10,000 Matching Annotations
  1. Aug 2024
    1. Author response:

      Reviewer #1 - Public Review

      This report describes work aiming to delineate multi-modal MRI correlates of psychopathology from a large cohort of children of 9-11 years from the ABCD cohort. While uni-modal characterisations have been made, the authors rightly argue that multi-modal approaches in imaging are vital to comprehensively and robustly capture modes of large-scale brain variation that may be associated with pathology. The primary analysis integrates structural and resting-state functional data, while post-hoc analyses on subsamples incorporate task and diffusion data. Five latent components (LCs) are identified, with the first three, corresponding to p-factor, internal/externalising, and neurodevelopmental Michelini Factors, described in detail. In addition, associations of these components with primary and secondary RSFC functional gradients were identified, and LCs were validated in a replication sample via assessment of correlations of loadings.

      1.1) This work is clearly novel and a comprehensive study of associations within this dataset. Multi-modal analyses are challenging to perform, but this work is methodologically rigorous, with careful implementation of discovery and replication assessments, and primary and exploratory analyses. The ABCD dataset is large, and behavioural and MRI protocols seem appropriate and extensive enough for this study. The study lays out comprehensive associations between MRI brain measures and behaviour that appear to recapitulate the established hierarchical structure of psychopathology.

      We thank Reviewer 1 for appreciating our methods and findings, and we address their suggestions below:

      1.2) The work does have weaknesses, some of them acknowledged. There is limited focus on the strength of observed associations. While the latent component loadings seem reliably reproducible in the behavourial domain, this is considerably less the case in the imaging modalities. A considerable proportion of statistical results focuses on spatial associations in loadings between modalities - it seems likely that these reflect intrinsic correlations between modalities, rather than associations specific to any latent component.

      We appreciate the Reviewer’s comment, and minimized the reporting of correlations between the loadings from the different modalities in the revised Results (specifically subsections on LC1, LC2, and LC3). We now refer to Table S4 in each subsection for this information: “Spatial correlations between modality-specific loadings are reported in Supplementary file 1c.”

      For completeness, we report the intrinsic correlations between the different modalities in Supplementary file 1c (P.19):

      “Lastly, although the current work aimed to reduce intrinsic correlations between variables within a given modality through running a PCA before the PLS approach, intrinsic correlations between measures and modalities may potentially be a remaining factor influencing the PLS solution. We, thus, provided an additional overview of the intrinsic correlations between the different neuroimaging data modalities in the supporting results (Supplementary file 1c).”

      1.3) Assessment of associations with functional gradients is similarly a little hard to interpret. Thus, it is hard to judge the implications for our understanding of the neurophysiological basis of psychopathology and the ability of MRI to provide clinical tools for, say, stratification.

      We now provide additional context, including a rising body of theoretical and empirical work, that outlines the value of functional gradients and cortical hierarchies in the understanding of brain development and psychopathology. Please see P.26.

      “Initially demonstrated at the level of intrinsic functional connectivity (Margulies et al., 2016), follow up work confirmed a similar cortical patterning using microarchitectural in-vivo MRI indices related to cortical myelination (Burt et al., 2018; Huntenburg et al., 2017; Paquola et al., 2019), post-mortem cytoarchitecture (Goulas et al., 2018; Paquola et al., 2020, 2019), or post-mortem microarray gene expression (Burt et al., 2018). Spatiotemporal patterns in the formation and maturation of large-scale networks have been found to follow a similar sensory-to-association axis; moreover, there is the emerging view that this framework may offer key insights into brain plasticity and susceptibility to psychopathology (Sydnor et al., 2021). In particular, the increased vulnerability of transmodal association cortices in late childhood and early adolescence has been suggested to relate to prolonged maturation and potential for plastic reconfigurations of these systems (Paquola et al., 2019; Park et al., 2022b). Between mid-childhood and early adolescence, heteromodal association systems such as the default network become progressively more integrated among distant regions, while being more differentiated from spatially adjacent systems, paralleling the development of cognitive control, as well as increasingly abstract and logical thinking. [...] This suggests that neurodevelopmental difficulties might be related to alterations in various processes underpinned by sensory and association regions, as well as the macroscale balance and hierarchy of these systems, in line with previous findings in several neurodevelopmental conditions, including autism, schizophrenia, as well as epilepsy, showing a decreased differentiation between the two anchors of this gradient (Hong et al., 2019). In future work, it will be important to evaluate these tools for diagnostics and population stratification. In particular, the compact and low dimensional perspective of gradients may provide beneficial in terms of biomarker reliability as well as phenotypic prediction, as previously demonstrated using typically developing cohorts (Hong et al. 2020) On the other hand, it will be of interest to explore in how far alterations in connectivity along sensory-to-transmodal hierarchies provide sufficient graduality to differentiate between specific psychopathologies, or whether they, as the current work suggests, mainly reflect risk for general psychopathology and atypical development.”

      1.4) The observation of a recapitulation of psychopathology hierarchy may be somewhat undermined by the relatively modest strength of the components in the imaging domain.

      We thank the Reviewer for this comment, and now expressed this limitation in the revised Discussion, P.23.

      “The p factor, internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and intrinsic functional connectivity signatures, although these relationships varied in strength.”

      1.5) The task fMRI was assessed with a fairly basic functional connectivity approach, not using task timings to more specifically extract network responses.

      In the revised Discussion on P.24, we acknowledge that more in-depth analyses of task-based fMRI may have offered additional insights into state-dependent changes in functional architecture.

      “While the current work derived main imaging signatures from resting-state fMRI as well as grey matter morphometry, we could nevertheless demonstrate associations to white matter architecture (derived from diffusion MRI tractography) and recover similar dimensions when using task-based fMRI connectivity. Despite subtle variations in the strength of observed associations, the latter finding provided additional support that the different behavioral dimensions of psychopathology more generally relate to alterations in functional connectivity. Given that task-based fMRI data offers numerous avenues for analytical exploration, our findings may motivate follow-up work assessing associations to network- and gradient-based response strength and timing with respect to external stimuli across different functional states.”

      1.6) Overall, the authors achieve their aim to provide a detailed multimodal characterisation of MRI correlations of psychopathology. Code and data are available and well organised and should provide a valuable resource for researchers wanting to understand MRI-based neural correlates of psycho-pathology-related behavioural traits in this important age group. It is largely a descriptive study, with comparisons to previous uni-modal work, but without particularly strong testing of neuroscience hypotheses.

      We thank the Reviewer for recognizing the detail and rigor of data-driven study and extensive code and data documentation.

      Reviewer #2 - Public Review

      In "Multi-modal Neural Correlates of Childhood Psychopathology" Krebets et al. integrate multi-modal neuroimaging data using machine learning to delineate dissociable links to diverse dimensions of psychopathology in the ABCD sample. This paper had numerous strengths including a superb use of a large resource dataset, appropriate analyses, beautiful visualizations, clear writing, and highly interpretable results from a data-driven analysis. Overall, I think it would certainly be of interest to a general readership. That being said, I do have several comments for the authors to consider.

      We thank Dr Satterthwaite for the positive evaluation and helpful comments.

      2.1) Out-of-sample testing: while the permutation testing procedure for the PLS is entirely appropriate, without out-of-sample testing the reported effect sizes are likely inflated.

      As discussed in the editorial summary of essential revisions, we agree that out-of-sample prediction indeed provides stronger estimates of generalizability. We assess this by applying the PCA coefficients derived from the discovery cohort imaging data to the replication cohort imaging data. The resulting PCA scores and behavioral data were then z-scored using the mean and standard deviation of the replication cohort. The SVD weights derived from the discovery cohort were applied to the normalized replication cohort data to derive imaging and behavioral composite scores, which were used to recover the contribution of each imaging and behavioral variable to the LCs (i.e., loadings). Out-of-sample replicability of imaging (mean r=0.681, S.D.=0.131) and behavioral (mean r=0.948, S.D.=0.022) loadings was generally high across LCs 1-5. This analysis is reported in the revised manuscript (P.18).

      “Generalizability of reported findings was also assessed by directly applying PCA coefficients and latent components weights from the PLS analysis performed in the discovery cohort to the replication sample data. Out-of-sample prediction was overall high across LCs1-5 for both imaging (mean r=0.681, S.D.=0.131) and behavioral (mean r=0.948, S.D.=0.022) loadings.”

      2.2) Site/family structure: it was unclear how site/family structure were handled as covariates.

      Only unrelated participants were included in discovery and replication samples (see P.6). The site variable was regressed out of the imaging and behavioral data prior to the PLS analysis using the residuals from a multiple linear model which also included age, age2, sex, and ethnicity. This is now clarified on P.29:

      “Prior to the PLS analysis, effects of age, age2, sex, site, and ethnicity were regressed out from the behavioral and imaging data using a multiple linear regression to ensure that the LCs would not be driven by possible confounders (Kebets et al., 2021, 2019; Xia et al., 2018). The imaging and behavioral residuals of this procedure were input to the PLS analysis.”

      2.3) Anatomical features: I was a bit surprised to see volume, surface area, and thickness all evaluated - and that there were several comments on the correspondence between the SA and volume in the results section. Given that cortical volume is simply a product of SA and CT (and mainly driven by SA), this result may be pre-required.

      As suggested, we reduced the reporting of correlations between the loadings from the different modalities in the revised Results (specifically subsections on LC1, LC2, and LC3). Instead, we now refer to Table S4 in each subsection for this information: “Spatial correlations between modality-specific loadings are reported in Supplementary file 1c.”

      We also reran the PLS analysis while only including thickness and surface area as our structural metrics, to account for potential redundancy of these measures with volume. This analysis and associated findings are reported on P.36 and P.19:

      “As cortical volume is a result of both thickness and surface area, we repeated our main PLS analysis while excluding cortical volume from our imaging metrics and report the consistency of these findings with our main model.”

      “Third, to account for redundancy within structural imaging metrics included in our main PLS model (i.e., cortical volume is a result of both thickness and surface area), we also repeated our main analysis while excluding cortical volume from our imaging metrics. Findings were very similar to those in our main analysis, with an average absolute correlation of 0.898±0.114 across imaging composite scores of LCs 1-5.”

      2.4) Ethnicity: the rationale for regressing ethnicity from the data was unclear and may conflict with current best practices.

      We thank the Reviewer for this comment. In light of recent discussions on including this covariate in large datasets such as ABCD (e.g., Saragosa-Harris et al., 2022), we elaborate on our rationale for including this variable in our model in the revised manuscript on P.30:

      “Of note, the inclusion of ethnicity as a covariate in imaging studies has been recently called into question. In the present study, we included this variable in our main model as a proxy for social inequalities relating to race and ethnicity alongside biological factors (age, sex) with documented effects on brain organization and neurodevelopmental symptomatology queried in the CBCL.”

      We also assess the replicability of our analyses when removing race and ethnicity covariates prior to computing the PLS analysis and correlating imaging and behavioral composite scores across both models. We report resulting correlations in the revised manuscript (P.37, 19, and 27):

      “We also assessed the replicability of our findings when removing race and ethnicity covariates prior to computing the PLS analysis and correlating imaging and behavioral composite scores across both models.”

      “Moreover, repeating the PLS analysis while excluding this variable as a model covariate yielded overall similar imaging and behavioral composites scores across LCs to our original analysis. Across LCs 1-5, the average absolute correlations reached r=0.636±0.248 for imaging composite scores, and r=0.715±0.269 for behavioral composite scores. Removing these covariates seemed to exert stronger effects on LC3 and LC4 for both imaging and behavior, as lower correlations across models were specifically observed for these components.”

      “Although we could consider some socio-demographic variables and proxies of social inequalities relating to race and ethnicity as covariates in our main model, the relationship of these social factors to structural and functional brain phenotypes remains to be established with more targeted analyses.”

      2.5) Data quality: the authors did an admirable job in controlling for data quality in the analyses of functional connectivity data. However, it is unclear if a comparable measure of data quality was used for the T1/dMRI analyses. This likely will result in inflated effect sizes in some cases; it has the potential to reduce sensitivity to real effects.

      We agree that data quality was not accounted for in our analysis of T1w- and diffusion-derived metrics. We now accounted for T1w image quality by adding manual quality control ratings to the regressors applied to all structural imaging metrics prior to performing the PLS analysis, and reported the consistency of this new model with original findings. See P.36, P.19:

      “We also considered manual quality control ratings as a measure of T1w scan quality. This metric was included as a covariate in a multiple linear regression model accounting for potential confounds in the structural imaging data, in addition to age, age2, sex, site, ethnicity, ICV, and total surface area. Downstream PLS results were then benchmarked against those obtained from our main model.”

      “Considering scan quality in T1w-derived metrics (from manual quality control ratings) yielded similar results to our main analysis, with an average correlation of 0.986±0.014 across imaging composite scores.”

      As for diffusion imaging, we also regressed out effects of head motion in addition to age, age2, sex, site, and ethnicity from FA and MD measures and reported the consistency with our original results (P.36, P.19):

      “We tested another model which additionally included head motion parameters as regressors in our analyses of FA and MD measures, and assessed the consistency of findings from both models.”

      “Additionally considering head motion parameters from diffusion imaging metrics in our model yielded consistent results to those in our main analyses (mean r=0.891, S.D.=0.103; r=0.733-0.998).”

      Reviewer #3 - Public Review

      In this study, the authors utilized the Adolescent Brain Cognitive Development dataset to investigate the relationship between structural and functional brain network patterns and dimensions of psychopathology. They identified multiple components, including a general psychopathology (p) factor that exhibited a strong association with multimodal imaging features. The connectivity signatures associated with the p factor and neurodevelopmental dimensions aligned with the sensory-to-transmodal axis of cortical organization, which is linked to complex cognition and psychopathology risk. The findings were consistent across two separate subsamples and remained robust when accounting for variations in analytical parameters, thus contributing to a better understanding of the biological mechanisms underlying psychopathology dimensions and offering potential brain-based vulnerability markers.

      3.1) An intriguing aspect of this study is the integration of multiple neuroimaging modalities, combining structural and functional measures, to comprehensively assess the covariance with various symptom combinations. This approach provides a multidimensional understanding of the risk patterns associated with mental illness development.

      We thank the Reviewer for acknowledging the multimodal approach, and for the constructive suggestions.

      3.2) The paper delves deeper into established behavioral latent variables such as the p factor, internalizing, externalizing, and neurodevelopmental dimensions, revealing their distinct associations with morphological and intrinsic functional connectivity signatures. This sheds light on the neurobiological underpinnings of these dimensions.

      We are happy to hear the Reviewer appreciates the gain in understanding neural underpinnings of dimensions of psychopathology resulting from the current work.

      3.3) The robustness of the findings is a notable strength, as they were validated in a separate replication sample and remained consistent even when accounting for different parameter variations in the analysis methodology. This reinforces the generalizability and reliability of the results.

      We appreciate that the Reviewer found our robustness and generalizability assessment convincing.

      3.4) Based on their findings, the authors suggest that the observed variations in resting-state functional connectivity may indicate shared neurobiological substrates specific to certain symptoms. However, it should be noted that differences in resting-state connectivity between groups can stem from various factors, as highlighted in the existing literature. For instance, discrepancies in the interpretation of instructions during the resting state scan can influence the results. Hence, while their findings may indicate biological distinctions, they could also reflect differences in behavior.

      For the ABCD dataset, resting-state fMRI scans were based on eyes open and passive viewing of a crosshair, and are thus homogenized. We acknowledge, however, that there may still be state-to-state fluctuations contributing to the findings, and this is now discussed in the revised Discussion, on P.28. Note, however, that prior literature has generally also suggested rather modest impacts of cognitive and daily variation on resting-state functional networks, compared to much more dominating inter-individual and inter-group factors.

      “Finally, while prior research has shown that resting-state fMRI networks may be affected by differences in instructions and study paradigm (e.g., with respect to eyes open vs closed) (Agcaoglu et al., 2019), the resting-state fMRI paradigm is homogenized in the ABCD study to be passive viewing of a centrally presented fixation cross. It is nevertheless possible that there were slight variations in compliance and instructions that contributed to differences in associated functional architecture. Notably, however, there is a mounting literature based on high-definition fMRI acquisitions suggesting that functional networks are mainly dominated by common organizational principles and stable individual features, with substantially more modest contributions from task-state variability (Gratton et al. 2018). These findings, thus, suggest that resting-state fMRI markers can serve as powerful phenotypes of psychiatric conditions, and potential biomarkers (Abraham et al., 2017; Gratton et al., 2020; Parkes et al., 2020).”

      3.5) The authors conducted several analyses to investigate the relationship between imaging loadings associated with latent components and the principal functional gradient. They found several associations between principal gradient scores and both within- and between-network resting-state functional connectivity (RSFC) loadings. Assessing the analysis presented here proves challenging due to the nature of relating loadings, which are partly based on the RSFC, to gradients derived from RSFC. Consequently, a certain level of correlation between these two variables would be expected, making it difficult to determine the significance of the authors' findings. It would be more intriguing if a direct correlation between the composite scores reflecting behavior and the gradients were to yield statistically significant results.

      We thank the Reviewer for the comment, and agree that investigating gradient-behavior relationships could offer additional insights into the neural basis of psychiatric symptomatology. However, the current analysis pipeline precludes this direct comparison which is performed on a region-by-region basis across the span of the cortical gradient. Indeed, the behavioral loadings are provided for each CBCL item, and not cortical regions.

      The Reviewer also evokes concerns of potential circularity in our analysis, as we compared imaging loadings, which are partially based on RSFC, and gradient values generated from the same RSFC data. In response to this comment, we cross-validated our findings using an RSFC gradient derived from an independent dataset (HCP), showing highly consistent findings to those presented in the manuscript. This correlation is now reported in the Results section P.15.

      “A similar pattern of findings was observed when cross-validating between- and within-network RSFC loadings to a RSFC gradient derived from an independent dataset (HCP), with strongest correlations seen for between-network RSFC loadings for LC1 and LC3 (LC1: r=0.50, pspin<0.001; LC3: r=0.37, pspin<0.001).”

      We furthermore note similar correlations between imaging loadings and T1w/T2w ratio in the same participants, a proxy of intracortical microstructure and hierarchy (Glasser et al., 2011). These findings are now detailed in the revised Results, P.15-16:

      “Of note, we obtain similar correlations when using T1w/T2w ratio in the same participants, a proxy of intracortical microstructure and hierarchy (Glasser et al., 2011). Specifically, we observed the strongest association between this microstructural marker of the cortical hierarchy and between-network RSFC loadings related to LC1 (r=-0.43, pspin<0.001).”

      3.6) Lastly, regarding the interpretation of the first identified latent component, I have some reservations. Upon examining the loadings, it appears that LC1 primarily reflects impulse control issues rather than representing a comprehensive p-factor. Furthermore, it is worth noting that within the field, there is an ongoing debate concerning the interpretation and utilization of the p-factor. An insightful publication on this topic is "The p factor is the sum of its parts, for now" (Fried et al, 2021), which explains that the p-factor emerges as a result of a positive manifold, but it does not necessarily provide insights into the underlying mechanisms that generated the data.

      We thank the Reviewer for this comment, and added greater nuance into the discussion of the association to the p factor. We furthermore discuss some of the ongoing debate about the use of the p factor, and cite the recommended publication on P.27.

      “Other factors have also been suggested to impact the development of psychopathology, such as executive functioning deficits, earlier pubertal timing, negative life events (Brieant et al., 2021), maternal depression, or psychological factors (e.g., low effortful control, high neuroticism, negative affectivity). Inclusion of such data could also help to add further mechanistic insights into the rather synoptic proxy measure of the p factor itself (Fried et al., 2021), and to potentially assess shared and unique effects of the p factor vis-à-vis highly correlated measures of impulse control.”

    1. His sweetly-speaking bride, who best Deserved her lord, he thus addressed. Then tender love bade passion wake, And thus the fair Videhan spake: 'What words are these that thou hast said? Contempt of me the thought has bred. O best of heroes, I dismiss With bitter scorn a speech like this: p. 127 Unworthy of a warrior's fame It taints a monarch's son with shame, Ne'er to be heard from those who know The science of the sword and bow. My lord, the mother, sire, and son, Receive their lots by merit won; The brother and the daughter find The portions to their deeds aligned. The wife alone, whate'er await, Must share on earth her husband's fate. So now the king's command which sends Thee to the wild, to me extends. The wife can find no refuge, none, In father, mother, self, or son: Both here, and when they vanish hence, Her husband is her sole defence. If, Raghu's son, thy steps are led Where Dandak's pathless wilds are spread, My foot before thine own shall pass Through tangled thorn and matted grass. Dismiss thine anger and thy doubt: Like refuse water cast them out, And lead me, O my hero, hence-- I know not sin--with confidence. Whate'er his lot,'tis far more sweet To follow still a husband's feet Than in rich palaces to lie, Or roam at pleasure through the sky. My mother and my sire have taught What duty bids, and trained each thought, Nor have I now mine ear to turn The duties of a wife to learn, I'll seek with thee the woodland dell And pathless wild where no men dwell, Where tribes of silvan creatures roam, And many a tiger makes his home. My life shall pass as pleasant there As in my father's palace fair. The worlds shall wake no care in me; My only care be truth to thee. There while thy wish I still obey, True to my vows with thee I'll stray, And there shall blissful hours be spent In woods with honey redolent. In forest shades thy mighty arm Would keep a stranger's life from harm, And how shall Sitá think of fear When thou, O glorious lord, art near? Heir of high bliss, my choice is made, Nor can I from my will be stayed. Doubt not; the earth will yield me roots, These will I eat, and woodland fruits; And as with thee I wander there I will not bring thee grief or care. I long, when thou, wise lord, art nigh, All fearless, with delighted eye To gaze upon the rocky hill, The lake, the fountain, and the hill; To sport with thee, my limbs to cool, In some pure lily-covered pool, While the white swan's and mallard's wings Are plashing in the water-springs. So would a thousand seasons flee Like one sweet day, if spent with thee. Without my lord I would not prize A home with Gods above the skies: Without my lord, my life to bless, Where could be heaven or happiness?    Forbid me not: with thee I go      The tangled wood to tread.    There will I live with thee, as though      This roof were o'er my head.    My will for thine shall be resigned;      Thy feet my steps shall guide.    Thou, only thou, art in my mind:      I heed not all beside.    Thy heart shall ne'er by me be grieved;      Do not my prayer deny:    Take me, dear lord; of thee bereaved      Thy Sitá swears to die.'    These words the duteous lady spake,      Nor would he yet consent    His faithful wife with him to take      To share his banishment.    He soothed her with his gentle speech;      To change her will he strove:    And much he said the woes to teach      Of those in wilds who rove.

      This passage highlights Sita’s duty as a wife to share her husband’s fate and accompany him in exile. She argues that a wife must share with her husband. Rama’s fate, as she cannot find refuge or protection from anyone else but him. Throughout the Book, Rama tries to dissuade by describing the difficulties and horrors of the wilderness; however, Sita emphasizes that her love and commitment transcend fear and discomfort while emphasizing that her happiness stems from being benign with him rather than living in luxury. Sita’s speech simultaneously highlights the traditional gender roles and stereotypical expectations placed on both men and women. The idea of a ‘hero’ is identified with masculinity and being warrior-like (physical toughness). Sita refers to Rama as the ‘best of heroes’ and dismisses the idea of leaving the hand as suggesting that it would be "unworthy of a warrior's fame" and bring "shame" to a "monarch's son." This emphasizes the societal expectation that a hero must uphold his honor and strength, particularly in the context of his relationships and duties. Additionally, Sita's declaration that "the wife alone, whate'er await, must share on earth her husband's fate" underscores the patriarchal norm that a woman's place is with her husband, highlighting her role as a devoted and submissive partner. This builds on the cultural- and somewhat universal- stereotype that a woman’s role, as a wife, heavily resides in her being a devoted and submissive partner to her husband. When comparing different translations and adaptations of the Ramayana, variations in the portrayal of gender roles can be observed. For instance, in some modern adaptations, there may be a subtle shift towards portraying Sita with more agency and independence, reflecting contemporary views on gender equality. However, in traditional versions, such as those by Valmiki and other ancient translators, the patriarchal mindset is more pronounced. Yet, Sita's role is predominantly defined by her loyalty and subservience to Rama. The language used to describe Rama and Sita's roles reflects the societal norms and expectations of the time. Phrases such as "unworthy of a warrior's fame" and "the wife alone, whate'er await, must share on earth her husband's fate" reveal the deeply ingrained gender roles and the emphasis on male heroism and female subservience. However, the linguistic value of the work also lies in its expressive qualities as Sita’s heart-touching lines: "through tangled thorn and matted grass," illustrate the depth of her love for Rama. Ultimately, the translations differ based on the politics of the time and culture. CC BY Aarushi Attray (contact)

      Valmiki. The Ramayana. Translated by Ralph T.H. Griffith, Project Gutenberg, 2009, Book II: Canto XXVII.: Sítá’s Speech, https://sacred-texts.com/hin/rama/ry105.htm. Accessed 4 Aug. 2024.

      Valmiki. The Ramayana of Valmiki. Translated by Hari Prasad Shastri, Shanti Sadan, 1952.

    1. "If I fall, what mattereth that? my father hath seventy and eight sons like unto me; but thou art alone, and if thy head shall fall, what other is worthy of the crown?"

      Giwe's unwavering loyalty and honor for Kay-Khosrow is admirable and shows why he is well respected. He sacrifices his own life for Kay and does his best to convince him on why his survival is important for the better of the kingdom. This shows the importance of leadership and why Giwe is willing to sacrifice himself because he knows that the empire will not be successful without a good leader in place. His selflessness is also inspiring for a lot of readers as people tend to forget that being selfless can be admirable. As humans, we want the attention and credit for achievements so to see someone else give up their pride for a larger cause, it is very admirable and encourages other people to do the same in similar situations. Similar to Giwe, there are people on the frontlines and in war who put themselves out there for a similar reason as they want to protect the people in their country and are fighting for something much bigger than themselves. While not everyone is fighting for something bigger than them, Giwe reminds us to work for something bigger than us and to have a positive impact on other people because that is what we should do as people. Not to mention, Kay-Khosrow is successful in enacting revenge over Afrasiyab showing that good will always triumph over evil and continuing the legacy of his father. CC BY Ajey Sasimugunthan (contact)

    2. "O thou that bearest high thy head, art thou not ashamed to press unto thee the son of a shepherd? "

      Kay-Khosrow coming to find out his true heritage is an interesting moment because there is so much internal conflict as he is young and now is confused about his upbringing. He has come to express his own dissatisfaction with his simple upbringing despite being from loyalty and is now told the truth. The feeling must be bittersweet because he knows the truth on one hand but feels like he must have been lied to for his entire life. He feels a disconnect between his lowly origins in comparison to the elevated treatment he can get now being of royalty. It is similar to the feeling someone must feel if they are told that they were adopted later in life. They feel like they lose a part of themselves as they think they are not true members of the family and face a lot of internal conflict about their upbringing and why they were lied to for such a long time. The reference of "son of a shepherd" is what allows the readers to understand that he had a simple life growing up which is why it must feel out of place for him to be associated with royalty. An interesting theme that this brings up is the idea of social status and how that plays into someone's personal identity. People are judged by the social status they belong in so it must be an interesting transition for him to move up social status where he will be treated more favorably as well. It raises the question as to why people in higher social status gets to be treated better when all people should inherently be treated equally. CC BY Ajey Sasimugunthan (contact)

    1. Reviewer #1 (Public Review):

      Summary:

      Using a mouse model of head and neck cancer, Barr et al show that tumor-infiltrating nerves connect to brain regions via the ipsilateral trigeminal ganglion, and they demonstrate the effect this has on behavior. The authors show that there are neurites surrounding the tumors using a WGA assay and show that the brain regions that are involved in this tumor-containing circuit have elevated Fos and FosB expression and increased calcium response. Behaviorally, tumor-bearing mice have decreased nest building and wheel running and increased anhedonia. The behavior, Fos expression, and heightened calcium activity were all decreased in tumor-bearing mice following nociceptor neuron elimination.

      Strengths:

      This paper establishes that sensory neurons innervate head and neck cancers and that these tumors impact select brain areas. This paper also establishes that behavior is altered following these tumors and that drugs to treat pain restore some but not all of the behavior. The results from the experiments (predominantly gene and protein expression assays, cFos expression, and calcium imaging) support their behavioral findings both with and without drug treatment.

      Comments on previously identified weaknesses:

      The authors have addressed the majority of my concerns.

    2. Reviewer #2 (Public Review):

      Summary:

      Cancer treatments are not just about the tumor - there is an ever-increasing need for treating pain, fatigue, and anhedonia resulting from the disease as patients are undergoing successful but prolonged bouts with cancer. Using an implantable oral tumor model in the mouse, Barr et al describe neural infiltration of tumors, and posit that these nerve fibers are transmitting pain and other sensory signals to the brain that reduce pleasure and motivation. These findings are in part supported by anatomical and transcriptional changes in the tumor that suggest sensory innervation, neural tracing, and neural activity measurements. Further, the authors conduct behavior assays in tumor-bearing animals and inhibit/ablate pain sensory neurons to suggest involvement of local sensory innervation of tumors in mediating cancer-induced malaise.

      Strengths:

      • This is an important area of research that may have implications for improving the quality of life of cancer patients.

      • The studies use a combination of approaches (tracing and anatomy, transcriptional, neural activity recordings, behavior assays, loss-of-function) to support their claims.

      • Tracing experiments suggest that tumor-innervating afferents are connected to brain nuclei involved in oral pain sensing. Consistent with this, the authors observed increased neural activity in those brain areas of tumor-bearing animals. It should be noted that some of these brain nuclei have also been implicated in cancer-induced behavioral alterations in non-head and neck tumor models.

      • Experiments are well-controlled and approaches are validated.

      • The paper is well-written and the layout was easy to follow.

      Weaknesses/Future Directions:

      • The main claim is that tumor-infiltrating nerves underlie cancer-induced behavioral alterations. While the studies are supportive of this conclusion, manipulations in the current study are non-specific, ablating all TRPV1 sensory neurons. A direct test would be to selectively inhibit/ablate nerve fibers innervating the tumor or mouth region.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      (1) Study suggests that the effects of their tumor models of mouse behavioral are largely non-specific to the tumor as most behaviors are rescued by analgesic treatment. So, most of the changes were likely due to site-specific pain and not a unique signal from the tumor.

      The tumor generates pain at the site it is implanted, and it is likely amplified by the oral activities tumor bearing mice have to engage in. As there is no pain in the absence of the tumor, the pain is, by definition, caused by the tumor, not by the site. Concerning the relationship between pain and behavior, the behavioral assays undertaken in our study (nesting, cookie test, wheel running) were very limited in scope.  Two of these assays (nesting, cookie test) require use of the oral cavity. Only nesting and wheel running were assessed in the context of treatment for pain. Nesting behavior was completely restored with carprofen and buprenorphine treatment suggesting that in the absence of pain, mice were able to make perfect nests. Consistent with this, carprofen and buprenorphine treated animals also gained weight indicating that eating (another activity dependent on the oral cavity) was also restored.  Wheel running, an activity that does not rely on the oral cavity, was only partially restored with drug treatment. While additional behavioral tests are necessary to confirm this finding, the data suggest that there is pain-independent information relayed to the brain which accounts for this decline in wheel running.

      Reviewer #2:

      (1) The main claim is that tumor-infiltrating nerves underlie cancer-induced behavioral alterations, but the experimental interventions are not specific enough to support this. For example, all TRPV1 neurons, including those innervating the skin and internal organs, are ablated to examine sensory innervation of the tumor. Within the context of cancer, behavioral changes may be due to systemic inflammation, which may alter TRPV1 afferents outside the local proximity of tumor cells. A direct test of the claims of this paper would be to selectively inhibit/ablate nerve fibers innervating the tumor or mouth region.

      We agree with the reviewer that a direct test of the hypothesis would require selectively inhibiting the nerve fibers innervating the tumor and assessing the impact on behavior. Studies in the lab are on-going using pharmacological interventions to do this. These studies are beyond the scope of this current manuscript.

      (2) Behavioral results from TRPV1 neuron ablation studies are in part confounded by differing tumor sizes in ablated versus control mice. Are the differences in behavior potentially explained by the ablated animals having significantly smaller tumors? The differences in tumor sizes are not negligible. One way to examine this possibility might be to correlate behavioral outcomes with tumor size.

      As suggested by the reviewer, we have graphed nesting scores and time-to-interact (cookie test) relative to tumor volume.  In both cases, we used simple linear regression to fit the data and analyzed the slopes of the lines. In the case of nesting, there was no significant difference between the slopes. This is now included as Supplemental Figure 4A. In the case of the cookie test, there was a significant difference between the slopes. This is now included as Supplemental Figure 4B. Graphing the data in this way allows one to look at any given tumor volume and infer what the nesting score and the time-to-interact for the two groups of mice. The linear regression model fits the time to interact with the cookie reasonably well, thus from this graph, we can see that at any given tumor volume the time to interact with the cookie was generally shorter in TRPV1cre::DTAfl/wt animals as compared to C57BL/6 mice. Unfortunately, the linear regression does not fit the nesting data very well and thus it is more difficult to make the comparison of tumor volume and nesting score.

      The following text has been added to the results section.

      Given the impact of nociceptor neuron ablation on tumor growth, we wondered whether differences in tumor volume contributed to the behavioral differences we noted. Thus, the behavior data were graphed as a function of tumor volume (Supplemental Fig 4A, B). A simple linear regression model was used to fit the data. In the case of nesting scores, the linear regression did not fit the data points very well making it difficult to assess nesting scores at a given tumor volume (Supplemental Fig 4A). However, the linear regression model fit the time to interact data better. Here, the graph suggests that tumor volume did not influence behavior as at any given tumor volume the time to interact with the cookie is generally smaller in TRPV1-Cre::Floxed-DTA animals as compared to C57BL/6 animals (Supplemental Fig 4B).

      Reviewer #3:

      (1) The authors mention in their Discussion the need for additional experiments. Could they also include / comment on the potential impact on the anti-tumor immune system in their model?

      The following text has been added to the discussion:

      Neuro-immune interactions have been studied in the context of a variety of conditions including, but not limited to infection 109, inflammation 110,111, homeostasis in the gut 112-114, as well as neurological diseases115,116. Neuro-immune communications in the context of cancer and behavior have also been studied (e.g., sickness behavior, depression) 117-119 however, these studies did not assess these interactions at the tumor bed. Investigations into neuro-immune interactions occurring within primary malignancies which harbor nerves have shed light on these critical communications. In the context of melanoma, which is innervated by sensory nerves, we identified that release of the neuropeptide calcitonin gene related peptide (CGRP) induces immune suppression. This effect is mediated by CGRP binding to its receptor, RAMP1, which is expressed on CD8+ T cells 49. A study utilizing a different syngeneic model of oral cancer similarly found an immune suppressive role for CGRP 120-122. These studies demonstrate that neuro-immune interactions occur at the tumor bed. Our current findings indicating that tumor-infiltrating nerves connect to a circuit that includes regions within the brain suggest that neuro-immune interactions within the peripheral malignancy may contribute to the behavioral alterations we studied.

      (2) The authors mention the importance of inflammation contributing to pain in cancer but do not clearly highlight how this may play a role in their model. Can this be clarified?

      The following text has been added to the discussion section of the manuscript.

      Moreover, given that carprofen and buprenorphine decrease inflammation 104, their ability to restore normal nesting and cookie test behaviors (which require the use of the oral cavity where the tumor is located) suggests that inflammation at the tumor site contributed to the decline in these behaviors in vehicle-treated animals. Since both drugs were given systemically and each only partially restored wheel running, it suggests that systemic inflammation alone cannot fully account for the decline in wheel running seen in vehicle-treated animals. We posit that the inflammation- and pain-independent component of this behavioral decline is mediated via the transcriptional and functional alterations in the cancer-brain circuit.

      (3) The tumor model apparently requires isoflurane injection prior to tumor growth measurements. This is different from most other transplantable types of tumors used in the literature. Was this treatment also given to control (i.e., non-tumor) mice at the same time points? If not, can the authors comment on the impact of isoflurane (if any) in their model?

      Mice in all groups (tumor and non-tumor) were treated with isoflurane. This important detail has been added to the methods section.

      (4) The authors emphasize in several places that this is a male mouse model. They mention this as a limitation in the Discussion. Was there an original reason why they only tested male mice?

      The following text has been added in the discussion section:

      Head and neck cancer is predominantly a cancer in males; it occurs in males three times more often than in females 123, this disparity increases in certain parts of the world. While smoking cigarettes and drinking alcohol are risk factors for HPV negative head and neck squamous cell carcinoma, even males that do not smoke and drink are have a higher susceptibility for this cancer than females 124,125. Thus, our studies used only male mice. However, we do recognize that females also get this cancer. In fact, female patients with head and neck cancer, particularly oral cancer, report more pain than their male counterparts 126,127. These findings suggest that differences in tumor innervation exist in males and females.

      Therefore, another project in the lab has been to compare disease characteristics (including innervation and behavior) in male and female mice. The findings from this second study are the topic of a separate manuscript.

      Recommendations For The Authors:

      Reviewing editor:

      (1) Tumors can communicate with the brain via blood-borne agents from the tumor itself or immune cells that are activated by the tumor in addition to neurons that invade the tumor. The xia and malaise that accompanies some tumors can be mediated by direct innervation and/or the humoral factors because both can activate the same parabrachial pathway. This paper makes the case for the direct innervation being important but ignores the possibility of both being involved. The interesting observation that innervation supports tumor growth (perhaps via substance P) is troublesome because the slower appearance of behavioral consequences (Figures 4 & 5) could be attributed to the smaller tumor size. A nice control for humoral effects would be to implant the tumor cells someplace in the body where innervation does not occur (if possible) and then examine behavioral outcomes.

      In the course of several projects, we have implanted different tumor cell lines in different locations in mice (oral cavity, hind limb, flank, peritoneal cavity). In each location, tumor innervation occurs. This is not a phenomenon found only in mice as we completed an immunohistological survey of human cancers from different sites and found they are all innervated (PMID 34944001). These data are consistent with tumor and locally-released factors that recruit nerves to the tumor bed (PMID: 30327461)(PMID: 32051587)(PMID: 27989802). Thus, an implantation site that does not result in tumor innervation is currently unknown and likely does not exist.

      (2) The authors should address whether there is an inflammatory component in this tumor model.

      MOC2-7 tumors have been characterized as non-inflamed and poorly immunogenic 129-131.

      This information has been added to the methods section.

      (3) The RTX experiment in Figure 5 would be more compelling if the drug was injected directly into the tumor rather than injecting it in the flank, thus ablating all TRPV1-exressing neurons as in the genetic approach.

      While we agree with the reviewer that ablating the TRPV1-expressing neurons at the tumor site directly would be ideal, RTX treatment takes approximately one week for ablation to occur but a significant amount of inflammation is associated with this. Therefore, we wait a total of 4 weeks for the inflammation to resolve. By this time, tumors have generally reached sacrifice criteria. Thus, this approach would not enable the question to be answered Moreover, we are not aware of any studies in which RTX has been injected in the oral cavity or face. While RTX is utilized clinically to treat pain, it is typically administered intrathecally, epidurally or intra-ganglionically (PMID: 37894723).

      (4) The authors address affective aspects of pain but do not adequately address the sensory aspects, e.g., sensitivity to touch, heat and/or cold. They attribute the decrease in food disappearance (consumption) and nest building to oral pain, but it could be due to anhedonia and anorexia that can accompany tumor progression.

      Assaying for touch and heat/cold sensitivity in the oral cavity is a critical aspect of studying head and neck cancer that needs to be addressed. However, in rodents these assays are not trivial given that any touch/heat/cold in the area of the tumor (oral cavity) impacts the sensitive whiskers in that region which directly influence these assays. Thus, we have been refining assays (e.g., OPAD, facial von Frey) to address these important questions. The findings from these studies are beyond the scope of this manuscript.

      The reviewer makes a good point about anhedonia and anorexia. The following text has been added to the results section:

      Pain-induced anhedonia is mediated by changes in the reward pathway. Specifically, in the context of pain, dopaminergic neurons in the ventral tegmental area (VTA) become less responsive to pain and release less serotonin.  This decreased serotonin results in disinhibition of GABA release; the resulting increased GABA promotes an increased inhibitory drive leading to anhedonia  82 and, when extreme, anorexia. Carprofen and buprenorphine treatments completely reversed nesting behavior and significantly improved eating. Inflammation 83 and opioids 84 directly influence reward processing and though our tracing studies did not indicate that the tumor-brain circuit includes the VTA, this brain region may be indirectly impacted by tumor-induced pain in the oral cavity. Thus, an alternative interpretation of the data is that the effects of carprofen and buprenorphine treatments on nesting and food consumption may be due to inhibition of anhedonia (and anorexia) rather than, or in addition to, relieving oral pain.

      (5) Comment on why only males were used in this study.

      Please see response to public reviews.

      Reviewer #1:

      (1) Please provide a justification for the use of exclusively male mice and expand in the discussion if there is potential for these findings to be directly applicable to female mice as well.

      Please see response to public reviews.

      The following text has been added to the discussion:

      Head and neck cancer is predominantly a cancer in males; it occurs in males three times more often than in females 123, this disparity increases in certain parts of the world. While smoking cigarettes and drinking alcohol are risk factors for HPV negative head and neck squamous cell carcinoma, even males that do not smoke and drink are have a higher susceptibility for this cancer than females 124,125. Thus, our studies used only male mice. However, we do recognize that females also get this cancer. In fact, female patients with head and neck cancer, particularly oral cancer, report more pain than their male counterparts 126,127. These findings suggest that differences in tumor innervation exist in males and females.

      (2) When discussing the results shown in Figure 2, please include some mention of Fus, since it was the highest expressed transcript.

      The following text has been added to the results section regarding Fus.

      The gene demonstrating the highest increase in expression, Fus, was of particular interest; it increases in expression within DRG neurons following nerve injury and contributes to injury-induced pain 51,52. Of note, we purposefully used whole trigeminal ganglia rather than FACS-sorted tracer-positive dissociated neurons to avoid artificially imposing injury and altering the transcript levels of these cells 53,54. Thus, significantly elevated expression of Fus by ipsilateral TGM neurons from tumor-bearing animals suggests the presence of neuronal injury induced by the malignancy. This is consistent with our previous findings 55 and those of others 56 showing that tumor-infiltrating nerves harbor higher expression of nerve-injury transcripts and neuronal sensitization.

      (3) In line 197 please clarify the mice used. Were all mice tumor-bearing and some had nociceptors ablated, or was there a control (no tumor) group as well?

      Line 197 refers to Figure 4D. In this figure, panels B-D show quantification of cFos and DFosB in the spinal nucleus of the TGM (SpVc), The parabrachial nucleus (PBN) and the Central nucleus of the amygdala (CeA). These data are from C57BL/6 and TRPV1cre::DTAfl/wt animals all of whom had tumor. Supplementary Figure 3C also show quantification of cFos and DFosB but these are from control, non-tumor bearing animals. The fact that controls are non-tumor-bearing has been added to the supplemental figure legend and the text of the results section has been clarified as follows.

      While Fos expression was similar between non-tumor bearing mice of the two genotypes (Supplemental Fig. 3C-E), the absence of nociceptor neurons in tumor-bearing animals decreases cFos and DFosB in the PBN, and DFosB in the SpVc (Fig. 4B, C).

      (4) Overall it would improve the readability of the figures if the colors for the IHC channels were on the image itself and not exclusively in the figure legend.

      The colors for all the staining have been added to each panel.

      (5) It is not a problem that complete cartography was not done, but please include a justification for why the brain regions that were focused on were chosen.

      In order to ensure that our neural tracing technique captured only nerves present within the tumor bed, we restricted the injection of tracer to only 2 µl. We demonstrated that this small volume did not leak out of the tumor (Figure 1) and thus any tracer labeled neurons we identified were deemed as being connected in a circuit to nerves in the tumor bed. While we acknowledged that this calculated technical approach restricted our ability to tracer label all neurons in the tumor bed (as well as those they share circuitry with), it ensured no tracer leakage and inadvertent labeling of non-tumoral nerves. In non-tumor animals injected with 10 µl of tracer, labeled regions in the brain included the spinal nucleus of the trigeminal, the parabrachial nucleus, the central amygdala, the facial nucleus and the motor nucleus of the trigeminal. The regions that were tracer positive when tumor was injected were limited to the spinal nucleus of the trigeminal, the parabrachial nucleus and the central amygdala. Thus, the regions in the brain that we focused on were the areas that became tracer-positive following injection of tracer into the tumor.

      (6) Were the cells that were injected cultured in media with 10% fetal calf serum? If so was any inflammatory response seen? If not please state in the methods section the media that cells for injection were cultured in.

      The cells injected into animals were cultured in media containing 10% fetal calf serum. When cells are harvested for tumor injections, they are first washed two times with PBS and then trypsinized to detach the cells from the plate. Cells are collected, washed again with PBS and resuspended with DMEM without serum; this is what is injected into animals. We harvest cells in this way in order to eliminate any serum being injected into mice. This information has been added to the Methods section.

      (7) Would any of the differences in drug treatment (Carprofen vs Buprenorphine) be due to the differing routes of administration and metabolism of the drugs?

      Since carprofen and buprenorphine each resulted in similar behavioral impacts (nesting and wheel running), their different routes of administration seem to play a minor or no role in the behaviors assessed.

      (8) Please include in the methods section the specific approach and software that was used for processing calcium imaging data and calculating a relative change in fluorescence.

      The specific approach used for processing calcium imaging data and calculating relative change in fluorescence as well as the software used are all included in the methods section. Please see below:

      Ca2+ imaging. TGM neurons from non-tumor and tumor-bearing animals (n=4-6 mice/condition) were imaged on the same day. Neurons were incubated with the calcium indicator, Fluo-4AM, at 37°C for 20 min. After dye loading, the cells were washed, and Live Cell Imaging Solution (Thermo-Fisher) with 20 mM glucose was added. Calcium imaging was conducted at room temperature. Changes in intracellular Ca2+ were measured using a Nikon scanning confocal microscope with a 10x objective. Fluo-4AM was excited at 488 nm using an argon laser with intensity attenuated to 1%. The fluorescence images were acquired in the confocal frame (1024 × 1024 pixels) scan mode. After 1 min of baseline measure, capsaicin (300nM final concentration) was added. Ca2+ images were recorded before, during and after capsaicin application. Image acquisition and analysis were achieved using NIS-Elements imaging software. Fluo-4AM responses were standardized and shown as percent change from the initial frame. Data are presented as the relative change in fluorescence (DF/F0), where F0 is the basal fluorescence and DF=F-F0 with F being the measured intensity recorded during the experiment. Calcium responses were analyzed only for neurons responding to ionomycin (10 µM, positive control) to ensure neuronal health. Treatment with the cell permeable Ca2+ chelator, BAPTA (200 µM), served as a negative control.

      (9) Suggestions for Figure 1:

      - In Figures 1C, D, E, include labels for the days of tumor harvest.

      - Please make the size of the labels the same for 1K an 1L and align them.

      - Microscopy image in Figure 1L for SpVc looks like it may be at a different magnification.

      - If possible, include (either in the figure or the supplement) IHC images staining for Dcx and tau, which would complement the western blot data.

      The requested changes to the figures have been made. Unfortunately, we do not have Dcx and tau IHC staining of the day 4, 10 and 20 tumors.

      (10) Suggestions for Figure 2:

      - Include directly onto the graph in Figure 2a the legend for tumor-bearing (red) and non-tumor bearing (blue).

      - Keep consistent between Figure 2G and 2H/I if the tumor/nontumor will be labeled as T/N or Tumor/Control.

      The requested changes to the figures have been made.

      (11) Suggestions for Figure 3:

      - An example trace of calcium signal would complement Figure 3G, H well.

      Example tracings of calcium signal are already provided in Supplementary Figure 3A and B.

      Reviewer #2:

      (1) While the use of male mice is acknowledged, there is not a rationale for why female mice were not included in the study.

      Please see the response to Reviewer #1 (first question).

      (2) Criteria for euthanasia should be described in the Methods. This is especially needed for interpreting the survival curve in Figure 4H.

      Criteria for euthanasia in our IACUC approved protocol include:

      - maximum tumor volume of 1000mm3

      - edema

      - extended period of weight loss progressing to emaciation

      - impaired mobility or lesions interfering with eating, drinking or ambulation

      - rapid weight loss (>20% in 1 week)

      - weight loss at or more than 20% of baseline

      In addition to tumor size and weight loss, we use the body condition score to evaluate the state of animals and to determine euthanasia.  These details have been added to the Methods section.

      (3) At what stage in cancer progression were the Fos studies conducted for Figure 4A-D?

      The brains used for Fos staining (Fig 4B-D) were harvested at week 5 post-tumor implantation.

      (4) For Fos counts, what are the bregma coordinates for the sections that were quantified?

      SpVc:  -7.56 to -8.24mm

      PBN:  -4.96 to -5.52mm

      CeA:  -0.82mm to -1.94mm

      (5) Statistics are needed for the claim in Lines 171-173.

      The statistical analysis of Fos staining from tumor-bearing and non-tumor bearing brains are included in Figure 3D-F. The statistical analysis of ex vivo Ca+2 imaging of brains from tumor-bearing and non-tumor bearing animals are included in Figure 3 I and J.

      (6) How long was the baseline period for weight and food intake measurements? How long were the animals single-housed before taking the baseline measurements?  

      Baseline weight and food intake measurements were 2 weeks and animals were singly housed before baseline measurements for 2 weeks (a total of 4 weeks).

      Minor:

      (7) The authors might consider rewording the sentence on lines 59-62, given that it is abundantly clear from rodent studies that both the tumor and chemotherapy are associated with adverse behavioral outcomes.

      We have reworded the sentence as follows:  The association of cancer with impaired mental health is directly mediated by the disease, its treatment or both; these findings suggest that the development of a tumor alters brain functions.

      (8) Line 212 needs a space between the two sentences.

      This has been fixed.

      (9) Font size in Figure 2 is not consistent with the other figures.

      This has been fixed.

      (10) "DAPI" is the more conventional than "DaPi".

      This has been fixed.

      Editorial Comments and Suggestions:

      (1) The Abstract would be better if it were more concise, e.g. ~175 words.

      The abstract has been shortened as requested and now reads:

      Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated cFos and delta FosB as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

      (2) Lines 28, 104, 258, 486, 521, and many other places, "utilized" should be "used" because the former refers to an application for which it is not intended, e.g. a hammer was utilized as a doorstop.

      The requested changes have been made.

      (3) Lines 32 and 73, it is not clear whether the basal activity is heightened or whether excitability is increased. "manifest" might be better than "harbor" on line 73.

      We have changed the wording in the abstract to be clearer. Moreover, our finding that TGM neurons from tumor-bearing animals have increased expression of the s1-Receptor and phosphorylated TRPV1 (Fig 2G-I) indicate that these neurons have increased excitability.

      (4) Line 34 and elsewhere, it would be better to refer to Fos because the is no need to distinguish cellular, cFos, from viral, vFos, in this context.

      The requested changes have been made.

      (5) Line 38, It would be better to refer to what was actually measured rather than "oral movements".

      The requested changes have been made. The sentence now reads: “While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running.”

      (6) Line 84, CXCR3-null mouse on a C57BL/6 background.

      The requested change has been made.

      (7) Lines 86,129 wild-type, male mice.

      The requested change has been made.

      (8) Lines114-115, the brackets are not necessary.

      The requested change has been made.

      (9) Lines 118, 384, 409, 527, 589, 971, 974 always leave a space between numbers and units. Use Greek u for micro.

      The requested change has been made.

      (10) Lines 123-124, it is not clear that there is meaningful labeling within the CeA.

      We have replaced this image with a more representative one of the CeA from a tumor-bearing animal with clear tracer labeling.

      (11) Lines 125, 138, and 246 transcription was not measured, only transcript levels were measured.

      The requested changes have been made.

      (12) Line 133, I think >4 fold is meant.

      Thank you for catching that. I have fixed it to >4 fold.

      (13) Line 165, single-time-point assessment (add hyphens).

      The requested change has been made.

      (14) Line 181 and elsewhere including figure, the superscripts refer to alleles of the genes; hence approved gene names should be used in italics (as in Methods), TRPV1-Cre:: Floxed-DTA (without italics) would be acceptable.

      The requested changes have been made.

      (15) Line 182, nociceptor-neuron-ablated mice (add hyphens).

      The requested changes have been made.

      (16) Line 197, It is not clear that the "speed" of food disappearance was measured or that it is due to oral pain vs loss of appetite.

      The reviewer makes a good point. We have changed the sentence to read:

      To evaluate the effects of this disruption on cancer-induced behavioral changes, we assessed the animals’ general well-being through nesting behavior 32 and anhedonia using the cookie test 76,77, as well as  body weight and food disappearance as surrogates for oral pain and/or loss of appetite.

      (17) Line 199, The reduced tumor growth after ablation could account for most of the changes in the other parameters that were measured.

      We have graphed the nesting scores and time-to-interact with the cookie as a function of tumor volume.  These data are now included as Supplemental Figure 4 and suggest that at the same tumor volume, nesting scores and times-to-interact with the cookie are different between the groups.

      (18) Line 204 TPVP1 spelling. Is the TGN smaller after ablation of half of the neurons?

      The requested change has been made.

      (19) Line 235, "now" is not necessary.

      The requested change has been made.

      (20) Line 238-239 and elsewhere, a few references for to why the TGN-SpVc-PBN-CeA circuit is relevant would be helpful.

      The following references have been added regarding the relevance of this circuit to behavior:

      Molecular Brain 14: 94 (2021) (PMID 34167570)

      Neuropharmacology 198: 108757 (2021) (PMID 34461068)

      Frontiers in Cellular Neuroscience 16: 997360 (2022)  (PMID 36385947)

      Neuropsychopharmacology  49(3): 508-520 (2024) (PMID 37542159)

      (21) Lines 371, 434 and Figures, gm should be g or grams in scientific usage. Include JAX lab stock numbers for these mouse lines.

      The requested changes have been made.

      (22) Line 432, removing food for one hour is not a fast.

      The sentence has been reworded as follows: One hour prior to testing, mouse food is removed and the animals are acclimated to the brightly lit testing room.

      (23) Line 476, 5-um sections (add hyphen).

      The hyphen has been added.

      (24) Lines 988, and 1023, DAPI are usually shown this way.

      The requested change has been made.

      (25) Figure 1K, add Bregma levels to figures.

      SpVc: -8.12 mm

      PBN: -5.34 mm

      CeA: -1.34 mm

      (26) Figure 3 line 1033, "area under the curve" What curve was examined?

      The curve examined was the change in fluorescence over time. This curve has been added as Supplemental Figure 3C.

      (27) Figure 3B, the circled area is the lateral PBN. At first glance, I thought scp was meant as the label for the circled area.

      Scp is noted in the figure legend as a landmark.

    1. why was the capital intentionally unsecure

      What evidence is provided to suggest that it was intentionally unsecure?

      Way to flip the argument on its head. In other words: (I guess?) "You should have known a much larger violent mob was coming, and therefore you should have increased the police presence more?"

      This argument is pure madness. It's arguing that the blame for the capitol being overrun isn't the actual crowd itself, or perhaps the president who urged them all to show up, but rather with those in charge of the response who failed to grasp how extreme it was going to get.

      Orwellian.

    2. cited by Donald Trump's speech that day at the ellipse they're burying their head in the sand

      She's citing the president? That's hardly objective.

    1. If Mulan accepted this invitation, the remake would head in the same direction that Caro has attempted before: characterizing women, either Josey and Glory in North Country or Mulan and Xianniang in Mulan, as agents fighting structural injustice and gendered oppression together.

      But Disney decided not to let that happen.

    1. Reviewer #2 (Public Review):

      Cuevas et al. investigate the stimulus selectivity of surround-induced responses in the mouse primary visual cortex (V1). While classical experiments in non-human primates and cats have generally demonstrated that stimuli in the surround receptive field (RF) of V1 neurons only modulate activity to stimuli presented in the center RF, without eliciting responses when presented in isolation, recent studies in mouse V1 have indicated the presence of purely surround-induced responses. These have been linked to prediction error signals. In this study, the authors build on these previous findings by systematically examining the stimulus selectivity of surround-induced responses.

      Using neuropixels recordings in V1 and the dorsal lateral geniculate nucleus (dLGN) of head-fixed, awake mice, the authors presented various stimulus types (gratings, noise, surfaces) to the center and surround, as well as to the surround only, while also varying the size of the stimuli. Their results confirm the existence of surround-induced responses in mouse V1 neurons, demonstrating that these responses do not require spatial or temporal coherence across the surround, as would be expected if they were linked to prediction error signals. Instead, they suggest that surround-induced responses primarily reflect the representation of the achromatic surface itself.

      The literature on center-surround effects in V1 is extensive and sometimes confusing, likely due to the use of different species, stimulus configurations, contrast levels, and stimulus sizes across different studies. It is plausible that surround modulation serves multiple functions depending on these parameters. Within this context, the study by Cuevas et al. makes a significant contribution by exploring the relationship between surround-induced responses in mouse V1 and stimulus statistics. The research is meticulously conducted and incorporates a wide range of experimental stimulus conditions, providing valuable new insights regarding center-surround interactions.

      However, the current manuscript presents challenges in readability for both non-experts and experts. Some conclusions are difficult to follow or not clearly justified.

      I recommend the following improvements to enhance clarity and comprehension:

      (1) Clearly state the hypotheses being tested at the beginning of the manuscript.

      (2) Always specify the species used in referenced studies to avoid confusion (esp. Introduction and Discussion).

      (3) Briefly summarize the main findings at the beginning of each section to provide context.

      (4) Clearly define important terms such as "surface stimulus" and "early vs. late stimulus period" to ensure understanding.

      (5) Provide a rationale for each result section, explaining the significance of the findings.

      (6) Offer a detailed explanation of why the results do not support the prediction error signal hypothesis but instead suggest an encoding of the achromatic surface.

      These adjustments will help make the manuscript more accessible and its conclusions more compelling.

    1. endemic

      Is this a term that everyone would be familiar with? Because I'm not sure I could define it off the top of my head. I could hazard a pretty decent guess based on other similar words and the usage here, but...

    2. ensembles, logistic regression, random forest, naive bayes, PCA, KMeans, Gaussian Mixture Models

      Just off the top of my head, this feels potentially excessive. You should be able to narrow your focus down to just 1 or 2 that make the most sense for what you are trying to model.

    3. Finally, we repeated our machine learning process to predict age-adjusted death rate based on our significant access to care covariates. Our model accurately predicted the binned death rate for 62% of our test data. Just thirteen access-to-care-related covariates predicted mortality rate 62% of the time! This again emphasizes the importance of access to care in one’s overall health status.

      This is less a comment about this paragraph and more the previous section:

      This felt like a huge data analysis dump, and I was unable to keep most of it straight in my head and how exactly it was tied to your research question. There is a TON going on. At the end I have no clear indication what I should be taking away from it. I think you need to work on possibly trimming some of this away, and really fixating on a clear story, which you constantly relate back to.

    1. endemic

      Is this a term that everyone would be familiar with? Because I'm not sure I could define it off the top of my head. I could hazard a pretty decent guess based on other similar words and the usage here, but...

    2. ensembles, logistic regression, random forest, naive bayes, PCA, KMeans, Gaussian Mixture Models

      Just off the top of my head, this feels potentially excessive. You should be able to narrow your focus down to just 1 or 2 that make the most sense for what you are trying to model.

    3. Finally, we repeated our machine learning process to predict age-adjusted death rate based on our significant access to care covariates. Our model accurately predicted the binned death rate for 62% of our test data. Just thirteen access-to-care-related covariates predicted mortality rate 62% of the time! This again emphasizes the importance of access to care in one’s overall health status.

      This is less a comment about this paragraph and more the previous section:

      This felt like a huge data analysis dump, and I was unable to keep most of it straight in my head and how exactly it was tied to your research question. There is a TON going on. At the end I have no clear indication what I should be taking away from it. I think you need to work on possibly trimming some of this away, and really fixating on a clear story, which you constantly relate back to.

    1. Like other advocates of "civilizing" the Native Americans, Jefferson linked the creation of the nuclear family with a desire to acquire property and the establishment of a formal government.

      Jefferson wanted to change the structure of family, where men were the head of the household rather than women. In many Native American cultures, women were the head of the household, otherwise known as matriarchal.

  2. drive.google.com drive.google.com
    1. But his struggleto reconcile himself with being on public aid was not over, and it reached a head at a familyNew Year's party. Hiding in the corner of his nephew's suburban living room with a glass ofgin, so that he did not have to explain that he was unemployed

      Lennie seems like he takes a lot of pride in working hard. Was he ashamed that relying on public aid would disclose the fact that he was disabled?

    1. You cannot come with me,” Jon said, cupping the wolf’s head inhis hands and looking deep into those eyes. “You have to go toCastle Black. Do you understand? Castle Black. Can you nd it? Theway home? Just follow the ice, east and east, into the sun, andyou’ll nd it. They will know you at Castle Black, and maybe yourcoming will warn them.”

      noo don't leave him :(

    2. “It was the green men he meant to nd. So he donned a shirtsewn with bronze scales, like mine, took up a leathern shield and athree-pronged spear, like mine, and paddled a little skin boat downthe Green Fork.”Bran closed his eyes to try and see the man in his little skin boat.In his head, the crannogman looked like Jojen, only older andstronger and dressed like Meera.

      guessing its gonna be howland just because of how recent it is

    3. The axe crashed down. Heavy and well-honed, it killed at a singleblow, but it took three to sever the man’s head from his body, andby the time it was done both living and dead were drenched inblood.

      only ned has been able to kill in a single bloe (not counting payne)

    4. “Old gods or new, it makes no matter,” Lord Rickard told her son,“no man is so accursed as the kinslayer.”“Kneel, traitor,” Robb said again. “Or must I have them force yourhead onto the block?”Lord Karstark knelt. “The gods shall judge you, as you havejudged me.” He laid his head upon the block.

      ugh foreshadowing

    5. “The Others can take her, then,” Robb cursed, in a fury of despair.“Bloody Rickard Karstark as well. And Theon Greyjoy, Walder Frey,Tywin Lannister, and all the rest of them. Gods be good, why wouldany man ever want to be king? When everyone was shouting King inthe North, King in the North, I told myself ... swore to myself ... that Iwould be a good king, as honorable as Father, strong, just, loyal tomy friends and brave when I faced my enemies ... now I can’t eventell one from the other. How did it all get so confused? LordRickard’s fought at my side in half a dozen battles. His sons died forme in the Whispering Wood. Tion Frey and Willem Lannister weremy enemies. Yet now I have to kill my dead friends’ father for theirsakes.” He looked at them all. “Will the Lannisters thank me forLord Rickard’s head? Will the Freys?”

      I FEEL SO BAD FOR HIM AND ITS GONNA GET WORSE :(

    6. They are children, Sansa thought. They are silly little girls, evenElinor. They’ve never seen a battle, they’ve never seen a man die, theyknow nothing. Their dreams were full of songs and stories, the wayhers had been before Jorey cut her father’s head o. Sansa pitiedthem. Sansa envied them.

      poor girls :(

    7. Prince. The man-sound came into his head suddenly, yet he couldfeel the rightness of it. Prince of the green, prince of the wolfswood. He

      bloodraven?

    Annotators

    1. eLife assessment

      The authors have presented an interesting set of results showing that female sex peptide signaling adversely affects late-life neurodegeneration after early-life exposure to repetitive mild head injury in Drosophila. This fundamental work substantially advances our understanding of how sex-dependent response to TBI occurs by identifying the Sex Peptide and the immune system as modulators of sex differences. The evidence supporting the conclusions is compelling with rigorous inclusion of controls and appropriate statistics.

    2. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors use the Drosophila model system to study the impact of mild head trauma on sex-dependent brain deficits. They identify Sex Peptide as a modulator of greater negative outcomes in female flies. Additionally, they observe that increased age at the time of injury results in worse outcomes, especially in females, and that this is due to chronic suppression of innate immune defense networks in mated females. The results demonstrate a novel signaling pathway that promotes age- and sex-dependent outcomes after head injury.

      Strengths:<br /> The authors have modified their previously reported TBI model in flies to mimic mild TBI, which is novel. Methods are explained in detail, allowing for reproducibility. Experiments are rigorous with appropriate statistics. A number if important controls are included. The work tells a complete mechanistic story and adds important data to increase our understanding of sex-dependent differences in recovery after TBI. The Discussion is comprehensive and puts the work in context of the field.

