aged microglia-specific Tgfb1 knockout mouse model. Furthermore, the haploinsufficiency of Tgfb1 at this age indicates that TGFB1 signaling in microglia is sensitive to relative levels of Tgfb1. The transient increase in Tgfb1 expression further suggests that the threshold for TGFB1 signaling is dynamic. Finally, RNA-Seq analysis of both in vitro TGFB1 supplemented microglia and in vivo Tgfb1 depleted microglia highlight that TGFB1 alters the aging microglia transcriptome. Combined, these results provide evidence that Tgfb1 modulates advancement of microglia through an aging continuum.

      The present study would also like to draw links between features of microglial aging in the hippocampus and a decline in hippocampal-dependent cognition during aging. To this end, they carry out behavioral testing in 8-10mo old mice that have undergone microglial-specific TGFb1 deletion and find deficits in novel object recognition and contextual fear conditioning. While this provides compelling evidence that TGFb1 signaling in microglia can impact hippocampus-dependent cognition in midlife, it does not demonstrate that this signaling accelerates or modulates cognitive decline (see below). Age-associated cognitive decline refers to cognitive deficits that emerge as a result of the normative brain aging process (20-21). For a cognitive deficit to be considered age-associated cognitive decline, it must be shown that the cognitive operation under study was intact at some point earlier in the adult lifespan. This requires longitudinal study designs that determine whether a manipulation impacts the relationship between brain status and cognition as animals age (22-24). Alternatively, cross-sectional studies with adequate sample sizes can be used to sample the variability in cognitive outcomes at different points of the adult lifespan (22-24) and show that this is altered by a particular manipulation. For this specific study, one would ideally demonstrate that hippocampal-based learning/memory was intact at some point in the lifespan of mice with microglial TGFb1 KO but that this manipulation accelerated or exacerbated the emergence of deficits in hippocampal-dependent learning/memory during aging. In the absence of these types of data, the authors should tone down their claims that they have identified a cellular and molecular mechanism that contributes to cognitive decline.

      We agree with the reviewer that to adequately demonstrate an age-dependent effect of microglia-derived TGFB1 on cognition it is necessary to perturb microglial TGFB1 at young and mature ages and assess the age-dependent effect on cognition. To address this, we have now performed a complementary behavioral study utilizing the Tmem119-CreER mouse model to drive the microglia-specific excision of Tgfb1 in two separate cohorts of mice – one young (2-3 months) and one in mature mice (7-8 months) – followed by cognitive testing. Using the novel object recognition test, we find that young mice of all genotypes (WT, Tgfb1 Het and Tgfb1 cKO ) retain the ability to recognize the novel object (as determined by having a significant preference in exploring the novel object). Alternatively, only the WT mature mice demonstrate a preference for the novel object, while the Tgfb1 Het and Tgfb1 cKO show no preference for the novel object. These behavioral data demonstrate an age-dependent necessity for microglia-specific TGFB1 in in maintain proper hippocampal-dependent memory and is now included in the manuscript as revised Figure 4I-J. We have also included additional behavioral tests (Y-Maze and open field) that did not show any difference between the genotypes as Figure S6D-G. Unfortunately, we were unable to perform the fear conditioning testing, as our apparatus broke during this time. Together, these results reveal that there is an age-dependent necessity for microglia-derived TGFB1 for hippocampal-dependent cognitive function.

      A final point of clarification for the reader pertains to the mining of previously generated data sets within this study. The language in the results section, methods, and figure legends causes confusion about which experiments were actually carried out in this study versus previous studies. Some of the language makes it sound as though parabiosis experiments and experiments using mouse models of Alzheimer's Disease were carried out in this study. However, parabiosis and AD mouse model experiments were executed in previous studies (25,26), and in the present study, RNAseq datasets were accessed for targeted data mining. It is fantastic to see further mining of datasets that already exist in the field. However, descriptions in the results and methods sections need to make it crystal clear that this is what was done.

      The reviewer makes an excellent point. While we referenced the public dataset in the original manuscript, the citation style of superscripted numbers diminishes our ability to adequately reference the datasets. Therefore, we have added the names of the first authors (Palovics for the parabiosis dataset and Sala Frigerio for the Alzheimer’s Disease dataset) to all the instances in the results and figure legends when we refer to these datasets.

      Additional recommendations:

      Major comments.

      (1) There is some ambiguity surrounding how to interpret the microglial TGFb1 knockout that seems incompatible with viewing this molecule as a "checkpoint" in microglial aging. TGFb1 is believed to be primarily produced by microglia. Secreted TGFb1 is then detected by microglial TGFbR2. Are the microglia that have high levels of TGFb1 in middle age signaling to themselves (autocrine signaling)? Or contributing to a local milieu that impacts multiple neighbor microglia (paracrine signaling)? The authors could presumably look in their own dataset to evaluate microglial capacity to detect TGFb1 via its receptors.

      We thank the reviewer for this insightful suggestion. We have undertaken analysis of our dataset to assess whether Tgfb1 acts through autocrine or paracrine signaling. To do so, we reanalyzed our microglia aging scRNA-Seq dataset leveraging the variation in microglia Tgfb1 expression to probe the relative activity of TGFB1. Specifically, we partitioned microglia into quartiles based on their Tgfb1 expression, and subsequently investigated the expression of TGFB signaling effectors and targets. High expression of downstream TGFB signaling pathway components in microglia with high Tgfb1 expression would point to autocrine mechanisms while, alternatively, high expression of downstream TGFB signaling pathway components in microglia with low Tgfb1 expression would point to paracrine mechanisms. We observed highest expression of TGFB signaling pathway components and targets in microglia with the highest expression of Tgfb1. These data suggest that Tgfb1 acts through an autocrine mechanism. These results have been added to our manuscript as Figure S4E-G. Additionally, while our manuscript was under review, a paper by Bedolla et al (Nature Communications 2024; PMID: 38906887) was published that investigated the role of Tgfb1 in adult microglia. This paper utilized orthogonal techniques – sparse microglia-specific Tgfb1 knockout and IHC - to also suggest that microglia utilize autocrine Tgfb1 signaling. Together, these complementary data provide strong evidence that Tgfb1 acts through an autocrine mechanism in adult microglia.

      (2) Conclusions of the study rest on the assumption that microglial inflammatory responses are a central driver of cognitive decline. They assume that manipulations that increase microglial progression into an inflammatory state will negatively impact cognitive function. Although there are certainly a lot of data in the field that inflammatory factors can impact synaptic function, additional experiments would be required to unequivocally demonstrate that a "TGFb1 dependent" progression of microglia to an inflammatory state underlies any observed changes in cognition. For example, in the context of microglial TGFb1 deletion, can NSAIDs or blockers of soluble TNFa (e.g. XENP345), or blockers of SPP1, etc. rescue behavior? Can microglial depletion in this context rescue behavior? Assuming behavior was carried out in the same microglial TGFb1 KO mice that were used for microglial scRNAseq, they could also carry out linear regression-type analyses to link microglial inflammatory status to the behavioral performance of individual mice. In the absence of additional evidence of this sort, the authors should tone down claims about mechanistic relationships between microglial state and cognitive performance.

      We thank the reviewer for realizing that the link between cognition and inflammation in our paper is speculative. Therefore, we have taken the reviewer’s advice and toned down the claims linking inflammation to cognition in our manuscript. Instead, we connect the disruption in cognition to what is observed in our data, a loss of microglia homeostasis and a shift in the microglia aging trajectories.

      Additional Recommendations:

      Minor comments:

      (1) Ideally at some point in the results or discussion, the authors should acknowledge that the hippocampus has highly distinct sub-regions and that microglia show different functions and properties across these sub-regions (e.g. microglia in hilus and subgranular zone vs microglia in stratum radiatum, vs microglia immediately adjacent to or embedded within stratum pyrimidale). Do expression levels of TGFb1 and microglial aging trajectories vary across sub-regions? To what extent can this account for heterogeneity of aging trajectories observed in microglial aging within the hippocampus?

      We are interested in how microglia heterogeneity during aging is influenced by the specific functions, and thus microenvironments within the hippocampus. Therefore, we have expanded our IHC analysis of microglia to determine how the microenvironment influences microglia phenotypes by looking at several different regions of the hippocampus. We have included this regional analysis as Figure S2 in the manuscript. This analysis has revealed region-specific effects on microglia activation during aging.

      (2) For immunohistochemistry data, it is not particularly convincing to see one example of one cell from each condition. Generally, an accepted approach in the field is to present lower magnification images accompanied by zoom panels for several cells from each field of view. This reassures the reader that specific cells haven't simply been "cherry-picked" to support a particular conclusion.

      To allay the concerns of the reviewer that cells haven’t been “cherry-picked”, we have provided low magnification images for the aging CD68 and NF<sub>κ</sub>B stains in Supplemental Figure S2.

      (3) In immunohistochemistry data, have measures been taken to ensure that observed signals are not simply autofluorescence that becomes prominent in tissues with aging? (i.e. use of trueblack or photoquenching of tissue prior to staining) See PMID 37923732

      We agree that autofluorescence, at least partially due to the accumulation of lipofuscin, becomes prominent in certain regions and cells of the hippocampus during aging. This most prominently occurs in the microglia of the hilus. This autofluorescence has a particular subcellular distribution, as it is localized to lyso-endosomal bodies. The microglia activation marker CD68 is also localized to lysosomes. A previous publication by Burns et al (eLife; PMID: 32579115) identified autofluorescent microglia (AF+) with unique molecular profiles that accumulate with age. They posited that these AF+ microglia resembled other microglia subsets that have pronounced storage compartments, such as the pro-inflammatory lipid droplet-containing microglia that accumulate with age reported by Marschallinger et al (Nature; PMID: 31959936). As such, autofluorescence present in microglia potentially represents distinctive and functional states of microglia. Our CD68 immunostaining accumulates with age, which could overlap with autofluorescent storage bodies. Thus, we performed a complementary CD68 immunostaining in an independent cohort of young (3 months) and aged (24 months) mice with autofluorescence quencher TrueBlack, and found that the staining pattern and accumulation of CD68 microglia with age persisted as previously observed after use of this quencher (see Authpr response image 1). Images are IBA1 (cyan) and CD68 (yellow) with the molecular layer (ML), granule cell (GC), and hilus illustrated and corresponding quantification provided (Two-way ANOVA with Sidak’s multiple comparisons test; ***P<0.001; ****P<0.0001).

      We would like to note that the subcellular localization of the other immunostainings included in the manuscript was distinct from CD68, and not likely to be associated with the autofluorescent storage bodies. Additionally, our RNAScope staining for Tgfb1 did not show an accumulation with age, but rather a transient increase at 12 months of age, which indicates that the interpretation of the RNAScope stain for Tgfb1 was not unduly influenced by autofluorescence.

      Author response image 1.

      (4) Ideally, more care is needed with the language used to describe microglial state during aging. The terms "dystrophic," "dysfunctional," and "inflammatory" all carry their own implications and assumptions. Many changes exhibited by microglia during aging can initially be adaptive or protective, particularly during middle age. Without additional experiments to show that specific microglial attributes during aging are actively detrimental to the tissue and additional experiments to show that microglia have ceased to be capable of engaging in many of their normal actions to support tissue homeostasis, the authors should exercise caution in using terms like dysfunctional.

      We appreciate the reviewers’ suggestion. To allay the concerns of the reviewer about the multiple implications of terms such as “dysfunctional” and “inflammatory”, we have tried to replace them throughout the text with more specific terms.

      Reviewer #2:

      That said, given what we recently learned about microglia isolation for RNA-seq analysis, there is a danger that some of the observations are a result of not age, but cell stress from sample preparation (enzymatic digestion 10min at 37C; e.g. PMID: 35260865). Changes in cell state distribution along aging were made based on scRNA-seq and were not corroborated by any other method, such as imaging of cluster-specific marker expression in microglia at different ages. This analysis would allow confirming the scRNA-seq data and would also give us an idea of where the subsets are present within the hippocampus, and whether there is any interesting distribution of cell states (e.g. some are present closer to stem cells?). Since TGFb is thought to be crucial to microglia biology, it would be valuable to include more analysis of the mice with microglia-specific Tgfb deletion e.g. what was the efficiency of recombination in microglia? Did their numbers change after induction of Tgfb deletion in Cx3cr1-creERT2::Tgfb-flox mice.

      We thank the reviewer for their comment regarding potential ex vivo transcriptional alterations with the approaches used in our study. We performed our aging microglia scRNA-Seq characterization prior to the release of Marsh et al (Nature Neuroscience; PMID: 35260865), which revealed the potential transcriptional artefacts induced by isolation. That being said, we took great care to minimize the amount of time samples were subjected to enzymatic digestion (15 minutes) and kept cells at 4C during the remainder of the isolation. Furthermore, we performed all isolations simultaneously, so that transcriptional changes induced by the isolation would be present across all ages and should not be observed during our analysis unless indicative of a true age-related change. Additionally, we have corroborated changes in cell state distribution across ages using several markers (Tgfb1 and KLF2 for the intermediate stress state, S6 for the translation state, and NFKB and CD68 for activation states). In the revised manuscript, we have added additional hippocampal subregion analysis of several IHC immunostains to provide spatial insights into the microglia aging process (Figure S2). This analysis reveals unique spatial dynamics of microglia aging. For example, as the reviewer foresaw, we found that the granule cell layer (the location of adult hippocampal neurogenesis) had a more pronounced age-associated progression of microglial activation than several other regions. A subset of regions had minimal levels of activation during aging, such as the molecular layer and the stratum radiatum of the CA1 (inner CA1in the manuscript) – regions enriched in synaptic terminals. Furthermore, this analysis highlights the susceptibility of microglia aging to microenvironmental influences.

      Regarding the temporally controlled microglia-specific genetic KO mouse model used in our original submission, the Cx3cr1-CreER allele selected (B6.129P2(Cg)-Cx3cr1tm2.1(cre/ERT2)Litt/WganJ) has been reported to have very high recombination efficiency (~94% in Parkhurst et al (Cell; PMID: 24360280)), and we used a tamoxifen induction protocol very similar to Faust et al. (Cell Reports; PMID: 37635351) that achieved ~98% recombination (they injected 100mg/kg for 5 days, while we injected 90mg/kg for 5 days). We analyzed our scRNA-Seq data for the expression of Tgfb1 and found that the knockout mice had a 67% reduction in cells expressing higher levels of Tgfb1 (see panel A in Author response image 2). This is likely a large underestimate of the recombination efficiency, as exon 3 is floxed and residual nonfunctional transcripts could be present, given nonsense-mediated decay is not realized in a number of knockout lines (Lindner et al, Methods, PMID: 33838271). We likely achieved a much higher excision efficiency. We would like to highlight that our data indicating increased microglia activation after tamoxifen treatment (Figure S5A) and the involvement of autonomous signaling (Figure S4E-G) are consistent with recently published work by Bedolla et al, (Nature Communications; PMID: 38906887). Additionally, as part of the revision process, we have now corroborated our behavioral data using and independent temporally controlled microglia-specific KO mouse model - Tmem119-CreER::Tgfb1 knockout mice (Figure 4I-K). We performed qPCR on sorted microglia to determine RNA levels in wildtype and knockout mice. Relative levels of Tgfb1 and exon 3 of Tgfb1 (the floxed exon) on technical replicates of 3 pooled samples indicated overall loss of Tgfb1 expression, as well as undetectable levels of exon 3 as normalized to Actb (see panel B in Author response image 2).

      Author response image 2.

      With respect to the effects of aging and Tgfb1 on microglia density, we find a slight region-specific increase in microglia density with age (see Author response image 3). The density of Iba1 cells across hippocampal regions was analyzed at 3 and 24 months of age (see panel A in Author response image 3) and along an aging continuum at 3, 6, 12, 18, and 24 months (see panel B in Author response image 3). These data are also included in the revised manuscript (Figure S2D-F).

      Author response image 3.

      Deletion of Tgfb1 also had region-specific effects on microglia. While there was no difference in microglia density between wildtype and heterozygous microglia, there was a significant increase in microglia density in the hilus and molecular layers in knockout mice (see Author response image 4) and included in the revised manuscript (Figure S5A). These data indicate that there are subtle region-specific increases in microglia density with age, as well as following the deletion of Tgfb1 from microglia of mature mice.

      Author response image 4.

      Additional Recommendations:

      (1) The problem of possible digestion artifacts in scRNA-seq should be at least addressed in the discussion as a caveat in data interpretation. Staining for unique cluster markers in undigested tissue would solve the problem. It can be done with microscopy or using flow cytometry, but for this microglia, isolation should be done with no enzymes or with Actinomycin (PMID: 35260865).

      The ex vivo activation signature uncovered by Marsh et al. (Nature Neuroscience; PMID: 35260865) arises from the digestion methods used to isolate microglia. We took the utmost care in processing our microglia identically within experiments, which should minimize the amount of uneven ex vivo activation of microglia. This is borne out by the structures of our single-cell sequencing data. Unlike Marsh et al_. where they observe unique cluster after addition of their inhibitors, we do not see any clusters unique to a single condition, suggesting that any influence of _ex vivo activation was evenly distributed.

      Importantly, as suggested by the review, we have we have complemented our scRNA-Seq analysis by corroborating several markers for various stages of microglia aging progression using RNAScope and IHC in intact tissue. Specifically, the transient age-dependent increase in Tgfb1 high microglia was confirmed using RNAScope (Figure 3B), the age-related increase in ribosomal high microglia was confirmed using S6 immunostaining (Figure 3I), and the increase of various markers of age-associated activation (C1q, CD68 and NFkB) was confirmed using immunostaining (Figure 1F and Figure S2D-I). Additionally, we have also performed immunostainings for KLF2 and confirmed peak microglia expression at 18 months of age with lower levels at 24 months of age (Figure 2H).

      (2) The figures of GO and violin plots are not easy to follow sometimes... what are the data points in the violin plots, maybe worth showing them as points? For the GO, e.g. in 3D, 3J, including a short description of the figure could help, e.g. in Figure 1. it was clear.

      We chose not to include the datapoints in the violin plots for aesthetic purposes. Each violin plot would have had hundreds of points that would have made the plots very busy and hidden the structure of the distribution. In Author response image 5 we show the violin plot in Figure 2M with (panel A) and without (panel B) individual points. In a small format, the points overlap and become jumbled together. Therefore, we chose to present the violin plots without points for clarity on the data structure. As for the gene ontology plots in Figure 3, we have updated the descriptions in both the text and figure legends to provide clarification on what they represent.

      Author response image 5.

      (3) I'm very curious to see the mechanism of action of "aged" microglia in the TGFb-depletion model. Is it creating hostile conditions for stem cells, or we have increased synapse loss? Something else?

      We thank the reviewer for their insightful questions. We would like to note that during the revision process of our manuscript, a complementary study was published reporting that the loss of microglia-derived Tgfb1 leads to an aberrant increase in the density of dendritic spines in the CA1 region of the hippocampus (Bedolla et al, Nature Communications, PMID: 38906887). The data from Bedolla et al, shows sparsely labeled neurons in the CA1 with a mGreenLantern expressing virus in mice the had Tgfb1 deleted from microglia using the Cx3cr1-CreERT driver (Figure 7U,V). Additionally, McNamara et al (Nature; PMID: 36517604) demonstrated that microglia-derived Tgfb1 signaling regulates myelin integrity during development and several studies have revealed links between Tgfb1 signaling and altered neurogenesis (e.g., He et al, Nature, PMID: 24859199 and Dias et al, Neuron, PMID: 25467979). Together, this growing body of work indicates that microglia-derived TGFB1 regulates myelination, neurogenesis and synaptic plasticity, which have all been shown to play a role in cognition.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __* SUMMARY

      This study utilizes the developing chicken neural tube to assess the regulation of the balance between proliferative and neurogenic divisions in the vertebrate CNS. Using single-cell RNAseq and endogenous protein tagging, the authors identify Cdkn1c as a potential regulator of the transition towards neurogenic divisions. Cdkn1c knockdown and overexpression experiments suggest that low Cdkn1c expression enhances neurogenic divisions. Using a combination of clonal analysis and sequential knockdown, the authors find that Cdkn1c lengthens the G1 phase of the cell cycle via inhibition of cyclinD1. This study represents a significant advance in understanding how cells can transition between proliferative and asymmetric modes of division, the complex and varying roles of cycle regulators, and provides technical advance through innovative combination of existing tools.

      MAJOR AND MINOR COMMENTS *__

      Overall Sample numbers are missing or unclear throughout for all imaging experiments. The authors should add numbers of cells analysed and/or numbers of embryos for their results to be appropriately convincing.

      This information is now provided in the figure legends (numbers of cells analyzed and/or numbers of embryos) except for data in Figure 5, which are presented in a new Supplementary Table

      Values and error bars on graphs must be defined throughout. Are the values means and error bars SD or SEM?

      We have used SD throughout the study. This information has now been added in figure legends.

      Results 2

      ____A reference should be provided for cell type distribution in spinal neural tube, where the authors state that cell bodies of progenitors reside within the ventricular zone.

      We now cite a recent review on spinal cord development (Saade and E. Marti, Nature Reviews Neuroscience, 2025) to illustrate this point

      The authors state that Cdkn1c "was expressed at low levels in a salt and pepper fashion in the ventricular zone, where the cell bodies of neural progenitors reside, and markedly increased in a domain immediately adjacent to this zone which is enriched in nascent neurons on their way to the mantle zone. In contrast, the transcript was completely excluded from the mantle zone, where HuC/D positive mature neurons accumulate." It is not clear if this is referring only to E4 or also to E3 embryos. Indeed, Cdkn1c expression appears to be much more salt and pepper at E3 and only resolves into a clear domain of high expression adjacent to the mantle zone at E4. It may be helpful if this expression pattern could be described in a bit more detail highlighting the changes that occur between E3 and E4.

      We have now reformulated this paragraph as follows: "At E3, the transcript was expressed at low levels in a salt and pepper fashion in the ventricular zone, where the cell bodies of neural progenitors reside (Saade and Marti, 2025)). One day later, at E4, this salt and pepper expression was still detected in the ventricular zone, while it markedly increased in the region of the mantle zone that is immediately adjacent to the ventricular zone. This region is enriched in nascent neurons on their way to differentiation that are still HuC/D negative. In contrast, the transcript was completely excluded from the more basal region of the mantle zone, where mature HuC/D positive neurons accumulate.

      It would be useful to annotate the ISH images in Fig 2A to show the ventricular and mantle zones as defined by immunofluorescence.

      Thank you for the suggestion. We have now added a dotted line that separates the ventricular zone from the mantle zone at E3 and E4 in Figure 2A

      Reference should be included for pRb expression dynamics.

      This section has been rewritten in response to comments from Reviewer #3, and now contains several references regarding pRb expression dynamics. See detailed response to Reviewer #3 for the new version

      Could the Myc tag insertion approach disrupt protein function or turnover? ____Why was the insertion target site at the C terminus chosen?

      The first reason was practical: at the time when we decided to generate a KI in Cdkn1c, we had already generated several successful KIs at C-termini of other genes, in particular using the P2A-Gal4 approach (see Petit-Vargas et al, 2024), and had not yet experimented with N-terminal Gal4-P2A. We therefore decided to use the same approach for Cdkn1c.

      We also chose to target the C-terminus to avoid affecting the active CKI domain which is located at the N-terminus.

      Nevertheless, the C-terminal targeting may have an impact on the turnover: it has been described that CDK2 phosphorylation of a Threonin close to the C-terminus of Cdkn1c leads to its targeting for degradation by the proteasome from late G1 (Kamura et al, PNAS, 2003; doi: 10.1073/pnas.1831009100). We can therefore not rule out that the addition of the Myc tags close to this phosphorylation site modulates the dynamics of Cdkn1c degradation. We note, however, that we observed little overlap between the Cdkn1c-Myc and pRb signals in cycling progenitors, suggesting that Cdkn1c is effectively degraded from late G1.

      OPTIONAL Could a similar approach be used to tag Cdkn1c with a fluorescent protein to enable live imaging of dynamics?

      Although it could be done, we have not attempted to do this for CDKN1c because our current experience of endogenous tagging of several genes with a similar expression level (based on our scRNAseq data) and nuclear localization (Hes5, Pax7) with a fluorescent reporter shows that the fluorescent signal is extremely low or undetectable in live conditions; Therefore we favored the multi-Myc tagging approach, and indeed we find that the Myc signal in progenitors is also very low even though it is amplified by the immunohistology method; this suggests that most likely, the only signal that would be detected -if any- with a fluorescent approach would be the peak of expression in newborn neurons.

      In suppl Fig 1C nlsGFP-positive cells are shown in the control shRNA condition. How can this be explained and does it impact the interpretation of the findings?

      The reviewer refers to the control gRNA condition in panel C, that shows that two small patches of GFP-positive cells are visible in the whole spinal cord of this particular embryo.

      Technically, the origin of these "background" cells could be multiple. A spontaneous legitimate insertion at the CDKN1c locus by homologous recombination is possible, although we tend to think it is unlikely, given the extremely short length of the arms of homology; illegitimate insertions of the Myc-P2A-Gal4 cassette at off-target sites of the control gRNA is a possibility. Alternatively, a low-level leakage of Gal4 expression from the donor vector could lead to a detectable nls-GFP expression in a few cells via Gal4-UAS amplification.

      In any case, these cells are observed at a very low frequency (1 or 2 patches of cells/embryo) relative to the signal obtained in presence of the CDKN1c gRNA#1 (probably several thousand positive cells per embryo). This suggests that if similar "background" cells are also present in presence of the CDKN1c gRNA, they would not significantly contribute to the signal, and would not impact the interpretation.

      In Fig 2B, there are a number of Myc labelled cells in the mantle zone, whereas the in situ images show no appreciable transcript expression. Is this because the protein but not the transcript is present in these cells? Could the authors comment on this?

      It is indeed possible that the CDKN1c protein is more stable than the transcript in newborn neurons and remains detectable in the mantle zone after the mRNA disappears. In Gui et al, 2006, where they use an anti-CDKN1c antibody to label the protein in mouse spinal cord transverse sections at E11.5 (Figure 1B), a few positive cells are also visible basally. They could correspond to neurons that have not yet degraded CDKN1c, although it is unclear in the picture whether these cells are really in the mantle zone or in the adjacent dorsal root ganglion; we note that a similar differential expression dynamics between mRNA and protein has been described for Tis21/Btg2 in the developing mouse cortex, where the protein, but not the mRNA, is detected in some differentiated bIII-tubulin-positive neurons (Iacopetti et al, 1999).

      However, related to our response above to a previous comment from the same reviewer, we cannot rule out the possibility that the Myc tags modulate the turnover of CDKN1c protein and slow down the dynamics of its degradation in differentiating neurons.

      We have added a sentence to indicate the presence of these cells: "In addition, a few Myc-positive cells were located deeper in the mantle zone, where the transcript is no more present, suggesting that the protein is more stable than the transcript."

      Results

      It should be mentioned how mRNA expression levels were quantified in the shRNA validation experiment (supp Fig 2A).

      We did not quantify the level of mRNA reduction, it was just evaluated by eye. The reason for choosing shRNA1 for the whole study was dictated by 1) the fact that we more consistently saw (by eye) a reduction in the signal on the electroporated side with this construct than with the other shRNAs, and 2) that the effect on neurogenesis was also more consistent.

      We will perform additional experiments to provide some quantitation of the shRNA effect, as this is also requested by Reviewer #3.

      As our Cdkn1c KI approach offers a direct read-out of the protein levels in the ventricular and mantle zones, and since our shRNA strategy of "partial knock-down" is based on the idea that the shRNA effect should be more complete in progenitors expressing Cdkn1c at low levels than in newborn progenitors that express the protein at a higher level, we propose to validate the shRNA in the Cdkn1c-Myc knock-in background, by comparing the Myc signal intensity between control and Cdkn1c shRNA conditions

      Figure panels are not currently cited in order. Citation or figure order could be changed.

      We have now added a common citation of the panels referring to analyses at 24 and 48 hours after electroporation (now Figure 3A-F), allowing us to display the experimental data on the figure according to the timing post electroporation, while the text details the phenotype at the later time point first.

      The authors should provide representative images for the graphs shown in Fig 3A and 3B. These could go into supplementary if the authors prefer.

      We have added images in a revised version of the Figure 3, as requested

      A supplementary figure showing the Caspase3 experiment should be added.

      We have added data showing Caspase3 experiments in Supplementary Figure 3D

      OPTIONAL. Identification of sister cells in the clonal analysis experiments is based on static images and cannot be guaranteed. Could live imaging be used to watch divisions followed by fixation and immunostaining to confirm identity?

      We agree with the reviewer that direct tracking is the most direct method for the identification of pairs of sister cells. However, it remains technically challenging, and the added value compared to the retrospective identification would be limited, while requiring a great workload, especially considering the many different experimental conditions that we have explored in this study.

      Results 4

      How did the authors quantify the intensity of endogenous Myc-tagged Cdkn1c to confirm the validity of the Pax7 locus knock in? Can they show that the expression level was consistently lower than the endogenous expression in neurons? Quantification and sample numbers should be shown.

      We have not done these quantifications in the original version of the study. We will add a quantification of the signal intensity in the ventricular and mantle zones for the revised version of the manuscript, as also requested by reviewer #3.

      In Fig 4B, the brightness of row 2 column 1 is lower than the same image in row 2 column 2, which is slightly misleading, since it makes the misexpressed expression level look lower than it is compared with endogenous in column 3. Is this because only a single z-section is being displayed in the zoomed in image? If so, this should be stated in the figure legend.

      All images in the figure are single Z confocal images. Images in Column 2 (showing both electroporated sides of the same tube) were acquired with a 20x objective, whereas the insets shown in Columns 1 and 3 are 100x confocal images. 100x images on both sides were acquired with the same acquisition parameters, and the display parameters are the same for both images in the figure. The signal intensity can therefore be compared directly between columns 1 and 3.

      We have modified the legend of the Figure to indicate these points: "The insets shown in Columns 1 and 3 are 100x confocal images acquired in the same section and are presented with the same display parameters".

      In Fig 4D, the increase in neurogenic divisions is mainly because of the rise in terminal NN divisions according to the graph, but no clear increase in PN divisions. Could the authors comment on the significance of this?

      Our interpretation is that Pax7-CDKN1c misexpression experiments cause both PP to PN and PN to NN conversions. This is coherent with the classical idea of a progressive transition between these three modes of division in the spinal cord. Coincidentally, in our experimental conditions (timing of analysis and level of overexpression), the increase in PN resulting from PP to PN conversions is perfectly balanced by a decrease resulting from PN to NN conversions, giving the artificial impression that the PN compartment is unaffected. A less likely hypothesis would be that misexpression directly transforms symmetric PP into symmetric NN divisions, and that asymmetric PN divisions are insensitive to CDKN1c levels. We do not favor this hypothesis, because one would expect, in that case, that the shRNA approach would also not affect the PN compartment, and it is not what we have observed (see Figure 3H - previously 3F).

      We have modified the manuscript to elaborate on our interpretation of this result: "We observed an increase in the proportion of terminal neurogenic (NN) divisions and a decrease in proliferative (PP) divisions (Figure 4D). This suggests that CDKN1c premature expression in PP progenitors converts them to the PN mode of division, while the combined endogenous and Pax7-driven expression of CDKN1c converts PN progenitors to the NN mode of division. Coincidentally, at the stage analyzed, PP to PN conversions are balanced by PN to NN conversions, leaving the PN proportion artificially unchanged. The alternative interpretation of a direct conversion of symmetric PP into symmetric NN divisions is less likely, because the PN compartment was affected in the reciprocal CDKN1c shRNA approach (see Figure 3H)."

      Results 5 ____The proportion of pRb-positive progenitors having entered S phase was stated to be higher at all time points; however, it is not significantly higher until 6h30 and is actually trending lower at 2h30.

      Thank you for pointing this out. We have modified the sentence in the main text.

      "We found that the proportion of pRb positive progenitors having entered S phase (EdU positive cells) was significantly higher at all time points examined more than 4h30 after FT injection in the Cdkn1c knock-down condition compared to the control population (Figure 5D)"

      OPTIONAL Could CyclinD1 activity be directly assessed?

      This is an interesting suggestion. For example, using the fluorescent CDK4/6 sensor developed by Yang et al (eLife, 2020; https://doi.org/10.7554/eLife.44571) in a CDKN1c shRNA condition would represent an elegant experimental alternative to complement our rescue experiments with the double CDKN1c/CyclinD1 shRNA. However, we fear that setting up and calibrating such a tool for in vivo usage in the chick embryo represents too much of a challenge for incorporation in this study.

      General ____Scale bars missing fig s1c s4d.

      Thanks for pointing this out. Scale bars have been added in the figures and corresponding legends

      OPTIONAL Some of the main findings be replicated in another species, for example, mouse or human to examine whether the mechanism is conserved.

      OPTIONAL Could use approaches other than image analysis be used to reinforce findings, for example biochemical methods, RNAseq or FACS?

      We agree that it will be interesting and important that our findings are replicated in other species, experimental systems, and even tissues, or by alternative experimental approaches. Nevertheless, it is probably beyond the scope of this study.

      A model cartoon to summarise outcomes would be useful.

      We thank the reviewer for the suggestion. We will propose a summary cartoon for the revised version of the manuscript.

      Unclear how cells were determined to be positive or negative for a label. Was this decided by eye? If so, how did the authors ensure that this was unbiased?

      Positivity or negativity was decided by eye. However, for each experiment, we ensured that all images of perturbed conditions and the relevant controls were analyzed with the same display parameters and by the same experimenter to guarantee that the criteria to determine positivity or negativity were constant.

      Reviewer #1 (Significance (Required)):

      SIGNIFICANCE

      Strengths: This manuscript investigates the mechanisms regulating the switch from symmetric proliferative divisions to neurogenic division during vertebrate neuronal differentiation. This is a question of fundamental importance, the answer to which has eluded us so far. As such, the findings presented here are of significant value to the neurogenesis community and will be of broad interest to those interested in cell divisions and asymmetric cell fate acquisition. Specific strengths include:

      • Variety of approaches used to manipulate and observe individual cell behaviour within a physiological context.
      • A limitation of using the chicken embryo is the lack of available antibodies for immunostaining. The authors take advantage of recent advances in chicken embryo CRISPR strategy to endogenously tag the target protein with Myc, to facilitate immunostaining.
      • Innovative combination of genetic and labelling tools to target cells, for example, use of FlashTag and EdU in combination to more accurately assess G1 length than the more commonly used method.
      • Premature misexpression demonstrates that the previously observed dynamics indeed regulate cell fate.
      • Mechanistic insight by examining downstream target CyclinD1.
      • Clearly presented with useful illustrations throughout.
      • Logic is clear and examination thorough.
      • Conclusions are warranted on the basis of their findings. ____Limitations ____T____his study primarily used visual analysis of fixed tissue images to assess the main outcomes. To reinforce the conclusions, these could be supplemented with live imaging to appreciate dynamics, or biochemical techniques to look at protein expression levels.

      Some aspects of quantification require explanation in order for the experiments to be replicated.

      It is imperative that precise sample sizes are included for all experiments presented.

      Advance: ____First functional demonstration role for Cdkn1c in regulating neurogenic transition in progenitors.

      Conceptual advance suggesting Cdkn1c has dual roles in driving neurogenesis: promoting neurogenic divisions of progenitors and the established role of mediating cell cycle exit previously reported.

      Technical advances in the form of G1 signposting and endogenous Myc tagging using CRISPR in chicken embryonic tissue.

      Audience:

      Of broad interest to developmental biologists. Could be relevant to cancer, since Cdkn1c is implicated.

      Please define your field of expertise with a few keywords to help the authors contextualize your point

      Developmental biology, vertebrate embryonic development, neuronal differentiation, imaging. Please note that we have not commented on RNAseq experiments as these are outside of our area of expertise.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The work by Mida and colleagues addresses important questions about neurogenesis in the embryo, using the chicken neural tube as their model system. The authors investigate the mechanisms involved in the transition from stem cell self-renewal to neurogenic progenitor divisions, using a combination of single cell, gene functional and tracing studies.

      The authors generated a new single cell data set from the embryonic chicken spinal cord and identify a transitory cell population undergoing neuronal differentiation, which expresses Tis21, Neurog2 and Cdkn1c amongst other genes. They then study the role of Cdkn1c and investigate the hypothesis that it plays a dual role in spinal cord neurogenesis: low levels favour transition from proliferative to neurogenic divisions and high levels drive cell cycle exit and neuronal differentiation.

      Major comments

      I have only a general comment related to the main point of the paper. The authors claim that Cdkn1c onset in cycling progenitor drives transition towards neurogenic modes of division, which is different from its role in cell cycle exit and differentiation. Figures 3F and 4D are key figures where the authors analysed PP, PN and NN mode of divisions via flash tag followed by analysis of sister cell fate. If their assumption is correct, shouldn't they also see, for example in Fig. 4D, an increase in PN or is this too transient to be observed or is it bypassed?

      As already stated in our response to a similar question from reviewer #1, our interpretation is that Pax7-CDKN1c misexpression experiments cause both PP to PN and PN to NN conversions. This is coherent with the classical idea of a progressive transition between these three modes of division in the spinal cord. Coincidentally, in our experimental conditions (timing of analysis and level of overexpression), the increase in PN resulting from PP to PN conversions is perfectly balanced by a decrease resulting from PN to NN conversions, giving the artificial impression that the PN compartment is unaffected. A less likely hypothesis would be that misexpression directly transforms symmetric PP into symmetric NN divisions, and that asymmetric PN divisions are insensitive to CDKN1c levels. We do not favor this hypothesis, because one would expect, in that case, that the shRNA approach would also not affect the PN compartment, and it is not what we have observed (see Figure 3H - previously 3F).

      At the moment, the calculations of PN and NN frequencies are merged in the text, so perhaps describing PN and NN numbers separately will help better understand the dynamics of this gradual process (especially since there is little to no difference in PN).

      Regarding the results of Pax7 overexpression presented in figure 4D (now Figure 4E in the revised version), we had made the choice to merge PN and NN values in the main text to focus on the neurogenic transition from PP to PN/NN collectively. We agree with this reviewer, as well as with reviewer #1, that it should be more detailed and better discussed. We therefore propose to modify the paragraph as follows (and as already indicated above in the response to reviewer #1):

      "We observed an increase in the proportion of terminal neurogenic (NN) divisions and a decrease in proliferative (PP) divisions (Figure 4D). This suggests that Cdkn1c premature expression in PP progenitors converts them to the PN mode of division, while the combined endogenous and Pax7-driven expression of Cdkn1c converts PN progenitors to the NN mode of division. Coincidentally, at the stage analyzed, PP to PN conversions are balanced by PN to NN conversions, leaving the PN proportion artificially unchanged. The alternative interpretation of a direct conversion of symmetric PP into symmetric NN divisions is less likely, because the PN compartment was affected in the reciprocal Cdkn1c shRNA approach (see Figure 3F, now 3H)."

      Could the increase in NN be compatible also with a role in cell cycle exit and differentiation, for example from cells that have been targeted and are still undergoing the last division (hence marked by flash tag) or there won't be any GFP cells marked by flash tag a day after expression of high levels of Cdkn1c?

      It is likely that a proportion of cells that would normally have done a NN division are pushed to a direct differentiation that bypasses their last division in the Pax7-CDKN1c condition, and that they contribute to the general increase in neuron production observed in our quantification 48hae (Figure 3F -previously 3C). However, these cases would not contribute to the increase in the NN quantification in pairs of sister cells 6 hours after division at 24hae (Figure 4E - previously 4D), because by design they would not incorporate FlashTag. The rise in NN is therefore the result of a PN to NN conversion.

      Basically, what would the effect of expressing higher levels of Cdkn1c be? I guess this will really help them distinguish between transition to neurogenic division rather than neuronal differentiation. If not experimentally, any further comments on this would be appreciated.

      These experiments have been performed and presented in the study by Gui et al., 2007, which we cite in the paper. Using a strong overexpression of CDKN1c from the CAGGS promoter, they showed a massive decrease in proliferation, assessed by BrdU incorporation, 24hours after electroporation. We will cite this result more explicitly in the main text, and better explain the difference of our approach. We propose the following modification

      « We next explored whether low Cdkn1c activity is sufficient to induce the transition to neurogenic modes of division. A previous study has shown that overexpression of Cdkn1c driven by the strong CAGGS promoter triggers cell cycle exit of chick spinal cord progenitors, revealed by a drastic loss of BrdU incorporation 1 day after electroporation (Gui et al., 2007). As this precludes the exploration of our hypothesis, we developed an alternative approach designed to prematurely induce a pulse of Cdkn1c in progenitors, with the aim to emulate in proliferative progenitors the modest level of expression observed in neurogenic progenitors. We took advantage of the Pax7 locus, which is expressed in progenitors in the dorsal domain at a level similar to that observed for Cdkn1c in neurogenic precursors (Supplementary Figure 6A)."

      * * Minor comments

      Fig 3C my understanding is that HuC/D should be nuclear, but in fig 3C it seems more cytoplasmic (any comment?)

      Some studies suggest that HuC/D can, under certain conditions, be observed in the nucleus of neurons. However, HuC/D is a RNA binding protein whose localization is mainly expected to be cytoplasmic. In our experience (Tozer et al, 2017), and in other publications using the antibody in the chick spinal cord (see, for example, le Dreau et al, 2014), it is observed in the cell body of differentiated neurons, as in the current manuscript.

      Fig Suppl 3E (and related 4B), immuno for Cdkn1c-Myc: to help the reader understand the difference between the immuno signals when looking at the figure, I would suggest writing on the panel i) Pax7-Cdkn1c-Myc and ii) endogenous Cdkn1c-Myc, rather than 'misexpressed' and 'endogenous', which is slightly confusing (especially because what it is called endogenous expression is higher).

      This has now been modified in the figures.