      Weaknesses: None<br /> The authors answered the following concerns, and I have no other concerns:<br /> A very minor weakness is that exact n values should be included in the figure legends. There should also be confirmation of knockdown by RNAi in female flies either by immunohistochemistry or qRT-PCR if possible.

    3. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, the authors used a Drosophila model to show that exposure to repetitive mild TBI causes neurodegenerative conditions that emerge late in life and disproportionately affect females. In addition to the well-known age-dependent impact, the authors identified Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits.

      Strengths:<br /> The authors have presented a compelling set of results showing that female sex peptide signaling adversely affects late-life neurodegeneration after early-life exposure to repetitive mild head injury in Drosophila. They have compared the phenotypes of adult male and female flies sustaining TBI at different ages, and the phenotypes of virgin females and mated females, 2) compared the phenotypes of eliminating SP signaling in mating females and introducing SP-signaling into virgin females, 3) compared transcriptomic changes of different groups in response to TBI. The results are generally consistent and robust.

      Weaknesses:<br /> The authors have made their claims largely based on assaying climbing index and vacuole formation as the only indicators of late-life neurodegeneration after TBI. Furthermore, it is also really surprising to see so few DEGs even in wild-type males and mated females and to see that none of DEGs overlap among groups or are even related to the SP-signaling. The authors state that the reason is their TBI is very minor. It is critical to independently verify their RNA-sequencing results and to add some more molecular evidence to support their conclusion. Finally, since similar sex peptide signaling is not present in mammalians or humans, its implication in humans remains unclear.

    4. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      My comments are largely limited to suggestions to make the manuscript easier to read and digest.

      In the abstract they say RNA sequencing highlights changes in innate...

      Could they be more specific? Innate immune system up or down? They do not indicate actual findings in the abstract.

      We thank the reviewer for the comment and we have revised the abstract accordingly.  

      Their use of non‐intuitive abbreviations is often confusing. Perhaps they can add a table in methods listing all the abbreviations so that the reader can follow the data better. mNGA, vmHT....etc.

      As suggested, we have now included a list of the abbreviations used in the paper.

      There are mis‐spellings in the manuscript.

      We have gone through the manuscript and corrected the mis-spellings.   

      Has the SPR RNAi line been validated?

      The SPR RNAi line that we used has been extensively validated by Yapici et al., 2007 and several subsequent publications. Importantly, the effectiveness of SPR knockdown is evident in female flies as they exhibit dramatically reduced egg laying and, importantly, lack the typical post-mating behaviors (such as rejection of male flies after initial mating) observed in the wild type mated female flies. In fact, female flies with RNAi-mediated SPR knockdown behave identically to females mated with SP-null male flies, confirming the effective disruption of the SP-SPR signaling pathway. We have revised the manuscript and added these statements in the results section concerning SPR RNAi.  

      In the figures showing the Climbing Index vs time, can they abbreviate seconds as sec vs s? At least I think it is seconds. At first, I thought it was Time or Times, and was confused about what they were indicating on those types of graphs (Figures 1D‐F).

      We have revised the figure as suggested by the reviewer.

      In Figure 3F, they have a significance indicated in an unclear manner. It looks like they are comparing neuropil to the cortex, but I think they really mean to compare the cortex of sham to cortex of D31?

      The reviewer was correct. We have revised figure 3F to make this clear.     

      In Figure 4B, what is the y‐axis? Percentage of what? Is that percentage of total flies?

      The reviewer was correct. We have revised the figure to make this clear. 

      In a figure like SF3 B, what is the y‐axis? "Norm. Accum. CI" Can they explain the abbreviation?

      We have revised the Y-axis label to be “Normalized accumulative CI”.  We have also made this clear in the legend.   

      In the methods, what does this mean: "Regions devoid of Hoechst and phalloidin signal in non‐physiologically appropriate areas were considered vacuoles"? What are non‐physiologically appropriate areas? To me, that would mean outside of the brain. I would have thought the areas should be physiologically appropriate (aka neuropil and cortex)? This is confusing.

      We have revised the method section to be more specific.  In the Drosophila brain, there are structures such as esophagus that are devoid of both Hoechst and phalloidin staining, which were excluded from our vacuole quantification.    

      Reviewer #2 (Recommendations For The Authors):

      Since I use mammalian systems, my comment about the confirmation of siRNA should be removed if this is not possible in the Drosophila system.

      We have revised the figures to include total N values when appropriate. Including individual n values for each experimental assay and condition will inevitably crowd the figure legends, so specific values are available upon request. 

      Regarding RNAi knockdown of sex peptide receptors (SPRs), we agree that confirmation of the knockdown by IHC or qRT-PCR will further strengthen our findings. It should be noted, however, that the RNAi line we used has been extensively validated by Yapici et al., 2007 and several subsequent publications. Importantly, the effectiveness of SPR knockdown is evident in female flies as they exhibit dramatically reduced egg laying and, importantly, lack the typical post-mating behaviors (such as rejection of male flies after initial mating) observed in the wild type mated female flies. In fact, female flies with RNAi-mediated SPR knockdown behave identically to females mated with SP-null male flies, confirming the effective disruption of the SP-SPR signaling pathway. We have revised the manuscript to include these statements in the results concerning the SPR RNAi knockdown.    

      Reviewer #3 (Recommendations For The Authors):

      (1) In Figures 1 and 2, the authors found that females have a lower climbing index in the acute phase in D17 injury, not due to neurodegeneration as shown no significant changes of brain vacuolation and other markers. However, in Figure 3, the authors found that female flies have a lower climbing index, more brain vacuolation, and neurodegeneration in the late phase. It's not very convincing that having a lower climbing index at the late phase is due to neurodegeneration. Is it possible that females suffered from more severe acute effects, at least in D17 injury?

      We thank the reviewer for this point. Female flies injured on D17 displayed acute climbing deficits at 90 minutes post-injury. Since we did not observe significant structural changes in the brain at this time, we believe that this short-term functional deficit is not due to acute neuronal death. Here it is important to note that males did not display any acute climbing deficits when injured on D17, which suggests that the females suffered from more severe acute effects than males. However, these injured female flies recovered fully at 24 hours post-injury and displayed no climbing deficits. At two weeks post-injury, we observe climbing deficits and increased vacuole formation as a direct result of the injuries on D17 (see Supplemental Figure 3). When we assessed sensorimotor behavior and brain vacuolation on D45, we found that the injured females had significantly lower climbing indices and more brain vacuolation than the non-injured females of the same age. In this case, the concurrent observance of decreased climbing ability and increased brain vacuolation suggests chronic neurodegeneration in aged, injured females. This is not to be confused with the acute neuronal death observed by other groups using injury models of stronger severity. Overall, our data are consistent with the current view that in many neurodegenerative diseases, functional deficits often precede observable brain degeneration, which may take years to manifest.

      (2) The authors determined late‐life brain deficits and neurodegeneration purely based on climbing index and vacuole formation. These phenotypes are not really specific to TBI‐related neurodegeneration and the significance and mechanisms of vacuole formation are not clear. Indeed, in Figures 3 A and B, male flies especially D31inj tend to have a much larger variation than any other groups. What could be the reasons? The authors should perform additional analyses on TBI‐related neurodegeneration in flies, which have been shown before, such as retinal degeneration and loss, neuronal degeneration, and loss, neuromuscular junction abnormalities, etc (Genetics. 2015 Oct; 201(2): 377‐402).

      We thank the reviewer for the thorough evaluation of our manuscript. The reviewer raised a very important question: whether the neurodegeneration observed in our model is specific to TBI. As the reviewer rightly pointed out, the neurodegenerative phenotypes are unlikely to be specific to TBI-related neurodegeneration. Throughout the manuscript, we have tried to convey the notion that the mild physical impacts to the head represent one form of environmental insults, which in combination with other risk factors such as aging can lead to the emergence of neurodegenerative conditions. It should be noted that the negative geotaxis assay and vacuolation quantification are two well-established approaches to assess sensorimotor deficits and frank brain degeneration in fly brains. 

      It is important to emphasize that the head-specific impacts delivered to the flies in our study are much milder than those used in previous studies. As we showed in our figure 1, this very mild form of head trauma (referred to as vmHT) did not cause any death, nor affected the lifespan of the injured flies. Our supplemental data also show very minimal structural neuronal damage and no acute and chronic apoptosis induced by vmHT exposure. Consistently, we did not observe any exoskeletal or eye damage immediately following injuries, nor did we observe any retinal degeneration and pseudopupil loss at the chronic stage of these flies. We have incorporated these important points in the revised manuscript.  

      (3) In Figure 4, it would be important to perform the behavior test fly speed and directional movement in the acute phase as well to determine whether the females have reduced performance at the acute phase.

      We thank the reviewer for this suggestion. Please note that our modified NGA has already improved the spatiotemporal resolution over the classic NGA.  The data presented in Fig.3 show that there are no acute deficits for young cohorts.  Therefore, we do not believe that the detailed analysis of the direction and speed of these flies is essential.  

      Unfortunately, the current setup for the AI-based analysis requires manual corrections of tracking errors, which are time-consuming and tedious.  We are building a newly designed AI-based NGA (NGA.ai) that will allow automatic tracking and quantification with minimal manual interventions. Once it is completed, we will perform some of the analyses that the reviewer suggested.  

      (4) In Figure 8, the authors performed an RNA‐seq analysis and identified some dysregulated gene expressions. However, it is really surprising to see so few DEGs even in wild‐type males and mated females, and to see that none of DEGs overlap among groups or related to the SP‐signaling. This raises questions about the validity of the RNAseq analysis. It is critical to independently verify their RNA‐sequencing results and to add some more molecular evidence to support their conclusion.

      We agree that future studies are needed to independently validate our RNA sequencing results. We believe that the small number of DEGs are likely due to two unique features of our study: (1) the very mild nature of our injury paradigm and (2) the chronic examination timepoint that was long after the head injury and SP exposure, which distinguish our study from previous fly TBI studies.  As pointed out in the manuscript, our study was aimed to understand how early life exposure to repetitive head traumatic insults could lead to the latelife onset of neurodegenerative conditions. We hope to further validate our results in our next phase of experiments using single-cell RNA sequencing and RT-qPCR. 

      (5) The current results raise a series of interesting questions: what implication of female fly mating and its associated Sex Peptide signaling would be to mammalians or humans? Would mammalian female animals mating with wild‐type or sex hormone‐null male animals have different effects on their post‐injury behavior tests or neuropathological changes? What are the mechanisms underlying the sexual dimorphism?

      As the reviewer pointed out, it would be very interesting to explore the possible roles of sex peptide-signaling in other animals and humans. As far as we know, there is no known mammalian ortholog to the insect sex peptide, so it would be difficult to study SP or an SPlike molecule in mammalian models. However, we believe that prolonged post-mating changes associated with reproduction in female fruit flies contribute to their elevated vulnerability to neurodegeneration.  In this regard, drastic changes within the biology of female mammals associated with reproduction can potentially lead to vulnerability to neurodegeneration. We agree that this demands further study, which may be done with future collaborators using rodent or large animal models.  We have discussed this point in the manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Rebuttal_ Preprint- #RC-2023-02144

      First of all we would like to thank the three reviewers for their constructive and positive comments and suggestions, and the time spent in reviewing our manuscript. Their suggestions and comments had contributed to improve our manuscript. We feel the manuscript is much strengthened by this revision.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __Summary:____ __The manuscript by Dabsan et al builds on earlier work of the Igbaria lab, who showed that ER-luminal chaperones can be refluxed into the cytosol (ERCYS) during ER stress, which constitutes a pro-survival pathway potentially used by cancer cells. In the current work, they extent these observations and a role for DNAJB12&14 in ERCYS. The work is interesting and the topic is novel and of great relevance for the proteostasis community. I have a number of technical comments:

      We thank the reviewer for his/her positive comments on our manuscript.


      __Major and minor comments: __

      1- In the description of Figure 2, statistics is only show to compare untreated condition with those treated with Tg or Tm, but no comparison between condition and different proteins. As such, the statement made by the authors "...DNAJB14-silenced cells were only affected in AGR2 but not in DNAJB11 or HYOU1 cytosolic accumulation" cannot be made.

      Answer: We totally agree with the reviewer#1. The aim of this figure is to show that during ER stress, a subset of ER proteins are refluxed to the cytosol. This is happening in cells expressing DNAJB12 and DNAJB14. We are not comparing the identity of the expelled proteins between DNAJB12-KD cells and DNAJB14-KD cells, This is not the scoop of this paper as such the statement was removed.

      2- Figure S2C: D11 seems to increase in the cytosolic fraction after Tm and Tg treatment. However, this is not reflected in the text. The membrane fraction also increases in the DKO. Is the increase of D11 in both cytosol and membrane and indication for a transcriptional induction of this protein by Tm/Tg? Again, the authors are not reflecting on this in their text.

      Answer: We performed qPCR experiments in control, DNAJB12-KD, DNAJB14-KD and in the DNAJB12/DNAJB14 double knock down cells (in both A549 and PC3 cells) to follow the mRNA levels of DNAJB11. As shown in (Figure S2F-S2N), there is no increase in the mRNA levels of DNAJB11, AGR2 or HYOU1 in the different cells in normal (unstressed conditions). Upon ER stress with tunicamycin or thapsigargin there is a little increase in the mRNA levels of HYOU1 and AGR2 but not in DNAJB11 mRNA levels. On the other hand, we also performed western blot analysis and we did not detect any difference between the different knockdown cells when we analyzed the levels of DNAJB11 compared to GAPDH. Those data are now added as (Figure S2F-S2N).

      We must note that although AGR2 and HYOU1 are induced at the mRNA as a result of ER stress, the data with the overexpression of DNAJB12 and DNAJB14 are important as control experiments because when DNAJB12 is overexpressed it doesn’t inducing the ER stress (Figure S3C-S3D). In those conditions there is an increase of the cytosolic accumulation of AGR2, HYOU1 and DNAJB11 despite that there was no induction of AGR2, HYOU1 or DNAJB11 (Figure 3C and Figure 3E, Figure S3, Figure 4, and Figure S4) . Those results argue against the idea that the reflux is a result of protein induction and an increase in the total proteins levels.

      3- Figure 2D: Only p21 is quantified. phospho-p53 and p53 levels are not quantified.


      Answer: We added the quantification of phospho-p53 and the p53 levels to (Figure 2E-G). Additional blots of the P21, phosphor-p53 and p53 now added to FigureS2O.

      4- Figure 2D: There appears to be a labelling error

      Answer: Yes, the labelling error was corrected.

      5- Are there conditions where DNAJB12 would be higher?

      Answer: In some cancer types there is a higher DNAJB12, DNAJB14 and SGTA expression levels that are associated with poor prognosis and reduced survival (New Figure S6E-M). The following were added to the manuscript: “Finally, we tested the effect of DNAJB12, DNAJB14, and SGTA expression levels on the survival of cancer patients. A high copy number of DNAJB12 is an unfavorable marker in colorectal cancer and in head and neck cancer because it is associated with poor prognosis in those patients (Figure S6E). A high copy number of DNAJB12, DNAJB14, and SGTA is associated with poor prognosis in many other cancer types, including colon adenocarcinoma (COAD), acute myeloid leukemia (LAML), adrenocortical carcinoma (ACC), mesothelioma (MESO), and Pheochromocytoma and paraganglioma (PCPG) (Figure S6F-M). In uveal melanoma (UVM), a high copy number of the three tested genes, DNAJB12, DNAJB14, and SGTA, are associated with poor prognosis and poor survival (Figure S6I, S6J, and S6M). The high copy number of DNAJB12, DNAJB14, and SGTA is also associated with poor prognosis in many other cancer types but with low significant scores. More data is needed to make significant differences (TCGA database). We suggest that the high expression of DNAJB12/14 and SGTA in those cancer types may account for the poor prognosis by inducing ERCYS and inhibiting pro-apoptotic signaling, increasing cancer cells' fitness.

      6- What do the authors mean by "just by mass action"?

      Answer: Mass action means increasing the amount of the protein (overexpression). We corrected this in the main text to overexpression.

      7- Figure 3C: Should be labelled to indicate membrane and cytosolic fraction. The AGR2 blot in the left part is not publication quality and should be replaced.

      Answer: We added the labelling to indicate cytosolic and membrane fractions to Figure 3C. We re-blotted the AGR2, new blot of AGR2 was added.

      8- What could be the reason for the fact that DNAJB12 is necessary and sufficient for ERCYS, while DNAJB14 is only necessary?

      Answer: Because of their very high homology, we speculate that the two proteins have partial redundancy. Partial because we believe that some of the roles of DNAJB12 cannot be carried by DNAJB14 in its absence. Although they are highly homologous, we expect that they probably have different affinities in recruiting other factors that are necessary for the reflux of proteins.

      We further developed around this point in the discussion and the main text.

      9- Figure 5A: Is the interaction between SGTA and JB12 UPR-independent?HCS70 seems to show only background binding. The interaction of JB12 with SGTA is not convincing. A better blot is needed.

      Answer: In the conditions of Figure 5A, we did not observe any induction of the UPR (Figure S3C-D). Thus, we concluded that in those condition of overexpression, DNAJB12 interacts with SGTA in UPR independent manner.

      We repeated this experiment another 3 times with very high number of cells (2X15cm2 culture dishes for each condition) and instead of coimmunoprecipitating with DNAJB12 antibodies we IP-ed with FLAG-beads, the results are very clear as shown in the new Figure 5A compared to Figure S5A.

      10- Figure 5B: the expression of DNAJB14 was induced by Tg50, but not by Tg25 or Tm. However, the authors have not commented on this. This should be mentioned in the text and discussed.

      Answer: In most of the experiments we did not see an increase in DNAJB14 upon ER stress except in this replicate. To be sure we looked at the DNAJB14 levels upon ER stress by protein and qPCR experiment as shown in new (in the Input of Figure 5 and Figure S5) and (Figure S5H-I). We also added new IP experiments in Figure 5 and Figure S5.

      11- Figure 6A: Why is a double knockdown important at all? DNAJB14 does not seem to do much at all (neither in overexpression nor with single knockdown).

      Answer: the data shows that DNAJB12 can compensate for the lack of DNAJB14 while DNAJB14 can only partially compensate for some of the DNAJB12 functions. DNAJB12 could have higher affinity to recruit other factor needed for the reflux process and thus the impact of DNAJB12 is higher. In summary, neither DNAJB12 or DNAJB14 is essential in the single knockdown which means that they compensate for each other. In the overexpression experiment, it is enough to have the endogenous DNAJB14 for the DNAJB12 activity. When DNAJB14 is overexpressed at very high levels, we believe that it binds to some factors that are needed for proper DNAJB12 activity (Figure 4 showing that the WT-DNAJB14 inhibits ER-stress induced ER protein reflux when overexpressed). We believe that DNAJB14 is important because only when we knock both DNAJB12 and DNAJB14 we see an effect on the ER-protein reflux. DNAJB14 is part of a complex of DNAJB12/HSC70 and DSGTA.

      (DNAJB12 is sufficient while DNAJB14 is not- please refer to point #8 above).

      **Referees cross-commenting**

      I agree with the comments raised by reviewer 1 about the manuscript. I also agree with the points written in this consultation session. In my opinion, the comments of reviewer 2 are phrased in a harsh tone and thus the reviewer reaches the conclusion that there are "serious" problems with this manuscript. However, I think that the authors could address many of the points of this reviewer in a matter of 3 months easily. For instance, it is easy to control for the expression levels of exogenous wild type and mutant D12 and compare it to the endogenous one (point 3). This is a very good point of this reviewer and I agree with this experiment. Likewise, it is easy to provide data about the levels of AGR2 to address the concern whether its synthesis is affected by D12 and D14 overexpression. Again, an excellent suggestion, but no reason for rejecting the story. As for not citing the literature, I think this can also easily be addressed and I am sure that this is just an oversight and no ill intention by the authors. __Overall, I am unable to see why the reviewer reaches such a negative verdict about this work. With proper revisions that might take 3 months, I think the points of all reviewers can be addressed. __

      Reviewer #1 (Significance (Required)):

      Significance: The strength of the work is that it provides further mechanistic insight into a novel cellular phenomenon (ERCYS). The functions for DNAJB12&14 are unprecedented and therefore of great interest for the proteostasis community. Potentially, the work is also of interest for cancer researchers, who might capitalize of the ERCYS to establish DNAJB12/14 as novel therapeutic targets. The major weaknesses are as follows: (i) the work is limited to a single cell line. To better probe the cancer relevance, the work should have used at least a panel of cell lines from one (or more) cancer entity. Ideally even data from patient derived samples would have been nice. Having said this, I also appreciate that the work is primarily in the field of cell biology and the cancer-centric work could be done by others. Certainly, the current work could inspire cancer specialists to explore the relevance of ERCYS. (ii) No physiological or pathological condition is shown where DNAJB12 is induced or depleted.

      Answer: We previously showed that ERCYS is conserved in many different cell lines including A549, MCF7, GL-261, U87, HEK293T, MRC5 and others and is also conserved in murine models of GBM (GL-261 and U87 derived tumors) and human patients with GBM (Sicari et al. 2021). Here, we tested the reflux process and the IP experiments in many different cell lines including A549, MCF-7, PC3 and Trex-293 cells. We also added new fractionation experiment in DNAJB12 and DNAJB14 -depleted MCF-7, PC3 and A549 cells. We added all those data to the revised version.

      We also added survival curves from the TCGA database showing that high copy number of DNAB12, DNAJB14 and SGTA are associated with poor prognosis compared to conditions where DNAJB12, DNAJB14, and SGTA are at low copy number (Figure S6E-M). Finally, we included immunofluorescent experiment to show that the interaction between the refluxed AGR2 and the cytosolic SGTA occurs in tumors collected from patients with colorectal cancer patients (Figure S5F-G) compared to non-cancerous tissue.

      This study is highly significant and is relevant not only to cancer but for other pathways that may behave in similar manner. For instance, DNAJB12 and DNAJB14 are part of the mechanism that is used by non-envelope viruses to escape the ER to the cytosol. Thus, the role of those DNAJB proteins seems to be mainly in the reflux of functional (not misfolded) proteins from the ER to the cytosol. We reported earlier that the UDP-Glucose-Glucosyl Transferase 1 (UGGT1) is also expelled during ER stress. UGGT1 is important because it is redeploy to the cytosol during enterovirus A71 (EA71) infection to help viral RNA synthesis (Huang et al, 2017). This redeployment of EAA71 is similar to what happens during the reflux process because on one hand, UGGT1 exit the ER by an ER stress mediated process (Sicari et al. 2021) and it is also a functional in the cytosol as a proteins which help viral RNA synthesis ((Huang et al, 2017). All those data showing that there is more of DNAJB12, DNAJB14, DNAJC14, DNAJC30 and DNAJC18 that still needs to be explored in addition to what is published. Thus, we suggest that viruses hijacked this evolutionary conserved machinery and succeeded to use it in order to escape the ER to the cytosol in a manner that depends on all the component needed for ER protein reflux.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors present a study in which they ascribe a role for a complex containing DNAJB12/14-Hsc70-SGTA in facilitating reflux of a AGR2 from the ER to cytosol during ER-stress. This function is proposed to inhibit wt-P53 during ER-stress.

      Concerns: 1. The way the manuscript is written gives the impression that this is the first study about mammalian homologs of yeast HLJ1, while there are instead multiple published papers on mammalian orthologs of HLJ1. Section 1 and Figure 1 of the results section is redundant with a collection of previously published manuscripts and reviews. The lack of proper citation and discussion of previous literature prevents the reader from evaluating the results presented here, compared to those in the literature.

      Answer: We highly appreciate the reviewer’s comments. This paper is not to show that DNAJB12 and DNAJB14 are the orthologues of HLJ-1 but rather to show that DNAJB12 and DNAJB14 are part of a mechanism that we recently discovered and called ERCYS that cause proteins to be refluxed out of the ER. A mechanism that is regulated in by HLJ-1 in yeast. ERCYS is an adaptive and pro-survival mechanism that results in increased chemoresistance and survival in cancer cells. The papers that reviewer #2 refer to are the ones that report DNAJB12 can replace some of the ER-Associated Degradation (ERAD) functions of HLJ-1 in degradation of membranal proteins such as CFTR. These two mechanism are totally different and the role of the yeast HLJ-1 in degradation of CFTR is not needed for ERCYS. This is because we previously showed that the role of the yeast HLJ-1 and probably its orthologues in ERCYS is independent of their activity in ERAD(Igbaria et al. 2019). Surprisingly, the role of HLJ-1 in refluxing the ER proteins is not only independent of the reported ERAD-functions of HLJ1 and the mammalian DNAJBs but rather proceeds more rigorously when the ERAD is crippled (Igbaria et al. 2019). This role of DNAJBs is unique in cancer cells and is responsible in regulating the activity of p53 during the treatment of DNA damage agents.

      In our current manuscript we show by similarity, functionality, and topological orientation, that DNAJB12 and DNJB14 may be part of a well conserved mechanism to reflux proteins from the ER to the cytosol. A mechanism that is independent of DNAJB12/14’s reported activity in ERAD(Grove et al. 2011; Yamamoto et al. 2010; Youker et al. 2004). In addition, DNAJB12 and DNAJB14 facilitate the escape of non-envelope viruses from the ER to the cytosol in similar way to the reflux process(Goodwin et al. 2011; Igbaria et al. 2019; Sicari et al. 2021). All those data show that HLJ-1 reported function may be only the beginning of our understanding on the role that those orthologues carry and that are different from what is known about their ERAD function.

      Action: We added the references to the main text and discussed the differences between the reported DNAJB12 and HLJ-1 functions to the function of DNAJB12, DNAJB14 and the other DNAJ proteins in the reflux process. We also developed around this in the discussion.

      The conditions used to study DNAJB12 and DNAJ14 function in AGR2 reflux from the ER do not appear to be of physiological relevance. As seen below they involve two transfections and treatment with two cytotoxic drugs over a period of 42 hours. The assay for ERCY is accumulation of lumenal ER proteins in a cytosolic fraction. Yet, there is no data or controls that describe the path taken by AGR2 from the ER to cytosol. It seems like pleotropic damage to the ER due the experimental conditions and accompanying cell death could account for the reported results?

      Transfection of cells with siRNA for DNAJB12 or DNAJB14 with a subsequent 24-hour growth period.

      Transfection of cells with a p53-lucifease reporter.

      Treatment of cells with etoposide for 2-hours to inhibit DNA synthesis and induce p53. D. Treatment of cells for 16 hours with tunicamycin to inhibit addition of N-linked glycans to secretory proteins and cause ER-stress.

      Subcellular fractionation to determine the localization of AGR2, DNAJB11, and HYOU1

      KD of DNAJB12 or DNAJB14 have modest if any impact on AGR2 accumulation in the cytosol. There is an effect of the double KD of DNAJB12 or DNAJB14 on AGR2 accumulation in the cytosol. Yet there are no western blots showing AGR2 levels in the different cells, so it is possible that AGR2 is not synthesized in cells lacking DNAJB12 and DNAKB14. The lack of controls showing the impact of single and double KD or DNAJB12 and DNAJB14 on cell viability and ER-homeostasis make it difficult to interpret the result presented. How many control versus siRNA KD cells survive the protocol used in these assays?


      Answer: Despite the long protocol we see differences between the control cells and the DNAJB-silenced cells in terms of the quantity of the refluxed proteins to the cytosol. The luciferase construct was used to assess the activity of p53 so the step of the second transfection was used only in experiments were we assayed the p53-luciferase activity. The rest of the experiments especially those where we tested the levels of p53 and P21 levels, were performed with one transfection. Moreover, all the experiments with the subcellular protein fractionation were performed after one transfection without the second transfection of the p53-Luciferase reporter. Finally, the protocol of the subcellular protein fractionation requires first to trypsinize the cells to lift them up from the plates, at the time of the experiment the cells were almost at 70-80% confluency and in the right morphology under the microscope.

      Here, we performed XTT assay and Caspase-3 assay to asses cell death at the end of the experiment and before the fractionation assay. We did not observe any differences at this stage between the different cell lines (Figure-RV1 for reviewers Only). This can be explained by the fact that we use low concentrations of Tm and Tg for short time of 16 hour after the pulse of etoposide.

      Finally, the claim that and ER-membrane damage result in a mix between the ER and cytosolic components is not true for the following reasons: (1) In case of mixing we would expect that GAPDH levels in the membrane fraction will be increased and that we do not see, and (2) we used our previously described transmembrane-eroGFP (TM-eroGFP) that harbors a transmembrane domain and is attached to the ER membrane facing the ER lumen. The TM-eroGFP was found to be oxidized in all conditions tested. Those data argue against a rupture of the ER membrane which can results in a mix of the highly reducing cytosolic environment with the highly oxidizing ER environment by the passage of the tripeptide GSH from the cytosol to the ER. All those data argue against (1) cell death, and (2) rupture of the ER membrane. Figure RV1 Reviewers Only.

      Moreover, as it is shown in Figure S2, AGR2 is found in the membrane fraction in all the four different knock downs, thus it is synthesized in all of them. Moreover, we assayed the mRNA levels of AGR2 in all the knockdowns and we so that they are at the same levels in all the 4 different conditions and still AGR2 mRNA levels increase upon ER stress in all of the 4 knockdown cells in different backgrounds (Figure S2F-N).

      In Figure 3 the authors overexpress WT-D12 and H139Q-D12 and examine induction of the p53-reporter. There are no western blots showing the expression levels of WT-D12 and H139Q-D12 relative to endogenous DNAJB12. HLJ1 stands for high-copy lethal DnaJ1 as overexpression of HLJ1 kills yeast. The authors present no controls showing that WT-D12 and H139-D12 are not expressed at toxic levels, so the data presented is difficult to evaluate.

      Answer: The expression levels of the overexpression of DNAJB12 and DNAJB14 were present in the initial submission of the manuscript as Figure S3A and S3B. The data showing the relationship between the expression degree and the viability were also included in the initial submission as Figure S3C (Now S3H).

      There is no mechanistic data used to help explain the putative role DNAJB12 and DNAJB14 in ERCY? In Figure 4, why does H139Q JB12 prevent accumulation of AGR2 in the cytosol? There are no westerns showing the level to which DNAJB12 and DNAJB14 are overexpressed.


      Answer: The data showing the levels of DNAJB12 compared to the endogenous were present in the initial submission as Figure S3A and S3B.

      We suggest a mechanism by which DNAJB12 and DNAJB14 interact (Figure 5 and Figure S5) and oligomerize to expel those proteins in similar way to expelling non-envelope viruses to the cytosol. Thus, when expressing the mutant DNAJB12 H139Q may indicate that the J-domain dead-mutant can still be part of the complex but affects the J-domain activity in this oligomer and thus inhibit ER-protein reflux. In other words, we showed that the H139Q exhibits a dominant negative effect when overexpressed. Moreover, here we added another IP experiment in the D12/D14-DKD cells to show that in the absence of DNAJB12 and DNAJB14, SGTA cannot bind the ER-lumenal proteins because they are not refluxed (Figure 5 and Figure S5). Those data indicate that in order for SGTA bind the refluxed proteins they have to go through the DNAJB12 and DNAJB14 and their absence this interaction does not occur. This explanation was also present in the discussion of the initial submission.

      Mechanistically, we show that AGR2 interacts with DNAJB12/14 which are necessary for its reflux. This mechanism involves the functionality of cytosolic HSP70 chaperones and their cochaperones (SGTA) proteins that are recruited by DNAJB12 and 14. This mechanism is conserved from yeast to mammals. Moreover, by using the alpha-fold prediction tools, we found that AGR2 is predicted to interact with SGTA in the cytosol by the interaction between the cysteines of SGTA and AGR2 in a redox-dependent manner.

      **Referees cross-commenting**

      __ __ I appreciate the comments of the other reviewers. I agree that the authors could revise the manuscript. Yet, based on my concerns about the physiological significance of the process under study and lack of scholarship in the original draft, I would not agree to review a revised version of the paper.

      Answer: Regards the physiological relevance, we showed in our previous study (Sicari et al. 2021) how relevant is ERCYS in human patients of GBM and murine model of GBM. ERCYS is conserved from yeast to human and is constitutively active in GL-261 GBM model, U87 GBM model and human patients with GBM (Sicari et al. 2021). Here, extended that to other tumors and showed that DNAJB12, DNAJB14 and SGTA high levels are associated with poor prognosis in many cancer types (Figure S6). We also show some data from to show the relevance and added data showing the interaction of SGTA with AGR2 in CRC samples obtained from human patients compared to healthy tissue (Figure S5). This study is highly significant and is relevant not only to cancer but for other pathways that may behave in similar manner. For instance, DNAJB12 and DNAJB14 are part of the mechanism that is used by non-envelope viruses to escape the ER to the cytosol. Thus, the role of those DNAJB proteins seems to be mainly in the reflux of functional (not misfolded) proteins from the ER to the cytosol. We reported earlier that the UDP-Glucose-Glucosyl Transferase 1 (UGGT1) is also expelled during ER stress. UGGT1 is important because it is redeploy to the cytosol during enterovirus A71 (EA71) infection to help viral RNA synthesis (Huang et al, 2017). This redeployment of EAA71 is similar to what happens during the reflux process because on one hand, UGGT1 exit the ER by an ER stress mediated process (Sicari et al. 2021) and it is also a functional in the cytosol as a proteins which help viral RNA synthesis ((Huang et al, 2017). All those data showing that there is more of DNAJB12, DNAJB14, DNAJC14, DNAJC30 and DNAJC18 that still needs to be explored in addition to what is published. We suggest that viruses hijacked this evolutionary conserved machinery and succeeded to use it in order to escape.

      We appreciate the time spent to review our paper and we are sorry that the reviewer reached such verdict that is also not understood by the other reviewers. Most of the points raised by reviewer 2 were already addressed and explained in the initial submission, anyways we appreciate the time and the comments of reviewer #2 on our manuscript.

      Reviewer #2 (Significance (Required)):

      Overall, there are serious concerns about the writing of this paper as it gives the impression that it is the first study on higher eukaryotic and mammalian homologs of yeast HLJ1. The reader is not given the ability to compare the presented data to related published work. There are also serious concerns about the quality of the data presented and the physiological significance of the process under study. In its present form, this work does not appear suitable for publication.

      Answer: Again we thank reviewer #2 for giving us the opportunity to explain how significant is this manuscript especially for people who are less expert in this field. The significance of this paper (1) showing a the unique role of DNAJB12 and DNAJB14 in the molecular mechanism of the reflux process in mammalian cells (not their role in ERAD), (2) showing the implication of other cytosolic chaperones in the process including HSC70 and SGTA (3), our alpha-fold prediction show that this process may be redox dependent that implicate the cysteines of SGTA in extracting the ER proteins, (4) overexpression of the WT DNAJB12 is sufficient to drive this process, (5) mutation in the HPD motif prevent the reflux process probably by preventing the binding to the cytosolic chaperones, and (6) we need both DNAJB12 and DNAJB14 in order to make the interaction between the refluxed ER-proteins and the cytosolic chaperones occur.

      In Summary, this study is highly significant in terms of physiology, we previously reported that ERCYS is conserved in mammalian cells and is constitutively active in human and murine tumors (Sicari et al. 2021). Moreover, DNAJB12 and DNAJB14 are part of the mechanism that is used by non-envelope viruses to escape the ER to the cytosol in a mechanism that is similar to reflux process (Goodwin et al. 2011; Goodwin et al. 2014). Thus, the role of those DNAJB proteins seems to be mainly in the reflux of functional proteins from the ER to the cytosol, viruses used this evolutionary conserved machinery and succeeded to use in order to escape. This paper does not deal with the functional orthologues of the HLJ-1 in ERAD but rather suggesting a mechanism by which soluble proteins exit the ER to the cytosol.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)):____ __

      Summary: Reflux of ER based proteins to the cytosol during ER stress inhibits wt-p53. This is a pro-survival mechanism during ER stress, but as ER stress is high in many cancers, it also promotes survival of cancer cells. Using A549 cells, Dabsan et al. demonstrate that this mechanism is conserved from yeast to mammalian cells, and identify DNAJB12 and DNAJB14 as putative mammalian orthologues of yeast HLJ1.

      This paper shows that DNAJB12 and 14 are likely orthologues of HLJ1 based on their sequences, and their behaviour. The paper develops the pathway of ER-stress > protein reflux > cytosolic interactions > inhibition of p53. The authors demonstrate this nicely using knock downs of DNAJB12 and/or 14 that partially blocks protein reflux and p53 inhibition. Overexpression of WT DNAJB12, but not the J-domain inactive mutant, blocks etoposide-induced p53 activation (this is not replicated with DNAJB14) and ER-resident protein reflux. The authors then show that DNAJB12/14 interact with refluxed ER-resident proteins and cytosolic SGTA, which importantly, they show interacts with the ER-resident proteins AGR2, PRDX4 and DNAJB11. Finally, the authors show that inducing ER stress in cancer cell lines can increase proliferation (lost by etoposide treatment), and that this is partially dependent on DNAJB12/14.

      This is a very interesting paper that describes a nice mechanism linking ER-stress to inhibition of p53 and thus survival in the face of ER-stress, which is a double edged sword regarding normal v cancerous cells. The data is normally good, but the conclusions drawn oversimplify the data that can be quite complex. The paper opens a lot of questions that the authors may want to develop in more detail (non-experimentally) to work on these areas in the future, or alternatively to develop experimentally and develop the observations further. There are only a few experimental comments that I make that I think should be done to publish this paper, to increase robustness of the work already here, the rest are optional for developing the paper further.

      We thank the reviewer for his/her positive comments His/her comments contributed to make our manuscript stronger.

      __Major comments:____ __

      1. Number of experimental repeats must be mentioned in the figure legends. Figures and annotations need to be aligned properly

      __Answer____: __All experiments were repeated at least 3 times. We added the number of repeats on each figure in the figures legends

      Results section 2:

      No intro to the proteins you've looked at for relocalization. Would be useful to have some info on why you chose AGR2. Apart from them being ER-localized, do they all share another common characteristic? Does ability to inhibit p53 vary in potency?

      Answer: We previously showed that AGR2 is refluxed from the ER to the cytosol to bind and inhibit wt-p53 (Sicari et al. 2021). Here, we used AGR2 because, (1) we know that AGR2 is refluxed from the ER to the cytosol, and (2) we know which novel functions it gains in the cytosol so we are able to measure and provide a physiological significance of those novel functions when the levels of DNAJB12 and DNAJB14 are altered. Moreover, we used DNAJB11 (41 kDa) and HYOU1 (150 kDa) proteins to show that alteration in DNAJB12 or DNAJB14 prevent the reflux small, medium and large sized proteins. We added a sentence in the discussion stating that DNAJB12/14 are responsible for the reflux of ER-resident proteins independently of their size. We also added in the result section that we are looking at proteins of different sizes and activities.


      What are the roles of DNAJB12/14 if overexpression can induce reflux? Does it allow increased binding of an already cytosolic protein, causing an overall increase in an interaction that then causes inhibition of p53? What are your suggested mechanisms?

      Answer: Previously it was reported that over-expression of DNAJB12 and DNAJB14 tend to form membranous structures within cell nuclei, which was designate as DJANGOS for DNAJ-associated nuclear globular structures(Goodwin et al. 2014). Because those structures which contain both DNAJB12 and DNAJB14 also form on the ER membrane (Goodwin et al. 2014), we speculate that during stress DNAJB12/14 overexpression may facilitate ERCYS. Interestingly, those structures contain Hsc70 and markers of the ER lumen, the nuclear and ER and nuclear membranes (Goodwin et al. 2014).

      The discussion was edited accordingly to further strengthen and clarify this point

      Fig3: A+B show overexpression of individual DNAJs but not combined. As you go on to discuss the effect of the combination on AGR2 reflux, it would be useful to include this experimentally here.

      Answer: This is a great idea, we tried to do it for long time. Unfortunately when we used cells overexpress DNAJB12 under the doxycycline promoter and transfect with DNAJB14 plasmid expressing DNAJB14 under the CMV promoter, most of the cells float within 24 hours compared to cells transfected with the empty vector alone or with DNAJB14-H136Q. We also did overexpression of DNAJB14 in cells with DNAJB12 conditional expression and also were lethal in Trex293T cells and A549-cells.

      Fig 3C: Subfractionation of cells shows AGR2 in the cytosol of A549 cells. The quality of the data is good but the bands are very high on the blot. For publication is it possible to show this band more centralized so that we are sure that we are not missing bands cut off in the empty and H139Q lanes?

      Also, you have some nice immunofluorescence in the 2021 EMBO reports paper, is it possible to show this by IF too? It is not essential for the story, but it would enrich the figure and support the biochemistry nicely. Also it is notable that the membrane fraction of the refluxed proteins doesn't appear to have a decrease in parallel (especially for AGR2). Is this because the % of the refluxed protein is very small? Is there a transcriptional increase of any of them (the treatments are 12+24 h so it would be enough time)? This could be a nice opportunity to discuss the amount of protein that is refluxed, whether this response is a huge emptying of the ER or more like a gentle release, and also the potency of the gain of function and effect on p53 vs the amount of protein refluxed. This latter part isn't essential but it would be a nice element to expand upon.

      Answer: We re-blotted the AGR2 again, new blot of AGR2 was added. More blots also are added in Figure S2, the text is edited accordingly.

      In new Figure S5 we added immunofluorescence experiment from tumors and non-tumors tissues obtained from Colorectal cancer (CRC) patients showing that the interaction between SGTA and the refluxed AGR2 also occurs in more physiological settings. It is also to emphasize that the suggested mechanism that implicates SGTA is also valid in CRC tumors.

      We performed qPCR experiments in control, DNAJB12-KD, DNAJB14-KD and in the DNAJB12/DNAJB14 double knock down cells (in both A549 and PC3 cells) to follow the mRNA levels of DNAJB11. As shown in the Figure S2F-N, there is no increase in the mRNA levels of DNAJB11, AGR2 or HYOU1 in the different cells in normal (unstressed conditions). Upon ER stress with tunicamycin or thapsigargin there is a little increase in the mRNA levels of HYOU1 and AGR2 but in DNAJB11 mRNA levels. On the other hand, we also performed western blot analysis and we did not detect any difference between the different knockdown cells when we analyzed the levels of DNAJB11 compared to GAPDH. Those data are now added to Figure S2F-N. We must note that in AGR2 and HYOU1 are induced at the mRNA as a result of ER stress. The data with the overexpression of DNAJB12 and DNAJB14 are important control experiment where we show a reflux when DNAJB12 is overexpressed without inducing the ER stress (Figure 3, Figure 4, and Figure S3). In those conditions no induction of AGR2, HYOU1 or DNAJB11 were observed. Those results argue against the reflux as a result of protein induction and the increase in the proteins levels.

      The overall protein levels in steady state are function of how much proteins are made, degraded and probably secreted outside the cell. We do see in Figure S2 under ER stress there are some differences in the levels of the mRNA, moreover, from our work in yeast we showed that the expelled proteins have very long half-life in the cytosol (Igbaria et al. 2019). Because it is difficult to assay how many of the mRNA is translated and how much of it is stable/degraded and the stability of the cytosolic fraction vs the ER, it is hard to interpret on the stability and the levels of the proteins.

      Those data are now added to the manuscript, the text is edited accordingly.

      You still mention DNAJB12 and 14 as orthologues, even though DNAJB14 has no effect on p53 activity when overexpressed. Do you think that this piece of data diminishes this statement?

      Answer: The fact that DNAJB12 and DNAJB14 are highly homologous and that only the double knockdown has a great effect on the reflux process may indicate that they are redundant. Moreover, because only DNAJB12 is sufficient may indicate that some of DNAJB12 function cannot be carried by DNAJB14. In one hand they share common activities as shown in the double knock down and on the other hand DNAJB12 has a unique function that may not be compensated by DNAJB14 when overexpressed.

      __ __ Fig 3D/F: Overexpression of DNAJB14 induces reflux of DNAJB11 at 24h, what does this suggest? Does this indicate having the same role as DNAJB12 but less potently? What's your hypothesis?

      Answer: ERCYS is new and interesting phenomenon and the redistribution of proteins to the cytosol has been documented lately by many groups. Despite that we still do not know what is the specificity of DNAJB12 and DNAJB14 to the refluxed proteins. DNAJB11 is glycosylated protein and now we are testing whether other glycosylated proteins prefer the DNAJB14 pathway or not. This data is beyond the scope of this paper

      "This suggests that the two proteins may have different functions when overexpressed, despite their overlapping and redundant functions" What does it suggest about their dependence on each other? If overexpression of WT DNAJB12 inhibits Tg induced reflux, is it also blocking the ability of DNAJB14 to permit flux?

      Answer: We hypothesize that it is all about the stichometry and the ratios between proteins. When we overexpress DNAJB14 (the one that is not sufficient to cause reflux it may hijack common components and factor by non-specifically binding to them. Those factors may be needed for DNAJB12 to function properly (Like the dominant negative effect of the DNAJB12-HPD mutant for instance). On the other hand, DNAJB12 may have higher affinity for some cytosolic partner and thus can do the job when overexpressed. Here, we deal with the DNAJB12/DNAJB14 as essential components of the reflux process, yet we need to identify the interactome of each of the proteins during stress and the role of the other DNAJ proteins that also share some of the topological and structural similarity to DNAJB12, DNAJB14 and HLJ-1 (DNAJC30, DNAJC14, and DNAJC18). We edited the text accordingly and integrated this in the discussion.

      __ __ Fig 4: PDI shown in blots but not commented on in text. Then included in the schematics. Please comment in the text.

      Answer: We commented PDI in the text.

      Fig 4F: Although the quantifications of the blots look fine, the blot shown does not convincingly demonstrate this data for AGR2. The other proteins look fine, but again it could be useful to see the individual means for each experiment, or the full gels for all replicates in a supplementary figure.

      Answer: the other two repeats are in Figure S4

      __ __Results section 3

      Fig 5A, As there is obviously a difference between DNAJB12/14 it would be useful to do the pulldown with DNAJB14 too. Re. HSC70 binding to DNAJB12 and 14, the abstract states that DNAJB12/14 bind HSC70 and SGTA through their cytosolic J domains. Fig 5 shows pulldowns of DNAJB12 with an increased binding of SGTA in FLAG-DNAJB12 induced conditions, but the HSC70 band does not seem to be enriched in any of the conditions, including after DNAJB12 induction. This doesn't support the statement that DNAJB12 binds HSC70. In fact, in the absence of a good negative control, this would suggest that the HSC70 band seen is not specific. There is also no data to show that DNAJB14 binds HSC70. I recommend including a negative condition (ie beads only) and the data for DNAJB14 pulldown.

      Answer: In Figure 5A we used the Flp-In T-REx-293 cells as it is easier to control and to tune up and down the expression levels of DNAJB12 and DNAJB14. According to new Figure S5A, DNAJB12 binds at the basal levels to HSC70 all the time. It was also surprising for us not to see the differences in the overexpression and we relate that to the fact that all the HSC70 are saturated with DNAJB12. In order to better assay that we repeated the IP in Figure 5A but instead of the IP with DNAJB12, we IP-ed with FLAG antibodies to selectively IP the transfected DNAJB12. As shown in the new Fig 5A, the increase of DNAJB12-FLAG is accompanied with an increase in the binding of HSC70.

      We further tested the interaction between DNAJB12, DNAJB14 and HSC70 during ER stress in cancer cells. In those cells we found that DNAJB12 and DNAJB14 bind to HSC70 and they recruit SGTA upon stress. We also tested the binding between DNAJB12 and DNAJB14, in unstressed conditions, there was a basal binding between both, this interaction was stronger during ER stress. Those data are now added to Figure 5 and Figure S5 and the discussion was edited accordingly.

      The binding of DNAJB12 to SGTA under stress conditions in Fig5B looks much more convincing than SGTA to DNAJB12 in Fig 5A. Bands in all blots need to be quantified from 3 independent experiments, and repeated if not already n=3. If this is solely a technical difference, please explain in the text.

      The conclusions drawn from this interaction data are important and shold be elaborated upon to support th claims made in the paper. The authors may also chose to expand the pulldowns to demonstrate their claims made on olidomerisation of DNAJB12 and 14 here. It is also clear that the interaction data of the SGTA with ER-resident proteins AGR2, PRDX4 and DNAJB11 is strong. The authors may want to draw on this in their hypotheses of the mechanism. I would imagine a complex such as DNAJB14/DNAJB12 - SGTA - AGR2/PRDX4/DNAJB11 would be logical. Have any experiments been performed to prove if complexes like this would form?

      Answer: In Figure 5A we used the Flp-In T-REx-293 cells as it is easier to control and to tune up and down the expression levels of DNAJB12 and DNAJB14. T-REx-293 are highly sensitive to ER stress, they do not die (as we did not observe apoptosis markers to be elevated) but they float and can regrow after the stress is gone. In Figure 5B we are using ER stress without the need to express DNAJB12 in A549 cell line. In order to further verify those data, we repeated the IP in another cell line as well to confirm the data in 5B. We also repeated the IP in 5A with anti-FLAG antibody to improve the IP and to specifically map he interaction with the overexpressed FLAG-DNAJB12 (discussed above). All experiments were done in triplicates and added to Figure 5 and Figure S5.

      We agree with the reviewer on the complex between the refluxed proteins and SGTA. We believed that SGTA may form a complex with other refluxed ER-proteins but we were unable to see an interaction between AGR2-DNAJB11 in the cytosolic fraction or between AGR2-PRDX4 in the conditions tested in the cytosolic fraction. We could not do this in the whole cell lysate because those proteins bind each other in the ER. Finally, our structural prediction using Alpha-fold suggests that the interaction between SGTA and the refluxed AGR2 (and probably others) is redox depending and that it requires disulfide bridge between cysteine 81 on AGR2 and cysteine 153 on SGTA. Thus, we hypothesize that SGTA binds one refluxed protein at the time.

      We repeated the figure with improvement: (1) using more cells in order to increase the amount of IP-ed proteins and to overcome the problem of the faint bands, (2) performing the IP with the FLAG antibodies instead of the DNAJB12 endogenous antibodies.

      Fig 5B: It is clear that DNAJB12 interacts with SGTA. The authors state that DNAJB14 also interacts with SGTA under normal and stress conditions, but the band in 25/50 Tg is very feint. Why would there be stronger binding at the 2 extremes than during low stress induction? In the input, there is a much higher expression of DNAJB14 in 50 Tg. What does this say about the interaction? Is there an effect of ER stress on DNAJB14 expression? A negative control should be included to show any background binding, such as a "beads only" control

      __Answer: __DNAJB14 does not change with ER stress as shown in the Ips (Input) and in the qPCR experiment in Figure S5I. We added beads only control, we also added new Ips to assess the binding between DNAJB14 and DNAJB12, and between DNAJB14-SGTA. All the new Ips and controls now added as Figure 5 and Figure S5.

      Fig 5C data is sound, although a negative control should be included.

      Answer: Negative control was added in Figure S5.

      __Results section 4____ __

      Fig 6A-B: Given that there is the complexity of overexpression v KD of DNAJB12 v 14 causing similar effects on p53 actvity (Fig 2 v 3), it would be interesting to see whether the effect of overexpression mirrors the results in Fig 6A. Is it known what SGTA overexpression does (optional)?

      Answer: In the overexpression system, cells overexpressing DNAJB12 start to die between 24-48 hours as shown in Figure S3C. Thus, it is difficult to assay the proliferation of these cells in those conditions. On the other hand, overexpression of Myc-tagged SGTA in A549 cells, MCF7 or T-ReX293 did not show any reflux of ER-proteins to the cytosol and it didn’t show any significant changes in the proliferation index (Figure Reviewers only RV2).

      Fig 6D: resolution very low

      Answer: Figure 6D was changed

      __ __ Fig 6C-D: There is an interesting difference though between the proposed cytosolic actions of the refluxed proteins. You show that AGR2, PRDX4 and DNAJB11 all bind to SGTA in stress conditions, but in the schematics you show: DNAJB11 binding to HSC70 through SGTA (not shown in the paper), then also PDIA1, PDIA3 binding to SGTA and AGR2 binding to SGTA. What role does SGTA have in these varied reactions? Sometimes it is depicted as an intermediate, sometimes a lone binder, what is its role as a binder? It should be clarified which interactions are demonstrated in the paper (or before) and which are hypothesized in a graphical way (eg. for hypotheses dotted outlines or no solid fill etc). The schematics also suggest that DNAJB14 binding to HSC70 and SGTA is inducible in stress conditions, as is PDIA3, which is not shown in the paper. Discussion "In cancer cells, DNAJB12 and DNAJB14 oligomerize and recruit cytosolic chaperones and cochaperones (HSC70 and SGTA) to reflux AGR2 and other ER-resident proteins and to inhibit wt-p53 and probably different proapoptotic signaling pathways (Figure 5, and Figure 6C-6D)." You havent shown oligomerisation between DNAJB12/14. Modify the text to make it clear that it is a hypothesis.

      Answer: We removed “oligomerize” from the text and added that it as a hypothesis. Figure (C-D) also were changed to be compatible with the text.

      Minor comments:

      __ __ It would be useful to have page or line numbers to help with document navigation, please include them. Typos and inconsistency in how some proteins are named throughout the manuscript

      Answer: Page numbers and line numbers are added. Typos are corrected

      Title: Include reference to reflux. Suggest: "chaperone complexes (?proteins) reflux from the ER to cytosol..." I presume it would be more likely that the proteins go separately rather than in complex. Do you have any ideas on the size range of proteins that can undergo this process?

      Answer: this is true, proteins may cross the ER membrane separately and then be in a complex with cytosolic chaperones. The title is changed accordingly. As discussed earlier, the protein we chose were of different sizes to show that they are refluxed independently of their size. Moreover, our previous work showed that the proteins that were refluxed are of different sizes. Most importantly UGGT1 (around 180 Kda) which is reported to deploy to the cytosol upon viral infection (Huang et al. 2017; Sicari et al. 2020). In this study we used AGR2 (around 19 Kda) and HYOU1 (150Kda).

      ERCY in abstract, ERCYS in intro. There are typos throughout, could be a formatting problem, please check

      Answer: Checked and corrected

      What about the selection of refluxed proteins? Is this only a certain category of proteins? Could it be anything? Have you looked at other cargo / ER resident proteins?

      __ ____Answer: __in our previous study by (Sicari, Pineau et al. 2020) we looked at many other proteins especially glycoproteins from the ER. In (Sicari, Pineau et al. 2020) we used mass spectrometry in order to identify new refluxed proteins and we found 26 new glycoprotein that are refluxed from cells treated with ER stressor and from human tissues obtained from GBM patients (Sicari, Pineau et al. 2020).

      We previously showed that AGR2 is refluxed from the ER to the cytosol to bind and inhibit p53 (Sicari, Pineau et al. 2020). Here, we selected AGR2 because we know that (1) it is refluxed, and (2) we know which novel functions it acquires in the cytosol so we are able to measure and provide a physiological significance of those novel functions when the levels of DNAJB12 and DNAJB14 are altered. Moreover, we selected DNAJB11 (41 kDa) and HYOU1 (150 kDa) proteins to show that alteration in DNAJB12 or DNAJB14 prevent the reflux small, medium and large protein (independently of their size). We also showed earlier by mass spectrometry analysis that the refluxed proteins range from small to very large proteins such as UGGT1, thus we believe that soluble ER-proteins can be substrates of ERCYS independently of their size. In the discussion, we added a note that the reflux by the cytosolic and ER chaperones operates on different proteins independently of their size.

      "Their role in ERCYS and cells' fate determination depends..." Suggest change to "Their role in ERCYS and determination of cell fate..."

      Answer: changed and corrected

      I think that the final sentence of the intro could be made stronger and more concise. There's a repeat of ER and cytosol. Instead could you comment on the reflux permitting new interactions between proteins otherwise spatially separated, then the effect on wt-p53 etc.

      Answer: The sentence was rephrased as suggested to “ In this study, we found that HLJ1 is conserved through evolution and that mammalian cells have five putative functionality orthologs of the yeast HLJ1. Those five DNAJ- proteins (DNAJB12, DNAJB14, DNAJC14, DNAJC18, and DNAJC30) reside within the ER membrane with a J-domain facing the cytosol (Piette et al. 2021; Malinverni et al. 2023). Among those, we found that DNAJB12 and DNAJB14, which are strongly related to the yeast HLJ1 (Grove et al. 2011; Yamamoto et al. 2010), are essential and sufficient for determining cells' fate during ER stress by regulating ERCYS. Their role in ERCYS and determining cells' fate depends on their HPD motif in the J-domain. Downregulation of DNAJB12 and DNAJB14 increases cell toxicity and wt-p53 activity during etoposide treatment. Mechanistically, DNAJB12 and DNAJB14 interact and recruit cytosolic chaperones (HSC70/SGTA) to promote ERCYS. This later interaction is conserved in human tumors including colorectal cancer.

      In summary, we propose a novel mechanism by which ER-soluble proteins are refluxed from the ER to the cytosol, permitting new inhibitory interactions between spatially separated proteins. This mechanism depends on cytosolic and ER chaperones and cochaperones, namely DNAJB12, DNAJB14, SGTA, and HSC70. As a result, the refluxed proteins gain new functions to inhibit the activity of wt-p53 in cancer cells. “

      __Figure legends: __

      In some cases the authors state the number of replicates, but this should be stated for all experiments. If experiments don't already include 3 independent repeats, this should be done. Check text for typos, correct letter capitalisation, spaces and random bold text (some of this could be from incompatability when saving as PDF)

      Answer: all experiments were repeated at least three times. The number of repeats is now indicated in the figure legends of each experiment. Typos and capitalization is corrected as well.

      Fig2E: scrambled not scramble siRNA

      Answer: corrected

      Fig 3: "to expel" is a term not used in the rest of the paper for reflux. Useful to remain consistent with terminology where possible

      Answer: Rephrased and corrected

      Results section 1:

      "Protein alignment of the yeast HLJ1p showed high amino acids similarity to the mammalian..."

      Answer: Rephrased to “ Comparing the amino acid sequences revealed significant similarity between the yeast protein HLJ1p and the mammalian proteins DNAJB12 and DNAJB14”

      __ __ Fig 1C: state in legend which organism this is from (presumably human)

      Answer: in Figure 1C legends it is stated that: “ the HPD motif within the J-domain is conserved in HLJ-1 and its putative human orthologs DNAJB12, DNAJB14, DNAJC14, DNAJC18, and DNAJC30.”

      Results Section 2

      "Test the two strongest hits DNAJB12/14" Add reference to previous paper showing this

      Answer: the references were added.

      __ __ "In the WT and J-protein-silenced A549 cells, there were no differences in the cytosolic enrichment of the three ER resident proteins AGR2, DNAJB11, and HYOU1 in normal and unstressed conditions (Figure 2A-C and Figure S2C)." I think that this is an oversimplification, and in your following discussion, you show this it's more subtle than this.

      Answer: We expanded on this both in the discussion and the results section.

      __ __ The text here isn't so clear: normal and unstressed conditions? Do you mean stressed? Please be careful in your phrases: "DNAJB12-silenced cells are slightly affected in AGR2 and DNAJB11 cytosolic accumulation but not HYOU1." This is the wrong way around. DNAJB12 silencing effects AGR2, not that AGR2 effects the cells (which is how you have written it). This also occurs agan in the next para:

      Answer: Normal cells are non-cancer cells. Unstressed conditions= without ER stress. The sentence was rephrased to: In the absence of ER stress, the cytosolic levels of the three ER-resident proteins (AGR2, DNAJB11, and HYOU1) were similar in wild-type and J-protein-silenced A549 cells.

      "During stress, DNAJB12/DNAJB14 double knockdown was highly affected in the cytosolic..." I think you mean it highly affected the cytosolic accumulation, not that it was affected by the cytosolic accumulation. Please change in the text

      Answer: the sentence is now rephrased to” During stress, double knockdown of DNAJB12 and DNAJB14 highly affected the cytosolic accumulation of all three tested proteins”

      __ __ "DNAJB12 and DNAJB14 are strong hits of the yeast HLJ1" Not clear, I presume you mean they are likely orthologues? Top candidates for being closest orthologues?

      Answer: this is correct, the sentence is rephrased and corrected

      __ __ Fig 2D: typos in WB labelling? I think Tm should be - - +, not - + +as it is now (if it's not a typo, you need more controls, eto alone.

      Answer: the labeling is now corrected

      Fig 2D-E-F typos for DKD? D12/D12 or D12/14?

      Answer: This is correct, thank you for pointing this out. The labeling in corrected

      __ __ "We assayed the phosphorylation state of wt- p53 and p21 protein expression levels (a downstream target of p53 signaling) during etoposide treatment." What are the results of this? Explain what Fig 2D-E shows, then build on this with the +Tm results. Results should be explained didactically to be clear.

      Answer: The paragraph was edited and we explained the results: In these conditions, we saw an increase in the phosphorylation of wt-p53 in the control cells and in cells knocked-down with DNAJB12, DNAJB14 or both. This phosphorylation increased the protein levels of p21 as well (Figure 2D-G). Tm addition to cells treated with etoposide resulted in a reduction in wt-p53 phosphorylation, and as a consequence, the p21 protein levels were also decreased (Figure 2D-G and Figure S2O). Cells lacking DNAJB12 or DNAJB14 have partial protection in wt-p53 phosphorylation and p21 protein levels. Silencing both proteins in A549 and MCF7 cells rescued wt-p53 phosphorylation and p21 levels (Figure 2D-G and Figure S2D). Moreover, similar results were obtained when we assayed the transcriptional activity of wt-p53 in cells transfected with a luciferase reporter under the p53-DNA binding site (Figure 2H). These data confirm that DNAJB12 and DNAJB14 are involved in ER protein reflux and the inhibition of wt-p53 activity during ER stress.


      "(Figure 2D- E). Cells lacking DNAJB12 and or DNAJB14 have partial protection in wt-p53 phosphorylation and p21 protein levels."

      Answer: This sentence is now removed

      You comment on p53 phosphorylation, but you haven't quantified this. This should be done, normalized to p53 levels, if you want to draw these conclusions, especially as total p53 varies between condition. Does Eto increase p53 txn? Does Tm alone increase p53 activity/phospho-p53? These are shown in the Sicari EMBO reports paper in 2021, you should briefly reference those.

      Answer: The blots are now quantified and new blot is added to Figure S2D. The Paragraph was edited and referenced to our previous paper (Sicari et al. 2021). “We then wanted to examine whether the gain of function of AGR2 and the inhibition of wt-p53 depends on the activity of DNAJB12 and DNJAB14. We assayed the phosphorylation state of wt-p53 and p21 protein expression levels (a downstream target of wt-p53 signaling) during etoposide treatment. In these conditions, there was an increase in the phosphorylation of wt-p53 in the control cells and in cells knocked down with DNAJB12, DNAJB14, or both. This phosphorylation also increases protein levels of p21 (Figure 2D-G and Figure S2O). Tm addition to cells treated with etoposide resulted in a reduction in wt-p53 phosphorylation, and as a consequence, the p21 protein levels were also decreased (Figure 2D-G and Figure S2O). Silencing DNAJB12 and DNAJB14 in A549 and MCF-7 cells rescued wt-p53 phosphorylation and p21 levels (Figure 2D-G and Figure S2O). Moreover, similar results were obtained when we assayed the transcriptional activity of wt-p53 in cells transfected with a luciferase reporter under the p53-DNA binding site (Figure 2H). In the latter experiment, etoposide treatment increased the luciferase activity in all the cells tested. Adding ER stress to those cells decreased the luciferase activity except in cells silenced with DNAJB12 and DNAJB14.

      These data confirm that DNAJB12 and DNAJB14 are involved in the reflux of ER proteins in general and AGR2 in particular. Inhibition of DNAJB12 and DNAJB14 prevented the inhibitory interaction between AGR2 and wt-p53 and thus rescued wt-p53 phosphorylation and its transcriptional activity as a consequence. “

      Fig3A: overexpression of DNAJB12 decreases Eto induced p53 but not at steady state. Is this because at steady state the activity is already basal? Or is there another reason?

      Answer: yes, at steady state the activity is already basal

      Switch Figs S3D and S3C as they are not referred to in order. Also Fig S3C: vary colour (or add pattern) on bars more between conditions

      Answer: The Figures now are called by their order in the new version. Colors are now added to Figure S3C.

      Need to define HLJ1 at first mention

      Answer: defined as” HLJ1 - High copy Lethal J-protein -an ER-resident tail-anchored HSP40 cochaperone.

      Results section 3

      HSC70 cochaperone (SGTA) defined twice

      Answer: the second one was removed

      "These data are important because SGTA and the ER-resident proteins (PRDX4, AGR2, and DNAJB11) are known to be expressed in different compartments, and the interaction occurs only when those ER-resident proteins localize to the cytosol." Is there a reference for this?