      Literature citing: Introduction and discussion are very nicely written, although they could benefit from some more recent literature on the topic. For example, Cdkn1c role as a gatekeeper of stem cell reserve in the stomach, gut, (Lee et al, CellStemCell 2022 PMID: 35523142) or some other work on symmetric/asymmetric divisions and clonal analysis in zebrafish (Hevia et al, CellRep 2022 PMID: 35675784, Alexandre et al, NatNeur PMID: 20453852), mammals (Royal et al, Elife 2023 37882444, Appiah et al, EMBO rep 2023 PMID: 37382163). Also, similar work has been performed in the developing pancreatic epithelium, where mild expression of Cdkn1a under Sox9rtTa control was used to lengthen G1 without overt cell cycle exit and this resulted in Neurog3 stabilization and priming for endocrine differentiation (Krentz et al, DevCell 2017 PMID: 28441528), so similar mechanisms might be in in place to gradually shift progenitor towards stable decision to differentiate. Moreover, in the discussion, alongside Neurog2 control of Cdkn1c, it could be mentioned that the feedback loop between Cdk inhibitors and neurogenic factor is usually established via Cdk inhibitor-mediated inhibition of proneural bHLHs phosphorylation by CDKs (Krentz et al, DevCell 2017 PMID: 28441528, Ali et al, 24821983, Azzarelli et al 2017 - PMID: 28457793; 2024 - PMID:39575884). Further, in the discussion, could they mention anything about the following open questions: is there evidence for Cdkn1c low/high expression in mammalian spinal cord? Or maybe of other Cdk inhibitors? Is Cdkn1c also involved in cell cycle exit during gliogenesis? Or is there another Cdk inhibitor expressed at later developmental stages, hence linking this with specific cell fate decisions?

      We will modify the introduction and discussion in several instances, in order to address the above suggestions and we will:

      • add references to its role in other contexts and/or species.

      • expand the discussion on the cross talk between neurogenic factors and CDK inhibitors in other cellular contexts.

      • add a dedicated paragraph in the discussion to answer reviewer#2's questions: is there evidence for Cdkn1c low/high expression in mammalian spinal cord? Or maybe of other Cdk inhibitors? Is Cdkn1c also involved in cell cycle exit during gliogenesis or is there another Cdk inhibitor expressed at later developmental stages?

      Reviewer #2 (Significance (Required)):

      The work here presented has important implications on neural development and its disorders. The authors used the most advanced technologies to perform gene functional studies, such as CRISPR-HDR insertion of Myc-tag to follow endogenous expression, or expression under endogenous Pax7 promoter, often followed by flash tag experiments to trace sister cell fate, and all of this in an in vivo system. They then tested cell cycle parameters, clonal behaviour and modes of cell division in a very accurate way. Overall data are convincing and beautifully presented. The limitation is potentially in the resolution between the events of switching to neurogenic division versus neuronal differentiation, which might just warrant further discussion. This work advances our knowledge on vertebrate neurogenesis, by investigating a key player in proliferation and differentiation.

      ____I believe this work will be of general interest to developmental and cellular biologists in different fields. Because it addresses fundamental questions about the coordination between cell cycle and differentiation and fate decision making, some basic concepts can be translated to other tissues and other species, thus increasing the potential interested audience.

      My work focuses on stem cell fate decisions in mammalian systems, and I am familiar with the molecular underpinnings of the work here presented. However, I am not an expert in the chicken spinal cord as a model and yet the manuscript was interesting. I am also not sufficiently expert in the bioinformatic analysis, so cannot comment on the technical aspects of Figure 1 and the way they decided to annotate their data.

      __*

      Reviewer #3 (Evidence, reproducibility and clarity (Required)): *__

      Summary: In this study, Mida et al. analyze large-scale single-cell RNA-seq data from the chick embryonic neural tube and identify Cdkn1c as a key molecular regulator of the transition from proliferative to neurogenic cell divisions, marking the onset of neurogenesis in the developing CNS. To confirm this hypothesis, they employed classical techniques, including the quantification of neural cell-specific markers combined with the flashTAG label, to track and isolate isochronic cohorts of newborn cells in different division modes. Their findings reveal that Cdkn1c expression begins at low levels in neurogenic progenitors and becomes highly expressed in nascent neurons. Using a classical knockdown strategy based on short hairpin RNA (shRNA) interference, they demonstrate that Cdkn1c suppression promotes proliferative divisions, reducing neuron formation. Conversely, novel genetic manipulation techniques inducing low-level CDKN1c misexpression drive progenitors into neurogenic divisions prematurely.

      By employing cumulative EdU incorporation assays and shRNA-based loss-of-function approaches, Mida et al. further show that Cdkn1c extends the G1 phase by inhibiting cyclin D, ultimately concluding that Cdkn1c plays a dual role: first facilitating the transition of progenitors into neurogenic divisions at low expression levels, and later promoting cell cycle exit to ensure proper neural development.

      This study presents several ambiguities and lacks precision in its analytical methodologies and quantification approaches, which contribute to confusion and potential bias. To enhance the reliability of the conclusions, a more rigorous validation of the methods employed is essential.

      This study introduces a novel approach to tracking the fate of sister cells from neural progenitor divisions to infer the division modes. While previous methods for analyzing the division mode of neural progenitor cells have been implemented, rigorous validation of the approach introduced by Mida et al. is necessary. Furthermore, the concept of cell cycle regulators interacting to control the duration of specific cell cycle stages and influencing progenitor cell division modes has been explored before, potentially limiting the novelty of these findings.

      Major comments:

      1.-The study presents ambiguity and lacks precision in quantifying neural precursor division modes. The authors use phosphorylated retinoblastoma protein (pRb) as a marker for neurogenic progenitors, claiming its reliability in identifying neurogenic divisions.

      However, they do not provide a thorough characterization of pRb expression in the developing chick neural tube, leaving its suitability as a neurogenic division marker unverified.

      Throughout their comments on the manuscript, this reviewer raises several points regarding the characterization of pRb expression in our model and of our use of this marker in our study. We take these comments into account and propose to expand on pRb characteristics in the first occurrence of pRb as a marker of cycling cells in the manuscript. The modifications rely on:

      • the quotation of several studies showing that phosphorylation of Rb is regulated during the cell cycle, and that "it is not detectable during a period of variable length in early G1 in several cell types (Moser et al, 2018;Spencer et al, 2013; Gookin et al, 2017), including neural progenitors in the developing chick spinal cord (Molina et al, 2022). Apart from this absence in early G1, pRb is detected throughout the rest of the cell cycle until mitosis".

      • a more detailed description of our own characterization of pRb dynamics in a synchronous cohort of cycling cells, which reveals a similar heterogeneity in the timing of the onset of Rb phosphorylation after mitosis. This description was initially shown in supplementary figure 3 and will be transferred to a new supplementary figure 2 to account for the fact that it will now be cited earlier in the manuscript.

      Regarding the specific question the "suitability (of pRb) as a neurogenic division marker": we do not directly "use phosphorylated retinoblastoma protein (pRb) as a marker for neurogenic progenitors", but we use Rb phosphorylation to discriminate between progenitors (pRb+) and neurons (pRb-) identity in pairs of sister cells to retrospectively identify the mode of division of their mother.

      Given that Rb is unphosphorylated during a period of variable length after mitosis (see references above), pRb is not a reliable marker of ALL cycling progenitors. We developed an assay to identify the timepoint (the maximal length of this "pRb-negative" phase) after which Rb is phosphorylated in all cycling progenitors (new Supplementary Figure 2). This assay relies on a time course of pRb detection in cohorts of FlashTag-positive pairs of sister cells born at E3. This time course experiment allowed us to identify a plateau after which the proportion of pRb-positive cells in the cohort remains constant. From this timepoint, this proportion corresponds to the proportion of cycling cells in the cohort. Rb phosphorylation therefore becomes a discriminating factor between cycling progenitors (pRb+) and non-cycling neurons (pRb-).

      We are confident that this provides a solid foundation for the determination of the identity of pairs of sister cells in all our Flash-Tag based assays, which retrospectively identify the mode of division of a progenitor on the basis of the phosphorylation status of its daughter cells 6 hours after division.

      We propose to modify the main text to describe the strategy and protocol more explicitly, by introducing the sentence highlighted in yellow in the following paragraph where the paired-cell analysis is first introduced (in the section on CDKN1c knock-down):

      "This approach allows to retrospectively deduce the mode of division used by the mother progenitor cell. We injected the cell permeant dye "FlashTag" (FT) at E3 to specifically label a cohort of progenitors that undergoes mitosis synchronously (Baek et al., 2018; Telley et al., 2016 and see Methods), and let them develop for 6 hours before analyzing the fate of their progeny using pRb immunoreactivity (Figure 3D). Our characterization of pRb immunoreactivity in the tissue had established beforehand that 6 hours after mitosis, all progenitors can reliably be detected with this marker (Supplementary Figure 2, Methods). Therefore, at this timepoint after FT injection, two-cell clones selected on the basis of FT incorporation can be categorized as PP, PN, or NN based on pRb positivity (P) or not (N) (see Methods, new Figure 3G and new Supplementary Figures 2 and 4)."

      We also modified accordingly the legend to Supplementary Figure 2 (previously Supplementary Figure 3, which describes the identification of the plateau of pRb.

      Furthermore, retinoblastoma protein (Rb) and cyclin D interact crucially to regulate the G1/S phase transition of the cell cycle, with cyclin D/CDK complexes phosphorylating Rb. Since the authors conclude that CDKN1c primarily acts by inhibiting the cyclin D/CDK6 complex, it is likely that CDKN1c influences pRb expression or phosphorylation state. This raises the possibility that pRb could be a direct target of CDKN1c, whose expression and phosphorylation would be altered in gain-of-function (GOF) and loss-of-function (LOF) analyses of CDKN1c.

      In light of this, it would be more appropriate to consider pRb as a CDKN1c target and discuss the molecular mechanisms regulating cell cycle components.

      We agree with the reviewer that Rb phosphorylation may be a direct or indirect target of Cdkn1c activity, and exploring the molecular aspects of the cellular and developmental phenomena that we describe in our manuscript would represent an interesting follow up study.

      ____A more precise approach would involve using other markers or targets to quantify neural precursor division modes at earlier stages of neurogenesis.

      To complement our analyses of the modes of division, we propose to use a positive marker to assess neural identity in parallel to the absence of pRb within pairs of cells. This approach may be the most meaningful in the gain of function context (Pax7 driven expression of Cdkn1c) because in this context, the time-point to reach the plateau of Rb phosphorylation used in our FT-based assay may indeed be delayed. On the opposite, in the context of loss of functions, the plateau may be reached earlier, which would have no effect on this assay.

      2.-Furthermore, the study employs FlashTag labeling to track daughter cells post-division, but the 16-hour post-injection window may result in misidentification of sister cells due to the potential presence of FlashTagged cells that did not originate from the same division.

      This introduces a risk of bias in quantification, data misinterpretation, and potential errors in defining division modes. A more rigorous validation of the FlashTag strategy and its specificity in tracking division pairs is necessary to ensure the reliability of their conclusions.

      The reviewer probably mistyped and meant 6-hour post injection, which is the duration that we use for paired cell tracking. We would like to emphasize that in addition to the FlashTag label, we benefit from the electroporation reporter to assess clonality. Altogether, we combine 5 criteria to define a clonal relationship :

      • 2 cells are positive for Flash Tag
      • The Flash Tag intensity is similar between the 2 cells
      • The 2 cells are positive for the electroporation reporter
      • The electroporation reporter intensity is similar between the two cells
      • the position of the two cells is consistent with the radial organization of clones in this tissue (Leber and Sanes, 1995;__; __Loulier et al, 2014): they are found on a shared line along the apico-basal axis, and share the same Dorso-Ventral and Antero-Posterior position . This combination is already described in the Methods section. We propose to modify the paragraph to include the sentence highlighted in yellow in the text below;

      "Cell identity of transfected GFP positive cells was determined as follows: cells positive for pRb and FT were classified as progenitors and cells positive for FT and negative for pRb as neurons. In addition, a similar intensity of both the GFP and FT signals within pairs of cells, and a relative position of the two cells consistent with the radial organization of clones in this tissue (Leber and Sanes, 1995; Loulier et al, 2014) were used as criteria to further ascertain sisterhood. This combination restricts the density of events fulfilling all these independent criteria, and can confidently be used to ensure a robust identification of pairs of sister cells."

      3.- The knock-in strategy used to tag the endogenous CDKN1c protein in Figure 2 is an elegant tool to infer protein dynamics in vivo. However, since strong conclusions regarding CDKN1c dynamics during the cell cycle are drawn from this section, it would be advisable to strengthen the results by including quantification with adequate replication and proper statistical analysis, as the current findings are preliminary and somewhat speculative.

      - "Although pRb is specific for cycling cells, it is only detected once cells have passed the point of restriction during the G1 phase." Please provide literary reference confirming this observation.

      We have entirely remodeled this section, which describes the expression of Myc-tagged Cdkn1c relative to pRb and now provide several references that describe the generally accepted view that pRb is specific of cycling cells, regulated during the cell cycle, and in particular absent in early G1. We also remove the mention of the "Restriction point" in the main text to avoid any confusion on the timing of phosphorylation, as the notion of restriction point is not useful in our study. The section now reads as follows:

      "To ascertain that Cdkn1c is translated in neural progenitors, we used an anti-pRb antibody, recognizing a phosphorylated form of the Retinoblastoma (Rb) protein that is specifically detected in cycling cells (Gookin et al., 2017; Moser et al., 2018; Spencer et al., 2013) , including neural progenitors of the developing chick spinal cord (Molina et al., 2022). In the ventricular zone of transverse sections at E4 (48hae), we detected triple Cdkn1c-Myc/GFP/pRb positive cells (arrowheads in Figure 2B), providing direct evidence for the Cdkn1c protein in cycling progenitors. We also observed many double GFP/pRb positive cells that were Myc negative (arrowheads in Figure 2B). The observation of UAS-driven GFP in these pRb-positive cells is evidence for the translation of Gal4 and therefore provides a complementary demonstration that the Cdkn1c *transcript is translated in progenitors. The absence of Myc detection in these double GFP/pRb positive cells also suggests that Cdkn1c/Cdkn1c-Myc stability is regulated during the cell cycle. *

      Finally, we observed double Myc/GFP-positive cells that were pRb-negative (Figure 2B; asterisks). One characteristic of Rb phosphorylation as a marker of cycling cells is a period in early G1 during which it is not detectable, as described in several cell types (Gookin et al., 2017; Moser et al., 2018; Spencer et al., 2013) including chick spinal cord neural progenitors (Molina et al., 2022). Using a method that specifically labels a synchronous cohort of dividing cells in the neural tube, we similarly observed a period in early G1 during which pRb is not detectable in some progenitors at E3 (See Supplementary Figure 2 and Methods). Hence, the double Myc/GFP positive and pRb negative cells may correspond to progenitors in early G1. Alternatively, they may be nascent neurons whose cell body has not yet translocated basally (see Figure 2C). Finally, we observed a pool of GFP positive/pRb negative nuclei with a strong Myc signal in the region of the mantle zone that is in direct contact with the ventricular zone (VZ), corresponding to the region where the transcript is most strongly detected (see Figure 2A). This pool of cells with a high Cdkn1c expression likely corresponds to immature neurons exiting the cell cycle and on their way to differentiation (Figure 2B; double asterisks). In addition, a few Myc positive cells were located deeper in the mantle zone, where the transcript is no more present, suggesting that the protein is more stable than the transcript.

      In summary, our dual Myc and Gal4 knock-in strategy which reveals the history of Cdkn1c transcription and translation confirms that Cdkn1c is expressed at low level in a subset of progenitors in the chick spinal neural tube, as previously suggested (Gui et al., 2007; Mairet-Coello et al., 2012). In addition, the restricted overlap of Cdkn1c-Myc detection with Rb phosphorylation suggests that in progenitors, Cdkn1c is degraded during or after G1 completion. "

      This section will again be remodeled in a future revised version of the manuscript, in which we will add quantifications of Myc levels, as requested by Reviewer 1 above, and also by Reviewer #3 below.

      Given that pRb immunoreactivity is used as a marker for cycling progenitors to base many of the results of this study, it would be very valuable to characterize the dynamics of pRb in cycling cells in the studied tissue, for instance combined with the cell cycle reporter used by Molina et al. (Development 2022).

      In the original version of the manuscript, the section describing the dynamics of CDKN1c-Myc in the KI experiments presented in Figure 2 relied on the idea that the dynamics of pRb in chick spinal progenitors is similar to what I described in other tissues and cell types, without providing any references to substantiate this fact. Actually, Molina et al provide a characterization of pRb in combination with their cell cycle reporter and conclude that pRb negative progenitors are in G1 ("We also verified that phospho-Rb- and HuC/D-negative cells were in G1 by using our FUCCI G1 and PCNA reporters"). We will now cite this reference to support our claim. In addition, our characterization of Rb progressive phosphorylation in the synchronic Flash-Tag cohort of newborn sister cells provides a complementary demonstration that a fraction of the progenitors are pRb-negative when they exit mitosis (i.e. in early G1). This analysis was initially only introduced in the supplementary Figure 3, as support for the section that presents the Paired-cell assay used in Figure 3. We propose to introduce the data from Supplementary Figure 3 earlier in the manuscript (now Supplementary Figure 2), in order to better introduce the reader with the dynamics of pRb in cycling cells in our model. This will better support our description of the Cdkn1c-Myc dynamics in relation with pRb. We therefore propose to reformulate this whole section as follows.

      - It would be valuable to analyse the dynamics of Myc immunoreactivity in combination of pRb in all three gRNAs (highlighted in Supplementary Figure 1), as it would be a strong point in favour that the dynamics reflect the endogenous CDKN1c dynamics.

      - It would be very valuable to provide a quantification of said dynamics (e.g. plotting myc intensity / pRb immunoreactivity along the apicobasal axis of the tissue).

      These are two interesting suggestions. To complement our data with guide #1, we have performed Myc-immunostaining experiments on transverse sections in the context of guide #3, showing exactly the same pattern of Myc signal, with low expression in the VZ, and a peak of signal in the part of the mantle zone that is immediately touching the VZ. This confirms the specificity of the spatial distribution of the Cdkn1c-Myc signal. These data have been added in a revised version of Supplementary Figure 1.

      We will perform the suggested quantifications using guides #1 and #3, which both show a good KI efficiency. We do not think it is useful to do these experiments with guide #2, whose efficiency is much lower, and which would lead to a very sparse signal.

      - The characterization of dynamics is performed only with one of the gRNAs (#1) on the basis that it produces the strongest NLS-GFP signal, as a proxy for guide efficiency. It would be nice if the authors could validate guide cutting efficiency via sequencing (e.g. using a Cas9-T2A-GFP plasmid and sorting for positive cells).

      We will perform these experiments to validate guide cutting efficiency using the Tide method (Brinkman et al, 2014)

      - In order to make sure that the dynamics inferred from Myc-tag immunoreactivity do reflect the cell cycle dynamics of CDKN1c-myc, it would be advisable to confirm in-frame insertion of the myc-tag sequence.

      We will perform genomic PCR experiments to confirm in-frame insertion of the Myc tags at the Cdkn1c locus

      4.- In Figure 3, the authors use a short-hairpin-mediated knock-down strategy to decrease the levels of Cdkn1c, and show that this manipulation leads to an increase percentage of cycling progenitors and a decrease in the number of neurons in electroporated cells.

      The authors claim that their shRNA-based knockdown strategy aims to reduce low-level Cdkn1c expression in neurogenic progenitors while minimally affecting the higher expression in newborn neurons required for cell cycle exit. However, several factors need consideration. Electroporation introduces variability in shRNA delivery, making it difficult to achieve consistent gene inhibition across all cells, especially for dose-dependent genes like Cdkn1c.

      Additionally, Cdkn1c generates multiple isoforms, which may not be fully annotated in the chick genome, raising the possibility that the shRNA targets specific isoforms, potentially explaining the observed low expression.

      All the predicted isoforms in the chick genome contain the sequence targeted by shRNA1, which is located in the CKI domain, the region of the protein that is most conserved between species. Besides, all the isoforms annotated in the mouse and human genomes also contain the region targeted by shRNA1. We are therefore confident that shRNA1 should target all chick isoforms.

      A more rigorous approach, such as qPCR analysis of sorted electroporated cells, would better validate the expression levels, rather than relying on in situ hybridization, presenting electroporated and non-electroporated cells in the same section (Supp. Figure 2).

      This approach (qRT-PCR on sorted cells) would enable us to focus solely on electroporated cells, but it would result in an averaged quantification of Cdkn1c depletion. In order to obtain additional information on the shRNA-dependent decrease in Cdkn1C in the different neural cell populations (progenitor versus differentiating neuron), we propose an alternative approach consisting in monitoring the level of Cdkn1c protein, assessed through Cdkn1c-Myc signal in knock-in cells, in the presence versus absence of Cdkn1c shRNA.

      - As the authors note, "Unambiguous identification of cycling progenitors and postmitotic neurons is notoriously difficult in the chick spinal cord". "markers of progenitors usually either do not label all the phases of the cell cycle (eg. Phospho-Rb, thereafter pRb), or persist transiently in newborn neurons (eg. Sox2)." Given that pRb immunoreactivity is used as the basis for a lot of the conclusions in this study, it would be valuable to add a characterization of its dynamics as mentioned in Figure 2, as well as provide literary references/proof that Sox2 expression persists in newborn neurons.

      We have addressed the case of pRb dynamics in progenitors above and added a reference documented pRb expression during the cell cycle of chick neural progenitors (Molina et al, 2022).

      Regarding Sox2 persistence: we consistently detect a small fraction of double positive Sox2+/HuC/D+ cells in chick spinal cord transverse sections. We have shown that this marker of differentiating neurons (HuC/D) only becomes detectable more than 8 hours after mitosis in newborn neurons at E3 (Baek et al, 2018), indicating that Sox2 protein can persist for up to at least 8 hours in newborn neurons.

      We now cite a paper showing that a similar persistence of Sox2 protein is reported in differentiating neurons of the human neocortex, where double Sox2/NeuN positive cells are frequently observed in cerebral organoids (Coquand et al, Nature Cell Biology 2024__)__

      - The undefined population (pRb-/HuCD-) introduces an unknown that assumes that the percentage of progenitors in G1 phase before the restriction point and the number of newborn neurons are equal for both conditions in an experiment. Can the authors provide explanation for this assumption?

      We do not think that these numbers are equal for both conditions, and we did not formulate this assumption. We only indicate (in the methods section) that this undefined/undetermined population (based on negativity for both markers) is a mix of two possible cell types. However, we do not offer any interpretation of the CDKN1c phenotypes based on the changes in this population. Indeed, our interpretation of the knock-down phenotype is solely based on the increase in pRb-positive and decrease in HuC/D-positive cells, which both suggest a delay in neurogenesis. We understand from the reviewer's comment that depicting an "undefined" population on the graph may cause some confusion. We therefore propose to present the data on pRb and HuC/D in different graphs, rather than on a combined plot, and to remove the reference to undefined cells in Figure 3, as well as in Figures 4 and 5 depicting the gain of function and double knock-down experiments. We have implemented these changes in updated versions of the figures.

      - In Gui et al. (Dev Biol 2006), authors showed that a knockdown of Cdkn1c leads to a failure of nascent neurons to exit the cell cycle and causes them to re-entry the cell cycle, shown by ectopic mitoses. In that study, cells born from those ectopic mitoses eventually leave the cell cycle leading to an increase in the number of neurons. Can the authors check for ectopic mitoses at 24hpe and 48hpe?

      We have now performed experiments with an anti phospho Histone 3 antibody, which labels mitotic cells, at 24 and 48 hours post electroporation. We do not see any ectopic mitoses upon Cdkn1c knock-down with this marker, and we have produced a Supplementary Figure with these data. This is consistent with the fact that we also do not see ectopic pRb or Sox2 positive cells in the mantle zone in the knock-down experiments. These data (pH3 and Sox2) have been added in the new Supplementary Figure 3E and F.

      We have now modified the main text to include these data:

      "In the context of a full knock-out of Cdkn1c in the mouse spinal cord, a reduction in neurogenesis was also observed, which was attributed to a failure of prospective neurons to exit the cell cycle, resulting in the observation of ectopic mitoses in the mantle zone (Gui et al, 2007). In contrast with this phenotype, using an anti phospho-Histone3 antibody, we did not observe any ectopic mitoses 24 or 48 hours after electroporation in our knock-down condition (Supplementary Figure 3E-F). This is consistent with the fact that we also do not observe ectopic cycling cells with pRb (Figure 3A and D) and Sox2 (Supplementary Figure 3E-F) antibodies. We therefore postulated that the reduced neurogenesis that we observe upon a partial Cdkn1c knock-down may result from a delayed transition of progenitors from the proliferative to neurogenic modes of division."

      - The authors then address the question of whether the decrease in neuron number is due to the failure of newborn neurons to exit the cell cycle or to a delay in the transition from proliferative to neurogenic divisions. For that, they implement a strategy to label a synchronized cohort of progenitors based of incorporation of a FlashTag dye.

      - Given that this strategy is the basis of many of the experiments in this article, it would be very valuable to expand on the validation of this technique as cited in major comment #2. In figure 3E, the close proximity of cell pairs in PP and PN clones shown in the pictures makes their sibling status apparent. However, this is not the case for the NN clone. Can the authors further explain with what criteria they determined the clonal status of two FlashTag labelled cells?

      The key criterion for cells that are not directly touching each other is that their relative position corresponds to the classical "radial" organization of clones in this tissue (Leber and Sanes, 1995__; __Loulier et al, Neuron, 2014). In other words, we make sure that they are located on a same apico-basal axis, as is the case for the NN clone presented on the figure. As stated above in our response to major comment #2, we have modified the Methods section accordingly.

      Can they provide further image examples of different types of clones?

      We now provide additional examples in a new Supplementary Figure 4

      - Can the authors show that the plateau reached in Sup Figure 3 for pRb immunoreactivity corresponds to a similar dynamic for HuC/D immunoreactivity?

      The plateau for Rb phosphorylation in progenitors is reached before 6 hours post mitosis at E3. At the same age, we have previously shown (Baek et al, PLoS Biology 2018) in a similar time course experiment in pairs of FT+ cells that the HuC/D signal is not detected in newborn neurons 8 hours after mitosis. HuC/D only starts to appear between 8 and 12 hours, and still increases between 8 and 16 hours. The plateau would therefore be very delayed for HuC/D compared to pRb. This long delay in the appearance of this « positive » marker of neural differentiation is the main reason why we chose to use Rb phosphorylation status for the analysis of synchronous cohorts of pairs of sister cells, because pRb becomes a discriminating factor much earlier than HuC/D after mitosis.

      - In order to further validate the strategy, could the authors use it at different stages to validate if they can replicate the different percentages of PP/PN/NN reported in the literature (e.g. Saade Cell Rep 2013)?

      We have carried out similar experiments at E2, showing a plateau of 95% of pRb-positive cells in the FT-positive population (see graph on the right). This provides a retrospective estimate of the mode of division of the mother cells at this stage (roughly 90% of PP and 10% of PN) which is consistent with the vast majority of PP divisions described by Saade et al (2013, see Figure S1) at this stage.

      5.- In Figure 4, the strategy used to induce a low-dose overexpression of CDKN1c is an elegant method to introduce CDKN1c-Myc expression under the control of the endogenous Pax7 promoter, active in proliferative progenitors. The main point to address is:

      - Please provide proof that Pax7 expression is not altered in guides with a successful knock-in event (e.g. sorting and WB against the Pax7 protein) or the immunohistochemistry as performed in the Pax7-P2A-Gal4 tagging in Petit-Vargas et al., 2024.

      We have now performed Pax7 immunostainings on transverse sections at 24 and 48 hours post electroporation, both with the Pax7-CDKN1c-Gal4 and with the Pax7-Gal4 control constructs. We present these data in the new supplementary figure 7. In both conditions, we find that the Pax7 protein is still present in KI-positive cells. We observe a modest increase in Pax7 signal intensity in these cells, suggesting either that the insertion of exogenous sequences stabilizes the Pax7 transcript, or that the C-terminal modification of Pax7 protein with the P2A tag increases its stability. This does not affect the interpretation of the CDKN1c overexpression phenotype, because we used the Pax7-Gal4 construct that shows the same modification of Pax7 stability as a control for this experiment. We have introduced this comment in the legend of Supplementary Figure 7.

      - Given the cell cycle regulated expression and activity of CDKN1c, can the authors elaborate on whether this is regulated at the promoter level?

      Cdkn1c transcription is regulated by multiple transcription factors and non-coding RNAs (see for example Creff and Besson, 2020, or Rossi et al, 2018 for a review). To our knowledge, these studies focus more on the regulation of Cdkn1c global expression than on the regulation of its levels during cell cycle progression. Although it is very likely that transcriptional regulation contributes, post-translational regulation, and in particular degradation by the proteasome, is also a key factor in the cell cycle regulation of Cdkn1c activity

      If so, how does this differ from the promoter activity of Pax7?

      The transcriptional regulation of Pax7 and Cdkn1c is probably controlled by different regulators, since their expression profiles are very different. Regardless of the mechanisms that control their expression, the rationale for choosing Pax7 as a driver for Cdkn1c expression was that Pax7 expression precedes that of Cdkn1c in the progenitor population, and that it disappears in newborn neurons, when that of Cdkn1c peaks. This provided us with a way to advance the timing of Cdkn1c expression onset in proliferative progenitors.

      - It would be advisable to characterize the dynamics along the cell cycle for the overexpressed form of CDKN1c-Myc relative to pRb, similarly to what was done in Figure 2B.

      We will carry out experiments similar to those shown in Figure 2B in order to characterise the dynamics of Cdkn1c in a context of overexpression, in relation to pRb.

      In addition, we will include a more precise quantification of the "misexpressed" compared to "endogenous" Cdkn1c -Myc levels, as already mentioned in the answer to a request by reviewer1.

      6.-In figure 5, the authors use a double knock-down strategy to test the hypothesis that the effect of Cdkn1c in G1 length is partially at least through its inhibition of CyclinD1. Results show that double shRNA-mediated knock-down of CyclinD1 and Cdkn1c counteracts the effects of Cdkn1c-sh alone on EdU incorporation, PP/PN/NN cell divisions and overall rations of progenitors and neurons.

      - In the measurement of progenitor cell cycle length in Figure 5A, it would be more appropriate to present the nonlinear regression method described by Nowakowski et al. (1989), as has been commonly used in the field (Saade et al., 2013, PMID: 23891002, Le Dreau et al., 2014, PMID: 24515346, Arai et al., 2011, PMID: 21224845).

      The Nowakowski non linear regression method has been used often in the literature in the same tissue, and is generally used to calculate fixed values for Tc, Ts, etc... This method is based on several selective criteria, and in particular the assumption that "all of the cells have the same cycle times". Yet, many studies have documented that cell cycle parameters change during the transition from proliferative to neurogenic modes of division during which our analysis is performed; live imaging data in the chick spinal cord have illustrated very different cell cycle durations at a given time point (see Molina et al). We therefore think that the proposed formulas do not reflect the heterogenous reality of neural progenitors of the embryonic spinal cord. However, the cumulative approach described by Nowakowski is useful to show qualitative differences between populations (e.g. a global decrease of the cycle length, like in our comparison between control and shRNA conditions). For these reasons, we prefer to display only the raw measurements rather than the regression curves.

      - Cumulative EdU incorporation in spinal progenitors (pRb-positive) at E3 (24 hours after injection) showed that the proportion of EdU-positive progenitors reached a plateau at 14 hours in control conditions, which is later than what has been reported in Le Dreau et al., 2014 (PMID: 24515346). Can you explain why?

      Le Dreau et al count the EdU+ proportion of cells in the total population of electroporated cells located in the VZ (which includes progenitors, but also future neurons that have been labelled during the previous cycles -at least for the time points after 2hours- and have not yet translocated to the mantle zone), whereas we only consider pRb+ progenitors in the analysis. In addition, the experiments are not performed at the same developmental stage. Altogether, this may account for the different curves obtained in our study.

      - It would be interesting to measure G1 length as in Figure 5D for the double cdkn1c-sh - ccnd1-sh knock down condition, to see if it rescues G1 length. As well as in the Ccnd1 knock down condition alone to see if it increases G1 length in this context as well.

      We will perform cumulative EDU incorporation experiments similar to that shown in Figure 5D to measure G1 length for the cdkn1c-sh - ccnd1-sh knock down double conditions, as well as in the Ccnd1 knock down condition alone.

      Minor comments

      __*Introduction:

      • The introduction should include references of studies of the role of Cdkn1c in cortical development (Imaizumi et al. Sci Rep 2020, Colasante et al. Cereb Cortex 2015, Laukoter et al. ____Nature Communications 2020).*__

      We will modify the introduction in several instances, in order to address suggestions by Reviewers #2 (see above) and #3, in particular to expand the description of the role of Cdkn1c during cortical development

      1) Transcriptional signature of the neurogenic transition (Figure 1).

      - In the result section, it would be informative to include the genes used to determine the progenitor and neuron score (instead of in Methods).

      We have now listed the genes used to determine the progenitor and neuron score in the main text of the result section

      - Figure 1A. It would be informative to add in the diagram what "filtering" means (eg. Neural crest cells).

      We have now added the detail of what 'filtering' means in the diagram

      - In the result section, "However, while Tis21 expression is switched off in neurons, Cdkn1c transiently peaks at high levels in nascent neurons before fading off in more mature cells." Missing literary reference or data to clearly demonstrate this point.

      We have reworded this sentence, adding a reference to the expression profile of Tis 21. The paragraph now reads as follows:

      « However, Cdkn1c expression is maintained longer and transiently peaks at high levels after Tis21 expression is switched off. Given that Tis21 is no more expressed in neurons (Iacopetti et al, 1999), this suggests that Cdkn1c expression is transiently upregulated in nascent neurons before fading off in more mature cells. »

      - "Interestingly, the gene cluster that contained Tis21 also contained genes encoding proteins with known expression and/or functions at the transition from proliferation to differentiation, such as the Notch ligand Dll1, the bHLH transcription factors Hes6, NeuroG1 and NeuroG2, and the coactivator Gadd45g." Missing references.

      We have now added references linking the function and/or expression profile of these genes to the neurogenic transition: Dll1 (Henrique et al., 1995), the bHLH transcription factors Hes6 (Fior and Henrique, 2005), NeuroG1 and NeuroG2 (Lacomme et al., 2012; Sommer et al., 1996) and the coactivator Gadd45g (Kawaue et al., 2014).

      - There is an error in the color code in Cell Clusters in Figure 1C (cluster 4 yellow in the legend but ocre in the figure)

      - Figure Sup3B colour code is switched (green for PP and red for NN) compared to the rest of the paper.

      We have corrected the colour code errors in Figure 1c and Supp Figure 3B (now changed to Supplementary Figure 5 in the modified revision)

      ____It would be valuable to assign cell cycle stage to neural progenitor cells (based on cell cycle score) and determine whether cdkn1c at the transcript level also shows enrichment in G1 cells considered to be progenitors.

      We have so far refrained from performing the suggested combined analysis based on cell cycle and cell type scores, as the "neurogenic progenitor population" (based on neurogenic progenitor score values) in which Cdkn1c expression is initiated represents a small number of cells in our scRNAseq, and felt that the significance of such an analysis is uncertain. We will perform this analysis in the revised version

      2) Progressive increase in Cdkn1c/p57kip2 expression underlie different cellular states in the embryonic spinal neural tube (Figure 2).

      - Figure 2A. Scale bar is missing in E3 and E4. It is important to consider the growth of the developing spinal cord and present it accordingly (E3 transverse section, Figure 2).

      The scale bar is actually valid for the whole panel A. The E2 section in the original figure appeared as "large" as the E3 section along the DV axis probably because the cutting angle was not perfectly transverse at E2, artificially lengthening the section. In a new version of the figure, we have replaced the E2 images with another section from the same experiment. The scale bar remains valid for the whole panel.

      - Figure 2 could use a diagram of the knock-in strategy used, similar as the one in Figure 4A.

      We have now added a diagram for the knock-in strategy in Figure 2B, and modified the legend of the figure accordingly.

      - Indicate hours post-electroporation. Indicate which guide is used in the main text.

      We have now added the post-electroporation timing and guide used in the main text.

      3) Downregulation of Cdkn1c in neural progenitors delays the transition from proliferative to neurogenic modes of division (Figure 3).

      - In methods: "Thus, to reason on a more homogeneous progenitor population, we restricted all our analysis to the dorsal one half or two thirds of the neural tube." Indicate when and depending on what one half or two thirds of the neural tube were analysed.

      - Are the clonal analysis experiments (Fig 3D, E and F) also restricted to the dorsal region?

      __We have modified this sentence as follows: "__Thus, to reason on a more homogeneous progenitor population, we restricted all our analysis to the dorsal two thirds of the neural tube, except for the Pax7-Cdkn1c misexpression analysis, which was performed in the more dorsal Pax7 domain."

      This is valid both for the whole population and clonal analyses

      - Figure 3. Would have a better flow if 3C preceded 3A and 3B.

      We have modified the Figure accordingly.

      - Figure 3C. it would be informative to show pictures of the electroporated NT at both 24hpe and 48hpe, as well as highlighting the dorsal part of the neural tube that was used for quantification.

      We have modified the Figure accordingly

      - In methods "At each measured timepoint (1h, 4h, 7h, 10h, 12h, 14 and 17h after the first EdU injection), we quantified the number of EdU positive electroporated progenitors (triple positive for EdU, pRb and GFP) over the total population of electroporated progenitor cells (pRb and GFP positive) (Figure 3B)." Explanation does not correspond to Figure 3B.

      This explanation corresponds indeed to Figure 5A. We have corrected this mistake in the new version of the manuscript.

      4) Inducing a premature expression of Cdkn1c in progenitors triggers the transition to neurogenic modes of division (Figure 4.).

      - "We took advantage of the Pax7 locus, which is expressed in progenitors in the dorsal domain at a level similar to that observed for Cdkn1c in neurogenic precursors (Supplementary Figure 4A)". Missing reference or data showing that Pax7 is restricted to the dorsal domain.

      We have added references to the expression profile of Pax7 in the dorsal neural tube (Jostes et al, 1990). In addition, the new Supplementary Figure 7 shows anti-Pax7 staining that confirm this expression pattern at E3 and E4

      - "its intensity was similar to the one observed for endogenous Myc-tagged Cdkn1c in progenitors (Figure 4B and Supplementary Figure 4E), and remained below the endogenous level of Myc-tagged Cdkn1c observed in nascent neurons, confirming the validity of our strategy". It would be valuable to add a quantification to demonstrate this point, either by fluorescence levels or WB of nls-GFP cells.

      As stated in the response to Major Point 5 above, we will perform a quantification based on Myc immunofluorescence to compare endogenous Cdkn1c expression versus Cdkn1c expression upon overexpression.

      - "At the population level, at E4, Cdkn1c expression from the Pax7 locus resulted in a strong reduction in the number of progenitors (pRb positive cells)". Indicate in the main text that this is 48hpe.

      We have added in the main text that the quantification was performed 48hae.

      - Legend of figure 4D should indicate that the quantification has been done 24hpe.

      We have added the timing of quantification in the legend of Figure 4D.

      - "To circumvent the cell cycle arrest that is triggered in progenitors by strong overexpression of Cdkn1c (Gui et al., 2007)". It would be advisable to expand on this reference on the text, or ideally to include a simple Cdkn1c overexpression experiment.

      These experiments have been performed and presented in the study by Gui et al., 2007, which we cite in the paper. Using a strong overexpression of CDKN1c from the CAGGS promoter, they showed a massive decrease in proliferation, assessed by BrdU incorporation, 24hours after electroporation. We will cite this result more explicitly in the main text, and better explain the difference of our approach. We propose the following modification:

      « We next explored whether low Cdkn1c activity is sufficient to induce the transition to neurogenic modes of division. A previous study has shown that overexpression of Cdkn1c driven by the strong CAGGS promoter triggers cell cycle exit of chick spinal cord progenitors, revealed by a drastic loss of BrdU incorporation 1 day after electroporation (Gui et al., 2007). As this precludes the exploration of our hypothesis, we developed an alternative approach designed to prematurely induce a pulse of Cdkn1c in progenitors, with the aim to emulate in proliferative progenitors the modest level of expression observed in neurogenic progenitors. We took advantage of the Pax7 locus, which is expressed in progenitors in the dorsal domain at a level similar to that observed for Cdkn1c in neurogenic precursors (Supplementary Figure 4A)."

      - "We observed a massive increase in the proportion of neurogenic (PN and NN) divisions rising from 57% to 84% at the expense of proliferative pairs (43% PP pairs in controls versus 16% in misexpressing cells, Figure 4D)." adding the percentages in the main text is a bit inconsistent with how the rest of the data is presented in the rest of the sections.

      This whole section has been modified in response to a question from reviewer 1. The new version does not contain percentages in the main text, and reads as follows:

      « Using the FlashTag cohort labeling approach described above, we traced the fate of daughter cells born 24 hae. We observed an increase in the proportion of terminal neurogenic (NN) divisions and a decrease in proliferative (PP) divisions (Figure 4D). This suggests that CDKN1c premature expression in PP progenitors converts them to the PN mode of division, while the combined endogenous and Pax7-driven expression of CDKN1c converts PN progenitors to the NN mode of division. Coincidentally, at the stage analyzed, PP to PN conversions are balanced by PN to NN conversions, leaving the PN proportion artificially unchanged. The alternative interpretation of a direct conversion of symmetric PP into symmetric NN divisions is less likely, because the PN compartment was affected in the reciprocal CDKN1c shRNA approach (see Figure 3F). Overall, these data show that inducing a premature low-level expression of Cdkn1c in cycling progenitors is sufficient to accelerate the transition towards neurogenic modes of division. »

      - Figure sup 4C includes references to 3 gRNAs even when only one is used in the study.

      The three guides listed in the original Supplementary Figure 4C correspond to the guides that we tested in Petit-Vargas et al. 2024. In this study, we only used the most efficient of these three guides. We have modified Figure 4C by quoting only this guide.