      Answer: Peroxireoxin 4 is the only peroxerodin that is expressed in the ER. AGR2 and DNAJB11 are also ER luminal proteins that are known to be solely expressed in the ER. SGTA is part of the cytosolic quality control system and is expressed in the cytosol. The references are added in the main text.

      Results section 4

      "by almost two folds"

      Answer: corrected

      Fig 6A: It seems strange that the difference between purple and blue bars in scrambled, and D14-KD are very significant but D12-KD is only significant. Why is this? The error bars don't look that different. It would be interesting to see the individual means for each different replicate.

      Answer: Thank you for pointing this, the two asterixis were aligned in the middle as one during figure alignments. In D14 the purple one has a lower error bar thus this changes the significance when compared to the blue while in D12-KD, the error bars in the eto treatment and the eto-Tm both are slightly higher. Graphs of the three different replicates are now added in Figure S6. Each one of the three biological replicates was repeated in three different technical repeats (averaged in the graphs).

      Figures: Fig 6A: Scale bars not well placed. Annotation on final set should be D12/D14 DKD?

      Answer: both were Corrected

      __Discussion __47. The authors mention that they want to use DNAJB12/4-HSC70/SGTA axis to impair cancer cell fitness: What effect would this have though in a non cancer model? Would this be a viable approach Although it is obviously early days, which approach would the authors see as potentially favorable?


      Answer: In our previous study we used an approach to target AGR2 in the cytosol because the reflux of AGR2 occurs only in cancer cells and not in normal cells. In that study we targeted AGR2 with scFv that targets AGR2 and is expressed in the cytosol, in this case it will target AGR2 in the cytosol which only occurs in cancer. Here, we suggest to target the interaction between the refluxed proteins and their new partners in the cytosol or to target the mechanism that causes their reflx to the cytosol by inhibiting for instance the interaction between SGTA and DNAJB proteins.


      __ __ Second para: Should be "Here we present evidences"

      Answer: we replaced with “Here we present evidences”

      "DNAJB12 overexpression was also sufficient to promote ERCYS by refluxing AGR2 and inhibit wt-p53 signaling in cells treated with etoposide" Suggest:

      Answer: DNAJB12 overexpression is also sufficient to promote ERCYS by refluxing AGR2 and inhibit wt-p53 signaling in cancer cells treated with etoposide (Figure 3). This suggests that it is enough to increase the levels of DNAJB12 without inducing the unfolded protein response in order to activate ERCYS. Moreover, the downregulation of DNAJB12 and DNAJB14 rescued the inhibition of wt-p53 during ER stress (Figure 2). Thus, wt-p53 inhibition is independent of the UPR activation but depends on the inhibitory interaction of AGR2 with wt-p53 in the cytosol.

      .

      DNAJB12 overexpression was also sufficient to promote ERCYS by increasing reflux of AGR2 and inhibition of wt-p53 signaling in cells treated with etoposide

      Answer: This sentence is repeated twice and was removed

      "Moreover, DNAJB12 was sufficient to promote this phenomenon and cause ER protein reflux by mass action without causing ER stress (Figure 3, Figure 4, and Figure S3)." You dont look at induction of ER stress here, please change the text or explain in more depth with refs if suitable

      Answer: In the initial submission and in the revised version we assayed the activation of the UPR by looking at the levels of spliced Xbp1 and Bip in the different conditions when DNAJB12 and DNAJB14 are overexpressed (Figure S3C and S3D). Our data show that although DNAJB12 overexpression induces ERCYS, there was no UPR activation.

      The mention of viruses is sparse in this paper. If it is a main theory, put it more centrally to the concept, and explain in more detail. As it is, its appearance in the final sentence is out of context.

      Answer: DNAJB12 and DNAJB14 were reported to facilitate the escape of non-envelope viruses from the endoplasmic reticulum to the cytosol. The mechanism of non-envelope penetration is highly similar to the reflux of proteins from the ER to the cytosol. Interestingly, this mechanism takes place when the DNAJB12 and DNAJB14 form a complex with chaperones from both the ER and the cytosol including HSC70, SGTA and BiP (Walczak et al. 2014; Goodwin et al. 2011; Goodwin et al. 2014)..

      Moreover, the UGGT1 that was independently found in our previous mass spectrometry analysis of the digitonin fraction obtained from HEK293T cells treated with the ER stressor thapsigargin and from isolated human GBM tumors (Sicari et al. 2020), is known to deploy to the cytosol upon viral infection (Huang et al. 2017; Sicari et al. 2020). We therefore hypothesized that the same machinary that is known to allow viruses to escape the ER to penetrate the cytosol may play an important role in the reflux of ER proteins to the cytosol.

      Because ER protein reflux and the penetration of viruses from the ER to the cytosol behave similarly, we speculate that viruses hijacked an evolutionary conserved machinery -ER protein reflux- to penetrate to the cytosol. This is key because it was also reported that during the process of nonenveloped viruses penetration, large, intact and glycosylated viral particles are able to penetrate the ER membrane on their way to the cytosol (Inoue and Tsai 2011).

      Action: we developed the discussion around this point and clarified it better because we believe it central to show that viruses hijacked this conserved mechanism.

      **Referees cross-commenting**

      I agree with the comments from Reviewer 1.

      Reviewer 2 also is correct in many ways, but I think that they have somewhat overlooked the relevance of the ER-stress element and treatments. The authors do need to reference past papers more to give a full story, as this includes the groups own papers, I don't think that it is an ethical problem but rather an oversight in the writing. Regarding reviewer 2's concerns about overexpression levels and cell death, the authors do use an inducible cell line and show the levels of DNAJB12 induced (could CRISPR also be considered?). This could be used to further address reviewer 2's concerns. It would also be useful to see data on cell death in the conditions used in the paper. Re concerns about ER integrity, this could be addressed by using IF (or EM) to show a secondary ER marker that remains ER-localised, and this would also be of interest regarding my comment on which categories of proteins can undergo reflux. If everything is relocalised, then reviewer 2's point would be validated.

      Reviewer #3 (Significance (Required)):

      Significance

      General assessment: This paper robustly shows that the yeast system of ER to cytosol reflux of ER-resident proteins is conserved in mammalian cells, and it describes clearly the link between ER stress, protein reflux and inhibition of p53 in mammalian cells. The authors have the tools to delve deeper into this mechanism and robustly explore this pathway, however the mechanistic elements - where not instantly clear from the results - have been over interpreted somewhat The results have been oversimplified in their explanations and some points and complexities of the study need to be addressed further to make the most of them - these are often some of the more interesting concepts of the paper, for example the differences in DNAJB12/14 and how the proteins orchestrate in the cytosol to play their cytosol-specific effects. I think that many points can be addressed in the text, by the authors being clear and concise with their reporting, while other experiments would turn this paper from an observational one, into a very interesting mechanistic one.

      Advance: This paper is based on previous nice papers from the group. It is a nice progressions from yeast, to basic mechanism, to physiological model. But as mentioned, without a strong mechanistic improvement, the paper would remain observatory.

      Audience: This paper is interesting to cell biologists (homeostasis, quality control and trafficking) as well as cancer cell biologists (fitness of cancer cells and homeostasis) and it is a very interesting demonstration of a process that is a double edged sword, depending on the environment of the cells.

      My expertise: cell biology, trafficking, ER homeostasis

      Answer: We would like to thank the reviewer for his/her positive feedback on our manuscript. All the comments of the three reviewers are now addressed and the manuscript has been strengthen. We put more emphasis on the mechanistic aspect with more Ips and knockdowns. We also added data to show that it is physiologically relevant. We hope that after that the revised version addressed all the concerns raised by the reviewers.

      Goodwin, E. C., A. Lipovsky, T. Inoue, T. G. Magaldi, A. P. Edwards, K. E. Van Goor, A. W. Paton, J. C. Paton, W. J. Atwood, B. Tsai, and D. DiMaio. 2011. 'BiP and multiple DNAJ molecular chaperones in the endoplasmic reticulum are required for efficient simian virus 40 infection', MBio, 2: e00101-11.

      Goodwin, E. C., N. Motamedi, A. Lipovsky, R. Fernandez-Busnadiego, and D. DiMaio. 2014. 'Expression of DNAJB12 or DNAJB14 causes coordinate invasion of the nucleus by membranes associated with a novel nuclear pore structure', PLoS One, 9: e94322.

      Grove, D. E., C. Y. Fan, H. Y. Ren, and D. M. Cyr. 2011. 'The endoplasmic reticulum-associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3-dependent degradation of nascent CFTRDeltaF508', Mol Biol Cell, 22: 301-14.

      Huang, P. N., J. R. Jheng, J. J. Arnold, J. R. Wang, C. E. Cameron, and S. R. Shih. 2017. 'UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication', PLoS Pathog, 13: e1006375.

      Igbaria, A., P. I. Merksamer, A. Trusina, F. Tilahun, J. R. Johnson, O. Brandman, N. J. Krogan, J. S. Weissman, and F. R. Papa. 2019. 'Chaperone-mediated reflux of secretory proteins to the cytosol during endoplasmic reticulum stress', Proc Natl Acad Sci U S A, 116: 11291-98.

      Inoue, T., and B. Tsai. 2011. 'A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol', PLoS Pathog, 7: e1002037.

      Malinverni, D., S. Zamuner, M. E. Rebeaud, A. Barducci, N. B. Nillegoda, and P. De Los Rios. 2023. 'Data-driven large-scale genomic analysis reveals an intricate phylogenetic and functional landscape in J-domain proteins', Proc Natl Acad Sci U S A, 120: e2218217120.

      Piette, B. L., N. Alerasool, Z. Y. Lin, J. Lacoste, M. H. Y. Lam, W. W. Qian, S. Tran, B. Larsen, E. Campos, J. Peng, A. C. Gingras, and M. Taipale. 2021. 'Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains', Mol Cell, 81: 2549-65 e8.

      Sicari, D., F. G. Centonze, R. Pineau, P. J. Le Reste, L. Negroni, S. Chat, M. A. Mohtar, D. Thomas, R. Gillet, T. Hupp, E. Chevet, and A. Igbaria. 2021. 'Reflux of Endoplasmic Reticulum proteins to the cytosol inactivates tumor suppressors', EMBO Rep: e51412.

      Sicari, Daria, Raphael Pineau, Pierre-Jean Le Reste, Luc Negroni, Sophie Chat, Aiman Mohtar, Daniel Thomas, Reynald Gillet, Ted Hupp, Eric Chevet, and Aeid Igbaria. 2020. 'Reflux of Endoplasmic Reticulum proteins to the cytosol yields inactivation of tumor suppressors', bioRxiv.

      Walczak, C. P., M. S. Ravindran, T. Inoue, and B. Tsai. 2014. 'A cytosolic chaperone complexes with dynamic membrane J-proteins and mobilizes a nonenveloped virus out of the endoplasmic reticulum', PLoS Pathog, 10: e1004007.

      Yamamoto, Y. H., T. Kimura, S. Momohara, M. Takeuchi, T. Tani, Y. Kimata, H. Kadokura, and K. Kohno. 2010. 'A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR', Cell Struct Funct, 35: 107-16.

      Youker, R. T., P. Walsh, T. Beilharz, T. Lithgow, and J. L. Brodsky. 2004. 'Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast', Mol Biol Cell, 15: 4787-97.

    1. Reviewer #2 (Public Review):

      Summary:

      Franke et al. characterize the representation of color in the primary visual cortex of mice, highlighting how this changes across the visual field. Using calcium imaging in awake, head-fixed mice, they characterize the properties of V1 neurons (layer 2/3) using a large center-surround stimulation where green and ultra-violet colors were presented in random combinations. Clustering of responses revealed a set of functional cell-types based on their preference to different combinations of green and UV in their center and surround. These functional types were demonstrated to have different spatial distributions across V1, including one neuronal type (Green-ON/UV-OFF) that was much more prominent in the posterior V1 (i.e. upper visual field). Modelling work suggests that these neurons likely support the detection of predator-like objects in the sky.

      Strengths:

      The large-scale single-cell resolution imaging used in this work allows the authors to map the responses of individual neurons across large regions of the visual cortex. Combining this large dataset with clustering analysis enabled the authors to group V1 neurons into distinct functional cell types and demonstrate their relative distribution in the upper and lower visual fields. Modelling work demonstrated the different capacity of each functional type to detect objects in the sky, providing insight into the ethological relevance of color opponent neurons in V1.

      Weaknesses:

      It is unfortunate the authors were unable to provide stronger mechanistic insights into how color opponent neurons in V1 are formed.

      Overall, this study will be a valuable resource for researchers studying color vision, cortical processing, and the processing of ethologically relevant information. It provides a useful basis for future work on the origin of color opponency in V1 and its ethological relevance.

    1. When I looked at my dessert plate and saw the chocolate cakespeckled with raspberry juice, it seemed to me that someone was pouringmore and more red sauce than usual, and that the sauce seemed to becoming from the ceiling above my head until it suddenly hit me that it wasstreaming from my nose. I gasped, and quickly crumpled my napkin andbrought it to my nose, holding my head as far back as I could.

      A obvious sign he likes it, and it was not through verbal fuddling that he communicated this, but through his body's involuntary reaction that he cannot plan nor control.

    Tags

    Annotators

  3. Jul 2024
    1. Background Xenopus laevis, the African clawed frog, is a versatile vertebrate model organism employed across various biological disciplines, prominently in developmental biology to elucidate the intricate processes underpinning body plan reorganization during metamorphosis. Despite its widespread utility, a notable gap exists in the availability of comprehensive datasets encompassing Xenopus’ late developmental stages.Findings In the present study, we harnessed micro-computed tomography (micro-CT), a non-invasive 3D imaging technique utilizing X-rays to examine structures at a micrometer scale, to investigate the developmental dynamics and morphological changes of this crucial vertebrate model. Our approach involved generating high-resolution images and computed 3D models of developing Xenopus specimens, spanning from premetamorphosis tadpoles to fully mature adult frogs. This extensive dataset enhances our understanding of vertebrate development and is adaptable for various analyses. For instance, we conducted a thorough examination, analyzing body size, shape, and morphological features, with a specific emphasis on skeletogenesis, teeth, and organs like the brain at different stages. Our analysis yielded valuable insights into the morphological changes and structure dynamics in 3D space during Xenopus’ development, some of which were not previously documented in such meticulous detail. This implies that our datasets effectively capture and thoroughly examine Xenopus specimens. Thus, these datasets hold the solid potential for additional morphological and morphometric analyses, including individual segmentation of both hard and soft tissue elements within Xenopus.Conclusions Our repository of micro-CT scans represents a significant resource that can enhance our understanding of Xenopus’ development and the associated morphological changes. The widespread utility of this amphibian species, coupled with the exceptional quality of our scans, which encompass a comprehensive series of developmental stages, opens up extensive opportunities for their broader research application. Moreover, these scans have the potential for use in virtual reality, 3D printing, and educational contexts, further expanding their value and impact.

      This work has been peer reviewed in GigaScience (see paper), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer name: Virgilio Gail Ponferrada (Original submission)

      The manuscript is well written and easy to understand. It will be a good contribution to the Xenopus research community as well as a useful reference for the field of developmental and amphibian biology.

      I suggest the following revisions: - For the graphical abstract try alternating NF stage numbers above and below samples for a cleaner look, adult male and adult female can both remain at the top. - Appreciate the rationale for providing the microCT analysis presented in this manuscript and choices of late stage tadpoles, pre- and prometamorphosis, through metamporphosis to the adult male and female frog. - For the head development section authors can make reference to the Xenhead drawings, Zahn et al. Development 2017. - Head Development section paragraph 4, change word from "gender" to "sex." - Supplementary Table 3. Change "gender-related" to "sex-related." - Micro-CT Data Analysis of Long Bone Growth Dynamics section paragraph 1 change "in terms of gender" to "in terms of sex." - Figure 4 panels A and B don't reflect the observation that adult females are enlarged males. While the authors state that the view of the male and female skeletons are maximized and not proportional as stated in the caption, suggest that scale bars be employed and the images adjusted to show the size relationship difference between the sexes as in Figure 1. On first glance and perhaps to those not as familiar with the difference in sex size in Xenopus that in this particular example of the adult male image being more spread out compared to the image of the female, it feels misleading. - Ossification Analysis section paragraph 2 change "frog's gender" to "frog's sex." - Figure 5 panel A, the label is overlapping "NF 59." For panels B and B' scale bars on these panels would help the reader understand the proportions. Yes, there is the 3mm scale bar from panel A and as stated in the caption, but including them in the B panels could help even if panel B had a scale bar labeled at 0.25 mm and panel B' was 3 mm. - Segmentation of Selected Internal Soft Organ section, perhaps more commentary on the ability to observe the development of the segmentation of the brain regions: cbh: cerebral hemispheres; cbl: cerebellum; dch: diencephalon; mob: medulla oblongata; opl: optic lobes; sp: spinal cord while clearly shown in Figure 6, some accompanying description in the text would help readers in general or give the implication that microCT analysis of mutant or diseased frogs could help identify physical characteristics of frogs with developmental or neurological disorders. This would help transition from the analysis of a specific organ to the next section Further Biological Potential of Xenopus's Data. - These analyses, while thorough accompanied by novel visuals, require statistical implementation of multiple tadpoles and frogs per NF stage to account for variation in samples and to bolster the claims stated in skull thickness, the head mass and eye distance changes, increased length of the long bones during maturation, and femural ossification cartilage to bone ratios. This may constitute a suggested major revision to perform these analyses.

    1. For example, you may derive some satisfaction from whacking your bosson the head with a canoe paddle at the annual company picnic. But thatmomentary burst of utility would presumably be more than offset by thedisutility of spending many years in a federal prison.

      The cost of this example outweighs the benifit or the utility.

    Annotators

    1. eLife assessment

      This paper describes an important advance in an in vitro neural culture system to generate mature, functional, diverse, and geometrically consistent cultures, in a 384-well format with defined dimensions and the absence of the necrotic core, which persists for up to 300 days. The well-based format and conserved geometry make it a promising tool for arrayed screening studies. Some of the evidence is incomplete and could benefit from a more direct head-to-head comparison with more standard culture methods and standardization of cell seeding density as well as further data on reproducibility in each well and for each cell line.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, van der Kroeg et al have developed a method for creating 3D cortical organoids using iPSC-derived neural progenitor cells in 384-well plates, thus scaling down the neural organoids to adherent culture and a smaller format that is amenable to high throughput cultivation. These adherent cortical organoids, measuring 3 x 3 x 0.2 mm, self-organize over eight weeks and include multiple neuronal subtypes, astrocytes, and oligodendrocyte lineage cells.

      Strengths:

      (1) The organoids can be cultured for up to 10 months, exhibiting mature dendritic spines, axonal myelination, and robust neuronal activity.

      (2) Unlike free-floating organoids, these do not develop necrotic cores, making them ideal for high-throughput drug discovery, neurotoxicological screening, and brain disorder studies.

      (3) The method addresses the technical challenge of achieving higher-order neural complexity with reduced heterogeneity and the issue of necrosis in larger organoids. The method presents a technical advance in organoid culture.

      (4) The method has been demonstrated with multiple cell lines which is a strength.

      (5) The manuscript provides high-quality immunostaining for multiple markers.

      Weaknesses:

      (1) Direct head-to-head comparison with standard organoid culture seems to be missing and may be valuable for benchmarking, ie what can be done with the new method that cannot be done with standard culture and vice versa, ie what are the aspects in which new method could be inferior to the standard.

      (2) It would be important to further benchmark the throughput, ie what is the success rate in filling and successfully growing the organoids in the entire 384 well plate?

      (3) For each NPC line an optimal seeding density was estimated based on the proliferation rate of that NPC line and via visual observation after 6 weeks of culture. It would be important to delineate this protocol in more robust terms, in order to enable reproducibility with different cell lines and amongst the labs.

    3. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: 

      Kroeg et al. describe a novel method for 2D culture human induced pluripotent stem cells (hiPSCs) to form cortical tissue in a multiwell format. The method claims to offer a significant advancement over existing developmental models. Their approach allows them to generate cultures with precise, reproducible dimensions and structure with a single rosette; consistent geometry; incorporating multiple neuronal and glial cell types (cellular diversity); avoiding the necrotic core (often seen in free-floating models due to limited nutrient and oxygen diffusion). The researchers demonstrate the method's capacity for long-term culture, exceeding ten months, and show the formation of mature dendritic spines and considerable neuronal activity. The method aims to tackle multiple key problems of in vitro neural cultures: reproducibility, diversity, topological consistency, and electrophysiological activity. The authors suggest their potential in high-throughput screening and neurotoxicological studies.

      Strengths: 

      The main advances in the paper seem to be: The culture developed by the authors appears to have optimal conditions for neural differentiation, lineage diversification, and long-term culture beyond 300 days. These seem to me as a major strength of the paper and an important contribution to the field. The authors present solid evidence about the high cell type diversity present in their cultures. It is a major point and therefore it could be better compared to the state of the art. I commend the authors for using three different IPS lines, this is a very important part of their proof. The staining and imaging quality of the manuscript is of excellent quality.

      We thank the reviewer for the positive comments on the potential of our novel platform to address key problems of in vitro neural culture, highlighting the longevity and reproducibility of the method across multiple cell lines.

      Weaknesses: 

      (1) The title is misleading: The presented cultures appear not to be organoids, but 2D neural cultures, with an insufficiently described intermediate EB stage. For nomenclature, see: doi: 10.1038/s41586-022-05219-6. Should the tissue develop considerable 3D depth, it would suffer from the same limited nutrient supply as 3D models - as the authors point out in their introduction. 

      We appreciate the opportunity to clarify this point. We respectfully disagree that the cultures do not meet the consensus definition of an organoid. In fact, a direct quote from the seminal nomenclature paper referenced by the reviewer states: “We define organoids as in vitro-generated cellular systems that emerge by self-organization, include multiple cell types, and exhibit some cytoarchitectural and functional features reminiscent of an organ or organ region. Organoids can be generated as 3D cultures or by a combination of 3D and 2D approaches (also known as 2.5D) that can develop and mature over long periods of time (months to years).” (Pasca et al, 2022 doi10.1038/s41586-022-05219-6). Therefore, while many organoid types indeed have a more spherical or globular 3D shape, the term organoid also applies to semi-3D or non-globular adherent organoids, such as renal (Czerniecki et al 2018, doi.org/10.1016/j.stem.2018.04.022) and gastrointestinal organoids (Kakni et al 2022, doi.org/10.1016/j.tibtech.2022.01.006). Accordingly, the adherent cortical organoids described in the manuscript exhibit self-organization to single radial structures consisting of multiple cell layers in the z-axis, reaching ~200um thickness (therefore remaining within the limits for sufficient nutrient supply), with consistent cytoarchitectural topology and electrophysiological activity, and therefore meet the consensus definition of an organoid.

      (2) The method therefore should be compared to state-of-the-art (well-based or not) 2D cultures, which seems to be somewhat overlooked in the paper, therefore making it hard to assess what the advance is that is presented by this work. 

      It was not our intention to benchmark this model quantitatively against other culture systems. Rather, we have attempted to characterize the opportunities and limitations of this approach, with a qualitative contrast to other culture methods. Compared to state-of-the-art 2D neural network cultures, adherent cortical organoids provide distinct advantages in:

      (1) Higher order self-organized structure formation, including segregation of deeper and upper cortical layers.

      (2) Longevity: adherent cortical organoids can be successfully kept in culture up to 1 year where 2D cultures typically deteriorate after 8-12 weeks.

      (3) Maturity, including the formation of dendritic mushroom spines and robust electrophysiological activity.

      (4) Cell type diversity including a more physiological ratio of inhibitory and excitatory neurons (10% GAD67+/NeuN+ neurons in adherent cortical organoids, vs 1% in 2D neural networks) and the emergence of oligodendrocyte lineage cells.

      On the other hand, limitations of adherent cortical organoids compared to 2D neural network cultures are:

      (1) Culture times for organoids are much longer than for 2D cultures and the method can therefore be more laborious and more expensive.

      (2) Whole cell patch clamping is not easily feasible in the organoids because of the restricting dimensions of the 384well plates.

      (3) Reproducibility is prominently claimed throughout the manuscript. However, it is challenging to assess this claim based on the data presented, which mostly contain single frames of unquantified, high-resolution images. There are almost no systematic quantifications presented. The ones present (Figure S1D, Figure 4) show very large variability. However, the authors show sets of images across wells (Figure S1B, Figure S3) which hint that in some important aspects, the culture seems reproducible and robust. 

      We made considerable efforts to establish quantitative metrics to assess reproducibility. We applied a quantitative scoring system of single radial structures at different time points for multiple batches of all three lines as indicated in Figure S1D. This figure represents a comprehensive dataset in which each dot represents the average of a different batch of organoids containing 10-40 organoids per batch. To emphasize this, we will adapt the graph to better reflect the breadth of the dataset. Additional quantifications are given in Figure S2 for progenitor and layer markers for Line 1 and in Figure S5 for interneurons across all three lines, showing relatively low variability. That being said, we acknowledge the reviewer’s concerns and will modify the text to reduce the emphasis of this point, pending more extensive data addressing reproducibility across a wide range of parameters.

      (4) What is in the middle? All images show markers in cells present around the center. The center however seems to be a dense lump of cells based on DAPI staining. What is the identity of these cells? Do these cells persist throughout the protocol? Do they divide? Until when? Addressing this prominent cell population is currently lacking. 

      A more comprehensive characterization of the cells in the center remains a significant challenge due to the high cell density hindering antibody penetration. However, dye-based staining methods such as DAPI and the LIVE/DEAD panel confirm a predominance of intact nuclei with very minimal cell death. The limited available data suggest that a substantial proportion of the cells in the center are proliferative neural progenitors, indicated by immunolabeling for SOX2 and Ki67. We will add additional figures to support these findings. Furthermore, we are currently optimizing the conditions to perform single cell / nuclear RNA sequencing to further characterize the cellular composition of the organoids.

      (5) This manuscript proposes a new method of 2D neural culture. However, the description and representation of the method are currently insufficient. <br /> (a) The results section would benefit from a clear and concise, but step-by-step overview of the protocol. The current description refers to an earlier paper and appears to skip over some key steps. This section would benefit from being completely rewritten. This is not a replacement for a clear methods section, but a section that allows readers to clearly interpret results presented later.

      We will revise the manuscript to include a more detailed step-by-step overview of the protocol.

      (b) Along the same lines, the graphical abstract should be much more detailed. It should contain the time frames and the media used at the different stages of the protocol, seeding numbers, etc. 

      As suggested, we will also adapt the graphical abstract to include more detail.

      Reviewer #2 (Public Review): 

      Summary: 

      In this manuscript, van der Kroeg et al have developed a method for creating 3D cortical organoids using iPSC-derived neural progenitor cells in 384-well plates, thus scaling down the neural organoids to adherent culture and a smaller format that is amenable to high throughput cultivation. These adherent cortical organoids, measuring 3 x 3 x 0.2 mm, self-organize over eight weeks and include multiple neuronal subtypes, astrocytes, and oligodendrocyte lineage cells.

      Strengths: 

      (1) The organoids can be cultured for up to 10 months, exhibiting mature dendritic spines, axonal myelination, and robust neuronal activity. 

      (2) Unlike free-floating organoids, these do not develop necrotic cores, making them ideal for high-throughput drug discovery, neurotoxicological screening, and brain disorder studies.

      (3) The method addresses the technical challenge of achieving higher-order neural complexity with reduced heterogeneity and the issue of necrosis in larger organoids. The method presents a technical advance in organoid culture.

      (4) The method has been demonstrated with multiple cell lines which is a strength. 

      (5) The manuscript provides high-quality immunostaining for multiple markers. 

      We appreciate the reviewer’s acknowledgement of the strengths of this novel platform as a technical advance in organoid culture that reduces heterogeneity and shows potential for higher throughput experiments.

      Weaknesses: 

      (1) Direct head-to-head comparison with standard organoid culture seems to be missing and may be valuable for benchmarking, ie what can be done with the new method that cannot be done with standard culture and vice versa, ie what are the aspects in which new method could be inferior to the standard.

      In our opinion, it would be extremely difficult to directly compare methods because of substantial differences. Most notably, whole brain organoids grow to large and irregular globular shapes, while adherent cortical organoids have a highly standardized shape confined by the limits of a 384-well. Moreover, it was not our intention to benchmark this model quantitatively against other culture systems. Rather, we have attempted to characterize the opportunities and limitations of this approach, with a qualitative contrast to other culture methods.

      (2) It would be important to further benchmark the throughput, ie what is the success rate in filling and successfully growing the organoids in the entire 384 well plate? 

      Figure S1D shows the success rate of organoid formation and stability of the organoid structures over time. In addition, we will add the number of wells that were filled per plate.

      (3) For each NPC line an optimal seeding density was estimated based on the proliferation rate of that NPC line and via visual observation after 6 weeks of culture. It would be important to delineate this protocol in more robust terms, in order to enable reproducibility with different cell lines and amongst the labs. 

      Figure S1C provides the relationship between proliferation rate and seeding density, allowing estimation of seeding densities based on the proliferation rate of the NPCs. However, we appreciate the reviewers feedback and will modify the methods to provide more detail.

      Reviewer #3 (Public Review): 

      Summary: 

      Kroeg et al. have introduced a novel method to produce 3D cortical layer formation in hiPSC-derived models, revealing a remarkably consistent topography within compact dimensions. This technique involves seeding frontal cortex-patterned iPSC-derived neural progenitor cells in 384-well plates, triggering the spontaneous assembly of adherent cortical organoids consisting of various neuronal subtypes, astrocytes, and oligodendrocyte lineage cells. 

      Strengths: 

      Compared to existing brain organoid models, these adherent cortical organoids demonstrate enhanced reproducibility and cell viability during prolonged culture, thereby providing versatile opportunities for high-throughput drug discovery, neurotoxicological screening, and the investigation of brain disorder pathophysiology. This is an important and timely issue that needs to be addressed to improve the current brain organoid systems. 

      We thank the reviewer for highlighting the strengths of our novel platform. We appreciate that all three reviewers agree that the adherent cortical organoids presented in this manuscript reliably demonstrate increased reproducibility and longevity. They also commend its potential for higher throughput drug discovery and neurotoxicological/phenotype screening purposes.

      Weaknesses: 

      While the authors have provided significant data supporting this claim, several aspects necessitate further characterization and clarification. Mainly, highlighting the consistency of differentiation across different cell lines and standardizing functional outputs are crucial elements to emphasize the future broad potential of this new organoid system for large-scale pharmacological screening.

      We appreciate the feedback and will add more detail on consistency and standardization of functional outputs.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment:

      Franke et al. explore and characterize the color response properties in the mouse primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The data is solid; however, the evidence supporting some conclusions is incomplete. In its current form, the paper makes a useful contribution to how color is coded in mouse V1. Significance would be enhanced with some additional analyses and a clearer discussion of the limitations of the data presented.

      We thank the reviewers for appreciating our manuscript. We have rewritten the conclusions of the paper to be more conservative and now more explicitly focus on color processing in mouse V1, rather than comparing V1 to the retina. Additionally, we discuss the limitations of our approach in detail in the Discussion section. Finally, we have addressed all comments from the reviewers below.

      Referee 1 (Remarks to the Author):

      In this study, Franke et al. explore and characterize color response properties across primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The authors use awake 2P imaging to define the spectral response properties of visual interneurons in layer 2/3. They find that opponent responses are more pronounced at photopic light levels, and that diversity in color opponent responses exists across the visual field, with green ON/ UV OFF responses more strongly represented in the upper visual field. This is argued to be relevant for the detection of certain features that are more salient when using chromatic space, possibly due to noise reduction. In the revised version, Franke et al. have addressed the potential pitfalls in the discussion, which is an important point for the non-expert reader. Thus, this study provides a solid characterization of the color properties of V1 and is a valuable addition to visual neuroscience research.

      My remaining concerns are based more on the interpretation. I’m still not convinced by the statement "This type of color-opponency in the receptive field center of V1 neurons was not present in the receptive field center of retinal ganglion cells and, therefore, is likely computed by integrating center and surround information downstream of the retina." and I would suggest rewording it in the abstract.

      As discussed previously and now nicely added to the discussion, it is difficult to make a direct comparison given the different stimulus types used to characterize the retina and V1 recordings and the different levels of adaptation in both tissues. I will leave this point to the discussion, which allows for a more nuanced description of the phenomenon. Why do I think this is important? In the introduction, the authors argue that "the discrepancy [of previous studies] may be due to differences in stimulus design or light levels." However, while different light levels can be tested in V1, this cannot be done properly in the retina with 2P experiments. To address this, one would have to examine color-opponency in RGC terminals in vivo, which is beyond the scope of this study. Addressing these latter points directly in the discussion would, in my opinion, only strengthen the study.

      We thank the reviewer for the feedback. We removed the sentence mentioned by the reviewer from the abstract, as well as from the summary of our results in the Introduction. Additionally, we now phrase the interpretation of the retinal results more conservatively and specifically highlight in the Discussion that comparing ex-vivo retinal to in-vivo cortical data is challenging. With these changes, we believe that the focus of the paper is explicitly defined to be on the neuronal representation of color in mouse visual cortex, rather than on the comparison of retinal and cortical color processing.

      Minor:

      In the abstract, the second sentence says that we already know the mechanisms in primates.

      Unfortunately, I do not think this is true. First, primates refers to an order with several species, which might have adaptations to their color-processing. Second, I’m aware of several characterizations in "primates" that have led to convincing models (as referenced), but in my opinion, this is far from a true understanding the mechanisms, especially since very little is known about foveal color processing due to the difficulties of these experiments. Similarly in the introduction. "Primates" is indirectly defined as a species. Perhaps some rewording is needed here as well, since we know how different cone distributions can be in rodents (see Peichl’s work).

      Thanks. We have reworded the Abstract and Introduction towards indicating that many studies have been performed in primate species, without suggesting that the mechanisms are described.

      The legend in Fig. 2 has a "Fig. ???"

      Fixed.

      Referee 2 (Remarks to the Author):

      Franke et al. characterize the representation of color in the primary visual cortex of mice, highlighting how this changes across the visual field. Using calcium imaging in awake, head-fixed mice, they characterize the properties of V1 neurons (layer 2/3) using a large center-surround stimulation where green and ultra-violet colors were presented in random combinations. Clustering of responses revealed a set of functional cell-types based on their preference to different combinations of green and UV in their center and surround. These functional types were demonstrated to have different spatial distributions across V1, including one neuronal type (Green-ON/UV-OFF) that was much more prominent in the posterior V1 (i.e. upper visual field). Modelling work suggests that these neurons likely support the detection of predator-like objects in the sky.

      Strengths: The large-scale single-cell resolution imaging used in this work allows the authors to map the responses of individual neurons across large regions of the visual cortex. Combining this large dataset with clustering analysis enabled the authors to group V1 neurons into distinct functional cell types and demonstrate their relative distribution in the upper and lower visual fields. Modelling work demonstrated the different capacity of each functional type to detect objects in the sky, providing insight into the ethological relevance of color opponent neurons in V1.

      We thank the reviewer for appreciating our study.

      Weaknesses: While the study presents convincing evidence about the asymmetric distribution of color-opponent neurons in V1, the paper would greatly benefit from a more in-depth discussion of the caveats related to the conclusions drawn about their origin. This is particularly relevant regarding the conclusion drawn about the contribution of color opponent neurons in the retina. The mismatch between retinal color opponency and V1 color opponency could imply that this feature is not solely inherited from the retina, however, there are other plausible explanations that are not discussed here. Direct evidence for this statement remains weak.

      Thanks for this comment. We removed the retinal findings from the abstract, as well as from the summary of our results in the Introduction. In addition, we now phrase the interpretation of the retinal results more conservatively and specifically highlight in the Discussion that comparing ex-vivo retinal to in-vivo cortical data is challenging. With these changes, we believe that the focus of the paper is explicitly defined to be on the neuronal representation of color in mouse visual cortex, rather than on the comparison of retinal and cortical color processing.

      In addition, the paper would benefit from adding explicit neuron counts or percentages to the quadrants of each of the density plots in Figures 2-5. The variance explained by the principal components does not capture the percentage of color opponent cells. Additionally, there appear to be some remaining errors in the figure legend and labels that have not been addressed (e.g. ’??’ in Fig 2 legend).

      Thank you for this suggestion. We believe that adding the numbers or percentages to the figure panels would make them too crowded. Instead, we have now mentioned in the Results section and the legends that the percentages of variance explained by the color (off-diagonal) and luminance axis (diagonal) correlate with the number of neurons located in the color (top left and bottom right) and luminance contrast quadrants (top right and bottom left), respectively. Together with the number of neurons in each plot stated in the legends and the scale bar indicating the number of neurons per gray level, we hope this approach provides clarity for the reader to interpret the panels. Additionally, we have fixed the broken reference in the legend of Fig. 2.

      Overall, this study will be a valuable resource for researchers studying color vision, cortical processing, and the processing of ethologically relevant information. It provides a useful basis for future work on the origin of color opponency in V1 and its ethological relevance.

      General Suggestions:

      -  Please add possible caveats of using ETA method to the discussion section. For example, it is unclear to what extent ON/OFF cells are being overlooked by using ETA method.

      We now discuss the limitations of the ETA approach in the Discussion section.

      - The caveats of using the percentage of variance explained in the retina as evidence against V1 solely inheriting color-opponency from retinal output neurons are not adequately addressed. For example, could the mismatch in explained variance of the color axis between V1 and RGCs be explained by a subset of non-color opponent RGCs projecting elsewhere (not dLGN-V1) or that color opponent cells project to a larger number of neurons in V1 than non-color opponent cells? We suggest adding a paragraph to the discussion to address this issue.

      We have removed these conclusions from the paper, more carefully interpret the retinal results and mention that comparing ex-vivo retina data with in-vivo cortical data is challenging.

      - Please clarify how the different response types shown in Figure 5e-f lead to differences in noise detection and thereby differences in predator discriminability. For example, why does Gon/UVoff not respond to the noise scene while Goff/UVoff does?

      We added this to the Results section.

      - Please clarify the relationship between ETA amplitude, neural response probability, and neural response amplitude. For example, do color-opponent cells have equal absolute neural response amplitudes to the different colors?

      Thank you for bringing up this point. The ETA is obtained by summing the stimulus sequences that elicit an event (i.e., response), weighted by the amplitude of the response. Consequently, the absolute amplitude of the ETA correlates with the calcium amplitude. Importantly, the ETA amplitudes of different stimulus conditions are comparable because they were estimated on the same normalized calcium trace. Therefore, comparing the absolute amplitudes of ETAs of color-opponent neurons reveals the response magnitude of the cells to different colors. We have now included this information in the Results section.

      Abstract: - "more than a third of neurons in mouse V1 are color-opponent in their receptive field center". It is unclear what data supports this statement. Can you please provide a statement in the manuscript that supports this directly using the number of neurons?

      We added the following sentence to the Results section: Nevertheless, a substantial fraction of neurons (33.1%) preferred color-opponent stimuli and scattered along the off-diagonal in the upper left and lower right quadrants, especially for the RF center.

      Figure 2: - There is a ?? in the figure legend. Which figure should this refer to? - please provide explicit neuron counts/percentages for each quadrant in b.

      We fixed the figure reference. We believe that adding the numbers or percentages to the figure panels would make them too crowded. Instead, we have now mentioned in the Results section and the legends that the percentages of variance explained by the color (off-diagonal) and luminance axis (diagonal) correlate with the number of neurons located in the color (top left and bottom right) and luminance contrast quadrants (top right and bottom left), respectively. Together with the number of neurons in each plot stated in the legends and the scale bar indicating the number of neurons per gray level, we hope this approach provides clarity for the reader to interpret the panels.

      Figure 3: - Fig 3: Color scheme makes it very difficult to differentiate the different conditions, especially when printed.

      Thanks we changed the color scheme.

      - Add explicit neuron counts/percentages for each quadrant in b.

      See above.

      Figure 4: - Add explicit neuron counts/percentages for each quadrant in b.

      See above.

      Figure 5: - Add explicit neuron counts/percentages for each quadrant in c.

      See above.

      Methods: - "we modeled each response type to have a square RF with 10 degrees visual angle in diameter". There appears to be a mismatch between this statement and Figure 5e where 18 degrees is reported.

      Thanks we fixed that.

      Referee 3 (Remarks to the Author):

      This paper studies chromatic coding in mouse primary visual cortex. Calcium responses of a large collection of cells are measured in response to a simple spot stimulus. These responses are used to estimate chromatic tuning properties - specifically sensitivity to UV and green stimuli presented in a large central spot or a larger still surrounding region. Cells are divided based on their responses to these stimuli into luminance or chromatic sensitive groups. The results are interesting and many aspects of the experiments and conclusions are well done; several technical concerns, however, limit the support for several main conclusions,

      Limitations of stimulus choice The paper relies on responses to a large (37.5 degree diameter) modulated spot and surround region. This spot is considerably larger than the receptive fields of both V1 cells and retinal ganglion cells (it is twice the area of the average V1 receptive field). As a result, the spot itself is very likely to strongly activate both center and surround mechanisms, and responses of cells are likely to depend on where the receptive fields are located within the spot

      (and, e.g., how much of the true neural surround samples the center spot vs the surround region). Most importantly, the surrounds of most of the recorded cells will be strongly activated by the central spot. This brings into question statements in the paper about selective activation of center and surround (e.g. page 2, right column). This in turn raises questions about several subsequent analyses that rely on selective center and surround activation.

      Thank you for this comment. A similar point was raised by a reviewer in the first round of revision. We agree with the reviewers that it is critical to discuss both the rationale behind our stimulus design and its limitations to facilitate better interpretation by the reader.

      To be able to record from many V1 neurons simultaneously, we used a stimulus size of 37.5 degree visual angle in diameter, which is slightly larger than center RFs of single V1 neurons (between 20 - 30 degrees visual angle depending on the stimulus, see here). The disadvantage of this approach is that the stimulus is only roughly centered on the neurons’ center RFs. To reduce the impact of potential stimulus misalignment on our results, we used the following steps: { For each recording, we positioned the monitor such that the mean RF across all neurons lies within the center of the stimulus field of view.

      We confirmed that this procedure results in good stimulus alignment for the large majority of recorded neurons within individual recording fields by using a sparse noise stimulus (Suppl. Fig. 1a-c). Specifically, we found that for 83% of tested neurons, more than two thirds of their center RF, determined by the sparse noise stimulus, overlapped with the center spot of the color noise stimulus.

      For analysis, we excluded neurons without a significant center STA, which may be caused by misalignment of the stimulus.

      Together, we believe these points strongly suggest that the center spot and the surround annulus of the noise stimulus predominantly drive center (i.e. classical RF) and surround (i.e. extraclassical RF), respectively, of the recorded V1 neurons. This is further supported by the fact that color response types identified using an automated clustering method were robust across mice (Suppl. Fig. 6c), indicating consistent stimulus centering.

      Nevertheless, we cannot exclude the possibility that the stimulus was misaligned for a subset of the recorded neurons used in our analysis. We agree with the reviewer that such misalignment might have caused the center stimulus to partially activate the surround. To further address this issue beyond the controls we have already implemented, one could compare the results of our approach with an approach that centers the stimulus on individual neurons. However, we believe that performing these additional experiments is beyond the scope of the current study.

      To acknowledge the experimental limitations of our study and the concerns brought up by the reviewer, we have added the steps we perform to reduce the effects of stimulus misalignment in the Results section and discuss the problem of stimulus alignment in the Discussion in a separate section. With this, we believe our manuscript explains both the rationale behind our stimulus design as well as important limitations of the approach.

      Comparison with retina A key conclusion of the paper is that the chromatic tuning in V1 is not inherited from retinal ganglion cells. This conclusion comes from comparing chromatic tuning in a previously-collected data set from retina with the present results. But the retina recordings were made using a considerably smaller spot, and hence it is not clear that the comparison made in the paper is accurate. For example, the stimulus used for the V1 experiments almost certainly strongly stimulates both center and surround of retinal ganglion cells. The text focuses on color opponency in the receptive field centers of retinal ganglion cells, but center-surround opponency seems at least as relevant for such large spots. This issue needs to be described more clearly and earlier in the paper.

      Thanks for this comment. We removed the retinal findings from the abstract, as well as from the summary of our results in the Introduction. In addition, we now phrase the interpretation of the retinal results more conservatively and specifically highlight in the Discussion that comparing ex-vivo retinal to in-vivo cortical data is challenging. With these changes, we believe that the focus of the paper is explicitly defined to be on the neuronal representation of color in mouse visual cortex, rather than on the comparison of retinal and cortical color processing.

      Limitations associated with ETA analysis One of the reviewers in the previous round of reviews raised the concern that the ETA analysis may not accurately capture responses of cells with nonlinear receptive field properties such as On/Off cells. This possibility and whether it is a concern should be discussed.

      Thanks for this comment. We now discuss the limitation of using an ETA analysis in the

      Discussion section.

      Discrimination performance poor Discriminability of color or luminance is used as a measure of population coding. The discrimination performance appears to be quite poor - with 500-1000 neurons needed to reliably distinguish light from dark or green from UV. Intuitively I would expect that a single cell would provide such discrimination. Is this intuition wrong? If not, how do we interpret the discrimination analyses?

      Thank you for raising this point. The plots in Fig. 2c (and Figs. 3-5) show discriminability in bits, with the discrimination accuracy in % highlighted by the dotted horizontal lines. For 500 neurons, the discriminability is approx. 0.8 bits, corresponding to 95% accuracy. Even for 50 neurons, the accuracy is significantly above chance level. We now mention in the legends that the dotted lines indicate decoding accuracy in %.

    1. In the future

      A simple camera could be positioned (perhaps attached to the head of the guitar) so as to view the hands moving over the fretboard. Perhaps visual methods which use commercial cameras to infer blood pressure could be used to estimate stress being applied by fingers [reference, reference]. Perhaps this would involve looking at changes in skin colour corresponding to blood flow restrictions resulting from stresses being applied. The apparatus described in this paper could be used to validate such an approach. Potentially the installation of a camera could potentially result in an apparatus more easily deployed at scale, and perhaps usable on many different instruments (without special fretboard modifications and such). Potentially it could also enable more dimensions of resolution, extending the one-dimensional limits of the described apparatus.

      The term is Eulerian Video Magnification:

      Perhaps contemporary machine learning visual analysis could be applied also, and it would be potentially straightforward to record video data for training.

      A more straightforward extension to the current study could be to apply visual analysis such that merely finger placements and gestures were identified to supplement the stress measurements. Indeed, visual analysis or motion capture approaches could be applied to video of the whole posture of the player for assessment of relationships between stress measurements across the fretboard and posture (such as sitting and standing), which can be significant.

      Another complimentary measurement is audio. Stress/force sensor data could be supplemented with audio data analysis such as is employed by the likes of Yousician. A mentioned limitation of the apparatus is the measurement of vibrato effects/techniques. Could audio analysis supplement the existing apparatus's measuring capabilities to include such effects/techniques? Audio analysis can infer keys being typed on a keyboard, could it not also be used to infer frets being played, and with different forces applied?

      Another form of sensor which may not have been considered is the Fiber Bragg Grating (FBG). Could this be feasible, perhaps in a specially-constructed fretboard? Would it add a greater resolution? Would it add a greater dimensionality to the stress measurements?

    Annotators

    1. Author response:

      The following is the response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Nitta et al, in their manuscript titled, "Drosophila model to clarify the pathological significance of OPA1 in autosomal dominant optic atrophy." The novelty of this paper lies in its use of human (hOPA1) to try to rescue the phenotype of an OPA1 +/- Drosophilia DOA model (dOPA). The authors then use this model to investigate the differences between dominant-negative and haploinsufficient OPA1 variants. The value of this paper lies in the study of DN/HI variants rather than the establishment of the drosophila model per se as this has existed for some time and does have some significant disadvantages compared to existing models, particularly in the extra-ocular phenotype which is common with some OPA1 variants but not in humans. I judge the findings of this paper to be valuable with regards to significance and solid with regards to the strength of the evidence.

      Suggestions for improvements:

      (1) Stylistically the results section appears to have significant discussion/conclusion/inferences in section with reference to existing literature. I feel that this information would be better placed in the separate discussion section. E.g. lines 149-154.

      We appreciate the reviewer’s suggestion to relocate the discussion, conclusions, and inferences, particularly those that reference existing literature, to a separate discussion section. For lines 149–154, we placed them in the discussion section (lines 343–347) as follows. “Our established fly model is the first simple organism to allow observation of degeneration of the retinal axons. The mitochondria in the axons showed fragmentation of mitochondria. Former studies have observed mitochondrial fragmentation in S2 cells (McQuibban et al., 2006), muscle tissue (Deng et al., 2008), segmental nerves (Trevisan et al., 2018), and ommatidia (Yarosh et al., 2008) due to the LOF of dOPA1.”

      For lines 178–181, we also placed them in the discussion section (lines 347–351) as follows. “Our study presents compelling evidence that dOPA1 knockdown instigates neuronal degeneration, characterized by a sequential deterioration at the axonal terminals and extending to the cell bodies. This degenerative pattern, commencing from the distal axons and progressing proximally towards the cell soma, aligns with the paradigm of 'dying-back' neuropathy, a phenomenon extensively documented in various neurodegenerative disorders (Wang et al., 2012). ”

      For lines 213–217, 218–220, and 222–223, we also placed them in the discussion section (lines 363– 391) as follows. “To elucidate the pathophysiological implications of mutations in the OPA1 gene, we engineered and expressed several human OPA1 variants, including the 2708-2711del mutation, associated with DOA, and the I382M mutation, located in the GTPase domain and linked to DOA. We also investigated the D438V and R445H mutations in the GTPase domain and correlated with the more severe DOA plus phenotype. The 2708-2711del mutation exhibited limited detectability via HA-tag probing. Still, it was undetectable with a myc tag, likely due to a frameshift event leading to the mutation's characteristic truncated protein product, as delineated in prior studies (Zanna et al., 2008). Contrastingly, the I382M, D438V, and R445H mutations demonstrated expression levels comparable to the WT hOPA1. However, the expression of these mutants in retinal axons did not restore the dOPA1 deficiency to the same extent as the WT hOPA1, as evidenced in Figure 5E. This finding indicates a functional impairment imparted by these mutations, aligning with established understanding (Zanna et al., 2008). Notably, while the 2708-2711del and I382M mutations exhibited limited functional rescue, the D438V and R445H mutations did not show significant rescue activity. This differential rescue efficiency suggests that the former mutations, particularly the I382M, categorized as a hypomorph (Del Dotto et al., 2018), may retain partial functional capacity, indicative of a LOF effect but with residual activity. The I382M missense mutation within the GTPase domain of OPA1 has been described as a mild hypomorph or a disease modifier. Intriguingly, this mutation alone does not induce significant clinical outcomes, as evidenced by multiple studies (Schaaf et al., 2011; Bonneau et al., 2014; Bonifert et al., 2014; Carelli et al., 2015). A significant reduction in protein levels has been observed in fibroblasts originating from patients harboring the I382M mutation. However, mitochondrial volume remains unaffected, and the fusion activity of mitochondria is only minimally influenced (Kane et al., 2017; Del Dotto et al., 2018). This observation is consistent with findings reported by de la Barca et al. in Human Molecular Genetics 2020, where a targeted metabolomics approach classified I382M as a mild hypomorph. In our current study, the I382M mutation preserves more OPA1 function compared to DN mutations, as depicted in Figures 5E and F. Considering the results from our Drosophila model and previous research, we hypothesize that the I382M mutation may constitute a mild hypomorphic variant. This might explain its failure to manifest a phenotype on its own, yet its contribution to increased severity when it occurs in compound heterozygosity.

      (2) I do think further investigation as to why a reduction of mitochondria was noticed in the knockdown. There are conflicting reports on this in the literature. My own experience of this is fairly uniform mitochondrial number in WT vs OPA1 variant lines but with an increased level of mitophagy presumably reflecting a greater turnover. There are a number of ways to quantify mitochondrial load e.g. mtDNA quantification, protein quantification for tom20/hsp60 or equivalent. I feel the reliance on ICC here is not enough to draw conclusions. Furthermore, mitophagy markers could be checked at the same time either at the transcript or protein level. I feel this is important as it helps validate the drosophila model as we already have a lot of experimental data about the number and function of mitochondria in OPA+/- human/mammalian cells.

      We thank the reviewer for the insightful comments and suggestions regarding our study on the impact of mitochondrial reduction in a knockdown model. We concur with the reviewer’s observation that our initial results did not definitively demonstrate a decrease in the number of mitochondria in retinal axons. Furthermore, we measured mitochondrial quantity by conducting western blotting using antiCOXII and found no reduction in mitochondrial content with the knockdown of dOPA1 (Figure S4A and B). Consequently, we have revised our manuscript to remove the statement “suggesting a decreased number of mitochondria in retinal axons. However, whether this decrease is due to degradation resulting from a decline in mitochondrial quality or axonal transport failure remains unclear.” Instead, we have refocused our conclusion to reflect our electron microscopy findings, which indicate reduced mitochondrial size and structural abnormalities. The reviewer’s observation of consistent mitochondrial numbers in WT versus mutant variant lines and elevated mitophagy levels prompted us to evaluate mitochondrial turnover as a significant factor in our study. Regarding verifying mitophagy markers, we incorporated the mito-QC marker in our experimental design. In our experiments, mito-QC was expressed in the retinal axons of Drosophila to assess mitophagy activity upon dOPA1 knockdown. We observed a notable increase in mCherry positive but GFP negative puncta signals one week after eclosion, indicating the activation of mitophagy (Figure 2D–H). This outcome strongly suggests that dOPA1 knockdown enhances mitophagy in our Drosophila model. The application of mito-QC as a quantitative marker for mitophagy, validated in previous studies, offers a robust approach to analyzing this process. Our findings elucidate the role of dOPA1 in mitochondrial dynamics and its implications for neuronal health. These results have been incorporated into Figure 2, with the corresponding text updated as follows (lines 159–167): “Given that an increase in mitophagy activity has been reported in mouse RGCs and nematode ADOA models (Zaninello et al., 2022; Zaninello et al., 2020), the mitoQC marker, an established indicator of mitophagy activity, was expressed in the photoreceptors of Drosophila. The mito-QC reporter consists of a tandem mCherry-GFP tag that localizes to the outer membrane of mitochondria (Lee et al., 2018). This construct allows the measurement of mitophagy by detecting an increase in the red-only mCherry signal when the GFP is degraded after mitochondria are transported to lysosomes. Post dOPA1 knockdown, we observed a significant elevation in mCherry positive and GFP negative puncta signals at one week, demonstrating an activation of mitophagy as a consequence of dOPA1 knockdown (Figure 2D–H).”  

      (3) Could the authors comment on the failure of the dOPA1 rescue to return their biomarker, axonal number to control levels. In Figure 4D is there significance between the control and rescue. Presumably so as there is between the mutant and rescue and the difference looks less.

      As the reviewer correctly pointed out, there is a significant difference between the control and rescue groups, which we have now included in the figure. Additionally, we have incorporated the following comments in the discussion section (lines 329–342) regarding this significant difference: “In our study, expressing dOPA1 in the retinal axons of dOPA1 mutants resulted in significant rescue, but it did not return to control levels. There are three possible explanations for this result. The first concerns gene expression levels. The Gal4-line used for the rescue experiments may not replicate the expression levels or timing of endogenous dOPA1. Considering that the optimal functionality of dOPA1 may be contingent upon specific gene expression levels, attaining a wild-type-like state necessitates the precise regulation of these expression levels. The second is a nonautonomous issue. Although dOPA1 gene expression was induced in the retinal axons for the rescue experiments, many retinal axons were homozygous mutants, while other cell types were heterozygous for the dOPA1 mutation. If there is a non-autonomous effect of dOPA1 in cells other than retinal axons, it might not be possible to restore the wild-type-like state fully. The third potential issue is that only one isoform of dOPA1 was expressed. In mouse OPA1, to completely restore mitochondrial network shape, an appropriate balance of at least two different isoforms, lOPA1 and s-OPA1, is required (Del Dotto et al., 2017). This requirement implies that multiple isoforms of dOPA1 are essential for the dynamic activities of mitochondria.”

      (4) The authors have chosen an interesting if complicated missense variant to study, namely the I382M with several studies showing this is insufficient to cause disease in isolation and appears in high frequency on gnomAD but appears to worsen the phenotype when it appears as a compound het. I think this is worth discussing in the context of the results, particularly with regard to the ability for this variant to partially rescue the dOPA1 model as shown in Figure 5.

      As the reviewer pointed out, the I382M mutation is known to act as a disease modifier. However, in our system, as suggested by Figure 5, I382M appears to retain more activity than DN mutations. Considering previous studies, we propose that I382M represents a mild hypomorph. Consequently, while I382M alone may not exhibit a phenotype, it could exacerbate severity in a compound heterozygous state. We have incorporated this perspective in our revised discussion (lines 375-391).

      “Notably, while the 2708-2711del and I382M mutations exhibited limited functional rescue, the D438V and R445H mutations did not show significant rescue activity. This differential rescue efficiency suggests that the former mutations, particularly the I382M, categorized as a hypomorph (Del Dotto et al., 2018), may retain partial functional capacity, indicative of a LOF effect but with residual activity. The I382M missense mutation within the GTPase domain of OPA1 has been described as a mild hypomorph or a disease modifier. Intriguingly, this mutation alone does no induce significant clinical outcomes, as evidenced by multiple studies (Schaaf et al., 2011; Bonneau et al., 2014; Bonifert et al., 2014; Carelli et al., 2015). A significant reduction in protein levels has been observed in fibroblasts originating from patients harboring the I382M mutation. However, mitochondrial volume remains unaffected, and the fusion activity of mitochondria is only minimally influenced (Kane et al., 2017; Del Dotto et al., 2018). This observation is consistent with findings reported by de la Barca et al. in Human Molecular Genetics 2020, where a targeted metabolomics approach classified I382M as a mild hypomorph. In our current study, the I382M mutation preserves more OPA1 function compared to DN mutations, as depicted in Figures 5E and F. Considering the results from our Drosophila model and previous research, we hypothesize that the I382M mutation may constitute a mild hypomorphic variant. This might explain its failure to manifest a phenotype on its own, yet its contribution to increased severity when it occurs in compound heterozygosity.”

      (5) I feel the main limitation of this paper is the reliance on axonal number as a biomarker for OPA1 function and ultimately rescue. I have concerns because a) this is not a well validated biomarker within the context of OPA1 variants b) we have little understanding of how this is affected by over/under expression and c) if it is a threshold effect e.g. once OPA1 levels reach <x% pathology develops but develops normally when opa1 expression is >x%. I think this is particularly relevant when the authors are using this model to make conclusions on dominant negativity/HI with the authors proposing that if expression of a hOPA1 transcript does not increase opa1 expression in a dOPA1 KO then this means that the variant is DN. The authors have used other biomarkers in parts of this manuscript e.g. ROS measurement and mito trafficking but I feel this would benefit from something else particularly in the latter experiments demonstrated in figure 5 and 6.

      The reviewer raised concerns regarding the adequacy of axonal count as a validated biomarker in the context of OPA1 mutants. In response, we corroborated its validity using markers such as MitoSOX, Atg8, and COXII. Experiments employing MitoSOX revealed that the augmented ROS signals resulting from dOPA1 knockdown were mitigated by expressing human OPA1. Conversely, the mutant variants 2708-2711del, D438V, and R445H did not ameliorate these effects, paralleling the phenotype of axonal degeneration observed. These findings are documented in Figure 5F, and we have incorporated the following text into section lines 248–254 of the results:

      “Furthermore, we assessed the potential for rescuing ROS signals. Similar to its effect on axonal degeneration, wild-type hOPA1 effectively mitigated the phenotype, whereas the 2708-2711del, D438V, and R445H mutants did not (Figure 5F). Importantly, the I382M variant also reduced ROS levels comparably to the wild type. These findings demonstrate that both axonal degeneration and the increase in ROS caused by dOPA1 downregulation can be effectively counteracted by hOPA1. Although I382M retains partial functionality, it acts as a relatively weak hypomorph in this experimental setup.”

      Moreover, utilizing mito-QC, we observed elevated mitophagy in our Drosophila model, with these results now included in Figure 2D–H. Given the complexity of the genetics involved and the challenges in establishing lines, autophagy activity was quantified by comparing the ratio of Atg8-1 to Atg8-2 via Western blot analysis. However, no significant alterations were detected across any of the genotypes. Additionally, mitochondrial protein levels derived from COXII confirmed consistent mitochondrial quantities, showing no considerable variance following knockdown. These insights affirm that retinal axon degeneration and mitophagy activation are present in the Drosophila DOA model, although the Western blot analysis revealed no significant changes in autophagy activation. Such findings necessitate caution as this model may not fully replicate the molecular pathology of the corresponding human disease. These Western blot findings are presented in Figure S4, with the following addition made to section lines 255–263 of the results:

      “We also conducted Western blot analyses using anti-COXII and anti-Atg8a antibodies to assess changes in mitochondrial quantity and autophagy activity following the knockdown of dOPA1. Mitochondrial protein levels, indicated by COXII quantification, were evaluated to verify mitochondrial content, and the ratio of Atg8a-1 to Atg8a-2 was used to measure autophagy activation. For these experiments, Tub-Gal4 was employed to systemically knockdown dOPA1. Considering the lethality of a whole-body dOPA1 knockdown, Tub-Gal80TS was utilized to repress the knockdown until eclosion by maintaining the flies at 20°C. After eclosion, we increased the temperature to 29°C for two weeks to induce the knockdown or expression of hOPA1 variants. The results revealed no significant differences across the genotypes tested (Figure S4A–D).”

      In assessing the effects of dominant negative mutations, measurements including ROS levels, the ratio of Atg8-1 to Atg8-2, and the quantity of COXII protein were conducted, yet no significant differences were observed (Figure S6). This limitation of the fly model is mentioned in the results, noting the observation of the axonal degeneration phenotype but not alterations in ROS signaling, autophagy activity, or mitochondrial quantity as follows (line 287–290):

      “We investigated the impacts of dominant negative mutations on mitochondrial oxidation levels, mitochondrial quantity, and autophagy activation levels; however, none of these parameters showed statistical significance (Figure S6).”

      The reviewer also inquired about the effects of overexpressing and underexpressing OPA1 on axonal count and whether these effects are subject to a threshold. In response, we expressed both wild-type and variant forms of human OPA1 in Drosophila in vivo and assessed their protein levels using Western blot analysis. The results showed no significant differences in expression levels between the wild-type and variant forms in the OPA1 overexpression experiments, suggesting the absence of a variation threshold effect. These findings have been newly documented as quantitative data in Figure 5C. Furthermore, we have included a statement in the results section for Figure 6A, clarifying that overexpression of hOPA1 exhibited no discernible impact, as detailed on lines 274–276.

      “The results presented in Figure 5C indicate that there are no significant differences in the expression levels among the variants, suggesting that variations in expression levels do not influence the outcomes.”

      (6) Could the authors clarify what exons in Figure 5 are included in their transcript. My understanding is transcript NM_015560.3 contains exon 4,4b but not 5b. According to Song 2007 this transcript produces invariably s-OPA1 as it contains the exon 4b cleavage site. If this is true, this is a critical limitation in this study and in my opinion significantly undermines the likelihood of the proposed explanation of the findings presented in Figure 6. The primarily functional location of OPA1 is at the IMM and l-OPA1 is the primary opa1 isoform probably only that localizes here as the additional AA act as a IMM anchor. Given this is where GTPase likely oligomerizes the expression of s-OPA1 only is unlikely to interact anyway with native protein. I am not aware of any evidence s-OPA1 is involved in oligomerization. Therefore I don't think this method and specifically expression of a hOPA1 transcript which only makes s-OPA1 to be a reliable indicator of dominant negativity/interference with WT protein function. This could be checked by blotting UAS-hOPA1 protein with a OPA1 antibody specific to human OPA1 only and not to dOPA1. There are several available on the market and if the authors see only s-OPA1 then it confirms they are not expressing l-OPA1 with their hOPA1 construct.

      As suggested by the reviewer, we performed a Western blot using a human OPA1 antibody to determine if the expressed hOPA1 was producing the l-OPA1 isoform, as shown in band 2 of Figure 5D. The results confirmed the presence of both l-OPA1 and what appears to be s-OPA1 in bands 2 and 4, respectively. These findings are documented in the updated Figure 5D, with a detailed description provided in the manuscript at lines 224-226. Additionally, the NM_015560.3 refers to isoform 1, which includes only exons 4 and 5, excluding exons 4b and 5b. This isoform can express both l-OPA1 and s-OPA1 (refer to Figure 1 in Song et al., J Cell Biol. 2007). We have updated the schematic diagram in the figure to include these exons. The formation of s-OPA1 through cleavage occurs at the OMA1 target site located in exon 5 and the Yme1L target site in exon 5b of OPA1. Isoform 1 of OPA1 is prone to cleavage by OMA1, but a homologous gene for OMA1 does not exist in Drosophila. Although a homologous gene for Yme1L is present in Drosophila, exon 5b is missing in isoform 1 of OPA1, leaving the origin of the smaller band resembling s-OPA1 unclear at this point.