      5) The proneurogenic activity of Cdkn1c in progenitors is mediated by modulation of cell cycle dynamics (Figure 5)

      - "we targeted the CyclinD1/CDK4-6 complex, which promotes cell cycle progression and proliferation, and is inhibited by Cdkn1c." reference missing

      We have included references related to the activity of the CyclinD1/CDK4-6 complex in the developing CNS, and the antagonistic activities of CyclinD1 and Cdkn1c in this model

      - "we targeted the CyclinD1/CDK4-6 complex, which promotes cell cycle progression and proliferation in the developing CNS (Lobjois et al, 2004, 2008, Lange 2009, Gui et al 2007), and is inhibited by Cdkn1c (Gui et al, 2007)."

      - It would be informative to include experimental set-up information (e.g. hae) in Figures 5A, 5B, 5F and 5G.

      We have added the experimental set-up information in Figure 5.

      - Clarify if analysis is restricted to the dorsal progenitors or the whole dorsoventral length of the tube.

      The analyses were carried out on two thirds of the neural tube (dorsal 2/3), excluding the ventral zone, as specified above (and in the Methods section)

      - It would be valuable to add an image to illustrate what is quantified in Figure 5D, Figure F and Figure G.

      - For Figure 4C and D, it would be valuable to add images to illustrate the quantification.

      We have added images:

      • in Supplementary Figure 7C to illustrate what is quantified in Figures 4C (now 4C and 4D);
      • In Figure 5E to illustrate what is quantified in Figure 5D
      • In Supplementary Figure 8B to illustrate what is quantified in Figure 5G (now Figure 5H and 5I) Regarding the requested images for Figures 4D and 5F, they correspond to the same types of images already shown in Figure 3E. Since we have now added several additional examples of representative pairs of each type of mode of division in the new Supplementary Figure 4, we do not think that adding more of these images in figures 4 and 5 would strengthen the result of the quantifications.

      Discussion:

      - "Nonetheless, studies in a wide range of species have demonstrated that beyond this binary choice, cell cycle regulators also influence the neurogenic potential of progenitors, i.e the commitment of their progeny to differentiate or not (Calegari and Huttner, 2003; FUJITA, 1962; Kicheva et al., 2014; Lange et al., 2009; Lukaszewicz and Anderson, 2011a; Pilaz et al., 2009; Smith and Schoenwolf, 1987; Takahashi et al., 1995)." Should include maybe references to Peco et al. Development 2012, Roussat et al. J Neurosci. 2023).

      We have now included the references suggested by the reviewer.

      - "This occurs through a change in the mode of division of progenitors, acting primarily via the inhibition of the CyclinD1/CDK6 complex." The data shown in the paper does not demonstrate that Cdkn1c is inhibiting CyclinD1, only that knocking down both mRNAs counteracts the effect of knocking down Cdkn1c alone at the general tissue level and in the percentage of PP/PN/NN clones. This statement should be qualified.

      We propose to reformulate this paragraph in the discussion as follows to take this remark into account

      "This allows us to re-interpret the role of Cdkn1c during spinal neurogenesis: while previously mostly considered as a binary regulator of cell cycle exit in newborn neurons, we demonstrate that Cdkn1c is also an intrinsic regulator of the transition from the proliferative to neurogenic status in cycling progenitors. This occurs through a change in their mode of division, and our double knock-down experiments suggest that the onset of Cdkn1c expression may promote this change by counteracting a CyclinD1/CDK6 complex dependent mechanism."

      Other comments:

      - To improve clarity for the reader, it would help if electroporation was shown consistently on the same side of the neural tube. If electroporation has been performed at different sides and this is reflected in the figures, it would be advisable to explain on the figure legend.

      We have modified the figures to systematically show the electroporated side of the neural tube on the same side of the image for single electroporations.

      ____- Figure legends should include the number of embryos/tissue sections analysed for each experiment, as well as information on whether the sections were cryostat or vibratome.

      This information is now provided in the figure legends (numbers of cells analysed and/or numbers of embryos), except for data in Figure 5, which are presented in a new Supplementary Table 1.

      All experiments were performed on vibratome sections, except for in situ hybridization experiments, which were performed on cryostat sections. This last information was already indicated in the relevant figure legends

      - Overall, there is a lack of consistency in the figures regarding how much information is available to the reader (e.g. Sup Figure 2A, in the panel mRNA in situ hybridisation of Cdkn1c is referred to only as Cdkn1c whereas in Sup figure 5 the in situ reads as CCND1 mRNA). Readability would improve a lot if figures included information on what is an electroporated fluorescent tag or an immunostaining (similar to the label in sup 4D) as well as the exact stage and hours after electroporation where relevant.

      - There is a general lack of consistency in indicating the timing of the experiments, both in terms of embryonic stage/day and in terms of hours-post-electroporation.

      We have now homogenized the nomenclature in the figures.

      - "Primary antibodies used are: chick anti-GFP (GFP-1020 - 1:2000) from Aves Labs; goat antiSox2 (clone Y-17 - 1:1000) from Santa Cruz". There is no Sox2 immunostaining in the article.

      In the original version of the manuscript, the anti-Sox2 antibody was not used; we have now added experiments using this antibody in the modified version of the manuscript; this sentence in the Methods thus remains unchanged.

      Reviewer #3 (Significance (Required)):

      __*Significance:

      In neural development, there is a progressive switch in competence in neural progenitor cells, that transition from a proliferative (able to expand the neural progenitor pool) to neurogenic (able to produce neurons). Several factors are known to influence the transition of neural progenitor cells from a proliferative to a neurogenic state, including the activity of extracellular signalling pathways (e.g. SHH) (Saade et al. 2013, Tozer et al. 2017). In this study, the authors perform scRNA-seq of the cervical neural tube of chick at a stage of both proliferative and neurogenic progenitors are present, and identify transcriptional differences between the two populations. Among the differently expressed transcripts, they identify Cdkn1c (p57-Kip2) as enriched in neurogenic progenitors. Initially characterized as a driver of cell cycle exit in newborn neurons, the authors investigate the role of Cdkn1c in cycling progenitors. *__

      The authors find that knock-down of Cdkn1c leads to an increase in proliferative divisions at the expense of neurogenic divisions. Conversely, misexpression of Cdkn1c in proliferative progenitors leads to a switch to neurogenic divisions. Furthermore, they find that knock-down of Cdkn1c shortens G1 phase of the cell cycle, suggesting a link between G1 length and neurogenic competence in neural progenitor cells. Cell cycle length has previously been linked to competence of neural progenitors, and it has been described that longer G1 duration is linked to neurogenic competence (e.g. Calegari F, Huttner WB. 2003).

      The strengths of the study include:

      The identification of a subset of genes enriched in neurogenic vs. proliferative progenitors. Since the transition from proliferative to neurogenic competence is a gradual process at the tissue level, the classification of proliferative vs. neurogenic progenitors based on a score of transcripts and the identification of a subset of transcripts that are enriched in neurogenic progenitors is a valuable contribution to the neurodevelopmental field.

      - The somatic knock-in strategy used to induce low-level overexpression of Cdkn1c in proliferative progenitors is an elegant strategy to induce overexpression in a subset of cells in a controlled manner and is a valuable technical advance.

      - The characterization of a specific role of Cdkn1c in regulating cell cycle length in cycling progenitors is novel and valuable knowledge contributing to our understanding of how regulation of cell cycle length impacts competence of neural progenitors.

      The aspects to improve:

      - The sc-RNAseq isolated genes enriched in neurogenic versus proliferative progenitors, providing valuable insight into the gradual transition from proliferative to neurogenic competence at the tissue level. However, this gene subset requires clearer representation and detailed characterization. Additionally, the full scRNA-seq dataset should be made publicly available to support further research in neurodevelopment.

      The sequencing dataset has been deposited in NCBI's Gene Expression Omnibus database. It is currently under embargo, but will be made available upon acceptance and publication of the peer reviewed manuscript. Access is nonetheless available to the reviewers via a token that can be retrieved from the Review Commons website.

      The following information will be added in the final manuscript.

      Data availability

      Single cell RNA sequencing data have been deposited in NCBI's Gene Expression Omnibus (GEO) repository under the accession number GSE273710, and are available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE273710."

      - The characterization of Cdkn1c dynamics in cycling progenitors using endogenous tagging of the Cdkn1c transcript with a Myc tag is an elegant way to investigate the dynamics of Cdkn1c-myc along the cell cycle. However, it would be much more powerful if combined with a careful characterization of pRb immunostaining along the cell cycle in this tissue, as well as the quantifications and controls proposed. - Retinoblastoma protein (Rb) and cyclin D play a key role in regulating the G1/S transition, with cyclin D/CDK complexes phosphorylating Rb. Given that CDKN1c primarily inhibits the cyclin D/CDK6 complex, it likely affects pRb expression or phosphorylation. This suggests pRb may be a direct target of CDKN1c, making it an unreliable marker for tracking and quantifying neurogenic progenitors through CDKN1c modulation. In light of this, it would be more appropriate to consider pRb as a CDKN1c target and discuss the molecular mechanisms regulating cell cycle components. A more precise approach would involve using other markers or targets to quantify neural precursor division modes at earlier stages of neurogenesis.

      - Many of the conclusions of the study are based on experiments performed using the FlashTag dye in order to perform clonal analysis of proliferative vs. neurogenic divisions. It would be very valuable to further characterize the reliability of this tool as well as to provide more information on the criteria used to determine the fate of the pairs of sister cells.

      - The somatic knock-in strategy used to induce low-level overexpression of Cdkn1c in proliferative progenitors is an elegant strategy to induce overexpression in a subset of cells in a controlled manner. It would be valuable to further characterize the dynamics of Cdkn1c expression using this too and to provide proof that Pax7 expression is not altered in guides with the knock-in event.

      - The presentation of the existing literature could be more up to date.

      - The presentation of the data in the figures could be improved for readability. The sc-RNA seq data and the technical advances could be of interest for an audience of researchers using chick as a model organism, and working on neurodevelopment in general. Furthermore, the characterization of Cdkn1c as a regulator of G1 length in cycling progenitors and its implications for neurogenic competence could be of general interest for people working on basic research in the neurodevelopmental field.

      Field of expertise of the reviewer: neural development, cell biology, embryology.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      In this study, Mida et al. analyze large-scale single-cell RNA-seq data from the chick embryonic neural tube and identify Cdkn1c as a key molecular regulator of the transition from proliferative to neurogenic cell divisions, marking the onset of neurogenesis in the developing CNS. To confirm this hypothesis, they employed classical techniques, including the quantification of neural cell-specific markers combined with the flashTAG label, to track and isolate isochronic cohorts of newborn cells in different division modes. Their findings reveal that Cdkn1c expression begins at low levels in neurogenic progenitors and becomes highly expressed in nascent neurons. Using a classical knockdown strategy based on short hairpin RNA (shRNA) interference, they demonstrate that Cdkn1c suppression promotes proliferative divisions, reducing neuron formation. Conversely, novel genetic manipulation techniques inducing low-level CDKN1c misexpression drive progenitors into neurogenic divisions prematurely. By employing cumulative EdU incorporation assays and shRNA-based loss-of-function approaches, Mida et al. further show that Cdkn1c extends the G1 phase by inhibiting cyclin D, ultimately concluding that Cdkn1c plays a dual role: first facilitating the transition of progenitors into neurogenic divisions at low expression levels, and later promoting cell cycle exit to ensure proper neural development.

      This study presents several ambiguities and lacks precision in its analytical methodologies and quantification approaches, which contribute to confusion and potential bias. To enhance the reliability of the conclusions, a more rigorous validation of the methods employed is essential.

      This study introduces a novel approach to tracking the fate of sister cells from neural progenitor divisions to infer the division modes. While previous methods for analyzing the division mode of neural progenitor cells have been implemented, rigorous validation of the approach introduced by Mida et al. is necessary. Furthermore, the concept of cell cycle regulators interacting to control the duration of specific cell cycle stages and influencing progenitor cell division modes has been explored before, potentially limiting the novelty of these findings.

      Majors comments:

      1. The study presents ambiguity and lacks precision in quantifying neural precursor division modes. The authors use phosphorylated retinoblastoma protein (pRb) as a marker for neurogenic progenitors, claiming its reliability in identifying neurogenic divisions. However, they do not provide a thorough characterization of pRb expression in the developing chick neural tube, leaving its suitability as a neurogenic division marker unverified. Furthermore, retinoblastoma protein (Rb) and cyclin D interact crucially to regulate the G1/S phase transition of the cell cycle, with cyclin D/CDK complexes phosphorylating Rb. Since the authors conclude that CDKN1c primarily acts by inhibiting the cyclin D/CDK6 complex, it is likely that CDKN1c influences pRb expression or phosphorylation state. This raises the possibility that pRb could be a direct target of CDKN1c, whose expression and phosphorylation would be altered in gain-of-function (GOF) and loss-of-function (LOF) analyses of CDKN1c. In light of this, it would be more appropriate to consider pRb as a CDKN1c target and discuss the molecular mechanisms regulating cell cycle components. A more precise approach would involve using other markers or targets to quantify neural precursor division modes at earlier stages of neurogenesis.
      2. Furthermore, the study employs FlashTag labeling to track daughter cells post-division, but the 16-hour post-injection window may result in misidentification of sister cells due to the potential presence of FlashTagged cells that did not originate from the same division. This introduces a risk of bias in quantification, data misinterpretation, and potential errors in defining division modes. A more rigorous validation of the FlashTag strategy and its specificity in tracking division pairs is necessary to ensure the reliability of their conclusions.
      3. The knock-in strategy used to tag the endogenous CDKN1c protein in Figure 2 is an elegant tool to infer protein dynamics in vivo. However, since strong conclusions regarding CDKN1c dynamics during the cell cycle are drawn from this section, it would be advisable to strengthen the results by including quantification with adequate replication and proper statistical analysis, as the current findings are preliminary and somewhat speculative.
        • "Although pRb is specific for cycling cells, it is only detected once cells have passed the point of restriction during the G1 phase." Please provide literary reference confirming this observation. Given that pRb immunoreactivity is used as a marker for cycling progenitors to base many of the results of this study, it would be very valuable to characterize the dynamics of pRb in cycling cells in the studied tissue, for instance combined with the cell cycle reporter used by Molina et al. (Development 2022).
        • The characterization of dynamics is performed only with one of the gRNAs (#1) on the basis that it produces the strongest NLS-GFP signal, as a proxy for guide efficiency. It would be nice if the authors could validate guide cutting efficiency via sequencing (e.g. using a Cas9-T2A-GFP plasmid and sorting for positive cells).
        • In order to make sure that the dynamics inferred from Myc-tag immunoreactivity do reflect the cell cycle dynamics of CDKN1c-myc, it would be advisable to confirm in-frame insertion of the myc-tag sequence.
        • It would be valuable to analyse the dynamics of Myc immunoreactivity in combination of pRb in all three gRNAs (highlighted in Supplementary Figure 1), as it would be a strong point in favour that the dynamics reflect the endogenous CDKN1c dynamics.
      4. It would be very valuable to provide a quantification of said dynamics (e.g. plotting myc intensity / pRb immunoreactivity along the apicobasal axis of the tissue).
      5. In Figure 3, the authors use a short-hairpin-mediated knock-down strategy to decrease the levels of Cdkn1c, and show that this manipulation leads to an increase percentage of cycling progenitors and a decrease in the number of neurons in electroporated cells.

      The authors claim that their shRNA-based knockdown strategy aims to reduce low-level Cdkn1c expression in neurogenic progenitors while minimally affecting the higher expression in newborn neurons required for cell cycle exit. However, several factors need consideration. Electroporation introduces variability in shRNA delivery, making it difficult to achieve consistent gene inhibition across all cells, especially for dose-dependent genes like Cdkn1c. Additionally, Cdkn1c generates multiple isoforms, which may not be fully annotated in the chick genome, raising the possibility that the shRNA targets specific isoforms, potentially explaining the observed low expression. A more rigorous approach, such as qPCR analysis of sorted electroporated cells, would better validate the expression levels, rather than relying on in situ hybridization, presenting electroporated and non-electroporated cells in the same section (Supp. Figure 2). - As the authors note, "Unambiguous identification of cycling progenitors and postmitotic neurons is notoriously difficult in the chick spinal cord". "markers of progenitors usually either do not label all the phases of the cell cycle (eg. Phospho-Rb, thereafter pRb), or persist transiently in newborn neurons (eg. Sox2)." Given that pRb immunoreactivity is used as the basis for a lot of the conclusions in this study, it would be valuable to add a characterization of its dynamics as mentioned in Figure 2, as well as provide literary references/proof that Sox2 expression persists in newborn neurons. - The undefined population (pRb-/HuCD-) introduces an unknown that assumes that the percentage of progenitors in G1 phase before the restriction point and the number of newborn neurons are equal for both conditions in an experiment. Can the authors provide explanation for this assumption? - In Gui et al. (Dev Biol 2006), authors showed that a knockdown of Cdkn1c leads to a failure of nascent neurons to exit the cell cycle and causes them to re-entry the cell cycle, shown by ectopic mitoses. In that study, cells born from those ectopic mitoses eventually leave the cell cycle leading to an increase in the number of neurons. Can the authors check for ectopic mitoses at 24hpe and 48hpe? - The authors then address the question of whether the decrease in neuron number is due to the failure of newborn neurons to exit the cell cycle or to a delay in the transition from proliferative to neurogenic divisions. For that, they implement a strategy to label a synchronized cohort of progenitors based of incorporation of a FlashTag dye. - Given that this strategy is the basis of many of the experiments in this article, it would be very valuable to expand on the validation of this technique as cited in major comment #2. In figure 3E, the close proximity of cell pairs in PP and PN clones shown in the pictures makes their sibling status apparent. However, this is not the case for the NN clone. Can the authors further explain with what criteria they determined the clonal status of two FlashTag labelled cells? Can they provide further image examples of different types of clones? - Can the authors show that the plateau reached in Sup Figure 3 for pRb immunoreactivity corresponds to a similar dynamic for HuC/D immunoreactivity? - In order to further validate the strategy, could the authors use it at different stages to validate if they can replicate the different percentages of PP/PN/NN reported in the literature (e.g. Saade Cell Rep 2013)?. 5. In Figure 4, the strategy used to induce a low-dose overexpression of CDKN1c is an elegant method to introduce CDKN1c-Myc expression under the control of the endogenous Pax7 promoter, active in proliferative progenitors. The main point to address is: - Please provide proof that Pax7 expression is not altered in guides with a successful knock-in event (e.g. sorting and WB against the Pax7 protein) or the immunohistochemistry as performed in the Pax7-P2A-Gal4 tagging in Petit-Vargas et al., 2024. - Given the cell cycle regulated expression and activity of CDKN1c, can the authors elaborate on whether this is regulated at the promoter level? If so, how does this differ from the promoter activity of Pax7? - It would be advisable to characterize the dynamics along the cell cycle for the overexpressed form of CDKN1c-Myc relative to pRb, similarly to what was done in Figure 2B. 6. In figure 5, the authors use a double knock-down strategy to test the hypothesis that the effect of Cdkn1c in G1 length is partially at least through its inhibition of CyclinD1. Results show that double shRNA-mediated knock-down of CyclinD1 and Cdkn1c counteracts the effects of Cdkn1c-sh alone on EdU incorporation, PP/PN/NN cell divisions and overall rations of progenitors and neurons. - In the measurement of progenitor cell cycle length in Figure 5A, it would be more appropriate to present the nonlinear regression method described by Nowakowski et al. (1989), as has been commonly used in the field (Saade et al., 2013, PMID: 23891002, Le Dreau et al., 2014, PMID: 24515346, Arai et al., 2011, PMID: 21224845). - Cumulative EdU incorporation in spinal progenitors (pRb-positive) at E3 (24 hours after injection) showed that the proportion of EdU-positive progenitors reached a plateau at 14 hours in control conditions, which is later than what has been reported in Le Dreau et al., 2014 (PMID: 24515346). Can you explain why? - It would be interesting to measure G1 length as in Figure 5D for the double cdkn1c-sh - ccnd1-sh knock down condition, to see if it rescues G1 length. As well as in the Ccnd1 knock down condition alone to see if it increases G1 length in this context as well.

      Minor comments

      Introduction:

      • The introduction should include references of studies of the role of Cdkn1c in cortical development (Imaizumi et al. Sci Rep 2020, Colasante et al. Cereb Cortex 2015, Laukoter et al. Nature Communications 2020).

      • Transcriptional signature of the neurogenic transition (Figure 1).

        • In the result section, it would be informative to include the genes used to determine the progenitor and neuron score (instead of in Methods).
        • Figure 1A. It would be informative to add in the diagram what "filtering" means (eg. Neural crest cells).
        • In the result section, "However, while Tis21 expression is switched off in neurons, Cdkn1c transiently peaks at high levels in nascent neurons before fading off in more mature cells." Missing literary reference or data to clearly demonstrate this point.
        • "Interestingly, the gene cluster that contained Tis21 also contained genes encoding proteins with known expression and/or functions at the transition from proliferation to differentiation, such as the Notch ligand Dll1, the bHLH transcription factors Hes6, NeuroG1 and NeuroG2, and the coactivator Gadd45g." Missing references.
        • There is an error in the color code in Cell Clusters in Figure 1C (cluster 4 yellow in the legend but ocre in the figure)

      It would be valuable to assign cell cycle stage to neural progenitor cells (based on cell cycle score) and determine whether cdkn1c at the transcript level also shows enrichment in G1 cells considered to be progenitors. 2. Progressive increase in Cdkn1c/p57kip2 expression underlie different cellular states in the embryonic spinal neural tube (Figure 2). - Figure 2A. Scale bar is missing in E3 and E4. It is important to consider the growth of the developing spinal cord and present it accordingly (E3 transverse section, Figure 2). - Figure 2 could use a diagram of the knock-in strategy used, similar as the one in Figure 4A. - Indicate hours post-electroporation. Indicate which guide is used in the main text. 3. Downregulation of Cdkn1c in neural progenitors delays the transition from proliferative to neurogenic modes of division (Figure 3). - In methods: "Thus, to reason on a more homogeneous progenitor population, we restricted all our analysis to the dorsal one half or two thirds of the neural tube." Indicate when and depending on what one half or two thirds of the neural tube were analysed. - Figure 3. Would have a better flow if 3C preceded 3A and 3B. - Figure 3C. it would be informative to show pictures of the electroporated NT at both 24hpe and 48hpe, as well as highlighting the dorsal part of the neural tube that was used for quantification. - Are the clonal analysis experiments (Fig 3D, E and F) also restricted to the dorsal region? - Figure Sup3B colour code is switched (green for PP and red for NN) compared to the rest of the paper. - In methods "At each measured timepoint (1h, 4h, 7h, 10h, 12h, 14 and 17h after the first EdU injection), we quantified the number of EdU positive electroporated progenitors (triple positive for EdU, pRb and GFP) over the total population of electroporated progenitor cells (pRb and GFP positive) (Figure 3B)." Explanation does not correspond to Figure 3B. 4. Inducing a premature expression of Cdkn1c in progenitors triggers the transition to neurogenic modes of division (Figure 4.).<br /> - "We took advantage of the Pax7 locus, which is expressed in progenitors in the dorsal domain at a level similar to that observed for Cdkn1c in neurogenic precursors (Supplementary Figure 4A)". Missing reference or data showing that Pax7 is restricted to the dorsal domain. - "its intensity was similar to the one observed for endogenous Myc-tagged Cdkn1c in progenitors (Figure 4B and Supplementary Figure 4E), and remained below the endogenous level of Myc-tagged Cdkn1c observed in nascent neurons, confirming the validity of our strategy". It would be valuable to add a quantification to demonstrate this point, either by fluorescence levels or WB of nls-GFP cells. - For Figure 4C and D, it would be valuable to add images to illustrate the quantification. - "At the population level, at E4, Cdkn1c expression from the Pax7 locus resulted in a strong reduction in the number of progenitors (pRb positive cells)". Indicate in the main text that this is 48hpe. - Legend of figure 4D should indicate that the quantification has been done 24hpe. - "To circumvent the cell cycle arrest that is triggered in progenitors by strong overexpression of Cdkn1c (Gui et al., 2007)". It would be advisable to expand on this reference on the text, or ideally to include a simple Cdkn1c overexpression experiment. - "We observed a massive increase in the proportion of neurogenic (PN and NN) divisions rising from 57% to 84% at the expense of proliferative pairs (43% PP pairs in controls versus 16% in misexpressing cells, Figure 4D)." adding the percentages in the main text is a bit inconsistent with how the rest of the data is presented in the rest of the sections. - Figure sup 4C includes references to 3 gRNAs even when only one is used in the study. 5. The proneurogenic activity of Cdkn1c in progenitors is mediated by modulation of cell cycle dynamics (Figure 5) - "we targeted the CyclinD1/CDK4-6 complex, which promotes cell cycle progression and proliferation, and is inhibited by Cdkn1c." reference missing - It would be valuable to add an image to illustrate what is quantified in Figure 5D, Figure F and Figure G. - It would be informative to include experimental set-up information (e.g. hae) in Figures 5A, 5B, 5F and 5G. - Clarify if analysis is restricted to the dorsal progenitors or the whole dorsoventral length of the tube.

      Discussion:

      • "Nonetheless, studies in a wide range of species have demonstrated that beyond this binary choice, cell cycle regulators also influence the neurogenic potential of progenitors, i.e the commitment of their progeny to differentiate or not (Calegari and Huttner, 2003; FUJITA, 1962; Kicheva et al., 2014; Lange et al., 2009; Lukaszewicz and Anderson, 2011a; Pilaz et al., 2009; Smith and Schoenwolf, 1987; Takahashi et al., 1995)." Should include maybe references to Peco et al. Development 2012, Roussat et al. J Neurosci. 2023).
      • "This occurs through a change in the mode of division of progenitors, acting primarily via the inhibition of the CyclinD1/CDK6 complex." The data shown in the paper does not demonstrate that Cdkn1c is inhibiting CyclinD1, only that knocking down both mRNAs counteracts the effect of knocking down Cdkn1c alone at the general tissue level and in the percentage of PP/PN/NN clones. This statement should be qualified.

      Other comments:

      • There is a general lack of consistency in indicating the timing of the experiments, both in terms of embryonic stage/day and in terms of hours-post-electroporation.
      • To improve clarity for the reader, it would help if electroporation was shown consistently on the same side of the neural tube. If electroporation has been performed at different sides and this is reflected in the figures, it would be advisable to explain on the figure legend.
      • Figure legends should include the number of embryos/tissue sections analysed for each experiment, as well as information on whether the sections were cryostat or vibratome.
      • Overall, there is a lack of consistency in the figures regarding how much information is available to the reader (e.g. Sup Figure 2A, in the panel mRNA in situ hybridisation of Cdkn1c is referred to only as Cdkn1c whereas in Sup figure 5 the in situ reads as CCND1 mRNA). Readability would improve a lot if figures included information on what is an electroporated fluorescent tag or an immunostaining (similar to the label in sup 4D) as well as the exact stage and hours after electroporation where relevant.
      • "Primary antibodies used are: chick anti-GFP (GFP-1020 - 1:2000) from Aves Labs; goat antiSox2 (clone Y-17 - 1:1000) from Santa Cruz". There is no Sox2 immunostaining in the article.

      Significance

      In neural development, there is a progressive switch in competence in neural progenitor cells, that transition from a proliferative (able to expand the neural progenitor pool) to neurogenic (able to produce neurons). Several factors are known to influence the transition of neural progenitor cells from a proliferative to a neurogenic state, including the activity of extracellular signalling pathways (e.g. SHH) (Saade et al. 2013, Tozer et al. 2017). In this study, the authors perform scRNA-seq of the cervical neural tube of chick at a stage of both proliferative and neurogenic progenitors are present, and identify transcriptional differences between the two populations. Among the differently expressed transcripts, they identify Cdkn1c (p57-Kip2) as enriched in neurogenic progenitors. Initially characterized as a driver of cell cycle exit in newborn neurons, the authors investigate the role of Cdkn1c in cycling progenitors. The authors find that knock-down of Cdkn1c leads to an increase in proliferative divisions at the expense of neurogenic divisions. Conversely, misexpression of Cdkn1c in proliferative progenitors leads to a switch to neurogenic divisions. Furthermore, they find that knock-down of Cdkn1c shortens G1 phase of the cell cycle, suggesting a link between G1 length and neurogenic competence in neural progenitor cells. Cell cycle length has previously been linked to competence of neural progenitors, and it has been described that longer G1 duration is linked to neurogenic competence (e.g. Calegari F, Huttner WB. 2003).

      The strengths of the study include:

      The identification of a subset of genes enriched in neurogenic vs. proliferative progenitors. Since the transition from proliferative to neurogenic competence is a gradual process at the tissue level, the classification of proliferative vs. neurogenic progenitors based on a score of transcripts and the identification of a subset of transcripts that are enriched in neurogenic progenitors is a valuable contribution to the neurodevelopmental field.

      • The somatic knock-in strategy used to induce low-level overexpression of Cdkn1c in proliferative progenitors is an elegant strategy to induce overexpression in a subset of cells in a controlled manner and is a valuable technical advance.
      • The characterization of a specific role of Cdkn1c in regulating cell cycle length in cycling progenitors is novel and valuable knowledge contributing to our understanding of how regulation of cell cycle length impacts competence of neural progenitors.

      The aspects to improve:

      • The sc-RNAseq isolated genes enriched in neurogenic versus proliferative progenitors, providing valuable insight into the gradual transition from proliferative to neurogenic competence at the tissue level. However, this gene subset requires clearer representation and detailed characterization. Additionally, the full scRNA-seq dataset should be made publicly available to support further research in neurodevelopment.
      • The characterization of Cdkn1c dynamics in cycling progenitors using endogenous tagging of the Cdkn1c transcript with a Myc tag is an elegant way to investigate the dynamics of Cdkn1c-myc along the cell cycle. However, it would be much more powerful if combined with a careful characterization of pRb immunostaining along the cell cycle in this tissue, as well as the quantifications and controls proposed.
      • Retinoblastoma protein (Rb) and cyclin D play a key role in regulating the G1/S transition, with cyclin D/CDK complexes phosphorylating Rb. Given that CDKN1c primarily inhibits the cyclin D/CDK6 complex, it likely affects pRb expression or phosphorylation. This suggests pRb may be a direct target of CDKN1c, making it an unreliable marker for tracking and quantifying neurogenic progenitors through CDKN1c modulation. In light of this, it would be more appropriate to consider pRb as a CDKN1c target and discuss the molecular mechanisms regulating cell cycle components. A more precise approach would involve using other markers or targets to quantify neural precursor division modes at earlier stages of neurogenesis.
      • Many of the conclusions of the study are based on experiments performed using the FlashTag dye in order to perform clonal analysis of proliferative vs. neurogenic divisions. It would be very valuable to further characterize the reliability of this tool as well as to provide more information on the criteria used to determine the fate of the pairs of sister cells.
      • The somatic knock-in strategy used to induce low-level overexpression of Cdkn1c in proliferative progenitors is an elegant strategy to induce overexpression in a subset of cells in a controlled manner. It would be valuable to further characterize the dynamics of Cdkn1c expression using this too and to provide proof that Pax7 expression is not altered in guides with the knock-in event.
      • The presentation of the existing literature could be more up to date.
      • The presentation of the data in the figures could be improved for readability. The sc-RNA seq data and the technical advances could be of interest for an audience of researchers using chick as a model organism, and working on neurodevelopment in general. Furthermore, the characterization of Cdkn1c as a regulator of G1 length in cycling progenitors and its implications for neurogenic competence could be of general interest for people working on basic research in the neurodevelopmental field.

      Field of expertise of the reviewer: neural development, cell biology, embryology.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The work by Mida and colleagues addresses important questions about neurogenesis in the embryo, using the chicken neural tube as their model system. The authors investigate the mechanisms involved in the transition from stem cell self-renewal to neurogenic progenitor divisions, using a combination of single cell, gene functional and tracing studies.

      The authors generated a new single cell data set from the embryonic chicken spinal cord and identify a transitory cell population undergoing neuronal differentiation, which expresses Tis21, Neurog2 and Cdkn1c amongst other genes. They then study the role of Cdkn1c and investigate the hypothesis that it plays a dual role in spinal cord neurogenesis: low levels favour transition from proliferative to neurogenic divisions and high levels drive cell cycle exit and neuronal differentiation.

      Major comments

      I have only a general comment related to the main point of the paper. The authors claim that Cdkn1c onset in cycling progenitor drives transition towards neurogenic modes of division, which is different from its role in cell cycle exit and differentiation. Figures 3F and 4D are key figures where the authors analysed PP, PN and NN mode of divisions via flash tag followed by analysis of sister cell fate. If their assumption is correct, shouldn't they also see, for example in Fig. 4D, an increase in PN or is this too transient to be observed or is it bypassed? At the moment, the calculations of PN and NN frequencies are merged in the text, so perhaps describing PN and NN numbers separately will help better understand the dynamics of this gradual process (especially since there is little to no difference in PN). Could the increase in NN be compatible also with a role in cell cycle exit and differentiation, for example from cells that have been targeted and are still undergoing the last division (hence marked by flash tag) or there won't be any GFP cells marked by flash tag a day after expression of high levels of Cdkn1c? Basically, what would the effect of expressing higher levels of Cdkn1c be? I guess this will really help them distinguish between transition to neurogenic division rather than neuronal differentiation. If not experimentally, any further comments on this would be appreciated.

      Minor comments

      Fig 3C my understanding is that HuC/D should be nuclear, but in fig 3C it seems more cytoplasmic (any comment?)

      Fig Suppl 3E (and related 4B), immuno for Cdkn1c-Myc: to help the reader understand the difference between the immuno signals when looking at the figure, I would suggest writing on the panel i) Pax7-Cdkn1c-Myc and ii) endogenous Cdkn1c-Myc, rather than 'misexpressed' and 'endogenous', which is slightly confusing (especially because what it is called endogenous expression is higher).

      Literature citing: Introduction and discussion are very nicely written, although they could benefit from some more recent literature on the topic. For example, Cdkn1c role as a gatekeeper of stem cell reserve in the stomach, gut, (Lee et al, CellStemCell 2022 PMID: 35523142) or some other work on symmetric/asymmetric divisions and clonal analysis in zebrafish (Hevia et al, CellRep 2022 PMID: 35675784, Alexandre et al, NatNeur PMID: 20453852), mammals (Royal et al, Elife 2023 37882444, Appiah et al, EMBO rep 2023 PMID: 37382163). Also, similar work has been performed in the developing pancreatic epithelium, where mild expression of Cdkn1a under Sox9rtTa control was used to lengthen G1 without overt cell cycle exit and this resulted in Neurog3 stabilization and priming for endocrine differentiation (Krentz et al, DevCell 2017 PMID: 28441528), so similar mechanisms might be in in place to gradually shift progenitor towards stable decision to differentiate. Moreover, in the discussion, alongside Neurog2 control of Cdkn1c, it could be mentioned that the feedback loop between Cdk inhibitors and neurogenic factor is usually established via Cdk inhibitor-mediated inhibition of proneural bHLHs phosphorylation by CDKs (Krentz et al, DevCell 2017 PMID: 28441528, Ali et al, 24821983, Azzarelli et al 2017 - PMID: 28457793; 2024 - PMID:39575884). Further, in the discussion, could they mention anything about the following open questions: is there evidence for Cdkn1c low/high expression in mammalian spinal cord? Or maybe of other Cdk inhibitors? Is Cdkn1c also involved in cell cycle exit during gliogenesis or is there another Cdk inhibitor expressed at later developmental stages, hence linking this with specific cell fate decisions?

      Significance

      The work here presented has important implications on neural development and its disorders. The authors used the most advanced technologies to perform gene functional studies, such as CRISPR-HDR insertion of Myc-tag to follow endogenous expression, or expression under endogenous Pax7 promoter, often followed by flash tag experiments to trace sister cell fate, and all of this in an in vivo system. They then tested cell cycle parameters, clonal behaviour and modes of cell division in a very accurate way. Overall data are convincing and beautifully presented. The limitation is potentially in the resolution between the events of switching to neurogenic division versus neuronal differentiation, which might just warrant further discussion. This work advances our knowledge on vertebrate neurogenesis, by investigating a key player in proliferation and differentiation.

      I believe this work will be of general interest to developmental and cellular biologists in different fields. Because it addresses fundamental questions about the coordination between cell cycle and differentiation and fate decision making, some basic concepts can be translated to other tissues and other species, thus increasing the potential interested audience.

      My work focuses on stem cell fate decisions in mammalian systems, and I am familiar with the molecular underpinnings of the work here presented. However, I am not an expert in the chicken spinal cord as a model and yet the manuscript was interesting. I am also not sufficiently expert in the bioinformatic analysis, so cannot comment on the technical aspects of Figure 1 and the way they decided to annotate their data.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary

      This study utilizes the developing chicken neural tube to assess the regulation of the balance between proliferative and neurogenic divisions in the vertebrate CNS. Using single-cell RNAseq and endogenous protein tagging, the authors identify Cdkn1c as a potential regulator of the transition towards neurogenic divisions. Cdkn1c knockdown and overexpression experiments suggest that low Cdkn1c expression enhances neurogenic divisions. Using a combination of clonal analysis and sequential knockdown, the authors find that Cdkn1c lengthens the G1 phase of the cell cycle via inhibition of cyclinD1. This study represents a significant advance in understanding how cells can transition between proliferative and asymmetric modes of division, the complex and varying roles of cycle regulators, and provides technical advance through innovative combination of existing tools.

      Major and Minor Comments:

      Overall

      • Sample numbers are missing or unclear throughout for all imaging experiments. The authors should add numbers of cells analysed and/or numbers of embryos for their results to be appropriately convincing.
      • Values and error bars on graphs must be defined throughout. Are the values means and error bars SD or SEM?

      Results 2

      • A reference should be provided for cell type distribution in spinal neural tube, where the authors state that cell bodies of progenitors reside within the ventricular zone.
      • The authors state that Cdkn1c "was expressed at low levels in a salt and pepper fashion in the ventricular zone, where the cell bodies of neural progenitors reside, and markedly increased in a domain immediately adjacent to this zone which is enriched in nascent neurons on their way to the mantle zone. In contrast, the transcript was completely excluded from the mantle zone, where HuC/D positive mature neurons accumulate." It is not clear if this is referring only to E4 or also to E3 embryos. Indeed, Cdkn1c expression appears to be much more salt and pepper at E3 and only resolves into a clear domain of high expression adjacent to the mantle zone at E4. It may be helpful if this expression pattern could be described in a bit more detail highlighting the changes that occur between E3 and E4.
      • It would be useful to annotate the ISH images in Fig 2A to show the ventricular and mantle zones as defined by immunofluorescence.
      • Reference should be included for pRb expression dynamics.
      • Could the Myc tag insertion approach disrupt protein function or turnover?
      • Why was the insertion target site at the C terminus chosen?
      • OPTIONAL Could a similar approach be used to tag Cdkn1c with a fluorescent protein to enable live imaging of dynamics?
      • In suppl Fig 1C nlsGFP-positive cells are shown in the control shRNA condition. How can this be explained and does it impact the interpretation of the findings?
      • In Fig 2B, there are a number of Myc labelled cells in the mantle zone, whereas the in situ images show no appreciable transcript expression. Is this because the protein but not the transcript is present in these cells? Could the authors comment on this?

      Results 3

      • It should be mentioned how mRNA expression levels were quantified in the shRNA validation experiment (supp Fig 2A).
      • Figure panels are not currently cited in order. Citation or figure order could be changed.
      • The authors should provide representative images for the graphs shown in Fig 3A and 3B. These could go into supplementary if the authors prefer.
      • A supplementary figure showing the Caspase3 experiment should be added.
      • OPTIONAL. Identification of sister cells in the clonal analysis experiments is based on static images and cannot be guaranteed. Could live imaging be used to watch divisions followed by fixation and immunostaining to confirm identity?

      Results 4

      • How did the authors quantify the intensity of endogenous Myc-tagged Cdkn1c to confirm the validity of the Pax7 locus knock in? Can they show that the expression level was consistently lower than the endogenous expression in neurons? Quantification and sample numbers should be shown.
      • In Fig 4B, the brightness of row 2 column 1 is lower than the same image in row 2 column 2, which is slightly misleading, since it makes the misexpressed expression level look lower than it is compared with endogenous in column 3. Is this because only a single z-section is being displayed in the zoomed in image? If so, this should be stated in the figure legend.
      • In Fig 4D, the increase in neurogenic divisions is mainly because of the rise in terminal NN divisions according to the graph, but no clear increase in PN divisions. Could the authors comment on the significance of this?

      Results 5

      • The proportion of pRb-positive progenitors having entered S phase was stated to be higher at all time points; however, it is not significantly higher until 6h30 and is actually trending lower at 2h30.
      • OPTIONAL Could CyclinD1 activity be directly assessed?

      General

      • Scale bars missing fig s1c s4d.
      • OPTIONAL Some of the main findings be replicated in another species, for example, mouse or human to examine whether the mechanism is conserved.
      • OPTIONAL Could use approaches other than image analysis be used to reinforce findings, for example biochemical methods, RNAseq or FACS?
      • A model cartoon to summarise outcomes would be useful.
      • Unclear how cells were determined to be positive or negative for a label. Was this decided by eye? If so, how did the authors ensure that this was unbiased?

      Significance

      Strengths:

      This manuscript investigates the mechanisms regulating the switch from symmetric proliferative divisions to neurogenic division during vertebrate neuronal differentiation. This is a question of fundamental importance, the answer to which has eluded us so far. As such, the findings presented here are of significant value to the neurogenesis community and will be of broad interest to those interested in cell divisions and asymmetric cell fate acquisition. Specific strengths include:

      • Variety of approaches used to manipulate and observe individual cell behaviour within a physiological context.
      • A limitation of using the chicken embryo is the lack of available antibodies for immunostaining. The authors take advantage of recent advances in chicken embryo CRISPR strategy to endogenously tag the target protein with Myc, to facilitate immunostaining.
      • Innovative combination of genetic and labelling tools to target cells, for example, use of FlashTag and EdU in combination to more accurately assess G1 length than the more commonly used method.
      • Premature misexpression demonstrates that the previously observed dynamics indeed regulate cell fate.
      • Mechanistic insight by examining downstream target CyclinD1.
      • Clearly presented with useful illustrations throughout.
      • Logic is clear and examination thorough.
      • Conclusions are warranted on the basis of their findings.