      Reviewer #2 (Public Review):

      The data presented support and extend some previously published data using Drosophila as a model to unravel the cellular and genetic basis of human Autosomal dominant optic atrophy (DOA). In human, mutations in OPA1, a mitochondrial dynamin like GTPase (amongst others), are the most common cause for DOA. By using a Drosophila loss-of-function mutations, RNAi- mediated knockdown and overexpression, the authors could recapitulate some aspects of the disease phenotype, which could be rescued by the wild-type version of the human gene. Their assays allowed them to distinguish between mutations causing human DOA, affecting the optic system and supposed to be loss-of-function mutations, and those mutations supposed to act as dominant negative, resulting in DOA plus, in which other tissues/organs are affected as well. Based on the lack of information in the Materials and Methods section and in several figure legends, it was not in all cases possible to follow the conclusions of the authors.

      We appreciate the reviewer's constructive feedback and the emphasis on enhancing clarity in our manuscript. We recognize the concerns raised about the lack of detailed information in the Materials and Methods section and several figure legends, which may have obscured our conclusions. In response, we have appended the detailed genotypes of the Drosophila strains used in each experiment to a supplementary table. Additionally, we realized that the description of 'immunohistochemistry and imaging' was too brief, previously referenced simply as “immunohistochemistry was performed as described previously (Sugie et al., 2017).” We have now expanded this section to include comprehensive methodological details. Furthermore, we have revised the figure legends to provide clearer and more thorough descriptions.

      Similarly, how the knowledge gained could help to "inform early treatment decisions in patients with mutations in hOPA1" (line 38) cannot be followed.

      To address the reviewer's comments, we have refined our explanation of the clinical relevance of our findings as follows. We believe this revision succinctly articulates the practical application of our research, directly responding to the reviewer’s concerns about linking the study's outcomes to treatment decisions for patients with hOPA1 mutations. By underscoring the model’s value in differential diagnosis and its influence on initiating treatment strategies, we have clarified this connection explicitly, within the constraints of the abstract’s word limit. The revised sentence now reads: "This fly model aids in distinguishing DOA from DOA plus and guides initial hOPA1 mutation treatment strategies."

      Reviewer #3 (Public Review):

      Nitta et al. establish a fly model of autosomal dominant optic atrophy, of which hundreds of different OPA1 mutations are the cause with wide phenotypic variance. It has long been hypothesized that missense OPA1 mutations affecting the GTPase domain, which are associated with more severe optic atrophy and extra-ophthalmic neurologic conditions such as sensorineural hearing loss (DOA plus), impart their effects through a dominant negative mechanism, but no clear direct evidence for this exists particularly in an animal model. The authors execute a well-designed study to establish their model, demonstrating a clear mitochondrial phenotype with multiple clinical analogs including optic atrophy measured as axonal degeneration. They then show that hOPA1 mitigates optic atrophy with the same efficacy as dOPA1, setting up the utility of their model to test disease-causing hOPA1 variants. Finally, they leverage this model to provide the first direct evidence for a dominant negative mechanism for 2 mutations causing DOA plus by expressing these variants in the background of a full hOPA1 complement.

      Strengths of the paper include well-motivated objectives and hypotheses, overall solid design and execution, and a generally clear and thorough interpretation of their results. The results technically support their primary conclusions with caveats. The first is that both dOPA1 and hOPA1 fail to fully restore optic axonal integrity, yet the authors fail to acknowledge that this only constitutes a partial rescue, nor do they discuss how this fact might influence our interpretation of their subsequent results.

      As the reviewer rightly points out, neither dOPA1 nor hOPA1 achieve a complete recovery. Therefore, we acknowledge that this represents only a partial rescue and have added the following explanations regarding this partial rescue in the results and discussion sections.

      Result:

      Significantly —> partially (lines 207 and 228) Discussion (lines 329–342):

      In our study, expressing dOPA1 in the retinal axons of dOPA1 mutants resulted in significant rescue, but it did not return to control levels. There are three possible explanations for this result. The first concerns gene expression levels. The Gal4-line used for the rescue experiments may not replicate the expression levels or timing of endogenous dOPA1. Considering that the optimal functionality of dOPA1 may be contingent upon specific gene expression levels, attaining a wild-type-like state necessitates the precise regulation of these expression levels. The second is a non-autonomous issue. Although dOPA1 gene expression was induced in the retinal axons for the rescue experiments, many retinal axons were homozygous mutants, while other cell types were heterozygous for the dOPA1 mutation. If there is a non-autonomous effect of dOPA1 in cells other than retinal axons, it might not be possible to restore the wild-type-like state fully. The third potential issue is that only one isoform of dOPA1 was expressed. In mouse OPA1, to completely restore mitochondrial network shape, an appropriate balance of at least two different isoforms, l-OPA1 and s-OPA1, is required (Del Dotto et al., 2017). This requirement implies that multiple isoforms of dOPA1 are essential for the dynamic activities of mitochondria.

      The second caveat is that their effect sizes are small. Statistically, the results indeed support a dominant negative effect of DOA plus-associated variants, yet the data show a marginal impact on axonal degeneration for these variants. The authors might have considered exploring the impact of these variants on other mitochondrial outcome measures they established earlier on. They might also consider providing some functional context for this marginal difference in axonal optic nerve degeneration.

      In response to the reviewer’s comment regarding the modest effect sizes observed, we acknowledge that the magnitude of the reported changes is indeed small. To explore the impact of these variants on additional mitochondrial outcomes as suggested, we employed markers such as MitoSOX, Atg8, and COXII for validation. However, we could not detect any significant effects of the DOA plus-associated variants using these methods. We apologize for the redundancy, but to address Reviewer #1's fifth question, we present experimental results showing that while the increased ROS signals observed upon dOPA1 knockdown were rescued by expressing human OPA1, the mutant variants 2708-2711del, D438V, and R445H did not ameliorate this effect. This outcome mirrors the axonal degeneration phenotype and is documented in Figure 5F. The following text has been added to the results section lines 248–254:

      “Furthermore, we assessed the potential for rescuing ROS signals. Similar to its effect on axonal degeneration, wild-type hOPA1 effectively mitigated the phenotype, whereas the 2708-2711del, D438V, and R445H mutants did not (Figure 5F). Importantly, the I382M variant also reduced ROS levels comparably to the wild type. These findings demonstrate that both axonal degeneration and the increase in ROS caused by dOPA1 downregulation can be effectively counteracted by hOPA1. Although I382M retains partial functionality, it acts as a relatively weak hypomorph in this experimental setup.”

      Moreover, utilizing mito-QC, we observed elevated mitophagy in our Drosophila model, with these results now included in Figure 2D–H. Given the complexity of the genetics involved and the challenges in establishing lines, autophagy activity was quantified by comparing the ratio of Atg8-1 to Atg8-2 via Western blot analysis. However, no significant alterations were detected across any of the genotypes. Additionally, mitochondrial protein levels derived from COXII confirmed consistent mitochondrial quantities, showing no considerable variance following knockdown. These insights affirm that retinal axon degeneration and mitophagy activation are present in the Drosophila DOA model, although the Western blot analysis revealed no significant changes in autophagy activation. Such findings necessitate caution as this model may not fully replicate the molecular pathology of the corresponding human disease. These Western blot findings are presented in Figure S4, with the following addition made to section lines 255–263 of the results:

      “We also conducted Western blot analyses using anti-COXII and anti-Atg8a antibodies to assess changes in mitochondrial quantity and autophagy activity following the knockdown of dOPA1. Mitochondrial protein levels, indicated by COXII quantification, were evaluated to verify mitochondrial content, and the ratio of Atg8a-1 to Atg8a-2 was used to measure autophagy activation. For these experiments, Tub-Gal4 was employed to systemically knockdown dOPA1. Considering the lethality of a whole-body dOPA1 knockdown, Tub-Gal80TS was utilized to repress the knockdown until eclosion by maintaining the flies at 20°C. After eclosion, we increased the temperature to 29°C for two weeks to induce the knockdown or expression of hOPA1 variants. The results revealed no significant differences across the genotypes tested (Figure S4A–D).”

      In assessing the effects of dominant negative mutations, measurements including ROS levels, the ratio of Atg8-1 to Atg8-2, and the quantity of COXII protein were conducted, yet no significant differences were observed (Figure S6). This limitation of the fly model is mentioned in the results, noting the observation of the axonal degeneration phenotype but not alterations in ROS signaling, autophagy activity, or mitochondrial quantity as follows (line 287–290):

      “We investigated the impacts of dominant negative mutations on mitochondrial oxidation levels, mitochondrial quantity, and autophagy activation levels; however, none of these parameters showed statistical significance (Figure S6).”

      Despite these caveats, the authors provide the first animal model of DOA that also allows for rapid assessment and mechanistic testing of suspected OPA1 variants. The impact of this work in providing the first direct evidence of a dominant negative mechanism is under-stated considering how important this question is in development of genetic treatments for DOA. The authors discuss important points regarding the potential utility of this model in clinical science. Comments on the potential use of this model to investigate variants of unknown significance in clinical diagnosis requires further discussion of whether there is indeed precedent for this in other genetic conditions (since the model is nevertheless so evolutionarily removed from humans).

      As suggested by the reviewer, we have expanded the discussion in our study to emphasize in greater detail the significance of the fruit fly model and the MeDUsA software we have developed, elaborating on the model's potential applications in clinical science and its precedents in other genetic disorders. Our text is as follows (lines 299–318):

      “We have previously utilized MeDUsA to quantify axonal degeneration, applying this methodology extensively to various neurological disorders. The robust adaptability of this experimental system is demonstrated by its application in exploring a wide spectrum of genetic mutations associated with neurological conditions, highlighting its broad utility in neurogenetic research. We identified a novel de novo variant in Spliceosome Associated Factor 1, Recruiter of U4/U6.U5 Tri-SnRNP (SART1). The patient, born at 37 weeks with a birth weight of 2934g, exhibited significant developmental delays, including an inability to support head movement at 7 months, reliance on tube feeding, unresponsiveness to visual stimuli, and development of infantile spasms with hypsarrhythmia, as evidenced by EEG findings. Profound hearing loss and brain atrophy were confirmed through MRI imaging. To assess the functional impact of this novel human gene variant, we engineered transgenic Drosophila lines expressing both wild type and mutant SART1 under the control of a UAS promoter.

      Our MeDUsA analysis suggested that the variant may confer a gain-of-toxic-function (Nitta et al.,  2023). Moreover, we identified heterozygous loss-of-function mutations in DHX9 as potentially causative for a newly characterized neurodevelopmental disorder. We further investigated the pathogenic potential of a novel heterozygous de novo missense mutation in DHX9 in a patient presenting with short stature, intellectual disability, and myocardial compaction. Our findings indicated a loss of function in the G414R and R1052Q variants of DHX9 (Yamada et al., 2023). This experimental framework has been instrumental in elucidating the impact of gene mutations, enhancing our ability to diagnose how novel variants influence gene function.”

      Recommendations for the Authors:

      Reviewer #1 (Recommendations For The Authors):

      Overall I enjoyed reading this paper. It is well presented and represents a significant amount of well executed study. I feel it further characterizes a poorly understood model of OPA1 variants and one which displays significant differences with the human phenotype. However I feel the use of this model with the author's experiments are not enough to validate this model/experiment as a screening tool for dominant negativity. I have therefore suggested the above experiments as a way to both further validate the mitochondrial dysfunction in this model and to ensure that the expressed transcript is able affect oligomerization as this is a pre-requisite to the authors conclusions.

      We assessed the extent to which our model reflects mitochondrial dysfunction using COXII, Atg8, and MitoSOX markers. Unfortunately, neither COXII levels nor the ratio of Atg8a-1 to Atg8a-2 showed significant variations across genotypes that would clarify the impact of dominant negative mutations. Nonetheless, MitoSOX and mito-QC results revealed that mitochondrial ROS levels and mitophagy are increased in Drosophila following intrinsic knockdown of dOPA1. These findings are documented in Figures 2, 5, and S6.

      Regarding oligomer formation, the specifics remain elusive in this study. However, the expression of dOPA1K273A, identified as a dominant negative variant in Drosophila, significantly disrupted retinal axon organization, as detailed in Figure S7. From these observations, we hypothesize that oligomerization of wild-type and dominant negative forms in Drosophila results in axonal degeneration. Conversely, co-expression of Drosophila wild-type with human dominant negative forms does not induce degeneration, suggesting that they likely do not interact.

      Reviewer #2 (Recommendations For The Authors):

      Materials and Methods:

      The authors used GMR-Gal4 to express OPA1-RNAi. I) GMR is expressed in most cells in the developing eye behind the morphogenetic furrow. So the defects observed can be due to knock- down in support cells rather than in photoreceptor cells.

      We have added the following sentences in the result (lines 194–196)."The GMR-Gal4 driver does not exclusively target Gal4 expression to photoreceptor cells. Consequently, the observed retinal axonal degeneration could potentially be secondary to abnormalities in support cells external to the photoreceptors.”

      OPA1-RNAi: how complete is the knock-down? Have the authors tested more than one RNAi line?

      We conducted experiments with an additional RNAi line, and similarly observed degeneration in the retinal axons (Figure S2 A and B; lines 178–179).

      The loss-of-function allele, induced by a P-element insertion, gives several eye phenotypes when heterozygous (Yarosh et al., 2008). Does RNAi expression lead to the same phenotypes?

      A previous report indicated that the compound eyes of homozygous mutations of dOPA1 displayed a glossy eye phenotype (Yarosh et al., 2008). Upon knocking down dOPA1 using the GMR-Gal4 driver, we also observed a glossy eye-like rough eye phenotype in the compound eyes. These findings have been added to Figure S3 and lines 192–194.

      There is no description on the way the somatic clones were generated. How were mutant cells in clones distinguished from wild-type cells (e. g. in Fig. 4).

      In the Methods section, we described the procedure for generating clones and their genotypes as follows (lines 502–505): "The dOPA1 clone analysis was performed by inducing flippase expression in the eyes using either ey-Gal4 with UAS-flp or ey3.5-flp, followed by recombination at the chromosomal location FRT42D to generate a mosaic of cells homozygous for dOPA1s3475." Furthermore, we have created a table detailing these genotypes. In these experiments, it was not possible to differentiate between the clone and WT cells. Accordingly, we have noted in the Results section (lines 201–203): "Note that the mutant clone analysis was conducted in a context where mutant and heterozygous cells coexist as a mosaic, and it was not possible to distinguish between them.”

      Why were flies kept at 29{degree sign}C? this is rather unusual.

      Increased temperature was demonstrated to induce elevated expression of GAL4 (Kramer and Staveley, Genet. Mol. Res., 2003), which in turn led to an enhanced expression of the target genes. Therefore, experiments involving knockdown assays or Western blotting to detect human OPA1 protein were exclusively conducted at 29°C. However, all other experiments were performed at 25°C, as described in the methods sections: “Flies were maintained at 25°C on standard fly food. For knockdown experiments (Figures 1C–E, 1F–H, 2A–H, 3B–K, 5F, S1, S2 A and B, and S6A), flies were kept at 29°C in darkness.” Furthermore, “We regulated protein expression temporally across the whole body using the Tub-Gal4 and Tub-GAL80TS system. Flies harboring each hOPA1 variant were maintained at a permissive temperature of 20°C, and upon emergence, females were transferred to a restrictive temperature of 29°C for subsequent experiments.”

      Legends:

      It would be helpful to have a description of the genotypes of the flies used in the different experiments. This could also be included as a table.

      We have created a table detailing the genotypes. Additionally, in the legend, we have included a note to consult the supplementary table for genotypes.

      Results:

      Line 141: It is not clear what they mean by "degradation", is it axonal degeneration? And if so, what is the argument for this here?

      In the manuscript, we addressed the potential for mitochondrial degradation; however, recognizing that the expression was ambiguous, the following sentence has been omitted: "Nevertheless, the degradation resulting from mitochondrial fragmentation may have decreased the mitochondrial signal.”

      Fig. 2: Axons of which photoreceptors are shown?

      We have added "a set of the R7/8 retinal axons" to the legend of Figure 2.

      Line 167: The authors write that axonal degeneration is more severe after seven days than after eclosion. Is this effect light-dependent? The same question concerns the disappearance of the rhabdomere (Fig. 3G–J).

      We conducted the experiments in darkness, ensuring that the observed degeneration is not light- dependent. This condition has been added to the methods section to clarify the experimental conditions.

      Line 178/179: Based on what results do they conclude that there is degeneration of the "terminals" of the axons?

      Quantification via MeDUsA has enabled us to count the number of axonal terminals, and a noted decrease has led us to conclude axonal terminal degeneration. We have published two papers on these findings. We have added the following description to the results section to clarify how we defined degeneration (lines 174–176): "We have assessed the extent of their reduction from the total axonal terminal count, thereby determining the degree of axonal terminal degeneration (Richard JNS 2022; Nitta HMG 2023).

      Line 189: They write: ".. we observed dOPA1 mutant axons...". How did they distinguish es mutant from the controls?

      Fig. 5 and Fig. 6: How did they distinguish genetically mutant cells from genetically control cells in the somatic clones?

      Mutant clone analysis was conducted in a context where mutant and heterozygous cells coexist as a mosaic, and it was not possible to distinguish between them. Accordingly, this point has been added to lines 201–203, “Note that the mutant clone analysis was conducted in a context where mutant and heterozygous cells coexist as a mosaic, and it was not possible to distinguish between them.” and the text in the results section has been modified as follows:

      (Before “To determine if dOPA1 is responsible for axon neurodegeneration, we observed the dOPA1 mutant axons by expressing full- length versions of dOPA1 in the photoreceptors at one day after eclosion and found that dOPA1 expression significantly rescued the axonal degeneration” —>

      (After “To determine if dOPA1 is responsible for axon neurodegeneration, we quantify the number of the axons in the dOPA1 eye clone fly with the expression of dOPA1 at one day after eclosion and found that dOPA1 expression partially rescued the axonal degeneration”

      Line 225/226: It is not clear to me how their approach "can quantitatively measure the degree of LOF".

      To address the reviewer's question and clarify how our approach quantitatively measures the degree of loss of function (LOF), we revised the statement (lines 238–247):

      "Our methodology distinctively facilitates the quantitative evaluation of LOF severity by comparing the rescue capabilities of various mutations. Notably, the 2708-2711del and I382M mutations demonstrated only partial rescue, indicative of a hypomorphic effect with residual activity. In contrast, the D438V and R445H mutations failed to show significant rescue, suggesting a more profound LOF. The correlation between the partial rescue by the 2708-2711del and I382M mutations and their classification as hypomorphic is significant. Moreover, the observed differences in rescue efficacy correspond to the clinical severities associated with these mutations, namely in DOA and DOA plus disorders. Thus, our results substantiate the model’s ability to quantitatively discriminate among mutations based on their impact on protein functionality, providing an insightful measure of LOF magnitude.”

      Discussion:

      Line 251, 252 and line 358: What is "the optic nerve" in the adult Drosophila?

      In humans, the axons of retinal ganglion cells (RGCs) are referred to as the optic nerve, and we posit that the retinal axons in flies are similar to this structure. In the introduction section, where it is described that the visual systems of flies and humans bear resemblance, we have appended the following definition (lines 107–108): “In this study, we defined the retinal axons of Drosophila as analogous to the human optic nerve.”

      Line 344: These bands appear only upon overexpression of the hOPA1 constructs, so this part of the is very speculative.

      Confirmation was achieved using anti-hOPA1, demonstrating that myc is not nonspecific. These results have been added to Figure 5D. Furthermore, the phrase “The upper band was expected as” has been revised to “From a size perspective, the upper band was inferred to represent the full-length hOPA1 including the mitochondria import sequence (MIS).” (lines 464–465)

      I was missing a discussion about the increase of ROS upon loss/reduction of dOPA1 observed by others and described here. Is there an increase of ROS upon expression of any of the constructs used?

      We demonstrated that not only axonal degeneration but also ROS can be suppressed by expressing human OPA1 in the genetic background of dOPA1 knockdown. Additionally, rescue was not possible with any variants except for I382M. Furthermore, we assessed whether there were changes in ROS in the evaluation of dominant negatives, but no significant differences were observed in this experimental system. These findings have been added to the discussion section as follows (lines 318–328). “Our research established that dOPA1 knockdown precipitates axonal degeneration and elevates ROS signals in retinal axons. Expression of human OPA1 within this context effectively mitigated both phenomena; it partially reversed axonal degeneration and nearly completely normalized ROS levels. These results imply that factors other than increased ROS may drive the axonal degeneration observed post-knockdown. Furthermore, while differences between the impacts of DN mutations and loss-of- function mutations were evident in axonal degeneration, they were less apparent when using ROS as a biomarker. The extensive use of transgenes in our experiments might have mitigated the knockdown effects. In a systemic dOPA1 knockdown, assessments of mitochondrial quantity and autophagy activity revealed no significant changes, suggesting that the cellular consequences of reduced OPA1 expression might vary across different cell types.”

      Reviewer #3 (Recommendations For The Authors):

      Consider being more explicit regarding literature that has or has failed to test a direct dominant negative effect by expressing a variant in question in the background of a full OPA1 complement. My understanding is that this is the first direct evidence of this widely held hypothesis. This lends to the main claim promoting the utility of fly as a model in general. The authors might also outline this in the introduction as a knowledge gap they fill through this study.

      In the introduction, we have incorporated a passage that highlights precedents capable of distinguishing between LOF and DN effects, and we note the absence of models capable of dissecting these distinctions within an in vivo organism. This study aims to address this gap, proposing a model that elucidates the differential impacts of LOF and DN within the context of a living model organism, thereby contributing to a deeper understanding of their roles in disease pathology. We added the following sentences in the introduction (lines 71–80).

      “In the quest to differentiate between LOF and DN effects within the context of genetic mutations, precedents exist in simpler systems such as yeast and human fibroblasts. These models have provided valuable insights into the conserved functions of OPA1 across species, as evidenced by studies in yeast models (Del Dotto et al., 2018) and fibroblasts derived from patients harboring OPA1 mutations (Kane et al., 2017). However, the ability to distinguish between LOF and DN effects in an in vivo model organism, particularly at the structural level of retinal axon degeneration, has remained elusive. This gap underscores the necessity for a more complex model that not only facilitates molecular analysis but also enables the examination of structural changes in axons and mitochondria, akin to those observed in the actual disease state.”

      The authors should clarify the language used in the abstract and introduction on the effect of hOPA1 DOA and DOA plus on the dOPA1- phenotype. Currently written as "none of the previously reports mutations known to cause DOA or DOA plus were rescued, their functions seems to be impaired." but presumably the authors mean that these variants failed to rescue to the dOPA1 deficient phenotype.

      We thank the reviewer for the constructive feedback. We acknowledge the need for clarity in our description of the effects of hOPA1 DOA and DOA plus mutations on the dOPA1- phenotype in both the abstract and the introduction. The current phrasing, "none of the previously reported mutations known to cause DOA or DOA plus were rescued, their functions seem to be impaired," may indeed be confusing. To address your concern, we have revised this statement to more accurately reflect our findings: "Previously reported mutations failed to rescue the dOPA1 deficiency phenotype." For Abstract site, we have changed as following. "we could not rescue any previously reported mutations known to cause either DOA or DOA plus.”→ “mutations previously identified did not ameliorate the dOPA1 deficiency phenotype.”

      DOA plus is associated with a multiple sclerosis-like illness; as written it suggests that the pathogenesis of sporadic multiple sclerosis and that associated with DOA plus share and underlying pathogenic mechanism. Please use the qualifier "-like illness." 

      We have added the term “multiple sclerosis-like illness” wherever “multiple sclerosis” is mentioned.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:  

      Reviewer #1 (Public Review):  

      Summary:  

      Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head-restrained mice running down a virtual linear path. Mice were trained to collect water rewards at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in the ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90 s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.  

      Strengths:  

      The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis of the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.  

      Weaknesses:  

      Aspects of the methodology, data analysis, and interpretation diminish the overall significance of the findings, as detailed below.  

      The LC axonal recordings are well-powered, but the DA axonal recordings are severely underpowered, with recordings taken from a mere 7 axons (compared to 87 LC axons).

      Additionally, 2 different calcium indicators with differential kinetics and sensitivity to calcium changes (GCaMP6S and GCaMP7b) were used (n=3, n=4 respectively) and the data pooled. This makes it very challenging to draw any valid conclusions from the data, particularly in the novelty experiment. The surprising lack of novelty-induced DA axon activity may be a false negative. Indeed, at least 1 axon (axon 2) appears to be showing a novelty-induced rise in activity in Figure 3C. Changes in activity in 4/7 axons are also referred to as a 'majority' occurrence in the manuscript, which again is not an accurate representation of the observed data.  

      We appreciate the reviewer's detailed feedback regarding the analysis of VTA axons in our dataset. The relatively low sample size for VTA axons is due to their sparsity in the dCA1 region of the hippocampus and the inherent difficulty in recording from these axons. VTA axons are challenging to capture due to their low baseline fluorescence and long-range axon segments, resulting in a typical yield of only a single axon per field of view (FOV) per animal. In contrast, LC axons are more abundant in dCA1.

      To address the disparity in sample sizes between LC and VTA axons, we down-sampled the LC axons to match the number of VTA axons, repeating this process 1000 times to create a distribution. However, we acknowledge the reviewer's concern that the relatively low sample size for VTA axons might result in insufficient sampling of this population. Increasing the baseline expression of GCaMP to record from VTA axons requires several months, limiting our ability to quickly expand the sample size.

      In response to the reviewer's comments, we have added recordings from 2 additional VTA axons, increasing the sample size from 7 to 9. We re-analyzed all data from the familiar environment with n=9 VTA axons, comparing them to down-sampled LC axons as previously described. However, the additional axons were not recorded in the novel environment. We agree with the reviewer that the lack of novelty-induced DA axon activity may be a false negative. To address this, we have revised the description of our results to include the following sentence:

      “However, 1 VTA ROI showed an increase in activity immediately following exposure to novelty, indicating heterogeneity across VTA axons in CA1, and the lack of a novelty signal on average may be due to a small sample size.”

      Regarding the use of two different GCaMP constructs, we understand the reviewer's concern. We used GCaMP6s and GCaMP7b variants to determine if one would improve the success rate of recording from VTA axons. Given the long duration of these experiments and the low yield, we pooled the data from both GCaMP variants to increase statistical power. However, we recognize the importance of verifying that there are no differences in the signals recorded with these variants.

      With the addition of 2 VTA DA axons expressing GCaMP6s, we now have n=5 GCaMP6s and n=4 GCaMP7b VTA DA axons. This allowed us to compare the activity of the two sensors in the familiar environment. As shown in new Supplementary Figure 2, both sets of axons responded similarly to the variables measured: position in VR, time to motion onset, and animal velocity (although the GCaMP6s expressing axons showed stronger correlations). Since all LC axons recorded expressed GCaMP6s, we also specifically compared VTA GCaMP6s axons to LC GCaMP6s axons (Supp Fig. 3). Our conclusions remained consistent when comparing this subset of VTA axons to LC axons.

      Overall, our paper now includes comparisons of combined VTA axons (n=9) and separately the GCaMP6s-expressing VTA axons (n=5) with LC axons. Both datasets support our initial conclusions that VTA axons signal proximity to reward, while LC axons encode velocity and motion initiation in familiar environments.

      The authors conducted analysis on recording data exclusively from periods of running in the novelty experiment to isolate the effects of novelty from novelty-induced changes in behavior. However, if the goal is to distinguish between changes in locus coeruleus (LC) axon activity induced by novelty and those induced by motion, analyzing LC axon activity during periods of immobility would enhance the robustness of the results.  

      We appreciate the reviewer's insightful suggestion to analyze LC axon activity during periods of immobility to distinguish between changes induced by novelty and those induced by motion. This additional analysis would indeed strengthen our conclusions regarding the LC novelty signal.

      In response to this suggestion, we performed the same analysis as before, but focused on periods of immobility. Our findings indicate that following exposure to novelty, there was a significant increase in LC activity specifically during immobility. This supports the idea that LC axons produce a novelty signal that is independent of novelty-induced behavioral changes. The results of this analysis are now presented in new Supplementary Figure 5b

      The authors attribute the ramping activity of the DA axons to the encoding of the animals' position relative to reward. However, given the extensive data implicating the dorsal CA1 in timing, and the remarkable periodicity of the behavior, the fact that DA axons could be signalling temporal information should be considered.  

      This is an insightful comment regarding the potential role of VTA DA axons in signaling temporal information. We agree that VTA DA axons could indeed be encoding temporal information, as previous work from our lab has shown that these axons exhibit ramping activity when averaged by time to reward (Krishnan et al., 2022).

      To address this, we have now examined DA axon activity relative to time to reward, as shown in new Supplementary Figure 4. Our analysis confirms that these axons ramp up in activity relative to time to reward. Given the periodicity of our mice's behavior in these experiments, as the reviewer correctly points out, we are unable to distinguish between spatial proximity to reward and time to reward. We have added a sentence to our paper highlighting this limitation and stating that further experiments are necessary to differentiate these two variables.

      Krishnan, L.S., Heer, C., Cherian, C., Sheffield, M.E. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 13, 6662 (2022).

      The authors should explain and justify the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments.  

      We appreciate the reviewer's insightful comment regarding the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments. The choice of a 3m track for LC axon recordings was made to align with a previous experiment from our lab (Dong et al., 2021), in which mice were exposed to a novel 3m track while CA1 pyramidal cell populations were recorded. In that study, we detailed the time course of place field formation within the novel track. Our current hypothesis is that LC axons signal novelty, and we aimed to investigate whether the time course of LC axon activity aligns with the time course of place field formation. This hypothesis, and the potential role of LC axons in facilitating plasticity for new place field formation, is further discussed in the Discussion section of our paper.

      For the VTA axon recordings, we utilized a 2m track, consistent with another recent study from our lab (Krishnan et al., 2022), where reward expectation was manipulated, and CA1 pyramidal cell populations were recorded. By matching the track length to this prior study, we aimed to explore how VTA dopaminergic inputs to CA1 might influence CA1 population dynamics along the track under conditions of varying reward expectations.

      We acknowledge that using different track lengths for LC and VTA recordings introduces a variable that could potentially confound direct comparisons. To address this, we normalized the track lengths for our LC versus VTA comparison analysis. This normalization allowed us to directly compare patterns of activity across the two types of axons by adjusting the data to a common scale, thereby ensuring that any observed differences or similarities are attributable to the intrinsic properties of the axons rather than differences in track lengths. By doing so, we could assess relative changes in activity levels at matched spatial bins.

      Although the experiences of the animals on the different track lengths are not identical, our observations suggest that LC and VTA axon signals are not majorly influenced by variations in track length. LC axons are associated with velocity and a pre-motion initiation signal, neither of which are affected by track length. VTA axons, which also correlate with velocity, can be compared to LC axon velocity signals because mice reach maximal velocity very quickly a long the track, well before the end of the 2m track. The range of velocities are therefore capture on both track lengths. While VTA axons exhibit ramping activity as they approach the reward zone—a signal potentially modulated by track length—LC axons do not show such ramping to reward signals. Thus, a comparison across different track lengths is justified for this aspect of our analysis.

      To further enhance the rigor of our comparisons between axon dynamics recorded on 2m and 3m tracks, we conducted an additional analysis plotting axon activity by time to reward and actual (un-normalized) distance from reward (Supplementary Figure 4). This analysis revealed very similar signals between the two sets of axons, supporting our initial conclusions.

      We thank the reviewer for raising this important point and hope that our detailed explanation and additional analysis address their concern.

      Krishnan, L.S., Heer, C., Cherian, C., Sheffield, M.E. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 13, 6662 (2022).

      Dong, C., Madar, A. D. & Sheffield, M.E. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun 12, 2977 (2021).

      Reviewer #2 (Public Review):  

      Summary:  

      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.  

      The main findings were as follows:  

      - In a familiar environment, the activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.  

      - VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.  

      - In contrast, the activity of LC axons ramped up before the initiation of movement on the Styrofoam wheel.  

      - In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.  

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral, and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected the approach of a learned reward, and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.  

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.  

      Strengths:  

      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that the activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.  

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.  

      Weaknesses:  

      (1) The findings are correlational and do not allow strong conclusions on how VTA or LC inputs to dorsal CA1 affect cognition and behavior. However, as indicated above under Strengths, the findings will aid the interpretation of previous findings and help to generate new hypotheses as to how VTA or LC inputs to dorsal CA1 affect distinct cognitive and behavioral functions.  

      (2) Some aspects of the methodology would benefit from clarification.  

      First, to help others to better scrutinize, evaluate, and potentially to reproduce the research, the authors may wish to check if their reporting follows the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines for the full and transparent reporting of research involving animals (https://arriveguidelines.org/). For example, I think it would be important to include a sample size justification (e.g., based on previous studies, considerations of statistical power, practical considerations, or a combination of these factors). The authors should also include the provenance of the mice. Moreover, although I am not an expert in 2-photon imaging, I think it would be useful to provide a clearer description of exclusion criteria for imaging data.

      We thank the reviewer for helping us formalize the scientific rigor of our study. There are ten ARRIVE Guidelines and we have addressed most of them in our study already. However, there is an opportunity to add detail. We have listed below all ten points and how we have addressed each one (and point out any new additions):

      (1) Experimental design - we go into great depth explaining the experimental set-up, how we used the autofluorescent blebs as imaging controls, how we controlled for different sample sizes between the two populations, and the statistical tests used for comparisons. We also carefully accounted for animal behavior when quantifying and describing axon dynamics both in the familiar and novel environments.

      (2) Sample size - we state both the number of ROIs and mice for each analysis. We have now also added the number of mice we observed specific types of activity in. 

      (3) Inclusion/exclusion criteria - The following has now been added to the Methods section: Out of the 36 NET-Cre mice injected, 15 were never recorded from for either failing to reach behavioral criteria, or a lack of visible expression in axons. Out of the 54 DAT-Cre mice injected, imaging was never conducted in 36 of them for lack of expression or failing to reach behavioral criteria. Out of the remaining 21 NET-CRE, 5 were excluded for heat bubbles, z-drift, or bleaching, while 10 DAT-Cre were excluded for the same reasons. This was determined by visually assessing imaging sessions, followed by using the registration metrics output by suite2p. This registration metric conducted a PCA on the motion-corrected ROIs and plotted the first PC. If the PC drifted largely, to the point where no activity was apparent, the video was excluded from analysis. 

      (4) Randomization - Already included in the paper is a description of random downsampling of LC axons to make statistical comparisons with VTA axons. LC axons were selected pseudo-randomly (only one axon per imaging session) to match VTA sampling statistics. This randomization was repeated 1000 times and comparisons were made against this random distribution. 

      (5) Blinding-masking - no blinding/masking was conducted as no treatments were given that would require this. We will include this statement in the next version. 

      (6) Outcomes - We defined all outcomes measured, such as those related to animal behavior and axon signaling. 

      (7) Statistical methods - None of the reviewers had any issues regarding our description of statistical methods, which we described in great detail in this version of the paper. 

      (8) Experimental animals - We have now described that DAT- Cre mice were obtained through JAX labs, and NET-Cre mice were obtained from the Tonegawa lab (Wagatsuma et al. 2017). This was absent in the initial version of the paper.

      (9) Experimental procedure - Already listed in great detail in Methods section.

      (10) Results - Rigorously described in detail for behaviors and related axon dynamics.

      Wagatsuma, Akiko, Teruhiro Okuyama, Chen Sun, Lillian M. Smith, Kuniya Abe, and Susumu Tonegawa. “Locus Coeruleus Input to Hippocampal CA3 Drives Single-Trial Learning of a Novel Context.” Proceedings of the National Academy of Sciences 115, no. 2 (January 9, 2018): E310–16. https://doi.org/10.1073/pnas.1714082115.

      Second, why were different linear tracks used for studies of VTA and LC axon activity (from line 362)? Could this potentially contribute to the partly distinct activity correlates that were found for VTA and LC axons?  

      We thank the reviewer for pointing this out and giving us a chance to address it directly. A detailed response to this is written above for a similar comment from reviewer 1.

      Third, the authors seem to have used two different criteria for defining immobility. Immobility was defined as moving at <5 cm/s for the behavioral analysis in Figure 3a, but as <0.2 cm/s for the imaging data analysis in Figure 4 (see legends to these figures and also see Methods, from line 447, line 469, line 498)? I do not understand why, and it would be good if the authors explained this.  

      This is a typo leftover from before we converted velocity from rotational units of the treadmill to cm/s. This has now been corrected.

      (3) In the Results section (from line 182) the authors convincingly addressed the possibility that less time spent immobile in the novel environment may have contributed to the novelty-induced increase of LC axon activity in dorsal CA1 (Figure 4). In addition, initially (for the first 2-4 laps), the mice also ran more slowly in the novel environment (Figure 3aIII, top panel). Given that LC and VTA axon activity were both increasing with velocity (Figure 1F), reduced velocity in the novel environment may have reduced LC and VTA axon activity, but this possibility was not addressed. Reduced LC axon activity in the novel environment could have blunted the noveltyinduced increase. More importantly, any potential novelty-induced increase in VTA axon activity could have been masked by decreases in VTA axon activity due to reduced velocity. The latter may help to explain the discrepancy between the present study and previous findings that VTA neuron firing was increased by novelty (see Discussion, from line 243). It may be useful for the authors to address these possibilities based on their data in the Results section, or to consider them in their Discussion.  

      We appreciate the reviewer's insightful comment regarding the potential impact of decreased velocity on novelty responses in LC and VTA axons. The decreased velocity in the novel environment could lead to a diminished novelty response in LC axons and could mask a subtle novelty signal in VTA axons. We have now included the following points in our discussion:

      “In addition, as noted above, on average we did observe a velocity associated signal in VTA axons. When mice were exposed to the novel environment their velocity initially decreased. This would be expected to reduce the average signal across the VTA axon population relative to the higher velocity in the familiar environment. It is possible that this decrease could somewhat mask a subtle novelty induced signal in VTA axons. Therefore, additional experiments should be conducted to investigate the heterogeneity of these axons and their activity under different experimental conditions during tightly controlled behavior.”

      “As discussed above, the slowing down of animal behavior in the novel environment could have decreased LC axon activity and reduced the magnitude of the novelty signal we detected during running. The novelty signal we report here may therefore be an under estimate of it's magnitude under matched behavioral settings.”

      However, it is important to note that although VTA axons, on average, showed activity modulated by velocity in a familiar rewarded environment, this relationship was largely due to the activity of two VTA axons that were strongly modulated by velocity, indicating heterogeneity within the VTA axon population in dCA1. We have highlighted this point in the discussion. We also discuss that:

      “It is possible that some VTA DA inputs to dCA1 respond to novel environments, and the small number of axons recorded here are not representative of the whole population.”

      (4) Sensory properties of the water reward, which the mice may be able to detect, could account for reward-related activity of VTA axons (instead of an expectation of reward). Do the authors have evidence that this is not the case? Occasional probe trials, intermixed with rewarded trials, could be used to test for this possibility.  

      Mice receive their water reward through a water spout that is immobile and positioned directly in front of their mouth. Water delivery is triggered by a solenoid when the mice reach the end of the virtual track. Therefore, because the water spout is immobile and the water reward is not delivered until they reach the end of the track, there is nothing for the mice to detect during their run. We have added clarifications about the water spout to the Methods and Results sections, along with appropriate discussion points.

      Additionally, we note that the ramping activity of VTA axons is still present on the initial laps with no reward (Krishnan et al., 2022), indicating that this activity is not directly related to the presence or absence of water but is instead associated with the animal’s reward expectation.

      We thank the reviewer for raising this point and hope that these clarifications address their concern.

      Reviewer #3 (Public Review):  

      Summary:  

      Heer and Sheffield provide a well-written manuscript that clearly articulates the theoretical motivation to investigate specific catecholaminergic projections to dorsal CA1 of the hippocampus during a reward-based behavior. Using 2-photon calcium imaging in two groups of cre transgenic mice, the authors examine the activity of VTA-CA1 dopamine and LC-CA1 noradrenergic axons during reward seeking in a linear track virtual reality (VR) task. The authors provide a descriptive account of VTA and LC activities during walking, approach to reward, and environment change. Their results demonstrate LC-CA1 axons are activated by walking onset, modulated by walking velocity, and heighten their activity during environment change. In contrast, VTA-CA1 axons were most activated during the approach to reward locations. Together the authors provide a functional dissociation between these catecholamine projections to CA1. A major strength of their approach is the methodological rigor of 2-photon recording, data processing, and analysis approaches. These important systems neuroscience studies provide solid evidence that will contribute to the broader field of learning and memory. The conclusions of this manuscript are mostly well supported by the data, but some additional analysis and/or experiments may be required to fully support the author's conclusions.  

      Weaknesses:  

      (1) During teleportation between familiar to novel environments the authors report a decrease in the freezing ratio when combining the mice in the two experimental groups (Figure 3aiii). A major conclusion from the manuscript is the difference in VTA and LC activity following environment change, given VTA and LC activity were recorded in separate groups of mice, did the authors observe a similar significant reduction in freezing ratio when analyzing the behavior in LC and VTA groups separately?  

      In response to the comment regarding the freezing ratios during teleportation between familiar and novel environments, we have analyzed the freezing ratios and lap velocities of DAT-Cre and NET-Cre mice separately (Fig. 3Aiii). Our analysis shows that the mean lap velocities of both groups overlap in the familiar environment and significantly decrease on the first lap of the novel environment (Fig. 3iii, top). For subsequent laps, the velocities in both groups are not statistically significantly different from the familiar environment lap velocities.

      Freezing ratios also show a statistically significant decrease on the first lap of the novel environment compared to the familiar environment in both groups (Fig. 3iii, bottom). In the NETCRE mice, the freezing ratios remain statistically lower in subsequent laps, while in the DATCRE mice, the following laps show a similar trend but without statistical significance. This lack of statistical significance in the DAT-CRE mice is likely due to their already lower freezing ratios in the familiar environment. Overall, the data demonstrate similar behavioral responses in the two groups of mice during the switch from the familiar to the novel environment.

      (2) The authors satisfactorily apply control analyses to account for the unequal axon numbers recorded in the LC and VTA groups (e.g. Figure 1). However, given the heterogeneity of responses observed in Figures 3c, 4b and the relatively low number of VTA axons recorded (compared to LC), there are some possible limitations to the author's conclusions. A conclusion that LC-CA1 axons, as a general principle, heighten their activity during novel environment presentation, would require this activity profile to be observed in some of the axons recorded in most all LC-CA1 mice.

      We agree with the reviewer’s point. To address this issue, when downsampling LC axons to compare to VTA axons, we matched the sampling statistics of the VTA axons/mice by only selecting one LC axon from each mouse to match the VTA dataset.

      Additionally, we have now included the number of recording sessions and the number of mice in which we observed each type of activity. This information has been added to further clarify and support our conclusions.

      Additionally, if the general conclusion is that VTA-CA1 axons ramp activity during the approach to reward, it would be expected that this activity profile was recorded in the axons of most all VTA-CA1 mice. Can the authors include an analysis to demonstrate that each LC-CA1 mouse contained axons that were activated during novel environments and that each VTA-CA1 mouse contained axons that ramped during the approach to reward?  

      As above, we have now added the number of mice that had each activity type we report in the paper here.  

      (3) A primary claim is that LC axons projecting to CA1 become activated during novel VR environment presentation. However, the experimental design did not control for the presentation of a familiar environment. As I understand, the presentation order of environments was always familiar, then novel. For this reason, it is unknown whether LC axons are responding to novel environments or environmental change. Did the authors re-present the familiar environment after the novel environment while recording LC-CA1 activity?  

      While we did not vary the presentation order of familiar and novel environments, we recorded the activity of LC axons in some mice when exposed to a dark environment (no VR cues) prior to exposure to the familiar environment. Our analysis of this data demonstrates that LC axons are also active following abrupt exposure to the familiar environment.

      We have added a new figure showing this response (Supplementary Figure 5A) and expanded on our original discussion point that LC axon activity generally correlates with arousal, as this result also supports that interpretation.

      We thank the reviewer for highlighting this important consideration. It certainly helps with the interpretation regarding what LC axons generally encode.  

      >Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):  

      In addition to what has been described in the public review, I have the following recommendations:  

      The sample size of DA axon recordings should be increased with the use of a single GCaMP for valid conclusions to be made about the lack of novelty-inducted activity in these axons.  

      We have increased the n of VTA GCaMP6s axons in the familiar environment by including two axons that were recorded in the familiar rewarded condition. We have also conducted an analysis comparing GCaMPs versus GCaMP7b, which is discussed in detail above.

      Regarding the concerns about valid conclusions of novelty-induced activity in VTA axons, we have added a comment in the discussion to tone down our conclusions regarding the lack of a novelty signal in the VTA axons. This valid concern is discussed in detail above.  

      The title is currently very generic, and non-informative. I recommend the use of more specific language in describing the type of behavior under investigation. It is not clear to the reviewer why 'learning' is included here.  

      Original title: “Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during behavior and learning”

      To make it more specific to the experiments conducted here, we have changed the title to this:

      New title: “Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments”

      Error noted in Figure 4C legend - remove reference to VTA ROIs.  

      The reference to VTA ROIs has been removed from the figure legend

      Reviewer #2 (Recommendations For The Authors):  

      (1) The concluding sentence of the Abstract could be more specific: which distinct types of information are reflected/'signaled'/'encoded' by LC and VTA inputs to dorsal CA1?  

      The abstract has been adjusted accordingly. The new sentence is more specific: “These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.”

      (2) Line 46/47: The study by Mamad et al. (2017) did not quite show that VTA dopamine input to dorsal CA1 'drives place preference'. To my understanding, the study showed that suppression of VTA dopamine signaling in a specific place caused avoidance of this place and that VTA dopamine signaling modulated hippocampal place-related firing. So, please consider rephrasing.  

      Corrected, thanks for pointing this out.

      (3) Legend to Figure 3AIII: 'Each lap was compared to the first lap in F . . .' Could you clarify if 'F' refers to the 'familiar environment?  

      Figure legend has been changed accordingly

      (4) Line 176: '36 LC neurons' - should this not be '36 imaged axon terminals in dorsal CA1' or something along these lines?  

      This reference has been changed to “LC axon ROIs”

      (5) Line 353: Why was water restriction started before the hippocampal window implant, if behavioral training to run for water reward only started after the implant? Please clarify.

      A sentence was added to the methods to explain that this was done to reduce bleeding and swelling during the hippocampal window implantation.  

      (6) Line 377: '. . . which took 10-14 days (although some mice never reached this threshold).' How many mice did not reach the criterion within 14 days? I think it is not accurate to say the mice 'never' reached the threshold, as they were only tested for a limited period of time.  

      We have added details of how many mice were excluded from each group and the reason why they were excluded.

      (7) Exclusion criteria for imaging data: The authors state (from line 402): 'Imaging sessions with large amounts of drift or bleaching were excluded from analysis (8 sessions for NET mice, 6 sessions for LC Mice).' What exactly were the quantitative exclusion criteria? Were these defined before the onset of the study or throughout the study?  

      Imaging sessions were first qualitatively assessed by looking for disappearance or movement of structures in the Z-plane throughout the imaging FOV. Additionally, following motion correction in suite2p, we used the registration metrics, which plots the first Principle Component of the motion corrected images, to assess for drift, bleaching, or heat bubbles. If this variable increased or decreased greatly throughout a session, to the point where any apparent activity was not visible in the first PC, the dataset was excluded. We have added these exclusion criteria to the methods section.

      Reviewer #3 (Recommendations For The Authors):  

      Please provide a justification or rationale for having two different criteria for immobility (< 5cm/sec) and freezing (<0.2 cm/sec). If VTA and LC axon activities are different between these two velocities, please provide some commentary on this difference.  

      This is a typo leftover from before we converted velocity from rotational units to cm/s.

    2. Reviewer #1 (Public Review):

      Summary:

      Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head restrained mice running down a virtual linear path. Mice were trained to collect water reward at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.

      The revised manuscript included additional evidence of increased (but transient) signal in LC axons after a transition to a novel environment during periods of immobility, and also that a change from dark to familiar environment induces a peak in LC axon activity, showing that LC input to dCA1 may not solely signal novelty.

      Strengths:

      The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis at the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.

      The authors have addressed my concerns in a thorough manner. The reviewer also appreciates the increased transparency of reporting in the revised manuscript.

      Weaknesses:

      Listed below are some remaining comments.<br /> The increase in LC activity with any change in environment (from familiar to novel or from dark to familiar) suggests that LC input acts not solely as a novelty signal, but as a general arousal or salience signal in response to environmental changes. Based on this, I have a couple of questions:

      • Is the overall claim that LC input to the dHC signals novelty still valid based on observed findings - as claimed throughout the manuscript?<br /> • Would the omission of a reward be considered a salient change in the environment that activates LC signals, or is the LC not involved with processing reward-related information? Has the activity of LC and VTA axons been analysed in the seconds following reward presentation and/or omission?

    3. Reviewer #2 (Public Review):

      Summary:

      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.

      The main findings were as follows:<br /> - In a familiar environment, activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.<br /> - VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.<br /> - In contrast, activity of LC axons ramped up before initiation of movement on the Styrofoam wheel.<br /> - In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected the approach of a learned reward and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.

      Strengths:

      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.

      Weaknesses:

      (1) The findings are correlational and do not allow strong conclusions on how VTA or LC inputs to dorsal CA1 affect cognition and behavior. However, as indicated above under Strengths, the findings will aid the interpretation of previous findings and help to generate new hypotheses as to how VTA or LC inputs to dorsal CA1 affect distinct cognitive and behavioral functions.

      (2) Some aspects of the methodology would benefit from clarification.<br /> First, to help others to better scrutinize, evaluate and potentially to reproduce the research, the authors may wish to check if their reporting follows the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines for the full and transparent reporting of research involving animals (https://arriveguidelines.org/). For example, I think it would be important to include a sample size justification (e.g., based on previous studies, considerations of statistical power, practical considerations or a combination of these factors). The authors should also include the provenance of the mice. Moreover, although I am not an expert in 2-photon imaging, I think it would be useful to provide a clearer description of exclusion criteria for imaging data (see below, Recommendations for the authors).<br /> Second, why were different linear tracks used for studies of VTA and LC axon activity (from line 362)? Could this potentially contribute to the partly distinct activity correlates that were found for VTA and LC axons?<br /> Third, the authors seem to have used two different criteria for defining immobility. Immobility was defined as moving at <5 cm/s for the behavioral analysis in Fig. 3a, but as <0.2 cm/s for the imaging data analysis in Fig. 4 (see legends to these figures and also see Methods, from line 447, line 469, line 498)? I do not understand why, and it would be good if the authors explained this.

      (3) In the Results section (from line 182) the authors convincingly addressed the possibility that less time spent immobile in the novel environment may have contributed to the novelty-induced increase of LC axon activity in dorsal CA1 (Fig. 4). In addition, initially (for the first 2-4 laps), the mice also ran more slowly in the novel environment (Fig. 3aIII, top panel). Given that LC and VTA axon activity were both increasing with velocity (Fig. 1F), reduced velocity in the novel environment may have reduced LC and VTA axon activity, but this possibility was not addressed. Reduced LC axon activity in the novel environment could have blunted the novelty-induced increase. More importantly, any potential novelty-induced increase in VTA axon activity could have been masked by decreases in VTA axon activity due to reduced velocity. The latter may help to explain the discrepancy between the present study and previous findings that VTA neuron firing was increased by novelty (see Discussion, from line 243). It may be useful for the authors to address these possibilities based on their data in the Results section, or to consider them in their Discussion.

      (4) Sensory properties of the water reward, which the mice may be able to detect, could account for reward-related activity of VTA axons (instead of an expectation of reward). Do the authors have evidence that this is not the case? Occasional probe trials, intermixed with rewarded trials, could be used to test for this possibility.

      REVIEW OF THE REVISED MANUSCRIPT<br /> I thank the authors for their responses addressing some of the weaknesses I raised in my original comments.

      Regarding their clarification of some methodological issues [Point 2) above], I have a few additional comments:<br /> - I appreciate that the authors clearly state the sample sizes contributing to the data. However, sample size justifications (e.g. based on previous studies, considerations of statistical power, practical considerations or a combination of these factors) are still lacking.<br /> - It is good that the authors have now clearly indicated how many mice they excluded due to lack of GCaMP expression or due to failure to reach the behavioral criteria. They also indicated that they discarded some of the collected datasets, based on the visual assessment of imaging sessions and the registration metrics output by suite2p. I appreciate that this may be common practice (although I am not using 2-photon imaging myself). However, I note that to minimize the risk of experimenter bias and improve reproducibility, it would be preferable to have more clearly defined quantitative criteria for such exclusions.<br /> - The authors clarified in their response why they used two different linear tracks for their studies of VTA and LC axon activity. I would encourage them to include this clarification in the manuscript. From the authors' response, I understand that they chose the different track lengths to facilitate comparison to previous studies involving LC and VTA axon recordings. However, given that the present paper aimed to compare LC and VTA axon recordings, the use of different track lengths for LC and VTA axon recordings remains a limitation of the present paper.

    1. Gali WeinsteinPhD. Foundations (history, philosophy) of physics. · 1y · Here are the traits that might have prevented me from being accepeted to jobs for many years and also might have got me fired:Being a loner. I have the ability to be social but not too much. I have difficulty attending social meetings but I try to be friendly with people.Having a strong will, being rebellious, determined, and independent. I dropped out of a bona fide high school and I always drop out of bona fide schools. You need to attend bona fide schools to get jobs in the academy (I have a Ph.D). Throughout my studies at university, I had not attended boring classes. I am a rule breaker.Being autodidactic: teaching myself physics and mathematics, and being able to teach myself all sorts of things. People don't accept this.Having too much emotional empathy and being sensitive to people. I am sensitive to other people and have an extremely high sense of justice and fairness. I am intense in helping other people but they are not so intense in helping me…. But I burn bridges with people because I do not fit in and they reject “Good doctors” (i. e. Dr. Shaun Murphy). Dr. Murphy says in the “Good Doctor”: "There is a long and dusty trail littered with people who have underestimated me". Precisely.I have a sense of humor which people find hard to understand, and I am child-like.I show attention to detail and I also tend to correct mistakes I find in other people's papers.I have difficulty understanding that I have embarrassed people and they have difficulty understanding me. I am saying what I think, and am unable to hide my feelings. I am overly direct and frank. Dr. Murphy was asked: "Do you always talk like that? Just say whatever you're thinking when you're thinking it?" And he answered: "Yes. It's good to be honest". "I have autism, it's part of who I am". So, people are never going to crowd in our corner. But people tell Dr. Murphy that he is smart, brutally honest, has no regard to social convention, and has a problem being a leader; that he is facetious, he can't understand what anyone means. He can't express himself like an adult. His apparently robotic voice is not a charming affectation. Yeah, but I don’t have a robotic voice.I constantly feel I am taken advantage of because I trust people, and they insult me.I have a very good mastery of Einstein’s classical general relativity, and I am engaging in my special interest which is Einstein and relativity, and people are jealous. But this is the kind of obsessive behavior that is common for autism. And part of being obssesive is being highly imaginative and inventive. That is, I am highly creative and have a burst of ideas in my head. I am able to concentrate on my work for a long period of time without eating and drinking.I have skills that are much higher than those my job requires. I am not a professor. I have a lot of setbacks and very few successes.My academic papers are often times not conventional. I am not writing papers with a group of scholars. I am not part of a group of scholars. It’s not because I don’t want to be part of a group of scholars.I misinterpret the implied meaning of things and take at face value what people tell me, and I overreact and over-analyze situations. I don’t understand the unwritten social rules and ask embarrassing questions. I am socially naïve, and gullible, and I believe what people tell me. Consequently, I am taken advantage of and have no understanding of how to get on with important people. For many years, I was vulnerable to bullying. My name has been conspicuously absent from the list of speakers of conferences and seminars. I felt that people picked on me and I felt great indignation. I have been a recluse for many years, spending a lot of time alone in my room. I thought that I would not get any academic position because it involves social and political skills. I don't know how to grovel and don’t know whether one actually needs to grovel to bigwigs.I prefer wearing something casual over an elegant outfit.I know I am right but I don’t know how I know this. I have this intuition, six sense…. I also have a very good visual memory.I try to mask my real personality traits.
      • NOT: 4, 8, 15
      • ?: 7
      • : 1, 3, 5, 6, 13

      • = *
    1. Reviewer #3 (Public Review):

      Summary:

      The authors performed wide-field and 2-photon imaging in vivo in awake head-fixed mice, to compare receptive fields and tonotopic organization in thalamocortical recipient (TR) neurons vs corticothalamic (CT) neurons of mouse auditory cortex. TR neurons were found in all cortical layers while CT neurons were restricted to layer 6. The TR neurons at nominal depths of 200-400 microns have a remarkable degree of tonotopy (as good if not better than tonotopic maps reported by multiunit recordings). In contrast, CT neurons were very heterogenous in terms of their best frequency (BF), even when focusing on the low vs high-frequency regions of the primary auditory cortex. CT neurons also had wider tuning.

      Strengths:

      This is a thorough examination using modern methods, helping to resolve a question in the field with projection-specific mapping.

      Weaknesses:

      There are some limitations due to the methods, and it's unclear what the importance of these responses are outside of behavioral context or measured at single timepoints given the plasticity, context-dependence, and receptive field 'drift' that can occur in the cortex.

      (1) Probably the biggest conceptual difficulty I have with the paper is comparing these results to past studies mapping auditory cortex topography, mainly due to differences in methods. Conventionally, the tonotopic organization is observed for characteristic frequency maps (not best frequency maps), as tuning precision degrades and the best frequency can shift as sound intensity increases. The authors used six attenuation levels (30-80 dB SPL) and reported that the background noise of the 2-photon scope is <30 dB SPL, which seems very quiet. The authors should at least describe the sound-proofing they used to get the noise level that low, and some sense of noise across the 2-40 kHz frequency range would be nice as a supplementary figure. It also remains unclear just what the 2-photon dF/F response represents in terms of spikes. Classic mapping using single-unit or multi-unit electrodes might be sensitive to single spikes (as might be emitted at characteristic frequency), but this might not be as obvious for Ca2+ imaging. This isn't a concern for the internal comparison here between TR and CT cells as conditions are similar, but is a concern for relating the tonotopy or lack thereof reported here to other studies.

      (2) It seems a bit peculiar that while 2721 CT neurons (N=10 mice) were imaged, less than half as many TR cells were imaged (n=1041 cells from N=5 mice). I would have expected there to be many more TR neurons even mouse for mouse (normalizing by number of neurons per mouse), but perhaps the authors were just interested in a comparison data set and not being as thorough or complete with the TR imaging?

      (3) The authors' definitions of neuronal response type in the methods need more quantitative detail. The authors state: ""Irregular" neurons exhibited spontaneous activity with highly variable responses to sound stimulation. "Tuned" neurons were responsive neurons that demonstrated significant selectivity for certain stimuli. "Silent" neurons were defined as those that remained completely inactive during our recording period (> 30 min). For tuned neurons, the best frequency (BF) was defined as the sound frequency associated with the highest response averaged across all sound levels.". The authors need to define what their thresholds are for 'highly variable', 'significant', and 'completely inactive'. Is best frequency the most significant response, the global max (even if another stimulus evokes a very close amplitude response), etc.

    1. 1] ratify or otherwise join the treaty.[32][25] Alternative ways to join the treaty are acceptance, approval or accession. The first two are typically used when a head of state is not necessary to bind a country to a treaty, whereas the latter typically happens when a country joins a treaty already in force.[33] After ratification by the European Union

      6

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this fundamental study, the authors use innovative fine-scale motion capture technologies to study visual vigilance with high-acuity vision, to estimate the visual fixation of free-feeding pigeons. The authors present convincing evidence for use of the fovea to inspect predator cues, the behavioral state influencing the latency for fovea use, and the use of the fovea decreasing the latency to escape of both the focal individual and other flock members. The work will be of broad interest to behavioral ecologists.

      We thank the editor for his interest and feedback on the manuscript. We hereafter addressed the comments of the reviewer.

      Reviewer #1 (Public Review):

      Summary:

      The authors were using an innovative technic to study the visual vigilance based on high-acuity vision, the fovea. Combining motion-capture features and visual space around the head, the authors were able to estimate the visual fixation of free-feeding pigeon at any moment. Simulating predator attacks on screens, they showed that 1) pigeons used their fovea to inspect predators cues, 2) the behavioural state (feeding or head-up) influenced the latency to use the fovea and 3) the use of the fovea decrease the latency to escape of both the individual that foveate the predators cues but also the other flock members.

      Strengths:

      The paper is very interesting, and combines innovative technic well adapted to study the importance of high-acuity vision for spotting a predator, but also of improving the behavioural response (escaping). The results are strong and the models used are well-adapted. This paper is a major contribution to our understanding of the use of visual adaptation in a foraging context when at risk. This is also a major contribution to the understanding of individual interaction in a flock.

      Weaknesses:

      I have identified only two weaknesses:

      (1) The authors often mixed the methods and the results, Which reduces the readability and fluidity of the manuscript. I would recommend the authors to re-structure the manuscript.<br /> (2) In some parts, the authors stated that they reconstructed the visual field of the pigeon, which is not true. They identified the foveal positions, but not the visual fields, which involve different sectors (binocular, monocular or blind). Similarly, they sometimes mix-up the area centralis and the fovea, which are two different visual adaptations.

      Thank you for your positive feedback. We addressed these comments by restructuring the methods and result sections as suggested, and by checking the terminology and specific vocabulary used throughout the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      First, I would like to say that I really enjoyed the manuscript. This is a great contribution to the field.

      Thank you for the positive feedback, we highly appreciate it.

      Then, I have some comments that I hope, would help the authors to improve the manuscript.

      Major comments :

      I would recommend the authors to restructure the methods and the results section. In many parts, the models used are presented in the results section, while this should be presented in the methods section.

      Thank you for the suggestion, we now have ensured that the model descriptions are presented in the statistic section of the methods.

      To me, the introduction is too long (more than 5 pages). It would be beneficial to reduce it considerably. Furthermore, in the introduction, it misses some information about the visual abilities of your species ((visual acuity, visual field, temporal resolution, contrast sensitivity....).

      We agree that the introduction was very long and reduced it by removing the “Methodological issues” as well as strongly reducing the “Experimental rationales” to a minimum. We also added the missing information on the visual abilities of the pigeons in the “Experimental rationales” section (see L135-150). Please note, however, that we refer to the temporal resolution of pigeon vision in the method section, to associate it with the information of the used monitor’s resolution.

      Minor comments :

      Lines 37-39: This needs a reference.

      A reference has been added (McFarland, 1977)

      Lines 39-41: But see some papers published recently on Harris's hawks.

      Thank you for the references, we added the citation as well as a few more papers (Kane et al., 2015; Kano et al., 2018; Miñano et al., 2023; Yorzinski & Platt, 2014).

      Lines 41-43: This sentence needs a reference as well.

      A reference has been added (Cresswell, 1994; M. H. R. Evans et al., 2018; Inglis & Lazarus, 1981)

      Lines 56-103: In this paragraph, head down and head up also depends from the retinal map of the birds! Some birds have visual streak that allow them to see a potential threats while foraging. Please add more information about the importance of photoreceptors distribution.

      Thank you for pointing out this issue. We rewrote the sentence L65-69 as follows to include the importance retinal structures.

      “In several species, especially those with a broad visual field and specific retinal structures such as the visual streaks, individuals can simultaneously engage in foraging activities while remaining vigilant (Fernández-Juricic, 2012), likely using peripheral vision to detect approaching threats (Bednekoff & Lima, 2005; Cresswell et al., 2003; Kaby & Lind, 2003; Lima & Bednekoff, 1999).”

      Lines 76-79: you wrote : ".... favor alternative hypotheses based on their findings". Which findings? You need to explain.

      We rewrote this part as follows (L80-81).

      “other studies found evidence for the risk dilution (Beauchamp & Ruxton, 2008) and the edge effect (Inglis & Lazarus, 1981) in their study systems.”

      Lines 109-110: It would be good to have a representation of what is an area and a fovea, and how it is placed in the eye, what type of fovea exists and how it is related to visual field. Where does it project?