      Limitations

      • This study primarily used visual analysis of fixed tissue images to assess the main outcomes. To reinforce the conclusions, these could be supplemented with live imaging to appreciate dynamics, or biochemical techniques to look at protein expression levels.
      • Some aspects of quantification require explanation in order for the experiments to be replicated.
      • It is imperative that precise sample sizes are included for all experiments presented.

      Advance:

      • First functional demonstration role for Cdkn1c in regulating neurogenic transition in progenitors.
      • Conceptual advance suggesting Cdkn1c has dual roles in driving neurogenesis: promoting neurogenic divisions of progenitors and the established role of mediating cell cycle exit previously reported.
      • Technical advances in the form of G1 signposting and endogenous Myc tagging using CRISPR in chicken embryonic tissue.

      Audience:

      Of broad interest to developmental biologists. Could be relevant to cancer, since Cdkn1c is implicated.

       Please define your field of expertise with a few keywords to help the authors contextualize your point Developmental biology, vertebrate embryonic development, neuronal differentiation, imaging. Please note that we have not commented on RNAseq experiments as these are outside of our area of expertise.

    1. Welcome back and in this video I want to talk about geolocation routing which is another routing policy available within Route 53. Now this is going to be a pretty brief video so let's jump in and get started.

      In many ways geolocation routing is similar to latency, only instead of latency, the location of customers and the location of resources are used to influence resolution decisions. With geolocation routing, when you create records you tag the records with the location. Now this location is generally a country, so using ISO standard country codes, it can be continents—again using ISO continent codes such as SA for South America in this case—or records can be tagged with default. Now there's a fourth type which is known as a subdivision; in America you can tag records with the state that the record belongs to.

      Now when a user is making a resolution request, an IP check verifies the location of the user. Depending on the DNS system, this can be the user directly or the resolver server, but in most cases these are one and the same in terms of the user's location. So we have the location of the user and we have the location of the records. What happens next is important because geolocation doesn't return the closest record, it only returns relevant records.

      When a resolution request happens, Route 53 takes the location of the user and it starts checking for any matching records. First, if the user doing the resolution request is based in the US, then it checks the state of the user and it tries to match any records which have a state allocated to them. If any records match, they're returned and the process stops. If no state records match, then it checks the country of the user. If any records are tagged with that country, then they're returned and the process stops. Then it checks the continent; if any records match the continent that the user is based in, then they're returned and the process stops.

      Now you can also define a default record which is returned if no record is relevant for that user. If nothing matches though—so there are no records that match the user's location and there's no default record—then a no answer is returned. So to stress again, this type of routing policy does not return the closest record, it only returns any which are applicable or the default, or it returns no answer.

      So geolocation is ideal if you want to restrict content—for example, providing content for the US market only. If you want to do that, then you can create a US record and only people located in the US will receive that record as a response for any queries. You can also use this policy type to provide language specific content or to load balance across regional endpoints based on customer location.

      Now one last time, because this is really important for the exam and for real world usage: this routing policy type is not about the closest record—geolocation returns relevant locations only. You will not get a Canadian record returned if you're based in the UK and no closer records exist. The smallest type of record is a subdivision which is a US state, then you have country, then you have continent, and finally optionally a default record. Use the geolocation routing policy if you want to route traffic based on the location of your customers.

      Now it's important that you understand—which is why I've stressed this so much—that geolocation isn't about proximity, it's about location. You only have records returned if the location is relevant. So if you're based in the US but are based in a different state than a record, you won't get that record. If you're based in the US and there is a record which is tagged as the US as a country, then you will get that record returned. If there isn't a country specific record but there is one for the continent that you're in, you'll get that record returned, and then the default is a catchall. It's optional; if you choose to add it, then it's returned if your user is in a location where you don't have a specific record tagged to that location.

      Now that's everything that I wanted to cover in this video. Thanks for watching. Go ahead and complete the video and when you're ready I look forward to you joining me in the next.

    1. https://web.archive.org/web/20250414081426/https://blog.joewoods.dev/uncategorized/vague-list-action-list/

      Joe Wood keeps a 'vague' list of tasks that are equally important as other more tangible tasks but lack clarity about what steps to take. He added this within his GTD implementation. Interesting, as I notice I tend to put off important things when I don't have a clear path to execution yet (and the next action would be to think about those steps). I also think such vague actions may actually not be actions but projects lacking definition. It makes beginning harder, and keeping a vague list might help address it. I think I might use it as a tag in tasks, not as a separate list.

    1. Briefing Document : Le Refus Scolaire Anxieux

      Source : Excerpts de la transcription de la conférence "Le refus scolaire anxieux : mieux le reconnaitre, mieux le comprendre pour mieux le soigner" avec le Docteur Hélène Denis, pédopsychiatre au CHU de Montpellier.

      Date de la conférence : 2025

      Thèmes Principaux :

      Définition et distinction du Refus Scolaire Anxieux (RSA) :

      Le Dr. Denis insiste sur l'importance d'utiliser le terme "refus scolaire anxieux" plutôt que "phobie scolaire", qu'elle considère comme un terme obsolète et imprécis.

      Le RSA est défini comme l'incapacité pour un enfant ou un adolescent d'aller à l'école en raison d'une anxiété intense.

      Elle cite la définition de Juria Guérin (1974) : enfants ou adolescents qui, pour des raisons irrationnelles, refusent d'aller à l'école et résistent avec des réactions d'anxiété vive ou de panique à l'idée d'y aller, malgré les efforts pour les y forcer.

      • "le refus scolaire anxieux qu'est-ce que c'est et ben c'est ce qu'on appelle dans le jargon populaire la phobie scolaire et il faut plus employer ce mot-là à partir de ce soir phobie scolaire ça veut plus trop rien dire"
      • "ce sont des enfants ou des adolescents qui n'arrivent plus à aller à l'école parce qu'ils sont anxieux et que cette anxiété est tellement forte qu'il n'arrive plus à y aller"
      • Caractéristiques des jeunes souffrant de RSA : Contrairement à l'absentéisme scolaire classique (école buissonnière), les jeunes atteints de RSA veulent retourner à l'école, ont des ambitions scolaires et souffrent de cette situation. Ils sont souvent conscients du caractère irrationnel de leurs peurs anxieuses et demandent de l'aide.
      • "la particularité de ces jeunes qui ne qui sont absents parce qu'il n'arrivent plus à aller à l'école pour des raisons anxieux sont des patients qui veulent retourner à l'école ils ont des ambitions scolaires ils étaient auparavant plutôt très intéressés voir très investis dans la scolarité et à un moment donné ils n'arrivent plus à y aller et ce sont des jeunes qui du coup souffrent de cette situation et demandent de l'aide"

      Le RSA comme complication de troubles anxieux : Le RSA n'est pas un diagnostic en soi dans les classifications internationales, mais plutôt une manifestation ou une complication de troubles anxieux sous-jacents (un ou plusieurs).

      Le Dr. Denis présente les critères de Berg pour définir les patients concernés par le RSA dans le cadre de la recherche : refus d'aller à l'école entraînant une absence prolongée, détresse émotionnelle anticipatoire (peur, colère, tristesse, symptômes physiques), maintien au domicile pendant les heures de classe, absence de comportements antisociaux significatifs et efforts parentaux préalables pour la rescolarisation.

      "le refus scolaire anxieux c'est pas un diagnostic qui est dans les classifications parce qu'en fait c'est une complication de plusieurs troubles anxieux"

      Les Troubles Anxieux : Le Dr. Denis souligne la sous-reconnaissance et la mauvaise prise en charge des troubles anxieux en France.

      Elle explique que l'anxiété est une émotion normale et utile, mais que les troubles anxieux se caractérisent par une peur exagérée, intense, fréquente et durable, entraînant une souffrance importante et des comportements d'évitement.

      Elle détaille différents types de troubles anxieux chez l'enfant et l'adolescent : anxiété de séparation, phobies spécifiques, trouble anxiété généralisée (TAG), anxiété sociale (y compris l'anxiété de performance), trouble panique et troubles obsessionnels compulsifs (TOC) (bien que n'étant plus classés comme troubles anxieux, ils peuvent entraîner un RSA).

      • "les troubles anxieux c'est une c'est une pathologie qui est très peu connue ou très mal diagnostiquée et très très mal prise en charge en France"
      • "les troubles anxieux c'est une peur normale qui va être très exagérée au départ ça peut être une peur normale mais on n'arrive pas à trouver la résolution ou alors c'est une peur normale qui a trouvé une résolution qui revient très forte à un autre moment du développement"

      Conséquences des Troubles Anxieux non traités : Le Dr. Denis insiste sur les répercussions importantes des troubles anxieux non traités sur le développement psychologique, la vie familiale, les apprentissages scolaires, et le risque accru de développer à l'âge adulte des troubles anxieux persistants, une dépression, ou des conduites addictives (abus de substances pour gérer l'anxiété).

      "le problème des troubles anxieux de l'enfant et de l'adolescent c'est que si on n'y fait rien il y a pas de raison que ça s'arrête et donc on va laisser se construire comme ça un adulte anxieux sans s'en être occupé sans avoir arrêté cette trajectoire d'anxiété"

      Diagnostic Différentiel du RSA : Il est crucial de distinguer le RSA de l'absentéisme scolaire volontaire (école buissonnière), qui n'est pas motivé par l'anxiété et où les jeunes n'expriment pas de souffrance ni de désir de retourner à l'école. La distinction peut parfois être complexe, notamment en présence de facteurs familiaux compliqués.

      "ce qui n'est pas un refus scolaire anxieux c'est ceux qui ne vont pas à l'école mais parce qu'ils n'ont pas envie d'y aller ce sont des jeunes qu'on appelle école buissonnière"

      Traitement du RSA : Le traitement de référence, basé sur les études internationales, est la Thérapie Cognitive et Comportementale (TCC), éventuellement associée à un traitement médicamenteux (antidépresseurs ISRS).

      La TCC vise à apprendre au patient à identifier et à modifier ses pensées dysfonctionnelles, à gérer ses émotions et à s'exposer progressivement aux situations anxiogènes.

      "dans les études scientifiques de bonne qualité on retrouve qu'il faut faire de la thérapie cognitive et comportementale qui est le traitement de référence des troubles anxieux"

      "la technique de référence c'est s'exposer aux situations qui font peur on va préparer le patient doucement mais sûrement à s'exposer à ce qui fait peur"

      Prise en charge spécifique au CHU de Montpellier : L'unité du Dr. Denis propose une prise en charge spécifique en hospitalisation de jour pour les adolescents (11-16 ans) souffrant de RSA.

      Cette prise en charge combine scolarité adaptée au sein de l'unité avec des thérapies cognitives et comportementales individuelles et en groupe.

      Un travail important est mené en partenariat avec les familles et les établissements scolaires pour faciliter le retour à l'école.

      "l'unité du docteur Hélène Denis au CHU de Montpellier a développé une prise en charge spécifique ces patients qui ont en général entre 11 et 16 ans [...] sont reçus en hospitalisation de jours durant cette période ils poursuivent leurs études au sein de l'unité et reçoivent des soins en thérapie cognitive et comportementale à la fois en individuel et en groupe"

      Rôle de l'Éducation Nationale dans la détection et la prise en charge précoce : Le Dr. Denis encourage les professionnels de l'éducation à être attentifs aux signes d'anxiété liés à la scolarité (peur exprimée, somatisations, absences perlées), à adopter une attitude empathique et bienveillante, à proposer des aménagements scolaires si nécessaire (temps partiel), à faciliter la verbalisation des peurs, et à orienter vers une aide spécialisée en cas de persistance ou d'aggravation. Elle souligne l'importance du lien avec les parents.

      "aller chercher avec des mots simples et une reconnaissance empathique et bienveillante de 'Mais qu'est-ce qui te fait peur ? même si c'est débile tu peux peut-être me le dire'"

      "il vaut mieux aménager faire du temps partiel plutôt que s'acharner et après tout bloquer la déscolarisation totale c'est l'enfer pour repartir c'est l'enfer il vaut mieux y rester un peu et moins souvent et et mettre en place des stratégies pour essayer que petit à petit on y reparte"

      Points de vigilance : Le Dr. Denis exprime un regard critique sur certaines approches et terminologies dans le domaine de l'éducation, notamment concernant le "haut potentiel intellectuel" (HPI), qu'elle considère comme une invention franco-française problématique et non étayée scientifiquement comme cause de mal-être scolaire.

      Elle met également en garde contre une utilisation excessive et parfois inappropriée du terme "harcèlement". Idées ou Faits Importants :

      • Le refus scolaire anxieux est une problématique fréquente et invalidante chez les adolescents.
      • Il est essentiel de distinguer le RSA de l'absentéisme non anxieux pour une prise en charge adaptée.
      • Les troubles anxieux sous-jacents sont souvent mal diagnostiqués et pris en charge en France.
      • La TCC est le traitement de référence du RSA et des troubles anxieux.
      • Une prise en charge multidisciplinaire et un partenariat étroit avec les familles et les écoles sont cruciaux pour un retour à l'école réussi.
      • La détection précoce et les aménagements scolaires peuvent prévenir une déscolarisation totale.
      • Certaines notions populaires comme le lien systématique entre HPI et mal-être scolaire sont remises en question par le Dr. Denis.

      Conclusion :

      La conférence du Dr. Hélène Denis met en lumière la complexité du refus scolaire anxieux, son lien étroit avec les troubles anxieux, et l'importance d'une approche diagnostique et thérapeutique rigoureuse.

      Elle souligne le rôle crucial des professionnels de l'éducation dans la détection précoce et l'orientation, ainsi que la nécessité d'une collaboration étroite avec les équipes médicales et les familles pour accompagner au mieux ces jeunes en souffrance et favoriser leur retour à l'école.

      La présentation du dispositif spécifique du CHU de Montpellier offre un exemple concret de prise en charge efficace basée sur la TCC.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Astrocytes are known to express neuroligins 1-3. Within neurons, these cell adhesion molecules perform important roles in synapse formation and function. Within astrocytes, a significant role for neuroligin 2 in determining excitatory synapse formation and astrocyte morphology was shown in 2017. However, there has been no assessment of what happens to synapses or astrocyte morphology when all three major forms of neuroligins within astrocytes (isoforms 1-3) are deleted using a well characterized, astrocyte specific, and inducible cre line. By using such selective mouse genetic methods, the authors here show that astrocytic neuroligin 1-3 expression in astrocytes is not consequential for synapse function or for astrocyte morphology. They reach these conclusions with careful experiments employing quantitative western blot analyses, imaging and electrophysiology. They also characterize the specificity of the cre line they used. Overall, this is a very clear and strong paper that is supported by rigorous experiments. The discussion considers the findings carefully in relation to past work. This paper is of high importance, because it now raises the fundamental question of exactly what neuroligins 1-3 are actually doing in astrocytes. In addition, it enriches our understanding of the mechanisms by which astrocytes participate in synapse formation and function. The paper is very clear, well written and well illustrated with raw and average data.

      We thank the reviewer for the balanced and informative summary.

      Reviewer #2 (Public Review):

      In the present manuscript, Golf et al. investigate the consequences of astrocyte-specific deletion of Neuroligin family cell adhesion proteins on synapse structure and function in the brain. Decades of prior research had shown that Neuroligins mediate their effects at synapses through their role in the postsynaptic compartment of neurons and their transsynaptic interaction with presynaptic Neurexins. More recently, it was proposed for the first time that Neuroligins expressed by astrocytes can also bind to presynaptic Neurexins to regulate synaptogenesis (Stogsdill et al. 2017, Nature). However, several aspects of the model proposed by Stogsdill et al. on astrocytic Neuroligin function conflict with prior evidence on the role of Neuroligins at synapses, prompting Golf et al. to further investigate astrocytic Neuroligin function in the current study. Using postnatal conditional deletion of Neuroligins 1, 2 and 3 specifically from astrocytes, Golf et al. show that virtually no changes in the expression of synaptic proteins or in the properties of synaptic transmission at either excitatory or inhibitory synapses are observed. Moreover, no alterations in the morphology of astrocytes themselves were found. The authors conclude that while Neuroligins are indeed expressed in astrocytes and are hence likely to play some role there, this role does not include any direct consequences on synaptic structure and function, in direct contrast to the model proposed by Stogsdill et al.

      Overall, this is a strong study that addresses an important and highly relevant question in the field of synaptic neuroscience. Neuroligins are not only key regulators of synaptic function, they have also been linked to numerous psychiatric and neurodevelopmental disorders, highlighting the need to precisely define their mechanisms of action. The authors take a wide range of approaches to convincingly demonstrate that under their experimental conditions, no alterations in the levels of synaptic proteins or in synaptic transmission at excitatory or inhibitory synapses, or in the morphology of astrocytes, are observed.

      We are also grateful for this reviewer’s constructive comments.

      One caveat to this study is that the authors do not directly provide evidence that their Tamoxifen-inducible conditional deletion paradigm does indeed result in efficient deletion of all three Neuroligins from astrocytes. Using a Cre-dependent tdTomato reporter line, they show that tdTomato expression is efficiently induced by the current paradigm, and they refer to a prior study showing efficient deletion of Neuroligins from neurons using the same conditional Nlgn1-3 mouse lines but a different Cre driver strategy. However, neither of these approaches directly provide evidence that all three Neuroligins are indeed deleted from astrocytes in the current study. In contrast, Stogsdill et al. employed FACS and qPCR to directly quantify the loss of Nlgn2 mRNA from astrocytes. This leaves the current Golf et al. study somewhat vulnerable to the criticism, however unlikely, that their lack of synaptic effects may be a consequence of incomplete Neuroligin deletion, rather than a true lack of effect of astrocytic Neuroligins.

      The concern is valid. In the original submission of this paper, we did not establish that the Cre recombinase we used actually deleted neuroligins in astrocytes. We have now addressed this issue in the revised paper with new experiments as described below.

      However, the reviewer’s impression that the Stogsdill et al. paper confirmed full deletion of Nlgn2 is a misunderstanding of the data in that paper. The reviewer is correct that Stogsdill et al. performed FACS to test the efficacy of the GLAST-Cre mediated deletion of Nlgn2-flox mice, followed by qRT-PCR comparing heterozygous with homozygous mutant mice. With their approach, no wild-type control could be used, as these would lack reporter expression. However, this experiment does NOT allow conclusions about the degree of recombination, both overall recombination (i.e. recombination in all astrocytes regardless of TdT+) and recombination in TdT+ astrocytes because it doesn’t quantify recombination. To quantify the degree of recombination, the paper would have had to perform genomic PCR measurements.  

      The problem with the data on the degree of recombination in the Stogsdill et al. (2017) paper, as we understand them, is two-fold.

      First, the GLAST-Cre line only targets ~40-70% of astrocytes, at least as evidenced by highly sensitive Cre-reporter mice in a variety of studies using this Cre line. The 40-70% variation is likely due to differences in the reporter mice and the tamoxifen injection schedule used. In comparison, we are targeting most astrocytes using the Aldh1l1-CreERT2 mice. Moreover, GLAST-Cre mice exhibit neuronal off-targeting, consistent with at least some of the remaining Nlgn2 qRT-PCR signal in the FACS-sorted cells. As we describe next, this signal also likely comes from astrocytes where recombination was incomplete This is the reason why we, like everyone else, are now using the Aldh1l1-Cre line that has been shown to be more efficient both in terms of the overall targeting of astrocytes (i.e. nearly complete) and the level of recombination observed in reporter(+) astrocytes.

      Second, Stogsdill et al. detected a significant decrease in the Nlgn2 qRT-PCR signal in the FACS-sorted homozygous Nlgn2 KO cells compared to the heterozygous Nlgn2 KO cells but the Nlgn2 qRT-PCR signal was still quite large. The data is presented as normalized to the HET condition. As a result, we don’t know the true level of gene deletion (i.e. compared to TdT- astrocytes). For example, based on the Stogsdill et al. data the HET manipulation could have induced only a 20% reduction in Nlgn2 mRNA levels in TdT(+) astrocytes, in which case the KO would have produced a 40% reduction in Nlgn2 mRNA in TdT(+) astrocytes. Moreover, it is possible based on our own experience with the GLAST-Cre line, that the reporter may also not turn on in some astrocytes where other alleles have been independently recombined – just as some astrocytes that are Td(+) would still be wild-type or heterozygous for Nlgn2. Thus, it is impossible to calculate the actual percentage of recombination from these data, even in TdT(+) cells, absent of PCR of genomic DNA from isolated cells. Alternatively, comparison of mRNA levels using primers sensitive to floxed sequences in wild-type controls versus cKO mice would have also yielded a much better idea of the recombination efficiency.

      In summary, it is unclear whether the Nlgn2 deletion in the Stogsdill et al. paper was substantial or marginal – it is simply impossible to tell.

      Reviewer #3 (Public Review):

      This study investigates the roles of astrocytes in the regulation of synapse development and astrocyte morphology using conditional KO mice carrying mutations of three neuroligins1-3 in astrocytes with the deletion starting at two different time points (P1 and P10/11). The authors use morphological, electrophysiological, and cell-biological approaches and find that there are no differences in synapse formation and astrocyte cytoarchitecture in the mutant hippocampus and visual cortex. These results differ from the previous results (Stogsdill et al., 2017), although the authors make several discussion points on how the differences could have been induced. This study provides important information on how astrocytes and neurons interact with each other to coordinate neural development and function. The experiments were well-designed, and the data are of high quality.

      We also thank this reviewer for helpful comments!

      Recommendations for the authors:

      This project was meant to rigorously test the intriguing overall question whether neuroligins, which are abundantly expressed in astrocytes, regulate synapse formation as astrocytic synapse organizers. The goal of the paper was NOT to confirm or dispute the conclusion by Stogsdill et al. (Nature 2017) that Nlgn2 expressed in astrocytes is essential for excitatory synapse formation and that astrocytic Nlgn1-3 are required for proper astrocyte morphogenesis. Instead, the project was meant to address the much broader question whether the abundant expression of any neuroligin, not just Nlgn2, in astrocytes is essential for neuronal excitatory or inhibitory synapse formation and/or for the astrocyte cytoarchitecture. We felt that this was an important question independent of the Stogsdill et al. paper. We analyzed in our experiments young adult mice, a timepoint that was chosen deliberately to avoid the possibility of observing a possible developmental delay rather than a fundamental function that extends beyond development.

      We do recognize that the conclusion by Stogsdill et al. (2017) that Nlgn2 expression in astrocytes is essential for excitatory synapse formation was very exciting to the field but contradicted a large literature demonstrating that Nlgn2 protein is exclusively localized to inhibitory synapses and absent from excitatory synapses (to name just a few papers, see Graf et al., Cell 2004; Varoqueaux et al., Eur. J. Cell Biol. 2004; Patrizi et al., PNAS 2008;  Hoon et al., J. Neurosci. 2009). In addition, the conclusion of Stogsdill et al. that astrocytic Nlgn2 specifically drove excitatory synapse formation was at odds with previous findings documenting that the constitutive deletion of Nlgn2 in all cells, including astrocytes, has no effect on excitatory synapse numbers (again, to name a few papers, see Varoqueaux et al., Neuron 2006; Blundell et al., Genes Brain Behav. 2008; Poulopoulos et al., Neuron 2009; Gibson et al., J. Neurosci. 2009). These contradictions conferred further urgency to our project, but please note that this project was primarily driven by our curiosity about the function of astrocytic neuroligins, not by a fruitless desire to test the validity of one particular Nature paper.

      The general goal of our paper notwithstanding, few papers from our lab have received as much attention and as many negative comments on social media as this paper when it was published as a preprint. Because we take these criticisms seriously, we have over the last year performed extensive additional experiments to ensure that our findings are well founded. We feel that, on balance, our data are incompatible with the notion that astrocytic neuroligins play a fundamental role in excitatory synapse formation but are consistent with other prior findings obtained with neuroligin KO mice. In the new data we added to the paper, we not only characterized the Cre-mediated deletion of neuroligins in depth, but also employed an independent second system -human neurons cultured on mouse glia- to further validate our conclusions as described below. Although we believe that our results are incompatible with the notion that astrocytic neuroligins fundamentally regulate excitatory or inhibitory synapse formation, we also conclude with regret that we still don’t know what astrocytic neuroligins actually do. Thus, the function of astrocytic neuroligins, as there surely must be one, remains a mystery.

      Finally, there are many possible explanations for the discrepancies between our conclusions and those of Stogsdill et al. as described in our paper. Most of these explanations are technical and may explain why not only our, but also the results of many other previous studies from multiple labs, are inconsistent with the conclusions by Stogsdill et al. (2017), as discussed in detail in the revised paper.

      Reviewer #1 (Recommendations For The Authors):

      The paper is very clear and well written. I have only one comment and that is to increase the sizes of Figs 2, 4 and 6 so that the imaging panels can be seen more clearly. Also, although I know the n numbers are provided in the figure legends, the authors may help the reader by providing them in the results when key data and findings are reported.

      We agree and have followed the reviewer’s suggestions as best as we could.

      Reviewer #2 (Recommendations For The Authors):

      (1) Given the strength and importance of the claims that the authors make, I would highly recommend adding some quantitative evidence regarding the efficacy of deletion in astrocytes, e.g. using the same strategy as in Stogsdill et al. As unlikely as it may be that Neuroligin deletion is in fact incomplete, this possibility cannot be excluded unless directly measured. To avoid future discussions on this subject, it seems that the onus is on the authors to provide this information.

      We concur that this is an important point and have devoted a year-long effort to address it. Note, however, that the strategy employed by Stogsdill et al. does not actually allow conclusions about their recombination efficiency. As described above, it only allows the conclusion that some recombination took place. The Stogsdill et al. Nature paper (2017) is a bit confusing on this point. This approach is thus not appropriate to address the question raised by the reviewer.

      We have performed two experiments to address the issue raised by the reviewer.

      First, we used a viral (i.e. AAV2/5) approach to express Rpl22 with a triple HA-tag, also known as Ribotag, which allows us to purify ribosome-bound mRNA from targeted cells for downstream gene expression analysis. The novel construct is driven by the GfaABC1D promoter and includes two additional features which make it particularly useful. First, upstream of Ribotag is a membrane-targeted, Lck-mVenus followed by a self-cleaving P2A sequence. This allows easy visualization of targeted astrocytes. Second, we have incorporated a cassette of four copies of six miRNA targeting sequences (4x6T) for mIR-124 as was recently published (Gleichman et al., 2023) to eliminate off-target expression in neurons. Based on qPCR analysis, the updated construct allowed >95% de-enrichment of neuronal mRNA and slightly improved observed recombination rates (~10% per gene) relative to an earlier version without 4x6T. Mice that were injected with tamoxifen at P1, similar to other experiments in the paper, were then stereotactically injected at ~P35-40 within the dorsal hippocampus with AAV2/5-GfaABC1D-Lck-mVenus-P2A-Rpl22-HA-4x6T. Approximately 3 weeks later, acute slices were prepared, visualized for fluorescence, and both CA1 and nearby cortex that was partially targeted were isolated for downstream ribosome affinity purification with HA antibodies. Total RNA was saved as input. qPCR was performed using assays that are sensitive to the exons that are floxed in the Nlgn123 cKO mice, so that our quantifications are not confounded by potential differences in non-sense mediated decay. Our control data reveals a striking enrichment of an astrocyte marker gene (e.g. aquaporin-4) and de-enrichment of genes for other cell types. In the CA1, we observed robust loss of Nlgn3 (~96%), Nlgn2 (~86%), and Nlgn1 (65%) gene expression. Similarly, in the cortex, we observed a similarly robust loss of Nlgn3 (93%), Nlgn2 (83%), and Nlgn1 (72%) expression. Given that our targeting of astrocytes based on Ai14 Cre-reporter mice was ~90-99%, these reductions are striking and definitive. The existence of some residual transcript reflects the presence of a small population of astrocytes heterozygous for Nlgn2 and Nlgn3. In contrast, Nlgn1 appears more difficult to recombine and it is likely that some astrocytes are either heterozygous or homozygous knockout cells. Although it is thus possible that Nlgn1 could provide some compensation in our experiments, it is worth noting that Stogsdill et al. found that only Nlgn2 and Nlgn3 knockdown with shRNAs resulted in impaired astrocyte morphology by P21. Moreover, they found that Nlgn2 cKO in astrocytes with PALE of a Cre-containing pDNA impaired astrocyte morphology in a gene-dosage dependent manner and suppressed excitatory synapse formation at P21. Thus, our inability to delete all of Nlgn1 doesn’t readily explain contradictions between our findings and theirs.

      Second, in an independent approach we have cultured glia from mouse quadruple conditional Nlgn1234 KO mice and infected the glia with lentiviruses expressing inactive (DCre, control) or active Cre-recombinase. We confirmed complete recombination by PCR. We then cultured human neurons forming excitatory synapses on the glia expressing or lacking neuroligins and measured the frequency and amplitude of mEPSCs as a proxy for synapse numbers and synaptic function. As shown in the new Figure 9, we detected no significant changes in mEPSCs, demonstrating in this independent system that the glial neuroligins do not detectably influence excitatory synapse formation.

      (2) Along the same lines, the authors should be careful not to overstate their findings in this direction. For example, the figure caption for Figure 2 reads 'Nlgn1-3 are efficiently and selectively deleted in astrocytes by crossing triple Nlgn1-3 conditional KO mice with Adh1l1-CreERT2 driver mice and inducing Cre-activity with tamoxifen early during postnatal development'. This is not technically correct and should be modified to reflect that the authors are not in fact assessing deletion of Nlgn1-3, but only expression of a tdTomato reporter.

      We agree – this is essentially the same criticism as comment #1.

      (3) In general, the animal numbers used for the experiments are rather low. With an n = 4 for most experiments, only large abnormalities would be detected anyway, while smaller alterations would not reach statistical significance due to the inherent biological and technical variance. For the most part, this is not a concern, since there really is no difference between WTs and Nlgn1-3 cKOs. However, trends are observed in some cases, and it is conceivable that these would become significant changes with larger n's, e.g. Figure 3H (Vglut2); Figure 4E (VGlut2 S.P., D.G.); Figure 6D (Vglut2). Increasing the numbers to n = 6 here would greatly strengthen the claims that no differences are observed.

      We concur that small differences would not have been detected in our experiments but feel that given the very large phenotypes of the neuroligin deletions in neurons and of the phenotypes reported by Stogsdill et al. (2017), which also did not employ a large number of animals, a very small phenotype in astrocytes would not have been very informative.

      Minor points:

      (1) Please state the exact genetic background for the mouse lines used.

      Our lab generally uses hybrid CD1/Bl6 mice to avoid artifacts produced by inbred genetic mutations in so-called ‘pure’ lines, especially Bl6 mice. This standard protocol was followed in the present study. Thus, the mice are on a mixed CD1/Bl6 hybrid background.

      Reviewer #3 (Recommendations For The Authors):

      (1) Figure 4 demonstrates that neuroligin 1-3 deletions restricted to astrocytes do not affect the number of excitatory and inhibitory synapses in layer IV of the primary visual cortex. This conclusion could be further strengthened if the authors could provide electrophysiological evidence such as mE/IPSCs.

      We agree but have chosen a different avenue to further test our conclusions because slice electrophysiological experiments are time-consuming, labor intensive, and difficult to quantitate, especially in cortex.

      Specifically, we have co-cultured human neurons with astrocytes that either contain or lack neuroligins (new Fig. 9). With this experimental design, we have total control over ALL neuroligins in astrocytes. Electrophysiological recordings then demonstrated that the complete deletion of all glial neuroligins has no effect on mEPSC frequencies and amplitudes. Although clearly much more needs to be done, the new results confirm in an independent system that glial neuroligins have no effect on synapse formation in the neurons, even though neurons depend on astrocytes for synaptogenic factors as Ben Barres brilliantly showed a decade ago. However, it is important to note that dissociated glia in culture, while synaptogenic, are reactive and may not faithfully recapitulate all roles of astrocytes in synaptogenesis.

      (2) It would help readers if the images showing the punctate double marker stainings of excitatory/inhibitory synapses are presented in merged colors (i.e., yellow colors for red and green puncta colors).

      We have tried to improve the visualization of the rather voluminous studies we performed and illustrate in the figures as best as we could.

      (3) The resolutions of the images in the figures are not good, although I guess it is because the images are for review processes.

      We apologize and would like to assure the reviewer that we are supplying high-resolution images to the journal.

      (4) Typos in lines 82 and 274.

      We have corrected these errors.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC- 2025-02880

      Corresponding author(s): Monica, Gotta

      1. General Statements [optional]

      We thank the reviewers for their useful comments that will improve our manuscript and make it clearer. We agree with Reviewer 1 that SDS-22 has more general functions in cellular processes by maintaining GSP-1/-2 levels, rather than only regulating cell polarity. We have now modified our conclusion in the text (all changes are highlighted in yellow) and we hope that it is now more clear and better explained. Below we address the reviewer’s comments one by one and indicate how we have or will address the comments in the final version. We expect the revisions to take 2-3 months.

      2. Description of the planned revisions

      Major comments

      Reviewer 1

      (1) Overall, the evidence supporting the core finding that SDS-22 is required for normal GSP-1/2 levels is strong and well documented. The experiments were performed well and controls, statistics, replicates were appropriate. Our only slight reservation was whether the effect of sds-22(RNAi) on stability may be overstated due to the use of GFP fusions to GSP-1/2 for this analysis. The authors note these alleles are hypomorphic, potentially raising the possibility that GFP tags destabilise the proteins and make them more prone to degradation. Ideally this would be repeated with an untagged allele via Western (e.g. Peel et al 2017 for relevant antibodies).

      We thank the reviewer for the general comments. To address this important point on the protein levels we have requested GSP-1 and GSP-2 antibodies reported in Peel et al and Tzur et al (Peel et al, 2017; Tzur et al, 2012). The published GSP-1 antibody has been used in western blot, and the GSP-2 antibody has been used in both immunostaining and Western blot analysis. Despite our efforts, we were not able to detect GSP-2 neither on western blots nor on immunostainings with the aliquot we have received. On the opposite, GSP-1 antibodies worked well on western blot. We have already measured the GSP-1 levels in SDS-22 depleted embryos (N=2, see below) and we observed reduced levels, confirming our initial result. However, as the reviewer rightly pointed out, the levels are reduced by 20% (rather than about 50% as in the GFP strain), suggesting that indeed the GFP fusion does contribute to the instability. We will measure GSP-1 levels in at least an additional sds-22(RNAi) experiment and in sds-22(E153A) embryos.

      Left, Western Blot of embryonic extracts from N2 in ctrl(RNAi) and sds-22(RNAi) embryos. Tubulin is used as a loading control. Right, Fold change of GSP-1 normalized to Tubulin levels. N = 2.

      Since we could not detect endogenous GSP-2 with the antibodies we have received, we will generate an OLLAS-tagged GSP-2 strain. OLLAS is a commonly used tag consisting of 14 amino acids (Park et al, 2008), with an additional 4 amino acids as a linker. The tag is much smaller than mNeonGreen, which consists of approximately 270 amino acids. We will then measure the GSP-2 levels using the ollas antibody in sds-22(RNAi) embryos. We will also cross this strain with sds-22(E153A) and measure OLLAS::GSP-2 levels in this mutant. If this strain is not embryonic lethal, as in the case of the mNG::gsp-2; sds-22(E153A) (Fig EV6A), it will also suggest that ollas::gsp-2 does not behave as hypomorph.

      These data will complement the data shown in Fig 6.

      (2) The role for SDS-22 in polarity is rather weak. Both the SDS-22 depletion phenotypes and the ability of SDS-22 depletion to suppress pkc-3(ts) polarity phenotypes are modest (and weaker in than GSP-2 depletion). For example, the images in Figure 1B appear striking, but from Movie S1 it is clear that this isn't a full rescue as PAR-2 is initially uniformly enriched on the cortex (rather than mostly cytoplasmic) and it is never fully cleared. In the movie, the clearance at the point of pronuclear meeting is very modest. Quantitation might be helpful here (i.e. as in Figure 3G). As the authors state, it seems that SDS-22 does not have a specific role in polarity beyond the general effect on GSP-1/2 levels. This does not undermine the core message of the paper, but we would recommend downplaying the conclusions with respect to contributing to polarity establishment. For example "...suggesting that SDS-22 regulates GSP-1/-2 activity to control the loading of PAR-2 to the posterior cortex in one-cell stage C. elegans embryos" implies a regulatory role for SDS-22 in polarity, but we would interpret it as simply helping reduce aberrant degradation of GSP-1/2 and this impacts a variety of cellular processes including polarity.

      We agree with the reviewer that the rescue of pkc-3ts polarity defects by SDS-22 depletion is not as strong as GSP-2 depletion, and as suggested, we have re-quantified the phenotype, as we did in Fig 3G, as shown below in Fig 1C.

      This has replaced Fig.1 in the manuscript.

      Accordingly, we have clarified this in the text in several locations. We have added “partial” rescue in many places and modified conclusions in the results and discussion. The changes are all highlighted and the major ones are also below:

      From Result Line 119-121, page 5:

      “In contrast, depletion of SDS-22 resulted in PAR-2 localization being restricted to the posterior cortex in 87.5% of the one-cell stage embryos (Fig 1B) and PAR-2 was localized to the P1 blastomere after the first cell-division (Movie EV1).”

      To: Result Line 122-125, page 5

      “In contrast, depletion of SDS-22 resulted in PAR-2 localization being enriched in the posterior cortex in 87.5% of the one-cell stage embryos (Fig 1B,C) and PAR-2 was localized to the P1 blastomere after the first cell-division (Movie EV1).”

      • *

      From Result Line 172-175, page 7:

      “Our data show that depletion of SDS-22 results in a smaller PAR-2 domain, suppresses the polarity defects of a pkc-3 temperature sensitive strain and the aberrant PAR-2 localization observed in the PAR-2(L165V) mutant strain. As SDS-22 is a conserved PP1 regulator, our data suggest that SDS-22 positively regulates GSP-2 in polarity establishment.”

      To: Result Line 178-181, page 7

      “Our data show that depletion of SDS-22 results in a smaller PAR-2 domain, partially suppresses the polarity defects of a pkc-3 temperature sensitive strain and the aberrant PAR-2 localization observed in the PAR-2(L165V) mutant strain. As SDS-22 is a conserved PP1 regulator, our data suggest that SDS-22 positively regulates GSP-2.”

      From Result Line 256-257, page 10:

      “suggesting that the interaction of SDS-22 with the PP1 phosphatases is important for polarity establishment.”

      To: Result Line 264-265, page 10

      “suggesting that the interaction of SDS-22 with the PP1 phosphatases contributes to polarity establishment”

      • *

      From Result Line 311-313, page 12:

      To conclude, while our genetic data on PAR-2 cortical localization suggest that SDS-22 is not required to fully activate GSP-1 and/or GSP-2, depletion or mutation of SDS-22 results in a reduced activity of the phosphatases.

      To: Result Line 319-322, page 12

      To conclude, while our genetic data on PAR-2 cortical localization suggest that SDS-22 is not required to fully activate GSP-1 and/or GSP-2, depletion or mutation of SDS-22 results in a reduced activity of the phosphatases, as shown by phospho-histone H3 (Ser10) levels. This suggests that SDS-22 plays a general role in regulating GSP-1 and GSP-2, which is not specific to cell polarity.

      From Result Line 391-392, page 15:

      In summary, our results show that SDS-22 maintains the levels of GSP-1 and GSP-2 by protecting them

      392 from proteasome mediated degradation.

      To: Result Line 402-403, page 15

      In summary, these data show that SDS-22 is important to maintain the levels of GSP-1 and GSP-2 by protecting them from proteasome mediated degradation.

      We have also rephrased our conclusion according to Reviewer 1’s suggestion.

      From Introduction Line 95-101, Page 4:

      Here we show that SDS-22 depletion rescues the polarity defects caused by reduced PAR-2 phosphorylation in the pkc-3(ne4246) mutant at the semi-restrictive temperature (24°C), similarly to the depletion of GSP-2. Depletion of SDS-22 results in lower GSP-1 and GSP-2 protein levels which can be rescued by depleting proteasomal subunits. These results establish SDS-22 as a regulator of PAR polarity establishment in the C. elegans one-cell embryo and are consistent with and complement the recent data in mammalian cells showing that SDS22 is important to control the stability of the PP1 phosphatase (Cao et al., 2024).

      To: Introduction Line 96-101, Page 4

      *Here we show that SDS-22 depletion partially rescues the polarity defects caused by reduced PAR-2 phosphorylation in the pkc-3(ne4246) mutant at the semi-restrictive temperature (24°C). Depletion of SDS-22 results in lower GSP-1 and GSP-2 protein levels which can be rescued by depleting proteasomal subunits. These results establish that SDS-22 contributes to cell polarity by regulating GSP-1/-2 levels and are consistent with and complement the recent data in mammalian cells showing that SDS22 is important to control the stability of the PP1 phosphatase (Cao et al., 2024). *

      From Discussion Line 417-420, page 17:

      Depletion of SDS-22, or mutation of its E153 residue (E153A) important for SDS-22-PP1 interaction resulted in reduced GSP-1/-2 protein levels, decreased dephosphorylation of a PP1 substrate, and a smaller PAR-2 domain, suggesting that SDS-22 regulates GSP-1/-2 activity to control the loading of PAR-2 to the posterior cortex in one-cell stage C. elegans embryos.

      To: Discussion Line 426-429, page 17

      *Here we find that a conserved PP1 regulator, SDS-22, when depleted, results in a smaller PAR-2 domain and can partially rescue the polarity defects of a pkc-3(ne4246) mutant. We demonstrate that SDS-22 contributes to the activity of GSP-1/-2 by protecting them from proteasomal degradation and maintaining their protein levels. *

      Add new discussion to Discussion Line 429-432, page 17:

      Taken together, our data suggest that the role of SDS-22 in polarity is indirect via the regulation of GSP-1/-2 levels. In support of this, SDS-22 depletion results in broader GSP-1/-2 dependent phenotypes such as increased Phospho-H3 (Ser10) (Fig 5) and centriole duplication defects in later-stage embryos (Peel et al., 2017).

      • *

      (3) Specificity of SDS-22 effects on polarity. SDS-22 (or GSP-1/2) depletion is likely to have effects on many pathways. We wondered whether some of the polarity phenotypes may not be specifically due to changes in the PAR-2 phosphorylation cycle as implied.

      One candidate is the actomyosin cortex. It was noticeable that control and sds-22 embryos were different: In Movies S1, S2, and S3 control embryos show either stronger or more persistent cortical ruffling or pseudocleavage furrows. This is also visible in Figure 3A. Is it possible that disruption of SDS-22 reduces cortical flows (time, intensity or duration) and could this explain the small reduction in anterior PAR-2 spreading and thus the slightly smaller domain size measured in Figures 1B and 3A.

      We have noticed that SDS-22 depletion results in less ruffling and reduced pseudocleavage furrows. To properly address this question we should have a condition in which we can rescue the cortical flow reduction in the SDS-22 depletion and measure the PAR-2 domain. Since we do not know how SDS-22 reduces the flows, we could not come up with a clean experiment to address this issue and are happy to have suggestions.

      We believe that the most rigorous way to address this issue, as reviewer 1 points out, is to clearly address this limitation in the text. We have now added this in the discussion:

      Discussion Line 463-466, page 18:

      Consistent with GSP-2 reduced levels, SDS-22 depleted or E153A mutant embryos also have a smaller PAR-2 domain. However, since these embryos also show reduced cortical ruffling (Movie EV1,2) and are smaller (Fig EV2C) we cannot exclude that these two phenotypes also contribute to the smaller size of the PAR-2 domain.

      • *

      A potentially related issue could be embryo size. sds-22 embryos generally seem to be smaller than wild-type (e.g. Figure 1B(left), 4A(left column), and particularly EV3). Is this consistently true? Could cell size effects change the ability of embryos to clear anterior PAR-2 domains as described in EV3? Klinkert et al (2018, biorXiv) note that reducing the size of air-1(RNAi) embryos reduces the frequency of bipolar PAR-2 domains.

      Quantification of perimeter of embryos at pronuclear meeting in live zygotes. Sample size (n) is indicated in the graph, each dot represents a single embryo and mean is shown. N = 5. The P value was determined using two-tailed unpaired Student’s t test.

      We quantified the perimeter of the embryos and as seen by quantification, there is a weak but significant decrease of size in the absence of SDS-22, and in SDS-22(E153A) mutant, as shown above. We have now added the data of the RNAi in the supplementary information and mentioned it in the results.

      Results Line 129, page 5:

      SDS-22 depleted embryos also displayed a smaller size (Fig EV2C).

      Klinkert et al reported that reducing the size of air-1(RNAi) embryos by depletion of ANI-2, a homolog of the actomyosin scaffold protein anillin, reduces the frequency of bipolar PAR-2 domains (Klinkert et al, 2018). In the image shown in the paper on bioRxiv, the PAR-2 domain appears small but there are no quantifications and these data have been removed from the published paper.

      From published data, a smaller embryo size does not appear to correlate with smaller PAR-2 domain. Chartier et al show that depletion of ANI-2 reduces embryo size without changing the relative anterior PAR-6 domain (Chartier et al, 2011), thereby suggesting that the posterior PAR-2 domain should not change either. In addition, Hubatsch et al reported that small embryos depleted of ima-3 tend to have larger PAR-2 domains, whereas larger embryos depleted of C27D9.1 exhibit smaller PAR-2 domains (Hubatsch et al, 2019), which is the opposite of what we see. We do not believe that the smaller PAR-2 domain is the important message of our paper. Our main question was whether PAR-2 was cortical or not and since GSP-2 had a smaller domain, we decided to quantify the PAR-2 domain length in the different RNAi conditions and mutants. Since RNAi of C27D9.1 which makes embryos bigger, results in a small PAR-2 domain, again we do not know how to experimentally address this question, unless the reviewer has a suggestion. As for the point above, we will clearly highlight this limitation in the discussion (see our reply to the previous point, now it is in Discussion Line 463-466, page 18).

      We would stress that these comments relate to interpreting the polarity phenotypes and do not undermine the core finding that SDS-22 stabilises GSP-1/2.

      We thank the reviewer and we hope that by performing the experiments mentioned above and by changing the text, their comments are properly addressed.

      Reviewer 2

      Major comment: Consistent with the model that PP1 activity is reduced in the absence of SDS-22, the authors show that a surrogate PP1 target (phospho-histone H3) becomes hyper-phosphorylated. To strengthen the study, the authors could consider performing an OPTIONAL experiment (see below) of assaying the phosphorylation status of PAR-2 itself, as this is proposed to be the target of both PKC-3 and PP1, and represent the mechanism of PAR-2 polarization.

      We thank the reviewer for this comment and also for pointing out that there is technical difficulty in the proposed experiment.

      We have already attempted to address this point without success in Calvi et al (Calvi et al, 2022), using western blot analysis (see below). For this we used the GFP::PAR-2 strain and used a GFP antibody (shown below in the left panel), as none of the anti-PAR-2 antibodies (neither the ones produced by us nor the ones produced by other laboratories) were working on western blot. We observed several bands of GFP::PAR-2 but were not able to determine if these represented phosphorylated forms or to compare the ratio of phosphorylated to unphosphorylated PAR-2. We did use λ-PPase in the embryonic extracts but we did not always observe a clear difference. We show three experiments below.

      Left, __Western blots of gfp::par-2 embryonic extract in the presence or absence of λ-PPase (+/- PhosSTOP) and probed with anti-GFP and anti-Tubulin antibodies. Right,__ Representative images of fixed embryos with indicated genotypes at one-, two- and four-cell stages. DNA (DAPI) is gay. Scale bars, 5 μm. Anterior is to the left and posterior to the right.

      One possible explanation is that the role of GSP-1/-2 in PAR-2 dephosphorylation is specific to the very early embryos. As shown in the right panel above, despite PAR-2(RAFA) remaining cytoplasmic in one- and two-cell embryos due to lack of binding to GSP-1/-2, it can localize to internal cortices in four-cell stage embryos, similarly to the control and suggesting that in later embryos other mechanisms are intervening. One limitation of our Western Blot is that it is not possible to isolate only early embryos, which are a minority in a mixed population of embryos. This may mask difference of phosphorylation status of PAR-2 in the early stages.

      For the revision, we plan to blot PAR-2 using GFP antibody in gfp::par-2 embryo lysates, with both control and sds-22(RNAi) treatment. We will also compare the GFP::PAR-2 bands between gfp::par-2 and gfp::par-2; sds-22(E153A) mutant samples. We are not very hopeful and our failures with gsp-1/2 RNAi (unpublished) are why we did not try with SDS-22 but it is definitely worth giving it a go and we will.

      As for Hao et al (Hao et al, 2006) the result was quite clear. In this paper however, the authors used a transgene strain of PAR-2. We have never tried to use a transgene (the proteins are usually overexpressed) but we can deplete SDS-22 in a PAR-2 transgene as well and see if a difference is observed.



      Reviewer 3

      Major comments: major issues affecting the conclusions

      Overall, the authors' conclusions are supported by their data. The data and methods are presented clearly, with appropriate replicates and statistics. Here I propose two experiments to strengthen the link between some of their data and their claims. These experiments could take a month or two to complete.

      Experiment 1

      It would be helpful if the authors could show that blocking the proteasome in the zygote restores GSP-1/-2 levels in the absence of SDS-22 or even better in the SDS-22(E153A) mutant. This would provide more direct evidence to support their claim that SDS-22 regulates polarity by protecting PP1 from proteasomal degradation. While they are currently conducting this experiment in the germline, they cannot assess polarity there. However, in the zygote, they would be able to examine the PAR-2 domain (polarity). To do this, the authors could permeabilise the embryos and apply a proteasome inhibitor.

      This would be a straightforward experiment if we were using culture cells. One problem with the set up is that much of the protein of the one-cell embryo is inherited from the egg and the reduction in SDS-22 depletion or mutant happens already in the germline (Fig 6-7). Even if the proteasome is inhibited in embryos, the whole division process only takes 20 minutes and we wonder whether the timing will be sufficient to inhibit the proteasome, produce more protein and rescue the phenotype. We will try, as only this will tell us.

      One alternative approach would be to apply the proteasome inhibitor to adult worms in liquid culture for several hours before dissection. This would aim to inhibit degradation in the germline, therefore allowing us to test whether GSP-1/-2 levels are restored in the embryos with SDS-22 disruption. However, proteasome inhibition in the germline impairs oogenesis (Shimada et al, 2006), suggesting that we might incur in the same problem (unless we succeed in timing the inhibition).

      One additional experiment that we will try is to deplete other proteasomal subunits that result in a lower level or proteasomal activity reduction. As reported by Fernando et al (Fernando et al, 2022), depletion of RPN-9, -10, or -12 impairs proteasomal activity, but worms remain fertile.

      Quantification of mNG::GSP-2 and GFP::GSP-1fluorescence intensity in rpn-12, rpn-9, and rpn-10(RNAi) normalized to ctrl(RNAi). Mean is shown and error bars indicate SD. Dots in graphs represent individual embryo measurements and sample size (n) is indicated inside the bars in the graph. N = 1.

      So far, our data suggest that the GSP-1/-2 levels are weakly but significantly increased in the embryos (16.8% for GSP-2 and 12.5% for GSP-1) following RPN-12 depletion (see above). We will co-deplete RPN-12 and SDS-22 to assess if the protein levels of GSP-1/-2 are rescued. We will also deplete RPN-12 in gfp::gsp-1; sds-22(E153A) strains to test if GSP-1 levels are rescued. We cannot measure GSP-2 levels in mNG::GSP-2; sds-22(E153A) because they are embryonic lethal (see details below in the reply to minor comments of Reviewer 3).

      Left, Representative midsection images of gfp::gsp-1 and gfp::gsp-1;sds-22(E153A) embryos in ctrl(RNAi) and rpn-12(RNAi).__ Right, __Quantification of GFP::GSP-1 intensity levels. N = 1.

      Our preliminary data showed that similar to germlines (Fig 7G-I), RPN-12 depletion in gfp::gsp-1; sds-22(E153A) rescued the reduction of GSP-1 levels in embryos (shown above). We will perform two additional experiments to quantify GSP-1 levels.

      We will also test if the smaller PAR-2 domain in sds-22(E153A) mutant is rescued by RPN-12 depletion. With these experiments, we aim to answer if proteasome inhibition rescues the reduced levels of GSP-1/-2 and thereby rescues the reduced PAR-2 domain when SDS-22 is depleted or mutated.

      Experiment 2

      The posterior localization of PAR-2 after co-RNAi of GSP-1 and SDS-22 contrasts with the absence of PAR-2 at the cortex when both GSP-1 and GSP-2 are depleted. This difference may be due to the partial reduction of GSP-2 levels when SDS-22 is depleted, compared to the more substantial reduction of GSP-2 upon GSP-2 RNAi. Have the authors considered combining full depletion of GSP-1 with partial depletion of GSP-2 to see if PAR-2 remains present and localized to the posterior? This experiment could help clarify the discrepancy between the phenotypes and further support the role of SDS-22 in regulating GSP-2 protein levels. Additionally, by titrating PP1, the authors may be able to determine the minimum amount of PP1 needed to establish the PAR-2 domain.

      We will try this experiment but, assuming we find a condition in which we can fully deplete GSP-1 and only half of GSP-2, one problem is that it is impossible to control the levels of both GSP-1 and 2 and measure the PAR-2 domain in the same embryos (which would be the most rigorous way to perform the experiment so that we know the amount of depletion and correlate with the PAR-2 domain length). The only thing we can do is the same depletion time in the 3 different strains (the mNG::gsp-2, the gfp::gsp-1 and the gfp::par-2) and assume that the depletion will work the same in the three different strains.

      • *

      Minor comments

      Reviewer 1

      Minor Points

      • The link between lethality and polarity of the zygote is not always obvious and whether they are connected (or not) could probably be made clearer. Indeed, the source of lethality is unclear, particularly given that loss of SDS-22 on its own strongly impacts lethality with minimal effects on polarity (at least in the zygote).

      In many cases, we have reported embryonic lethality as information, not with a precise scope to correlate the lethality with the phenotype. We apologize for the lack of clarity. We know that embryonic lethality is normally associated with severe polarity defects. As example, in the par-2(RAFA) mutant and in the pkc-3ts mutant at temperatures around 24-25°C cortical polarity is lost, embryos divide symmetrically and synchronously and die (Calvi et al., 2022; Rodriguez et al, 2017) and many more references for the PAR mutants (Kemphues et al, 1988; Kirby et al, 1990; Morton et al, 1992). We and others have also shown that depletion of GSP-2 can rescue the lethality of pkc-3(ts) but only at a semipermissive temperature when there is still residual PKC-3 activity (Calvi et al., 2022; Fievet et al, 2013). As our aim was to identify the regulator of GSP-2, we tested the potential regulators by RNAi in the pkc-3(ts), with the assumptions that a regulator, similar to GSP-2, would rescue the pkc-3(ts) polarity defects and lethality. As it turns out, SDS-22 is not a canonical regulator of GSP-2. The partial rescue of the polarity defects is most likely the result of the fact that SDS-22 lowers the level of GSP-2. However, SDS-22 is probably involved in many other functions that involve GSP-1 and GSP-2 (as shown for example:(Beacham et al, 2022; Peel et al., 2017)) and it is embryonic lethal. We do not know, however, whether the embryonic lethality is the results of the sum of the various functions of SDS-22 or it is due to a specific function.

      To clarify it better, we have now explained the connection between polarity and lethality in the text,

      From Result Line 111-114, page 5:

      We first asked whether depletion of any of these three regulators suppress the embryonic lethality of pkc-3(ne4246); gfp::par-2 embryos at the semi-permissive temperature of 24°C (in which PKC-3 is partially active, temperature used in all experiments with the pkc-3(ne4246) mutant, unless otherwise stated), similar to depletion of the catalytic subunit GSP-2.

      To Results Line 111-117, page 5:

      *When the temperature sensitive mutant pkc-3(ne4246) is grown at semi-permissive temperature, the residual PKC-3 activity is not sufficient to exclude PAR-2 from the anterior cortex. These embryos cannot establish polarity and die. Depletion of the catalytic subunit GSP-2 in this strain suppresses PAR-2 mislocalization and the resulting polarity defects, thereby rescuing embryonic lethality. We first asked whether depletion of any of these three identified regulators suppresses the embryonic lethality of pkc-3(ne4246); gfp::par-2 embryos at the semi-permissive temperature of 24°C (temperature used in all experiments with the pkc-3(ne4246) mutant, unless otherwise stated) , similar to depletion of GSP-2. *

      From Result Line 241-242, page 10:

      We next asked whether sds-22(E153A) was able to rescue the lethality and the polarity defects of pkc-3(ne4246) embryos.

      To Results Line 223-224, page 9:

      Because of this, we decided to test whether sds-22(E153A) was able to rescue the lethality and the polarity defects of pkc-3(ne4246) embryos.

      • Formally, the conclusion that reduced GSP-1/2 in SDS-22 depletion conditions is due to increased proteasomal degradation is not shown directly as there is no data on rates just steady-state levels. We agree that the genetic data is strongly suggestive of this model and it is consistent with work of other labs. Thus this is the most likely scenario, but could in principle reflect reduced expression that is balanced by reduced degradation.

      We agree with the reviewer. To address this point, we will perform RT-PCR analysis to measure the gene expression levels of gsp-1 and gsp-2 from control, SDS-22 depletion and sds-22(E153A) embryos.

      • It is interesting that sds-22(E153A) caused a stronger decrease in oocyte GSP-1 levels than sds-22(RNAi) (Fig 7). The authors may want to comment on this result.

      As we performed depletion of SDS-22 by RNAi feeding from L4 stage, we might not see strong reduction of GSP-1 in oocytes compared to that in sds-22(E153A) mutant, which carries an endogenous mutation of SDS-22 throughout the life cycle.

      Left, Representative images of gfp::gsp-1 germlines in ctrl(RNAi) and sds-22(RNAi), comparing to gfp::gsp-1; sds-22(E153A); ctrl(RNAi). __Right, __Quantification of GFP::GSP-1 intensity levels in the cytoplasm and nucleus of -1 and -2 oocytes. N = 1.

      To address this point we have performed an experiment where we have depleted SDS-22 starting from L1s. As shown above, RNAi feeding of SDS-22 from L1 stage showed a similar reduction of GSP-1 (16.1% in the cytoplasm; 24.6% in the nucleus) as in gfp::gsp-1; sds-22(E153A), which was stronger comparing to feeding from L4 (8.8% in the cytoplasm; 17.4% in the nucleus, Fig 7D-E). This supports our hypothesis that the difference shown in Fig 7D-I might result from a relative short RNAi depletion of SDS-22 from L4 stage comparing to endogenous SDS-22(E153A) mutation. This experiment was done only once and will be repeated. If confirmed, we will add a sentence in the text. As RNAi feeding of SDS-22 from L1 stage impairs the formation of germlines, we will keep the protocol using SDS-22 RNAi feeding in L4 worms for other experiments in this study.

      • "At polarity establishment, the PP1 phosphatases GSP-1/-2 dephosphorylate PAR-2 allowing its cortical posterior accumulation." This statement, possibly inadvertently, implies temporal regulation, which has not been shown.

      We have changed the sentence, as suggested by the reviewer:

      To Introduction Line 59-60, page 3:

      The PP1 phosphatases GSP-1/-2 dephosphorylate PAR 2 allowing its cortical posterior accumulation and embryo polarization.

      • It would be ideal if the authors could explicitly state how they define pronuclear meeting. For example in Figure 1B, the embryos look like they are a few minutes past pronuclear meeting (e.g. compared to Figure 3), but maybe the pronuclei tend to meet more centrally in these conditions? Given that PAR-2 clearance is changing in time in some of these cases (based on looking at the movies), staging needs to be very accurate to get the best comparisons.

      We apologize for the lack of clarity. Pronuclear meeting is defined when the two pronuclei first contact each other.

      As noted by Reviewer 1, it is true that the pronuclei in pkc-3ts mutant tend to meet more centrally compared to control embryos. The same finding was also observed on PKC-3 inhibition (through depletion, mutation or inhibitor treatment) by Rodriguez et al (Rodriguez et al., 2017). In addition, Kirby et al reported that mutations in the anterior PAR complex lead to the mislocalization of the pronuclei, causing them to meet more in the center (Kirby et al., 1990). We now specify this in the Material and Methods.

      Add in Material and Methods Line 633-635, page 22:

      *The stage of pronuclear meeting is defined when the two pronuclei first contact each other. In pkc-3(ne4246) embryos, the two pronuclei exhibited a tendency to meet more centrally compared to controls (Fig 1B, Movie EV1), as shown in (Kirby et al, 1990; Rodriguez et al, 2017). *

      As Reviewer 1 mentioned, accurate staging is crucial, as PAR-2 clearance can vary over time. The measurements were done in the first frame where pronuclei touch each other. However, in Fig. 1B we had shown one pkc-3ts; sds-22(RNAi) embryo one frame (10 seconds) later. We have now corrected this (see the updated Figure 1B).

      • In the interests of data-availability, upon publication the authors would deposit the raw mass spec data underlying Figure EV1.

      The reviewer is right, this was forgotten. We have now added as supplementary material the Dataset EV1 and EV2.

      Reviewer 3

      Minor comments: important issues that can confidently be addressed

      In the introduction (line 83), it's unclear what reconciles the contradictory data. I also have difficulty understanding this point in the discussion (line 435).

      We apologize for the lack of clarity and have now modified the text:

      From Introduction Line 82-84, page 4:

      This underscores the complex roles of SDS22 in regulating PP1 function and reconciling the contradictory data obtained in vivo and in vitro (Cao et al., 2024; Cao et al, 2022; Kueck et al., 2024; Lesage et al, 2007).

      To Introduction Line 81-85, page 4:

      These two recent findings suggest that while SDS-22 is required for the biogenesis of PP1 holoenzymes, its removal is essential to have an active PP1. This dual role of SDS-22 explains how SDS22 behaves as an inhibitor in biochemical assays in vitro but as an activator in vivo (Cao et al., 2024; Cao et al, 2022; Kueck et al., 2024; Lesage et al, 2007).

      From Discussion Line 435-436, page 17:

      These data reconcile the contradictory in vivo and in vitro observations.

      To Discussion Line 447-451, page 17:

      Given that SDS-22 both stabilizes PP1 levels and inhibits its activity, this dual role clarifies the apparent contradiction: while SDS-22 is essential for PP1 activity in vivo (because it is essential for the biogenesis/stability), it inhibits PP1 activity in vitro (as it needs to be removed to have an active PP1), while in vivo it is removed by p97/Valosin resulting in active PP1.

      Additionally, in the results section (line 389), it's not clear why the gonads cannot be studied in the strain with dead embryos. Are the gonads also altered in a way that prevents their observation?

      We explained this in the material and methods part (Line 583-584, 588-592), page 21.

      To clarify it better in the main text, we have now modified

      Results Line 377-378, page 15:

      Since depletion of these subunits results in worms with very little to no progeny (Fernando et al., 2022)

      Results Line 396-401, page 15:

      *Since we use the embryonic lethality phenotype of the mNG::gsp-2; sds-22(E153A) strain to recognize the homozygote sds-22(E153A), this precluded the possibility to analyze the germlines of homozygote mNG::gsp-2; sds-22(E153A) worms depleted of RNP-6.1 or RPN-7, as these worms do not have progenies (Fernando et al., 2022) and we therefore cannot distinguish the sds-22(E153A) homozygote from the sds-22(E153A) heterozygote (see material and methods for details). *

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      • *

      We have re-quantified the data in Fig 1B and displayed as in Fig 1C.

      We have double checked our data and corrected Fig 3G.

      We have modified the text to address many of the comments of the reviewer about clarity and rigor.

      We have added supplementary information Fig EV2C and Dataset EV1 and EV2.

      Other experiments performed are still preliminary and only shown in this revision letter.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      • *

      We believe with the reply, the text changes and the experiments that we have proposed and started, we will address all comments of the reiewers.

      • *

      References

      Beacham GM, Wei DT, Beyrent E, Zhang Y, Zheng J, Camacho MMK, Florens L, Hollopeter G (2022) The Caenorhabditis elegans ASPP homolog APE-1 is a junctional protein phosphatase 1 modulator. Genetics 222

      Calvi I, Schwager F, Gotta M (2022) PP1 phosphatases control PAR-2 localization and polarity establishment in C. elegans embryos. J Cell Biol 221

      Chartier NT, Salazar Ospina DP, Benkemoun L, Mayer M, Grill SW, Maddox AS, Labbe JC (2011) PAR-4/LKB1 mobilizes nonmuscle myosin through anillin to regulate C. elegans embryonic polarization and cytokinesis. Curr Biol 21: 259-269

      Fernando LM, Quesada-Candela C, Murray M, Ugoaru C, Yanowitz JL, Allen AK (2022) Proteasomal subunit depletions differentially affect germline integrity in C. elegans. Front Cell Dev Biol 10: 901320

      Fievet BT, Rodriguez J, Naganathan S, Lee C, Zeiser E, Ishidate T, Shirayama M, Grill S, Ahringer J (2013) Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy. Nat Cell Biol 15: 103-112

      Hao Y, Boyd L, Seydoux G (2006) Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev Cell 10: 199-208

      Hubatsch L, Peglion F, Reich JD, Rodrigues NT, Hirani N, Illukkumbura R, Goehring NW (2019) A cell size threshold limits cell polarity and asymmetric division potential. Nat Phys 15: 1075-1085

      Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311-320

      Kirby C, Kusch M, Kemphues K (1990) Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev Biol 142: 203-215

      Klinkert K, Levernier N, Gross P, Gentili C, von Tobel L, Pierron M, Busso C, Herrman S, Grill SW, Kruse K et al (2018) Aurora A depletion reveals centrosome-independent polarization mechanism in C.elegans. bioRxiv: 388918

      Morton DG, Roos JM, Kemphues KJ (1992) par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. Genetics 130: 771-790

      Park SH, Cheong C, Idoyaga J, Kim JY, Choi JH, Do Y, Lee H, Jo JH, Oh YS, Im W et al (2008) Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection. J Immunol Methods 331: 27-38

      Peel N, Iyer J, Naik A, Dougherty MP, Decker M, O'Connell KF (2017) Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication. PLoS Genet 13: e1006543

      Rodriguez J, Peglion F, Martin J, Hubatsch L, Reich J, Hirani N, Gubieda AG, Roffey J, Fernandes AR, St Johnston D et al (2017) aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity. Dev Cell 42: 400-415 e409

      Shimada M, Kanematsu K, Tanaka K, Yokosawa H, Kawahara H (2006) Proteasomal ubiquitin receptor RPN-10 controls sex determination in Caenorhabditis elegans. Mol Biol Cell 17: 5356-5371

      Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, Cheeseman IM, Colaiacovo MP (2012) LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol 10: e1001378

    1. Overview & Motivation

      Repeatedly failed to write a post, realizing it should be a talk:

      “It turns out that I wasn’t really writing a post; I was actually preparing a talk.”

      Central Topic: React Server Components and distributed computations between two machines using React concepts.

      “It’s about everyone’s favorite topic, React Server Components.”


      Act 1: Recipes (Imperative) vs. Blueprints (Declarative)

      Tags vs. Function Calls:

      Visual and structural differences:

      “< and > are hard and spiky and ( and ) are soft and round.”

      Similarities:

      Both reference named operations (functions or tags) and accept arguments.

      Both allow nesting.

      “Clearly, function calls and tags are very similar...they let us elaborate by nesting further.”

      Differences:

      Tags (declarative):

      Often nouns; represent timeless structures (blueprints).

      Convenient for deep nesting, clearly marking structure.

      Time-independent, passive descriptions.

      “Tags tend to be nouns rather than verbs... nouns are easier to decompose.”

      Function calls (imperative):

      Often verbs; represent sequential actions (recipes).

      Execution order critical.

      “A recipe prescribes a sequence of steps to be performed in order.”


      Remote Procedure Calls (RPC) and Async/Await

      Problem: Calling Functions Across Computers

      RPC concept introduced: Functions across network boundaries.

      async/await: Simplifies asynchronous calls but still has limitations (coupling, losing direct references).

      “An async function...may pause execution...async and await propagate upwards.”

      Import RPC idea: Extends importing to remote function calls while maintaining references and type-checking.

      “Let’s invent a special syntax...import rpc because what we’ve described here has been known for decades as RPC.”


      Potential Calls (Tags as Deferred RPCs)

      "Potential function calls": Represented by tags; calls that might happen in the future.

      “It’s a blueprint of a function call.”

      Nested tags: Express dependencies naturally.

      “Dependencies between potential calls...should be expressed by embedding these calls inside each other.”


      Splitting Computation in Time and Space

      Computation split in time: Returning partial functions that capture necessary data (closures).

      Computation split across space (client-server): Splitting execution between two computers, handling data passing explicitly.

      “It’s an interesting shape—a program returning the rest of itself...closure over the network.”


      Two Types of Operations: Components vs. Primitives

      Components (Capitalized): "Brains" of a program; flexible, timeless, and declarative, embedding tags without introspection.

      “Components are truly timeless...they accept tags as arguments.”

      Primitives (lowercase): "Muscles"; introspect arguments, execution order sensitive, imperative, execute last.

      “Primitives introspect arguments...they must know all their arguments.”

      Execution Phases:

      1. Interpret (thinking): Processes Components freely without strict order.

      2. Perform (doing): Executes Primitives strictly inside-out.

      “First, you need to think...then you need to do.”


      Act 2: Reflections and Dialog

      Meta-dialog: Reflection on the writing process itself; writer and reader dialogue, acknowledging uncertainty and experimental nature of content.

      “The Writer: I have a rough idea, but truthfully, I’m pretty much winging it.”


      Core Conceptual Innovations

      Tags as code/data pairs: Potential function calls represented explicitly as data (tags), allowing deferred execution across contexts.

      Program as distributed computation: A single conceptual function spanning multiple runtime environments (Early and Late worlds).

      Timelessness and Flexibility: Components allow arbitrary computation ordering; Primitives enforce execution order.


      Key Quotes & Ideas:

      Blueprints vs. Recipes:

      “A blueprint describes what nouns a thing is made of...a recipe prescribes a sequence of steps to be performed.”

      RPC and Potential Calls:

      “A tag is like a function call but passive, inert, open to interpretation.”

      Components and Primitives Separation:

      “Components are the ‘brains’...Primitives are the ‘muscles’.”

      Importance of Introspection vs. Embedding:

      “If a function only embeds an argument without introspection, you can delay computing it.”


      Conclusion (Conceptual Breakthroughs)

      Distributed React Model: Redefining client-server interaction as React component structures.

      Future implications: Suggests moving common primitives into lower-level implementations to optimize distributed computation.

      “If many programs used the same Primitives...move their implementation to Rust or C++.”


    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This a comprehensive study that sheds light on how Wag31 functions and localises in mycobacterial cells. A clear link to interactions with CL is shown using a combination of microscopy in combination with fusion fluorescent constructs, and lipid specific dyes. Furthermore, studies using mutant versions of Wag31 shed light on the functionalities of each domain in the protein. My concerns/suggestions for the manuscript are minor:

      (1) Ln 130. A better clarification/discussion is required here. It is clear that both depletion and overexpression have an effect on levels of various lipids, but subsequent descriptions show that they affect different classes of lipids.

      We thank the reviewer for the comment. We have added a better clarification on this in the discussion of revised manuscript. The lipid classes that get impacted by the depletion of Wag31 vs overexpression are different. Wag31 is an adaptor protein that interacts with proteins of the ACCase complex (Meniche et al., 2014; Xu et al., 2014) that synthesize fatty acid precursors and regulate their activity (Habibi Arejan et al., 2022).

      The varied response on lipid homeostasis could be attributed to a change in the stoichiometry of these interactions of Wag31. While Wag31 depletion would prevent such interactions from occurring and might affect lipid synthesis that directly depends on Wag31-protein partner interactions, its overexpression would lead to promiscuous interactions and a change in the stoichiometry of native interactions that would ultimately modulate lipid synthesis pathways.

      (2) The pulldown assays results are interesting, but links are tentative.

      We thank the reviewer for the comment. The interactome of Wag31 was identified through the immunoprecipitation of FLAG-Wag31 complemented at an integrative locus in Wag31 mutant background to avoid overexpression artifacts. We used Msm::gfp expressing an integrative copy (at L5 locus) of FLAG-GFP as a control to subtract non-specific interactions. The experiment was performed in biological triplicates, and interactors that appeared in all replicates but not in the control were selected for further analysis. Although we identified more than 100 interactors of Wag31, we analyzed only the top 25 hits, with a PSM cut-off 18 and unique peptides5. Additionally, two of Wag31's established interactors, AccD5 and Rne, were among the top five hits, thus validating our data.

      As mentioned in line 139 of the previous version of the manuscript, we agree that the interactions can either be direct or through a third partner. The fact that we obtained known interactors of Wag31 makes us believe these interactions are genuine. Moreover, for validation, we performed pulldown experiments by mixing E. coli lysates expressing His-Wag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer contained 1% Triton X100 that eliminates all non-specific and indirect interactions. However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. As mentioned above, this caveat was stated in the previous version of the manuscript.

      (3) The authors may perhaps like to rephrase claims of effects lipid homeostasis, as my understanding is that lipid localisation rather than catabolism/breakdown is affected.

      We thank the reviewer for the comment. In this manuscript, we are trying to convey that Wag31 is a spatiotemporal regulator of lipid metabolism. It is a peripheral protein that is hooked to the membrane via Cardiolipin and forms a scaffold at the poles, which helps localize several enzymes involved in lipid metabolism.

      Homeostasis is the process by which an organism maintains a steady-state of balance and stability in response to changes. Depletion of Wag31 not only results in delocalisation of lipids in intracellular lipid inclusions but also leads to changes in the levels of various lipid classes. Advancement in the field of spatial biology underscores the importance of native localization of various biological molecules crucial for maintaining a steady-cell of the cell. Hence, we have used the word “homeostasis” to describe both the changes observed in lipid metabolism.

      Reviewer #2 (Public review):

      Summary:

      Kapoor et. al. investigated the role of the mycobacterial protein Wag31 in lipid and peptidoglycan synthesis and sought to delineate the role of the N- and C- terminal domains of Wag31. They demonstrated that modulating Wag31 levels influences lipid homeostasis in M. smegmatis and cardiolipin (CL) localisation in cells. Wag31 was found to preferentially bind CL-containing liposomes, and deleting the N-terminus of the protein significantly decreased this interaction. Novel interactions between Wag31 and proteins involved in lipid metabolism and cell wall synthesis were identified, suggesting that Wag31 recruits proteins to the intracellular membrane domain by direct interaction.

      Strengths:

      (1) The importance of Wag31 in maintaining lipid homeostasis is supported by several lines of evidence. (2) The interaction between Wag31 and cardiolipin, and the role of the N-terminus in this interaction was convincingly demonstrated.

      Weaknesses:

      (1) MS experiments provide some evidence for novel protein-protein interactions. However, the pulldown experiments lack a valid negative control.

      We thank the reviewer for the comment. We have included two non-interactors of Wag31 i.e. MmpL4 and MmpS5 which were not identified in our interactome database as negative controls in the experiment. As shown in Figure S3, we performed His pull-down experiments with both of them independently twice, each time with a positive control (known interactor of Wag31 (Msm2092)). Fig. S3b revised shows E. coli lysate expressing His-Wag31 which was incubated with Msm lysates expressing either FLAG tagged-MmpL4 or -MmpS5 or Msm2092 (revised Fig. S3c). The mixed lysates were pulled down with Cobalt beads that bind to the His-tagged protein and analysed using Western blot analysis by probing with anti-FLAG antibody (revised Fig. S3d.). The data presented confirms that the interactions validated through the pull down assay were indeed specific.

      (2) The role of the N-terminus in the protein-protein interaction has not been ruled out.

      We thank the reviewer for the comment. Wag31<sub>Msm</sub> is a 272 amino acids long protein. The Nterminal of Wag31, which houses the DivIVA-domain, comprises the first 60 amino acids. Previously, we attempted to express the N-terminal (60 aa long) and the C-terminal (212 aa long) truncated proteins in various mycobacterial shuttle vectors to perform MS/MS experiments. Despite numerous efforts, neither expressed with the N/C-terminal FLAG tag or no tag in episomal or integrative vectors due to instability of the protein. Eventually, we successfully expressed the C-terminal Wag31 with an N and Cterminal hexa-His tag. However, this expression was not sufficient or stable enough for us to perform Ni<sup>2+</sup>-affinity pull-down experiments for mass spectrometry. N-terminal of Wag31 could not be expressed in M. smegmatis even with N and C-terminal Hexa-His tags.

      To rule out the role of the N-terminal in mediating protein-protein interactions, we cloned the N-terminal of Wag31 that comprises the DivIVA-domain in pET28b vector (Fig. 7a revised). Subsequently, the truncated protein, hereafter called  Wag31<sub>∆C</sub>  flanked by 6X His tags at both the termini was expressed in E. coli and mixed with Msm lysates expressing interactors of Wag31 (Fig. 7b-c revised). Earlier experiments with Wag31<sub>∆1-60</sub or Wag31<sub>∆N</sub> (in the revised manuscript) were performed with MurG, SepIVA, Msm2092 and AccA3 (Fig. 7e-g). Thus, we used the same set of interactors to test our hypothesis. Briefly, His-  Wag31<sub>∆C</sub>  was mixed with Msm lysates expressing either FLAG-MurG, -SepIVA, -Msm2092 or -AccA3 and pull down experiments were performed as described previously. FLAGMmpS5, a non-interactor of Wag31 was used as a negative control. As shown in Fig. 7d revised, His-Wag31 could bind to all the four interactors whereas His- Wag31<sub>∆C</sub>  couldn’t, strengthening the conclusion that interactions of Wag31 with other proteins are mediated by its Cterminal. However, we can’t ignore the possibility of other interactors binding to the N-terminal of Wag31. Unfortunately, due to poor expression/instability of  Wag31<sub>∆C</sub>  in mycobacterial shuttle vectors, we are unable to perform a global interactome analysis of  Wag31<sub>∆C</sub>

      Reviewer #3 (Public review):

      Summary:

      This manuscript describes the characterization of mycobacterial cytoskeleton protein Wag31, examining its role in orchestrating protein-lipid and protein-protein interactions essential for mycobacterial survival. The most significant finding is that Wag31, which directs polar elongation and maintains the intracellular membrane domain, was revealed to have membrane tethering capabilities.

      Strengths:

      The authors provided a detailed analysis of Wag31 domain architecture, revealing distinct functional roles: the N-terminal domain facilitates lipid binding and membrane tethering, while the C-terminal domain mediates protein-protein interactions. Overall, this study offers a robust and new understanding of Wag31 function.

      Weaknesses:

      The following major concerns should be addressed.

      • Authors use 10-N-Nonyl-acridine orange (NAO) as a marker for cardiolipin localization. However, given that NAO is known to bind to various anionic phospholipids, how do the authors know that what they are seeing is specifically visualizing cardiolipin and not a different anionic phospholipid? For example, phosphatidylinositol is another abundant anionic phospholipid in mycobacterial plasma membrane.

      We thank the reviewer for the comment. Despite its promiscuous binding to other anionic phospholipids, 10-N-Nonyl-acridine orange is widely used to stain Cardiolipin and determine its localisation in bacterial cells and mitochondria of eukaryotes (Garcia Fernandez et al., 2004; Mileykovskaya & Dowhan, 2000; Renner & Weibel, 2011). This is because it has a stronger affinity for Cardiolipin than other anionic phospholipids with the affinity constant being 2 × 10<sup>6</sup> M−<sup>1</sup> for Cardiolipin association and 7 × 10<sup>4</sup> M−<sup>1</sup> for that of phosphatidylserine and phosphatidylinositol association (Petit et al., 1992). Additionally, there is not yet another stain available for detecting Cardiolipin. Our proteinlipid binding assays suggest that Wag31 preferentially binds to Cardiolipin over other anionic phospholipids (Fig. 4b), hence it is likely that the majority of redistribution of NAO fluorescence that we observe might be contributed by Cardiolipin mislocalization due to altered Wag31 levels, with smaller degree of NAO redistribution intensity coming indirectly from other anionic phospholipids displaced from the membrane due to the loss of membrane integrity and cell shape changes due to Wag31.

      • Authors' data show that the N-terminal region of Wag31 is important for membrane tethering. The authors' data also show that the N-terminal region is important for sustaining mycobacterial morphology. However, the authors' statement in Line 256 "These results highlight the importance of tethering for sustaining mycobacterial morphology and survival" requires additional proof. It remains possible that the N-terminal region has another unknown activity, and this yet-unknown activity rather than the membrane tethering activity drives the morphological maintenance. Similarly, the N-terminal region is important for lipid homeostasis, but the statement in Line 270, "the maintenance of lipid homeostasis by Wag31 is a consequence of its tethering activity" requires additional proof. The authors should tone down these overstatements or provide additional data to support their claims.

      We agree with the reviewer that there exists a possibility for another function of the N-terminal that may contribute to sustaining mycobacterial physiology and survival. We would revise our statements in the paper to reflect the data. Results shown suggest that the tethering activity of the Nterminal region may contribute to mycobacterial morphology and survival. However, additional functions of this region can’t be ruled out. Similarly, the maintenance of lipid homeostasis by Wag31 may be associated with its tethering activity, although other mechanisms could also contribute to this process.

      • Authors suggest that Wag31 acts as a scaffold for the IMD (Fig. 8). However, Meniche et. al. has shown that MurG as well as GlfT2, two well-characterized IMD proteins, do not colocalize with Wag31 (DivIVA) (https://doi.org/10.1073/pnas.1402158111). IMD proteins are always slightly subpolar while Wag31 is located to the tip of the cell. Therefore, the authors' biochemical data cannot be easily reconciled with microscopic observations in the literature. This raises a question regarding the validity of protein-protein interaction shown in Figure 7. Since this pull-down assay was conducted by mixing E. coli lysate expressing Wag31 and Msm lysate expression Wag31 interactors like MurG, it is possible that the interactions are not direct. Authors should interpret their data more cautiously. If authors cannot provide additional data and sufficient justifications, they should avoid proposing a confusing model like Figure 8 that contradicts published observations.

      In the literature, MurG and GlfT2 have been shown to have polar localisation (Freeman et al., 2023; Hayashi et al., 2016; Kado et al., 2023) and two groups have shown slightly sub-polar localisation of MurG (García-Heredia et al., 2021; Meniche et al., 2014). Additionally, (Freeman et al., 2023) showed SepIVA to be a spatio-temporal regulator of MurG. MS/MS analysis of Wag31 immunoprecipitation data yielded both MurG and SepIVA to be interactors of Wag31 (Fig. 3). Given Wag31 also displays polar localisation, it is likely that it associates with the polar MurG. However, since a sub-polar localisation of MurG has also been reported, it is possible that they do not interact directly and another protein mediates their interaction. Based on the above, we will modify the model proposed in Fig. 8.

      We agree that for validation of interaction, we performed pulldown experiments by mixing E. coli lysates expressing His-Wag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer contained 1% Triton X100 that eliminates all non-specific and indirect interactions. However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. We will describe this caveat in the revised manuscript and propose a model that reflects the results we obtained.