      We now give a better description of the pigeon’s visual field in the experimental rationales section that we hope will help the reader understanding the key features of pigeon’s vision (see L135-150). Specifically, we now say in L137-138:

      “they have one fovea centrally located in the retina of each eye, with an acuity of 12.6 c/deg (Hodos et al., 1985). Their fovea projects laterally at ~75° into the horizon in their visual field.”

      Lines 109-113: You might need to see some new papers here about the fovea. See for instance Bringmann 2019.

      Thank you for the suggestion, we now give a more precise definition of the fovea and refer to Bringmann’s paper for more details (L113-114):

      “a pit-like area in the retina with high concentration of cone cells where visual acuity is highest, and is responsible for sharp, detailed, and color vision.”

      Lines 113-120: Please explain how the visual field is related to fovea? Where is the fovea project in the visual fields?

      Similarly to the question above, we now give a more precise description of the pigeon’s visual field (see L135-150).

      Line 131-134: For a non-expert, you would need to explain what is micro, meso and macro scale?

      These sentences have been removed when shortening the introduction and we are not referring to micro, meso and macro scales anymore.

      Lines 134-136: Please explain in one sentence the technique here.

      We now explain in one sentence how motion capture enables the tracking of head and body orientation (L130-132):

      “Motion capture cameras track with high accuracy the 3D position of markers, which, when attached to the pigeon’s head and body, enables to reconstruct the rotations of the head and body in all directions.”

      Line 140: You presented here for the first time the word "foveation". Has this term been used before? If so, please add a reference. If not, please explain what you mean by foveation precisely.

      Thank you for noticing this lack. We are now providing the following definition “directing visual focus to the fovea to achieve the clearest vision” in the first place where we mention the term foveation (L149-150).

      Lines 146-148: Please explain why this proves that it is appropriate to not record eyes movements, and is this true for every behaviours?

      We acknowledge that some small eye movement might occur and reduce the accuracy of the method. This error is considered in the system using the +-10 degrees range around the foveas. The lines the reviewer referred to were removed when shortening the introduction, but we added an explanation in the paragraph describing pigeon vision to make it clearer (L147-150):

      “Yet, it should be noted that their eye movement was not tracked in our system, although it is typically confined within a 5 degrees range (Wohlschläger et al., 1993). We thus considered this estimation error of the foveation (directing visual focus to the fovea to achieve the clearest vision) in our analysis, as a part of the error margin (see Methods).”

      Lines 161-163: What is the frontal and binocular field for? You would need to explain the different fields of view and what they are supposed to be for.

      Furthermore, does the visual field of pigeon have been studied? If so, you would need to add more information about it.

      This information is now given in the new paragraph describing the pigeon’s vision in the  “Experimental rationales” section (see L135-150).

      Figure 1: It is not clear here which panels correspond to a, b or c. Please use some boxes to clarify it.

      Thank you for the comment, we now have made the figure’s sub-panels clearer.

      Lines 193-194: You wrote "... such as foveas (also known as the area centralis). No, this is not the same.

      (1) In some species, you have two foveas, one placed centrally in the retina, one place temporally. So the fovea is not the area centralis.

      (2) Second, some species do have an area centralis but without a fovea.

      Thank you for pointing out the inaccuracy. In this case, we were referring specifically to the pigeon’s fovea which is sometimes referred to as “area centralis”, but we now changed the sentence as follow to avoid any confusion (L174-175):

      “The initial two hypotheses (Hypotheses 1 and 2) aim to examine whether foveation correlates with predator detection.”

      Lines 192-212: I did not understand the logic of the hypotheses numbers? Why do you have 2.1 but not 3.1 for instance? And if you have two hypotheses for the within a global one (for instance, 2.1 and 2.2), what is the main hypothesis 2? You should explain more here because we get lost here and in the result section as well.

      We recognize this section might have appeared confusing to the reader. In short, we had four main hypotheses: 1) the fovea is used to evaluate predator cues, 2) the latency to foveate is related to vigilance behaviors. These first 2 hypotheses aimed to determine if the latency to foveate on the predator cue could be related to the detection. 3) foveation is related to the escape response of the pigeons and 4) there is a collective influence in the escape response. We further divided some of the hypotheses into 2 sub-hypotheses whenever 2 different tests were used to answer the same question. We have modified this section to be clearer.

      Lines 224-229: Where are the figures and statistics for these results?

      These results are presented in Table S1. We apologize for forgetting to add this reference and have now added it (L211).

      Lines 229-231: This should be in the method section.

      This model explanation (as well as all other hereafter mentioned) have been moved to the method section as suggested.

      Lines 248-252: This should be in the method section. Furthermore, you should better explain the model selection.

      Please see earlier comment. Additionally, we are now better explaining how the model has been built.

      Figure 2: It is not clear on the figure which letters correspond to which panels. Please improve the readability of the figure.

      It was modified accordingly.

      Lines 274-278: This should be in the method section.

      Please see earlier comment.

      Line 281: The "Fig.3" should be mentioned in the previous sentence.

      It was modified accordingly.

      Figure 3: Please explain why the latency to foveate had negative values in Fig.2 but not here, and not in Fig. 4 as well. This again highlights that we missed a number of information in the methods about the transformation of the data and the model selection.

      The variable presented in Fig 2d is not the latency to foveate but the “Normalized frequency at which the object was observed within foveal regions” (hypothesis 1). It represents the amount of time the object was lying within one of the foveal regions of the individual (“how long the pigeons foveated on it”), further normalized to unit sum to make all objects comparable. This variable was indeed logit-transformed (hence the negative value) to improve residual fit in the model, but this information (as well as other transformations) are always clearly stated on the axis caption of the graphs. Additionally, we now have improved the statistical analysis section to make the model used for each hypothesis testing clearer. But please let us know if you have suggestions for a further improvement in terms of presentation.

      Lines 297-301: This should be in the method section.

      Please see earlier comment.

      Lines 301-305: Fig. 3 b and c only referred to the two first factors. Please add more figures for the other factors. This could be in supp. Mat.

      We added the 3 graphs for the proportion of time foveating on the monitor, the saccade rate and the proportion of time foveating on conspecifics in the supplementary (Fig S6).

      Lines 306-309: This should be in methods, and you should have explained in methods how you performed your model selection.....

      We prefer leaving this paragraph in the result section, as it was intended to give the reader extra information on the predictive power of the different variables (by comparing the effectiveness of the models including one variable at a time, all the rest being equal) and not on the model selection per se. However, we now explain our goal better in the statistics section regarding this analysis (L635-636):

      “We further tested the relative predictive power of the different test variables by comparing the resulting models’ efficiency using AIC scores.”

      Lines 317-319: This should be in the method section.

      Please see earlier comment.

      Lines 320-322: This should be in the method section.

      Please see earlier comment.

      Lines 332-334: This should be in the method section.

      Please see earlier comment.

      Lines 334-336: Then, if this is not significant, you cannot say that.

      Thank you for noticing the inaccuracy, we have now rephrased it as (L298-299):

      “Earlier foveation of the first pigeon was not significantly related to an earlier escape responses among the other flock members, although there was a trend (χ2(1) = 3.66, p = 0.0559).”

      Line 336: Please explain why you did different models. We missed a lot of information in the method about your strategy for statistics.?

      We have now added a lot more information on the models in the statistics section, according to this comment as well as the previous ones. We hope the explanations of the analyses are now clearer to the reader.

      Lines 339-349: This should be in the method section.

      Please see earlier comment.

      Results section: As you may have understood, there are too many sentence that should be moved into the method section. Futhermore, I would recommend to modify the headdings so that they are more biologically speaking. Similarly to what you have done in the discussion section.

      Thank you for the comments. We agree with most of them, and have modified the manuscript accordingly. Additionally, we now use the same headings in the results section as the ones used in the discussion to make the text easier to follow.

      Lines 500-501: What were the body weight of the pigeon? At which weight of their full weight they were?

      This information is now added (492 ± 41g; mean ± SD). We did not control the amount of food during our experiments and only ensured 24h without food by feeding the pigeons after the experiment was completed. This information was added as follows (L454-456):

      “On experimental days, they were fed only after the experiments was completed; this ensures 24-hour no feeding at the time of the experiment, although we did not control the amount of the food over the course of the experimental periods.”

      Line 522-523: Those screens are very good for pigeons.

      Thank you for the positive comment, we indeed tried to match bird vision as close as possible.

      Lines 527-528: At which frequency was produced the moving stimulus? Your screen can display up to 144Hz, which is very good. But can your laptop do it? If not, it is important to mention it as pigeons may have a temporal resolution of vision up to 149Hz.

      Our laptop indeed supports 144Hz display. In addition, we now mention the temporal resolution of pigeon vision (L480-482).

      “We specifically chose a monitor with high temporal resolution to match the pigeon’s Critical Flicker Fusion Frequency (threshold at which a flickering light is perceived by the eye as steady) that reaches up to 143Hz (Dodt & Wirth, 1954).”

      Lines 555-572: Did you use a control shape in your experiment? Indeed, they may escape because of a moving pattern but not a predator shape?

      We did not use a control shape, as the aim of the experiment was not to directly test the effect of the shape itself. We designed the predator cue to resemble an approaching predator to ensure a response from the pigeons, but it might be that other shapes would have worked as well.

      Lines 588-589: Please explain why the coordinate system of the pigeon's head is considered as the visual field?

      From what I have understood, you did not reconstruct the visual fields, but only the position of the fovea. This should be noted like this as visual field involves more than a sphere around the head (binocular and monocular sectors, blind sectors, vertical extension....).

      Thank you for noticing the inaccuracy, we indeed did not consider other sectors of the visual field and therefore rephrased it as (L551): “the location of the objects and conspecifics from the pigeon’s perspective”.

      Lines 601-604: How much does it represent?

      As this was estimated by visual inspection, we do not have the exact percentage of data loss that was caused by grooming. However, because of the number of cameras in the SMART BARN motion capture system, it is reliable in detecting markers inside the space in “ideal” conditions (without occlusion). For example, a similar set-up found marker track loss of only <1% using a model bird (Itahara & Kano 2022)

      Itahara, A., & Kano, F. (2022). “Corvid Tracking Studio”: A custom-built motion capture system to track head movements of corvids. Japanese Journal of Animal Psychology, 72(1), 1–16. https://doi.org/10.2502/janip.72.1.1

      Lines 610-612: You would need to cite Wood 1917 and Hodos et al. 1991 who described the presence of a fovea in this species.

      We added both citations to the manuscript.

      Line 611: Again, the fovea is not egal to area centralis.

      Thank you, we changed it as well.

      Lines 625-626: you wrote "... in a few instances....". Please explain more. How many? What proportion?

      This happened in 9 observations out of 120. We now specify it in the text as well (L587-589):

      “in a few instances (9 out of 120 observations), pigeons foveated on the model predator after the looming stimulus had disappeared, but these cases were excluded from our analysis.”

      Lines 640-653: We missed a lot of information in the section "statistical analysis". If you moved most of the sentence from the results that describe the methods in the method section, that would be much better. Furthermore, you would need to explain more what statistics you used, which model selection, what type of data transformation....

      We agree this section lacked information, and we moved the information from the result to the statistics section.

      Supplmentary materials: boxplots from Fig. S1 and S2 are too small and impossible to read. Please improve the readability.

      We now have enlarged these plots to make them more readable.

    2. Public Review:

      The authors used an innovative technic to study the visual vigilance based on high-acuity vision, the fovea. Combining motion-capture features and visual space around the head, the authors were able to estimate the visual fixation of free-feeding pigeon at any moment. Simulating predator attacks on screens, they showed that 1) pigeons used their fovea to inspect predators cues, 2) the behavioural state (feeding or head-up) influenced the latency to use the fovea and 3) the use of the fovea decrease the latency to escape of both the individual that foveate the predators cues but also the other flock members.

      The paper is very interesting, and combines innovative technic well adapted to study the importance of high-acuity vision for spotting a predator, but also of improving the behavioural response (escaping). The results are strong and the models used are well-adapted. This paper is a major contribution to our understanding of the use of visual adaptation in a foraging context when at risk. This is also a major contribution to the understanding of individual interaction in a flock.

    1. As he knelt to the block, the kennelmaster said,“M’lord Eddard always did his own killings.” Theon had to take the axehimself or look a weakling. His hands were sweating, so the shaft twisted inhis grip as he swung and the first blow landed between Farlen’s shoulders. Ittook three more cuts to hack through all that bone and muscle and sever thehead from the body, and afterward he was sick, remembering all the timesthey’d sat over a cup of mead talking of hounds and hunting. I had no choice,he wanted to scream at the corpse. The ironborn can’t keep secrets, they hadto die, and someone had to take the blame for it. He only wished he had killedhim cleaner. Ned Stark had never needed more than a single blow to take aman’s head.

      yess i've been waiting for this

    2. “Do it,” she urged him after a moment. “Bastard. Do it. I can’t stay braveforever.” When the blow did not fall she turned her head to look at him.Jon lowered his sword. “Go,” he muttered.Ygritte stared.“Now,” he said, “before my wits return. Go.”She went.

      lmao

    3. But when morning come, the singerhad vanished ... and so had Lord Brandon’s maiden daughter. Her bed theyfound empty, but for the pale blue rose that Bael had left on the pillow whereher head had lain.”

      lyanna

    4. Perched above her, the dragonspread his wings and tore at the terrible dark heart, ripping the rotten flesh toribbons, and when his head snapped forward, fire flew from his open jaws,bright and hot. She could hear the shrieks of the Undying as they burned, theirhigh thin papery voices crying out in tongues long dead. Their flesh wascrumbling parchment, their bones dry wood soaked in tallow. They danced asthe flames consumed them; they staggered and writhed and spun and raisedblazing hands on high, their fingers bright as torches.

      destorying the others later

    5. Farther on she came upon a feast of corpses. Savagely slaughtered, thefeasters lay strewn across overturned chairs and hacked trestle tables, asprawlin pools of congealing blood. Some had lost limbs, even heads. Severed handsclutched bloody cups, wooden spoons, roast fowl, heels of bread. In a throneabove them sat a dead man with the head of a wolf. He wore an iron crownand held a leg of lamb in one hand as a king might hold a scepter, and hiseyes followed Dany with mute appeal.

      red wedding RED WEDDING

    6. Panting, she squatted and spread her legs. Blood ran down her thighs, blackas ink. Her cry might have been agony or ecstasy or both. And Davos saw thecrown of the child’s head push its way out of her. Two arms wriggled free,grasping, black fingers coiling around Melisandre’s straining thighs, pushing,until the whole of the shadow

      shadow baby you will always be famous

    7. Bones, Catelyn thought. This is not Ned, this is not the man I loved, thefather of my children. His hands were clasped together over his chest, skeletalfingers curled about the hilt of some longsword, but they were not Ned’shands, so strong and full of life. They had dressed the bones in Ned’s surcoat,the fine white velvet with the direwolf badge over the heart, but nothingremained of the warm flesh that had pillowed her head so many nights, thearms that had held her. The head had been rejoined to the body with finesilver wire, but one skull looks much like another, and in those empty hollowsshe found no trace of her lord’s dark grey eyes, eyes that could be soft as afog or hard as stone. They gave his eyes to crows, she remembered

      :((

    8. Only my sweet brother would crowd all these useless mouths into a castlethat might soon be under siege. Catelyn knew that Edmure had a soft heart;sometimes she thought his head was even softer. She loved him for it, yetstill ...

      its crazy how the tullys have teld riverrun for so long when none of them are particulary strong

    9. A few mouthfuls of dark meat still clung to one thigh. He forgot, but nowhe’s remembered, Arya thought. It made her feel bad for telling Jaqen to killhim. She got off the bench and went to the head of the table.“I saw you looking at me.” Weese wiped his fingers on the front of hershift. Then he grabbed her throat with one hand and slapped her with theother.

      oh wtf

    10. Tyrion threw back his head and roared. They laughed together. Cerseipulled him off the bed and whirled him around and even hugged him, for amoment as giddy as a girl. By the time she let go of him, Tyrion wasbreathless and dizzy. He staggered to her sideboard and put out a hand tosteady himself.

      HELP WHAT LMAO

    11. but Theonnoted that oarsmen and townfolk alike grew quiet as they passed, andacknowledged him with respectful bows of the head. They have finallylearned who I am, he thought. And past time too

      ohh nvm thats yara isn't it

    12. If only she had someone to tell her what to do. She missed Septa Mordane,and even more Jeyne Poole, her truest friend. The septa had lost her head withthe rest, for the crime of serving House Stark. Sansa did not know what hadhappened to Jeyne, who had disappeared from her rooms afterward, never tobe mentioned again. She tried not to think of them too often, yet sometimesthe memories came unbidden, and then it was hard to hold back the tears.

      she's so alone :(

    13. Though Old Nan did not think so, and she’d lived longer than any of them.“Dragons,” she said, lifting her head and sniffing. She was near blind andcould not see the comet, yet she claimed she could smell it. “It be dragons,boy,”

      YESS

    14. He speaks more gentlythan Joffrey, she thought, but the queen spoke to me gently too. He’s still aLannister, her brother and Joff’s uncle, and no friend. Once she had lovedPrince Joffrey with all her heart, and admired and trusted his mother, thequeen. They had repaid that love and trust with her father’s head. Sansawould never make that mistake again.

      she's learning :(

    15. As he sank to his knees, still he shook his head, denying her,denying her power, denying her magic, denying her god. And the cowbellspeeled in his antlers, singing fool, fool, fool while the red woman lookeddown on him in pity, the candle flames dancing in her red red eyes.

      thats crazy

    Annotators

    1. This may have been a small lab, but it currently looks more like a jungle in a box. The roof collapsed, and the hole was used by gigantic vines to colonize the whole room, with black stems and purple leaves as big as my head. The glass panels on the exterior walls provided the necessary light for the plants to overrun everything. The air is surprisingly moist; it feels like being in a terrarium. Clearing the whole place would take days

      Proposition:

      C'était peut-être un petit laboratoire, mais il ressemble désormais davantage à une jungle en boîte. Le toit s'est effondré et des vignes gigantesques, avec leurs tiges noires et leurs feuilles violettes aussi grosses que ma tête, en ont profité pour coloniser toute la pièce; les parois en verre ont fourni la lumière nécessaire pour que les plantes envahissent tout. L'air est incroyablement humide, on a l'impression d'être dans un terrarium. Nettoyer tout l'endroit prendrait des jours

    1. Reviewer #1 (Public Review):

      Summary:

      Authors explore how sex-peptide (SP) affects post-mating behaviours in adult females, such as receptivity and egg laying. This study identifies different neurons in the adult brain and the VNC that become activated by SP, largely by using an intersectional gene expression approach (split-GAL4) to narrow down the specific neurons involved. They confirm that SP binds to the well-known Sex Peptide Receptor (SPR), initiating a cascade of physiological and behavioural changes related to receptivity and egg laying.

      Areas of improvement and suggestions:

      (1) "These results suggest the SP targets interneurons in the brain that feed into higher processing centers from different entry points likely representing different sensory input" and "All together, these data suggest that the abdominal ganglion harbors several distinct type of neurons involved in directing PMRs"<br /> The characterization of the post-mating circuitry has been largely described by the group of Barry Dickson and other labs. I suggest ruling out a potential effect of mSP in any of the well-known post-mating neuronal circuitry, i.e: SPSN, SAG, pC1, vpoDN or OviDNs neurons. A combination of available split-Gal4 should be sufficient to prove this.

      (2) Authors must show how specific is their "head" (elav/otd-flp) and "trunk" (elav/tsh) expression of mSP by showing images of the same constructs driving GFP.

      (3) VT3280 is termed as a SAG driver. However, VT3280 is a SPSN specific driver (Feng et al., 2014; Jang et al., 2017; Scheunemann et al., 2019; Laturney et al., 2023). The authors should clarify this.

      (4) Intersectional approaches must rule out the influence of SP on sex-peptide sensing neurons (SPSN) in the ovary by combining their constructs with SPSN-Gal80 construct. In line with this, most of their lines targets the SAG circuit (4I, J and K). Again, here they need to rule out the involvement of SPSN in their receptivity/egg laying phenotypes. Especially because "In the female genital tract, these split-Gal4 combinations show expression in genital tract neurons with innervations running along oviduct and uterine walls (Figures S3A-S3E)".

      (5) The authors separate head (brain) from trunk (VNC) responses, but they don't narrow down the neural circuits involved on each response. A detailed characterization of the involved circuits especially in the case of the VNC is needed to (a) show that the intersectional approach is indeed labelling distinct subtypes and (b) how these distinct neurons influence oviposition.

    2. Reviewer #3 (Public Review):

      Summary:

      This paper reports new findings regarding neuronal circuitries responsible for female post-mating responses (PMRs) in Drosophila. The PMRs are induced by sex peptide (SP) transferred from males during mating. The authors sought to identify SP target neurons using a membrane-tethered SP (mSP) and a collection of GAL4 lines, each containing a fragment derived from the regulatory regions of the SPR, fru, and dsx genes involved in PMR. They identified several lines that induced PMR upon expression of mSP. Using split-GAL4 lines, they identified distinct SP-sensing neurons in the central brain and ventral nerve cord. Analyses of pre- and post-synaptic connection using retro- and trans-Tango placed SP target neurons at the interface of sensory processing interneurons that connect to two common post-synaptic processing neuronal populations in the brain. The authors proposed that SP interferes with the processing of sensory inputs from multiple modalities.

      Strengths:

      Besides the main results described in the summary above, the authors discovered the following:

      (1) Reduction of receptivity and induction of egg-laying are separable by restricting the expression of membrane-tethered SP (mSP): head-specific expression of mSP induces reduction of receptivity only, whereas trunk-specific expression of mSP induces oviposition only. Also, they identified a GAL4 line (SPR12) that induced egg laying but did not reduce receptivity.

      (2) Expression of mSP in the genital tract sensory neurons does not induce PMR. The authors identified three GAL4 drivers (SPR3, SPR 21, and fru9), which robustly expressed mSP in genital tract sensory neurons but did not induce PMRs. Also, SPR12 does not express in genital tract neurons but induces egg laying by expressing mSP.

      Weaknesses:

      (1) Intersectional expression involving ppk-GAL4-DBD was negative in all GAL4AD lines (Supp. Fig.S5). As the authors mentioned, ppk neurons may not intersect with SPR, fru, dsx, and FD6 neurons in inducing PMRs by mSP. However, since there was no PMR induction and no GAL4 expression at all in any combination with GAL4-AD lines used in this study, I would like to have a positive control, where intersectional expression of mSP in ppk-GAL4-DBD and other GAL4-AD lines (e.g., ppk-GAL4-AD) would induce PMR.

      (2) The results of SPR RNAi knock-down experiments are inconclusive (Figure 5). SPR RNAi cancelled the PMR in dsx ∩ fru11/12 and partially in SPR8 ∩ fru 11/12 neurons. SPR RNAi in dsx ∩ SPR8 neurons turned virgin females unreceptive; it is unclear whether SPR mediates the phenotype in SPR8 ∩ fru 11/12 and dsx ∩ SPR8 neurons.

      SPR RNAi knock-down experiments may also help clarify whether mSP worked autocrine or juxtacrine to induce PMR. mSP may produce juxtacrine signaling, which is cell non-autonomous.

    3. Reviewer #2 (Public Review):

      Sex peptide (SP) transferred during mating from male to female induces various physiological responses in the receiving female. Among those, the increase in oviposition and decrease in sexual receptivity are very remarkable. Naturally, a long standing and significant question is the identity of the underlying sex peptide target neurons that express the SP receptor and are underlying these responses. Identification of these neurons will eventually lead to the identification of the underlying neuronal circuitry.

      The Soller lab has addressed this important question already several years ago (Haussmann et al. 2013), using relevant GAL4-lines and membrane-tethered SP. The results already showed that the action of SP on receptivity and oviposition is mediated by different neuronal subsets and hence can be separated. The GAL4-lines used at that time were, however, broad, and the individual identity of the relevant neurons remained unclear.

      In the present paper, Nallasivan and colleagues carried this analysis one step further, using new intersectional approaches and transsynaptic tracing.

      Strength:

      The intersectional approach is appropriate and state-of-the art. The analysis is a very comprehensive tour-de-force and experiments are carefully performed to a high standard. The authors also produced a useful new transgenic line (UAS-FRTstopFRT mSP). The finding that neurons in the brain (head) mediate the SP effect on receptivity, while neurons in the abdomen and thorax (ventral nerve cord or peripheral neurons) mediate the SP effect on oviposition, is a significant step forward in the endavour to identify the underlying neuronal networks and hence a mechanistic understanding of SP action. Though this result is not entirely unexpected, it is novel as it was not shown before.

      Weakness:

      Though the analysis identifies a small set of neurons underlying SP responses, it does not go the last step to individually identify at least a few of them. The last paragraph in the discussion rightfully speculates about the neurochemical identity of some of the intersection neurons (e.g. dopaminergic P1 neurons, NPF neurons). At least these suggested identities could have been confirmed by straight-forward immunostainings agains NPF or TH, for which antisera are available. Moreover, specific GAL4 lines for NPF or P1 or at least TH neurons are available which could be used to express mSP to test whether SP activation of those neurons is sufficient to trigger the SP effect.

    4. Author response:

      Reviewer #1 (Public Review):

      Areas of improvement and suggestions:

      (1) "These results suggest the SP targets interneurons in the brain that feed into higher processing centers from different entry points likely representing different sensory input" and "All together, these data suggest that the abdominal ganglion harbors several distinct type of neurons involved in directing PMRs"

      The characterization of the post-mating circuitry has been largely described by the group of Barry Dickson and other labs. I suggest ruling out a potential effect of mSP in any of the well-known post-mating neuronal circuitry, i.e: SPSN, SAG, pC1, vpoDN or OviDNs neurons. A combination of available split-Gal4 should be sufficient to prove this.

      Indeed, we have tested drivers for some of these neurons already and agree that this information is important to distinguish neurons which are direct SP target from neurons which are involved in directing reproductive behaviors.

      (2) Authors must show how specific is their "head" (elav/otd-flp) and "trunk" (elav/tsh) expression of mSP by showing images of the same constructs driving GFP.

      The expression pattern for tshGAL, which expresses in the trunk is already published (Soller et al., 2006). We will add images for “head” expression.

      (3) VT3280 is termed as a SAG driver. However, VT3280 is a SPSN specific driver (Feng et al., 2014; Jang et al., 2017; Scheunemann et al., 2019; Laturney et al., 2023). The authors should clarify this.

      According to the reviewers suggestion, we will clarify the specificity of VT3280.

      (4) Intersectional approaches must rule out the influence of SP on sex-peptide sensing neurons (SPSN) in the ovary by combining their constructs with SPSN-Gal80 construct. In line with this, most of their lines targets the SAG circuit (4I, J and K). Again, here they need to rule out the involvement of SPSN in their receptivity/egg laying phenotypes. Especially because "In the female genital tract, these split-Gal4 combinations show expression in genital tract neurons with innervations running along oviduct and uterine walls (Figures S3A-S3E)".

      We agree with this reviewer that we need a higher resolution of expression to only one cell type. However, this is a major task that we will continue in follow up studies.

      In principal, use of GAL80 is a valid approach to restrict expression, if levels of GAL80 are higher than those of GAL4, because GAL80 binds GAL4 to inhibit its activity. Hence, if levels of GAL80 are lower, results could be difficult to interpret.

      (5) The authors separate head (brain) from trunk (VNC) responses, but they don't narrow down the neural circuits involved on each response. A detailed characterization of the involved circuits especially in the case of the VNC is needed to (a) show that the intersectional approach is indeed labelling distinct subtypes and (b) how these distinct neurons influence oviposition.

      Again, we agree with this reviewer that we need a higher resolution of expression to only one cell type. However, this is a major task that we will continue in follow up studies.

      Reviewer #2 (Public Review):

      Strength:

      The intersectional approach is appropriate and state-of-the art. The analysis is a very comprehensive tour-de-force and experiments are carefully performed to a high standard. The authors also produced a useful new transgenic line (UAS-FRTstopFRT mSP). The finding that neurons in the brain (head) mediate the SP effect on receptivity, while neurons in the abdomen and thorax (ventral nerve cord or peripheral neurons) mediate the SP effect on oviposition, is a significant step forward in the endavour to identify the underlying neuronal networks and hence a mechanistic understanding of SP action. Though this result is not entirely unexpected, it is novel as it was not shown before.

      We thank reviewer 2 for recognizing the advance of our work.

      Weakness:

      Though the analysis identifies a small set of neurons underlying SP responses, it does not go the last step to individually identify at least a few of them. The last paragraph in the discussion rightfully speculates about the neurochemical identity of some of the intersection neurons (e.g. dopaminergic P1 neurons, NPF neurons). At least these suggested identities could have been confirmed by straight-forward immunostainings agains NPF or TH, for which antisera are available. Moreover, specific GAL4 lines for NPF or P1 or at least TH neurons are available which could be used to express mSP to test whether SP activation of those neurons is sufficient to trigger the SP effect.

      We appreciate this reviewers recognition of our previous work showing that receptivity and oviposition are separable. As pointed out we have now gone one step further and identified in a tour de force approach subsets of neurons in the brain and VNC.

      We agree with this reviewer that we need a higher resolution of expression to only one cell type. As pointed out by this reviewer, the neurochemical identity is an excellent suggestions and will help to further restrict expression to just one type of neuron. However, this is a major task that we will continue in follow up studies.

      Reviewer #3 (Public Review):

      Strengths:

      Besides the main results described in the summary above, the authors discovered the following:

      (1) Reduction of receptivity and induction of egg-laying are separable by restricting the expression of membrane-tethered SP (mSP): head-specific expression of mSP induces reduction of receptivity only, whereas trunk-specific expression of mSP induces oviposition only. Also, they identified a GAL4 line (SPR12) that induced egg laying but did not reduce receptivity.

      (2) Expression of mSP in the genital tract sensory neurons does not induce PMR. The authors identified three GAL4 drivers (SPR3, SPR 21, and fru9), which robustly expressed mSP in genital tract sensory neurons but did not induce PMRs. Also, SPR12 does not express in genital tract neurons but induces egg laying by expressing mSP.

      We thank reviewer 3 for recognizing these two important points regarding the SP response that point to a revised model for how the underlying circuitry induces the post-mating response.

      Weaknesses:

      (1) Intersectional expression involving ppk-GAL4-DBD was negative in all GAL4AD lines (Supp. Fig.S5). As the authors mentioned, ppk neurons may not intersect with SPR, fru, dsx, and FD6 neurons in inducing PMRs by mSP. However, since there was no PMR induction and no GAL4 expression at all in any combination with GAL4-AD lines used in this study, I would like to have a positive control, where intersectional expression of mSP in ppk-GAL4-DBD and other GAL4-AD lines (e.g., ppk-GAL4-AD) would induce PMR.

      We will add positive controls of for ppk-DBD expression and expand the discussion section.

      (2) The results of SPR RNAi knock-down experiments are inconclusive (Figure 5). SPR RNAi cancelled the PMR in dsx ∩ fru11/12 and partially in SPR8 ∩ fru 11/12 neurons. SPR RNAi in dsx ∩ SPR8 neurons turned virgin females unreceptive; it is unclear whether SPR mediates the phenotype in SPR8 ∩ fru 11/12 and dsx ∩ SPR8 neurons.

      We agree with this reviewer that the interpretation of the SPR RNAi results are complicated by the fact that SP has additional receptors (Haussmann et al 2013). The results are conclusive for all three intersections when expressing UAS mSP in SPR RNAi with respect to oviposition, e.g. egg laying is not induced in the absence of SPR. For receptivity, the results are conclusive for dsx ∩ fru11/12 and partially for SPR8 ∩ fru 11/12.

      Potentially, SPR RNAi knock-down does not sufficiently reduce SPR levels to completely reduce receptivity in some intersection patterns, likely also because splitGal4 expression is less efficient.

      Why SPR RNAi in dsx ∩ SPR8 neurons turned virgin females unreceptive is unclear, but we anticipate that we need a higher resolution of expression to only one cell type to resolve this unexpected result. However, this is a major task that we will continue in follow up studies.

      SPR RNAi knock-down experiments may also help clarify whether mSP worked autocrine or juxtacrine to induce PMR. mSP may produce juxtacrine signaling, which is cell non-autonomous.

      Whether membrane-tethered SP induces the response in a autocrine manner is an import aspect in the interpretation of the results from mSP expression.

      Removing SPR by SPR RNAi and expression of mSP in the same neurons did not induce egg laying for all three intersection and did not reduce receptivity for dsx ∩ fru11/12 and for SPR8 ∩ fru 11/12. Accordingly, we can conclude that for these neurons the response is induced in an autocrine manner.

      We will add this aspect to the discussion section.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Reviews):

      Summary:

      This paper by Schommartz and colleagues investigates the neural basis of memory reinstatement as a function of both how recently the memory was formed (recent, remote) and its development (children, young adults). The core question is whether memory consolidation processes as well as the specificity of memory reinstatement differ with development. A number of brain regions showed a greater activation difference for recent vs. remote memories at the long versus shorter delay specifically in adults (cerebellum, parahippocampal gyrus, LOC). A different set showed decreases in the same comparison, but only in children (precuneus, RSC). The authors also used neural pattern similarity analysis to characterize reinstatement, though I have substantive concerns about how this analysis was performed and as such will not summarize the results. Broadly, the behavioural and univariate findings are consistent with the idea that memory consolidation differs between children and adults in important ways, and takes a step towards characterizing how.

      Strengths:

      The topic and goals of this paper are very interesting. As the authors note, there is little work on memory consolidation over development, and as such this will be an important data point in helping us begin to understand these important differences. The sample size is great, particularly given this is an onerous, multi-day experiment; the authors are to be commended for that. The task design is also generally well controlled, for example as the authors include new recently learned pairs during each session.

      Weaknesses:

      As noted above, the pattern similarity analysis for both item and category-level reinstatement was performed in a way that is not interpretable given concerns about temporal autocorrelation within the scanning run. Below, I focus my review on this analytic issue, though I also outline additional concerns.

      We thank the reviewer for both the positive and critical appraisal of our paper.

      (1) The pattern similarity analyses were not done correctly, rendering the results uninterpretable (assuming my understanding of the authors' approach is correct).

      a. First, the scene-specific reinstatement index: The authors have correlated a neural pattern during a fixation cross (delay period) with a neural pattern associated with viewing a scene as their measure of reinstatement. The main issue with this is that these events always occurred back-to-back in time. As such, the two patterns will be similar due simply to the temporal autocorrelation in the BOLD signal. Because of the issues with temporal autocorrelation within the scanning run, it is always recommended to perform such correlations only across different runs. In this case, the authors always correlated patterns extracted from the same run, which moreover have temporal lags that are perfectly confounded with their comparison of interest (i.e., from Fig 4A, the "scene-specific" comparisons will always be back-to-back, having a very short temporal lag; "set-based" comparisons will be dispersed across the run, and therefore have a much higher lag). The authors' within-run correlation approach also yields correlation values that are extremely high - much higher than would be expected if this analysis was done appropriately. The way to fix this would be to restrict the analysis to only cross-run comparisons, but I don't believe this is possible unfortunately given the authors' design; I believe the target (presumably reinstated) scene only appears once during scanning, so there is no separate neural pattern during the presentation of this picture that they can use. For these reasons, any evidence for "significant scene-specific reinstatement" and the like is completely uninterpretable and would need to be removed from the paper.

      We thank the reviewer for this important input. We acknowledge that our study design leads to temporal autocorrelation in the BOLD signal when calculating RSA between fixation and scene time windows. We also recognize that we cannot interpret the significance of scene-specific reinstatement compared to zero and have accordingly removed this information. Nevertheless, our primary objective was to investigate changes in scene-specific reinstatement in relation to the different time delays of retrieval. Given that the retrieval procedure is the same over time and presumably similarly influenced by temporal autocorrelations, we argue that our results must be attributed to the relative differences in reinstatement across recent and remote trials. Bearing this in mind, we argue that our results can be interpreted in terms of delay-related changes in reinstatement. This information is discussed in pp. 21, 40 of the manuscript.

      We agree with the reviewer that cross-run comparisons would be extremely interesting. This could be achieved by introducing the same items repeatedly across different runs, which was not possible in our current setup since we were interested in single exposure retrieval and practical time restriction in scanning children. We have  introduced this idea in Limitations and Discussion sections (pp. 40, 44) of the manuscript to inform future studies.

      Finally, thanks to the reviewer’s comment, we identified a bug in the final steps of our RSA calculation. Fischer’s z-transformation was incorrectly applied to r-1 values, resulting in abnormally high values. We apologize for this error. We have revised the scripts and rectified the bug by correctly applying Fischer’s z-transformation to the r similarity values. We also adjusted the methods description figure accordingly (Figure 5, p. 22). This adjustment led to slightly altered reinstatement indices. Nevertheless, the overall pattern of delay-related attenuation in the scene-specific reinstatement index, observed in both children and adults, remains consistent. Similarly, we observed gist-like reinstatement uniquely in children.

      b. From a theoretical standpoint, I believe the way this analysis was performed considering the fixation and the immediately following scene also means that the differences between recent and remote could have to do with either the reactivation (processes happening during the fixation, presumably) or differences in the processing of the stimulus itself (happening during the scene presentation). For example, people might be more engaged with the more novel scenes (recent) and therefore process those scenes more; such a difference would be interpreted in this analysis as having to do with reinstatement, but in fact could be just related to the differential scene processing/recognition, etc.

      Thank you for your insightful comments. We acknowledge the theoretical concerns raised about distinguishing between the effects of reactivation processes occurring during fixation and differential processing of the stimulus itself during scene presentation. Specifically, the notion that engagement levels with recent scenes could result in enhanced processing, which might be misattributed to memory reinstatement mechanisms.

      We argue, however, that during scene presentation, scenes are processed more “memory-wise” rather than “perception-wise”, since both recent and remote memories are well-learned, as we included only correctly recalled memories in the analysis.

      We concur that scene presentations entail perceptual processing; however, such processing would be consistent across all items, given that they were presented with the same repeated learning procedure, rendering them equally familiar to participants. In addition, we would argue that distinct activation patterns elicited during varying delays are more likely attributable to memory-related processing, since participants actively engaged in a memory-based decision-making task during these intervals. We have incorporated this rationale into the discussion section of our manuscript (p. 40).

      With this in mind, we hypothesized that in case of “memory-wise” processing, the neural engagement during the scene time window should be higher for remote compared to recent  items, and this increases with passing time as more control and effort should be exhibited during retrieval due to reorganized and distributed nature of memories. If the scenes are processed more “perception-wise”, we would expect higher neural engagement during the retrieval of recent compared to remote items. Our exploratory analysis (detailed overview in supplementary materials, Figure S3, Table S9) revealed a higher neural activation for remote compared to recent items in medial temporal, prefrontal, occipital and cerebellar brain regions, supporting the notion of “memory-wise” processes during scene time window. However, this exploratory analysis cannot provide a direct solution to the reviewer’s concern as our paradigm per se cannot arbitrate between “memory-wise” and “perception-wise” nature of retrieval. We added the point to the discussion (see p. 40).

      c. For the category-based neural reinstatement:

      (1) This suffers from the same issue of correlations being performed within the run. Again, to correct this the authors would need to restrict comparisons to only across runs (i.e., patterns from run 1 correlated with patterns for run 2 and so on). With this restriction, it may or may not be possible to perform this analysis, depending upon how the same-category scenes are distributed across runs. However, there are other issues with this analysis, as well.

      (2) This analysis uses a different approach of comparing fixations to one another, rather than fixations to scenes. The authors do not motivate the reason for this switch. Please provide reasoning as to why fixation-fixation is more appropriate than fixation-scene similarity for category-level reinstatement, particularly given the opposite was used for item-level reinstatement. Even if the analyses were done properly, it would remain hard to compare them given this difference in approach.

      (3) I believe the fixation cross with itself is included in the "within category" score  Is this not a single neural pattern correlated with itself, which will yield maximal similarity (pearson r=1) or minimal dissimilarity (1-pearson r=0)? Including these comparisons in the averages for the within-category score will inflate the difference between the "within-category" and "between-category" comparisons. These (e.g., forest1-forest1) should not be included in the within-category comparisons considered; rather, they should be excluded, so the fixations are always different but sometimes the comparisons are two retrievals of the same scene type (forest1-forest2), and other times different scene types (forest1-field1)

      (4) It is troubling that the results from the category reinstatement metric do not seem to conceptually align with past work; for example, a lot of work has shown category-level reinstatement in adults. Here the authors do not show any category-level reinstatement in adults (yet they do in children), which generally seems extremely unexpected given past work and I would guess has to do with the operationalization of the metric.

      Thank you for this important input regarding category-based reinstatement.

      (1) The distribution of within-category items across runs was approximately similar and balanced. Additionally, within runs, they were presented randomly without close temporal proximity. Based on this arrangement, we believe that the issue of close temporal autocorrelation, as pointed out by the reviewer in the context of scene-specific reinstatement, may not apply to the same extent here. Again, our focus is not on the absolute level of category-based reinstatement, but the relative difference across conditions (recent vs. remote short delay vs. remote long delay) which are equally impacted by the autocorrelations.  

      (2) We apologize for not motivating this analysis further. Whereas the scene-reinstatement index (i.e., fixation to scene correlation) gives us a measure of the pre-activation of a concrete scene (e.g., a yellow forest in autumn), the gist-like reinstatement gives us a measure of the pre-activation of a whole category of scenes (e.g., forests). Critically, our window of interest is the fixation period for both sets of analysis (in the absence of any significant visual input). The scene-specific reinstatement uses the scene window as a neural template against which the fixation period can be compared, while the gist-like reinstatement compares similarity of reactivation pattern for trials from the same category but differ in the exact memory content. The reinstatement of more generic, gist-like memory (e.g., forest) across multiple trials should yield more similar neural activation patterns. Significant gist-like reinstatement would suggest that neural patterns for scenes within the same category are more generic, as indicated by higher similarity among them. On the other hand, a more detailed reinstatement of specific types of forests (e.g., a yellow forest in autumn, green pine trees, a bare-leaved forest in spring, etc.) that differ in various dimensions could result in neural activation patterns that are as dissimilar as those seen in the reinstatement of scenes from entirely different categories. Through this methodology, we could distinguish between more generic, gist-like reinstatement and more specific, detailed reinstatement. This is now clarified in the manuscript, see p. 25.

      (3) We apologize for the confusion caused by the figure and analysis description. In our analysis, we indeed excluded the correlation of the fixation cross with itself. Consequently, the diagonal in the figure should be blank to indicate this. This is now revised in the manuscript (Figure 7B and in Methods).

      (4) We appreciate your concern and recognize that the terminology we used might not align perfectly with the conventional understanding of category-based reinstatement. Typically, category-level neural representations (as discussed in Polyn et al., 2005; Jafarpour et al., 2014; among others) are investigated to identify specific brain areas associated with encoding/perception of scenes or faces. Our aim, however, was to explore the mnemonic reinstatement of highly detailed scenes that were elaborately encoded, with the hypothesis that substantial representational transformations would occur over time and vary with age. This hypothesis is based on the memory literature, including the Fuzzy-Trace Theory, the Contextual Binding Theory, and the Trace Transformation Theory (Brainerd & Reyna, 1998; Yonelinas, 2019; Moscovitch & Gilboa, 2023). Therefore, we renamed 'category-based' reinstatement to 'gist-like' reinstatement, which clarifies our concept and better aligns it with existing literature.

      We anticipated that young adults, having the ability to retain detailed narratives post-encoding, would demonstrate a reinstatement of scenes with distinct details, making these scenes dissimilar from each other (see similar findings in Sommer et al., 2021). In contrast, given the anticipated lesser strategic elaboration during learning in children, we hypothesized that they would demonstrate a shallower, more gist-like reinstatement (for instance, children recalling a forest or a field in a general sense without specific details or vivid imagery). This could result in higher category-based similarity, as children might reinstate a more generic forest concept.

      We did not gather additional data on the verbal quality of reinstatement due to the limited scanning time available for children, so these assumptions remain unverified. However, anecdotal observations post-retrieval indicated that adults often reported very vivid scenes associated with clear narrative recall. In contrast, children frequently described more vague memories (e.g., “I know it was a forest”) without specific details. Future studies should include measures to assess the quality of reinstatement, potentially outside the scanning environment.

      (2) I did not see any compelling statistical evidence for the claim of less robust consolidation in children.

      Specifically in terms of the behavioral results of retention of the remote items at 1 vs 14 days, shown in Figure 2B, the authors conclude that memory consolidation is less robust in children (line 246). Yet they do not report statistical evidence for this point, as there was no interaction of this effect with the age group. Children had worse memory than adults overall (in terms of a main effect - i.e. across recent and remote items). If it were consolidation-specific, one would expect that the age differences are bigger for the remote items, and perhaps even most exaggerated for the 14-day-old memories. Yet this does not appear to be the case based on the data the authors report. Therefore, the behavioral differences in retention do not seem to be consolidation specific, and therefore might have more to do with differences in encoding fidelity or retrieval processes more generally across the groups. This should be considered when interpreting the findings.

      Thank you for highlighting this important issue. We acknowledge that our initial description and depiction of our behavioral findings may not have effectively conveyed the main message about memory consolidation. Therefore, we have revised the behavioral results section (see pp. 12-14) to communicate our message more clearly.

      As detailed in the methods section, we reported retention rates only for those items that were correctly (100%) learned on day 0, day 1, and day 14. This approach meant that different participants had varying numbers of items learned correctly. However, this strategy allowed us to address our primary question: whether memory consolidation, based on all items initially encoded successfully, is comparably robust between groups.

      To illustrate the change in retention rate slopes over time for recently learned items (i.e., immediately 30 minutes after learning), short delay remote, and long delay remote items, relative to the initially correctly learned items more clearly and straightforward, we conducted the following analysis: after observing no differences between sessions in both age groups for recent items on days 1 and 14, we combined the recent items. This approach enabled us to investigate how the slope of memory retention for initially correctly learned items (with a baseline of 100%) changes over time. We observed a significant interaction between item type (recent, short delay remote, long delay remote) and group (F(3,250) = 17.35, p < .001, w2 = .16). The follow up of this interaction revealed significantly less robust memory consolidation across all delay times in children compared to young adults. This information is added in the manuscript in pp. 12-14. We have also updated the figures, incorporating the baseline of 100% correct performance.

      (3) Please clarify which analyses were restricted to correct retrievals only. The univariate analyses states that correct and incorrect trials were modelled separately but does not say which were considered in the main contrast (I assume correct only?). The item specific reinstatement analysis states that only correct trials were considered, but the category-level reinstatement analysis does not say. Please include this detail.

      Thank you for bringing this to our attention. We indeed limited our analysis – including univariate, specific reinstatement, and gist-like analyses – to only correctly remembered items. This decision was made because our goal was to observe delay-related changes in the neural correlates of correct memories, which are potentially stronger. We have incorporated this information into the manuscript.

      (4) To what extent could performance differences be impacting the differences observed across age groups? I think (see prior comment) that the analyses were probably limited to correct trials, which is helpful, but still yields pretty big differences across groups in terms of the amount of data going into each analysis. In general, children showed more attenuated neural effects (e.g., recent/remote or session effects); could this be explained by their weaker memory? Specifically, if only correct trials are considered that means that fewer trials would be going into the analysis for kids, especially for the 14-day remote memories, and perhaps pushing the remove > recent difference for this condition towards 0. The authors might be able to address this analytically; for example, does the remote > recent difference in the univariate data at day 14 correlate with day 14 memory?

      Thank you for pointing this out. Indeed, there was a significant relationship between remote > recent difference in the univariate data and memory performance at day 14 across both age group (see Figure 4C-D). The performance of all participants including children was above chance level for remote trial on day 14. In addition, although number of remote trials was lower in children (18 trials on average) in comparison to adults (22 trials on average), we believe that the number of remote trials was not too low or different across groups for the contrast.

      (5) Some of the univariate results reporting is a bit strange, as they are relying upon differences between retrieval of 1- vs. 14-day memories in terms of the recent vs. report difference, and yet don't report whether the regions are differently active for recent and remote retrieval. For example, in Figure 3A, neither anterior nor posterior hippocampus seem to be differentially active for recent vs. remote memories for either age group (i.e., all data is around 0). This difference from zero or lack thereof seems important to the message - is that correct? If so, can the authors incorporate descriptions of these findings?

      Thank you for this valuable input. When examining recent and remote retrieval separately, indeed both the anterior and posterior regions of the hippocampus exhibited significant activation from zero in adults (all p < .0003FDRcorr) and children (all p < .014FDRcorr, except for recent posterior hippocampus) during all delays. We include this information in the manuscript (see p. 17) and add it to the supplementary materials (Figure S2, Table S7).

      (6) Please provide more details about the choices available for locations in the 3AFC task. (1) Were they different each time, or always the same? If they are always the same, could this be a motor or stimulus/response learning task? (2) Do the options in the 3AFC always come from the same area - in which case the participant is given a clue as to the gist of the location/memory? Or are they sometimes randomly scattered across the image (in which case gist memory, like at a delay, would be sufficient for picking the right option)? Please clarify these points and discuss the logic/impact of these choices on the interpretation of the results.Response: Thank you for pointing this out. During learning and retrieval, we employed the 3AFC (Three-Alternative Forced Choice) task.

      The choices for locations varied across scenes while remained the same across time within individuals. There were 18 different key locations for the objects, distributed across the stimulus set. This means the locations of the objects were quite heterogeneous and differed between objects. The location of the object within the task was presented once during encoding and remained consistent throughout learning. Given the location heterogeneity, we believe our task cannot be reduced to a mere “stimulus/response learning task” but is more accurately described as an object-location associations task.

      Similar to the previous description, the options for the 3AFC task did not originate from the same area, as there were 18 different areas in total. The three choice options were distributed equally: so sometimes the “correct” answer was the left option, sometimes in the middle option, or sometimes the right option. Therefore, we believe that the 3AFC task did not provide clues to the location but required detailed and precise memory of the location. Moreover, the options were not randomly scattered but rather presented close together in the scene, demanding a high level of differentiation between choices.

      Taking all the above into consideration, we assert that precise object-location associative memory is necessary for a correct answer. We have added this information to the manuscript (p. 9).

      (7) Often p values are provided but test statistics, effect sizes, etc. are not - please include this information. It is at times hard to tell whether the authors are reporting main effects, interactions, pairwise comparisons, etc.

      Thank you for bringing this to our attention. We realize that including this information in the Tables may not be the most straightforward approach. Therefore, we have incorporated the test statistics, effect sizes, and related details into the text of the results section for clarity.

      (8) There are not enough methodological details in the main paper to make sense of the results. For example, it is not clear from reading the text that there are new object-location pairs learned each day.

      Thank you for pointing this out. We have added this information to the main manuscript. Additionally, we have emphasized this information in the text referring to Figure 1B.

      (9) The retrieval task does not seem to require retrieval of the scene itself, and as such it would be helpful for the authors to both explain their reasoning for this task to measure reinstatement. Strictly speaking, participants could just remember the location of the object on the screen. Was it verified that children and adults were recalling the actual scene rather than just the location (e.g. via self-report)? It's possible that there may be developmental differences in the tendency to reinstate the scene depending on e.g., their strategy.

      Thank you for highlighting this important point. Indeed, the retrieval task included explicit instructions for participants to recall and visualize the scene associated with the object presented during the fixation time window. Participants were also instructed to recollect the location of the object within the scene. Since the location was contextually bound to the scene and each object had a unique location in each scene, the location of the object was always embedded in the specific scene context. We have added this information to both the Methods and Results sections.

      From the self-reports of the participants (which unfortunately were not systematically collected on all occasions), they indicated that when they could recall the scene and the location due to the memory of stories created during strategic encoding, it aided their memory for the scene and location immensely. We also concur with your observation that children and young adults may differ in their ability to reinstate scenes, depending on the success of their employed recall strategies. This task was conducted with an awareness of potential developmental differences in the ability to form complex contextual memories. Our elaborative learning procedure was designed to minimize these differences. It is important to note though we did not expect children to achieve performance levels fully comparable to adults. There may indeed be developmental differences in reinstatement, such as due to differences in knowledge availability and accessibility (Brod, Werkle-Bergner, & Shing, 2013). We think that these differences may underlie our findings of neural reinstatement. This is now discussed in p. 34-35, 39-43 of the manuscript.

      (10) In general I found the Introduction a bit difficult to follow. Below are a few specific questions I had.

      a. At points findings are presented but the broader picture or take-home point is not expressed directly. For example, lines 112-127, these findings can all be conceptualized within many theories of consolidation, and yet those overarching frameworks are not directly discussed (e.g., that memory traces go from being more reliant on the hippocampus to more on the neocortex). Making these connections directly would likely be helpful for many readers.

      Thank you for bringing this to our attention. We have incorporated a summary of the general frameworks of memory consolidation into the introduction. This addition outlines how our summarized findings, particularly those related to memory consolidation for repeatedly learned information, align with these frameworks (see lines 126-138, 146-150).

      b. Lines 143-153 - The comparison of the Tompary & Davachi (2017) paper with the Oedekoven et al. (2017) reads like the two analyses are directly comparable, but the authors were looking at different things. The Tompary paper is looking at organization (not reinstatement); while the Oedekoven et al. paper is measuring reinstatement (not organization). The authors should clarify how to reconcile these findings.

      Thank you for highlighting this aspect. We have revised how we present the results from Tompary & Davachi (2017). This study examined memory reorganization for memories both with and without overlapping features, and it observed higher neural similarity for memories with overlapping features over time. The authors also explored item-specific reinstatement for recent and remote memories by assessing encoding-retrieval similarity. Since Oedekoven et al. (2017) utilized a similar approach, their results are comparable in terms of reinstatement. We have updated and expanded our manuscript to clarify the parallels between these studies (see lines 157-162).

      c. Line 195-6: I was confused by the prediction of "stable involvement of HC over time" given the work reviewed in the Introduction that HC contribution to memory tends to decrease with consolidation. Please clarify or rephrase.

      Drawing on the Contextual Binding Theory (Yonelinas et al., 2019), as well as the Multiple Trace Theory (Nadel et al., 2000) and supported for instance by evidence from Sekeres et al. (2018), we hypothesized that detailed contextual memories formed through repeated and strategic learning would strengthen the specificity of these memories, resulting in consistent hippocampal involvement for successfully recalled contextualized detailed memories. We have included additional explanatory information in the manuscript to clarify this hypothesis (see lines 217-219).

      d. Lines 200-202: I was a bit confused about this prediction. Firstly, please clarify whether immediate reinstatement has been characterized in this way for kids versus adults. Secondly, don't adults retain gist more over long delays (with specific information getting lost), at least behaviourally? This prediction seems to go against that; please clarify.

      Thank you for raising this important point. Indeed, there are no prior studies that examined memory reinstatement over extended durations in children. The primary existing evidence suggests that neural specificity or patterns of neural representations in children can be robustly observed, while neural selectivity or univariate activation in response to the same stimuli tends to mature later (i.e., Fandakova et al., 2019). Bearing this in mind and recognizing that such neural patterns can be observed in both children and adults, we hypothesized that adults may form stronger detailed contextual memories compared to children. By employing strategies such as creating stories, adults might more easily recall scenes without the need to resort to forming generic or gist-like memories (for example, 'a red fox was near the second left pine tree in a spring green forest'). This assumption aligns with the Fuzzy Trace Theory (Reyna & Brainerd, 1995), which posits that verbatim memories can be created without the extraction of a gist.

      Conversely, we hypothesized that children, due to the ongoing maturation of associative and strategic memory components (as discussed in Shing et al., 2008 and 2010), which are dependent respectively on the hippocampus (HC) and the prefrontal cortex (PFC), would be less adept at creating, retaining, and extracting stories to aid their retrieval process. This could result in them remembering more generic integrated information, like the relationship between a fox and some generic image of a forest. We have added explanatory information to the manuscript to elucidate these points (see lines 225-230).

      Reviewer #1 (Recommendations For The Authors):

      (1) For Figure 3, I would highly recommend changing the aesthetics for the univariate data - at least on my screen they appear to be open boxes with solid vs. dashed lines, and as such look identical to the recent vs. remove distinction in Figure 2B. It also doesn't match the legend for me, which shows the age groups having purple vs. yellow coloring.

      Thank you for this observation. We have adjusted Figure 2 (now Figure 3) (please refer to p. 14) accordingly, now utilizing purple and yellow colors to distinguish between the age groups.

      (2) Lines 329-330, it is not true that "all" indices were significant from zero but this is only apparent if you read the next sentence. Please rephrase to clarify. e.g., "All ... indices with a few exceptions ... were significantly..."?

      Based on the above suggestions and considering our primary focus on time-related changes in scene-specific reinstatement, we will refrain from further interpreting the relative expression of individual scene-specific indices against 0. Consequently, we have removed this information from our analysis.

      (3) It is challenging to interpret some of the significance markers, such as those in Figure 3. For example what effects are being denoted by the asterisks and bars above vs. below the data on panel D? Please clarify and/or note in the legend.

      We have included a note in the legend to clarify the meaning of all significance markers. In addition, we decided to state any significant main and interaction effects in the figure rather that to use significance markers.

      (4) For Figures 2 and 3, only the meaning of error bars is described in the caption. It is not explained in the caption what the boxes, lines, and points denote. Please clarify.

      Thank you for highlighting this. We have added explanations to the figure's annotation for clarity. Please note, that considering other review’s suggestions figure plots may have been adjusted or changed, resulting in adjustment of the explanations in the figure annotation.

      (5) How were recent and remote interspersed relative to one another? The text says that each run had 10 recent and 10 remote pairs, presented in a "pseudo-random order" - not clear what that (pseudo) means in this case. Please clarify.

      Thank you for raising this point. We provide this information in the Methods section “Materials and Procedure”: 'The jitters and the order of presentation for recent and remote items were determined using OptimizeXGUI (Spunt, 2016), following an exponential distribution (Dale, 1999). Ten unique recently learned pairs (from the same testing day) and ten unique remotely learned items (from Day 0) were distributed within each run (in total three runs) in the order as suggested by the software as the most optimal. There were three runs with unique sets of stimuli each resulting in thirty unique recent and thirty unique remote stimuli overall.'

      (6) Figure 1A, second to last screen on the learning cycles row - what would be presented to participants here, one of these three emojis? What does the sleepy face represent? I see some of these points were mentioned in the methods, but additional clarification in the caption would be helpful.

      Thank you for highlighting this. We have included this information in the figure caption. Specifically, the sleepy face symbol in the figure denotes a 'missed response'.

      (7) Not clear how the jittered fixation time between object presentation and scene test is dealt with in representational similarity analyses.

      Thank you for pointing this out. Beta estimates were obtained from a Least Square Separate (LSS) regression model. Each event was modeled with their respective onset and duration and, as such, one beta value was estimated per event (with the lags between events differing from trial to trial). We have edited the corresponding section (see p. 53).  

      (8) It was a little bit strange to have used anterior vs posterior HPC ROIs separately in univariate analysis but then combined them for multivariate. There are many empirical and theoretical motivations for looking at item-specific and category reinstatement in anterior and posterior HPC separately, so I was surprised not to see this. Please explain this reasoning.

      Thank you for pointing this out. We agree with the reviewer and included the anterior and posterior HC ROIs into the multivariate analysis. Please see the revised results section (pp. 13-15).

      (9) The term "neural specificity" is introduced (line 164) without explanation; please clarify.

      Thank you for bringing this to our attention. The term ‘neural specificity’ refers to the neural representational distinctiveness of information. In other words, ‘neural specificity,’ as defined by Fandakova et al. (2019), refers to the distinctiveness of neural representations in the regions that process that sensory input. We decided, however to refrain from using this term and instead to use neural representational distinctiveness, which is more self-explaining and was also introduced in the manuscript.

      (10) Age range is specified as 5-7 years initially (line 187) and then 6-7 years (line 188).

      We have corrected the age range in line 188 to '5 to 7 years.'

      Reviewer #2 (Public Reviews):

      Schommartz et al. present a manuscript characterizing neural signatures of reinstatement during cued retrieval of middle-aged children compared to adults. The authors utilize a paradigm where participants learn the spatial location of semantically related item-scene memoranda which they retrieve after short or long delays. The paradigm is especially strong as the authors include novel memoranda at each delayed time point to make comparisons across new and old learning. In brief, the authors find that children show more forgetting than adults, and adults show greater engagement of cortical networks after longer delays as well as stronger item-specific reinstatement. Interestingly, children show more category-based reinstatement, however, evidence supports that this marker may be maladaptive for retrieving episodic details. The question is extremely timely both given the boom in neurocognitive research on the neural development of memory, and the dearth of research on consolidation in this age group. Also, the results provide novel insights into why consolidation processes may be disrupted in children. Despite these strengths, there are quite a few important design and analytical choices that derail my enthusiasm for the paper. If the authors could address these concerns, this manuscript would provide a solid foundation to better understand memory consolidation in children.

      We thank the reviewer for both the positive and critical appraisal of our paper.

      Reviewer #2 (Recommendations For The Authors):

      (1) My greatest concern is the difference in memory accuracy that emerges as soon as immediate learning, which undermines the interpretation of any consolidation-related differences. This concern is two-fold. The authors utilize an adaptive learning approach in which participants learn to criteria or stop after 4 repetitions. This type of approach leads to children seeing the stimuli more often during learning compared to adults, which on its own could have consequences for consolidation-related neural markers. Specifically, within adults theoretical and empirical work this shows that repeating information can actually lead to more gist-like representations, which is the exact profile the children are showing. While there could be a strength to this approach because it allows for equivocal memory, the decision to stop repetitions before criteria means that memory performance is significantly lower in the children, which again could have consequences to consolidation-related neural markers. First, the authors do not show any of the learning-related data which would be critical to assess the impact of this design choice. Second, there are likely differences in memory strength at the delay, making it extremely difficult to determine if the neural markers reflect development, worse memory strength, or both. This issue is compounded by the use of a 3-AFC paradigm, wherein "correct responses" included in the analysis could contain a significant amount of guessing responses. I think a partial solution to this problem is to analyze the RT data and include them in the analyses or use a drift-diffusion modeling approach to get more precise estimates of memory strength to control for this feature. An alternative is to sub-select participants in each group to have a sample matched on performance (including # of repetitions) and re-run all the analyses in this sub-sample. Without addressing these concerns it is near impossible to interpret the presented data.

      Thank you for highlighting this point.

      Firstly, we believe that our approach, involving strategic and repeated learning coupled with feedback, enhances the formation of detailed contextual memories. The retrieval procedure also emphasized the need for detailed memory for location. These are critical differences in experimental procedure from previous studies, which enhanced the importance of detailed representations and likely reduced the likelihood of forming gist-like memories.

      Indeed, we ceased further learning after the fourth repetition. Extensive piloting, where we initially stopped after the seventh repetition, showed no improvement beyond the fourth repetition. In fact, performance tended to decline due to fatigue. Therefore, we limited the number of repetition cycles to the point where an improvement of performance was still feasible. Even though children exhibited lower final learning performance overall, we believe our procedure facilitated them to reach their maximal performance within the experimental setup.

      To address the reviewer’s concern, we included learning data to illustrate the progression of learning (see Fig. 1C, pp. 9-10 in Results).

      When interpreting the retention rates, it is important to note that we reported retention rates only for items that were correctly learned (100%) on day 0, day 1, and day 14. This approach meant that different participants had varying numbers of items learned correctly. However, this method enabled us to address our primary question: whether memory consolidation, based on all items initially encoded successfully, is comparably robust between the groups. To simultaneously examine the change in retention rate slopes over time for recent (30 minutes after learning), short delay (one night after) remote, and long delay (two weeks after) remote items, we conducted a separate analysis of retention rates for recent items on days 1 and 14. After observing no differences between sessions in both age groups, we combined the data for recent items. This allowed us to investigate how the slope of memory retention for initially correctly learned items (with a baseline of 100%) changes over time. We observed a significant interaction between item type (recent, short delay remote, long delay remote) and group. Analysis of this interaction revealed significantly less robust memory consolidation across all delay times for children compared to young adults. The figures have been adjusted accordingly to incorporate the baseline of 100% correct performance.

      Following your suggestion, we also employed the drift diffusion model approach to characterize memory strength, calculating drift rate, boundary and non-decision time parameters. We added the results to the Supplementary Materials (section S2.1, Figure S1).

      Generally, our findings indicate lower overall drift rate in children when considering all items that had to be learned. We also observed that adults show higher slope of decline in drift rate in short and long delay, which, however, are characterized still by higher memory strength compared to children. Both age groups required similar amount of evidence to make decision, which declined with delay. It may indicate an adaptation of weaker memory. Further, we observed lesser non-decision time in children compared to adults, potentially suggesting less error checking or less thorough processing and memory access through strategy in children.