      References:

      Freeman, A. H., Tembiwa, K., Brenner, J. R., Chase, M. R., Fortune, S. M., Morita, Y. S., & Boutte, C. C. (2023). Arginine methylation sites on SepIVA help balance elongation and septation in Mycobacterium smegmatis. Mol Microbiol, 119(2), 208-223. https://doi.org/10.1111/mmi.15006

      Garcia Fernandez, M. I., Ceccarelli, D., & Muscatello, U. (2004). Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal Biochem, 328(2), 174-180. https://doi.org/10.1016/j.ab.2004.01.020

      García-Heredia, A., Kado, T., Sein, C. E., Puffal, J., Osman, S. H., Judd, J., Gray, T. A., Morita, Y. S., & Siegrist, M. S. (2021). Membrane-partitioned cell wall synthesis in mycobacteria. eLife, 10. https://doi.org/10.7554/eLife.60263

      Habibi Arejan, N., Ensinck, D., Diacovich, L., Patel, P. B., Quintanilla, S. Y., Emami Saleh, A., Gramajo, H., & Boutte, C. C. (2022). Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum. Front Microbiol, 13, 1085918. https://doi.org/10.3389/fmicb.2022.1085918

      Hayashi, J. M., Luo, C. Y., Mayfield, J. A., Hsu, T., Fukuda, T., Walfield, A. L., Giffen, S. R., Leszyk, J. D., Baer, C. E., Bennion, O. T., Madduri, A., Shaffer, S. A., Aldridge, B. B., Sassetti, C. M., Sandler, S. J., Kinoshita, T., Moody, D. B., & Morita, Y. S. (2016). Spatially distinct and metabolically active membrane domain in mycobacteria. Proc Natl Acad Sci U S A, 113(19), 5400-5405. https://doi.org/10.1073/pnas.1525165113

      Kado, T., Akbary, Z., Motooka, D., Sparks, I. L., Melzer, E. S., Nakamura, S., Rojas, E. R., Morita, Y. S., & Siegrist, M. S. (2023). A cell wall synthase accelerates plasma membrane partitioning in mycobacteria. eLife, 12, e81924. https://doi.org/10.7554/eLife.81924

      Meniche, X., Otten, R., Siegrist, M. S., Baer, C. E., Murphy, K. C., Bertozzi, C. R., & Sassetti, C. M. (2014). Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc Natl Acad Sci U S A, 111(31), E32433251. https://doi.org/10.1073/pnas.1402158111

      Mileykovskaya, E., & Dowhan, W. (2000). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol, 182(4), 1172-1175. https://doi.org/10.1128/JB.182.4.1172-1175.2000

      Petit, J. M., Maftah, A., Ratinaud, M. H., & Julien, R. (1992). 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem, 209(1), 267273. https://doi.org/10.1111/j.1432-1033.1992.tb17285.x

      Renner, L. D., & Weibel, D. B. (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A, 108(15), 6264-6269. https://doi.org/10.1073/pnas.1015757108

      Schägger, H. (2006). Tricine-SDS-PAGE. Nat Protoc, 1(1), 16-22. https://doi.org/10.1038/nprot.2006.4

      Xu, W. X., Zhang, L., Mai, J. T., Peng, R. C., Yang, E. Z., Peng, C., & Wang, H. H. (2014). The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun, 448(3), 255-260. https://doi.org/10.1016/j.bbrc.2014.04.116

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Ln 130. A better clarification/discussion is required here. It is clear that both depletion and overexpression have an effect in levels of various lipids, but subsequent descriptions show that they affect different classes of lipids.

      We thank the reviewer for the comment. We have included a clarification for this in the discussion section.

      (2) The pulldown assays results are interesting, but the links are tentative.

      We thank the reviewer for the comment. The interactome of Wag31 was identified through the immunoprecipitation of Flag-tagged Wag31 complemented at an integrative locus in Wag31 mutant background to avoid overexpression artifacts. We used Msm::gfp expressing an integrative copy (at L5 locus) of FLAG-GFP as a control to subtract non-specific interactions. The experiment was performed in biological triplicates, and interactors that appeared in all replicates were selected for further analysis. Although we identified more than 100 interactors of Wag31, we analyzed only the top 25 hits, with a PSM cut-off 18 and unique peptides5. Additionally, two of Wag31's established interactors, AccD5 and Rne, were among the top five hits, thus validating our data.

      Though we agree that the interactions can either be direct or through a third partner, the fact that we obtained known interactors of Wag31 makes us believe these interactions are genuine. Moreover, for validation, we performed pulldown experiments by mixing E. coli lysates expressing HisWag31 full-length or truncated protein with M. smegmatis lysates expressing FLAG-tagged interacting proteins. The wash conditions used were quite stringent for these pull-down assays—the wash buffer contained 1% Triton X100 that eliminates all non-specific and indirect interactions. However, we agree that we cannot conclusively state that the interactions are direct without purifying the proteins and performing the experiment. We will describe this caveat in the revised manuscript.

      (3) The authors may perhaps like to rephrase claims of effects lipid homeostasis, as my understanding is that lipid localisation rather than catabolism/breakdown is affected.

      We thank the reviewer for the comment. In this manuscript, we are trying to convey that Wag31 is a spatiotemporal regulator of lipid metabolism. It is a peripheral protein that is hooked to the membrane via Cardiolipin and forms a scaffold at the poles, which helps localize several enzymes involved in lipid metabolism.

      Homeostasis is the process by which an organism maintains a steady-state of balance and stability in response to changes. Depletion of Wag31 not only results in delocalisation of lipids in intracellular lipid inclusions but also leads to changes in the levels of various lipid classes. Advancement in the field of spatial biology underscores the importance of native localization of various biological molecules crucial for maintaining a steady-cell of the cell. Hence, we have used the word “homeostasis” to describe both the changes observed in lipid metabolism.

      Reviewer #2 (Recommendations for the authors):

      I recommend the following experiments to strengthen the data presented:

      (1) Include a non-interacting FLAG-tagged protein as a negative control in the pull-down experiment to strengthen this data.

      We thank the reviewer for the comment. As suggested, we have included non-interacting FLAGtagged proteins as negative controls in the pulldown experiment. We chose MmpL4 and MmpS5 which were not found in the Wag31 interactome data. We performed pull-down experiments with both of them and included an interactor of Wag31 i.e. Msm2092 as a positive control. Fig. S3b revised shows E. coli lysate expressing His-Wag31 which was incubated with Msm lysates expressing either FLAG taggedMmpL4 or -MmpS5 or -Msm2092 (Fig. S3c revised). The mixed lysates were pulled down with Cobalt beads that bind to the His-tagged protein and analysed using Western blot analysis by probing with anti-FLAG antibody. The pull down experiments were performed independently twice, every time with Msm2092 as the positive control (Fig. S3d. revised).

      (2) Perform the pull-down experiments using only the Wag31 N-terminus to rule out any role that it may have in the protein-protein interactions.

      We thank the reviewer for the comment. To rule out the possibility of N-terminal of Wag31 in mediating protein-protein interactions, we cloned the N-terminal of Wag31 that comprises the DivIVAdomain in pET28b vector (Fig. 7a revised). Subsequently, the truncated protein, hereafter called Wag31<sub>∆C</sub> flanked by 6X His tags at both the termini was expressed in E. coli and subsequently mixed with Msm lysates expressing interactors of Wag31 (Fig. 7b-c revised). Earlier experiments with Wag31<sub>∆1-60</sub> or Wag31<sub>∆N</sub>  were performed with MurG, SepIVA, Msm2092 and AccA3 (Fig. 7 previous) so we used the same set of interactors to test our hypothesis. Briefly, His-Wag31<sub>∆C</sub>was mixed with Msm lysates expressing either FLAG-MurG, -SepIVA, -Msm2092 or -AccA3 and pull down experiments were performed as described previously. FLAG-MmpS5, a non-interactor of Wag31 was used as a negative control. As shown in Fig. 7d revised, His-Wag31 could bind to all the four interactors whereas His-Wag31<sub>∆C</sub> couldn’t, strengthening the conclusion that interactions of Wag31 with other proteins are mediated by its C-terminal. However, we can’t ignore the possibility of other proteins binding to the Nterminal of Wag31. Unfortunately, due to poor expression/instability of Wag31<sub>∆C</sub> in mycobacterial shuttle vectors, we couldn’t perform a global interactome analysis of Wag31<sub>∆C</sub>.

      Minor comments:

      - Please check the legend of Fig. 1g, it appears to be labelled incorrectly.

      We have checked it. It is correct. From Fig. 1g we are trying to reflect on the percentages of cells of the three strains i.e. Msm+ATc, Δwag31-ATc, and Δwag31+ATc displaying rod, round or bulged morphology.

      - For MS/MS analysis, a GFP control is mentioned but it is not indicated how this was incorporated in the data analysis. This information should be added.

      We have incorporated that in the revised methodology.

      - The information presented in Fig. 3a, e and f could be combined in one table.

      We appreciate the idea of the reviewer but we prefer a pictorial representation of the data. It allows readers to consume the information in parts, make quicker comparisons and understand trends easily.

      - Fig. 4c Wag31K20A appears smaller in size than the wild-type protein - why is this the case? Is this not a single amino acid substitution?

      Though K20A is a single amino acid substitution, it alters the mobility of Wag31 on SDS-PAGE gel. The sequence analysis of the plasmid expressing Wag31<sub>K20A</sub> doesn’t show additional mutations other than the desired K20A. The change in mobility could be due to a change in the conformation of Wag31<sub>K20A</sub> or its ability to bind to SDS or both that modify its mobility under the influence of electric field.

      - Please clarify what is contained in the first panel of fig 4e. compared to what is in the second panel.

      The first panel represents CL-Dil-Liposomes before incubation with Wag31-GFP and the second panel shows CL-Dil-Liposomes after incubation with Wag31-GFP. The third panel shows the mixture as observed in the green channel to investigate the localisation of Wag31-GFP in the liposome-protein mix. Fourth panel shows the merged of second and third.

      - The data in Fig 6d suggests higher levels of CL in the ∆wag31 compared to wild-type - how do the authors reconcile this with the MS data in Fig. 2g showing lower CL levels?

      Fig. 6d represents the distribution of CL localisation in the tested strains of mycobacteria whereas Fig. 2g shows the absolute levels of CL in various strains. We attribute greater confidence on the lipidomics data which suggests down regulation of CL species. The NAO staining and microscopy is merely for studying localization of the CL along the cell, and cannot be used to reliably quantify or equate it to CL levels. The staining using a probe such as NAO is dependent on factors such as hydrophobicity and permeability of the cell wall, which we expect to be severely altered in a Wag31 mutant. Therefore, the increased staining of NAO seen in Wag31 mutant could just be reflective of the increased uptake of the dye rather than absolute levels of CL. The specificity of staining and localization however can be expected to be unaltered.

      Reviewer #3 (Recommendations for the authors):

      Following are suggestions for improving the writing and presentation.

      • Figure 1, the meaning of the yellow arrows present in f and h should be mentioned in the figure legend.

      We have incorporated that in the revised legend. In Fig.1f, the yellow arrowhead represents the bulged pole morphology whereas in Fig. 1h, it indicates intracellular lipid inclusions.

      • Figure 7 legend refers to panels g, h, and i. However, Figure 7 only has panels a-c. The legend lacks a description of panel c.

      We have corrected the typos and the legend.

      • Figure S1, F2-R2 and F3-R3 expected sizes should be stated in the legend of the figure.

      We have updated the legends.

      • Figure S5, is this the same figure as 5e? If so, there is no need for this figure.

      We have removed Fig. S5.

      • Methods need to be written more carefully with enough details. I listed some of the concerns below.

      Detailed methodology was previously provided in the supplementary material and now we have moved it to the materials and methods in the revised manuscript.

      • Line 392, provide more details on western blotting. What is the secondary antibody? What image documentation system was used?

      We have updated the methodology.

      • Line 400, while the methods may be the same as the reference 64, authors should still provide key details such as the way samples were fixed and processed for SEM and TEM.

      We have provided a detailed description of the same in methodology in the revised version.

      • Line 437, how do authors calculate the concentration of liposome to be 10 µM? Do they possibly mean the concentration of phospholipids used to make the liposomes?

      Yes, this is the concentration of total lipids used to make liposomes. 1 μM of Wag31 or its mutants were mixed with 100 nm extruded liposomes containing 10 μm total lipid in separate Eppendorf tubes.

      • Supplemental Line 9, "turns of" should read "turns off".

      We have edited this.

      • Supplemental Line 13, define LHS and RHS.

      LHS or left hand sequence and RHS or right hand sequence refers to the upstream and downstream flanking regions of the gene of interest.

      • Supplemental Line 20, indicate the manufacturer of the microscope and type of the objective lens.

      We have added these details now.

      • Supplemental Line 31, define MeOH, or use a chemical formula like chloroform.

      MeOH is methanol. We have provided a chemical formula in the revised version.

      • Supplemental Line 53, indicate the concentration of trypsin.

      We have included that in the revised version.

      • Supplemental Line 72, g is not a unit. "30,000 g" should be "30,000x g".

      We have revised this in the manuscript.

      • Supplemental Line 114, provide more details on western blotting. What is the manufacturer of antiFLAG antibody? What is the secondary antibody? How was the antibody binding visualized? What image documentation system was used?

      We have provided these details in the revised version.

    1. eLife Assessment

      The authors provide valuable insights into the candidate upstream transcriptional regulatory factors that control the spatiotemporal expression of selector genes and their targets for GABAergic vs glutamatergic neuron fate in the anterior brainstem. The computational analysis of single-cell RNA-seq and single-cell ATAC-seq datasets to predict TF binding combined with cut and tag-seq to find TF binding represents a solid approach to support the findings in the study, although the display and discussion of the datasets could be strengthened. This study will be of interest to neurobiologists who study transcriptional mechanisms of neuronal differentiation.

    2. Reviewer #1 (Public review):

      Summary:

      The objective of this research is to understand how the expression of key selector transcription factors, Tal1, Gata2, Gata3, involved in GABAergic vs glutamatergic neuron fate from a single anterior hindbrain progenitor domain is transcriptionally controlled. With suitable scRNAseq, scATAC-seq, CUT&TAG, and footprinting datasets, the authors use an extensive set of computational approaches to identify putative regulatory elements and upstream transcription factors that may control selector TF expression. This data-rich study will be a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators identified in the study. The data are displayed in some of the main and supplemental figures in a way that makes it difficult to appreciate and understand the authors' presentation and interpretation of the data in the Results narrative. Primary images used for studying the timing and coexpression of putative upstream regulators, Insm1, E2f1, Ebf1, and Tead2 with Tal1 are difficult to interpret and do not convincingly support the authors' conclusions. There appears to be little overlap in the fluorescent labeling, and it is not clear whether the signals are located in the cell soma nucleus.

      Strengths:

      The main strength is that it is a data-rich compilation of putative upstream regulators of selector TFs that control GABAergic vs glutamatergic neuron fates in the brainstem. This resource now enables future perturbation-based hypothesis testing of the gene regulatory networks that help to build brain circuitry.

      Weaknesses:

      Some of the findings could be better displayed and discussed.

    3. Author response:

      Reviewer #1 (Public review):

      Summary:

      The objective of this research is to understand how the expression of key selector transcription factors, Tal1, Gata2, Gata3, involved in GABAergic vs glutamatergic neuron fate from a single anterior hindbrain progenitor domain is transcriptionally controlled. With suitable scRNAseq, scATAC-seq, CUT&TAG, and footprinting datasets, the authors use an extensive set of computational approaches to identify putative regulatory elements and upstream transcription factors that may control selector TF expression. This data-rich study will be a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators identified in the study. The data are displayed in some of the main and supplemental figures in a way that makes it difficult to appreciate and understand the authors' presentation and interpretation of the data in the Results narrative. Primary images used for studying the timing and coexpression of putative upstream regulators, Insm1, E2f1, Ebf1, and Tead2 with Tal1 are difficult to interpret and do not convincingly support the authors' conclusions. There appears to be little overlap in the fluorescent labeling, and it is not clear whether the signals are located in the cell soma nucleus.

      Strengths:

      The main strength is that it is a data-rich compilation of putative upstream regulators of selector TFs that control GABAergic vs glutamatergic neuron fates in the brainstem. This resource now enables future perturbation-based hypothesis testing of the gene regulatory networks that help to build brain circuitry.

      We thank Reviewer #1 for the thoughtful assessment and recognition of the extensive datasets and computational approaches employed in our study. We appreciate the acknowledgment that our efforts in compiling data-rich resources for identifying putative regulators of key selector transcription factors (TFs)—Tal1, Gata2, and Gata3—are valuable for future hypothesis-driven research.

      Weaknesses:

      Some of the findings could be better displayed and discussed.

      We acknowledge the concerns raised regarding the clarity and interpretability of certain figures, particularly those related to expression analyses of candidate upstream regulators such as Insm1, E2f1, Ebf1, and Tead2 in relation to Tal1. We agree that clearer visualization and improved annotation of fluorescence signals are crucial to accurately support our conclusions. In our revised manuscript, we will enhance image clarity and clearly indicate sites of co-expression for Tal1 and its putative regulators, ensuring the results are more readily interpretable. Additionally, we will expand explanatory narratives within the figure legends to better align the figures with the results section.

      Reviewer #2 (Public review):

      Summary:

      In the manuscript, the authors seek to discover putative gene regulatory interactions underlying the lineage bifurcation process of neural progenitor cells in the embryonic mouse anterior brainstem into GABAergic and glutamatergic neuronal subtypes. The authors analyze single-cell RNA-seq and single-cell ATAC-seq datasets derived from the ventral rhombomere 1 of embryonic mouse brainstems to annotate cell types and make predictions or where TFs bind upstream and downstream of the effector TFs using computational methods. They add data on the genomic distributions of some of the key transcription factors and layer these onto the single-cell data to get a sense of the transcriptional dynamics.

      Strengths:

      The authors use a well-defined fate decision point from brainstem progenitors that can make two very different kinds of neurons. They already know the key TFs for selecting the neuronal type from genetic studies, so they focus their gene regulatory analysis squarely on the mechanisms that are immediately upstream and downstream of these key factors. The authors use a combination of single-cell and bulk sequencing data, prediction and validation, and computation.

      We also appreciate the thoughtful comments from Reviewer #2, highlighting the strengths of our approach in elucidating gene regulatory interactions that govern neuronal fate decisions in the embryonic mouse brainstem. We are pleased that our focus on a critical cell-fate decision point and the integration of diverse data modalities, combined with computational analyses, has been recognized as a key strength.

      Weaknesses:

      The study generates a lot of data about transcription factor binding sites, both predicted and validated, but the data are substantially descriptive. It remains challenging to understand how the integration of all these different TFs works together to switch terminal programs on and off.

      Reviewer #2 correctly points out that while our study provides extensive data on predicted and validated transcription factor binding sites, clearly illustrating how these factors collectively interact to regulate terminal neuronal differentiation programs remains challenging. We acknowledge the inherently descriptive nature of the current interpretation of our combined datasets.

      In our revision, we will clarify how the different data types support and corroborate one another, highlighting what we consider the most reliable observations of TF activity. Additionally, we will revise the discussion to address the challenges associated with interpreting the highly complex networks of interactions within the gene regulatory landscape.

      We sincerely thank both reviewers for their constructive feedback, which we believe will significantly enhance the quality and accessibility of our manuscript.

  8. social-media-ethics-automation.github.io social-media-ethics-automation.github.io
    1. W3Schools. Introduction to HTML. URL: https://www.w3schools.com/html/html_intro.asp (visited on 2023-11-24).

      The W3Schools HTML Introduction page explains that HTML is the basic language used to build web pages. It talks about how HTML uses tags (like labels) to mark things like titles, headings, and paragraphs. For example, you use one tag type to create a heading and another for a paragraph. It even shows a simple example of what a basic web page looks like in code. It also mentions that your web browser (like Chrome or Safari) reads this code and turns it into the websites you see. And there’s a special line at the top of the page that helps the browser understand it’s working with HTML.

    1. Welcome back and this is going to be a super quick lesson where I just want to discuss cost allocation tags. So this is something you'll use in normal operations when you manage AWS accounts. But for the exam, there are a number of key points that you need to be aware of. So let's keep this brief and just jump in and get started.

      Cost allocation tags are things that you can enable to provide additional information for any billing reports available within AWS. So cost allocation tags need to be enabled individually. And this is either on a per account basis for standard accounts or something that's performed in the organizational master account if you use AWS Organizations.

      Now cost allocation tags come in two different forms. You have AWS generated ones. You can always start with AWS: and two very common ones are AWS:createdBy or AWS:cloudformation:stack-name. And if you enable cost allocation tags, then these tags are added to AWS resources automatically by AWS.

      Now I always see questions in the exam which do mention AWS:createdBy. Now this details which identity created a resource as long as cost allocation tags are enabled. So this is not something that can be added retroactively. You need to make sure that this is enabled on an account or for an organization. And from that point onward, AWS will automatically add this cost allocation tag to any resource or any supported resource within the account.

      There are also user defined tags which can be enabled. So you can create these—for example, maybe you wanted to have department tags or cost center tags or tags that indicated whether environments were production or development. And you can enable these and use them as cost allocation tags and these will be visible in any AWS cost reporting.

      Now both of these—so user defined and AWS defined or AWS generated—they're going to be visible once enabled within AWS cost reports and these can be used as a filter. So you're able to determine which resources were created by a user or which resources belong to certain departments or cost centers. And you can use this as part of your organizational finance systems to correctly allocate AWS costs to specific areas of your business.

      Now enabling these and having them so they're visible within cost reports can take up to 24 hours. So this is something that you need to plan in advance. None of these are retroactive. So keep that in mind for the exam and real world usage.

      Now to illustrate how this works and what better way than to use some obnoxiously large graphics. Let's take a simple example: two EC2 instances for the category application. Let's say that in advance I create or enable two different cost allocation tags, AWS:createdBy and a user defined tag called app. This is what you might see.

      Resources created will automatically be tagged with these two different tags. So the AWS generated AWS:createdBy tag, which allows you to see which identity created that resource. And then the user defined tag user:application and the two different current values for this tag are Categorim-prod and Categorim-dev.

      Now any reporting which is generated from this point onward will include these tags. So we could split out the costs for our finance team detailing which costs are allocated for the Categorim production and the Categorim development application. And then we could also produce isolated costs for resources created by specific AWS users.

      So by using cost allocation tags effectively, we can feed these costs into our organizational finance processes.

      Now that's pretty much all you need to know for the exam. Just the format of these tags—pay specific attention to AWS:createdBy because that's what I see in the exam all the time. Just know that these need to be enabled. They are not retroactive. And once you've enabled them, it can take up to 24 hours for these to be visible and used by AWS.

      So that being said, that's everything I wanted to cover in this lesson. Go ahead and complete the video. And when you're ready, I'll look forward to you joining me in the next.

  9. docdrop.org docdrop.org
    1. In the past three decades, moreover, as the class gaps have rapidly widened, local property taxes in many states have funded a smaller and smaller fraction of school budgets, in part because court decisions in those states have mandated equalization of spending across school districts.

      This is connected to opportunity hoarding, where affluent families secure exclusive advantages like AP courses, test prep, legacy admissions, and extracurricular stacking, that limit mobility for others. Low-income high achievers are disproportionately underrepresented at selective institutions, due not to ability, but to a lack of information and institutional support. I applied to college on my own. No guidance counselor explained FAFSA, CA Dreamer, or TAG to me because there were none. I missed some early deadlines because I didn’t know they existed. The most ironic thing was that my friends and posts from Reddit helped me to submit my college application.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02465

      Corresponding author(s): Saravanan, Palani

      1. General Statements

      We would like to thank the Review Commons Team for handling our manuscript and the Reviewers for their constructive feedback and suggestions. In our revised manuscript, we have addressed and incorporated all the major suggestions of the reviewers, and we have also added new significant data on the role of Tropomyosin in regulation of endocytosis through its control over actin monomer pool maintenance and actin network homeostasis. We believe that with all these additions, our study has significantly gained in quality, strength of conclusions made, and scope for future work.

      2. Point-by-point description of the revisions

      Reviewer #1

      Evidence, reproducibility and clarity

      There are 2 Major issues -

      Having an -ala-ser- linker between the GFP and tropomyosin mimics acetylation. This is not the case, and more likely the this linker acts as a spacer that allows tropomyosin polymers to form on the actin, and without it there is steric hindrance. A similar result would be seen with a simple flexible uncharged linker. It has been shown in a number of labs that the GFP itself masks the effect of the charge on the amino terminal methionine. This is consistent with NMR, crystallographic and cryo structural studies. Biochemical studies should be presented to demonstrate that the impact of a linker for the conclusions stated to be made, which provide the basis of a major part of this study.

      Response: We would like to clarify that all mNG-Tpm constructs used in our study contain a 40 amino-acid (aa) flexible linker between the N-terminal mNG fluorescent protein and the Tpm protein as per our earlier published study (Hatano et al., 2022). During initial optimization, we have also experimented with linker length and the 40aa-linker length works optimally for clear visualization of Tpm onto actin cable structures in budding yeast, fission yeast (both S. pombe and S. japonicus), and mammalian cells (Hatano et al., 2022). These constructs have also been used since in other studies (Wirshing et al., 2023; Wirshing and Goode, 2024) and currently represents the best possible strategy to visualize Tpm isoforms in live cells. In our study, we characterized these proteins for functionality and found that both mNG-Tpm1 and mNG-Tpm2 were functional and can rescue the synthetic lethality observed in Dtpm1Dtpm2 cells. During our study, we observed that mNG-Tpm1 expression from a single-copy integration vector did not restore full length actin cables in Dtpm1 cells (Fig. 1B, 1C). We hypothesized that this could be a result of reduced binding affinity of the tagged tropomyosin due to lack of normal N-terminal acetylation which stabilizes the N-terminus. The 40aa linker is unstructured and may not be able to neutralize the charge on the N-terminal Methionine, thus, we tried to insert -Ala-Ser- dipeptide which has been routinely used in vitro biochemical studies to stabilize the N-terminal helix and impart a similar effect as the N-terminal acetylation (Alioto et al., 2016; Palani et al., 2019; Christensen et al., 2017) by restoring normal binding affinity of Tpm to F-actin (Monteiro et al., 1994; Greenfield et al., 1994). We observed that addition of the -Ala-Ser- dipeptide to mNG-Tpm fusion, indeed, restored full length actin cables when expressed in Dtpm1 cells, performing significantly better in our in vivo experiments (Fig. 1B, 1C). We agree with the reviewer that the -AS- dipeptide addition may not mimic N-terminal acetylation structurally but as per previous studies, it may stabilize the N-terminus of Tpm and allow normal head-to-tail dimer formation (Greenfield et al., 1994; Monteiro et al., 1994; Frye et al., 2010). We have discussed this in our new Discussion section (Lines 350-372). Since, the addition of -AS- dipeptide was referred to as "acetyl-mimic (am)" in a previous study (Alioto et al., 2016), we continued to use the same nomenclature in our study. Now as per your suggestions and to be more accurate, we have renamed "mNG-amTpm" constructs as "mNG-ASTpm" throughout the study to not confuse or claim that -AS- addition mimics acetylation. In any case, we have not seen any other ill effect of -AS- dipeptide introduction in addition to our 40 amino acid linker suggesting that it can also be considered part of the linker. Although, we agree with the reviewer that biochemical characterization of the effect of linker would be important to determine, we strongly believe that it is currently outside the scope of this study and should be taken up for future work with these proteins. Our study has majorly aimed to understand the functionality and utility of these mNG-Tpm fusion proteins for cell biological experiments in vivo, which was not done earlier in any other model system.

      My major issue however is making the conclusions stated here, using an amino-terminal fluorescent protein tag that s likely to impact any type of isoform selection at the end of the actin polymer. Carboxyl terminal tagging may have a reduced effect, but modifying the ends of the tropomyosin, which are integral in stabilising end to end interactions with itself on the actin filament, never mind any section systems that may/maynot be present in the cell, is not appropriate.

      Response: We agree with the reviewer that N-terminal tagging of tropomyosin may have effects on its function, but these constructs represent the only fluorescently tagged functional tropomyosin constructs available currently while C-terminal fusions are either non-functional (we were unable to construct strains with endogenous Tpm1 gene fused C-terminally to GFP) or do not localize clearly to actin structures (See Figure R1 showing endogenous C-terminally tagged Tpm2-yeGFP that shows almost no localization to actin cables). To our knowledge, our study represents a first effort to understand the question of spatial sorting of Tpm isoforms, Tpm1 and Tpm2, in S. cerevisiae and any future developments with better visualization strategies for Tpm isoforms without compromising native N-terminal modifications and function will help improve our understanding of these proteins in vivo. We have also discussed these possibilities in our new Discussion section (Lines 391-396).

      Significance

      This paper explores the role of formin in determining the localisation of different tropomyosins to different actin polymers and cellular locations within budding yeast. Previous studies have indicated a role for the actin nucleating proteins in recruiting different forms of tropomyosin within fission yeast. In mammalian cells there is variation in the role of formins in affiecting tropomyosin localisation - variation between cell type. There is also evidence that other actin binding proteins, and tropomyosin abundance play roles in regulating the tropomyosin-actin association according to cell type. Biochemical studies have previously been undertaken using budding yeast and fission yeast that the core actin polymerisation domain of formins do not interact with tropomyosin directly. The significance of this study, given the above, and the concerns raised is not clear to this reviewer.

      Response: __Our study explores multiple facets of Tropomyosin (Tpm) biology. The lack of functional tagged Tpm has been a major bottleneck in understanding Tpm isoform diversity and function across eukaryotes. In our study, we characterize the first functional tagged Tpm proteins (Fig. 1, Fig. S1) and use them to answer long-standing questions about localization and spatial sorting of Tpm isoforms in the model organism S. cerevisiae (Fig. 2, Fig. 3, Fig. S2, Fig. S3). We also discover that the dual Tpm isoforms, Tpm1 and Tpm2, are functionally redundant for actin cable organization and function, while having gained divergent functions in Retrograde Actin Cable Flow (RACF) (Fig. 4, Fig. 5A-D, Fig. S4, Fig. S5, Fig. S6). We have now added new data on role of global Tpm levels controlling endocytosis via maintenance of normal linear-to-branched actin network homeostasis in S. cerevisiae (Fig. 5E-G)__. We respectfully differ with the reviewer on their assessment of our study and request the reviewer to read our revised manuscript which discusses the significance, limitations, and future perspectives of our study in detail.

      Reviewer #2

      Evidence, reproducibility and clarity

      This manuscript by Dhar, Bagyashree, Palani and colleagues examines the function of the two tropomyosins, Tpm1 and Tpm2, in the budding yeast S. cerevisiae. Previous work had shown that deletion of tpm1 and tpm2 causes synthetic lethality, indicating overlapping function, but also proposed that the two tropomyosins have distinct functions, based on the observation that strong overexpression of Tpm2 causes defects in bud placement and fails to rescue tpm1∆ phenotypes (Drees et al, JCB 1995). The manuscript first describes very functional mNeonGreen tagged version of Tpm1 and Tpm2, where an alanine-serine dipeptide is inserted before the first methionine to mimic acetylation. It then proposes that the Tpm1 and Tpm2 exhibit indistinguishable localization and that low level overexpression (?) of Tpm2 can replace Tpm1 for stabilization of actin cables and cell polarization, suggesting almost completely redundant functions. They also propose on specific function of Tpm2 in regulating retrograde actin cable flow.

      Overall, the data are very clean, well presented and quantified, but in several places are not fully convincing of the claims. Because the claims that Tpm1 and Tpm2 have largely overlapping function and localization are in contradiction to previous publication in S. cerevisiae and also different from data published in other organisms, it is important to consolidate them. There are fairly simple experiments that should be done to consolidate the claims of indistinguishable localization, and levels of expression, for which the authors have excellent reagents at their disposal.

      1. Functionality of the acetyl-mimic tagged tropomyosin constructs: The overall very good functionality of the tagged Tpm constructs is convincing, but the authors should be more accurate in their description, as their data show that they are not perfectly functional. For instance, the use of "completely functional" in the discussion is excessive. In the results, the statement that mNG-Tpm1 expression restores normal growth (page 3, line 69) is inaccurate. Fig S1C shows that tpm1∆ cells expressing mNG-Tpm1 grow more slowly than WT cells. (The next part of the same sentence, stating it only partially restores length of actin cables should cite only Fig S1E, not S1F.) Similarly, the growth curve in Fig S1C suggests that mNG-amTpm1, while better than mNG-Tpm1 does not fully restore the growth defect observed in tpm1∆ (in contrast to what is stated on p. 4 line 81). A more stringent test of functionality would be to probe whether mNG-amTpm1 can rescue the synthetic lethality of the tpm1∆ tpm2∆ double mutant, which would also allow to test the functionality of mNG-amTpm2.

      __Response: __We would like to thank the reviewer for his feedback and suggestions. Based on the suggestions, we have now more accurately described the growth rescue observed by expression of mNG-ASTpm1 in Dtpm1 cells in the revised text. We have also removed the use of "completely functional" to describe mNG-Tpm functionality and corrected any errors in Figure citations in the revised manuscript.

      As per reviewers' suggestion, we have now tested rescue of synthetic lethality of Dtpm1Dtpm2 cells by expression of all mNG-Tpm variants and we find that all of them are capable of restoring the viability of Dtpm1Dtpm2 cells when expressed under their native promoters via a high-copy plasmid (pRS425) (Fig. S1E) but only mNG-Tpm1 and mNG-ASTpm1 restored viability of Dtpm1Dtpm2 cells when expressed under their native promoters via an integration plasmid (pRS305) (Fig. S1F). These results clearly suggest that while both mNG-Tpm1 and mNG-Tpm2 constructs are functional, Tpm1 tolerates the presence of the N-terminal fluorescent tag better than Tpm2. These observations now enhance our understanding of the functionality of these mNG-Tpm fusion proteins and will be a useful resource for their usage and experimental design in future studies in vivo.

      It would also be nice to comment on whether the mNG-amTpm constructs really mimicking acetylation. Given the Ala-Ser peptide ahead of the starting Met is linked N-terminally to mNG, it is not immediately clear it will have the same effect as a free acetyl group decorating the N-terminal Met.

      Response: __We agree with the reviewer's observation and for the sake of clarity and accuracy, we have now renamed "mNG-amTpm" with "mNG-ASTpm". The use of -AS- dipeptide is very routine in studies with Tpm (Alioto et al., 2016; Palani et al., 2019; Christensen et al., 2017) and its addition restores normal binding affinities to Tpm proteins purified from E. coli (Monteiro et al., 1994). We agree with the reviewer that the -AS- dipeptide addition may not mimic N-terminal acetylation structurally but as per previous studies, it may help neutralize the impact of a freely protonated Met on the alpha-helical structure and stabilize the N-terminus helix of Tpm and allow normal head-to-tail dimer formation (Monteiro et al., 1994; Frye et al., 2010; Greenfield et al., 1994). Consistent with this, we also observe a highly significant improvement in actin cable length when expressing mNG-ASTpm as compared to mNG-Tpm in Dtpm1 cells, suggesting an improvement in function probably due to increased binding affinity (Fig. 1B, 1C). We have also discussed this in our answer to Question 1 of Reviewer 1 and the revised manuscript (Lines 350-372)__.

      __ Localization of Tpm1 and Tpm2:__Given the claimed full functionality of mNG-amTpm constructs and the conclusion from this section of the paper that relative local concentrations may be the major factor in determining tropomyosin localization to actin filament networks, I am concerned that the analysis of localization was done in strains expressing the mNG-amTpm construct in addition to the endogenous untagged genes. (This is not expressly stated in the manuscript, but it is my understanding from reading the strain list.) This means that there is a roughly two-fold overexpression of either tropomyosin, which may affect localization. A comparison of localization in strains where the tagged copy is the sole Tpm1 (respectively Tpm2) source would be much more conclusive. This is important as the results are making a claim in opposition to previous work and observation in other organisms.

      Response: __We thank the reviewer for this observation and their suggestions. We agree that relative concentrations of functional Tpm1 and Tpm2 in cells may influence the extent of their localizations. As per the reviewer's suggestion, we have now conducted our quantitative analysis in cells lacking endogenous Tpm1 and only expressing mNG-ASTpm1 from an integrated plasmid copy at the leu2 locus and the data is presented in new __Figure S3. We compared Tpm-bound cable length (Fig. S3A, S3B) __and Tpm-bound cable number (Fig. S3A, S3C) along with actin cable length (Fig. S3D, S3E) and actin cable number (Fig. S3D, S3F) in wildtype, Dbnr1, and Dbni1 cells. Our analysis revealed that mNG-ASTpm1 localized to actin cable structures in wildtype, Dbnr1, and Dbni1 cells and the decrease observed in Tpm-bound cable length and number upon loss of either Bnr1 or Bni1, was accompanied by a corresponding decrease in actin cable length and number upon loss of either Bnr1 or Bni1. Thus, this analysis reached the same conclusion as our earlier analysis (Fig. 2) that mNG-ASTpm1 does not show preference between Bnr1 and Bni1-made actin cables. mNG-ASTpm2 did not restore functionality, when expressed as single integrated copy, in Dtpm1Dtpm2 cells (new results in __Fig. S1E, S1F, S5A) thus, we could not conduct a similar analysis for mNG-ASTpm2. This suggests that use of mNG-ASTpm2 would be more meaningful in the presence of endogenous Tpm2 as previously done in Fig. 2D-F.

      We have now also performed additional yeast mating experiments with cells lacking bnr1 gene and expressing either mNG-ASTpm1 or mNG-ASTpm2 and the data is shown in new Figure 3. From these observations, we observe that both mNG-ASTpm1 and mNG-ASTpm2 localize to the mating fusion focus in a Bnr1-independent manner (Fig. 3B, 3D) and suggests that they bind to Bni1-made actin cables that are involved in polarized growth of the mating projection. These results also add strength to our conclusion that Tpm1 and Tpm2 localize to actin cables irrespective of which formin nucleates them. Overall, these new results highlight and reiterate our model of formin-isoform independent binding of Tpm1 and Tpm2 in S. cerevisiae.

      In fact, although the authors conclude that the tropomyosins do not exhibit preference for certain actin structures, in the images shown in Fig 2A and 2D, there seems to be a clear bias for Tpm1 to decorate cables preferentially in the bud, while Tpm2 appears to decorate them more in the mother cell. Is that a bias of these chosen images, or does this reflect a more general trend? A quantification of relative fluorescence levels in bud/mother may be indicative.

      Response: __We thank the reviewer for pointing this out. Our data and analysis do not suggest that Tpm1 and Tpm2 show any preference for decoration of cables in either mother or bud compartment. As per the reviewer's suggestion, we have now quantified the ratio of mean mNG fluorescence in the bud to the mother (Bud/Mother) and the data is shown in __Figure. S2G. The bud-to-mother ratio was similar for mNG-ASTpm1 and mNG-ASTpm2 in wildtype cells, and the ratio increased in Dbnr1 cells and decreased in Dbni1 cells for both mNG-ASTpm1 and mNG-ASTpm2 (Fig. S2G). __This is consistent with the decreased actin cable signal in the mother compartment in Dbnr1 cells and decreased actin cable signal in the bud compartment in Dbni1 cells (Fig. S2A-D). Thus, our new analysis shows that both mNG-ASTpm1 and mNG-ASTpm2 have similar changes in their concentration (mean fluorescence) upon loss of either formins Bnr1 and Bni1 and show similar ratios in wildtype cells as well, suggesting no preference for binding to actin cables in either bud or mother compartment. The preference inferred by the reviewer seems to be a bias of the current representative images and thus, we have replaced the images in __Fig. 2A, 2D to more accurately represent the population.

      The difficulty in preserving mNG-amTpm after fixation means that authors could not quantify relative Tpm/actin cable directly in single fixed cells. Did they try to label actin cables with Lifeact instead of using phalloidin, and thus perform the analysis in live cells?

      __Response: __We did not use LifeAct for our analysis as LifeAct is known to cause expression-dependent artefacts in cells (Courtemanche et al., 2016; Flores et al., 2019; Xu and Du, 2021) and it also competes with proteins that regulate normal cable organization like cofilin. Use of LifeAct would necessitate standardization of expression to avoid such artefacts in vivo. Also, phalloidin staining provides the best staining of actin cables and allows for better quantitative results in our experiments. The use of LifeAct along with mNG-Tpm would also require optimization with a red fluorescent protein which usually tend to have lower brightness and photostability. However, during the revision of our study, a new study from Prof. Goode's lab has developed and optimized expression of new LifeAct-3xmNeonGreen constructs for use in S. cerevisiae (Wirshing and Goode, 2024). Thus, a similar strategy of using tandem copies of bright and photostable red fluorescent proteins can be explored for use in combination with mNG-Tpm in the future studies.

      __ Complementation of tpm1∆ by Tpm2:__

      I am confused about the quantification of Tpm2 expression by RT-PCR shown in Fig S3F. This figure shows that tpm2 mRNA expression levels are identical in cells with an empty plasmid or with a tpm2-encoding plasmid. In both strains (which lack tpm1), as well as in the WT control, one tpm2 copy is in the genome, but only one strain has a second tpm2 copy expressed from a centromeric plasmid, yet the results of the RT-PCR are not significantly different. (If anything, the levels are lower in the tpm2 plasmid-containing strain.) The methods state that the primers were chosen in the gene, so likely do not distinguish the genomic from the plasmid allele. However, the text claims a 1-fold increase in expression, and functional experiments show a near-complete rescue of the tpm1∆ phenotype. This is surprising and confusing and should be resolved to understand whether higher levels of Tpm2 are really the cause of the observed phenotypic rescue.

      The authors could for instance probe for protein levels. I believe they have specific nanobodies against tropomyosin. If not, they could use expression of functional mNG-amTpm2 to rescue tpm1∆. Here, the expression of the protein can be directly visualized.

      Response: __We thank the reviewer for pointing this out. We would like to clarify that in our RT-qPCR experiments, the primers were chosen within the Tpm1 and Tpm2 gene and do not distinguish between transcripts from endogenous or plasmid copy. We have now mentioned this in the Materials and Methods section of the revised manuscript. So, they represent a relative estimate of the total mRNA of these genes present in cells. We were consistently able to detect ~19 fold increase in Tpm2 total mRNA levels as compared to wildtype and ∆tpm1 cells (Fig. S4D) when tpm2 was expressed from a high-copy plasmid (pRS425). This increase in Tpm2 mRNA levels was accompanied by a rescue in growth (Fig. S4A) and actin cable organization (Fig. S4B) of ∆tpm1 cells containing pRS425-ptpm2TPM2. When tpm2 was expressed from a low-copy number centromeric plasmid (pRS316), we detected a ~2 fold increase in Tpm2 transcript levels when using the tpm1 promoter and no significant change was detected when using tpm2 promoter (Fig. S4E)__. We have made sure that these results are accurately described in the revised manuscript.

      As per the reviewer's suggestion, we have now conducted a more extensive analysis to ascertain the expression levels of Tpm2 in our experiments and the data is now presented in new Figure S5. We used mNG-ASTpm1 and mNG-ASTpm2 to rescue growth of ∆tpm1 (Fig. S5A) and correlated growth rescue with protein levels using quantified fluorescence intensity (Fig. S5B, S5C) and western blotting (anti-mNG) (Fig. S5D, S5E). We find that ∆tpm1 cells containing pRS425-ptpm1mNG-ASTpm1 had the highest protein level followed by pRS425-ptpm2 mNG-ASTpm2, pRS305-ptpm1mNG-ASTpm1, and the least protein levels were found in pRS305-ptpm2 mNG-ASTpm2 containing ∆tpm1 cells in both fluorescence intensity and western blotting quantifications (Fig. S5C, S5E). Surprisingly, we were not able to detect any protein levels in ∆tpm1 cells containing pRS305-ptpm2 mNG-ASTpm2 with western blotting (Fig. S5D) which was also accompanied by a lack of growth rescue (Fig. S5A). This most likely due to weak expression from the native Tpm2 promoter which is consistent with previous literature (Drees et al., 1995). Taken together, this data clearly shows that the rescue observed in ∆tpm1 cells is caused due to increased expression of mNG-ASTpm2 in cells and supports our conclusion that increase in Tpm2 expression leads to restoration of normal growth and actin cables in ∆tpm1 cells.

      __ Specific function of Tpm2:__

      The data about the retrograde actin flow is interpreted as a specific function of Tpm2, but there is no evidence that Tpm1 does not also share this function. To reach this conclusion one would have to investigate retrograde actin flow in tpm1∆ (difficult as cables are weak) or for instance test whether Tpm1 expression restores normal retrograde flow to tpm2∆ cells.

      Response: __We agree with the reviewer and as per the reviewer's suggestion, we have performed another experiment which include wildtype, ∆tpm2 cells containing empty pRS316 vector or pRS316-ptpm2TPM1 or pRS316-ptpm1TPM1. We find that RACF rate increased in ∆tpm2 cells as compared to wildtype and was restored to wildtype levels by exogenous expression of Tpm2 but not Tpm1 (Fig. S6E, S6F). Since, actin cables were not detectable in ∆tpm1 cells, we measured RACF rates in ∆tpm1 cells expressing Tpm1 or Tpm2 from a plasmid copy, which restored actin cables as shown previously in __Fig. 5A-C. We observed that RACF rates were similar to wildtype in ∆tpm1 cells expressing either Tpm1 or Tpm2 (Fig. S6E, S6F), suggesting that Tpm1 is not involved in RACF regulation. Taken together, these results suggest a specific role for Tpm2, but not Tpm1, in RACF regulation in S. cerevisiae, consistent with previous literature (Huckaba et al., 2006).

      Minor comments: __1.__The growth of tpm1∆ with empty plasmid in Fig S3A is strangely strong (different from other figures).

      Response: We thank the reviewer for pointing this out. We have now repeated the drop test multiple times (Fig. R2), but we see similar growth rates as the drop test already presented in Fig. S4A. __At this point, it would be difficult to ascertain the basis of this difference observed at 23{degree sign}C and 30{degree sign}C, but a recent study that links leucine levels to actin cable stability (Sing et al., 2022) might explain the faster growth of these ∆tpm1 cells containing a leu2 gene carrying high-copy plasmid. However, there is no effect on growth rate at 37{degree sign}C which is consistent with other spot assays shown in __Fig. S1D, S4F, S5A.

      Significance

      I am a cell biologist with expertise in both yeast and actin cytoskeleton.

      The question of how tropomyosin localizes to specific actin networks is still open and a current avenue of study. Studies in other organisms have shown that different tropomyosin isoforms, or their acetylated vs non-acetylated versions, localize to distinct actin structures. Proposed mechanisms include competition with other ABPs and preference imposed by the formin nucleator. The current study re-examines the function and localization of the two tropomyosin proteins from the budding yeast and reaches the conclusion that they co-decorate all formin-assembled structures and also share most functions, leading to the simple conclusion that the more important contribution of Tpm1 is simply linked to its higher expression. Once consolidated, the study will appeal to researchers working on the actin cytoskeleton.

      We thank the reviewer for their positive assessment of our work and the constructive feedback that has greatly improved the quality of our study. After addressing the points raised by the reviewer, we believe that our study has significantly gained in consolidating the major conclusions of our work.

      **Referees cross-commenting**

      Having read the other reviewers' comments, I do agree with reviewer 1 that it is not clear whether the Ala-Ser linker really mimics acetylation. I am less convinced than reviewer 3 that the key conclusions of the study are well supported, notably the issue of Tpm2 expression levels is not convincing to me.

      Response: __We acknowledge the reviewer's point about the effect of Ala-Ser dipeptide and would request the reviewer to refer to our response to Reviewer 1 (Question 1) for a more detailed discussion on this. We have also extensively addressed the question of Tpm2 expression levels as suggested by the reviewer (new data in __Figure S5) which has further strengthened the conclusions of our study.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:__ The study presents the first fully functional fluorescently tagged Tpm proteins, enabling detailed probing of Tpm isoform localization and functions in live cells. The authors created a modified fusion protein, mNG-amTpm, which mimicked native N-terminal acetylation and restored both normal growth and full-length actin cables in yeast cells lacking native Tpm proteins, demonstrating the constructs' full functionality. They also show that Tpm1 and Tpm2 do not have a preference for actin cables nucleated by different formins (Bnr1 and Bni1). Contrary to previous reports, the study found that overexpressing Tpm2 in Δtpm1 cells could restore growth rates and actin cable formation. Furthermore, it is shown that despite its evolutionary divergence, Tpm2 retains actin-protective functions and can compensate for the loss of Tpm1, contributing to cellular robustness.

      Major and Minor Comments: 1. The key conclusions of this paper are convincing. However, I suggest that more detail be provided regarding the image analysis used in this study. Specifically, since threshold settings can impact the quality of the generated data and, therefore, its interpretation, it would be useful to see a representative example of the quantification methods used for actin cable length/number (as in refs. 80 and 81) and mitochondria morphology. These could be presented as Supplemental Figures. Additionally, it would help to interpret the results if the authors could be more specific about the statistical tests that were used.

      Response: __We agree with the reviewer's suggestions and have now updated our Materials and Methods section to describe the image analysis pipelines used in more detail. We have also added examples of quantification procedure for actin cable length/number and mitochondrial morphology as an additional Supplementary __Figure S7. Briefly, the following pipelines were used:

      • Actin cable length and number analysis: This was done exactly as mentioned in McInally et al., 2021, McInally et al., 2022. Actin cables were manually traced in Fiji as shown in __ S7A__, and then the traces files for each cell were run through a Python script (adapted from McInally et al., 2022) that outputs mean actin cable length and number per cell.
      • Mitochondria morphology: Mitochondria Analyzer plug-in in Fiji was used to segment out the mitochondrial fragments. The parameters used for 2D segmentation of mitochondria were first optimized using "2D Threshold Optimize" to find the most accurate segmentation and then the same parameters were run on all images. After segmentation of the mitochondrial network, measurements of fragment number were done using "Analyze Particles" function in Fiji. An example of the overall process is shown in __ S7B.__ As per the reviewer's suggestion, we have now included the description of the statistical test used in the Figure Legends of each Figure in the revised manuscript. We have used One-Way Anova with Tukey's Multiple Comparison test, Kruskal-Wallis test with Dunn's Multiple Comparisons, and Unpaired Two-tailed t-test using the in-built functions in GraphPad Prism (v.6.04).

      **Referees cross-commenting**

      I agree with both reviewers 1 and 2 regarding the issues with the Ala-Ser acetylation mimic and Tpm2 expression levels, respectively. I think the authors should be more careful in how they frame the results, but I consider that these issues do not invalidate the main conclusions of this study.

      Response: __We acknowledge the reviewer's concern about the Ala-Ser dipeptide and would request them to refer our earlier discussion on this in response to Reviewer 1 (Question 1) and Reviewer 2 (Question 2). We would also request the reviewer to refer to our answer to Reviewer 2 (Question 6) where we have extensively addressed the question of Tpm2 expression levels and their effect on rescue of Dtpm1 cells. This data is now presented as new __Figure S5 in our revised manuscript.

      Reviewer#3 (Significance (Required)):

      The finding that Tpm2 can compensate for the loss of Tpm1, restoring actin cable organization and normal growth rates, challenges previous assumptions about the non-redundant functions of these isoforms in Saccharomyces cerevisiae (ref. 16). It also supports a concentration-dependent and formin-independent localization of Tpm isoforms to actin cables in this species. The development of fully functional fluorescently tagged Tpm proteins is a significant methodological advancement. This advancement overcomes previous visualization challenges and allows for accurate in vivo studies of Tpm function and regulation in S. cerevisiae.

      The findings will be of particular interest to researchers in the field of cellular and molecular biology who study actin cytoskeleton dynamics. Additionally, it will be relevant for those utilizing advanced microscopy and live-cell imaging techniques.

      As a researcher, my experience lies in cytoskeleton dynamics and protein interactions, though I do not have specific experience related to tropomyosin. I use different yeast species as models and routinely employ live-cell imaging as a tool.

      We thank the reviewer for their positive outlook and assessment of our study. We have incorporated all their suggestions, and we are confident that the revised manuscript has significantly improved in quality due to these additions.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      There are 2 Major issues:

      1. Having an -ala-ser- linker between the GFP and tropomyosin mimics acetylation. This is not the case, and more likely the this linker acts as a spacer that allows tropomyosin polymers to form on the actin, and without it there is steric hindrance. A similar result would be seen with a simple flexible uncharged linker. It has been shown in a number of labs that the GFP itself masks the effect of the charge on the amino terminal methionine. This is consistent with NMR, crystallographic and cryo structural studies. Biochemical studies should be presented to demonstrate that the impact of a linker for the conclusions stated to be made, which provide the basis of a major part of this study.
      2. My major issue however is making the conclusions stated here, using an amino-terminal fluorescent protein tag that s likely to impact any type of isoform selection at the end of the actin polymer. Carboxyl terminal tagging may have a reduced effect, but modifying the ends of the tropomyosin, which are integral in stabilising end to end interactions with itself on the actin filament, never mind any section systems that may/maynot be present in the cell, is not appropriate.

      Significance

      This paper explores the role of formin in determining the localisation of different tropomyosins to different actin polymers and cellular locations within budding yeast. Previous studies have indicated a role for the actin nucleating proteins in recruiting different forms of tropomyosin within fission yeast. In mammalian cells there is variation in the role of formins in affiecting tropomyosin localisation - variation between cell type. There is also evidence that other actin binding proteins, and tropomyosin abundance play roles in regulating the tropomyosin-actin association according to cell type. Biochemical studies have previously been undertaken using budding yeast and fission yeast that the core actin polymerisation domain of formins do not interact with tropomyosin directly.

      The significance of this study, given the above, and the concerns raised is not clear to this reviewer.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      Govindan and Conrad use a genome-wide CRISPR screen to identify genes regulating retention of intron 4 in OGT, leveraging an intron retention reporter system previously described (PMID: 35895270). Their OGT intron 4 reporter reliably responds to O-GlcNAc levels, mirroring the endogenous splicing event. Through a genome-wide CRISPR knockout library, they uncover a range of splicing-related genes, including multiple core spliceosome components, acting as negative regulators of OGT intron 4 retention. They choose to follow up on SFSWAP, a largely understudied splicing regulator shown to undergo rapid phosphorylation in response to O-GlcNAc level changes (PMID: 32329777). RNA-sequencing reveals that SFSWAP depletion not only promotes OGT intron 4 splicing but also broadly induces exon inclusion and intron splicing, affecting decoy exon usage. While this study offers interesting insights into intron retention and O-GlcNAc signaling regulation, the RNA sequencing experiments lack the essential controls needed to provide full confidence to the authors' conclusions. 

      Strengths: 

      (1) This study presents an elegant genetic screening approach to identify regulators of intron retention, uncovering core spliceosome genes as unexpected positive regulators of intron retention. 

      (2) The work proposes a novel functional role for SFSWAP in splicing regulation, suggesting that it acts as a negative regulator of splicing and cassette exon inclusion, which contrasts with expected SR-related protein functions. 

      (3) The authors suggest an intriguing model where SFSWAP, along with other spliceosome proteins, promotes intron retention by associating with decoy exons. 

      We thank the reviewer for recognizing and detailing the strengths of our manuscript. 

      Weaknesses: 

      (1) The conclusions on SFSWAP impact on alternative splicing are based on cells treated with two pooled siRNAs for five days. This extended incubation time without independent siRNA treatments raises concerns about off-target effects and indirect effects from secondary gene expression changes, potentially limiting confidence in direct SFSWAP-dependent splicing regulation. Rescue experiments and shorter siRNA-treatment incubation times could address these issues. 

      We repeated our SFSWAP knockdown analysis and analyzed both OGT e4-e5 junction splicing and SFSWAP transcript levels by RT-qPCR (now included in Sup. Fig. S4) from day 2 to day 5 post siRNA treatment. We observed that the time point at which OGT intron 4 removal increases (day 2) coincides with the time at which SFSWAP transcript levels start decrease, consistent with a direct effect of SFSWAP knockdown on OGT intron 4 splicing. Moreover, the effect of SFSWAP knockdown on OGT intron 4 splicing peaks between day 4-5, supporting our use of these longer time points to cast a wide net for SFSWAP targets.

      (2) The mechanistic role of SFSWAP in splicing would benefit from further exploration. Key questions remain, such as whether SFSWAP directly binds RNA, specifically the introns and exons (including the decoy exons) it appears to regulate. Furthermore, given that SFSWAP phosphorylation is influenced by changes in O-GlcNAc signaling, it would be interesting to investigate this relationship further. While generating specific phosphomutants may not yield definitive insights due to redundancy and also beyond the scope of the study, the authors could examine whether distinct SFSWAP domains, such as the SR and SURP domains, which likely overlap with phosphorylation sites, are necessary for regulating OGT intron 4 splicing. 

      We absolutely agree with the reviewer that the current work stops short of a detailed mechanistic study, and we have made every attempt to be circumspect in our interpretations to reflect that limitation. In addition, we are very interested in delving more deeply into the mechanistic aspects of this regulation. In fact, we have initiated many of the experiments suggested by the reviewer (and more), but in each case, rigorous interpretable results will require a minimum another year’s time. 

      For example, we have used crosslinking and biotin labeling techniques (using previously available reagents from Eclipsebio) to test whether SFSWAP binds RNA. The results were negative, but the lack of strong SFSWAP antibodies required that we use a transiently expressed myc-tagged SFSWAP. Therefore, this negative result could be an artifact of the exogenous expression and/or tagging. Given the difficulties of “proving the negative”, considerably more work will be required to substantiate this finding. As another example, we intend to develop a complementation assay as suggested. For an essential gene, the ideal complementation system employs a degron system, and we have spent months attempting to generate a homozygous AID-tagged SFSWAP. Unfortunately, we so far have only found heterozygotes. Of course, this could be because the tag interferes with function, the insert was not efficiently incorporated by homologous repair, or that we simply haven’t yet screened a sufficient number of clones. We’re confident that these technical issues that can be addressed, but they will take a significant amount of time to resolve. While we would ideally define a mechanism, we think that the data reported here outlining functions for SFSWAP in splicing represent a body of work sufficient for publication. 

      (3) Data presentation could be improved (specific suggestions are included in the recommendations section). Furthermore, Excel tables with gene expression and splicing analysis results should be provided as supplementary datasheets. Finally, a more detailed explanation of statistical analyses is necessary in certain sections. 

      We have addressed all specific suggestions as detailed in the recommendations below.

      Reviewer #2 (Public review): 

      Summary: 

      The paper describes an effort to identify the factors responsible for intron retention and alternate exon splicing in a complex system known to be regulated by the O-GlcNAc cycling system. The CRISPR/Cas9 system was used to identify potential factors. The bioinformatic analysis is sophisticated and compelling. The conclusions are of general interest and advance the field significantly. 

      Strengths: 

      (1) Exhaustive analysis of potential splicing factors in an unbiased screen. 

      (2) Extensive genome wide bioinformatic analysis. 

      (3) Thoughtful discussion and literature survey. 

      We thank the reviewer for recognizing and detailing the strengths of our manuscript. 

      Weaknesses: 

      (1) No firm evidence linking SFSWAP to an O-GlcNAc specific mechanism. 

      We couldn’t agree more with this critique. Indeed, our intention at the outset for the screen was to find an O-GlcNAc sensor linking OGT splicing with O-GlcNAc levels. As often occurs with high-throughput screens, we didn’t find exactly what we were looking for, but the screen nonetheless pointed us to interesting biology. Prompted by our screen, we describe new insights into the function of SFSWAP a relatively uncharacterized essential gene. Currently, we are testing other candidates from our screen, and we are performing additional studies to identify potential O-GlcNAc sensors.  

      (2) Resulting model leaves many unanswered questions. 

      We agree (see Reviewer 1, point 2 response).  

      Reviewer #3 (Public review): 

      Summary: 

      The major novel finding in this study is that SFSWAP, a splicing factor containing an RS domain but no canonical RNA binding domain, functions as a negative regulator of splicing. More specifically, it promotes retention of specific introns in a wide variety of transcripts including transcripts from the OGT gene previously studied by the Conrad lab. The balance between OGT intron retention and OGT complete splicing is an important regulator of O-GlcNAc expression levels in cells. 

      Strengths: 

      An elegant CRISPR knockout screen employed a GFP reporter, in which GFP is efficiently expressed only when the OGT retained intron is removed (so that the transcript will be exported from the nucleus to allow for translation of GFP). Factors whose CRISPR knockdown causes decreased intron retention therefore increase GFP, and can be identified by sequencing RNA of GFP-sorted cells. SFSWAP was thus convincingly identified as a negative regulator of OGT retained intron splicing. More focused studies of OGT intron retention indicate that it may function by regulating a decoy exon previously identified in the intron, and that this may extend to other transcripts with decoy exons. 

      We thank the reviewer for recognizing the strengths of our manuscript. 

      Weaknesses: 

      The mechanism by which SFSWAP represses retained introns is unclear, although some data suggests it can operate (in OGT) at the level of a recently reported decoy exon within that intron.

      Interesting/appropriate speculation about possible mechanisms are provided and will likely be the subject of future studies. 

      We completely agree that this is a limitation of the current study (see above). Now that we have a better understanding of SFSWAP functions, we will continue to explore SFSWAP mechanisms as suggested. 

      Overall the study is well done and carefully described but some figures and some experiments should be described in more detail. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      (1) Clarify and add missing statistical details across the figures. For example, Figure S2 lacks statistical comparisons, and in Figures 4A and 4C the tests applied should be specified in the legend. 

      We have added appropriate statistical analysis wherever missing and edited figure legends to specify the tests used.

      (2) The authors are strongly encouraged to provide detailed tables of gene expression and alternative splicing analyses from RNA-Seq experiments (e.g., edgeR, rMATS, Whippet, and MAJIQ), as this would enhance transparency and facilitate data interpretation. 

      We have added tables for gene expression and alternate splicing analysis as suggested (Suppl. tables 3-

      6).

      (3) Although the legend sometimes indicates differently (e.g., Figure 3b, 5a, 5c, etc), the volcano plots showing the splicing changes do not contain a cutoff for marginally differential percent spliced in or intron retention values. 

      The legends have been edited to reflect the correct statistical and/or PSI cutoffs.

      (4) For consistency, use a consistent volcano plot format across all relevant figures (Figures 3b, 5a-c, S3, S4, S7, and S8), including cutoffs for differential splicing and the total count of up- and down-regulated events. 

      Due to different statistical frameworks and calculations employed by different alternate splicing pipelines, we could not use the same cutoffs for different pipelines.  However, we have now indicated the number of up- and down-regulated events for consistency among the volcano plots.

      (5) What is the overlap of differentially regulated events between the different analytical methodologies applied? 

      We analyzed the degree of overlap between the three pipelines used in the paper using a Venn diagram (added to Suppl. Fig. S7). However, as widely reported in literature (e.g., Olofsson et al., 2023; Biochem Biophys Res Commun. 2023; doi: 10.1016/j.bbrc.2023.02.053.), the degree of overlap between pipelines is quite low.

      (6) To further substantiate your conclusions, additional validations of RNA-Seq splicing data, ideally visualized on an agarose gel, would be valuable, especially for exons and introns regulated by SFSWAP, and particularly for OGT decoy exons in Figure 4c. 

      We have not included these experiments as we focused on other critiques for this resubmission. Because the RNA-seq, RT-PCR and RT-qPCR data all align, we are confident that the products we are seeing are correctly identified and orthogonally validated (Figs 2d, 4a, 4b, and 4c).  

      (7) It would be more informative if the CRISPR screen data were presented in a format where both the adjusted p-value and LFC values of the hits are presented. Perhaps a volcano plot? 

      We have now included these graphs in revised Supplementary Figure S2. 

      (8) In Figure 2d, a cartoon showing primer binding sites for each panel could aid interpretation, particularly in explaining the unexpected simultaneous increase in OGT mRNA and intron retention upon SFSWAP knockdown. 

      We have added a cartoon showing primer binding sites similar to that shown in Fig. 4a.

      (9) Page 9, line 1, states that SFSWAP autoregulates its expression by controlling intron retention. Including a Sashimi plot would provide visual support for this claim. 

      The data suggesting that SFSWAP autoregulates its own transcript abundance were reported in Zachar et al. (1994), not from our own studies. Validation of those data with our RNA-seq data is confounded by the fact that we are using siRNAs to knockdown the SFSWAP RNA at the transcript level (Fig. S15). 

      (10) In the legend of Figure S2 the authors state that negative results are inconclusive because RNA knockdowns are not verified by western blotting or qRT-PCR. This is correct, but the reviewer would also argue that the positive results are also inconclusive as they are not supported by a rescue experiment to confirm that the effect is not due to off-target effects. 

      This is a fair point with respect to the siRNA experiments on their own. However, the CRISPR screen was performed with sgRNAs, and MAGeCK RRA scores are high only for those genes that have multiple sgRNAs that up-regulate the gene. Examination of the SFSWAP sgRNAs individually shows that three of four SFSWAP sgRNAs had false discovery rates ≤10<sup>-42</sup> for GFP upregulation. Thus, the siRNAs provide an additional orthogonal approach. It seems unlikely that the siRNAs, and three independent sgRNAs will have the same off-target results. Thus, these combined observations support the conclusion that SFSWAP loss leads to decreased OGT intron retention.  

      (11) For clarity in Figure 3a, consider using differential % spliced in or intron retention bar plots with directionality (positive and negative axis) and labeling siSFSWAP as the primary condition. 

      (12) Consider presenting Figure 5D as a box plot with a Wilcoxon test for statistical comparison. 

      For both points 11 and 12, we have tried the graphs as the reviewer suggested. While these were good suggestions, in both cases we felt that the original plots ended up presenting a clearer presentation of the data (see Author response image 1).

      Author response image 1.

      (13) Please expand the Methods section to detail the Whippet and MAJIQ analyses. 

      We have expanded the methods section to include additional details of the alternate splicing analysis.

      (14) Include coordinates for the four possible OGT decoy exon combinations analyzed in the Methods section. 

      We have added the coordinates of all four decoy forms in the methods section.  

      (15) A section on SFSWAP mass spectrometry is listed in Methods but is missing from the manuscript. 

      This section has now been removed.

      Reviewer #2 (Recommendations for the authors): 

      This is an excellent contribution. The paper describes an effort to identify the factors responsible for intron retention and alternate exon splicing in a complex system known to be regulated by the O-GlcNAc cycling system. The CRISPR/Cas9 system was used to identify potential factors. The bioinformatic analysis is sophisticated and compelling. The conclusions are of general interest and advance the field significantly. 

      Some specific recommendations. 

      (1) The plots in Figure 3 describing SI and ES events are confusing to this reader. Perhaps the violin plot is not the best way to visualize these events. The same holds true for the histograms in the lower panel of Figure 3. Not sure what to make of these plots. 

      For Figure 3b, we include both scatter and violin plots to represent the same data in two distinct ways. For Figure 3d, we agree that these are not the simplest plots to understand, and we have spent significant time trying to come up with a better way of displaying these trends in GC content as they relate to SE and RI events. Unfortunately, we were unable to identify a clearer way to present these data. 

      (2) The model (Figure 6) is very useful but confusing. The legend and the Figure itself are somewhat inconsistent. The bottom line of the figure is apparent but I fear that the authors are trying to convey a more complete model than is apparent from this figure. Please revise. 

      We have simplified the figure from the previous submission. As mentioned above, we admit that mechanistic details remain unknown. However, we have tried to generate a model that reflects our data, adds some speculative elements to be tested in the future, but remains as simple as possible. We are not quite sure what the reviewer was referring to as “somewhat inconsistent”, but we have attempted to clarify the model in the revised Discussion and Figure legend.  

      (3) It is unclear how normalization of the RNA seq experiments was performed (eg. Figure S5 and 6).  

      The normalization differences in Fig. S5 and S6 (now Fig S8 and S9) were due to scaling differences during the use of rmats2sashimiplot software. We have now replaced Fig. S5 to reflect correctly scaled images.

      I am enthusiastic about the manuscript and feel that with some clarification it will be an important contribution. 

      Thank you for these positive comments about our study!

      Reviewer #3 (Recommendations for the authors): 

      (1) In Figure 1f, it is clear that siRNA-mediated knockdown of OGT greatly increases spliced RNA as the cells attempt to compensate by more efficient intron removal (three left lanes). However, there is no discussion of the various treatments with TG or OSMI. Might quantitation of these lanes not also show the desired effects of TG and OSMI on spliced transcript levels? 

      The strong effect of OGT knockdown masks the (comparatively modest) effects of subsequent inhibitor treatments on the reporter RNA. We have edited the results section to clarify this.

      (2) In Figure 2c, why is the size difference between spliced RNA and intron-retained RNA so different in the GFP-probed gel (right) compared with the OGT-probed gel (left)? Even recognizing that the GFP probe is directed against reporter transcripts, and the OGT probe (I think) is directed against endogenous OGT transcripts, shouldn't the difference between spliced and unspliced bands be the same, i.e., +/- the intron 4 sequence. Also, why does the GFP probe detect the unspliced transcript so poorly? 

      The fully spliced endogenous OGT mRNA is ~5.5 kb while the fully spliced reporter is only ~1.6kb, so the difference in size (the apparent shift relative to the mRNA) is quite different. Moreover, the two panels in Fig 2c are not precisely scaled to one another, so direct comparisons cannot be made. 

      The intron retained isoform does not accumulate to high levels in this reporter, a phenotype that we also observed with our GFP reporter designed to probe the regulation of the MAT2A retained intron (Scarborough et al., 2021). We are not certain about the reason for these observations, but suspect that the reporter RNA’s retained intron isoforms are less stable in the nucleus than their endogenous counterparts. Alternatively, the lack of splicing may affect 3´ processing of the transcripts so that they do not accumulate to the high levels observed for the wild-type genes. 

      (3) Please provide more information about the RNA-seq experiments. How many replicates were performed under each of the various conditions? The methods section says three replicates were performed for the UPF1/TG experiments; was this also true for the SFSWAP experiments?  

      All RNA-seq experiments were performed in biological triplicates. We have edited the methods section to clarify this.

      (4) Relatedly, the several IGV screenshots shown in Figure 3C presumably represent the triplicate RNA seq experiments. In part D, how many experiments does the data represent? Is it a compilation of three experiments? 

      Fig. 3d is derived from alternate splicing analysis performed on three biological replicates. We have added the number of replicates (n=3) on the figure to clarify this. We have also noted that the three IGV tracks represent biological replicates in the Figure legend for 3c.  

      (5) Please provide more details regarding the qRT-PCR experiments. 

      We have provided the positions of primer sets used for RT-qPCR analysis and cartoon depictions of target sites below the data wherever appropriate.

      (6) In the discussion of decoy exon function (in the Discussion section), several relevant observations are cited to support a model in which decoy exons promote assembly of splicing factors. One might also cite the finding that eCLIP profiling has found enriched binding of U2AF1 and U2AF2 at the 5' splice site region of decoy exons (reference 16). 

      Excellent point. This has now been added to the Discussion. 

      Minor corrections / clarifications: 

      (1) In the Figure 2A legend, CRISPR is misspelled. 

      Corrected.

      (2) In the discussion, the phrase "indirectly inhibits splicing of exons 4 and 5, but promoting stable unproductive assembly of the spliceosome", the word "but" should probably be "by". 

      Corrected.

    1. Reviewer #2 (Public review):

      Summary

      In this paper, the function of trpγ in lipid metabolism was investigated. The authors found that lipid accumulation levels were increased in trpγ mutants and remained high during starvation; the increased TAG levels in trpγ mutants were restored by the expression of active AMPK in DH44 neurons and oral administration of the anti-diabetic drug metformin. Furthermore, oral administration of lipase, TAG and free fatty acids effectively restored survival of trpγ mutants under starvation conditions. These results indicate that TRPv plays an important role in the maintenance of systemic lipid levels through the proper expression of lipase. Furthermore, authors have shown that this function is mediated by DH44R2. This study provides an interesting finding in that the neuropeptide DH44 released from the brain regulates lipid metabolism through a brain-gut axis, acting on the receptor DH44R2 expressed in gut cells.

      Strengths

      Using Drosophila genetics, careful analysis of which cells express trpγ regulates lipid metabolism is performed in this study. The study supports its conclusions from various angles, including not only TAG levels, but also fat droplet staining and survival rate under starved conditions, and oral administration of substances involved in lipid metabolism.

      Weaknesses

      The function of lipases, as well as identification of cell types, in the DH44R2-expressing cells in the gut can be investigated.

    2. Reviewer #3 (Public review):

      In this manuscript, the authors demonstrated the significance of the TRPγ channel in regulating internal TAG levels. They found high TAG levels in TRPγ mutant, which was ascribed to a deficit in the lipolysis process due to the downregulation of brummer (bmm). It was notable that the expression of TRPγ in DH44+ PI neurons, but not dILP2+ neurons, in the brain restored the internal TAG levels and that the knockdown of TRPγ in DH44+ PI neurons resulted in an increase in TAG levels. These results suggested a non-cell autonomous effect of Dh44+PI neurons. Additionally, the expression of the TRPγ channel in Dh44 R2-expressing cells restored the internal TAG levels. The authors, however, did not provide an explanation of how TRPγ might function in both presynaptic and postsynaptic cells in the non-cell autonomous manner to regulate the TAG storage. The authors further determined the effect of TRPγ mutation on the size of lipid droplets (LD) and the lifespan and found that TRPγ mutation caused an increase in the size of LD and a decrease in the lifespan, which were reverted by feeding lipase and metformin. These were creative endeavors, I thought. The finding that DH44+ PI neurons have non-cell autonomous functions in regulating bodily metabolism (mainly sugar/lipid) in addition to directing sugar nutrient sensing and consumption is likely correct, but the paper has many loose ends.

      Comments on revisions:

      The authors have addressed nearly all of my concerns with additional experiments and explanations.

    3. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This research article by Nath et al. from the Lee Lab addresses how lipolysis under starvation is achieved by a transient receptor potential channel, TRPγ, in the neuroendocrine neurons to help animals survive prolonged starvation. Through a series of genetic analyses, the authors identify that TRPγ mutations specifically lead to a failure in lipolytic processes under starvation, thereby reducing animals' starvation resistance. The conclusion was confirmed through total triacylglycerol levels in the animals and lipid droplet staining in the fat bodies. This study highlights the importance of transient receptor potential (TRP) channels in the fly brain to modulate energy homeostasis and combat metabolic stress. While the data is compelling and the message is easy to follow, several aspects require further clarification to improve the interpretation of the research and its visibility in the field.

      Strengths:

      This study identifies the biological meaning of TRPγ in promoting lipolysis during starvation, advancing our knowledge about TRP channels and the neural mechanisms to combat metabolic stress. Furthermore, this study demonstrates the potential of the TRP channel as a target to develop new therapeutic strategies for human metabolic disorders by showing that metformin and AMPK pathways are involved in its function in lipid metabolisms during starvation in Drosophila.

      Weaknesses:

      Some key results that might strengthen their conclusions were left out for discussion or careful explanation (see below). If the authors could improve the writing to address their findings and connect their findings with conclusions, the research would be much more appreciated and have a higher impact in the field.

      Here, I listed the major issues and suggestions for the authors to improve their manuscript:

      (1) Are the increased lipid droplet size and the upregulated total TAG level measured in the starved or sated mutant in Figure 1? This information might be crucial for readers to understand the physiological function of TRP in lipid metabolism. In other words, clarifying whether the upregulated lipid storage is observed only in the starved trp mutant will advance our knowledge of TRPγ. If the increase of total TAG level is only observed in the starved animals, TRP in the Dh44 neurons might serve as a sensor for the starvation state required to promote lipolysis in starvation conditions. On the other hand, if the total TAG level increases in both starved and sated animals, activation of Dh44 through TRPγ might be involved in the lipid metabolism process after food ingestion.

      We measured total TAG level in Figure 1 and LD sizes in Figure 2 under sated condition. We inserted “under sated condition” to clarify it. lines 97 and 147-148.

      Thanks for your suggestions.

      (2) It is unclear how AMPK activation in Dh44 neurons reduces the total triacylglycerol (TAG) levels in the animals (Figure 3G). As AMPK is activated in response to metabolic stress, the result in Figure 3G might suggest that Dh44 neurons sense metabolic stress through AMPK activation to promote lipolysis in other tissues. Do Dh44 neurons become more active during starvation? Is activation of Dh44 neurons sufficient to activate AMPK in the Dh44 neurons without starvation? Is activation of AMPK in the Dh44 neurons required for Dh44 release and lipolysis during starvation? These answers would provide more insights into the conclusion in Lines 192-193.

      In our previous study, we demonstrated that trpγ mutants exhibited lower levels of glucose, trehalose and glycogen level (Dhakal et al. 2022), and in the current study, we observed excessive lipid storage in the trpγ mutant, indicating imbalanced energy homeostasis. Given the established role of AMPK in maintaining energy balance (Marzano et. al., 2021, Lin et al 2021), we employed the activated form of AMPK (UAS-AMPK<sup>TD</sup>) in our experiments. Our result showed that expression of activated AMPK in Dh44 neurons led to a reduction in total TAG levels, suggesting that AMPK activation in these neurons can promote lipolysis even in the absence of starvation. Regarding the activation of Dh44 neurons, Dus et al in 2015 reported that Dh44 cells in the brain are activated by nutritive sugars especially in starvation conditions. In addition, another report showed a role of Dh44 neuron in regulating starvation induced sleep suppression (Oh et. al., 2023) which may imply that these neurons become more active under starved conditions. We did not directly assess whether Dh44 neuron activity increases during starvation or whether AMPK activation in these neurons is required for DH44 release and subsequent lipolysis, our finding support the notion that AMPK activation in Dh44 neuron is sufficient to reduce TAG levels, potentially by metabolic stress response typically observed during starvation. We explained it like the following: “Dh44 neurons regulate starvation-induced sleep suppression (Oh et. al., 2023), which implies that these neurons become more active under starved conditions.” lines 190-191.

      (3) It is unclear how the lipolytic gene brummer is further downregulated in the trpγ mutant during starvation while brummer is upregulated in the control group (Figure 6A). This result implies that the trpγ mutant was able to sense the starvation state but responded abnormally by inhibiting the lipolytic process rather than promoting lipolysis, which makes it more susceptible to starvation (Figure 3B).

      Thanks for your suggestions. We explained it like the following: “The data indicates that the trpg mutant can sense the starvation state but responds abnormally by suppressing lipolysis instead of activating it. This dysregulated lipolytic response likely increases the mutant's vulnerability to starvation, as it cannot effectively mobilize lipid stores for energy during periods of nutrient deprivation.” lines 251-254.

      (4) There is an inconsistency of total TAG levels and the lipid droplet size observed in the Dh44 mutant but not in the Dh44-R2 mutant (Figures 7A and 7F). This inconsistency raises a possibility that the signaling pathway from Dh44 release to its receptor Dh44-R2 only accounts for part of the lipid metabolic process under starvation. Adding discussion to address this inconsistency may be helpful for readers to appreciate the finding.

      Thanks for your suggestion. We included the following in the Discussion: “There is an inconsistency of total TAG levels and the LD size observed in the Dh44 mutant. This inconsistency raises a possibility that the signaling pathway from DH44 release to its receptor DH44R2 only accounts for part of the lipid metabolic process under starvation. While Dh44 mutant flies displayed normal internal TAG levels, Dh44R2 mutant flies exhibited elevated TAG levels. This suggested that the lipolysis phenotype could be facilitated by a neuropeptide other than DH44. Alternatively, a DH44 neuropeptide-independent pathway could mediate the lipolysis.” lines 429-436.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, the function of trpγ in lipid metabolism was investigated. The authors found that lipid accumulation levels were increased in trpγ mutants and remained high during starvation; the increased TAG levels in trpγ mutants were restored by the expression of active AMPK in DH44 neurons and oral administration of the anti-diabetic drug metformin. Furthermore, oral administration of lipase, TAG, and free fatty acids effectively restored the survival of trpγ mutants under starvation conditions. These results indicate that TRPv plays an important role in the maintenance of systemic lipid levels through the proper expression of lipase. Furthermore, authors have shown that this function is mediated by DH44R2. This study provides an interesting finding in that the neuropeptide DH44 released from the brain regulates lipid metabolism through a brain-gut axis, acting on the receptor DH44R2 presumably expressed in gut cells.

      Strengths:

      Using Drosophila genetics, careful analysis of which cells express trpγ regulates lipid metabolism is performed in this study. The study supports its conclusions from various angles, including not only TAG levels, but also fat droplet staining and survival rate under starved conditions, and oral administration of substances involved in lipid metabolism.

      Weaknesses:

      Lipid metabolism in the gut of DH44R2-expressing cells should be investigated for a better understanding of the mechanism. Fat accumulation in the gut is not mechanistically linked with fat accumulation in the fat body. The function of lipase in the gut (esp. R2 region) should be addressed, e.g. by manipulating gut-lipases such as magro or Lip3 in the gut in the contest of trpγ mutant. Also, it is not clarified which cell types in the gut DH44R2 is expressed. The study also mentioned only in the text that bmm expression in the gut cannot restore lipid droplet enlargement in the fat body, but this result might be presented as a figure.

      We appreciate the reviewer’s insightful suggestions. Unfortunately, due to the unviability of the reagent (UAS-Lip3), we were unable to manipulate gut lipase in trpy mutants as proposed. However, we additionally performed immunostaining to examine the co-expression of trpγ and Dh44R2 in the gut, and our results indicate that both trpγ and Dh44R2 are co-expressed in the R2 region of the gut (Figure 7O and P). Furthermore, we have updated our figures to address the point that bmm expression in the gut does not restore lipid droplet enlargement in the fat body, with the revised version (Figure 5I and J).

      Reviewer #3 (Public Review):

      In this manuscript, the authors demonstrated the significance of the TRPγ channel in regulating internal TAG levels. They found high TAG levels in TRPγ mutant, which was ascribed to a deficit in the lipolysis process due to the downregulation of brummer (bmm). It was notable that the expression of TRPγ in DH44+ PI neurons, but not dILP2+ neurons, in the brain restored the internal TAG levels and that the knockdown of TRPγ in DH44+ PI neurons resulted in an increase in TAG levels. These results suggested a non-cell autonomous effect of Dh44+PI neurons. Additionally, the expression of the TRPγ channel in Dh44 R2-expressing cells restored the internal TAG levels. The authors, however, did not provide an explanation of how TRPγ might function in both presynaptic and postsynaptic cells in the non-cell autonomous manner to regulate the TAG storage. The authors further determined the effect of TRPγ mutation on the size of lipid droplets (LD) and the lifespan and found that TRPγ mutation caused an increase in the size of LD and a decrease in the lifespan, which were reverted by feeding lipase and metformin. These were creative endeavors, I thought. The finding that DH44+ PI neurons have non-cell autonomous functions in regulating bodily metabolism (mainly sugar/lipid) in addition to directing sugar nutrient sensing and consumption is likely correct, but the paper has many loose ends. I would like to see a revision that includes more experiments to tighten up the findings and appropriate interpretations of the results.

      (1) The authors need to provide interpretations or speculations as to how DH44+ PI neurons have non-cell autonomous functions in regulating the internal TAG stores, and how both presynaptic DH44 neurons and postsynaptic DH44 R2 neurons require TRPγ for lipid homeostasis.

      In Discussion, we had mentioned our previous finding. “ We previously proposed that TRPg holds DH44 neurons in a state of afterdepolarization, thus reducing firing rates by inactivating voltage-gated Na+ channels (Dhakal et al., 2022). At the physiological level, this induces the consistent release of DH44 and depletion of DH44 stores, resulting in nutrient utilization and storage malfunctions.”

      We also included the following: “TRPg in DH44 neurons may influence the release of metabolic signals or hormones that act on postsynaptic DH44R2 cells. These postsynaptic cells could, in turn, modulate lipid storage and metabolism in a non-cell autonomous manner. However, the mechanism by which TRPg functions in DH44R2 cells remains unclear. One possible explanation is that TRPg in the gut may be activated by stretch or osmolarity (Akitake et al. 2015).” lines 439-440.

      This interaction between presynaptic and postsynaptic cells may ensure a coordinated response to metabolic changes and maintain lipid homeostasis. Thus, both Dh44-expressing and Dh44-R2-expressing cells are crucial for the proper functioning of TRPγ in regulating internal TAG levels and lipid storage.

      (2) The expression of TRPγ solely in DH44 R2 neurons of TRPγ mutant flies restored the TAG phenotype, suggesting an important function mediated by TRPγ in DH44 R2 neurons. However, the authors did not document the endogenous expression of TRPγ in the DH44R2+ gut cells. This needs to be shown.