      Overall, these results indicate weaker memory strength in children as a quantitative measure. It may nevertheless stem from qualitatively different memory representations that children form, as our RSA findings suggest. We believe that our neural effect reflects the effect of interest (i.e., worse memory due to lower memory strength in children). When controlled for, it will take away variance of interest in the neural data. Therefore, we will refrain from including memory strength into the model. However, we will include mean RT as the indicator of general response tendencies.

      Given that the paper is already very complex and long, we opted to add the diffusion model results to the Supplementary Materials (section S2.1, Fig. S1), while discussing the results in the discussion (p. 35).

      (2) More discussion of the behavioral task should be included in the results, in particular the nature of the adaptive learning paradigm including the behavioral results as well as the categorical nature of the memoranda. Without this information, it is difficult for the reader to understand what category-level versus item-level reinstatement reflects.

      Thank you for this valuable input. We have incorporated this information into the results section. Please refer to pp. 9-10, 12, 14, 21, 25-26 for the added details.

      (3) Some of the methods for the reinstatement analysis were unclear to me or warranted further adjustment. I believe the authors compared the scene against all other scenes. I believe it would be more appropriate to only compare this against scenes drawn from the same category as opposed to all scenes. Secondly, from my reading, it seems like the reinstatement was done during the scene presentation, rather than the object presentation in which they would retrieve the scene. I believe the reinstatement results would be much stronger if it was captured during the object presentation rather than the re-presentation of the scene. Or perhaps both sets of analyses should be included.

      We apologize for the confusion regarding the analysis method.

      During the review process we have improved the description of this analysis and hope it is easier to follow now. In short, we used both approaches (within and between categories) to suit different goals (I.e., measuring scene-reinstatement and gist-like reinstatement).

      Both types of reinstatement were assessed during the fixation cross to avoid confounds with the object itself being on the screen. We only used the scene window in one analysis (scene-reinstatement index) as a neural template to track its pre-activation during the fixation. So, as the reviewer suggests, our rationale is that the reinstatement indeed starts taking place at the short object presentation window, but importantly, extends to the fixation window. We added this clarifying information to the results section (see p. 21-27).

      (4) For the univariate results, it was unclear to me when reading the results whether they were focusing on the object presentation portion of the trial or the scene presentation portion of the trial. Again, I think the claims of reinstatement related activity would be stronger if they accounted for the object presentation period.

      Thank you for pointing this out. Indeed, the univariate results were based on the object presentation time window. We added this information to the results section (Fig. 3, pp. 14, 16).

      (5) Further, given the univariate differences shown across age groups, the authors should re-run all analyses for the RSA controlling for mean activation within the ROI.

      Thank you for highlighting this. We re-ran all analysis for the RSA controlling for the mean activation within the ROI. The results remained unchanged. We have added this information to the results section as well as in Table S8 and S11 in the Supplementary Materials for further details.

      (6) The authors should include explicit tests across groups for their brain-behavior analyses if they want to make any developmentally relevant interpretations of the data. Also, It would be helpful to include similar analyses to those using the univariate signals, and not just the RSA results.

      Following reviewer’s suggestion, we included brain-behavior analyses for univariate data as well as RSA data with explicit tests across groups. These can be found in the Results Section pp. 18-20, 28-32. Due to the interdependence of predefined ROIs and to avoid running a high number of correlation tests, we employed the partial least square correlation analysis for this purpose. This approach focuses on multivariate links between specified Regions of Interest (ROIs) and fluctuations in memory performance over short and long delays across different age cohorts. We argue that this multivariate strategy offers a more comprehensive understanding of the relationships between brain metrics across various ROIs and memory performance, given their mutual dependence and connectivity (refer to Genon et al. (2022) for similar discussions).

      (7) There could be dramatic differences in memory processing across 5-7 year olds. I know the sample is a little small for this, but I would like to see regressions done within the middle childhood group in addition to the across-group comparisons.

      We have included information detailing the relationship between memory retention rate and age within the child group (refer to p. 13). In the child group, both recent and short delay remote memory improved with age. However, the retention rate for long-delayed memory did not show a significant improvement with increasing age in children.

      (8) I am concerned that the authors used global-signal as a regressor in their first-level analyses, given that there could be large changes in the amount of univariate activation that occurs across groups. This approach can lead to false positives and negatives that obscure localized differences. The authors should remove this term, and perhaps use the mean sum of the white matter or CSF to achieve the noise regressor they wanted to include.

      We understand the reviewers' concerns. However, we believe that our approach is recommended for the pediatric population. Specifically, Graff et al., 2021, found that global signal regression is a highly efficacious denoising technique in their study of 4 to 8-year-old children. This technique was previously suggested for adults by Ciric et al., 2017, and the benefits in terms of motion and physiological noise removal outweigh the potential costs of removing some signal of interest, as indicated by Behzadi et al., 2007. Additionally, we incorporated the six anatomic component-based noise correction (CompCor) to account for WM and CSF signals, as recommended in the pediatric literature.

      (9) The authors discuss the relationship between hippocampal reactivation and worse memory through the lens of Schapiro et al., but a new paper by Tanriverdi et al came out in JOCN recently that is more similar to the authors' findings.

      Thank you for highlighting the recent paper by Tanriverdi et al. in JOCN, which aligns closely with our findings. We appreciate the suggestion and agree that exploring this alignment could further enrich our discussion on the relationship between hippocampal reactivation and memory retention. We incorporated this work in our revised manuscript .

      Minor Comments

      - I was surprised that the authors did not see any differences in univariate signals for memory retrieval as a function of development, as much of the prior work has shown differences (for example work by Tracy Riggins). I believe this contrast should be highlighted in the discussion.

      - Given the robust differences in sleep patterns across childhood and the role of sleep in systems consolidation framework, I think this feature should be highlighted in either the introduction or discussion.

      - Could the authors report on differences (or lack of differences) in head motion across the groups, and if they are different whether they could include them as a confounding variable.

      I believe we included six motion parameters and their derivatives into the model

      Thank you for your comments.

      First, prior works on univariate signals of memory retrieval focused mostly on remembered vs forgotten contrasts, while in our study we focused on remote vs recent in short and long delay only for correctly remembered items. This can partially explain the results. We highlighted this information in the discussion session.

      Second, we agree with the reviewer that sleep patterns across childhood should be addressed in the analysis. Therefore, we incorporated them in the discussion section.

      Third, indeed head motion were included in the analysis as confounding variables, as adding them is highly recommended for the developmental population (e.g., Graff et al. 2021). As an example, we observed higher framewise displacement in children compared to adults, t = -16(218), p <. 001, as well as in translational y, t = -2.33(288), p = .02.

      Reviewer #3 (Public Reviews):

      Summary:

      This study aimed to understand the neural correlates of memory recall over short (1-day) and long (14-days) intervals in children (5-7 years old) relative to young adults. The results show that children recall less than young adults and that this is accompanied by less activation (relative to young adults) in brain networks associated with memory retrieval.

      Strengths:

      This paper is one of few investigating long-term memory (multiple days) in a developmental population, an important gap in the field. Also, the authors apply a representational similarity analysis to understand how specific memories evolve over time. This analysis shows how the specificity of memories decreases over time in children relative to adults. This is an interesting finding.

      We thank the reviewer for the appraisal of our manuscript.

      Weaknesses:

      Overall, these results are consistent with what we already know: recall is worse in children relative to adults (e.g., Cycowicz et al., 2001) and children activate memory retrieval networks to a lesser extent than adults (Bauer et al, 2017).

      It seems that the reduced activation in memory recall networks is likely associated with less depth of memory encoding in children due to inattentiveness, reduced motivation, and documented differences in memory strategies. In regard to this, there was consideration of IQ, sex, and handedness but these were not included as covariates as they were not significant although I note p<.16 suggests there was some level of association nonetheless. Also, IQ is measured differently for the children and adults so it's not clear these can be directly contrasted. The authors suggest the instructed elaborative encoding strategy is effective for children and adults but the reference in support of this (Craik & Tulving, 1975) does not seem to support this point.

      Thank you for your review, and we appreciate your valuable feedback. Here are our responses and clarifications:

      Regarding the novelty of the results in terms of mentioned existent literature, we believe that in contrast to Cycowicz et al. (2001) and Bauer et al (2017), etc, we assess not only immediate memory after encoding with semantic judgement of abstract associations, but add to these findings investigating consolidation-related changes in complex associative and contextual information in much under investigated sample of 5-to-7-year-old preschoolers. With this we are able to infer also how neural representations of children change over time, providing invaluable insights into knowledge formation in this developmental cohort.

      With this, the observed age differences are not so of primary importance, as time-related changes in mnemonic representations observed in children.

      Regarding the assumption of inattentiveness in children, we want to emphasize that the experimenter was present throughout the learning process, closely supervising the children. We observed prompt responses to every trial in children and noted an increase in accuracy over the encoding-learning cycles, leading us to conclude that the children were indeed attentive to the task. The observed accuracy improvement across learning cycles  indicates increase in remembered information. Furthermore, we took measures to ensure their engagement, including extensive training in both verbal and computerized versions to ensure that they understood and actively created stories to support their learning.

      We collected motivation data after each task execution in children, and the results indicated that they scored high in motivation. Children not only completed the tasks but also expressed their willingness to participate in subsequent appointments, highlighting their active involvement in the study.

      The observed differences in the efficiency of strategy utilization were expected, given developmental differences in the associative and strategic components of memory in children, as noted in prior research (Shing, 2008, 2010).

      We appreciate your point about IQ, sex, and handedness. These variables were indeed included in the behavioral models, and mean brain activation was also included in the brain data models, addressing the potential influence of these factors on our results.

      While it's true that we applied different tests to measure IQ in children and adults, these tests targeted comparable subtests that addressed similar cognitive constructs. As the final IQ values are standardized, we believe it is appropriate to compare them between the two groups.

      Lastly, we agree that the citation Craik & Tulving, 1975 supports the notion of effectiveness of instructed elaborative learning only in adults, but not in children. For this purpose, we added relevant literature for the child cohort (i.e., Pressley, 1982; Pressley et al., 1981; Shing et al., 2008).

      Reviewer #3 (Recommendations For The Authors):

      An additional point for the authors to consider is that the hypotheses were uncertain. The first is that prefrontal, parietal, cerebellar, occipital, and PHG brain regions would have greater activation over time in adults and not children - which is very imprecise as this is basically the whole brain. Moreover, brain imaging data may be in opposition to this prediction: e.g., the hippocampus has a delayed maturational pattern beyond 5-yrs (e.ge., Canada 2019; Uematsu 2012) and some cortical data predicts earlier development in these regions.

      Thank you for your feedback, and we appreciate your insights regarding our hypotheses.

      The selection of our regions of interest (ROIs) was guided by prior literature that has demonstrated the interactive involvement of multiple brain areas in memory retrieval and consolidation processes. Additionally, our recent work utilizing multivariate partial least square correlation analysis (Schommartz, 2022, Developmental Cognitive Neuroscience) has indicated that unique profiles derived from the structural integrity of multiple brain regions are differentially related to short and long-delay memory consolidation.

      Indeed, the literature suggests that the hippocampus may exhibit a more delayed maturational pattern extending into adolescence, as supported by studies such as Canada (2019) and Uematsu (2012), etc. We added this information as well as findings from the literature on cortical development to be more balanced in our review of the literature.

      Given this complexity, we believe it is important to emphasize in our discussion that both the medial temporal lobe, including the hippocampus, and cortical structures, as well as the cerebellum, undergo profound neural maturation. We highlight these nuances in our revised manuscript to provide a more comprehensive perspective on the developmental differences in memory retention over time.

      The writing was challenging to follow - consider as an example on page 9 the sentence that spans 10 lines of text.

      Thank you for bringing this to our attention. We have carefully reviewed the manuscript and have made efforts to streamline the text, ensuring that sentences are not overly long or complex to improve readability and comprehension.

      I found the analysis (and accompanying figures) a bit of a data mine - there are so many results that are hard to digest and in other cases highly redundant one from the other. This may be resolved in part by moving redundant findings to the supplemental. Some were hard to follow - so when there is a line between recent and recent data, that seems confusing to connect data that, I believe, are different sets of items. Later scatterplots (Fig 7) have pale yellow dots that I had a hard time seeing.

      Thank you for bringing up your concerns regarding the analysis and figures in our manuscript. We have carefully considered your feedback and made several improvements to address these issues.

      To alleviate the challenge of digesting numerous results, we have taken steps to enhance clarity and reduce redundancy. Specifically, we have moved some of the redundant findings to the supplementary sections, which should help streamline the main manuscript and make it more reader friendly.

      Regarding the line between 'recent' and 'recent data,' figure were transformed to a clearer version. Furthermore, we have improved the visibility of certain elements, such as the pale-yellow dots in the scatterplots (Fig 1, 2, 4, etc. ), to ensure that readers can better discern the data points.

    1. cience deals only with matter and energy, that is, those things that can be measured, and it cannot arrive at knowledge about values and morality. This is one reason why our scientific understanding of the mind is so limited, since thoughts, at least as we experience them, are neither matter nor energy. The scientific method is also a form of empiricism. An empirical method for acquiring knowledge is one based on observation, including experimentation, rather than a method based only on forms of logical argument or previous authorities.

      This is a tricky topic to wrap my head around because as they are stating that our thoughts that we constantly isn't matter or energy. I believe that they are stating that the y usually have to use experiments based on observation but to what extent does that limit the results of an experiment?

    1. By comparing model outputs in head-to-head matchups, an Elo system can be used to generate a ranking of the models and outputs relative to each-other. These different methods of ranking are normalized into a scalar reward signal for training.

      Human's as judge of relative performance of two LLMs, scores become reward signal.

    1. Author response:

      The following is the authors' response to the current reviews.

      Reviewer #1 (Public Review):

      I'll begin by summarizing what I understand from the results presented, and where relevant how my understanding seems to differ from the authors' claims. I'll then make specific comments with respect to points raised in my previous review (below), using the same numbering. Because this is a revision I'll try to restrict comments here to the changes made, which provide some clarification, but leave many issues incompletely addressed.

      As I understand it the main new result here is that certain recurrent network architectures promote emergence of coordinated grid firing patterns in a model previously introduced by Kropff and Treves (Hippocampus, 2008). The previous work very nicely showed that single neurons that receive stable spatial input could 'learn' to generate grid representations by combining a plasticity rule with firing rate adaptation. The previous study also showed that when multiple neurons were synaptically connected their grid representations could develop a shared orientation, although with the recurrent connectivity previously used this substantially reduced the grid scores of many of the neurons. The advance here is to show that if the initial recurrent connectivity is consistent with that of a line attractor then the network does a much better job of establishing grid firing patterns with shared orientation.

      Beyond this point, things become potentially confusing. As I understand it now, the important influence of the recurrent dynamics is in establishing the shared orientation and not in its online generation. This is clear from Figure S3, but not from an initial read of the abstract or main text. This result is consistent with Kropff and Treves' initial suggestion that 'a strong collateral connection... from neuron A to neuron B... favors the two neurons to have close-by fields... Summing all possible contributions would result in a field for neuron B that is a ring around the field of neuron A.' This should be the case for the recurrent connections now considered, but the evidence provided doesn't convincingly show that attractor dynamics of the circuit are a necessary condition for this to arise. My general suggestion for the authors is to remove these kind of claims and to keep their interpretations more closely aligned with what the results show.

      We would like to clarify that the simple (flexible) attractor is a weaker condition than the ones previously used to align grid cells. However, by no means we claim that it is a necessary condition for grid maps to align. Other architectures, certainly more complex ones but perhaps even simpler ones, can align grid maps in our model.

      Major (numbered according to previous review)

      (1) Does the network maintain attractor dynamics after training? Results now show that 'in a trained network without feedforward Hebbian learning the removal of recurrent collaterals results in a slight increase in gridness and spacing'. This clearly implies that the recurrent collaterals are not required for online generation of the grid patterns. This point needs to be abundantly clear in the abstract and main text so the reader can appreciate that the recurrent dynamics are important specifically during learning.

      We respectfully disagree with the interpretation of this result. In this model cells self-organize to produce aligned grid maps. In such systems it makes sense to characterize the equilibrium states of the system. We turned learning off in Figure S3 to show that the recurrent connections have a contractive effect on grid spacing. But artificially turning off learning means that one can no longer make claims about the equilibrium states of the system, since it can no longer evolve freely. In a functional network, if the recurrent attractor is removed, the system will evolve towards poor gridness and no alignment no matter what the starting point is, as also shown in Figure S3. Several experimental results invite us to think of grid cells as the equilibrium solution of a series of constraints that is ready to change at any time: Barry et al, 2012; Yoon et al, 2013; Carpenter et al, 2015; Krupic et al, 2015; Krupic et al, 2018; Jayakumar et al, 2019.

      One point in which we perhaps agree with the reviewer is that information about the hexagonal maps is kept in the feedforward weights, while behavior and the recurrent collaterals act as constraints of which these feedforward weights are the equilibrium solution.

      (2) Additional controls for Figure 2 to test that it is connectivity rather than attractor dynamics (e.g. drawing weights from Gaussian or exponential distributions). The authors provide one additional control based on shuffling weights. However, this is far from exhaustive and it seems difficult on this basis to conclude that it is specifically the attractor dynamics that drive the emergence of coordinated grid firing.

      Again, we do not claim that this is the only way in which grid maps can be aligned, but it is the simplest one proposed so far. We were asked if it was the specific combination of input weights to a cell rather than the organization provided by the attractor which resulted in aligned maps. By shuffling the inputs to a cell we keep the combination of inputs invariant but lose the attractor architecture. Since grid maps in this new situation are not aligned, we can safely conclude that it is not the combination of inputs per se, but the specific organization of these inputs that allows grid alignment. It is not fully clear to us what ‘exhaustive’ means in this context.

      (3) What happens if recurrent connections are turned off? The new data clearly show that the recurrent connections are not required for online grid firing, but this is not clear from the abstract and is hard to appreciate from the main text.

      This point is related to (1). Absent this constraint, Figure S3 shows that the system evolves toward larger spacing, with poorer gridness and no alignment.

      (4) This is addressed, although the legend to Fig. S2D could provide an explanation / definition for the y-axis values.

      We have now added: Mean input fields are the sum of all inputs of a given kind entering a neuron at a given moment in time, averaged across cells and time.

      (5) Given the 2D structure of the network input it perhaps isn't surprising that the network generates 2D representations and this may have little to do with its 1D connectivity. The finding that the networks maintain coordinated grids when recurrent connections are switched off supports my initial concern and the authors explanation, to me at least, remain confusing. I think it would be helpful to consider that the connectivity is specifically important for establishing the coordinated grid firing, but that the online network does not require attractor dynamics to generate coordinated grid firing.

      This point is related to (1) and (3). We agree with the reviewer that the input lies within a 2D manifold, but this is not something that the network has to find out because it receives one datapoint of information at a time. This alone is not enough to form aligned grid cells, since each grid cell can find a roughly equivalent equilibrium in a different direction. It is only the constraint imposed by the recurrent collaterals that aligns grid maps, and, as we show, this constraint does not need to be constructed ad hoc to work on 2D, as previously thought. When recurrent connections are switched off, the system evolves toward unaligned grid maps, with larger spacing and lower gridness. Regarding the results obtained after modifying the network and turning off learning, we think they have a very limited scope (in this case showing the contractive effect of recurrent collaterals on grid spacing), given that the system is artificially being kept out of its natural equilibrium.

      (6) Clarity of the introduction. This is somewhat clearer, but I wonder if it would be hard for someone not familiar with the literature to accurately appreciate the key points.

      We have made our best effort to improve the clarity of the introduction.

      (7) Remapping. I'm not sure why this is ill posed. It seems the proposed model can not account for remapping results (e.g. Fyhn et al. 2007). Perhaps the authors could just clearly state this as a limitation of the model (or show that it can do this).

      We view our model as perfectly consistent with Fyhn et al, 2007. Remapping is not triggered by the network itself, though, but rather by a re-arrangement of the inputs requiring the network to learn new associations. Different simulations of the same model with identical parameters can be interpreted as remapping experiments.

      Reviewer #3 (Public Review):

      Summary:

      The paper proposes an alternative to the attractor hypothesis, as an explanation for the fact that grid cell population activity patterns (within a module) span a toroidal manifold. The proposal is based on a class of models that were extensively studied in the past, in which grid cells are driven by synaptic inputs from place cells in the hippocampus. The synapses are updated according to a Hebbian plasticity rule. Combined with an adaptation mechanism, this leads to patterning of the inputs from place cells to grid cells such that the spatial activity patterns are organized as an array of localized firing fields with hexagonal order. I refer to these models below as feedforward models.

      It has already been shown by Si, Kropff, and Treves in 2012 that recurrent connections between grid cells can lead to alignment of their spatial response patterns. This idea was revisited by Urdapilleta, Si, and Treves in 2017. Thus, it should already be clear that in such models, the population activity pattern spans a manifold with toroidal topology. The main new contributions in the present paper are (i) in considering a form of recurrent connectivity that was not directly addressed before. (ii) in applying topological analysis to simulations of the model. (iii) in interpreting the results as a potential explanation for the observations of Gardner et al.

      We wanted to note that we do not see this paper as proposing an alternative to the attractor hypothesis, given that we use attractor networks, but rather as an exploration of possibilities not yet visited by this hypothesis.

      Strengths:

      The exploration of learning in a feedforward model, when recurrent connectivity in the grid cell layer is structured in a ring topology, is interesting. The insight that this not only align the grid cells in a common direction but also creates a correspondence between their intrinsic coordinate (in terms of the ring-like recurrent connectivity) and their tuning on the torus is interesting as well, and the paper as a whole may influence future theoretical thinking on the mechanisms giving rise to the properties of grid cells.

      Weaknesses:

      (1) In Si, Kropff and Treves (2012) recurrent connectivity was dependent on the head direction tuning, in addition to the location on a 2d plane, and therefore involved a ring structure. Urdapilleta, Si, and Treves considered connectivity that depends on the distance on a 2d plane. The novelty here is that the initial connectivity is structured uniquely according to latent coordinates residing on a ring.

      The recurrent architectures in the cited works are complex and require arranging cells in a 2D manifold to calculate connectivity based on their relative 2D position. In other words, the 2D structure is imprinted in the architecture, as in our 2D condition. In this work the network is much simpler and only requires neighboring relations in 1D. Such relationships have been shown to spontaneously emerge in the hippocampal formation (Pastalkova et al, 2008; Gonzalo Cogno et al, 2024).

      (2) The paper refers to the initial connectivity within the grid cell layer as one that produces an attractor. However, it is not shown that this connectivity, on its own, indeed sustains persistent attractor states. Furthermore, it is not clear whether this is even necessary to obtain the results of the model. It seems possible that (possibly weaker) connections with ring topology, that do not produce attractor dynamics but induce correlations between neurons with similar locations on the ring would be sufficient to align the spatial response patterns during the learning of feedforward weights.

      Regarding the first part of the comment, the recurrent collaterals create one or at times multiple bumps of activity in the network so that neighboring (interconnected) cells activate together. An initial random state of activity rapidly falls into this dynamic, constrained by the attractor. To us this is not surprising given that this connectivity is the classical means of creating a continuous attractor. Perhaps there is some deeper meaning in this comment that we are not fully grasping.

      Regarding the second part of the comment, we fully agree with the reviewer. We are presenting what so far is the simplest connectivity that can align grid maps, but by no means we claim that it is the simplest possible one. Regarding weaker connections with ring topology, we show in Figure S2 that a ring attractor with too weak or too strong connections is incapable of aligning grids, since a balance between feedforward and feedback inputs is required.

      (3) Given that all the grid cells are driven by an input from place cells that span a 2d manifold, and that the activity in the grid cell network settles on a steady state which is uniquely determined by the inputs, it is expected that the manifold of activity states in the grid cell layer, corresponding to inputs that locally span a 2d surface, would also locally span a 2d plane. The result is not surprising. My understanding is that this result is derived as a prerequisite for the topological analysis, and it is therefore quite technical.

      We understand that the reviewer is referring to the motivation behind studying local dimensionality. We agree that the topological analysis approach is quite technical, but it provides unique insights. The theorem of closed surfaces, which allows us to deduce a toroidal topology from Betti numbers (1,2,1), only applies to closed surfaces. One thus needs to show that the point cloud is a surface (local dimensionality of 2) and is closed (no borders or singularities). If borders or singularities were present, a toroidal topology could not be claimed from these Betti numbers. Thus, it is a crucial step of the analysis.

      (4) The modeling is all done in planar 2d environments, where the feedforward learning mechanism promotes the emergence of a hexagonal pattern in the single neuron tuning curve. Under the scenario in which grid cell responses are aligned (i.e. all neurons develop spatial patterns with the same spacing and orientation) it is already quite clear, even without any topological analysis that the emerging topology of the population activity is a torus.

      However, the toroidal topology of grid cells in reality has been observed by Gardner et al also in the wagon wheel environment, in sleep, and close to boundaries (whereas here the analysis is restricted to the a sub-region of the environment, far away from the walls). There is substantial evidence based on pairwise correlations that it persists also in various other situations, in which the spatial response pattern is not a hexagonal firing pattern. It is not clear that the mechanism proposed in the present paper would generate toroidal topology of the population activity in more complex environments. In fact, it seems likely that it will not do so, and this is not explored in the manuscript.

      We agree that our work was constrained to exploration in 2D and that the situations posed by the reviewer are challenging, but we do not see them as unsurmountable. The wagon wheel shows a preservation of toroidal topology locally, where the behavior of the animal is rather 2-dimensional. Globally, hexagonal maps are lost, which is compatible with some flexibility in the way grid maps are formed. If sleep meant that all inputs are turned off, our model would predict a dynamic dictated by the architecture (1D for the ring attractor, for example), but we do not really know that this is the case. In the future, we intend to explore predictive activity along the linear attractor, which could both result in path integration and in some level of preservation of the activity when inputs are completely turned off.

      Regarding boundaries, as we have argued before, the cited work chooses to filter away what looks like more than half of the overall explained variance through PCA, and this is only before applying a non-linear dimensionality reduction algorithm. It is specifically shown that the analyzed components are the ones with global periodicity throughout the environment. Thus, it is conceivable that through this approach, local irregularities found only at the borders are disregarded in favor of a clearer global picture. While using a different methodology, our approach follows a similar spirit, albeit with far less noisy data.

      (5) Moreover, the recent work of Gardner et al. demonstrated much more than the preservation of the topology in the different environments and in sleep: the toroidal tuning curves of individual neurons remained the same in different environments. Previous works, that analyzed pairwise correlations under hippocampal inactivation and various other manipulations, also pointed towards the same conclusion. Thus, the same population activity patterns are expressed in many different conditions. In the present model, this preservation across environments is not expected. Moreover, the results of Figure 6 suggest that even across distinct rectangular environments, toroidal tuning curves will not be preserved, because there are multiple possible arrangements of the phases on the torus which emerge in different simulations.

      We agree with this observation. A symmetry in our implementation results in the fact that only ~50% of times the system falls in the preferred solution, and the rest of the times it falls into other local minima. Whether this result is at odds with current observations can be debated on the basis of probabilities. However, we believe that the symmetry we found is purely circumstantial, and that it can be broken by elements such as head direction modulation or other ingredients used to achieve path integration. In other words, we acknowledge that symmetry is an issue of the implementation we show here (which has been kept as simple as possible to serve as a proof-of-principle) but we do not think that it is a defining feature of flexible attractors in general. We expect that future implementations that incorporate path integration capabilities will not present this kind of symmetry in the space of solutions.

      Regarding the rigid phase translation across modalities, while this effect is very clear in Gardner et al, it is less so in other datasets. The analyses shown in Hermansen et al (2024) can rather be interpreted as somewhere in the way between perfect rigid translation and fully randomized phases across navigation modalities.

      (6) In real grid cells, there is a dense and fairly uniform representation of all phases (see the toroidal tuning of grid cells measured by Gardner et al). Thus, the highly clustered phases obtained in the model (Fig. S1) seem incompatible with the experimental reality. I suspect that this may be related to the difficulty in identifying the topology of a torus in persistent homology analysis based on the transpose of the matrix M.

      We partly agree with this observation and note that a pattern of ordered phases is an issue not only for the 1D attractor but also for the 2D one, which appears much more uniform than in experimental data. The low number of neurons we used for computational economy and the full connectivity could be key ingredients to generate these phase patterns. To show that this is not a defining feature of flexible attractors, apart from the fact that these patterns appear also with non-flexible 2D architectures, we included in Figure S1 simulations with ‘fragmented 1D’ architectures. In this case the architecture is a superposition of 20 random 1D stripe-like attractors. While the alignment of maps achieved with this architecture is almost at the same level as the one obtained with 1D and 2D attractors, the phases are much more similar to what has been observed experimentally, and less uniform than what is obtained with 2D attractors.

      (7) The motivations stated in the introduction came across to me as weak. As now acknolwledged in the manuscript, attractor models can be fully compatible with distortions of the hexagonal spatial response patterns - they become incompatible with this spatial distortions only if one adopts a highly naive and implausible hypothesis that the attractor state is updated only by path integration. While attractor models are compatible with distortions of the spatial response pattern, it is very difficult to explain why the population activity patterns are tightly preserved across multiple conditions without a rigid two-dimentional attractor structure. This strong prediction of attractor models withstood many experimental tests - in fact, I am not aware of any data set where substantial distortions of the toroidal activity manifold were observed, despite many attempts to challenge the model. This is the main motivation for attractor models. The present model does not explain these features, yet it also does not directly offer an explanation for distortions in the spatial response pattern.

      Some interesting examples are experiments in 3D, where grid cells presumably communicate with each other through the same recurrent collaterals, but global periodicity is lost and only some local order is preserved even away from boundaries (Ginosar et al, 2021; Grieves et al, 2021). While these datasets have not been explored using topological analysis, they serve as strong motivators to understanding 2D grid cells as one equilibrium solution that arises under some set of constraints, but belongs to a wider space of possible solutions that may arise as well under more flexible constraints. Even (and especially) if one adheres to the hypothesis that grid cells are pre-wired into a 2D torus, a concept like flexible attractors might become useful to understand how their activity is rendered in 3D. Another strong motivation is our lack of understanding of how a perfectly balanced 2D structure is formed and maintained. Simpler architectures could be thought of as alternatives, but also as an intermediate step towards it.

      Regarding the rigid phase translation across modalities, while this effect is very clear in Gardner et al, it is less so in other datasets. The analyses shown in Hermansen et al (2024) can rather be interpreted as somewhere in the way between perfect rigid translation and fully randomized phases.

      In a separate point, although it might not be strictly related to the comment, we do not fully share the idea that persistent activity patterns during sleep are necessary or sufficient conditions for attractor dynamics, although we do agree that attractors could be the mechanism behind them and any alternative is at least as complex as attractors. On the necessity side, attractors in the hippocampus are not constantly engaged (Wills et al, 2005). For sufficiency, one should prove that no other network is capable of reproducing the phenomenon, and to our best knowledge we are still far from that point.

      (8) There is also some weakness in the mathematical description of the dynamics. Mathematical equations are formulated in discrete time steps, without a clear interpretation in terms of biophysically relevant time scales. It appears that there are no terms in the dynamics associated with an intrinsic time scale of the neurons or the synapses (a leak time constant and/or synaptic time constants). I generally favor simple models without lots of complexity, yet within this style of modelling, the formulation adopted in this manuscript is unconventional, introducing a difficulty in interpreting synaptic weights as being weak or strong, and a difficulty in interpreting the model in the context of other studies.

      We chose to keep the model as simple as possible and in the line of previous publications developing it. However, we see the usefulness of putting it in what in the meantime has become a canonical framework. Fortunately this has been done by D’Albis and Kempter (2017). In our simplified version of the model there is no leak term and adaptation on its own brings down activity in the absence of input, but we agree that such a term could be added, albeit not without modifying all other network parameters.

      In my view, the weaknesses discussed above limit the ability of the model, as it stands, to offer a compelling explanation for the toroidal topology of grid cell population activity patterns, and especially the rigidity of the manifold across environments and behavioral states. Still, the work offers an interesting way of thinking on how the toroidal topology might emerge.

      Reviewer 1:

      Reviewer #1 (Recommendations For The Authors):

      See comments above. In addition:

      (1) Abstract: '...interconnected by a two-dimensional attractor guided by path integration'. This is unclear. I think the intended meaning might be along the lines of '...their being computed by a 2D continous attractor that performs path integration'?

      'path integration allowing for no deviations from the hexagonal pattern' This is incorrect. Local modulation of the gain of the speed input to a standard CAN would distort the grid pattern.

      'Using topological data analysis, we show that the resulting population activity is a sample of a torus' Activity in the model?

      'More generally, our results represent a proof of principle against the intuition that the architecture and the representation manifold of an attractor are topological objects of the same dimensionality, with implications to the study of attractor networks across the brain' I guess one might hold this intuition, but it strikes me as obvious that if you impose an sufficiently strong n-dimensional input on a network then it it's activity could have the same dimensionality. I don't really see this as being a point worth highlighting. Perhaps the more interesting point, it that during learning the recurrent connectivity aligns the grid fields of neurons in the network, and this may be a specific function of the 1D attractor dynamcis, although I don't think the authors have made this point convincing.

      'The flexibility of this low dimensional attractor allows it to negotiate the geometry of the representation manifold with the feedforward inputs'. See above for comments on the use of 'negotiate'.

      'while the ensemble of maps preserves features of the network architecture'. I don't understand this. What is the 'ensemble of maps' and what are the features referred to.

      We have reviewed the abstract considering these points. Regarding the ‘strong n-dimensional input’, we want to point out that it is not the input itself that generates a torus (the no attractor condition does not lead to a torus) but rather the interplay between the input and the attractor.

      ‘Perhaps the more interesting point …’, we do not fully understand how this sentence deviates from our own conclusions. We here show that a strong n-dimensional input is not enough to align grid cells (produce a n-torus), it is the interplay between inputs and attractor dynamics that does so, even if the attractor is not n-dimensional in terms of architecture.

      The ensemble of maps refers to the transpose of the population activity matrix, where each point in the cloud is a map, and the features refer to the persistent homology.

      (2) The manuscript still fails to clarify the difference between a model that path integrates in two dimensions and a model that simply represents information with a given dimensionality. The argument that it's surprising that a network with 1D architecture represents a higher dimensional input strikes me as incorrect and an unnecessary attempt to argue for conceptual importance. At least to me this isn't surprising. It would be surprising if the 1D network could path integrate but this doesn't seem to be the case.

      In response to the reviewer’s concerns, we have made clear in the introduction and discussion that this model has no path integration capabilities, although we aim to develop a model capable of path integration using the kind of simple architecture presented here. We want to highlight here that equating attractor dynamics with path integration would be a conceptual mistake.

      (3) Other wording also seems to make unnecessary conceptual claims. E.g. The repeated use of 'negotiate' implies some degree of intelligence, or at least an exchange of information, that isn't shown to exist. I wonder if more precise language could be used? As I understand it the dimensionality is bounded by the inputs on the one hand, and the network connectivity on the other, with the actual dimensionality being a function of the recurrent and feedforward synaptic weights. There's clearly some role for the relative weights and the properties of plasticity rules, but I don't see any evidence for a negotiation.

      An interesting observation in Figure S2 is that grid maps are aligned only if the relative strength of feedforward and recurrent inputs is similar. If one of them can impose over the other, grid maps do not align. This equilibrium can metaphorically be thought of as a negotiation instance, where the negotiation is an emergent property of the system rather than something happening at an individual synapse.


      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Reviewer #1 (Recommendations For The Authors):

      Major

      (1) What is the evidence that, after training, the 1D network maintains its attractor dynamics when feedforward inputs are active? If the claim is that it does then it's important to provide evidence, e.g. responses to perturbations, or other tests. The alternative is that after training the recurrent inputs are drowned out by the feed forward spatial inputs.

      We agree with the reviewer on the importance of this point. In our model, networks are always learning, and the population activity represented by aligned grid maps in a trained network is a dynamic equilibrium that emerges from the interplay between feedforward and collateral constraints. If Hebbian learning is turned off, one gets a snapshot of the network at that moment. We now show in Fig. S3 that in a trained network without feedforward Hebbian learning the removal of recurrent collaterals results in a slight increase in gridness and spacing. The expansion is due to the fact that, as we argue in the Results section, the attractor has a contractive effect on grid maps, which could relate to observations in novel environments (Barry et al, 2007). If Hebbian learning is turned on in the same situation, the maps, no longer constrained by the attractor, drift toward the equilibrium solution of the ‘No attractor’ condition, with significantly larger spacing, no alignment and lower individual gridness. Thus, the attractor is the force preventing them to do so when feedforward Hebbian learning is on.

      These observations point to the key role played by the attractor not only in forming but also in sustaining grid activity. The dynamic equilibrium framework fits well known properties of the system, such as its capacity to recalibrate very fast (Jayakumar et al, 2019), although this particular feature cannot be modeled with the current version of our model, that lacks path integration capabilities.

      (2) It would be useful to include additional control conditions for Figure 2 to test the hypothesis that it is simply connectivity, rather than attractor dynamics, that drives alignment.

      This could be achieved by randomly assigning strengths to the recurrent connections, e.g. drawing from exponential or Gaussian distributions.

      We agree and have included Fig. S2b-d, showing that the same distribution of collateral input weights entering each neuron, but lacking the 1D structure provided by the attractor, does not align grid maps. This is achieved by shuffling rows in the connectivity matrix, while avoiding self connections to make the comparison fair (self connections substantially alter the dynamic of the network, making it much more rigid). We observed that individual grid maps have very low gridness levels, even lower than in the no-attractor condition. In contrast, they have levels of population gridness slightly higher than in the no-attractor condition, but closer to 0 than to levels achieved with attractors. Our interpretation of these results is that irregular connectivity achieves some alignment in a few arbitrary directions and/or locations, which improves the coordination between maps at the expense of impairing rather than improving hexagonal responses of individual cells. Such observations stand in clear context to what is observed with continuous attractors with an orderly architecture.

      These results suggest that it is the structure of the attractor that allows grid cells to be aligned rather than the mere presence of recurrent collateral connections.

      (3) It seems conceivable that once trained the recurrent connections would no longer be required for alignment. Can this be evaluated by considering what happens if the recurrent connections are turned off after training (or slowly turned off during training)? Does the network continue to generate aligned grid fields?

      This point has elements in common with point 1. As we argued in that response, the attractor has two main effects on grid maps: it aligns them and it contracts them. If the attractor is turned off, feedforward Hebbian learning progressively drives maps toward the solution obtained for the ‘no attractor’ condition, characterized by maps with larger spacing, poorer gridness and lack of alignment.

      (4) After training what is the relative strength of the recurrent and feedforward inputs to each neuron?

      Both recurrent and feedforward synaptic-strength matrices are normalized throughout training, so that the overall incoming synaptic strength to each neuron is invariant. Because of this, although individual feed-forward and recurrent input fields vary dynamically, their average is constant, with the exception of the very first instances of the simulation, before a stable regime is reached in grid-cell activity levels. We have included Fig. S2d, showing the dynamics of feedforward and recurrent mean fields throughout learning as well as their ratio. In addition, Fig. S2a shows that the strength of recurrent relative to feedforward inputs is an important parameter, since alignment is only obtained in an intermediate range of ratios.

      (5) It would be helpful to also evaluate the low dimensional structure of the input to the network. Assuming it has a 2D structure, as it represents 2D space, can an explanation be provided for why it is surprising that the trained network also encodes activity with a 2D manifold? It strikes me that the more interesting finding might relate to alignment of the grids rather than claims about a 1D attractor encoding a 2D representation. Either way, stronger evidence and clearer discussion would be helpful.

      The reviewer is correct in assuming that the input has a 2D structure, that can be represented by a sheet embedded in a high dimensional space and thus has the Betti numbers [1,0,0]. The surprising element in our results is that we are showing for the first time that the population activity of an attractor network is constrained to a manifold that results from the negotiation between the architecture of the attractor and the inputs, and does not merely reflect the former as previously assumed. In this sense, the alignment of grid cells by a 1D attractor is an instance of the more general case that 1D attractors can encode 2D representations.

      It is certainly the case that the 2D input is a strong constraint pushing population activity toward a 2D manifold. However, the final form of the 2D manifold is strongly constrained by the attractor, as shown by the contrast with the no-attractor condition (a 2D sheet, as in the input, vs a torus when the attractor is present). The 1D attractor is able to flexibly adapt to the constraint posed by the inputs while doing its job (as demonstrated in previous points), which results in 2D grid maps aligned by a 1D attractor. Generally speaking, this work provides a proof of principle demonstrating that the topology of the attractor architecture and the manifold of the population activity space need not be identical, as previously widely assumed by the attractor community, and need not even have the same dimensionality. Instead, a single architecture can potentially be applied to many purposes. Hence, our work provides a valuable new perspective that applies to the study of attractors throughout the brain.

      (6) The introduction should be clearer about the different types of grid model and the computations they implement. E.g. The authors' previous model generates grid fields from spatial inputs, but if my understanding is correct it isn't able to path integrate. By contrast, while the many 2D models with continuous attractor dynamics also generate grid representations, they do so by path integration mechanisms that are computationally distinct from the spatial transformation implemented by feedforward models (see also general comments above).

      We agree with the reviewer and have made this point explicit in the introduction.

      (7) A prediction from continuous attractor models is that when place cells remap the low dimensional manifold of the grid activity is unaffected, except that the location of the activity bump is moved. It strikes me as important to test whether this is the case for the model presented here (my intuition is that it won't be, but it would be important to establish either way).

      We want to emphasize that our model is a continuous attractor model, so the question regarding the difference between what our model and continuous attractor network models predict is an ill-posed one. One of our main conclusions is precisely that attractors can work in a wider spectrum of ways than previously thought.

      In lack of a better definition, our multiple simulations could be thought of as training in different arenas. It is true that in our model maps take time to form, but this is also the case in novel environments (Barry et al, 2007 ), and continuous attractor models exclusively or strongly guided by self motion cues struggle to replicate this phenomenon. We show that the current version of our model accepts multiple solutions (in practice four but conceptually infinite countable), all of them resulting in a torus for the population activity (i.e. the same topology or low dimensional manifold). It is not clear to us how easy it would be to differentiate between most of these solutions in experimental data, with only incomplete information. This said, incorporating a symmetry-breaking ingredient to the model, for example related to head direction modulation, could perhaps lead to the prevalence of a single type of solution. We intend to explore this possibility in the future in order to add path-integration capabilities to the system, as described in the discussion.

      (8) The Discussion implies that 1D networks could perform path integration in a manner similar to 2D networks. This is a strong claim but isn't supported by evidence in the study. I suggest either providing evidence that this is the case for models of this kind or replacing it with a more careful discussion of the issue.

      The current version of our model has no path integration capabilities, as is now made explicit in the Introduction and Discussion. In addition, we have now made clear that the idea that path integration could perhaps be implemented using 1D networks is, although reasonable, purely speculative.

      Minor

      (1) Introduction. 'direct excitatory communication between them'. Suggest rewording to 'local synaptic interactions', as communication can also be purely inhibitory (e.g. Burak and Fiete, 2009) or indirect by excitation of local interneurons (e.g. Pastoll et al., Neuron, 2013).

      We agree and have adopted this phrasing.

      (2) The decision to focus the topology analysis on the 60 cm wide central square appears somewhat arbitrary. Are the irregularities referred to a property of the trained networks or would they also emerge with analysis of simulated ideal data? Can more justification be expanded and supplementary analyses be shown when the whole arena is used?

      In practical terms, a subsampling of the data to around half was needed because the persistent homology packages struggle to handle large amounts of data, especially in the calculation of H2. We decided to cut a portion of contiguous pixels in the open field at least larger than the hexagonal tile representing the whole grid population period (as represented in Figure 6). Leaving the borders aside was a logical choice since it is known that the solution at the borders is particularly influenced by the speed anisotropy of the virtual rat (see Si, Kropff & Treves, 2012), in a way that mimics how borders locally influence grid maps in actual rats (Krupic et al, 2015). The specific way in which our virtual rat handles borders is arbitrary and might not generalize. A second issue around borders is that maps are differently affected by incomplete smoothing, although this issue does not apply to our data because we did not smooth across neighboring pixels. In sum, considering the central 60 cm wide square was sufficient to contain the whole torus and a reasonable compromise that would allow us to perform all analyses in the part of the environment less influenced by boundaries.

      (3) It could help the general reader to briefly explain what a persistence diagram is.

      This is developed in the Appendix, but we have now added a reference to it and a brief description in the main text.

      (4) For the analyses in Figure 3-4, and separately for Figure 5, it might help the reader to provide visualizations of the low dimensional point cloud.

      All these calculations take place in the original high-dimensional point cloud. Doing them in a reduced space would be incorrect because there is no dimensionality reduction technique that guarantees the preservation of topology. In Figure 7 we reduce the dimensionality of data but emphasize that it is only done for visualization purposes, not to characterize topology. We also point out in this Figure that the same non-linear dimensionality reduction technique applied to objects with identical topology yields a wide variety of visualizations, some of them clear and some less clear. This observation further exemplifies why one cannot assume that a dimensionality-reduction technique preserves topology, even for a low-dimensional object embedded in a high-dimensional space.

      (5) The detailed comparison of the dynamics of each model is limited by the number of data points. Why not address this by new simulations with more neurons?

      We are not sure we understand this comment. In Figure 2, the dynamics for each model are markedly different. These are averages over 100 simulations. We are not sure what benefit would be obtained from adding more neurons. Before starting this work we searched for the minimal number of neurons that would result in convergence to an aligned solution in 2D networks, which we found to be around 100. Optimizing this parameter in advance was important to reduce computational costs throughout our work.

      (6) Could the variability in Figure 7 also be addressed by increasing the number of data points?

      As we argued in a previous point, there is no reason to expect preservation of topology after applying Isomap. We believe this lack of topology preservation to be the main driver of variability.

      (7) Page/line numbers would be useful.

      We agree. However, the text is curated by biorxiv which, to our best knowledge, does not include them.

      Reviewer 2:

      Reviewer #2 (Recommendations For The Authors):

      (1) I highly suggest that the author rewrite some parts of the Results. There are lots of details which should be put into the Methods part, for example, the implementation details of the network, the analysis details of the toroidal topology, etc. It will be better to focus on the results part first in each section, and then introduce some of the key details of achieving these results, to improve the readability of the work.

      This suggestion contrasts with that of Reviewer #1. As a compromise, we decided to include in the Results section only methodological details that are key to understanding the conclusions, and describe everything else in the Methods section.

      (2) 'Progressive increase in gridness and decrease in spacing across days have been observed in animals familiarizing with a novel environment...' From Fig.2c I didn't see much decrease. The authors may need to carry out some statistical test to prove this. Moreover, even the changes are significant, this might be not the consequence of the excitatory collateral constraint. To prove this, the authors may need to offer some direct evidence.

      We agree that the decrease is not evident in this figure due to the scale, so we are adding the correlation in the figure caption as proof. In addition, several arguments, some related to new analyses, demonstrate that the attractor contracts grid maps. First, the ‘no attractor’ condition has a markedly larger spacing compared to all other conditions (Fig. 2a). We also now show that spacing monotonically decreases with the strength of recurrent relative to feedforward weights, in a way that is rather independent of gridness (Fig. S2a). Second, as we now show in Fig. S2b-d, simulations with a shuffled 1D attractor, such that the sum of input synapses to each neuron are the same as in the 1D condition but no structure is present, lead to a spacing that is mid-way between the ‘no attractor’ condition and the conditions with attractors. Third, as we now show in Fig. S3a, turning off both recurrent connections and feedforward learning in a trained network results in a small increase in spacing. Fourth, as we now show in Fig. S3b, turning off recurrent connections while feedforward learning is kept on increases grid spacing to levels comparable to those of the ‘no attractor’ condition. All these elements support a role of the attractor in contracting grid spacing.

      (3) Some of the items need to be introduced first before going into details in the paper, for instance, the stipe-like attractor network, the Betti number, etc.

      We have added in the Results section a brief description and references to full developments in the Appendix.

      Reviewer 3 (Public Review):

      (1) It is not clear to me that the proposal here is fundamentally new. In Si, Kropff and Treves (2012) recurrent connectivity was dependent on the head direction tuning and thus had a ring structure. Urdapilleta, Si, and Treves considered connectivity that depends on the distance on a 2d plane.

      In the work of Si et al connectivity is constructed ad-hoc for conjunctive cells to represent a torus, it depends on head-directionality but also on the distance in a 2D plane. The topology of this architecture has not been assessed, but it is close to the typical 2D ‘rigid’ constraint. In the work of Urdapilleta et al, the network is a simple 2D one. The difference with our work is that we focus on the topology of the recurrent network and do not use head-direction modulation. In this context, we prove that a 1D network is enough to align grid cells and, more generally, we provide a proof of principle that the topology of the architecture and the representation space of an attractor network do not need to be identical, as previously assumed by the attractor community. These two important points were neither argued, speculated nor self-evident from the cited works.

      (2) The paper refers to the connectivity within the grid cell layer as an attractor. However, would this connectivity, on its own, indeed sustain persistent attractor states? This is not examined in the paper. Furthermore, is this even necessary to obtain the results in the model? Perhaps weak connections that do not produce an attractor would be sufficient to align the spatial response patterns during the learning of feedforward weights, and reproduce the results? In general, there is no exploration of how the strength of collateral interactions affects the outcome.

      The reviewer makes several important points. Local excitation combined with global inhibition is the archetypical architecture for continuous attractors (see for example Knierim and Zhang, Annual review of neuroscience, 2012). Thus, in the absence of feedforward input, we observe a bump of activity. As in all continuous attractors, this bump is not necessarily ‘persistent’ and instead is free to move along the attractor.

      We cannot prove that there is not a simpler architecture that has the same effect as our 1D or 1DL conditions, and we think that there are some interesting candidates to investigate in the future. What we now prove in new Fig. S2b-d is that it is not the strength of recurrent connections themselves, but instead the continuous attractor structure that aligns grid cells in our model. To demonstrate this, we shuffle incoming recurrent connections to each neuron in the 1D condition (while avoiding self-connections for fairness), and show that training does not lead to grid alignment. We also show in Fig. S1 that an architecture represented by 20 overlapping 1DL attractors, each formed by concatenating 10 random cells, aligns grid cells to levels slightly lower but similar to the 1D or 1DL attractors. This architecture can perhaps be considered as simpler to build in biological terms than all the others, but it is still constituted by continuous attractors.

      The strength of recurrent collaterals, or more precisely the recurrent to feedforward ratio, is crucial in our model to achieve a negotiated outcome from constraints imposed by the attractor and the inputs. We now show explicit measures of this ratio in Fig. S2, as well as examples showing that an imbalance in this ratio impairs grid alignment. When the ratio is too high or too low, both individual and population gridness are low. Interestingly, grid spacing behaves differently, decreasing monotonically with the relative strength of recurrent connections.

      (3) I did not understand what is learned from the local topology analysis. Given that all the grid cells are driven by an input from place cells that spans a 2d manifold, and that the activity in the grid cell network settles on a steady state that depends only on the inputs, isn't it quite obvious that the manifold of activity in the grid cell layer would have, locally, a 2d structure?

      The dimensionality of the input is important, although not the only determinant of the topology of the activity. The recurrent collaterals are the other determinant, and their architecture is a crucial feature. For example, as we now show in Figure S2b-d, shuffled recurrent synaptic weights fail to align grid cells. In the 1D condition, if feedforward inputs were absent, the dynamics of the activity would be confined to a ring. The opposite condition is our ‘no attractor’ condition, in which activity in the grid cell layer mimics the topology of inputs, a 2D sheet (and not a torus). It is in the intermediate range, when both feedforward and recurrent inputs are important, that a negotiated solution (a torus) is achieved.

      The analyses of local dimensionality and local homology of Figure 3 are crucial steps to demonstrate toroidal topology. According to the theorem of classification of closed surfaces, global homology is not enough to univocally define the topology of a point cloud, and thus this step cannot be skipped. The step is aimed to prove that the point cloud is indeed a closed surface.

      (4) The modeling is all done in planar 2d environments, where the feedforward learning mechanism promotes the emergence of a hexagonal pattern in the single neuron tuning curve. This, combined with the fact that all neurons develop spatial patterns with the same spacing and orientation, implies even without any topological analysis that the emerging topology of the population activity is a torus.

      We cannot agree with this intuition. In the ‘no attractor’ condition, individual maps have hexagonal symmetry with standardized spacing, but given the lack of alignment the population activity is not a closed surface and thus not a torus. It can rather be described as a 2D sheet embedded in a high dimensional space, a description that also applies to the input space.

      While it is rather evident that an ad hoc toroidal architecture folds this 2D population activity into a torus, it is less evident and rather surprising that 1D architectures have the same capability. This is the main novelty in our work.

      (5) Moreover, the recent work of Gardner et al. demonstrated much more than the preservation of the topology in the different environments and in sleep: the toroidal tuning curves of individual neurons remained the same in different environments. Previous works, that analyzed pairwise correlations under hippocampal inactivation and various other manipulations, also pointed towards the same conclusion. Thus, the same population activity patterns are expressed in many different conditions. In the present model, the results of Figure 6 suggest that even across distinct rectangular environments, toroidal tuning curves will not be preserved, because there are multiple possible arrangements of the phases on the torus which emerge in different simulations.

      We agree with the reviewer in the main point, although the recently found ring activity in the absence of sensory feedback (Gonzalo Cogno et al, 2023) suggests that what is happening in the EC is more nuanced than a pre-wired torus. Solutions in Figure 6 are different ways of folding a 1D strip into a torus, with or without the condition of periodicity in the 1D strip. Whether or not these different solutions would be discernible from one another in a practical setup is not clear to us. For example, global homology, as addressed in the Gardner paper, is the same for all these solutions. Furthermore, while our solutions of up to order 3 are highly discernable, higher order solutions, potentially achievable with other network parameters, would be impossible to discern by eye in representations similar to the ones in Figure 6. In addition, while we chose to keep our model in the simplest possible form as a clear proof of principle, new elements introduced to the model such as head directionality could break the symmetry and lead to the prevalence of one preferred solution for all simulation replicates. We plan to investigate this possibility in the future when attempting to incorporate path-integration capabilities to the model.

      (6) In real grid cells, there is a dense and fairly uniform representation of all phases (see the toroidal tuning of grid cells measured by Gardner et al). Here the distribution of phases is not shown, but Figure 7 suggests that phases are non uniformly represented, with significant clustering around a few discrete phases. This, I believe, is also the origin for the difficulty in identifying the toroidal topology based on the transpose of the matrix M: vectors representing the spatial response patterns of individual neurons are localized near the clusters, and there are only a few of them that represent other phases. Therefore, there is no dense coverage of the toroidal manifold that would exist if all phases were represented equally. This is not just a technical issue, however: there appears to be a mismatch between the results of the model and the experimental reality, in terms of the phase coverage.

      As mentioned in the results section, Figure 7 is meant for visualization purposes only, and serves more as cautionary tale regarding the imprevisible risks of non-linear dimensionality reduction than as a proof of the organization of activity in the network. Isomap is a non-linear transformation that deforms each of our solutions in a unique way so that, while all have the topology of a torus embedded in a high dimensional space, only a few of them exhibited one of two possible toroidal visualizations in a 3D Isomap reduction. Isomap, as well as all other popular dimensionality reduction techniques, provide no guarantee of topology invariance. A better argument to judge the homogenous distribution of phases is persistent homology, which identifies relatively large holes (compared to the sampling spacing) in the original manifold embedded in a high dimensional space. In our case, persistent homology identified only two holes significantly larger than noise (the two cycles of a torus) and one cavity in all conditions that included attractors. Regarding the specific distribution of phases in different conditions, however, see our reply below.

      (7) The manuscript makes several strong claims that incorrectly represent the relation between experimental data and attractor models, on one hand, and the present model on the other hand. For the latter, see the comments above. For the former, I provide a detailed list in the recommendations to the authors, but in short: the paper claims that attractor models induce rigidness in the neural activity which is incompatible with distortions seen in the spatial response patterns of grid cells. However, this claim seems to confuse distortions in the spatial response pattern, which are fully compatible with the attractor model, with distortions in the population activity patterns, which would be incompatible with the attractor model. The attractor model has withstood numerous tests showing that the population activity manifold is rigidly preserved across conditions - a strong prediction (which is not made, as far as I can see, by feedforward models). I am not aware of any data set where distortions of the population activity manifold have been identified, and the preservation has been demonstrated in many examples where the spatial response pattern is disrupted. This is the main point of two papers cited in the present manuscript: by Yoon et al, and Gardner et al.

      First of all, we would like to note that our model is a continuous attractor model. Different attractor models have different outcomes, and one of the main conclusions of our manuscript is that attractors can do a wider range of operations than previously thought.

      We agree with the reviewer that distortions in spatial activity (which speak against a purely path-integration guided attractor) should not be confused with distortions in the topology of the population activity (which would instead speak against the attractor dynamics itself). We have rephrased these observations in the manuscript. In fact, we believe that the capacity of grid cells to present distorted maps without a distortion of the population activity topology, as shown for example by Gardner and colleagues, could result from a tension between feedforward and recurrent inputs, the potential equilibriums of which our manuscript aims to characterize.

      (8) There is also some weakness in the mathematical description of the dynamics. Mathematical equations are formulated in discrete time steps, without a clear interpretation in terms of biophysically relevant time scales. It appears that there are no terms in the dynamics associated with an intrinsic time scale of the neurons or the synapses, and this introduces a difficulty in interpreting synaptic weights as being weak or strong. As mentioned above, the nature of the recurrent dynamics within the grid cell network (whether it exhibits continuous attractor behavior) is not sufficiently clear.

      We agree with the reviewer that our model is rather simple, and we value the extent to which this simplicity allows for a deep characterization. All models are simplifications and the best model in any given setup is the one with the minimum amount of complexity necessary to describe the phenomenon under study. We believe that to understand whether or not a 1D continuous attractor architecture can result in a toroidal population activity, a biophysically detailed model, with prohibitive computational costs, would have been unnecessarily complex. This argument does not intend to demerit biophysically detailed models, which are capable of addressing a wider range of questions regarding, for example, the spiking dynamics of grid cells, which cannot be addressed by our simple model.

      Reviewer #3 (Recommendations For The Authors):

      The work points to an interesting scenario for the emergence of toroidal topology, but the interpretation of this idea should be more nuanced. I recommend reconsidering the claims about limitations of the attractor theory, and acknowledging the limitations of the present theory.

      I don't see the limitations mentioned above as a reason to reject the ideas proposed in this manuscript, for two main reasons: first, additional research might reveal a regime of parameters where some issues can be resolved (e.g. the clustering of phases). In addition, the mechanism described here might act at an early stage in development to set up initial dynamics along a toroidal manifold, while other mechanisms might be responsible for the rigidity of the toroidal manifold in an adult animal. But all this implies that the novelty in the present manuscript is weaker than implied, the ability to explain experimental observations is more limited than implied, and these limitations should be acknowledged and discussed.

      I recommend reporting on the distribution of grid cell phases and, if indeed clustered, this should be discussed. It will be helpful to explore whether this is the reason for the difficulty in identifying the toroidal topology based on the collection of spatial response patterns (using the transpose of the matrix M).

      Ideally, a more complete work would also explore in a more systematic and parametric way the influence of the recurrent connectivity's strength on the learning, and whether a toroidal manifold emerges also in non-planar, such as the wagon-wheel environment studied in Gardner et al.

      Part of these recommendations have been addressed in the previous points (public review). Regarding the reason why the transpose of M does not fully recapitulate architecture with our conservative classification criteria, we believe that there is no reason why it should in the first place. We view the fact that the transpose of M recapitulates some features of the architecture as a purely phenomenological observation, and we think it is important as a proof that M is not exactly the same for the different conditions. We imagined that if M matrices were exactly the same this could be due to poor spatial sampling by our bins. Knowing that they are intrinsically different is important even if the reason why they have these specific features is not fully clear to us.

      Although we do not think that the distribution of phases is related to the absence of a cavity in the transpose of M or to the four clusters found in Isomap projections, it remains an interesting question that we did not explore initially. We are now showing examples of the distribution of phases in Figure S1. We observed that in both 2D and 1D conditions phases are distributed following rather regular patterns. Whether or not these patterns are compatible with experimental observations of phase distribution is to our view debatable, given that so far state-of-the-art techniques have only allowed to simultaneously record a small fraction of the neurons belonging to a given module. This said, we think that it is important to note that ordered phase patterns are an anecdotal outcome of our simulations rather than a necessary outcome of flexible attractors or attractors in general. To prove this point, we simulated a condition with a new architecture represented by the overlap of 20 short 1DL attractors, each recruiting 10 random neurons from the pool of 100 available ones.

      The rest of the parameters of the simulations were identical to those in the other conditions.

      By definition, the topology of this architecture has Betti numbers [20,0,0]. We show in Figure S1 that this architecture aligns grid cells, with individual and population gridness reaching slightly lower levels compared to the 1D condition. However, the distribution of phases of these grid cells has no discernible pattern. This result is an arbitrary example that serves as a proof-of-principle to show that flexible attractors can align grid cells without exhibiting ordered phases, not a full characterization of the outcome of this type of architecture, which we leave for future work. For the rest of our work, we stick to the simplest versions of 1D architectures, which allow for a more in-depth characterization.

      The wagon-wheel is an interesting case in which maps loose hexagonal symmetry although the population activity lies in a torus, perhaps evidencing the tension between feedforward and recurrent inputs and suggesting that grid cell response does not obey the single master of path integration. If we modeled it with a 1D attractor, we believe the outcome would strongly depend on virtual rat trajectory. If the trajectory was strictly linear, the population activity would be locally one-dimensional and potentially represented by a ring. Instead, if the trajectory allowed for turns, i.e. a 2D trajectory within a corridor-like maze, the population activity would be toroidal as in our open field simulations, while maps would not have perfect hexagonal symmetry, mimicking experimental results.

      More minor comments:

      Recurrent dynamics are modeled as if there is no intrinsic synaptic or membrane time constant. This may be acceptable for addressing the goals of this paper, but it is a bit unusual and it will be helpful to explain and justify this choice.

      As mentioned above, we believe that the best model in a given setup is the one with the lowest number of complexities that can still address the phenomenon under study. One does not use general relativity to build a bridge, although it provides a ‘more accurate’ description of the physics involved. All models are simplifications, and the more complex a model, the more it has to be taken as a black box.

      The Introduction mentions that in most models interaction between co-modular neurons occurs through direct excitatory communication, but in quite a few models the interaction is inhibitory. The crucial feature is that the interaction is strongly inhibitory between neurons that differ in their tuning, and either less inhibitory or excitatory between neurons with similar phases.

      We agree that directed inhibition has been shown to be as efficient as directed excitation, and we have modified the introduction to reflect this.

      The Discussion claims that the present work is the first one in which the topology of the recurrent architecture differs from the topology of the emergent state space. However, early works on attractor models of grid cells showed how neural connectivity which is arranged on a 2d plane, without any periodic boundary conditions, leads to a state space that exhibits the toroidal topology. Therefore, this claim should be revised.

      We agree, although the 2D sheet in this case acts as a piece of the torus, and locally the input space and architecture are identical objects. It could be argued that architectures that represent a 2D local slice of the torus, the whole torus, or several cycles around the torus form a continuous family parametrized by the extension of recurrent connections, and as a consequence it is not surprising that these works have not made claims about the incongruence between architecture and representation topologies. The 2D sheet connectivity is still constructed ad hoc to organize activity in a 2D bump, and there is no negotiation between disparate constraints because locally the constraints imposed by input and architecture are the same. We believe this situation is conceptually different from our flexible 1D attractors. We have adapted our claim to include this technical nuance.

      Why are neural responses in the perimeter of the environment excluded from the topological analysis? The whole point of the toroidal manifold analysis on real experimental data is that the toroidal manifold is preserved regardless of the animal's location and behavioral condition.

      We agree, although experimental data needs to go through extensive pre-processing such as dimensionality reduction before showing a toroidal topology. Such manipulations might smooth away the specific effects of boundaries on maps, together with other sources of noise. In our case, the original reason to downsample the dataset is related to the explosion in computational time that we experience with the ripser package when using more than ~1000 data points. For a proof-of-principle characterization we were much more interested in what happened in the center of the arena, where a 1D attractor could fold itself to confine population activity into a torus. The area we chose was sufficiently large to contain the whole torus. Borders do affect the way the attractor folds (they also affect grid maps in real rats). We feel that these imperfections could be interesting to study in relation to the parameters controlling how our virtual rat behaves at the borders, but not at this proof-of-principle stage.