      We appreciate the reviewer’s suggestion. To address this, we performed immunostaining to examine the expression of TRPγ in the DH44R2+ gut cells. Our results, as shown in Figure 7 O and P, confirm that TRPγ is co-expressed in the Dh44R2+ cells in the gut. We also found that Dh44R2 is expressed in the brain as well. We documented this part like the following: “Given that Dh44R2 is predominantly expressed in the intestine, we performed immunostaining to examine whether Dh44R2 co-localizes with trpg in gut cells. Our results confirmed that Dh44R2 and trpg are co-expressed in intestinal cells (Figure 7O and P). Additionally, we analyzed Dh44R2 expression in the brain and found that two Dh44R2-expressing cells are co-localized with Dh44-expressing cells in the PI region (Figure 7Q). To further delineate whether Dh44R2-mediated fat utilization is specific to the brain, gut, or fat body, we knocked down Dh44R2<sup>RNAi</sup> using Dh44-GAL4, myo1A-GAL4, and cg-GAL4, respectively (Figure 7–figure supplement 1E). Notably, knockdown of Dh44R2 with Myo1A-GAL4 resulted in elevated TAG levels, indicating that DH44R2 activity in lipid metabolism is specific to the gut.” lines 375-384.

      (3) While Dh44 mutant flies displayed normal internal TAG levels, Dh44R2 mutant flies exhibited elevated TAG levels (Figure 7A). This suggested that the lipolysis phenotype could be facilitated by a neuropeptide other than Dh44. Alternatively, a Dh44 neuropeptide-independent pathway could mediate the lipolysis. In either case, an additional result is needed to substantiate either one of the hypotheses.

      The Dh44 mutant flies exhibited normal TAG levels, whereas Dh44R2 mutant flies showed elevated TAG levels. However, when we examined the lipid droplets in the fat body, both Dh44 mutant and Dh44R2 mutant flies displayed larger lipid droplets, indicating a disruption in lipid metabolism. Additionally, we assessed starvation survival time and found that both Dh44 and Dh44R2 mutant flies exhibited reduced survival under starvation conditions compared to controls. Supplementation with lipase (Figure 7–figure supplement 1A), glycerol (Figure 7–figure supplement 1B), hexanoic acid (Figure 7–figure supplement 1C), and mixed TAGs (Figure 7–figure supplement 1D) improved starvation survival time, further supporting that the lipid metabolism pathway was impaired in both mutants. These observations highlight the role of Dh44 in regulating lipolysis. We included related Discussion: “There is an inconsistency of total TAG levels and the LD size observed in the Dh44 mutant. This inconsistency raises a possibility that the signaling pathway from DH44 release to its receptor DH44R2 only accounts for part of the lipid metabolic process under starvation. While Dh44 mutant flies displayed normal internal TAG levels, Dh44R2 mutant flies exhibited elevated TAG levels. This suggested that the lipolysis phenotype could be facilitated by a neuropeptide other than DH44. Alternatively, a DH44 neuropeptide-independent pathway could mediate the lipolysis.” lines 429-436.

      (4) While the authors observed an increased area of fat body lipid droplets (LD) in Dh44 mutant flies (Figure 7F), they did not specify the particular region of the fat body chosen for measuring the LD area.

      We have chosen the 2-3 segment in the abdomen for all fat body images, which we already mentioned in Nile red staining in the Method section line 630-631.

      (5) The LD area only accounts for TAG levels in the fat body, whereas TAG can be found in many other body parts, including the R2 area as demonstrated in Figure 5A-D using Nile red staining. As such, measuring the total internal TAG levels would provide a more accurate representation of TAG levels than the average fat body LD area.

      We have measured total internal TAG level in whole body throughout the experiments (Figure 1F, 2C, 2E, 3C, 3G, 4A, 4B, 7A, 7I, and many Supplementary Figures) except bmm expression using GAL4/UAS system. Now we include this new data in Figure 5–figure supplement 1) which is the same conclusion with LD analysis.

      (6) In Figure 5F-I, the authors should perform the similar experiment with Dh44, Dh44R1, and Dh44R2 mutant flies.

      We did the experiments with Dh44, Dh44R1, and Dh44R2 mutant flies and we found that Dh44 and Dh44R2 mutant flies showed reduced starvation survival time than control and which was increased after supplementation of lipase, glycerol, hexanoic acid and TAG (Figure 7– figure supplement 1A–D). lines 361-372.

      (7) The representative image in Figure 6B does not correspond to the GFP quantification results shown in Figure 6C. In trpr1;bmm::GFP flies, the GFP signal appears stronger in starved conditions than in satiated conditions.

      We updated it with new images. We quantified GFP intensity level using image J and found that GFP intensity level was significantly lower in starved condition in trpγ<sup>1</sup>;bmm::GFP flies than sated condition.

      (8) In Figure 6H-I, fat body-specific expression of bmm reversed the increased LD area in TRPγ mutants. The authors also showed that Dh44+PI neuron-specific expression of bmm yielded a similar result. The authors need to provide an interpretation as to how bmm acts in the fat body or DH44 neurons to regulate this.

      We first inserted the following in results: “Furthermore, the expression of bmm in the fat body, as well as Dh44 neurons in the PI region, can promote lipolysis at the systemic level.” lines 276-277.

      Additionally, we discussed it in the Discussion: “Brummer lipase is essential for regulating lipid levels in the insect fat body by mediating lipid mobilization and energy homeostasis. In Nilaparvata lugens, it facilitates triglyceride breakdown (Lu et al., 2018), while studies in Drosophila show that reduced Brummer lipase expression decreases fatty acids and increases diacylglycerol levels, highlighting its role in lipid metabolism (Nazario-Yepiz et al., 2021). Here, we additionally demonstrate that bmm expression in DH44 neurons within the PI region can systemically regulate TAG levels. Cell signaling or energy status in DH44 neurons may contribute to hormonal release that targets organs such as the fat body.” lines 451-459.

      (9) The authors should explain why the DH44 R1 mutant did not represent similar results as the wild type.

      We added “In addition, bmm levels in Dh44R1<sup>Mi</sup> under starved condition did not increase as significantly as in the control. This suggests a unique role of DH44 and its receptors in regulating lipid metabolism and response to nutritional status in Drosophila.” lines 358-360.

      (10) It would be good to have a schematic that represents the working model proposed in this manuscript.

      We updated the schematic model in revised version (Figure 8).

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):

      This paper characterized the function of trpγ in Dh44-expressing PI neurons for lipid metabolism and lipolysis induced by prolonged starvation. The authors applied a series of lipolytic genetic manipulation and lipid/lipid metabolism supplements to rescue the trpγ deficits in lipolysis: the expression of active AMPK in the DH44-expressing PI neurons or brummer, a lipolytic gene, in the trpγ-expressing cells, and oral administration of the anti-diabetic drug metformin, lipase, TAG and free fatty acids. Despite this exhaustive characterization of the defective lipolysis in the trpγ mutants, there remain puzzles in inconsistent defects of Dh44 and DH44R2 in the total TAG levels and in the expression and functions of the receptor in the gut. Clarification of these points and other issues raised by the reviewers should improve the mechanisms of lipid metabolism through Dh44 signalling.

      Reviewer #1 (Recommendations For The Authors):

      (1) It might be worth introducing Dh44 in the introduction section as it is unclear to readers how the authors hypothesized the site-of-action of TRPγ in Dh44 neurons for lipid metabolism after reading the introduction.

      We introduced the following: “We found that TRPg expression in Dh44 neuroendocrine cells in the brain is critical for maintaining normal carbohydrate levels in tissues (Dhakal et al. 2022). Building on this, we hypothesized that TRPg in Dh44 cells also regulates lipid and protein homeostasis.” lines 69-71.

      (2) Providing a summary model in the end to integrate the present findings and their previous publication about TRPγ functions in Drosophila sugar selection would greatly help readers understand and appreciate the general role of TRPγ in balancing energy homeostasis.

      We made a schematic model in Figure 8.

      (3) Swapping the order of Figures 5 and 6 might be a better way to tell the story without logic gaps. The results addressing the mechanisms of metformin and TRPγ in promoting lipolysis under starvation are interrupted by the lipid storage data in the R2 cells in the current Figure 5A-5E. In addition, presenting Figure 5A-5E before or together with Figure 7 will help readers appreciate the expression of Dh44-R2 and its function in regulating lipid metabolism in Figure 7.

      We did.

      (4) It might be misleading to use the word "sated" for the condition of 5-hour mild starvation. The word "mild starvation" or the equivalents might be a better word choice.

      We appreciate the reviewer’s concern. As hemolymph sugar level does not drop down significantly in 5 hr starvation, the previous papers (Dus et al 2015, Dhakal et al 2022) indicated it as sated condition. To use the word consistently, we prefer using “sated” instead of “mild starvation”.

      (5) It is unclear what the white arrows are pointing at in Figures 7O and 7P. Some of those seem to be non-specific signals, so it is hard to connect the figure to the conclusion in Lines 351-353. It would be helpful to add some explanations to help readers interpret Figures 7O and 7P.

      In the previous version, Figure 7O and 7P white arrows represented the expression of Dh44R2 in the SEZ region of the brain and R2 region of the gut. In revised version, to make clear, we performed additional immunostaining for the co-expression of trpγ and Dh44R2 in the gut. We found that trpγ and Dh44R2 co-expressed at the R2 region of the gut specifically (Figure 7O and P). Similarly, we found that two cells of Dh44R2 co-expressed in Dh44 cells in the PI region of the brain (now Figure 7Q). We updated this part. lines 375-380.

      (6) The figure legend for the (G) panel in Figure 2-figure Supplement 1 was mislabeled as (F).

      We corrected it.

      (7) In Line 85, the authors might want to write "… among these mutants, only trpγ mutant displayed reduced carbohydrate levels, suggesting …". Please confirm the information for the sentence. lines 87-88.

      We clarified it.

      Reviewer #2 (Recommendations For The Authors):

      (1) The trpγ[G4] would be difficult for non-Drosophila researchers to understand; it would be better to use trpγ-Gal4.

      We got the mutant line from Dr. Craig Montell who named it. We explained it like the following in the main text: “controlled by GAL4 knocked into the trpg locus (trpg<sup>G4</sup> flies; +)” line 109.

      (2) The arrows in Figures 7O and 7P need to be explained in the figure legends.

      We did.

      Reviewer #3 (Recommendations For The Authors):

      (11) Lines 95-96 should have a reference.

      We did.

      (12) Lines 129-130: It should read "TRPγ expressed in DH44 cells is sufficient for the regulation of lipid levels."

      We changed it as suggested.

      (13) Figure 5E needs to be repeated with more trials.

      We increased the n numbers. Previously (Figure 5E) we included area of 10 LDs from 3 samples, and in revised figure (Figure 6I) we have included 28 LDs from 10 samples.

      (14) Figures 5F-I, bold lines are not too visible and therefore, dotted lines could be used.

      We changed it as suggested.

      (15) Line 356: It is not true that D-trehalose or D-fructose is commonly detected by DH44 neurons. These sugars at concentrations much higher than the physiological concentration range stimulate DH44 neurons (see Dus et al., 2015).

      We removed it.

      (16) Lines 362-363: It should read "Expression of TRPγ in DH44 neurons was necessary and sufficient to regulate the carbohydrate and lipid levels.".

      We changed it.

      (17) Lines 369-370: The authors need to consider removing the possible role of CRF in regulating lipid homeostasis. It could be considered to be far-fetched.

      We removed it.

      (18) Line 407-408: the sentence "Nevertheless, it is also known that DH44 neurons mediate the influence of dietary amino acids on promoting food intakes in flies (37)" needs to be removed. They used amino acid concentrations that were far greater than the physiological levels observed in the internal milieu of flies. Still, many laboratories cannot reproduce the result of using the high AA concentrations.

      We removed it.

    1. Reviewer #1 (Public review):

      Summary:

      Inhibitory hM4Di and excitatory hM3Dq DREADDs are currently the most commonly utilized chemogenetic tools in the field of nonhuman primate research, but there is a lack of available information regarding the temporal aspects of virally-mediated DREADD expression and function. Nagai et al. investigated the longitudinal expression and efficacy of DREADDs to modulate neuronal activity in the macaque model. The authors demonstrate that both hM4Di and hM3Dq DREADDs reach peak expression levels after approximately 60 days and are stably expressed for a period of at least 1.5 years in the macaque brain. During this period, DREADDs effectively modulated neuronal activity, as evidenced by a variety of measures, including behavioural testing, functional imaging, and/or electrophysiological recording. Notably, some of the data suggest that DREADD expression may decline after two years. This is a novel finding and has important implications for the utilization of this technology for long-term studies, as well as its potential therapeutic applications. Lastly, the authors highlight that peak DREADD expression may be significantly influenced by the choice of viral titer and the expressed protein tag, emphasizing the importance of careful design and selection of viral constructs for neuroscientific research. This study represents a critical step in the field of chemogenetics, setting the scene for future development and optimization of this technology.

      Strengths:

      The longitudinal approach of this study provides important preliminary insights into the long-term utility of chemogenetics, which has not yet been thoroughly explored.

      The data presented are novel and inclusive, relying on well-established in vivo imaging methods, as well as behavioral and immunohistochemical techniques. The conclusions made by the authors are generally supported by a combination of these techniques. In particular, the utilization of in vivo imaging as a non-invasive method is translationally relevant and likely to make an impact in the field of chemogenetics, such that other researchers may adopt this method of longitudinal assessment in their own experiments. Rigorous standards have been applied to the datasets, and the appropriate controls have been included where possible.

      The number of macaque subjects (20) from which data was available is also notable. Behavioral testing was performed in 11 subjects, FDG-PET in 5, electrophysiology in 1, and [11C]DCZ-PET in 15. This is an impressive accumulation of work that will surely be appreciated by the growing community of researchers using chemogenetics in nonhuman primates.

      The implication that chemogenetic effects can be maintained for up to 1.5-2 years, followed by a gradual decline beyond this period, is an important development in knowledge. The limited duration of DREADD expression may present an obstacle in the translation of chemogenetic technology as a potential therapeutic tool, and it will be of interest for researchers to explore whether this limitation can be overcome. This study therefore represents a key starting point upon which future research can build.

      Weaknesses:

      Overall, the conclusions of the paper are mostly supported by the data but may be overstated in some cases, and some details are also missing or not easily recognizable within the figures. The provision of additional information and analyses would be valuable to the reader and may even benefit the authors' interpretation of the data.

      The conclusion that DREADD expression gradually decreases after 1.5-2 years is only based on a select few of the subjects assessed; in Figure 2, it appears that only 3 hM4Di cases and 2 hM3Dq cases are assessed after the 2-year timepoint. The observed decline appears consistent within the hM4Di cases, but not for the hM3Dq cases (see Figure 2C: the AAV2.1-hSyn-hM3Dq-IRES-AcGFP line is increasing after 2 years.)

      Given that individual differences may affect expression levels, it would be helpful to see additional labels on the graphs (or in the legends) indicating which subject and which region are being represented for each line and/or data point in Figure 1C, 2B, 2C, 5A, and 5B. Alternatively, for Figures 5A and B, an accompanying table listing this information would be sufficient.

      While the authors comment on several factors that may influence peak expression levels, including serotype, promoter, titer, tag, and DREADD type, they do not comment on the volume of injection. The range in volume used per region in this study is between 2 and 54 microliters, with larger volumes typically (but not always) being used for cortical regions like the OFC and dlPFC, and smaller volumes for subcortical regions like the amygdala and putamen. This may weaken the claim that there is no significant relationship between peak expression level and brain region, as volume may be considered a confounding variable. Additionally, because of the possibility that larger volumes of viral vectors may be more likely to induce an immune response, which the authors suggest as a potential influence on transgene expression, not including volume as a factor of interest seems to be an oversight.

      The authors conclude that vectors encoding co-expressed protein tags (such as HA) led to reduced peak expression levels, relative to vectors with an IRES-GFP sequence or with no such element at all. While interesting, this finding does not necessarily seem relevant for the efficacy of long-term expression and function, given that the authors show in Figures 1 and 2 that peak expression (as indicated by a change in binding potential relative to non-displaced radioligand, or ΔBPND) appears to taper off in all or most of the constructs assessed. The authors should take care to point out that the decline in peak expression should not be confused with the decline in longitudinal expression, as this is not clear in the discussion; i.e. the subheading, "Factors influencing DREADD expression," might be better written as, "Factors influencing peak DREADD expression," and subsequent wording in this section should specify that these particular data concern peak expression only.

    2. Reviewer #3 (Public review):

      Summary

      This manuscript, from the developers of the novel DREADD-selective agonist DCZ (Nagai et al., 2020), utilizes a unique dataset where multiple PET scans in a large number of monkeys, including baseline scans before AAV injection, 30-120 days post-injection, and then periodically over the course of the prolonged experiments, were performed to access short- and long-term dynamics of DREADD expression in vivo, and to associate DREADD expression with the efficacy of manipulating the neuronal activity or behavior. The goal was to provide critical insights into the practicality and design of multi-year studies using chemogenetics and to elucidate factors affecting expression stability.

      Strengths are systematic quantitative assessment of the effects of both excitatory and inhibitory DREADDs, quantification of both the short-term and longer-term dynamics, a wide range of functional assessment approaches (behavior, electrophysiology, imaging), and assessment of factors affecting DREADD expression levels, such as serotype, promoter, titer (concentration), tag, and DREADD type.

      Minor weaknesses are related to a few instances of suboptimal phrasing, and some room for improvement in time course visualization and quantification. These would be easily addressed in a revision.

      These findings will undoubtedly have a very significant impact on the rapidly growing but still highly challenging field of primate chemogenetic manipulations. As such, the work represents an invaluable resource for the community.

    3. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Overall, the conclusions of the paper are mostly supported by the data but may be overstated in some cases, and some details are also missing or not easily recognizable within the figures. The provision of additional information and analyses would be valuable to the reader and may even benefit the authors' interpretation of the data.

      We thank the reviewer for the thoughtful and constructive feedback. We are pleased that the reviewer found the overall conclusions of our paper to be well supported by the data, and we appreciate the suggestions for improving figure clarity and interpretive accuracy. Below we address each point raised:

      The conclusion that DREADD expression gradually decreases after 1.5-2 years is only based on a select few of the subjects assessed; in Figure 2, it appears that only 3 hM4Di cases and 2 hM3Dq cases are assessed after the 2-year timepoint. The observed decline appears consistent within the hM4Di cases, but not for the hM3Dq cases (see Figure 2C: the AAV2.1-hSyn-hM3Dq-IRES-AcGFP line is increasing after 2 years.)

      We agree that our interpretation should be stated more cautiously, given the limited number of cases assessed beyond the two-year timepoint. In the revised manuscript, we will clarify in both the Results and Discussion that the observed decline is based on a subset of animals. We will also state that while a consistent decline was observed in hM4Di-expressing monkeys, the trajectory for hM3Dq expression was more variable—with at least one case showing increased in signal beyond two years.

      Given that individual differences may affect expression levels, it would be helpful to see additional labels on the graphs (or in the legends) indicating which subject and which region are being represented for each line and/or data point in Figure 1C, 2B, 2C, 5A, and 5B. Alternatively, for Figures 5A and B, an accompanying table listing this information would be sufficient.

      We thank the reviewer for these helpful suggestions. In response, we will revise the relevant figures as noted in the “Recommendations for the authors”, including simplifying visual encodings and improving labeling. We will also provide a supplementary table listing the animal ID and brain regions for each data point shown in the graphs.

      While the authors comment on several factors that may influence peak expression levels, including serotype, promoter, titer, tag, and DREADD type, they do not comment on the volume of injection. The range in volume used per region in this study is between 2 and 54 microliters, with larger volumes typically (but not always) being used for cortical regions like the OFC and dlPFC, and smaller volumes for subcortical regions like the amygdala and putamen. This may weaken the claim that there is no significant relationship between peak expression level and brain region, as volume may be considered a confounding variable. Additionally, because of the possibility that larger volumes of viral vectors may be more likely to induce an immune response, which the authors suggest as a potential influence on transgene expression, not including volume as a factor of interest seems to be an oversight.

      We thank the reviewer for raising this important issue. We agree that injection volume is a potentially confounding variable. In response, we will conduct an exploratory analysis including volume as an additional factor. We will also expand the Discussion to highlight the need for future systematic evaluation of injection volume, especially in relation to immune responses or transduction efficiency in different brain regions.

      The authors conclude that vectors encoding co-expressed protein tags (such as HA) led to reduced peak expression levels, relative to vectors with an IRES-GFP sequence or with no such element at all. While interesting, this finding does not necessarily seem relevant for the efficacy of long-term expression and function, given that the authors show in Figures 1 and 2 that peak expression (as indicated by a change in binding potential relative to non-displaced radioligand, or ΔBPND) appears to taper off in all or most of the constructs assessed. The authors should take care to point out that the decline in peak expression should not be confused with the decline in longitudinal expression, as this is not clear in the discussion; i.e. the subheading, "Factors influencing DREADD expression," might be better written as, "Factors influencing peak DREADD expression," and subsequent wording in this section should specify that these particular data concern peak expression only.

      We appreciate this important clarification. In response, we will revise the title to “Factors influencing peak DREADD expression levels”, and we will specify that our analysis focused on peak ΔBP<sub>ND</sub> values around 60 days post-injection. We will also explicitly distinguish these findings from the later-stage changes in expression seen in the longitudinal PET data in both the Results and Discussion sections.

      Reviewer #2 (Public review):

      Weaknesses

      This study is a meta-analysis of several experiments performed in one lab. The good side is that it combined a large amount of data that might not have been published individually; the downside is that all things were not planned and equated, creating a lot of unexplained variances in the data. This was yet judiciously used by the authors, but one might think that planned and organized multicentric experiments would provide more information and help test more parameters, including some related to inter-individual variability, and particular genetic constructs.

      We thank the reviewer for bringing this important point to our attention. We fully agree that the retrospective nature of our dataset, compiled from multiple studies conducted within a single laboratory, introduces variability due to differences in constructs, injection sites, and timelines. While this reflects the real-world constraints of long-term NHP research, we acknowledge the need for more standardized approaches. We will add a statement in the revised Discussion emphasizing that future multicenter and harmonized studies would be valuable for systematically examining specific parameters and inter-individual variability.

      Reviewer #3 (Public review):

      Minor weaknesses are related to a few instances of suboptimal phrasing, and some room for improvement in time course visualization and quantification. These would be easily addressed in a revision.

      These findings will undoubtedly have a very significant impact on the rapidly growing but still highly challenging field of primate chemogenetic manipulations. As such, the work represents an invaluable resource for the community.

      We thank the reviewer for the positive assessment of our manuscript and for the constructive suggestions noted in the “Recommendations for the authors”. In response, we will carefully review and revise the manuscript to improve visualization and quantification.

  10. Mar 2025
    1. Author response:

      The following is the authors’ response to the original reviews

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the Authors):

      The interpretation of results obtained with opto-Treacle (related to Figure 2C) may be expanded.

      We thank the reviewer for their insightful comment regarding the interpretation of the results obtained with opto-Treacle. We understand the concern that the difference in the size of the condensates formed by opto-Treacle (Figure 2C) compared to Treacle-2S or other constructs may raise questions about the role of tetramerization in driving condensate formation, as 2S is known to tetramerize while FusionRed is not susceptible to multimerization.

      To address this concern, we emphasize that we have demonstrated that overexpressed Treacle forms large condensates even in the absence of any fluorescent protein, as included in the revised manuscript. This observation supports the conclusion that Treacle's ability to form condensates is intrinsic and does not depend on the multimerization capacity of the fluorescent tag.

      We believe that the observed difference in condensate size between opto-Treacle and Treacle-2S, Treacle-GFP, or untagged Treacle arises primarily from the time available for condensate assembly. Opto-Treacle condensation occurs rapidly, within approximately 10 seconds of blue light illumination, whereas Treacle-2S, Treacle-GFP, or untagged Treacle undergo condensation over the extended period of 24–48 hours of protein overexpression. This temporal difference likely accounts for the disparity in condensate size, as longer assembly times allow for larger and more mature condensates to form.

      Given this reasoning, we consider it unnecessary to further emphasize the size differences in the main text of the article, as we believe the underlying explanation is clear and supported by the data. Nonetheless, we are open to incorporating additional clarifications if the reviewer deems it necessary.

      The authors might reconsider referring to Treacle as a scaffold. Ultimately, the scaffold for the nucleolus is the rDNA with its bound proteins. Scaffold proteins, by definition, bind multiple protein partners and facilitate the formation of multiprotein complexes, a role not really attributed to homotypic LLPS.

      We thank the reviewer for raising this important point regarding the use of the term "scaffold" in relation to Treacle. We fully acknowledge that rDNA, along with its associated protein complexes, serves as the primary structural scaffold for the nucleolus. However, we believe that referring to Treacle as a scaffold is appropriate and justified within the specific context of our study.

      First, we emphasize that we describe Treacle as a scaffold specifically for nucleolar fibrillar centers (FCs), rather than for the nucleolus as a whole. This distinction is important, as our work focuses on the role of Treacle in organizing FC components, rather than the broader structural organization of the nucleolus.

      Second, as the reviewer notes, scaffold proteins are defined by their ability to bind multiple protein partners and facilitate the formation of multiprotein complexes. Our findings demonstrate that Treacle's condensation properties promote the binding and retention of key rDNA-associated protein partners, including RPA194, UBF, and Fibrillarin, within the FCs. This activity aligns with the functional definition of a scaffold protein, as Treacle supports the spatial organization and cooperative interactions of FC components essential for rRNA transcription and processing. Therefore, while we appreciate the reviewer's observation regarding the central role of rDNA as a nucleolar scaffold, we maintain that the use of the term "scaffold" to describe Treacle's role in organizing FCs is consistent with its demonstrated functional properties.

      If authors decide to add the "Ideas and Speculation" subsection to their Discussion, it may be interesting to discuss the following outstanding questions: does Treacle undergo homotypic or heterotypic LLPS? Does its overexpression favor homotypic interactions? How does it segregate FC and DFC compartments -by exclusion? How does phase-separated Treacle interact with other proteins?

      We thank the reviewer for these insightful questions. While we believe that adding a dedicated "Ideas and Speculation" subsection would be redundant, we have already addressed the questions regarding Treacle’s homotypic or heterotypic LLPS and its interactions with other proteins in the revised "Discussion" section. Additionally, we have included a new section in the manuscript specifically focused on investigating the role of Treacle condensation in its interactions with protein partners, further expanding on these points.

      In Materials and Methods, smFISH section -"probes were designed as described (Yao et al, 2019) and labeled with FITS on the 3'ends" - was it meant to say FITC (i.e. Fluorescein)?

      We thank the reviewer for catching this error. This was indeed a typo, and we have corrected it to "FITC (i.e., Fluorescein)" in the revised text.

      Reviewer #2 (Recommendations for the Authors):

      Regarding recombinant Treacle, the main concern is that the authors may not be observing the condensation of Treacle itself. The quality of the purchased recombinant Treacle is unclear (this reviewer could not find Treacle listed on the vendor website despite using the supplied catalog number or vapors search terms). Furthermore, it is not clear if the condensates observed are Treacle or potentially the Dextran crowder. Only small percentages (>1%-5%) of either Dextran or PEG are needed to induce phase separation in two-component mixtures of these polymers. PEG may be in the Treacle storage butter. In addition to clarifying the State of recombinant Treacle, these concerns could be further assuaged by direct visualizing of Treacle forming condensates (via fluorescent n-terminal tagging) and filling in more of the phase space to observe the loss of condensates at a threshold concentration of Treacle. In general, the gold standard for establishing condensation of a given protein is mapping the full binodal phase diagram diagram of the protein. Understanding that protein is a limited resource, most groups simply map the lower concentration arm of the binodal, and this is sufficient to characterize a protein as having intrinsic condensation behavior. A similar mapping effort of Treacle would be welcomed. 

      We thank the reviewer for their thoughtful comments and for highlighting concerns regarding the interpretation of our experiments with commercial recombinant Treacle. We recognize the importance of ensuring that the observed condensation properties are intrinsic to Treacle and not influenced by potential contaminants, storage buffer components, or tags on the protein.

      To address these concerns, we have re-evaluated the condensation properties of Treacle using a recombinant fragment independently purified in our laboratory. Specifically, we expressed and purified a Treacle fragment (amino acids 291–426), which includes two S/E-rich low-complexity regions (LCRs) and two linker regions, in E. coli. The protein was expressed as a TEV-cleavable maltose-binding protein (MBP) fusion, purified under native conditions via amylose resin, and subjected to TEV cleavage. This was followed by ion-exchange chromatography and extensive dialysis to remove any remaining impurities. These additional steps ensured that the purified Treacle fragment was of high purity and free from confounding components, such as polyethylene glycol (PEG). We have included detailed descriptions of this protocol in the revised manuscript.

      Using this purified Treacle fragment, we confirmed its intrinsic condensation behavior in vitro. In the presence of 5% PEG8000 as a crowding agent, the fragment formed liquid-like condensates that exhibited spherical morphology and dynamic fusion events, key hallmarks of liquid-liquid phase separation (LLPS). Additionally, we demonstrated that the condensation of this Treacle fragment was sensitive to changes in pH and salt concentration but unaffected by 1,6-hexanediol treatment, suggesting that the condensates are stabilized predominantly by electrostatic interactions (Fig. 4B of the revised manuscript). Importantly, these findings provide robust evidence that Treacle possesses intrinsic phase-separation properties. All results from the commercial Treacle protein used in the initial version of the manuscript have been replaced with data obtained using this independently purified recombinant fragment.

      We undestand that the condensation behavior of the fragment may not fully capture the behavior of full-length Treacle. Nevertheless, the in vitro experiments provide valuable mechanistic insights into the biophysical properties of Treacle. Furthermore, as emphasized in the revised manuscript, our study primarily focuses on understanding the condensation and functional role of Treacle in a cellular context, where we observe its critical involvement in organizing nucleolar structure and regulating rRNA transcription. These cellular experiments highlight the biological relevance of Treacle’s condensation behavior.

      With regard to mapping the binodal phase diagram of Treacle, we concur with the reviewer that such an effort would be ideal for a more comprehensive characterization of Treacle’s condensation properties. However, the limited availability of purified protein currently precludes a detailed mapping effort. Despite this limitation, we believe the qualitative assessments of Treacle’s condensation under varying conditions, now included in the revised manuscript, sufficiently demonstrate its intrinsic ability to phase-separate.

      In conclusion, we are grateful for the reviewer’s feedback, which has allowed us to refine our methodology and strengthen the evidence supporting the intrinsic condensation properties of Treacle. We are confident that the revised manuscript provides a robust and thorough characterization of Treacle’s phase-separation behavior and its functional role in the cell, addressing the reviewer’s concerns. Thank you for your constructive recommendations, which have significantly improved the quality of our work.

      Replacing 'liquid-phase' and 'liquid' with 'liquid-like' would make the language consistent with other papers in the field and more accurately reflect the degree of material state analysis carried out in the study.

      We thank the reviewer for this insightful recommendation. In response to the suggestion, we have revised the manuscript to replace the terms "liquid-phase" and "liquid" with "liquid-like" throughout the text. This change ensures consistency with terminology commonly used in the field and more accurately reflects the degree of material state analysis performed in our study. We believe this adjustment improves the clarity and precision of our findings, aligning the manuscript with standard practices in the field. Thank you for helping us enhance the quality of the presentation.

      The 'unclear' nature of the condensation behavior of the FC phase of the nucleolus is listed as a motivation for carrying out the study in the introduction; the authors could note here two recent papers that have investigated the nature of FC condensation: Jaberi-Lashkari et al. 2023 and King et al. 2024. The reviewer notes that while these were both pre-printed in late 2022, they were only recently published.

      We thank the reviewer for bringing these recent studies to our attention. In response to the suggestion, we have cited the papers by Jaberi-Lashkari et al. (2023) and King et al. (2024) in both the introduction and discussion sections of the revised manuscript. These references are highly relevant to the context of our study and provide valuable insights into the condensation behavior of the FC phase of the nucleolus. We agree that incorporating these works strengthens the framing of our study and situates it more effectively within the broader field. Thank you for this constructive recommendation.

      The statement that Treacle is "the main molecule present in the FC" is a substantial claim that does not need to be made to promote the author's case, nor is it well supported by the provided reference (Gal et al., 2022).

      We thank the reviewer for pointing out this overstatement in our original manuscript. In response, we have revised the text to provide a more accurate and well-supported description. Specifically, we have replaced the claim that Treacle is "the main molecule present in the FC" with a statement highlighting its direct interactions with UBF and RNA Pol I, as well as its colocalization with these proteins within the FC. This revision ensures alignment with the provided references and more accurately reflects the current understanding of Treacle's role in the FC. We appreciate the reviewer's attention to this detail, which has helped us improve the clarity and accuracy of our manuscript.

      The statement that "Treacle is one of the most intrinsically disordered proteins" is vague and unnecessarily grand. Treacle is a fully intrinsically disordered protein; these comprise 5% of the human proteome (Tsang et al. 2020), so Treacle is, indeed, unusual in that regard.

      We thank the reviewer for highlighting the vague and unnecessarily broad nature of the original statement. In response, we have revised the text to provide a more precise and accurate description of Treacle's structural properties. Specifically, we replaced the claim that "Treacle is one of the most intrinsically disordered proteins" with the statement that "According to protein structure predictors (e.g., AlphaFold, IUPred2, PONDR, and FuzDrop), Treacle is a fully intrinsically disordered protein." This wording reflects the unique nature of Treacle while remaining scientifically accurate and supported by reliable computational predictions. We appreciate the reviewer's feedback, which has allowed us to improve the rigor and clarity of our manuscript.

      A comment on the implications of the immobile pool of Treacle (which appears to be ~50% in WT and across a range of mutants) would be welcome. Additionally, the limitations of FRAP for interrogating material properties of condensed material in living systems are provided in Goetz and Mahamid, 2020. In this paper, the authors review instances where the ultrastructure of condensate is known and where FRAP data is available. They show that crystalline assemblies can recover faster than apparently liquid, spherical assemblies. A comment in the text about how these limitations apply to this study would be welcome.

      We appreciate the reviewer’s insightful comments regarding the interpretation of the immobile pool of Treacle and the limitations of FRAP for characterizing material properties in living systems. As noted in our response to the public review, we believe the ~50% recovery rate after photobleaching observed in our experiments is best explained by the redistribution of Treacle molecules within the condensate, rather than significant exchange with the surrounding phase. This interpretation is strongly supported by the full- and half-FRAP analyses included in the revised manuscript, which demonstrated internal mixing dynamics within the condensates.

      There appears to be a typo in the following sentence: "The highly positively charged CD serves as the nucleation center for RD but exhibits ambivalent phase properties, transitioning from LLPS to LSPS in the absence of rRNA." The LLPS to LSPS behavior was observed for mutants to the central domain (RD), not the c-terminal domain (CD).

      Throughout the authors report single snapshots of representative cells and single line traces. Analysis of the key morphological feature across the population of cells would help the reader understand how widespread the observed phenotype is.

      We thank the reviewer for raising this important point regarding the representation of morphological features across the cell population. To address this concern, we have included widefield micrographs of cell fields in the revised figures to provide a more comprehensive view of the phenotypes observed.

      The statement that "The phase behavior of polymers is determined by interactions through associative motifs, referred to as stickers, separated by spacers, which are not the primary driving forces for phase separation" could be improved by pointing out that this is potentially incomplete for describing the kind of condensation that highly charged polymers undergo. The high charge and charge segregation of Treacle suggest that it is a blocky polyampholyte and that it condenses by coacervation. Models of associative polymers can be useful for describing coacervation, however, the driving forces for coacervation are less understood and have been proposed to include an entropic component (see Sathyavageeswaran et al. 2024, Sing and Perry 2020 and work from their groups as well as the Obermayer (Columbia) and Terrell (U. Chicago) Groups).

      We thank the reviewer for highlighting this important aspect of the phase behavior of charged polymers and for suggesting relevant references. In response, we have revised the discussion section of the manuscript to include a more nuanced explanation of the condensation mechanisms for highly charged polymers such as Treacle. Specifically, we now describe Treacle as a blocky polyampholyte, suggesting that its condensation behavior may be driven by coacervation mechanisms.The relevant references have been added to the discussion section of the revised manuscript.

      In addition to the above, the authors may consider citing two recent publications from the Pappu group (King et al. Cell 2024 and King et al. Nucleus 2024) that directly investigate the condensation potential of K-rich and E/D-rich' grammars' on nucleolar proteins and show that, like the authors, the K-rich region is essential for localization and is conserved across nucleolar proteins.

      We thank the reviewer for bringing these relevant publications to our attention. The suggested references from the Pappu group (King et al., Cell 2024, and King et al., Nucleus 2024) have been added to the introduction and discussion sections of the revised manuscript, and their findings have been appropriately integrated into our analysis.

      The authors could consider replacing the use of LLPS with a more generic term such as "condensation" or "biomolecular condensation." LLPS of polymers is a segregative transition driven by its incompatibility with the surrounding solvent. As indicated, Treacle is likely to be undergoing some form of coacervation (which is predominantly an associative tradition), which can be genetically described as condensation. See Pappu et al. 2023 for more details.

      We thank the reviewer for their insightful suggestion. Following the reviewer's recommendation, we have replaced the term "LLPS" with "condensation" or "coacervation" throughout the manuscript, where appropriate. Additionally, we have referenced Pappu et al. (2023) and other to provide further context and clarity regarding the distinctions between these terms.

      The authors cite Yao et al. 2019, but do not cite the follow-up study (Wu et al. 2021) or provide a statement on how the Chan group finds a role for the RGG domain of FBL in keeping the certain canonical markers of the FC and DFC de-mixed.

      We thank the reviewer for pointing out these important references. The relevant citations, including Wu et al. (2021), have been added to the manuscript.

      Reviewer #3 (Recommendations for the Authors):

      The following comment is true but could be broadened to include examples of structured regions promoting biomolecular condensation. "In biological systems, phase separation is mainly a characteristic of multivalent or intrinsically disordered proteins (Banani et al, 2017; Shin & Brangwynne,2017; Uversky, 2019)."

      We have expanded the statement as recommended by the reviewer: "In biological systems, phase separation is facilitated by a combination of multivalent interactions mediated by intrinsically disordered proteins and site-specific interactions that drive percolation."

      Related to Figure 1.

      The authors report Treacle-dependent EU incorporation (Figure 1D), but are there any changes more broadly to nucleolar number or size as a consequence? How do the authors interpret that the quantitative effect of AMD treatment is more extreme than Treacle depletion (Figure 1E).

      We thank the reviewer for raising these important points. Regarding nucleolar number and morphology, we did not observe a change in the number of nucleoli upon Treacle depletion. However, nucleoli appeared more regularly rounded under these conditions, which we interpret as a consequence of the decreased rDNA transcription activity caused by Treacle depletion. A similar rounding of nucleoli is also observed upon actinomycin D (AMD) treatment, which is consistent with reduced transcriptional activity.

      As for the more pronounced effect of AMD compared to Treacle depletion on EU incorporation, this can be explained by the fundamentally different mechanisms through which these conditions affect transcription. Treacle depletion reduces the local concentration of transcription factors at rDNA sites, thereby impairing transcription initiation and elongation to a certain extent. However, under Treacle depletion, RNA polymerase I still retains the ability to bind to the promoter and support a residual level of transcription. In contrast, AMD acts as a potent intercalator in GC-rich regions of rDNA, physically blocking the ability of RNA polymerase I to move along rDNA, resulting in near-complete cessation of rRNA synthesis.

      Related to Figure 2.

      The authors observe that AMD leads to coalescence of individual Treacle-2S+ bodies (e.g. Figure 2E) - does this suggest that ongoing rRNA transcription is required to prevent such events?

      Thank you for your thoughtful question. Indeed, our observations strongly suggest that ongoing rRNA transcription is required to prevent the coalescence of Treacle-2S+ bodies, as observed upon AMD treatment. This interpretation aligns with the findings of Tetsuya Yamamoto et al., who demonstrated that nascent ribosomal RNA (pre-rRNA) acts as a surfactant to suppress the growth and fusion of fibrillar centers (FCs) in the nucleolus. Their work highlighted that nucleolar condensates formed via liquid-liquid phase separation (LLPS) tend to grow to minimize surface energy, provided sufficient components are available. However, the transcription of prerRNA stabilizes FCs by maintaining multiple microphases, preventing coalescence unless transcription is inhibited.

      According to Yamamoto et al., nascent pre-rRNAs tethered to FC surfaces by RNA Polymerase I generate lateral pressure that counteracts interfacial tensions, effectively suppressing FC fusion. This activity is analogous to the surfactant properties of molecules in physical systems. When transcription is inhibited (e.g., by AMD), the loss of nascent rRNA allows condensates to coalesce, consistent with the behavior we observe.

      We further propose that the AMD-induced coalescence of Treacle-2S+ bodies reflects the loss of this surfactant-like effect, as transcriptional activity ceases. This theory is also supported by the observation that Treacle condensates in the nucleoplasm, where rRNA transcription is absent, form larger structures. Collectively, these insights highlight the critical role of ongoing rRNA transcription in maintaining the structural integrity and dynamic organization of nucleolar substructures.

      Related to Figure 3.

      In the figure panels B-H the DAPI signal in gray obscures the Treacle localization, especially in Figure 3H. A non-merged image for each of these examples for the Treacle localization would be very helpful.

      We thank the reviewer for this observation. To address this, we have included wide-field images without the DAPI overlay for the deletion mutant lacking the 1121-1488 region. These are now presented in Supplementary Figure S5G of the revised manuscript.

      Related to Figure 5.

      Only a single representative nucleus is shown in the PLA analysis presented in Figure 5B.

      Quantification to assess the robustness of this response with the addition of VP16 is needed. The authors use ChIP and immunocytochemistry as orthogonal methods but it would be best to therefore show both for each manipulation that is performed - the immunostaining of TOPBP1 in the Treacle KD cells in S5A should be in the main Figure 5 to complement transformation of constructs as in Figure 5D.

      We appreciate the reviewer’s comment. To address this, we performed a quantitative analysis of PLA fluorescence signals in control and etoposide-treated cells, and the results are now presented in Supplementary Figure S8C. Additionally, as recommended, we have transferred the results of the immunocytochemistry of TOPBP1 in Treacle KD and Treacle KN cells to the main figure, now included as Figures 7D-E in the revised manuscript.