      The periodic activity observed in Ref. 29 could in principle provide the basis for the ring arrangement of neurons. However, it is not yet clear whether grid cells participate in this periodic activity.

      We agree. So far it seems that entorhinal cells in general participate in the ring, which would imply that all kinds of cells are involved. However, it could well be that only some functional types participate in the ring and grid cells specifically do not, as future experiments will tell.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The main goal of the authors was to study the testis-specific role of the protein FBXO24 in the formation and function of the ribonucleoprotein granules (membraneless electron-dense structures rich in RNAs and proteins).

      We appreciate the summary comment of reviewer #1.

      Strengths:

      The wide variety of methods used to support their conclusions (including transgenic models)

      We appreciate the positive comment of reviewer #1.

      Weaknesses:

      The lack of specific antibodies against FBXO24. Some of the experiments showing a specific phenotype are descriptive and lack of logical explanation about the possible mechanism (i.e. AR or the tail structure).

      Because we could not obtain specific antibodies against FBXO24, we generated Fbxo24-FLAG transgenic mice, which can be used to show the interaction between FBXO24 and IPO5. For the mechanism of impaired acrosome reaction, we added some results and discussion as written in the response to the question (1) of reviewer #1 (public review). For the mechanism of abnormal flagellar structure, we added new results and fixed the manuscript as written in the response to the major comments of reviewer #3 (recommendations for the authors).

      Questions:

      The paper is excellent and employs a wide variety of methods to substantiate the conclusions. I have very few questions to ask:

      (1) KO mice cannot undergo acrosome reaction (AR) even spontaneously. How do you account for this, given that no visible defects were observed in the acrosome?

      One possibility is that Fbxo24 KO spermatozoa cannot undergo capacitation; however, it is difficult to analyze the capacitation status such as tyrosine phosphorylation because most Fbxo24 KO spermatozoa are not alive (Figure S3A). Other possibility is that AR-related proteins are affected in Fbxo24 KO spermatozoa. Therefore, we analyzed the amounts of AR-related proteins with mass spectrometry (Figure S3C). Although previous studies indicate that the assembly of the SNARE complex is a key event prior to AR [Hutt et al., 2005 (PMID: 15774481); Katafuchi et al., 2000 (PMID: 11066067); Schulz et al., 1997 (PMID: 9356173); Tomes et al., 2002 (PMID: 11884041)], no clear differences were detected for SNARE proteins (Figure S3C and D). PLCD4 that is important for AR [Fukami et al., 2001 (PMID: 11340203)) was also detected in Fbxo24 KO spermatozoa (Figure S3C). Although we could not find differences in the amounts of AR-related proteins, it is still possible that FER1L5, another AR-related protein [Morohoshi et al., 2023 (PMID: 36696506)] not detected in the mass spectrometry analyses, or AR-related proteins not yet identified are affected in Fbxo24 KO spermatozoa. We added these results and discussion (line 160-166 and 305-312).

      (2) KO sperm are unable to migrate in the female tract, and, more intriguingly, they do not pass through the utero-tubal junction (UTJ). The levels of ADAM3 are normal, suggesting that the phenotype is influenced by other factors. The authors should investigate the levels of Ly6K since mice also exhibit the same phenotype but with normal levels of ADAM3.

      We detected LY6K in Fbxo24 KO spermatozoa with immunoblotting, but no difference was found.

      We added the results (Figure S3E and line 172–175).

      (3) In Figure 4A, the authors assert that "RBGS Tg mice revealed that mitochondria were abnormally segmented in Fbxo24 KO spermatozoa." I am unable to discern this from the picture shown in that panel. Could you please provide a more detailed explanation or display the information more explicitly?

      We are sorry for the ambiguous explanation on the morphology of sperm mitochondria sheath. Fbxo24 KO cauda epidydimal spermatozoa shows disorganized mitochondria sheath rather than “segmented”. We fixed the sentence (line 190-192) and added white arrowheads that indicate the disorganized regions (Figure 4A).

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Kaneda et al "FBXO24 ensures male fertility by preventing abnormal accumulation of membraneless granules in sperm flagella" is a significant paper on the role of FBXO24 in murine male germ cell development and sperm ultrastructure and function. The body of experimental evidence that the authors present is extraordinarily strong in both breadth and depth. The authors investigate the protein's functions in male germ cells and sperm using a wide variety of approaches but focusing predominantly on their novel mouse model featuring deletion of the Fbxo24 gene and its product. Using this mouse, and a cross of it with another model that expresses reporters in the head and midpiece, they logically build from one experiment to the next. Together, their data show that this protein is involved in the regulation of membraneless electron-dense structures; loss of FBXO24 led to an accumulation of these materials and defects in the sperm flagellum and fertilizing ability. Interestingly, the authors found that several of the best-known components of electron-dense ribonucleoprotein granules that are found in the intermitochondrial cement and chromatoid body were not disrupted in the Fbxo24 knockout, suggesting that the electron-dense material and these structures are not all the same, and the biology is more complicated than some might have thought. They found evidence for the most changes in IPO5 and KPNB1, and biochemical evidence that FBXO24 and IPO5 could interact.

      We appreciate the summary comment of reviewer #2.

      Strengths:

      The authors are to be commended for the thoroughness of their experimental approaches and the extent to which they investigated impacts on sperm function and potential biochemical mechanisms. Very briefly, they start by showing that the Fbxo24 message is present in spermatids and that the protein can interact with SKP1, in a way that is dependent on its F-box domain. This points toward a potential function in protein degradation. To test this, they next made the knockout mouse, validated it, and found the males to be sterile, although capable of plugging a female. Looking at the sperm, they identified a number of ultrastructural and morphological abnormalities, which they looked at in high resolution using TEM. They also cross their model with RBGS mice so that they have reporters in both the acrosome and mitochondria. The authors test a variety of sperm functions, including motility parameters, ability to fertilize by IVF, cumulus-free IVF, zona-free-IVF, and ICSI. They found that ICSI could rescue the knockout but not other assisted reproductive technologies. Defects in male fertility likely resulted from motility disruption and failure to get through the utero-tubal junction but defects in acrosome exocytosis also were noted. The authors performed thorough investigations including both targeted and unbiased approaches such as mass spectrometry. These enabled them to show that although the loss of the FBXO24 protein led to more RNA and elevated levels of some proteins, it did not change others that were previously identified in the electron-dense RNP material.

      The manuscript will be highly significant in the field because the exact functions of the electron-dense RNP materials have remained somewhat elusive for decades. Much progress has been made in the past 15 years but this work shows that the situation is more complex than previously recognized. The results show critical impacts of protein degradation in the differentiation process that enables sperm to change from non-descript round cells into highly polarized and compartmentalized mature sperm, with an equally highly compartmentalized flagellum. This manuscript also sets a high bar for the field in terms of how thorough it is, which reveals wide-ranging impacts on processes such as mitochondrial compaction and arrangement in the midpiece, the correct building of the major cytoskeletal elements in the flagellum, etc.

      We appreciate the positive comment of reviewer #2.

      Weaknesses:

      There are no real weaknesses in the manuscript that result from anything in the control of the authors. They attempted to rescue the knockout by expressing a FLAG-tagged Fbxo24 transgene, but that did not rescue the phenotype, either because of inappropriate levels/timing/location of expression, or because of interference by the tag. They also could not make anti-FBXO24 that worked for coimmunoprecipitation experiments, so relied on the FLAG epitope, an approach that successfully showed co-IP with IPO5 and SKP1.

      We could not rescue the phenotype with Fbxo24-FLAG transgene, but different Fbxo24 mutant mice show the same phenotypes (Figure S6G). Further, another group showed that Fbxo24 KO mice exhibited abnormal mitochondrial coiling [Li et al., 2024 (PMID: 38470475)], confirming that

      FBXO24 is involved in the mitochondrial sheath formation.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors found that FBXO24, a testis-enriched F-box protein, is indispensable for male fertility. Fbxo24 KO mice exhibited malformed sperm flagellar and compromised sperm motility.

      We appreciate the summary comment of reviewer #3.

      Strengths:

      The phenotype of Fbxo24 KO spermatozoa was well analyzed.

      We appreciate the positive comment of reviewer #3.

      Weaknesses:

      The authors observed numerous membraneless electron-dense granules in the Fbxo24 KO spermatozoa. They also showed abnormal accumulation of two importins, IPO5 and KPNB1, in the Fbxo24 KO spermatozoa. However, the data presented in the manuscript do not support the conclusion that FBXO24 ensures male fertility by preventing the abnormal accumulation of membraneless granules in sperm flagella, as indicated in the manuscript title.

      Fbxo24 KO mice showed abnormal accumulation of membraneless granules in sperm flagella and male infertility, suggesting that FBXO24 is involved in these processes, but there are no results that show the direct relationship as reviewer #3 mentioned. Therefore, we fixed the title.

      Recommendations For The Authors:

      Reviewer #2 (Recommendations For The Authors):

      On page 4, lines 152-154, the authors introduce the RBGS mouse model and use it in their experiments.

      However, they left out an obvious but helpful sentence that tells the reader that they crossed the Fbxo24-null mouse with the RBGS. As one continues reading it is clear, but best to avoid even slight confusion.

      We revised the explanation in the result section (line 150-153).

      Reviewer #3 (Recommendations For The Authors):

      In this manuscript, the authors found that FBXO24, a testis-enriched F-box protein, is indispensable for male fertility. Fbxo24 KO mice exhibited malformed sperm flagellar and compromised sperm motility. The phenotype of Fbxo24 KO spermatozoa was well analyzed.

      The authors observed numerous membraneless electron-dense granules in the Fbxo24 KO spermatozoa. They also showed abnormal accumulation of two importins, IPO5 and KPNB1, in the Fbxo24 KO spermatozoa. However, the data presented in the manuscript do not support the conclusion that FBXO24 ensures male fertility by preventing the abnormal accumulation of membraneless granules in sperm flagella, as indicated in the manuscript title.

      Fbxo24 KO mice showed abnormal accumulation of membraneless granules in sperm flagella and male infertility, suggesting that FBXO24 is involved in these processes, but there are no results that show the direct relationship as reviewer #3 mentioned. Therefore, we fixed the title.

      Major comments:

      In the title, abstract, introduction, and some sections such as lines 275-276, the authors conclude that FBXO24 prevents the accumulation of importins and RNP granules during spermiogenesis. However, the provided data do not substantiate this claim. To provide conclusive evidence to support the current title, the authors need to present evidence supporting: 1) direct degradation of IPO5 and KPNB1 by FBXO24; 2) the direct requirement of IPO5 for the formation of the membraneless granules, and 3) infertility resulting from the presence of membraneless granules, rather than other issues such as abnormal ODF and AX.

      (1) direct degradation of IPO5 and KPNB1 by FBXO24.

      To examine if IPO5 can be degraded by FBXO24, we performed a ubiquitination assay using HEK293T cells. Ubiquitination of IPO5 was upregulated in the presence of WT FBXO24 but not with the mutant ΔF-box FBXO24, suggesting that IPO5 can be ubiquitinated by FBXO24. We did not examine the ubiquitination of KPNB1 because we failed to construct a plasmid vector expressing mouse KPNB1. We think that KPNB1 is not the substrate because we did not detect the interaction between FBXO24 and KPNB1 (Figure 5E). We added the results of the ubiquitination assay (Figure

      5F and line 261-265) and mentioned it in the abstract (line 35).

      (2) the direct requirement of IPO5 for the formation of the membraneless granules.

      (3) infertility resulting from the presence of membraneless granules, rather than other issues such as abnormal ODF and AX.

      We revealed that IPO5 aggregate under stress condition in COS7 cells (Figure 6C and D); however, we did not examine whether IPO5 is required for the formation of the membraneless granules. We consider that protein degradation systems such as PROTAC or Trim-Away to knockdown IPO5 at the protein level in Fbxo24 KO mice could be a good way to see if the membraneless granules are diminished and male fertility is rescued. However, it takes time to apply the degradation systems in vivo. Therefore, we would like to leave this rescue experiment for future studies. We fixed the title and  abstract (line 37-38), and removed the last sentence of the introduction.

      Also, the other group reported the analyses of Fbxo24 KO mice [Li et al., 2024 (PMID: 38470475)] right after we submitted our manuscript to the eLife. They reported not only disorganized flagellar structures but also abnormal head morphology, which may lead to male infertility. The differences from our study may be due to different mouse genetic backgrounds. We mentioned it in the discussion section (line 348-353).

      Minor comments:

      (1) The authors claimed a significant increase in the total amount of RNAs in Fbxo24 KO spermatozoa (lines 259-261), suggesting that the ...contain RNAs. More direct evidence supporting this claim should be provided.

      We show that the amounts of IPO5 and KBNB1 increased in Fbxo24 KO spermatozoa (Figure 5A and B), both of which could be incorporated into RNP granules in COS7 cells (Figure 6C and D), supporting the idea that membraneless electron-dense structures may be RNP granules. However, because we did not show direct evidence that electron-dense structures contain RNAs, we removed the sentences (line 259-261 of the 1st submission manuscript). 

      (2) The author should provide an explanation for the absence of a FLAG band in the input Tg in Figure 5D and the larger size of the IPO5 band in the FLAG-IP group compared to the input. Similar observations are also noted in Figure 5E.

      The FLAG band is weak because the protein amount is low. When we increase the contrast, we can see the FLAG band. We added an image with high contrast (Figure 5D). Sometimes, proteins run differently with SDS-PAGE after immunoprecipitation, likely due to varying protein composition in the sample. We explained it in the figure legend (line 868-869).

      (3) In Line 526, clarify the procedure for sperm purification, and determine the potential for contamination from somatic cells.

      We did not perform sperm purification, but when we observed spermatozoa obtained from cauda epididymis, we rarely observed either somatic cells or immature spermatogenic cells. We added  pictures in Figure S7. Further, we added detailed explanation about how to collect spermatozoa from the epididymis (line 549-550).

      (4) Define the Y-axis in Figure 2E, F, and G.

      We have revised the figures.

    1. A book brigade is a very small group of very like-minded people collaborating on getting a book read and understood by taking turns reading sections of it and recapping for the others. I expect it to be powerful because (a) you can get a book loaded into your head from only reading a fraction of it, and (b) the part where you have to explain it to others gets it cemented in your own head much better than reading it alone.

      Een interessant idee voor de KENSO leesgroep

    1. Lennox argues that both rationality and morality cannot be explained without the Bible & God... Humans are naturally rational and moral beings because "Man are created in God's image" or "The Holy Spirit remains in men"

      The Holy Ghost is the reason we can tell right from wrong (spiritual anti-virus)... However, the more we sin, the more we silence this voice in our head until ultimately we cannot hear it anymore.

      No person is born a criminal. A killer.

      When we get baptized, we effectively restore our connection to God, and thus reenact the Holy Ghost within us; restoring our innocence. Our soul's integrity has been restored and we can hear the Spirit speaking to us loud and clear once again.

      As Simone Weil argued, the purpose of a punishment, an adequate one, that is, is to cleanse the taint of our behavior from ourselves... Allowing ourselves to get back into humanity without judgement. Baptism serves the same purpose on a Spiritual level... With the key difference being that it was Christ who endured the ultimate punishment, and by being baptized (willingly), we enjoy that same punishment, can reap its benefits.

    1. un the ceph bootstrap command: cephadm bootstrap --mon-ip *<mon-ip>* This command will: Create a Monitor and a Manager daemon for the new cluster on the local host. Generate a new SSH key for the Ceph cluster and add it to the root user’s /root/.ssh/authorized_keys file. Write a copy of the public key to /etc/ceph/ceph.pub.

      smh

      -- shaking my head

    1. a large majority of these companies now recognize that their investments in sustainability are producing significant financial benefits,” says Ninio.

      Going back to the article we read, "Central American Farmers Head to the U.S., Fleeing Climate Change," this could really change these small farms that are struggling financially with investing in sustainability to gain a positive ROI.

    1. "So the ones in the west Will never move east And feel like they could be at home Dem get tricked by the beast But a where dem ago flee when the monster is fully grown?" commenting on the conflict between western and eastern nations. particularly the conflict between the U.S./Britain with Islamic nations of the Middle East. once again, the "beast" referring to satan, devil who exploits our differences to keep us fighting amongst eachother, destroying eachother. we don't come from the east, west, north or safe. we come from God, the source, from EARTH. Earth is our home and we're all earthers. by the time they realise this and understnd that they were pawns of the satanic occult groups such as the freemasons, elites or satanic illuminati, who generate order from choas - "as above so below", they can't hide or run from the problems they've helped to create in the first place. the beast is also synomynous with the "ego" - shadow/false self, you yourself are your own greatest enemy. here's a commentary on the ego, from the film "revolver": "The ego is the worst confidence trickster we could ever figure. "I am you". The problem is that the ego hides in the last place that you'd ever look within itself. It disguises its thoughts as your thoughts, its feelings as your feelings. "You think it's you". Peoples' need to protect their own egos knows no bounds. They will lie, cheat, steal, kill, do whatever it takes to maintain what we call ego boundaries. People have no clue that they're imprisoned. They don't know that there is an ego, they don't know the distinction. At first, it's difficult for the mind to accept that there's something beyond itself, that there's something of greater value and greater capacity for discerning truth than itself. In religion, the ego manifests as the devil. And of course no one realizes how smart the ego is, because it created the devil so you could blame someone else. In creating this imaginary external enemy, it usually made a real enemy for ourselves, and that becomes a real danger to the ego, but that's also the ego's creation. There is no such thing as an external enemy no matter what the voice in your head is telling you. All perception of an enemy is a projection of the ego as the enemy. In that sense, you could say that 100 percent of our external enemies are of our creation. "Your greatest enemy is your own inner perception, is your own ignorance, is your own ego"."

      We are all united in being human and should act that way. Find common ground rather than focusing on differences. Don't be biased. A house divided will surely fall. A house united is strong.

      When humanity is united as one, true societal advancement can happen.

    1. Reviewer #2 (Public Review):

      The manuscript investigates the function of basal forebrain cholinergic axons in mouse primary visual cortex (V1) during locomotion using two-photon calcium imaging in head-fixed mice. Cholinergic modulation has previously been proposed to mediate the effects of locomotion on V1 responses. The manuscript concludes that the activity of basal forebrain cholinergic axons in visual cortex provides a signal which is more correlated with binary locomotion state than locomotion velocity of the animal and finds no evidence for modulation of cholinergic axons by locomotion velocity. Cholinergic axons did not seem to respond to grating stimuli or visuomotor prediction error. Optogenetic stimulation of these axons increased the amplitude of responses to visual stimuli and decreased the response latency of layer 5 excitatory neurons, but not layer 2/3 neurons. Moreover, optogenetic or chemogenetic stimulation of cholinergic inputs reduced pairwise correlation of neuronal responses. These results provide insight into the role of cholinergic modulation to visual cortex and demonstrate that it affects different layers of visual cortex in a distinct manner. The experiments are well executed and the data appear to be of high quality.

    2. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations For The Authors): 

      The author has addressed all the concerns I have raised.

      I have only one minor suggestion. 

      We would argue both a gray screen and a grating are visual stimuli. ... We concur, our data only address one of many possible transitions, but it is a switch between distinct visual stimuli that is sped up by ACh. 

      Thank you for clarifying this. 

      Following my comment in the previous review, the author has revised the abstract as follows:  (Before) "Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, enabling faster switching between internal representations during locomotion." 

      (After) "Based on this we speculate that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion." 

      My previous comment concerned specifically the latter part, "enabling faster switching between internal representations during locomotion", and, in fact, their data fully support the first part, "acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network". Thus, I suggest the following sentence: 

      "Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion." 

      Thank you for clarifying. We have changed as suggested.

      Reviewer #2 (Recommendations For The Authors): 

      I thank the authors for the clarification regarding the distribution of running speeds in the study. I do agree that 30 cm/s is indeed fast for head-fixed locomotion. My concern is that while all mice contribute to the low locomotion velocity bin, the high locomotion velocity bin is dominated by a subset of animals, since not all mice reached high locomotion speeds. Therefore, the comparison between low, intermediate and high locomotion velocities includes data from different cohorts of animals and variability across animals may confound the analysis of cholinergic axon activity. However, the manuscript is carefully worded to emphasize lack of evidence (e.g. "we found no evidence of an increase in calcium activity between low and high locomotion velocities") and I have revised my summary in the public review to reflect this. 

      I thank the authors for including the scatterplots of single neuron responses locomotion and optogenetic stimulation, which illustrate their heterogeneity. I am surprised that the axes are limited to 20% deltaF/F as visual responses recorded using GCaMP6f often exceed 100% deltaF/F . 

      There are definitely neurons with responses larger than 20% dF/F0, but it is a small fraction. There are two considerations relevant to assessing dF/F amplitudes. First, in our hands trial averaged dF/F0 responses tend to be below 30% even for the most responsive neurons (trial averaging convolves response amplitude and response reliability). The reviewer is probably thinking of single trial responses often shown as raw data that can exceed 100s of %. Second, different published variants for calculating dF/F0 can result in a spectrum of values that varies by up to a factor of 10. This is largely a consequence of the choice of F0 and preprocessing related to correcting slow drifts in signal strength (originally motivated by photobleaching). Attempting to compare dF/F0 across labs is unfortunately a futile effort in absence of standardized way of calculating it. 

      Allow me to clarify how evaluating the effects of optogenetic stimulation and locomotion without analyzing them at the level of individual neurons could result in misleading conclusions. I will use the effects of cholinergic responses on grating responses as an example but this concern applies equally to the other analyses. The manuscript reports that "in layer 2/3, optogenetic activation of cholinergic axons did not result in a detectable increase in grating onset responses (Figure 4C), while the responses of layer 5 neurons to the same stimulus increased with concurrent optogenetic activation of cholinergic axons." As the Figure R2C-D illustrates, only a minority of L2/3 neurons are excited by the grating in baseline conditions, while the vast majority are either suppressed or non-responsive. This is expected, as it is well established that visual responses in layer 2/3 are sparse. If responses of the small subset of L2/3 neurons that are activated by the grating were enhanced, it may not be apparent in the population average presented in the manuscript. In contrast, since a larger fraction of L5 neurons is excited by the grating, enhancement of grating responses may be easier to detect. In other words, the effects of optogenetic stimulation may be to boost the responses of those neurons that are activated by the grating and the difference between L2/3 and L5 lies simply in the proportion of activated neurons. I do not mean to argue in favour of this specific scenario but simply present it so as to illustrate the way in which considering population averages alone may be misleading. 

      While the authors state in their response that "all relevant and clear conclusions are already captured by the mean differences shown in Figure 4", the evidence supporting this statement is not presented in the manuscript. Most importantly, it is essential to determine whether the neurons that show significant activation in response to gratings (Figure 4C-D), mismatch (Figure 4E-F) or locomotion (Figure 4G-H), are affected by optogenetic stimulation in the same way as the population average. 

      We have added the analysis suggested as Figure S6. Consistent with the population averages, even within the subset of layer 2/3 neurons most responsive to specific inputs, we found no detectable increase in responsiveness upon optogenetic stimulation of cholinergic axons.

    1. Reviewer #1 (Public Review):

      Summary:

      Bowler et al. present a thoroughly tested system for modularized behavioral control of navigation-based experiments, particularly suited for pairing with 2-photon imaging but applicable to a variety of techniques. This system, which they name behaviorMate, represents a valuable contribution to the field. As the authors note, behavioral control paradigms vary widely across laboratories in terms of hardware and software utilized and often require specialized technical knowledge to make changes to these systems. Having a standardized, easy-to-implement, and flexible system that can be used by many groups is therefore highly desirable. This work will be of interest to systems neuroscientists looking to integrate flexible head-fixed behavioral control with neural data acquisition.

      Strengths:

      The present manuscript provides compelling evidence of the functionality and applicability of behaviorMate. The authors report benchmark tests for real-time update speed between the animal's movement and the behavioral control, on both the treadmill-based and virtual reality (VR) setups. Further, they nicely demonstrate and quantify reliable hippocampal place cell coding in both setups, using synchronized 2-photon imaging. This place cell characterization also provides a concrete comparison between the place cell properties observed in treadmill-based navigation vs. visual VR in a single study, which itself is a helpful contribution to the field.

      Documentation for installing and operating behaviorMate is available via the authors' lab website and linked in the manuscript.

      Weaknesses:

      The following comments are mostly minor suggestions intended to add clarity to the paper and provide context for its significance.

      (1) As VRMate (a component of behaviorMate) is written using Unity, what is the main advantage of using behaviorMate/VRMate compared to using Unity alone paired with Arduinos (e.g. Campbell et al. 2018), or compared to using an existing toolbox to interface with Unity (e.g. Alsbury-Nealy et al. 2022, DOI: 10.3758/s13428-021-01664-9)? For instance, one disadvantage of using Unity alone is that it requires programming in C# to code the task logic. It was not entirely clear whether VRMate circumvents this disadvantage somehow -- does it allow customization of task logic and scenery in the GUI? Does VRMate add other features and/or usability compared to Unity alone? It would be helpful if the authors could expand on this topic briefly.

      (2) The section on "context lists", lines 163-186, seemed to describe an important component of the system, but this section was challenging to follow and readers may find the terminology confusing. Perhaps this section could benefit from an accompanying figure or flow chart, if these terms are important to understand.

      (2a) Relatedly, "context" is used to refer to both when the animal enters a particular state in the task like a reward zone ("reward context", line 447) and also to describe a set of characteristics of an environment (Figure 3G), akin to how "context" is often used in the navigation literature. To avoid confusion, one possibility would be to use "environment" instead of "context" in Figure 3G, and/or consider using a word like "state" instead of "context" when referring to the activation of different stimuli.

      (3) Given the authors' goal of providing a system that is easily synchronizable with neural data acquisition, especially with 2-photon imaging, I wonder if they could expand on the following features:

      (3a) The authors mention that behaviorMate can send a TTL to trigger scanning on the 2P scope (line 202), which is a very useful feature. Can it also easily generate a TTL for each frame of the VR display and/or each sample of the animal's movement? Such TTLs can be critical for synchronizing the imaging with behavior and accounting for variability in the VR frame rate or sampling rate.

      (3b) Is there a limit to the number of I/O ports on the system? This might be worth explicitly mentioning.

      (3c) In the VR version, if each display is run by a separate Android computer, is there any risk of clock drift between displays? Or is this circumvented by centralized control of the rendering onset via the "real-time computer"?

    2. eLife assessment

      This work represents a new toolkit for implementing virtual reality experiments in head-fixed animals. It is a valuable contribution to the field and the evidence for its utility and performance is solid. Some minor improvements in the material presented - including clarifying design decisions and providing more details about design features - would improve the readability and thereby potentially increase its impact.

    3. Reviewer #2 (Public Review):

      Summary:

      The authors present behaviorMate, an open-source behavior recording and control system including a central GUI and compatible treadmill and display components. Notably, the system utilizes the "Intranet of things" scheme and the components communicate through a local network, making the system modular, which in turn allows user to easily configure the setup to suit their experimental needs. Overall, behaviorMate is a valuable resource for researchers performing head-fixed imaging studies, as the commercial alternatives are often expensive and inflexible to modify.

      Strengths and Weaknesses:

      The manuscript presents two major utilities of behaviorMate: (1) as an open-source alternative to commercial behavior apparatus for head-fixed imaging studies, and (2) as a set of generic schema and communication protocols that allows the users to incorporate arbitrary recording and stimulation devices during a head-fixed imaging experiment. I found the first point well-supported and demonstrated in the manuscript. Indeed, the documentation, BOM, CAD files, circuit design, source, and compiled software, along with the manuscript, create an invaluable resource for neuroscience researchers looking to set up a budget-friendly VR and head-fixed imaging rig. Some features of behaviorMate, including the computer vision-based calibration of the treadmill, and the decentralized, Android-based display devices, are very innovative approaches and can be quite useful in practical settings. However, regarding the second point, my concern is that there is not adequate documentation and design flexibility to allow the users to incorporate arbitrary hardware into the system. In particular:

      (1) The central controlling logic is coupled with GUI and an event loop, without a documented plugin system. It's not clear whether arbitrary code can be executed together with the GUI, hence it's not clear how much the functionality of the GUI can be easily extended without substantial change to the source code of the GUI. For example, if the user wants to perform custom real-time analysis on the behavior data (potentially for closed-loop stimulation), it's not clear how to easily incorporate the analysis into the main GUI/control program.

      (2) The JSON messaging protocol lacks API documentation. It's not clear what the exact syntax is, supported key/value pairs, and expected response/behavior of the JSON messages. Hence, it's not clear how to develop new hardware that can communicate with the behaviorMate system.

      (3) It seems the existing control hardware and the JSON messaging only support GPIO/TTL types of input/output, which limits the applicability of the system to more complicated sensor/controller hardware. The authors mentioned that hardware like Arduino natively supports serial protocols like I2C or SPI, but it's not clear how they are handled and translated to JSON messages.

      Additionally, because it's unclear how easy to incorporate arbitrary hardware with behaviorMate, the "Intranet of things" approach seems to lose attraction. Since currently, the manuscript focuses mainly on a specific set of hardware designed for a specific type of experiment, it's not clear what are the advantages of implementing communication over a local network as opposed to the typical connections using USB.

      In summary, the manuscript presents a well-developed open-source system for head-fixed imaging experiments with innovative features. The project is a very valuable resource to the neuroscience community. However, some claims in the manuscript regarding the extensibility of the system and protocol may require further development and demonstration.

    1. if the MPs "could actually see one thousandth part of the evils of that practice which they have, for so many years, under one pretense or another, been prevailed on to suffer to be continued," they would quickly commit themselves to the abolitionist cause

      Not precisely the direction you're about to go with "god trick," but maybe worth saying: this is a place where dataviz as enlightenment technology betrays its strength and weaknesses. The idea that any reasonable observer would act in the same way from the same evidence is I believe kind of a tenant of enlightenment thinking, and when applied to government leads to a belief that the primary need of governmental reform is to allow the ruler to see the state of their subjects. (My personal head-citation for this is Jeffrey Freedman, The Poisoned Chalice, 2002, which is definitely not the right citation but does probably have links to the canonical works about why the coffeeshop-crowd thought that the world would be saved if they could just get Frederick the Great to read their newspaper.)

      In this view one of the things that's interesting about the diagram is not exactly a "god trick" but -- yes I'm a one-trick pony myself -- a "seeing like a state" trick where the conventional naval form of the shipping plan suddenly includes a part of the design of ships that was always there but previously hidden from the state's view -- its morally shocking cargo.

    1. Reviewer #1 (Public Review):

      More than ten years ago, it was shown that activity in the primary visual cortex of mice substantially increases when mice are running compared to when they are sitting still. This finding 'revolutionised' our thinking about visual cortex, turning away from it being a passive image processor and highlighting the influence of non-visual factors. The current study now for the first time repeats this experiment in marmosets. The authors find that in contrast to mice, marmoset V1 activity is slightly suppressed during running, and they relate this to differences in gain modulations of V1 activity between the two species.

      Strengths

      - Replication in primates of the original finding in mice partly took so long, because of the inherent difficulties with recording from the brain of a running primate. In fact one recent, highly related study on macaques looked at spontaneous limb movements as the macaque was sitting. The treadmill for the marmosets in the current study is a very elegant solution to the problem of running in primates. It allows for true replication of the 'running vs stationary' experiment and undoubtedly opens up many possibilities for other experiments recording from a head-fixed but active marmoset.<br /> - In addition to their own data in marmoset, the authors run their analyses on a publicly available data set in mouse. This allows them to directly compare mouse and marmoset findings, which significantly strengthens their conclusions.<br /> - Marmoset vision is fundamentally different from mouse vision as they have a fovea and make goal-directed eye movements. In this revised version of their paper, the authors acknowledge this and investigate the possible effect of eye movements and pupil size on the differences they find between running and stationary. They conclude that eye input does not explain all these differences.

      Significance

      The paper provides interesting new evidence to the ongoing discussion about the influence of non-visual factors in general, and running in particular, on visual cortex activity. As such, it helps to pull this discussion out of the rodent field mainly and into the field of primate research. The bigger question of *why* there are differences between rodents and primates remains still unanswered, but the authors do their best to provide possible explanations. The elegant experimental set-up of the marmoset on a treadmill will certainly add new findings to this issue also in the years to come.

    2. Reviewer #2 (Public Review):

      This work aims at answering whether activity in primate visual cortex is modulated by locomotion, as was reported for mouse visual cortex. The finding that the activity in mouse visual cortex is modulated by running has changed the concept of primary sensory cortical areas. However, it was an open question whether this modulation generalizes to primates.

      To answer this fundamental question the authors established a novel paradigm in which a head-fixed marmoset was able to run on a treadmill while watching a visual stimulus on a display. In addition, eye movements and running speed were monitored continuously and extracellular neuronal activity in primary visual cortex recorded using high-channel-count electrode arrays. This paradigm uniquely permitted to investigate whether locomotion modulates sensory evoked activity in visual cortex of marmoset. Moreover, to directly compare the responses in marmoset visual cortex to responses in mouse visual cortex the authors made use of a publicly-available mouse dataset from the Allen Institute. In this dataset the mouse was also running on a treadmill and observing a set of visual stimuli on a display. The authors took extra care to have the marmoset and mouse paradigms as comparable as possible.

      To characterize the visually driven activity the authors present a series of moving gratings and estimate receptive fields with sparse noise. To estimate the gain modulation by running the authors split the dataset into epochs of running and non-running which allowed them to estimate the visually evoked firing rates in both behavioral states.

      Strengths:

      The novel paradigm of head-fixed marmosets running on a treadmill while being presented with a visual stimulus is unique and ideally tailored to answering the question that the authors aimed to answer. Moreover, the authors took extra care to ensure that the paradigm in marmoset matched as closely as possible to the conditions in the mouse experiments such that the results can be directly compared. To directly compare their data the authors re-analyzed publicly available data from visual cortex of mice recorded at the Allen Institute. Such a direct comparison, and reuse of existing datasets, is another strong aspect of the work. Finally, the presented new marmoset dataset appears to be of high quality, the comparison between mouse and marmoset visual cortex is well done and the results and interpretation straightforward.

      Weaknesses:

      It is known that the locomotion gain modulation varies with layer in mouse visual cortex, with neurons in the infragranular layers expressing a diversity of modulations (Erisken et al. 2014 Current Biology). However, for the marmoset dataset the layer information was unfortunately not recorded, leaving this point open for future studies.

      Nonetheless, the aim of comparing the locomotion induced modulation of activity in primate and mouse primary visual cortex was convincingly achieved by the authors. The results shown in the figures support the conclusion that locomotion modulates the activity in primate and mouse visual cortex differently. While mice show a profound gain increase, neurons in primate visual cortex show little modulation or even a reduction in response strength.

      This work will have a strong impact on the field of visual neuroscience but also on neuroscience in general. It revives the debate of whether results obtained in the mouse model system can be simply generalized to other mammalian model systems, such as non-human primates. Based on the presented results, the comparison between the mouse and primate visual cortex is not as straightforward as previously assumed. This will likely trigger more comparative studies between mice and primates in the future, which is important and absolutely needed to advance our understanding of the mammalian brain.

      Moreover, the reported finding that neurons in primary visual cortex of marmosets do not increase their activity during running is intriguing, as it makes you wonder why neurons in the mouse visual cortex do so. The authors discuss a few ideas in the paper which can be addressed in future experiments. In this regard it is worth noting that the authors report an interesting difference between the foveal and peripheral part of the visual cortex in marmoset. It will be interesting to investigate these differences in more detail in future studies. Likewise, while running might be an important behavioral state for mice, other behavioral states might be more relevant for marmosets and do modulate the activity of primate visual cortex more profoundly. Future work could leverage the opportunities that the marmoset model system offers to reveal new insights about behavioral related modulation in the primate brain.

    1. Reviewer #2 (Public Review):

      This paper examined how the activity of neurons in the entopeduncular nucleus (EPN) of mice relates to kinematics, value, and reward. The authors recorded neural activity during an auditory-cued two-alternative choice task, allowing them to examine how neuronal firing relates to specific movements like licking or paw movements, as well as how contextual factors like task stage or proximity to a goal influence the coding of kinematic and spatiotemporal features. The data shows that the firing of individual neurons is linked to kinematic features such as lick or step cycles. However, the majority of neurons exhibited activity related to both movement types, suggesting that EPN neuronal activity does not merely reflect muscle-level representations. This contradicts what would be expected from traditional action selection or action specification models of the basal ganglia.

      The authors also show that spatiotemporal variables account for more variability compared to kinematic features alone. Using demixed Principal Component Analysis, they reveal that at the population level, the three principal components explaining the most variance were related to specific temporal or spatial features of the task, such as ramping activity as mice approached reward ports, rather than trial outcome or specific actions. Notably, this activity was present in neurons whose firing was also modulated by kinematic features, demonstrating that individual EPN neurons integrate multiple features. A weakness is that what the spatiotemporal activity reflects is not well specified. The authors suggest some may relate to action value due to greater modulation when approaching a reward port, but acknowledge action value is not well parametrized or separated from variables like reward expectation.

      A key goal was to determine whether activity related to expected value and reward delivery arose from a distinct population of EPN neurons or was also present in neurons modulated by kinematic and spatiotemporal features. In contrast to previous studies (Hong & Hikosaka 2008 and Stephenson-Jones et al., 2016), the current data reveals that individual neurons can exhibit modulation by both reward and kinematic parameters. Two potential differences may explain this discrepancy: First, the previous studies used head-fixed recordings, where it may have been easier to isolate movement versus reward-related responses. Second, those studies observed prominent phasic responses to the delivery or omission of expected rewards - responses largely absent in the current paper. This absence suggests a possibility that neurons exhibiting such phasic "reward" responses were not sampled, which is plausible since in both primates and rodents, these neurons tend to be located in restricted topographic regions. Alternatively, in the head-fixed recordings, kinematic/spatial coding may have gone undetected due to the forced immobility.

      Overall, this paper offers needed insight into how the basal ganglia output encodes behavior. The EPN recordings from freely moving mice clearly demonstrate that individual neurons integrate reward, kinematic, and spatiotemporal features, challenging traditional models. However, the specific relationship between spatiotemporal activity and factors like action value remains unclear.

    2. Reviewer #1 (Public Review):

      The authors in this paper investigate the nature of the activity in the rodent EPN during a simple freely moving cue-reward association task. Given that primate literature suggests movement coding whereas other primate and rodent studies suggest mainly reward outcome coding in the EPNs, it is important to try to tease apart the two views. Through careful analysis of behavior kinematics, position, and neural activity in the EPNs, the authors reveal an interesting and complex relationship between the EPN and mouse behavior.

      Strengths:

      (1) The authors use a novel freely moving task to study EPN activity, which displays rich movement trajectories and kinematics. Given that previous studies have mostly looked at reward coding during head-fixed behavior, this study adds a valuable dataset to the literature.

      (2) The neural analysis is rich and thorough. Both single neuron level and population level (i.e. PCA) analysis are employed to reveal what EPN encodes.

      Weaknesses:

      (1) One major weakness in this paper is the way the authors define the EPN neurons. Without a clear method of delineating EPN vs other surrounding regions, it is not convincing enough to call these neurons EPNs solely from looking at the electrode cannula track from Figure 2B. Indeed, EPN is a very small nucleus and previous studies like Stephenson-Jones et al (2016) have used opto-tagging of Vglut2 neurons to precisely label EPN single neurons. Wallace et al (2017) have also shown the existence of SOM and PV-positive neurons in the EPN. By not using transgenic lines and cell-type specific approaches to label these EPN neurons, the authors miss the opportunity to claim that the neurons recorded in this study do indeed come from EPN. The authors should at least consider showing an analysis of neurons slightly above or below EPN and show that these neurons display different waveforms or firing patterns.

      (2) The authors fail to replicate the main finding about EPN neurons which is that they encode outcome in a negative manner. Both Stephenson-Jones et al (2016) and Hong and Hikosaka (2008) show a reward response during the outcome period where firing goes down during reward and up during neutral or aversive outcome. However, Figure 2 G top panel shows that the mean population is higher during correct trials and lower during incorrect trials. This could be interesting given that the authors might try recording from another part of EPN that has not been studied before. However, without convincing evidence that the neurons recorded are from EPN in the first place (point 1), it is hard to interpret these results and reconcile them with previous studies.

      3) The authors say that: 'reward and kinematic doing are not mutually exclusive, challenging the notion of distinct pathways and movement processing'. However, it is not clear whether the data presented in this work supports this statement. First, the authors have not attempted to record from the entire EPN. Thus it is possible that the coding might be more segregated in other parts of EPN. Second, EPNs have previously been shown to display positive firing for negative outcomes and vice versa, something which the authors do not find here. It is possible that those neurons might not encode kinematic and movement variables. Thus, the authors should point out in the main text the possibility that the EPN activity recorded might be missing some parts of the whole EPN.

      4). The authors use an IR beam system to record licks and make a strong claim about the nature of lick encoding in the EPN. However, the authors should note that IR beam system is not the most accurate way of detecting licks given that any object blocking the path (paw or jaw-dropping) will be detected as lick events. Capacitance based, closed-loop detection, or video capturing is better suited to detect individual licks. Given that the authors are interested in kinematics of licking, this is important. The authors should either point this out in the main text or verify in the system if the IR beam is correctly detecting licks using a combination of those methods.

    1. potential risk factors for AD include traumatic head injury, depression, cardiovascular and cerebrovascular disease, higher parental age at birth, smoking, family history of dementia, increased homocysteine levels, and the presence of the APOE e4 allele. Having a first-degree relative with AD increases the risk of developing the disease by 10% to 30%. Individuals with 2 or more siblings with late-onset AD face a 3-fold higher risk than the general population.[11][12][13]

      Potential risks for alxhermers diase can range from numerous things through out life. head injury, depression, cardiovascular, cerebrovascualr diseas, high parental age at birth, smokinh, increase homcystine- Homocysteine is a type of amino acid. Your body naturally makes it. But at high levels, it can damage the lining of arteries. It can encourage blood clotting. This may raise your risk for coronary artery disease, heart attacks, blood clots, and strokes.

    1. We would like to thank you and the reviewers for your thoughtful comments that assisted us to improve the manuscript. We carefully followed the reviewers’ recommendations and provide a detailed point-by-point account of our responses to the comments. 

      Please find below the important changes in the updated manuscript.

      (1) We changed the title according to the comments provided by reviewer #1.

      (2) We edited the introduction, results, and discussion to improve the link between the objectives of the study, the findings, and their discussion, as reviewer #2 recommended.

      (3) We clarified the link between camouflage and fitness, which is now presented as a hypothesis, as reviewer #1 suggested.

      (4) We added new analyses and figures in the main text and in the supplementary materials to better emphasize sex differences in landing force, foraging strategies and hunting success, following reviewer #1 suggestion.

      (5) According to reviewer #2 comments, we edited the results adding key information about methods to help the reader understand the findings without reading the Methods section.

      (6) We added important details about the model selection approach along with a discussion of the low R-square values reported in our analyses on hunting success, as reviewer #2 suggested.

      eLife assessment 

      This fundamental work substantially advances our understanding of animals' foraging behaviour, by monitoring the movement and body posture of barn owls in high resolution, in addition to assessing their foraging success. With a large dataset, the evidence supporting the main conclusions is convincing. This work provides new evidence for motion-induced sound camouflage and has broad implications for understanding predator-prey interactions. 

      Public Reviews: 

      Reviewer #1 (Public Review): 

      In this paper, Schalcher et al. examined how barn owls' landing force affects their hunting success during two hunting strategies: strike hunting and sit-and-wait hunting. They tracked tens of barn owls that raised their nestlings in nest boxes and utilized high-resolution GPS and acceleration loggers to monitor their movements. In addition, camcorders were placed near their nest boxes and used to record the prey they brought to the nest, thus measuring their foraging success. 

      This study generated a unique dataset and provided new insights into the foraging behavior of barn owls. The researchers discovered that the landing force during hunting strikes was significantly higher compared to the sit-and-wait strategy. Additionally, they found a positive relationship between landing force and foraging success during hunting strikes, whereas, during the sit-and-wait strategy, there was a negative relationship between the two. This suggests that barn owls avoid detection by generating a lower landing force and producing less noise. Furthermore, the researchers observed that environmental characteristics affect barn owls' landing force during sit-and-wait hunting. They found a greater landing force when landing on buildings, a lower landing force when landing on trees, and the lowest landing force when landing on poles. The landing force also decreased as the time to the next hunting attempt decreased. These findings collectively suggest that barn owls reduce their landing force as an acoustic camouflage to avoid detection by their prey. 

      The main strength of this work is the researchers' comprehensive approach, examining different aspects of foraging behavior, including high-resolution movement, foraging success, and the influence of the environment on this behavior, supported by impressive data collection. The weakness of this study is that the results only present a partial biological story contained within the data. The focus is on acoustic camouflage without addressing other aspects of barn owls' foraging strategy, leaving the reader with many unanswered questions. These include individual differences, direct measurements of owls' fitness, a detailed analysis of the foraging strategy of males and females, and the collective effort per nest box. However, it is possible that these data will be published in a separate paper. 

      We greatly appreciate your recognition of the comprehensive approach and extensive data collection. Our primary objective was to study the role of acoustic camouflage. Nonetheless, the manuscript now includes a detailed analysis of the foraging strategy and hunting success of males and females (lines 164-225).

      The results presented support the authors' conclusion that lower landing force during sit-andwait hunting increases hunting success, likely due to a decreased probability of detection by their prey, resulting in acoustic camouflage. The authors also argue that hunting success is crucial for survival, and thus, acoustic camouflage has a direct link to fitness. While this statement is reasonable, it should be presented as a hypothesis, as no direct evidence has been provided here.

      Thank you for the comment. We agree and thus have edited the language accordingly.  

      However, since information about nestling survival is typically monitored when studying behavior during the breeding period, the authors' knowledge of the effect of acoustic camouflage on owls' fitness can probably be provided. Furthermore, it will be interesting to further examine the foraging strategies used by different individuals during foraging, the joint foraging success of both males and females within each nest box, and the link between landing force and foraging success if the data are available.

      We are currently writing a manuscript on these topics. We are aware that several scientific questions regarding the foraging ecology of the barn owl still need our attention. Regarding the link between landing force and foraging success, we believe that our revised manuscript addresses this specific topic, please see specific responses below.

      However, even without this additional analysis on survival, this paper provides an unprecedented dataset and the first measurement of landing force during hunting in the wild. It is likely to inspire many other researchers currently studying animal foraging behavior to explore how animals' movements affect foraging success.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors provide new evidence for motion-induced sound camouflage and can link the hunting approach to hunting success (detailing the adaptation and inferring a fitness consequence). 

      Strengths: 

      Strong evidence by combining high-resolution accelerometer data with a ground-truthed data set on prey provisioning at nest boxes. A good set of co-variates to control for some of the noise in the data provides some additional insights into owl hunting attempts. 

      Weaknesses: 

      There is a disconnect between the hypotheses tested and the results presented, and insufficient detail is provided on the statistical approach. R2 values of the presented models are very small compared to the significance of the effect presented. Without more detail, it is impossible to assess the strength of the evidence.

      In the revised manuscript, we changed the way results are presented and we improved the link between the hypotheses and the results. The R2 values are indeed small. It is however important to keep in mind that we are assessing the outcome of one specific behavior (i.e. landing force during sit-and-wait hunts) on hunting success in a wild environment, where many complex ecological interactions likely influence hunting success. Nonetheless, the coefficients (as reported in the results) show that for every 1 N increase in landing force, there is a 15% reduction in hunting success, which is substantial. In the discussion we also note that 50 Hz is a relatively low sampling frequency for estimating the peak ground reaction force. We have gone back over the presentation of our results and made our discussion more nuanced to acknowledge this aspect. 

      We have also added a detailed description about our model selection process in the methods section and provide a model selection table for each analysis in the supplementary materials.

      The authors seem to overcome persisting challenges associated with the validation and calibration of accelerometer data by ground-truthing on-board measures with direct observations in captivity, but here the methods are not described any further and sample sizes (2 owls - how many different loggers were deployed?) might be too small to achieve robust behavioural classifications.

      Thank you for the comment. Details of our methods of behavioural identification are provided in lines 385 – 429. There are two reasons why our results should not be limited by the sample size. First, we used the temporal sequence of changes in acceleration, and rates of change in acceleration data, which make the methods robust to individual differences in acceleration values. Furthermore, our methods for behavioural identification were not based on machine learning. Instead, we use a Boolean based approach (as described in Wilson et al. 2018. MEE), which is more robust to small differences in absolute values that might occur e.g. in relation to slight changes in device position. 

      Recommendation for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Comment 1. This study provides new insights into animals' foraging behavior and will probably inspire other researchers to examine foraging behavior in such high resolution.

      We hope so, thank you.

      Comment 2. However, it is necessary to describe better the measured landing force and the hunting strike and perching behavior so the readers can understand these methods when reading the results (and without reading the Methods).

      We have now changed the text in the “Results” to help the reader understand the key methods while reading the results.

      Comment 3. In addition, make sure you use the same terminology for hunting strategies during the entire paper and especially in all figures and corresponding result descriptions.

      We now use consistent terminology throughout the text and figures. We hope that this is now clear in the revised manuscript.

      Comment 4. In addition, although I find your statement about the link between acoustic camouflage and fitness reasonable, it should be described as a hypothesis or examined if you want to keep the direct link statement. I believe showing a direct link can add an additional outstanding aspect to this paper, but I also understand that it can be addressed in a separate paper.

      We agree that the relationship between hunting success and barn owl fitness is an important topic, but it necessitates a consideration of both hunting strategies, including hunting on the wing, which extends beyond the limits of our current study. Indeed, our primary objective was to conduct a detailed examination of the interplay between acoustic camouflage and the success of the sit-and-wait technique.

      However, we have edited the manuscript to explicitly describe the link between acoustic camouflage and fitness as a hypothesis. We believe this adjustment provides a more accurate representation of our approach. We hope this clarifies the specific emphasis of our work and its contribution to the understanding of barn owl hunting behavior.

      Here are my detailed comments about the paper: 

      Comment 5. Title: Consider changing the title to "Acoustic camouflage predicts hunting success in a wild predator." 

      We would like to thank you for your nice proposition. However, we opted for a different title, which is now “Landing force reveals new form of motion-induced sound camouflage in a wild predator”.

      Comment 6. Line 91-93: Please provide additional information about the collected dataset, including: 

      Description of the total period of observations, an average and standard deviation of perching and hunting attempt events per individual per night, number of foraging trips per individual per night, details about the geographic location and characteristics of the habitat, season, and reproductive state. 

      The revised manuscript now includes detailed information about the collected dataset (i.e. study area, reproductive state, etc…). “We used GPS loggers and accelerometers to record high resolution movement data during two consecutive breeding seasons (May to August in 2019 and 2020) from 163 wild barn owls (79 males and 84 females) breeding in nest boxes across a 1,000 km² intensive agricultural landscape in the western Swiss plateau.” Results section, lines 79 – 82

      Details about the number of foraging trips per individuals and per night are now presented in the results: “Sexual dimorphism in body mass was marked among our sampled individuals. Males were lighter than females (84 females, average body mass: 322 ± 22.6 g; 79 males, average body mass 281 ± 16.5 g, Fig S6) and provided almost three times more prey per night than females (males: 8 ± 5 prey per night; females: 3 ± 3 prey per night; Fig.S7). Males also displayed higher nightly hunting effort than females (Males: 46 ± 16 hunting attempts per night, n= 79; Females: 25 ± 11 hunting attempts per nights, n=84; Fig. 3A, Fig S8). However, females were more likely to use a sit and wait strategy than males (females: 24% ± 15%, males: 13% ± 10%, Fig.S9). As a result, the number of perching events per night was similar between males and females (Females: 76 ± 23 perching events per nights; Males: 69 ± 20 perching events per night; Fig S8).” (lines 165 – 174) 

      Comment 7. In addition, state if the information describes breeding pairs of males and females and provides statistics on the number of tracked pairs and the number of nest boxes.

      The revised manuscript now includes a description of the number of tracked breeding pairs and the number of nest boxes. “Of these individuals, 142 belonged to pairs for which data were recovered from both partners (71 pairs in total, 40 in 2019, 31 in 2020). The remaining 21 individuals belonged to pairs with data from one partner (11 females and 1 male in 2019; 4 females and 5 males in 2020).” (lines 82 – 85.)

      Comment 8. Line 93: Briefly define the term "landing force" and explain how it was measured (and let the reader know that there is a detailed description in the Methods).

      We now include a brief definition of the “landing force” along with a brief explanation of how it was measured in the results section. “We extracted the peak vectoral sum of the raw acceleration during each landing and converted this to ground reaction force (hereafter “landing force”, in Newtons) using measurements of individual body mass (see methods for detailed description).” (lines 92 – 95).

      Comment 9. Line 94: All definitions, including "pre-hunting force," need to be better described in the Results section.

      Thank you for this suggestion. We now provided a better description of those key definitions directly in the results section: 

      Measurement of landing force: “Barn owls employing a sit-and-wait strategy land on multiple perches before initiating an attack, with successive landings reducing the distance to the target prey (Fig. 2C). 

      We used the acceleration data to identify 84,855 landings. These were further categorized into perching events (n = 56,874) and hunting strikes (n = 27,981), depending whether barn owls were landing on a perch or attempting to strike prey on the ground (Fig. 1A and B, see methods for specific details on behavioral classification).” (lines 88 – 95)

      Pre-hunt perching force predicts hunting success: “Finally, we analyzed whether the landing force in the last perching event before each hunting attempt (i.e. pre-hunt perching force) predicted variation in hunting success” (lines 229 – 230)

      Comment 10. Line 102: Remove "Our analysis of 27,981 hunting strikes showed that" and add "n = 27,981" after the statistics. You have already stated your sample size earlier. There is no need to emphasize it again, although your sample size is impressive.

      We modified the text in the results section as suggested.

      Comment 11. Line 104: The results so far suggest that the difference in landing force between males and females is an outcome of their different body masses. However, it is not clear what is the reason for the difference in the number of hunting strike attempts between males and females (Lines 104-106). Can you compare the difference in landing force between males and females with similar body mass (females from the lower part of the distribution and males from the upper part)? Is there still a difference?

      Thank you, following your comment we made some new analyses that clarified the situation around landing force involved in perching and hunting strike events between sexes. But firstly, we wanted to clarify why there is a difference in number of hunting attempts between males and females. During the breeding season, females typically perform most of the incubation, brooding, and feeding of nestlings in the nest, while the male primarily hunts food for the female and chicks. The female supports the male providing food in a very irregular way, and this changes from pair to pair (paper in prep.). The differences in number of hunting attempts between males and females reflects this asymmetry in food provisioning between sexes during this specific period. We specified this in the revised version of the manuscript (lines 164 – 174). 

      We also provide a new analysis to investigate sex differences in mass-specific landing force (force/body mass). We found that males and females produce similar force per unit of body mass during perching events. This demonstrates that the overall higher perching force in females (see Fig. 4C in the manuscript) is therefore driven by their higher body mass. (lines 194 – 199)

      Comment 12. Line 154: I believe Boonman et al. (2018) is relevant to this part of the discussion. Boonman, Arjan, et al. found that barn owl noise during landing and taking off is worth considering. ["The sounds of silence: barn owl noise in landing and taking off."

      Behavioral Processes 157 (2018): 484-488.]

      We now cited this paper in the discussion.

      Comment 13. Line 164: Your results do not directly demonstrate a link to fitness, although they potentially serve as a proxy for fitness (add a reference). However, you might have information regarding nestlings' survival - that will provide a direct link for fitness. Change your statement or add the relevant data.

      We appreciated your feedback, and we adjusted the language accordingly.

      Comment 14. Line 213: If the poles are closer to the ground - is it possible that the higher trees and buildings serve for resting and gathering environmental information over greater distances? For example, identifying prey at farther distances or navigating to the next pole?

      Yes, this is indeed the most likely explanation for the fact that owls land more on buildings and trees than on poles until the last period (about 6 minutes) before hunting. In these last minutes, barn owls preferentially use poles, as we showed in figure 2B. The revised manuscript now includes this explanation in the discussion (lines 269 – 284).

      Comment 15. Line 250: The product "AXY-Trek loggers" does not appear on the Technosmart website (there are similar names, but not an exact match). Are you sure this is the correct name of the tracking device you used? 

      Thank you for pointing out this detail that we missed. The device we used is now called "AXY-Trek Mini" (https://www.technosmart.eu/axy-trek-mini/). We have corrected this error directly in the revised manuscript.

      Comment 16. Line 256: Please explain how the devices were recovered. Did you recapture the animals? If so, how? Additionally, replace "after approximately 15 days" with the exact average and standard deviation. Furthermore, since you have these data, please state the difference in body mass between the two measurements before and after tagging.

      The birds were recaptured to recover the devices. Adults barn owls were recaptured at their nest sites, again using automatic sliding traps that are activated when birds enter the nest box. The statement "after approximately 15 days" was replaced by the exact mean and standard deviation, which were 10.47 ± 2.27 days. Those numbers exclude five individuals from the total of 163 individuals included in this study. They could not be recaptured in the appropriate time window but were re-encountered when they initiated a second clutch later in the season (4 individuals) or a new clutch the year after (1 individual).

      We integrated this previously missing information in the revised manuscript (lines 370 – 372).

      Comment 17. Line 259: What was the resolution of the camera? What were the recording methods and schedule? How did you analyze these data? 

      The resolution was set to 3.1 megapixel. Motion sensitive camera traps were installed at the entrance to each nest box throughout the period when the barn owls were wearing data loggers, and each movement detected triggered the capture of three photos in bursts. The photos recorded were not analyzed as such for this study, but were used to confirm each supply of prey, which had previously been detected from the accelerometer data. We added these details in the revised manuscript (lines 377 – 380)

      Comment 18_1. Figure 1: 

      Panel A) Include the sex of the described individual. 

      The sex of the described individual is now included in the figure caption.

      Comment 18_2. It would be interesting to show these data for both males and females from the same nest box (choose another example if you don't have the data for this specific nest box). 

      Although we agree that showing tracks of males and females from the same nest is very interesting, the purpose of this figure was to illustrate our data annotation process and we believe that adding too many details on this figure will make it appear messy. However, the revised manuscript now includes a new figure (Fig. 3A) which shows simultaneous GPS tracks of a male and a female during a complete night, with detailed information about perching and hunting behaviors.

      Comment 18_3. Add the symbol of the nest box to the legend. 

      Done

      Comment 18_4. Provide information about the total time of the foraging trip in the text below. 

      The duration of the illustrated foraging trip has been included in the figure caption.

      Comment 18_5. To enhance the figure’s information on foraging behavior, consider color coding the trajectory based on time and adding a background representing the landscape. Since this paper may be of interest to researchers unfamiliar with barn owl foraging behavior, it could answer some common questions. 

      For similar reasons explained in our answer above (Comment 18_2), we would rather keep this figure as clean as possible. However, we followed your recommendations and included these details in the new Figure 3 described above. In this new figure, GPS tracks are color coded according to the foraging trip number and includes a background representing the landscape. To provide even more detail about the landscape, we added another figure in the supplementary materials (Fig. S2) which provides illustration of barn owls foraging ground and nest site that we think might be of interest for people unfamiliar with barn owls.

      Comment 18_6. Inset panels) provide a detailed description of the acceleration insert panels. 

      Done

      Comment 18_7. Color code the acceleration data with different colors for each axis, add x and y axes with labels, and ensure the time frame on the x-axis is clear. How was the self-feeding behavior verified (should be described in the methods section)? 

      We kept both inset panels as simple as possible since they serve here as examples, but a complete representation of these behaviors (with time frame, different colors and labels) is provided in the supplementary materials (figure S3). We included this statement in the figure caption and added a reference to the full representations from the supplementary materials: 

      In the Figure caption: “Inset panels show an example of the pattern of the tri-axial acceleration corresponding to both nest-box return and self-feeding behaviors (but see Fig S3for a detailed representation of the acceleration pattern corresponding to each behavior).” 

      In the Method section: “Self-feeding was evident from multiple and regular acceleration peaks in the surge and heave axes (resulting in peaks in VeDBA values > 0.2 g and < 0.9 g, Fig.S3D), with each peak corresponding to the movement of the head as the prey was swallowed whole.”.

      Comment 18_8. Panel B) Note in the caption that you refer to the acceleration z-axis.

      We believe that keeping the statement “the heave acceleration…” in the figure caption is more informative than referring to the “z-axis” as it describes the real dimension to which we are referring. The use of the x, y and z axes can be misleading as they can be interchanged depending on the type and setting of recorders used.

      Comment 18_9. Present the same time scale for both hunting strategies to facilitate comparison. You can achieve this by showing only part of the flight phase before perching. 

      Done

      Comment 18_10. Panel C) Presenting the data for both hunting strategy and sex would provide more comprehensive information about the results and would be relatively easy to implement. 

      We agree with your comment. We present the differences in landing force for both landing contexts and sexes in the new Figure 3 as well as in the supplementary materials (Figure S10) of this revised manuscript.

      Comment 19. Figure 2: Please provide an explanation of the meaning of the circles in the figure caption.  

      Done

      Comment 20. Figure 3: 

      Panel A) It is unclear how the owl illustration is relevant to this specific figure, unlike the previous figures where it is clear. Also, suggest removing the upper black line from the edge of the figure or add a line on the right side. 

      Done (now in Figure 2).

      Panel B) "Density" should be capitalized. 

      Done

      Panel C) Add a scale in meters, and it would be helpful to include an indication of time before hunting for each data point. 

      Done

      Comment 21. Figure S1: Mark the locations of the nest boxes and ensure that trajectories of different individuals and sexes can be identified. 

      The purpose of this figure was to show the spatial distribution of the data. We think that adding nest locations and coloring the paths according to individuals and/or sex will make the figure less clear. However, the new Figure 3 highlights those details.

      Comment 22. Figure S2: Show the pitch angle similarly to how you showed the acceleration axes, and explain what "VeDBA" stands for. Provide a description of the perching behavior, clearly indicating it on the figure. Add axes (x, y, z) to the illustration of the acceleration explanation. 

      We edited this figure (now figure S3) to show the pitch angle and provide an explanation of what “VeDBA” stands for in the figure caption. The figure caption now also provides a better description of the perching behavior. For the axes (i.e. X, Y, Z), we prefer to refer to the heave, surge, and sway as this is more informative and refers to what is usually reported in studies working with tri-axial accelerometers.

      Comment 23. Table S1: Improve the explanation in the caption and titles of the table. 

      Done

      Reviewer #2 (Recommendations For The Authors): 

      Comment 1. From the public review and my assessment there, the authors can be assured that I thoroughly enjoyed the read and am looking forward to seeing a revised and improved version of this paper. 

      We thank the reviewer for this comment. We revised the manuscript according to their comments.

      Comment 2. In addition to my major points stated above, I would like to add the following recommendations: 

      The manuscript is overall well written, but it uses a very pictorial language (a little as if we were in a David Attenborough documentary) that I find inappropriate for a research paper (especially in the abstract and introduction, "remarkable" (2x), "sophisticated" (are there any unsophisticated adaptations? We are referring to something under selection after all) etc.

      We appreciated that you found the paper overall well written, and we understand the comment about pictorial language. We therefore slightly changed the text to make sure that the adjective used to describe adaptive strategies are not over-emphasized.

      Comment 3. Abstract 

      "While the theoretical benefits of predator camouflage are well established, no study has yet been able to quantify its consequences for hunting success." - This claim is actually not fully true: 

      Nebel Carina, Sumasgutner Petra, Pajot Adrien and Amar Arjun 2019: Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph. Soc. open sci.6:190677 

      We edited our claim to specify that the consequences of predator camouflage on hunting success has never been quantified in natural conditions and cited the reference in the introduction.

      Comment 4. Line 23. Rephrase to: "We used high-resolution movement data to quantify how barn owls (Tyto alba) conceal their approach when using a sit-and-wait strategy, as well as the power exerted during strikes." 

      We edited this sentence in the abstract, as suggested.

      Comment 5. Results 

      There is a disconnect between the objectives outlined at the end of the introduction and the following results that should be improved. 

      The authors state: "Using high-frequency GPS and accelerometer data from wild barn owls (Tyto alba), we quantify the landing dynamics of this sit-and-wait strategy to (i) examine how birds adjust their landing force with the behavioral and environmental context and (ii) test the extent to which the magnitude of the predator cue affects hunting success." But one of the first results presented are sex differences. 

      This is a fair point. We have now changed our statement in the end of the introduction as well as the order of the results to improve the link between the objectives outlined in the introduction and the way result are presented. 

      Comment 6. At this stage, the reader does not even know yet that we are presented with a size-dimorphic species that also has very different parental roles during the breeding season. This should be better streamlined, with an extra paragraph in the introduction. And these sex differences are then not even discussed, so why bring them up in the first place (and not just state "sex has been fitted as additional co-variate to account for the size-dimorphism in the species" without further details). 

      We edited the way the objectives are outlined in the introduction to cover the size dimorphism (lines 70 – 76). We also completely changed the way the sex differences are presented in the results, including a new analysis that we believe provides a better comprehensive understanding of barn owl foraging behavior (lines 164 – 206). Finally, we added a new paragraph in the discussion to consider those results (lines 319 – 339).

      Comment 7. It is not clear to me where and how high-resolution GPS data were used? The results seem to concentrate on ACC – why GPS was used and how it features should be foreshadowed in a few lines in the introduction. I definitively prefer having the methods at the end of a manuscript, but with this structure, it is crucial to give the reader some help to understand the storyline. 

      GPS data were used to validate some behavioral classifications (prey provisioning for example), but most importantly they were used to link each landing event with perch types. We edited the text in the result section to clarify where GPS and/or ACC data were used.

      Comment 8. Discussion 

      Move the orca example further down, where more detail can be provided to understand the evidence. 

      After our extensive edits in the discussion, we felt this example was interrupting the flow. We now cite this study in the introduction. 

      Comment 9. Size dimorphism and evident sex differences are not discussed. 

      The revised manuscript now includes a new paragraph in the discussion in which sex differences are discussed (lines 319 – 339).

      Comment 10. Be more precise in the terminology used (for example, land use seems to be interchangeable with habitat characteristics?). 

      We modified “land use” with “habitat data” in the revised manuscript.

      Comment 11. Methods 

      Please provide a justification for the very high weight limit (5%; line 256). This limit is outdated and does not fulfill the international standard of 3% body weight. I assume the ethics clearance went through because of the short nature of the study (i.e., the birds were not burdened for life with the excess weight? But a line is needed here or under the ethics considerations to clarify this). 

      The 5% weight limit was considered acceptable due to the short deployment period, and we now edited the ethics statement to emphasize this point. However, it is important to note that there is no real international standard, with both 3% and 5% weight limits being commonly used. Both limits are arbitrary and the impact of a fixed mass on a bird varies with species and flight style. All owls survived and bred similarly to the non-tagged individuals in the population (lines 373 – 376 & lines 558 – 561)

      EDITORIAL COMMENT: We strongly encourage you to provide further context and clarification on this issue, as suggested by the Reviewer. On a related point, the ethics statement refers to GPS loggers, rather than GPS and ACC devices; we encourage you to clarify wording here.

      Thank you for highlighting this point that indeed needed some clarifications.

      Although we have used the terminology "GPS recorders", the authorization granted by the Swiss authorities for this study effectively covers the entire tracking system, which combines both GPS and ACC recorders in the same device. We have therefore changed the wording used in the ethics statement to avoid any misunderstanding (lines 373 – 376 & lines 558 – 561)

      Comment 12. Please provide more information on the model selection approach, what does "Non-significant terms were dropped via model simplification by comparing model AIC with and without terms." mean? Did the authors use a stepwise backward elimination procedure (drop1 function)? Or did they apply a complete comparison of several candidate models? I think a model comparison approach rather than stepwise selection would be more informative, as several rather than only one model could be equally probable. This might also improve model weights or might require a model averaging procedure - current reported R2values are very small and do not seem to support the results well. 

      We apologize for the lack of details about this important aspect of the statistical analysis. We applied an automated stepwise selection using the dredge function from the R package “MuMin”, therefore applying a complete comparison of several candidate models. The final models were chosen as the best models since the number of candidate models within ∆AIC<2 was relatively low in each analysis and thus a model averaging was not appropriate here. We edited the methods section to ensure clarity, and added model selection tables for each analysis, ranked according to AICc scores, in the supplementary materials (lines 532 – 552)

      In addition, we agree that the reported R-squared values in our analyses are quite low, specifically regarding the influence of pre-hunt perching force on hunting success (cond R2 = 0.04). Nonetheless, landing impact still has a notable effect size (an increase of 1N reduces hunting success by 15%). The reported values are indicative of the inherent complexity in studying hunting behavior in a wild setting where numerous variables come into play. We specifically investigated the hypothesis that the force involved during pre-hunt landings, and consequently the emitted noise, influences the success of the next hunting attempt in wild barn owls. Factors such as prey behavior and micro-habitat characteristics surrounding prey (such as substrate type and vegetation height) are most likely to be influential but hard, or nearly impossible, to model. We now cover this in a more nuanced way in the discussion (lines 266 – 268)

      Comment 13. Please explain why BirdID was nested in NightID - this is not clear to me.

      Probably here there is a misunderstanding because we wrote that we nested NightID in BirdID (and not BirdID in NightID). 

      Comment 14. I hope the final graphs and legends will be larger, they are almost impossible to read. 

      We enlarged the graphs and legends as much as possible to improve readability. However, looking at the graphs in the published version they seem clear and readable.

      Comment 15. Figure S1: Does "representation" mean the tracks don't show all of the 163 owls? If so, be precise and tell us how many are illustrated in the figure. 

      Figure S1 represent the tracks for each of the 163 barn owls used in the study. We changed the terminology used in the figure caption to avoid any misunderstanding.

      Comment 16. Figure S4: Please adjust the y-axis to a readable format. 

      Done

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Floedder et al report that dopamine ramps in both Pavlovian and Instrumental conditions are shaped by reward interval statistics. Dopamine ramps are an interesting phenomenon because at first glance they do not represent the classical reward prediction errors associated with dopamine signaling. Instead, they seem somewhat to bridge the gap between tonic and phasic dopamine, with an intense discussion still being held in the field about what is their actual behavioral role. Here, in tests with head-fixed mice, and dopamine being recorded with a genetically encoded fluorescent sensor in the nucleus accumbens, the authors find that dopamine ramps were only present when intertrial intervals were relatively short and the structure of the task (Pavlovian cue or progression in a VR corridor) contained elements that indicated progression towards the reward (e.g., a dynamic cue). The authors show that these findings are well explained by their previously published model of Adjusted Net Contingency of Causal Relation (ANCCR).

      Strengths:

      This descriptive study delineates some fundamental parameters that define dopamine ramps in the studied conditions. The short, objective, and to-the-point format of the manuscript is great and really does a service to potential readers. The authors are very careful with the scope of their conclusions, which is appreciated by this reviewer.

      Weaknesses:

      The discussion of the results is very limited to the conceptual framework of the authors' preferred model (which the authors do recognize, but it still is a limitation). The correlation analysis presented in panel I of Figure 3 seems unnecessary at best and could be misleading, as it is really driven by the categorical differences between the two conditions that were grouped for this analysis. There are some key aspects of the data and their relationship with each other, the previous literature, and the methods used to collect them, that could have been better discussed and explored.

    1. Object level permissions Really we'd like all code snippets to be visible to anyone, but also make sure that only the user that created a code snippet is able to update or delete it. To do that we're going to need to create a custom permission. In the snippets app, create a new file, permissions.py from rest_framework import permissions class IsOwnerOrReadOnly(permissions.BasePermission): """ Custom permission to only allow owners of an object to edit it. """ def has_object_permission(self, request, view, obj): # Read permissions are allowed to any request, # so we'll always allow GET, HEAD or OPTIONS requests. if request.method in permissions.SAFE_METHODS: return True # Write permissions are only allowed to the owner of the snippet. return obj.owner == request.user Now we can add that custom permission to our snippet instance endpoint, by editing the permission_classes property on the SnippetDetail view class: permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly] Make sure to also import the IsOwnerOrReadOnly class. from snippets.permissions import IsOwnerOrReadOnly Now, if you open a browser again, you find that the 'DELETE' and 'PUT' actions only appear on a snippet instance endpoint if you're logged in as the same user that created the code snippet.

      To ensure that all code snippets are visible to everyone but only the user who created a snippet can update or delete it, you can create a custom permission class. This custom permission will be added to the snippet instance endpoint to enforce these rules.

      Step-by-Step Instructions

      1. Create Custom Permission Class: Create a new file called permissions.py in your snippets app directory and define a custom permission class IsOwnerOrReadOnly.

      2. Update View to Use Custom Permission: Modify the SnippetDetail view to use the custom permission class in addition to the IsAuthenticatedOrReadOnly permission class.

      Step 1: Create Custom Permission Class

      snippets/permissions.py

      ```python from rest_framework import permissions

      class IsOwnerOrReadOnly(permissions.BasePermission): """ Custom permission to only allow owners of an object to edit it. """

      def has_object_permission(self, request, view, obj):
          # Read permissions are allowed to any request,
          # so we'll always allow GET, HEAD or OPTIONS requests.
          if request.method in permissions.SAFE_METHODS:
              return True
      
          # Write permissions are only allowed to the owner of the snippet.
          return obj.owner == request.user
      

      ```

      Step 2: Update the View to Use Custom Permission

      views.py

      First, import the custom permission class at the top of your views.py file:

      python from snippets.permissions import IsOwnerOrReadOnly

      Then, update the SnippetDetail view to include the custom permission in the permission_classes property:

      ```python from rest_framework import generics from rest_framework import permissions from .models import Snippet from .serializers import SnippetSerializer

      class SnippetList(generics.ListCreateAPIView): queryset = Snippet.objects.all() serializer_class = SnippetSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly]

      def perform_create(self, serializer):
          serializer.save(owner=self.request.user)
      

      class SnippetDetail(generics.RetrieveUpdateDestroyAPIView): queryset = Snippet.objects.all() serializer_class = SnippetSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly] ```

      Explanation of the Code

      • Custom Permission Class (IsOwnerOrReadOnly):
      • permissions.BasePermission: This is the base class for all permissions in Django REST Framework.
      • has_object_permission: This method checks whether the request has the required permissions for a specific object.

        • Read Permissions: Always allow safe methods (GET, HEAD, OPTIONS).
        • Write Permissions: Only allow if the user making the request is the owner of the object.
      • SnippetDetail View:

      • permission_classes: Combines IsAuthenticatedOrReadOnly (which allows read access to everyone and write access only to authenticated users) with IsOwnerOrReadOnly (which restricts write access to the owner of the snippet).

      What Happens Now

      • Read Access: Any user (authenticated or not) can read (list and retrieve) snippets.
      • Write Access: Only authenticated users can create snippets, and only the owner of a snippet can update or delete it.

      Testing the Setup

      1. Open the Browsable API: Navigate to a snippet instance endpoint in your browser.
      2. Check Actions: You should see the 'DELETE' and 'PUT' actions only if you are logged in as the user who created the snippet.

      Summary

      • Purpose: Ensure all code snippets are visible to everyone, but only the creator can update or delete their snippets.
      • Implementation: Create a custom permission class and apply it to the SnippetDetail view.
      • Result: Proper access control is enforced, allowing only the snippet owner to modify their snippet while everyone can read the snippets.

      This setup ensures that your API adheres to the required permissions, providing both visibility and security.

    1. Background Analysis of viral diversity using modern sequencing technologies offers extraordinary opportunities for discovery. However, these analyses present a number of bioinformatic challenges due to viral genetic diversity and virome complexity. Due to the lack of conserved marker sequences, metagenomic detection of viral sequences requires a non-targeted, random (shotgun) approach. Annotation and enumeration of viral sequences relies on rigorous quality control and effective search strategies against appropriate reference databases. Virome analysis also benefits from the analysis of both individual metagenomic sequences as well as assembled contigs. Combined, virome analysis results in large amounts of data requiring sophisticated visualization and statistical tools.

      Reviewer1: Arvind Varsani The MS titled "Hecatomb: An Integrated Software Platform for Viral Metagenomics" addresses the developed of a toolkit for viral meatgenomics analysis that assembles a variety of tools into a workflow.Overall, I do not have any issue with this MS or the toolkit.I have some minor points to help improve the MS and make it as current as possible.1. Line 40: I would include Cenote-take 2 PMID: 33505708, geNomad https://www.biorxiv.org/content/10.1101/2023.03.05.531206v12. Line 40: I would probably not cite the preprint of this current paper - see ref 21.3. Line 80: Actually Cenote-take (both version 1 and 2) both use HHMs and as far as I know so does geNomad.4. Line 248: Please note that Siphoviridae, Podoviridae and Myoviridae are not currently family names. See PMID: 366830755. This means you will likely need to edit you figure to collapse these to Caudovirales6. Line 250-251: Picornaviridae and Adenoviridiae should be in italics7. Line 270: Here and elsewhere, please note that a taxa do not infect a host, it is a virus that infects a host. "Mimiviridae, that infect Acanthamoeba, and Phycodnaviridae, that infect algae, are both dsDNA viruses with large genomes" should ideally be written as "Viruses in the family Mimiviridae infect Acanthamoeba and those in the family Phycodnavirida infect algae, are dsDNA viruses with large genomes."8. Figure 6: the name tags of the CDS/ ORFS are truncated e.g. replication initiate…, heat maturation prot…9. Figure 6: Major head protein should be major capsid protein.10. One thing that I would highlight is that none of the workflows / tool kits developed account for spliced CDS. This is a major issue in automation of virus genome annotation at the moment and with this there will be some degree of misidentification for taxa assignment.

  4. Jun 2024
    1. And when they have come together to drink, they first sprinkle with liquor thisimage which is over the master's head, then the other images in order. Then anattendant goes out of the dwelling with a cup and liquor, and sprinkles threetimes to the south, each time bending the knee, and that to do reverence to thefire; then to the east, and that to do reverence to the air; then to the west to doreverence to the water; to the north they sprinkle for the dead. When the mastertakes the cup in hand and is about to drink, he first pours a portion on the ground.If he were to drink seated on a horse, he first before he drinks pours a little on theneck or the mane of the horse. Then when the attendant has sprinkled toward thefour quarters of the world he goes back into the house, where two attendants areready with two cups and platters to carry drink to the master and the wife seatednear him upon the couch. And when he has several wives, she with whom he hasslept that night sits beside him in the day, and it becomes all the others to cometo her dwelling that day to drink, and court is held there that day, and the giftswhich are brought that day are placed in the treasury of that lady. A bench with askin of milk, or some other drink, and with cups, stands in the entry.

      The Mongol customs rely heavily on alcohol and the relationship around the master. They would appear more superstitious at first but seem more prayer-like in some ways. specifically, when pouring exactly three sprinkles in the South, East, West, and North to give reverence to the fire, air, water, and the dead. It's fascinating to see how different customs hold high regard in their prayers and respect for their masters.

    1. “My mother bids me let Lord Eddard takethe black, and Lady Sansa has begged mercy for her father.” Helooked straight at Sansa then, and smiled, and for a moment Aryathought that the gods had heard her prayer, until Jorey turnedback to the crowd and said, “But they have the soft hearts ofwomen. So long as I am your king, treason shall never gounpunished. Ser Ilyn, bring me his head!”

      NOOKOEPW;SA DkkkkkkPW4TH8IL C

    2. His son had been a babe as well, yet they hadripped him from his mother’s breast and dashed his head against awall. That was the way of men.

      disgusting

    3. Lannister raised his head. “Lady Stark,” he said from his knees.Blood ran down one cheek from a gash across his scalp, but the palelight of dawn had put the glint of gold back in his hair. “I wouldoer you my sword, but I seem to have mislaid it.”

      thats kinda hot

    4. Jon put a hand on Sam’s shoulder. “We have a dozen rangers withus, and the dogs, even Ghost. No one will hurt you, Sam. Go aheadand look. The rst look is the hardest.”Sam gave a tremulous nod, working up his courage with a visibleeort. Slowly he swiveled his head. His eyes widened, but Jon held

      just like he made bran look

    5. So Ned bent his head andwrote, but where the king had said “my son Jorey,” he scrawled“my heir” instead. The deceit made him feel soiled.

      alicent would love him

    6. Robb shook his head numbly, the pain plain in his eyes. “I don’tknow, and ... Bran, that’s not the worst of it. Father was caughtbeneath a falling horse in the ght. Alyn says his leg was shattered,and ... Maester Pycelle has given him the milk of the poppy, butthey aren’t sure when ... when he ...” The sound of hoofbeats madehim glance down the road, to where Theon and the others werecoming up. “When he will wake,” Robb nished. He laid his handon the pommel of his sword then, and went on in the solemn voiceof Robb the Lord. “Bran, I promise you, whatever might happen, Iwill not let this be forgotten.”

      oh he really needs a hug

    7. all the pillow tricks Doreah had taught her, beforeDany had been able to make Drogo relent and allow Viserys torejoin them at the head of the column.

      not her having to do those acts for him :(

    8. Just for a moment, he thought he saw a icker of doubt in hereyes, but what she said was, “Why would Petyr lie to me?”“Why does a bear shit in the woods?” he demanded. “Because it ishis nature. Lying comes as easily as breathing to a man likeLittlenger. You ought to know that, you of all people.”She took a step toward him, her face tight. “And what does thatmean, Lannister?”Tyrion cocked his head. “Why, every man at court has heard himtell how he took your maidenhead, my lady.”“That is a lie!” Catelyn Stark said.

      UFINW LITTLEFINGER WHEN I CATCH YOU

    9. He realized he was crying.And then, through the tears, he found the sense in the words, andraised his head. “He woke up,” he said. “The gods gave him back.”“Crippled,” Mormont said. “I’m sorry, boy. Read the rest of theletter.”He looked at the words, but they didn’t matter. Nothing mattered.Bran was going to live. “My brother is going to live,” he toldMormont. The Lord Commander shook his head, gathered up a

      JON IS MY SON IDCC

    10. The Hound’s eyes seemed to glitter through the steel of thathideous dog’s-head helm. “He ran.” He looked at Ned’s face andlaughed. “But not very fast.”

      oh i hate them all

    11. into her ear. Her ngers were slippery with blood, but she wouldnot let go of the dagger. The hand over her mouth clenched moretightly, shutting o her air. Catelyn twisted her head to the side andmanaged to get a piece of his esh between her teeth. She bit downhard into his palm. The man grunted in pain. She ground her teethtogether and tore at him, and all of a sudden he let go. The taste ofhis blood lled her mouth.

      YES CAT

    12. “Maybe he thought you were a grumkin.”Tyrion glanced at him sharply. Then he laughed, a raw snort ofamusement that came bursting out through his nose entirely withouthis permission. “Oh, gods,” he said, choking on his laughter andshaking his head, “I suppose I do rather look like a grumkin. Whatdoes he do to snarks?”“You don’t want to know.” Jon picked up the wineskin andhanded it to Tyrion.

      theyre a fun pair

    13. Her thighs were slickwith blood. She closed her eyes and whimpered. As if in answer,there was a hideous ripping sound and the crackling of some greatre. When she looked again, Viserys was gone, great columns ofame rose all around, and in the midst of them was the dragon. Itturned its great head slowly. When its molten eyes found hers, shewoke, shaking and covered with a ne sheen of sweat. She hadnever been so afraid ...

      the dreams...

    14. The head bounced o a thick root and rolled. It came up nearGreyjoy’s feet. Theon was a lean, dark youth of nineteen who foundeverything amusing. He laughed, put his boot on the head, andkicked it away.“Ass,” Jon muttered,

      fr

    15. Ser Waymar met him bravely. “Dance with me then.” He lifted hissword high over his head, deant. His hands trembled from theweight of it, or perhaps from the cold. Yet in that moment, Willthought, he was a boy no longer, but a man of the Night’s Watch.

      yess waymar

    Annotators

    1. “Myheadwouldnotbeabovewatetwithoutmycoach”;

      So often in the schools I have been in coaching is seen as more of a burden. While many teachers would say their coaches give them good advice, the coaching is also a major source of stress for already overwhelmed teachers. I wonder how to shift this practice so that this "my head would not be above water without my coach" can be a reality.

    1. Background   Synthetic cathinones are β-keto phenethylamines and chemically similar to amphetamine and methamphetamine [1]. Cathinone, the principal active ingredient in the leaves of the khat plant (catha edulis), can be considered as the prototype from which a range of synthetic cathinones have been developed. Internationally controlled substances in this group are cathinone, methcathinone, cathine and pyrovalerone. Cathinone and methcathinone are listed in Schedule I of the 1971 Single Convention on Psychotropic Substances, cathine in Schedule III and pyrovalerone in Schedule IV.   Synthetic cathinones appeared in drug markets in the mid-2000s. In 2005, methylone, an analogue of MDMA, was the first synthetic cathinone reported to the European Monitoring Centre on Drugs and Drug Addiction (EMCDDA). In 2007, reports of 4-methylmethcathinone (mephedrone) use emerged, first in Israel and then in other countries and regions, including Australia, Scandinavia, Ireland and the United Kingdom [2]. Mephedrone was reportedly first synthesized in 1929 [3].

      MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study

      Show authors

      Nature Medicine volume 27, pages1025--1033 (2021)Cite this article

      Matters Arising to this article was published on 11 October 2021

      Matters Arising to this article was published on 11 October 2021

      Abstract

      Post-traumatic stress disorder (PTSD) presents a major public health problem for which currently available treatments are modestly effective. We report the findings of a randomized, double-blind, placebo-controlled, multi-site phase 3 clinical trial (NCT03537014) to test the efficacy and safety of 3,4-methylenedioxymethamphetamine (MDMA)-assisted therapy for the treatment of patients with severe PTSD, including those with common comorbidities such as dissociation, depression, a history of alcohol and substance use disorders, and childhood trauma. After psychiatric medication washout, participants (n = 90) were randomized 1:1 to receive manualized therapy with MDMA or with placebo, combined with three preparatory and nine integrative therapy sessions. PTSD symptoms, measured with the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5, the primary endpoint), and functional impairment, measured with the Sheehan Disability Scale (SDS, the secondary endpoint) were assessed at baseline and at 2 months after the last experimental session. Adverse events and suicidality were tracked throughout the study. MDMA was found to induce significant and robust attenuation in CAPS-5 score compared with placebo (P < 0.0001, d = 0.91) and to significantly decrease the SDS total score (P = 0.0116, d = 0.43). The mean change in CAPS-5 scores in participants completing treatment was -24.4 (s.d. 11.6) in the MDMA group and -13.9 (s.d. 11.5) in the placebo group. MDMA did not induce adverse events of abuse potential, suicidality or QT prolongation. These data indicate that, compared with manualized therapy with inactive placebo, MDMA-assisted therapy is highly efficacious in individuals with severe PTSD, and treatment is safe and well-tolerated, even in those with comorbidities. We conclude that MDMA-assisted therapy represents a potential breakthrough treatment that merits expedited clinical evaluation.

      Similar content being viewed by others

      MDMA-assisted therapy for moderate to severe PTSD: a randomized, placebo-controlled phase 3 trial

      Article Open access14 September 2023

      Trauma-focused treatment for comorbid post-traumatic stress and substance use disorder

      Article 14 November 2022

      Behavioral and neurocognitive factors distinguishing post-traumatic stress comorbidity in substance use disorders

      Article Open access14 September 2023

      Main

      PTSD is a common and debilitating condition with immeasurable social and economic costs that affects the lives of hundreds of millions of people annually. There are a number of environmental and biological risk factors that contribute to the development and maintenance of PTSD1, and poor PTSD treatment outcomes are associated with several comorbid conditions that include childhood trauma2, alcohol and substance use disorders3, depression4, suicidal ideation5 and dissociation6. It is therefore imperative to identify a therapeutic that is beneficial in those individuals with the comorbidities that typically confer treatment resistance.

      The selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine are Food and Drug Administration (FDA)-approved first-line therapeutics for the treatment of PTSD. However, an estimated 40--60% of patients do not respond to these compounds7. Likewise, although evidenced-based trauma-focused psychotherapies such as prolonged exposure and cognitive behavioral therapy are considered to be the gold standard treatments for PTSD8, many participants fail to respond or continue to have significant symptoms, and dropout rates are high9,10. Novel cost-effective therapeutics are therefore desperately needed11.

      The substituted amphetamine 3,4-methylenedioxymethamphetamine (MDMA) induces serotonin release by binding primarily to presynaptic serotonin transporters12. MDMA has been shown to enhance fear memory extinction, modulate fear memory reconsolidation (possibly through an oxytocin-dependent mechanism), and bolster social behavior in animal models13,14. Pooled analysis of six phase 2 trials of MDMA-assisted therapy for PTSD have now shown promising safety and efficacy findings15.

      Here, we assess the efficacy and safety of MDMA-assisted therapy in individuals with severe PTSD. Participants were given three doses of MDMA or placebo in a controlled clinical environment and in the presence of a trained therapy team. Primary and secondary outcome measures (CAPS-5 and SDS, respectively) were assessed by a centralized pool of blinded, independent diagnostic assessors. MDMA-assisted therapy for PTSD was granted an FDA Breakthrough Therapy designation, and the protocol and statistical analysis plan (SAP) were developed in conjunction with the FDA16.

      Results

      Demographics

      Participants were recruited from 7 November 2018 to 26 May 2020, with the last participant visit conducted on 21 August 2020. A total of 345 participants were assessed for eligibility, 131 were enrolled, 91 were confirmed for randomization (United States, n = 77; Canada, n = 9; Israel, n = 5), and 46 were randomized to MDMA and 44 to placebo (Fig. 1).

      Fig. 1: Procedure timeline and study flow diagram.

      figure 1

      a, Procedure timeline. Following the screening procedures and medication taper, participants attended a total of three preparatory sessions, three experimental sessions, nine integration sessions and four endpoint assessments (T1--4) over 18 weeks, concluding with a final study-termination visit. IR, independent rater; T, timepoint of endpoint assessment; T1, baseline; T2, after the first experimental session; T3, after the second experimental session; T4, 18 weeks after baseline. b, CONSORT diagram indicating participant numbers and disposition through the course of the trial.

      Full size image

      Study arms were not significantly different in terms of race, ethnicity, sex, age, dissociative subtype, disability or CAPS-5 score (Table 1). The mean duration of PTSD diagnosis was 14.8 (s.d. 11.6) years and 13.2 (s.d. 11.4) years in the MDMA and placebo groups, respectively. Of note, six participants in the MDMA group and 13 participants in the placebo group had the dissociative subtype according to CAPS-5 score.

      Table 1 Demographics and baseline characteristics

      Full size table

      Efficacy

      MDMA significantly attenuated PTSD symptomology, as shown by the change in CAPS-5 total severity score from baseline to 18 weeks after baseline. Mixed model repeated measure (MMRM) analysis of the de jure estimand (that is, the effects of the drug if taken as directed) showed a significant difference in treatment arms (n = 89 (MDMA n = 46), P < 0.0001, between-group difference = 11.9, 95% confidence interval (CI) = 6.3--17.4, d.f. = 71) (Fig. 2a). MMRM sensitivity analysis of the de facto estimand (that is, the effects of the drug if taken as assigned, regardless of adherence) showed a significant difference in treatment arms (n = 90, P < 0.0001, d.f. = 72).

      Fig. 2: Measures of MDMA efficacy in the MDMA-assisted therapy group and the placebo group.

      figure 2

      a, Change in CAPS-5 total severity score from T1 to T4 (P < 0.0001, d = 0.91, n = 89 (MDMA n = 46)), as a measure of the primary outcome. Primary analysis was completed using least square means from an MMRM model. b, Change in SDS total score from T1 to T4 (P = 0.0116, d = 0.43, n = 89 (MDMA n = 46)), as a measure of the secondary outcome. Primary analysis was completed using least square means from an MMRM model. c, Change in BDI-II score from T1 to study termination (t = -3.11, P = 0.0026, n = 81 (MDMA n = 42)), as a measure of the exploratory outcome. Data are presented as mean and s.e.m.

      Full size image

      The mean change in CAPS-5 scores from baseline to 18 weeks after baseline in the completers (per protocol set) was -24.4 (s.d. 11.6) (n = 42) in the MDMA-assisted therapy group compared with -13.9 (s.d. 11.5) (n = 37) in the placebo with therapy group.

      The effect size of the MDMA-assisted therapy treatment compared with placebo with therapy was d = 0.91 (95% CI = 0.44--1.37, pooled s.d. = 11.55) in the de jure estimand and d = 0.97 (95% CI = 0.51--1.42) in the de facto estimand. When the within-group treatment effect (which included the effect of the supportive therapy that was administered in both arms) was compared between the MDMA and placebo groups, the effect size was 2.1 (95% CI = -5.6 to 1.4) in the MDMA group and 1.2 (95% CI = -4.9 to 2.5) in the placebo group.

      Over the same period, MDMA significantly reduced clinician-rated functional impairment as assessed with the SDS. MMRM analysis of the de jure estimand showed a significant difference in treatment arms (n = 89 (MDMA n = 46), P = 0.0116, d.f. = 71, effect size = 0.43, 95% CI = -0.01 to 0.88, pooled s.d. = 2.53) (Fig. 2b). The mean change in SDS scores from baseline to 18 weeks after baseline in the completers was -3.1 (s.d. 2.6) (n = 42) in the MDMA-assisted therapy group and -2.0 (s.d. 2.4) (n = 37) in the placebo with therapy group.

      MDMA was equally effective in participants with comorbidities that are often associated with treatment resistance. Participants with the dissociative subtype of PTSD who received MDMA-assisted therapy had significant symptom reduction on the CAPS-5 (mean MDMA Δ = -30.8 (s.d. 9.0), mean placebo Δ = -12.8 (s.d. 12.8)), and this was similar to that in their counterparts with non-dissociative PTSD (mean MDMA Δ = -23.6 (s.d. 11.7), mean placebo Δ = -14.3 (s.d. 11.2)). The benefit of MDMA therapy was not modulated by history of alcohol use disorder, history of substance use disorder, overnight stay or severe childhood trauma. Results were consistent across all 15 study sites with no effect by study site (P = 0.1003). In MMRM analysis there was no obvious impact of SSRI history on effectiveness of MDMA (Supplementary Table 2).

      MDMA therapy was effective in an exploratory endpoint analysis of the reduction of depression symptoms (using the Beck Depression Inventory II (BDI-II)) from baseline to study termination of the de jure estimand (mean MDMA Δ = -19.7 (s.d. 14.0), n = 42; mean placebo Δ = -10.8 (s.d. 11.3), n = 39; t = -3.11, P = 0.0026, d.f. = 79, effect size = 0.67, 95% CI = 0.22--1.12) (Fig. 2c).

      Clinically significant improvement (a decrease of ≥10 points on the CAPS-5), loss of diagnosis (specific diagnostic measure on the CAPS-5), and remission (loss of diagnosis and a total CAPS-5 score ≤ 11) were each tracked. At the primary study endpoint (18 weeks after baseline), 28 of 42 (67%) of the participants in the MDMA group no longer met the diagnostic criteria for PTSD, compared with 12 of 37 (32%) of those in the placebo group after three sessions. Additionally, 14 of 42 participants in the MDMA group (33%) and 2 of 37 participants in the placebo group (5%) met the criteria for remission after three sessions (Fig. 3).

      Fig. 3: Treatment response and remission for MDMA and placebo groups as a percentage of total participants randomized to each arm (MDMA, n = 46; placebo, n = 44).

      figure 3

      Responders (clinically significant improvement, defined as a ≥10-point decrease on CAPS-5), loss of diagnosis (specific diagnostic measure on CAPS-5), and remission (loss of diagnosis and a total CAPS-5 score of ≤11) were tracked in both groups. Non-response is defined as a <10-point decrease on CAPS-5. Withdrawal is defined as a post-randomization early termination.

      Full size image

      Safety

      Treatment-emergent adverse events (TEAEs, adverse events that occurred during the treatment period from the first experimental session to the last integration session) that were more prevalent in the MDMA study arm were typically transient, mild to moderate in severity, and included muscle tightness, decreased appetite, nausea, hyperhidrosis and feeling cold (Supplementary Table 3). Importantly, no increase in adverse events related to suicidality was observed in the MDMA group. A transient increase in vital signs (systolic and diastolic blood pressure and heart rate) was observed in the MDMA group (Supplementary Table 4). Two participants in the MDMA group had a transient increase in body temperature to 38.1 °C: one had an increase after the second MDMA session, and one had an increase after the second and third MDMA sessions.

      Two participants, both randomized to the placebo group, reported three serious adverse events (SAEs) during the trial. One participant in the placebo group reported two SAEs of suicidal behavior during the trial, and another participant in the placebo group reported one SAE of suicidal ideation that led to self-hospitalization. Five participants in the placebo group and three participants in the MDMA group reported adverse events of special interest (AESIs) of suicidal ideation, suicidal behavior or self-harm in the context of suicidal ideation. One participant in the placebo group reported two cardiovascular AESIs in which underlying cardiac etiology could not be ruled out (Table 2). One participant randomized to the MDMA group chose to discontinue participation due to being triggered by the CAPS-5 assessments and to an adverse event of depressed mood following an experimental session; this participant met the criterion as a non-responder, which was defined as having a less than 10-point decrease in CAPS-5 score. MDMA sessions were not otherwise followed by a lowering of mood.

      Table 2 Participants with treatment-emergent SAEs and AESIs

      Full size table

      Suicidality was tracked throughout the study using the Columbia Suicide Severity Rating Scale (C-SSRS) at each study visit. More than 90% of participants reported suicidal ideation in their lifetime, and 17 of 46 participants (37%) in the MDMA group and 14 of 44 participants (32%) in the placebo group reported suicidal ideation at baseline. Although the number of participants who reported suicidal ideation varied throughout the visits, prevalence never exceeded baseline and was not exacerbated in the MDMA group. Serious suicidal ideation (a score of 4 or 5 on the C-SSRS) was minimal during the study and occurred almost entirely in the placebo arm (Fig. 4).

      Fig. 4: Number of participants reporting the presence of suicidal ideation as measured with the C-SSRS at each visit and separated by treatment group.

      figure 4

      C-SSRS ideation scores range from 0 (no ideation) to 5. A C-SSRS ideation score of 4 or 5 is termed 'serious ideation'. The number of participants endorsing any positive ideation (>0) is shown by the colored bars and noted in the table below the graph. The number of participants endorsing serious ideation is given in parentheses in the table.

      Full size image

      Discussion

      Here, we demonstrate that three doses of MDMA given in conjunction with manualized therapy over the course of 18 weeks results in a significant and robust attenuation of PTSD symptoms and functional impairment as assessed using the CAPS-5 and SDS, respectively. MDMA also significantly mitigated depressive symptoms as assessed using the BDI-II. Of note, MDMA did not increase the occurrence of suicidality during the study.

      These data illustrate the potential benefit of MDMA-assisted therapy for PTSD over the FDA-approved first-line pharmacotherapies sertraline and paroxetine, which have both exhibited smaller effect sizes in pivotal studies16. Previous comparison of change in CAPS score between sertraline and placebo showed effect sizes of 0.31 and 0.37 (ref. 16). Similarly, comparison of change in CAPS score between paroxetine and placebo showed effect sizes of 0.56, 0.45 and 0.09 (ref. 16). By contrast, the effect size of 0.91 demonstrated in this study between MDMA-assisted therapy and placebo with therapy was larger than that for any other previously identified PTSD pharmacotherapy16,17,18. To directly assess superiority, a head-to-head comparison of MDMA-assisted therapy with SSRIs for PTSD would be needed. Although the present study tested the effects of MDMA using a model in which both treatment groups received supportive therapy, participants who received MDMA and supportive therapy (d = 2.1) had greater improvement in PTSD change scores compared with those who received placebo with supportive therapy (d = 1.2), suggesting that MDMA enhanced the effects of supportive therapy. In clinical practice, both MDMA and supportive therapy will be components of this PTSD treatment.

      Previous research on MDMA for PTSD has suggested that those with a recent history of SSRI treatment may not respond as robustly to MDMA18. Given that 65.5% of participants in the current trial have a lifetime history of SSRI use, it is difficult to separate the ramifications of long-term SSRI treatment from the effects of treatment resistance. However, there was no obvious effect of previous SSRI use on therapeutic efficacy in this trial. Similarly, although years of PTSD diagnosis or age of onset may affect treatment efficacy, no obvious relationship was seen here between duration or onset of PTSD diagnosis and treatment efficacy.

      Serotonin and the serotonin transporter are of particular importance in the generation, consolidation, retrieval and reconsolidation of fear memories19,20. Reduced serotonin transporter levels (which result in greater amounts of extracellular serotonin) have been shown to predict propensity to develop PTSD21, increase fear and anxiety-related behaviors22, and induce greater amygdalar blood oxygenation level-dependent (BOLD) activity in response to fearful images23. There is extensive serotonergic innervation of the amygdala, and amygdalar serotonin levels have been shown to increase following exposure to stressful and fear-inducing stimuli24. MDMA enhances the extinction of fear memories in mice through increased expression of brain-derived neurotrophic factor in the amygdala, and human neuroimaging studies have demonstrated that MDMA is associated with attenuated amygdalar BOLD activity during presentation of negative emotional stimuli25. Together these data suggest that MDMA may exert its therapeutic effects through a well-conserved mechanism of amygdalar serotonergic function that regulates fear-based behaviors and contributes to the maintenance of PTSD. Perhaps by reopening an oxytocin-dependent critical period of neuroplasticity that typically closes after adolescence15, MDMA may facilitate the processing and release of particularly intractable, potentially developmental, fear-related memories.

      It is intriguing to speculate that the pharmacological properties of MDMA, when combined with therapy, may produce a 'window of tolerance,' in which participants are able to revisit and process traumatic content without becoming overwhelmed or encumbered by hyperarousal and dissociative symptoms26. MDMA-assisted therapy may facilitate recall of negative or threatening memories with greater self-compassion27 and less PTSD-related shame and anger28. Additionally, the acute prosocial and interpersonal effects of MDMA25,29 may support the quality of the therapeutic alliance, a potentially important factor relating to PTSD treatment adherence30 and outcome31. Indeed, clinicians have suggested that "MDMA may catalyze therapeutic processing by allowing patients to stay emotionally engaged while revisiting traumatic experiences without becoming overwhelmed"32.

      Given that PTSD is a strong predictor of disability in both veteran and community populations33, it is promising to note that the robust reduction in PTSD and depressive symptoms identified here is complemented by a significant improvement in SDS score (for example, work and/or school, social and family functioning). Approximately 4.7 million US veterans report a service-related disability[34](https://www.nature.com/articles/s41591-021-01336-3#ref-CR34 "Bureau of Labor and Statistics. Employment Situation of Veterans---2020. News release, 18 March 2021; https://www.bls.gov/news.release/pdf/vet.pdf

                  "), costing the US government approximately $73 billion per year[35](https://www.nature.com/articles/s41591-021-01336-3#ref-CR35 "Congressional Budget Office. Possible Higher Spending Paths for Veterans' Benefits (2018);
                    https://www.cbo.gov/publication/54881
      
                  "). Identification of a PTSD treatment that could improve social and family functioning and ameliorate impairment across a broad range of environmental contexts could provide major medical cost savings, in addition to improving the quality of life for veterans and others affected by this disorder.
      

      PTSD is a particularly persistent and incapacitating condition when expressed in conjunction with other disorders of mood and affect. In the present study, perhaps most compelling are the data indicating efficacy in participants with chronic and severe PTSD, and the associated comorbidities including childhood trauma, depression, suicidality, history of alcohol and substance use disorders, and dissociation, because these groups are all typically considered treatment resistant2,3,4,5,6. Given that more than 80% of those assigned a PTSD diagnosis have at least one comorbid disorder3, the identification of a therapy that is effective in those with complicated PTSD and dual diagnoses could greatly improve PTSD treatment. Additional studies should therefore be conducted to evaluate the safety and efficacy of MDMA-assisted therapy for PTSD in those with specific comorbidities.

      Although recent research suggests that dissociative subtype PTSD is difficult to treat36, participants with the dissociative subtype who received MDMA-assisted therapy had significant symptom reduction that was at least similar to that of their counterparts with non-dissociative PTSD. Given that this covariate was significant, it warrants further study. Furthermore, given that other treatments for PTSD are not consistently effective for those with the dissociative subtype, these data, if replicated, would indicate an important novel therapeutic niche for MDMA-assisted therapy for typically hard-to-treat populations.

      Importantly, there were no major safety issues reported in the MDMA arm of this study. Although abuse potential, cardiovascular risk and suicidality were recorded as AESIs, MDMA was not shown to induce or potentiate any of these conditions. In addition, although there was often a transient increase in blood pressure during MDMA sessions, this was expected based on phase 2 data and previous studies in healthy volunteers37. These data suggest that MDMA has an equivalent, if not better, safety profile compared with that of first-line SSRIs for the treatment of PTSD, which are known to carry a low risk of QT interval prolongation38.

      There are several limitations to the current trial. First, due to the coronavirus disease 2019 (COVID-19) pandemic, the participant population is smaller than originally planned. However, given the power noted in this study, it is unlikely that population size was an impediment. Second, the population is relatively homogeneous and lacks racial and ethnic diversity, which should be addressed in future trials. Third, this report describes the findings of a short-term pre-specified primary outcome, 2 months after the last experimental session and 5 weeks since the final integrative therapy session; long-term follow-up data from this controlled trial will be collected to assess durability of treatment. Fourth, safety data were by necessity collected by site therapists, perhaps limiting the blinding of the data. To eliminate this effect on the primary and secondary outcome measures, all efficacy data were collected by blinded, independent raters. Last, given the subjective effects of MDMA, the blinding of participants was also challenging and possibly led to expectation effects14. However, although blinding was not formally assessed during the study, when participants were contacted to be informed of their treatment assignment at the time of study unblinding it became apparent that at least 10% had inaccurately guessed their treatment arm. Although anecdotal, at least 7 of 44 participants in the placebo group (15.9%) inaccurately believed that they had received MDMA, and at least 2 of 46 participants in the MDMA group (4.3%) inaccurately believed that they had received placebo.

      We may soon be confronted with the potentially enormous economic and social repercussions of PTSD, exacerbated by the COVID-19 pandemic. Overwhelmingly high rates of psychological and mental health impairment could be with us for years to come and are likely to impart a considerable emotional and economic burden. Novel PTSD therapeutics are desperately needed, especially for those for whom comorbidities confer treatment resistance.

      In summary, MDMA-assisted therapy induces rapid onset of treatment efficacy, even in those with severe PTSD, and in those with associated comorbidities including dissociative PTSD, depression, history of alcohol and substance use disorders, and childhood trauma. Not only is MDMA-assisted therapy efficacious in individuals with severe PTSD, but it may also provide improved patient safety. Compared with current first-line pharmacological and behavioral therapies, MDMA-assisted therapy has the potential to dramatically transform treatment for PTSD and should be expeditiously evaluated for clinical use.

    1. An artifact pulls forward some small part of a future world that currently exists only in your head and lets other people interact with it.

      not surveys? is that bc opinion-gathering is too much about hypothetical future actions and doesn't validate via existing present action?

      I guess the reception to an artifact is inherently a survey—although it constrains the reception to the vehicle of the artifact's form

    1. Reviewer #1 (Public Review):

      Hippocampal place cells display a sequence of firing activities when the animal travels through a spatial trajectory at a behavioral time scale of seconds to tens of seconds. Interestingly, parts of the firing sequence also occur at a much shorter time scale: ~120 ms within individual cycles of theta oscillation. These so-called theta sequences are originally thought to naturally result from the phenomenon of theta phase precession. However, there is evidence that theta sequences do not always occur even when theta phase precession is present, for example, during the early experience of a novel maze. The question is then how they emerge with experience (theta sequence development). This study presents evidence that a special group of place cells, those tuned to fast-gamma oscillations, may play a key role in theta sequence development.

      The authors analyzed place cells, LFPs, and theta sequences as rats traveled a circular maze in repeated laps. They found that a group of place cells were significantly tuned to a particular phase of fast-gamma (FG-cells), in contrast to others that did not show such tunning (NFG-cells). The authors then omitted FG-cells or the same number of NFG-cells, in their algorithm of theta sequence detection and found that the quality of theta sequences, quantified by a weighted correlation, was worse with the FG-cell omission, compared to that with the NFG-cell omission, during later laps, but not during early laps. What made the FG-cells special for theta sequences? The authors found that FG-cells, but not NFG-cells, displayed phase recession to slow-gamma (25 - 45 Hz) oscillations (within theta cycles) during early laps (both FG- and NFG-cells showed slow-gamma phase precession during later laps). Overall, the authors conclude that FG-cells contribute to theta sequence development through slow-gamma phase precession during early laps.

      How theta sequences are formed and developed during experience is an important question, because these sequences have been implicated in several cognitive functions of place cells, including memory-guided spatial navigation. The identification of FG-cells in this study is straightforward. Evidence is also presented for the role of these cells in theta sequence development. However, given several concerns elaborated below, whether the evidence is sufficiently strong for the conclusion needs further clarification, perhaps, in future studies.

      (1) The results in Figure 3 and Figure 8 seems contradictory. In Figure 8, all theta sequences displayed a seemingly significant weighted correlation (above 0) even in early laps, which was mostly due to FG-cell sequences but not NFG-cell sequences (correlation for NFG-sequences appeared below 0). However, in Figure 3H, omitting FG-cells and omitting NFG-cells did not produce significant differences in the correlation. Conversely, FG-cell and NFG-cell sequences were similar in later laps in Figure 8 (NFG-cell sequences appeared even better than FG-cell sequences), yet omitting NFG-cells produced a better correlation than omitting FG-cells. This confusion may be related to how "FG-cell-dominant sequences" were defined, which is unclear in the manuscript. Nevertheless, the different results are not easy to understand.

      (2) The different contributions between FG-cells and NFG-cells to theta sequences are supposed not to be caused by their different firing properties (Figure 5). However, Figure 5D and E showed a large effect size (Cohen's D = 07, 0.8), although not significant (P = 0.09, 0.06). But the seemingly non-significant P values could be simply due to smaller N's (~20). In other parts of the manuscript, the effect sizes were comparable or even smaller (e.g. D = 0.5 in Figure 7B), but interpreted as positive results: P values were significant with large N's (~480 in Fig. 7B). Drawing a conclusion purely based on a P value while N is large often renders the conclusion only statistical, with unclear physical meaning. Although this is common in neuroscience publications, it makes more sense to at least make multiple inferences using similar sample sizes in the same study.

      (3) In supplementary Figure 2 - S2, FG-cells displayed stronger theta phase precession than NFG-cells, which could be a major reason why FG-cells impacted theta sequences more than NFG cells. Although factors other than theta phase precession may contribute to or interfere with theta sequences, stronger theta phase precession itself (without the interference of other factors), by definition, can lead to stronger theta sequences.

      (4) The slow-gamma phase precession of FG-cells during early laps is supposed to mediate or contribute to the emergence of theta sequences during late laps (Figure 1). The logic of this model is unclear. The slow-gamma phase precession was present in both early and late laps for FG-cells, but only present in late laps for NFG-cells. It seems more straightforward to hypothesize that the difference in theta sequences between early and later laps is due to the difference in slow-gamma phase precession of NFG cells between early and late laps. Although this is not necessarily the case, the argument presented in the manuscript is not easy to follow.

      (5) There are several questions on the description of methods, which could be addressed to clarify or strengthen the conclusions.

      (i) Were the identified fast- and slow-gamma episodes mutually exclusive?

      (ii) Was the task novel when the data were acquired? How many days (from the 1st day of the task) were included in the analysis? When the development of the theta sequence was mentioned, did it mean the development in a novel environment, in a novel task, or purely in a sense of early laps (Lap 1, 2) on each day?

      (iii) How were the animals' behavioral parameters equalized between early and later laps? For example, speed or head direction could potentially produce the differences in theta sequences.

    1. The solution revealed itself in two hours of conversation between the deans. We would ask candidates to explain their research or creative agendas in ways intelligible to educated amateurs, illustrate the advantages of their methods with reference to a concrete example, and state their scholarly plans for the next five years. We’d start with an early breakfast, followed by discussion with the university’s president, provost, chief of staff, head of admissions, and deans. Then three different candidates—A, B, and C—would make brief presentations, while candidates D, E, and F would ask the first questions of each speaker. In the afternoon, the groups would switch roles.

      面试包括:1. 向非本专业的人解释自己的研究,用具体例子讲述自己研究方法的优势,未来五年的学术计划 2. 做学术演讲,以及担当学术演讲的听众。

    2. provost

      | ˈprɒvəst | noun

      1 British English the head of certain university colleges, especially at Oxford or Cambridge, and public schools.

      • North American English a senior administrative officer in certain universities.

    1. If I hurt my face, I’d wanthim to look at me and wonder why, why might anyone do this to himself,until, years and years later—yes, Later!—he’d finally piece the puzzletogether and beat his head against the wall.

      ?

    Tags

    Annotators

    1. Author response:

      Reviewer #1 (Public Review):

      Abbasi et al. assess in this MEG study the directed connectivity of both cortical and subcortical regions during continuous speech production and perception. The authors observed bidirectional connectivity patterns between speech-related cortical areas as well as subcortical areas in production and perception. Interestingly, they found in speaking low-frequency connectivity from subcortical (the right cerebellum) to cortical (left superior temporal) areas, while connectivity from the cortical to subcortical areas was in the high frequencies. In listening a similar cortico-subcortical connectivity pattern was observed for the low frequencies, but the reversed connectivity in the higher frequencies was absent.

      The work by Abbasi and colleagues addresses a relevant, novel topic, namely understanding the brain dynamics between speaking and listening. This is important because traditionally production and perception of speech and language are investigated in a modality-specific manner. To have a more complete understanding of the neurobiology underlying these different speech behaviors, it is key to also understand their similarities and differences. Furthermore, to do so, the authors utilize state-of-the-art directed connectivity analyses on MEG measurements, providing a quite detailed profile of cortical and subcortical interactions for the production and perception of speech. Importantly, and perhaps most interesting in my opinion, is that the authors find evidence for frequency-specific directed connectivity, which is (partially) different between speaking and listening. This could suggest that both speech behaviors rely (to some extent) on similar cortico-cortical and cortico-subcortical networks, but different frequency-specific dynamics.

      These elements mentioned above (investigation of both production and perception, both cortico-cortical and cortico-subcortical connectivity is considered, and observing frequency-specific connectivity profiles within and between speech behaviors), make for important novel contributions to the field. Notwithstanding these strengths, I find that they are especially centered on methodology and functional anatomical description, but that precise theoretical contributions for neurobiological and cognitive models of speech are less transparent. This is in part because the study compares speech production and perception in general, but no psychophysical or psycholinguistic manipulations are considered. I also have some critical questions about the design which may pose some confounds in interpreting the data, especially with regard to comparing production and perception.

      (1) While the cortico-cortical and cortico-subcortical connectivity profiles highlighted in this study and the depth of the analyses are impressive, what these data mean for models of speech processing remains on the surface. This is in part due, I believe, to the fact that the authors have decided to explore speaking and listening in general, without targeting specific manipulations that help elucidate which aspects of speech processing are relevant for the particular connectivity profiles they have uncovered. For example, the frequency-specific directed connectivity is it driven by low-level psychophysical attributes of the speech or by more cognitive linguistic properties? Does it relate to the monitoring of speech, timing information, and updating of sensory predictions? Without manipulations trying to target one or several of these components, as some of the referenced work has done (e.g., Floegel et al., 2020; Stockert et al., 2021; Todorović et al., 2023), it is difficult to draw concrete conclusions as to which representations and/or processes of speech are reflected by the connectivity profiles. An additional disadvantage of not having manipulations within each speech behavior is that it makes the comparison between listening and speaking harder. That is, speaking and listening have marked input-output differences which likely will dominate any comparison between them. These physically driven differences (or similarities for that matter; see below) can be strongly reduced by instead exploring the same manipulations/variables between speaking and listening. If possible (if not to consider for future work), it may be interesting to score psychophysical (e.g., acoustic properties) or psycholinguistic (e.g., lexical frequency) information of the speech and see whether and how the frequency-specific connectivity profiles are affected by it.

      We thank the reviewer for pointing this out. The current study is indeed part of a larger project investigating the role of the internal forward model in speech perception and production. In the original, more comprehensive study, we also included a masked condition where participants produced speech as usual, but their auditory perception was masked. This allowed us to examine how the internal forward model behaves when it doesn't receive the expected sensory consequences of generated speech. However, for the current study, we focused solely on data from the speaking and listening conditions due to its specific research question. We agree that further manipulations would be interesting. However, for this study our focus was on natural speech and we avoided other manipulations (beyond masked speech) so that we can have sufficiently long recording time for the main speaking and listening conditions.

      (2) Recent studies comparing the production and perception of language may be relevant to the current study and add some theoretical weight since their data and interpretations for the comparisons between production and perception fit quite well with the observations in the current work. These studies highlight that language processes between production and perception, specifically lexical and phonetic processing (Fairs et al., 2021), and syntactic processing (Giglio et al., 2024), may rely on the same neural representations, but are differentiated in their (temporal) dynamics upon those shared representations. This is relevant because it dispenses with the classical notion in neurobiological models of language where production and perception rely on (partially) dissociable networks (e.g., Price, 2010). Rather those data suggest shared networks where different language behaviors are dissociated in their dynamics. The speech results in this study nicely fit and extend those studies and their theoretical implications.

      We thank the reviewer for the suggestion and we will include these references and the points made by the reviewer in our revised manuscript.

      (3) The authors align the frequency-selective connectivity between the right cerebellum and left temporal speech areas with recent studies demonstrating a role for the right cerebellum for the internal modelling in speech production and monitoring (e.g., Stockert et al., 2021; Todorović et al., 2023). This link is indeed interesting, but it does seem relevant to point out that at a more specific scale, it does not concern the exact same regions between those studies and the current study. That is, in the current study the frequency-specific connectivity with temporal regions concerns lobule VI in the right cerebellum, while in the referenced work it concerns Crus I/II. The distinction seems relevant since Crus I/II has been linked to the internal modelling of more cognitive behavior, while lobule VI seems more motor-related and/or contextual-related (e.g., D'Mello et al., 2020; Runnqvist et al., 2021; Runnqvist, 2023).

      We thank the reviewer for their insightful comment. The reference was intended to provide evidence for the role of the cerebellum in internal modelling in speech. We do not claim that we have the spatial resolution with MEG to reliably spatially resolve specific parts of the cerebellum.

      (4) On the methodological side, my main concern is that for the listening condition, the authors have chosen to play back the speech produced by the participants in the production condition. Both the fixed order as well as hearing one's own speech as listening condition may produce confounds in data interpretation, especially with regard to the comparison between speech production and perception. Could order effects impact the observed connectivity profiles, and how would this impact the comparison between speaking and listening? In particular, I am thinking of repetition effects present in the listening condition as well as prediction, which will be much more elevated for the listening condition than the speaking condition. The fact that it also concerns their own voice furthermore adds to the possible predictability confound (e.g., Heinks-Maldonado et al., 2005). In addition, listening to one's speech which just before has been articulated may, potentially strategically even, enhance inner speech and "mouthing" in the participants, hereby thus engaging the production mechanism. Similarly, during production, the participants already hear their own voice (which serves as input in the subsequent listening condition). Taken together, both similarities or differences between speaking and listening connectivity may have been due to or influenced by these order effects, and the fact that the different speech behaviors are to some extent present in both conditions.

      This is a valid point raised by the reviewer. By listening to their own previously produced speech, our participants might have anticipated and predicted the sentences easier. However, during designing our experiment, we tried to lower the chance of this anticipation by several steps. First, participants were measured in separate sessions for speech production and perception tasks. There were always several days' intervals between performing these two conditions. Secondly, our questions were mainly about a common/general topic. Consequently, participants may not remember their answers completely.

      Importantly, using the same stimulus material for speaking and listening guaranteed that there was no difference in the low-level features of the material for both conditions that could have affected the results of our statistical comparison.

      Due to bone conduction, hearing one’s unaltered own speech from a recording may seem foreign and could lead to unwanted emotional reactions e.g. embarrassment, so participants were asked whether they heard their own voice in a recording already (e.g. from a self-recorded voice-message in WhatsApp) which most of them confirmed. Participants were also informed that they were going to hear themselves during the measurement to further reduce unwanted psychophysiological responses.

      (5) The ability of the authors to analyze the spatiotemporal dynamics during continuous speech is a potentially important feat of this study, given that one of the reasons that speech production is much less investigated compared to perception concerns motor and movement artifacts due to articulation (e.g., Strijkers et al., 2010). Two questions did spring to mind when reading the authors' articulation artifact correction procedure: If I understood correctly, the approach comes from Abbasi et al. (2021) and is based on signal space projection (SSP) as used for eye movement corrections, which the authors successfully applied to speech production. However, in that study, it concerned the repeated production of three syllables, while here it concerns continuous speech of full words embedded in discourse. The articulation and muscular variance will be much higher in the current study compared to three syllables (or compared to eye movements which produce much more stable movement potentials compared to an entire discourse). Given this, I can imagine that corrections of the signal in the speaking condition were likely substantial and one may wonder (1) how much signal relevant to speech production behavior is lost?; (2) similar corrections are not necessary for perception, so how would this marked difference in signal processing affect the comparability between the modalities?

      One of the results of our previous study (Abbasi et al., 2021) was that the artefact correction was not specific to individual syllables but generalised across syllables. Also, the repeated production of syllables was associated with substantial movements of the articulators mimicking those observed during naturalistic speaking. We therefore believe that the artefact rejection is effective during speaking. We also checked this by investigating speech related coherence in brain parcels in spatial proximity to the articulators. In our previous study we also show that the correction method retains neural activity to a very large degree. We are therefore confident that speaking and listening conditions can be compared and that the loss of true signals from correcting the speaking data will be minor.

      References:

      • Abbasi, O., Steingräber, N., & Gross, J. (2021). Correcting MEG artifacts caused by overt speech. Frontiers in Neuroscience, 15, 682419.

      • D'Mello, A. M., Gabrieli, J. D., & Nee, D. E. (2020). Evidence for hierarchical cognitive control in the human cerebellum. Current Biology, 30(10), 1881-1892.

      • Fairs, A., Michelas, A., Dufour, S., & Strijkers, K. (2021). The same ultra-rapid parallel brain dynamics underpin the production and perception of speech. Cerebral Cortex Communications, 2(3), tgab040.

      • Floegel, M., Fuchs, S., & Kell, C. A. (2020). Differential contributions of the two cerebral hemispheres to temporal and spectral speech feedback control. Nature Communications, 11(1), 2839.

      • Giglio, L., Ostarek, M., Sharoh, D., & Hagoort, P. (2024). Diverging neural dynamics for syntactic structure building in naturalistic speaking and listening. Proceedings of the National Academy of Sciences, 121(11), e2310766121.

      • Heinks‐Maldonado, T. H., Mathalon, D. H., Gray, M., & Ford, J. M. (2005). Fine‐tuning of auditory cortex during speech production. Psychophysiology, 42(2), 180-190.

      • Price, C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the new York Academy of Sciences, 1191(1), 62-88.

      • Runnqvist, E., Chanoine, V., Strijkers, K., Pattamadilok, C., Bonnard, M., Nazarian, B., ... & Alario, F. X. (2021). Cerebellar and cortical correlates of internal and external speech error monitoring. Cerebral Cortex Communications, 2(2), tgab038.

      • Runnqvist, E. (2023). Self-monitoring: The neurocognitive basis of error monitoring in language production. In Language production (pp. 168-190). Routledge.

      • Stockert, A., Schwartze, M., Poeppel, D., Anwander, A., & Kotz, S. A. (2021). Temporo-cerebellar connectivity underlies timing constraints in audition. Elife, 10, e67303.

      • Strijkers, K., Costa, A., & Thierry, G. (2010). Tracking lexical access in speech production: electrophysiological correlates of word frequency and cognate effects. Cerebral cortex, 20(4), 912-928.

      • Todorović, S., Anton, J. L., Sein, J., Nazarian, B., Chanoine, V., Rauchbauer, B., ... & Runnqvist, E. (2023). Cortico-cerebellar monitoring of speech sequence production. Neurobiology of Language, 1-21.

      Reviewer #2 (Public Review):

      Summary:

      The authors re-analyse MEG data from a speech production and perception study and extend their previous Granger causality analysis to a larger number of cortical-cortical and in particular cortical-subcortical connections. Regions of interest were defined by means of a meta-analysis using Neurosynth.org and connectivity patterns were determined by calculating directed influence asymmetry indices from the Granger causality analysis results for each pair of brain regions. Abbasi et al. report feedforward signals communicated via fast rhythms and feedback signals via slow rhythms below 40 Hz, particularly during speaking. The authors highlight one of these connections between the right cerebellum lobule VI and auditory association area A5, where in addition the connection strength correlates negatively with the strength of speech tracking in the theta band during speaking (significant before multiple comparison correction). Results are interpreted within a framework of active inference by minimising prediction errors.

      While I find investigating the role of cortical-subcortical connections in speech production and perception interesting and relevant to the field, I am not yet convinced that the methods employed are fully suitable to this endeavour or that the results provide sufficient evidence to make the strong claim of dissociation of bottom-up and top-down information flow during speaking in distinct frequency bands.

      Strengths:

      The investigation of electrophysiological cortical-subcortical connections in speech production and perception is interesting and relevant to the field. The authors analyse a valuable dataset, where they spent a considerable amount of effort to correct for speech production-related artefacts. Overall, the manuscript is well-written and clearly structured.

      Weaknesses:

      The description of the multivariate Granger causality analysis did not allow me to fully grasp how the analysis was performed and I hence struggled to evaluate its appropriateness. Knowing that (1) filtered Granger causality is prone to false positives and (2) recent work demonstrates that significant Granger causality can simply arise from frequency-specific activity being present in the source but not the target area without functional relevance for communication (Schneider et al. 2021) raises doubts about the validity of the results, in particular with respect to their frequency specificity. These doubts are reinforced by what I perceive as an overemphasis on results that support the assumption of specific frequencies for feedforward and top-down connections, while findings not aligning with this hypothesis appear to be underreported. Furthermore, the authors report some main findings that I found difficult to reconcile with the data presented in the figures. Overall, I feel the conclusions with respect to frequency-specific bottom-up and top-down information flow need to be moderated and that some of the reported findings need to be checked and if necessary corrected.

      Major points

      (1) I think more details on the multivariate GC approach are needed. I found the reference to Schaum et al., 2021 not sufficient to understand what has been done in this paper. Some questions that remained for me are:

      (i) Does multivariate here refer to the use of the authors' three components per parcel or to the conditioning on the remaining twelve sources? I think the latter is implied when citing Schaum et al., but I'm not sure this is what was done here?

      If it was not: how can we account for spurious results based on indirect effects?

      Yes, multivariate refers to the three components.

      (ii) Did the authors check whether the GC of the course-target pairs was reliably above the bias level (as Schaum et. al. did for each condition separately)? If not, can they argue why they think that their results would still be valid? Does it make sense to compute DAIs on connections that were below the bias level? Should the data be re-analysed to take this concern into account?

      We performed statistics on DAI and believe that this is a valid approach. We argue that random GC effects would not survive our cluster-corrected statistics.

      (iii) You may consider citing the paper that introduced the non-parametric GC analysis (which Schaum et al. then went on to apply): Dhamala M, Rangarajan G, Ding M. Analyzing Information Flow in Brain Networks with Nonparametric Granger Causality. Neuroimage. 2008; 41(2):354-362. https://doi.org/10.1016/j.neuroimage.2008.02. 020

      Thanks, we will add this reference in the revised version.

      (2) GC has been discouraged for filtered data as it gives rise to false positives due to phase distortions and the ineffectiveness of filtering in the information-theoretic setting as reducing the power of a signal does not reduce the information contained in it (Florin et al., 2010; Barnett and Seth, 2011; Weber et al. 2017; Pinzuti et al., 2020 - who also suggest an approach that would circumvent those filter-related issues). With this in mind, I am wondering whether the strong frequency-specific claims in this work still hold.

      This must be a misunderstanding. We are aware of the problem with GC on filtered data. But GC was here computed on broadband data and not in individual frequency bands.

      (3) I found it difficult to reconcile some statements in the manuscript with the data presented in the figures:

      (i) Most notably, the considerable number of feedforward connections from A5 and STS that project to areas further up the hierarchy at slower rhythms (e.g. L-A5 to R-PEF, R-Crus2, L CB6 L-Tha, L-FOP and L-STS to R-PEF, L-FOP, L-TOPJ or R-A5 as well as R-STS both to R-Crus2, L-CB6, L-Th) contradict the authors' main message that 'feedback signals were communicated via slow rhythms below 40 Hz, whereas feedforward signals were communicated via faster rhythms'. I struggled to recognise a principled approach that determined which connections were highlighted and reported and which ones were not.

      (ii) "Our analysis also revealed robust connectivity between the right cerebellum and the left parietal cortex, evident in both speaking and listening conditions, with stronger connectivity observed during speaking. Notably, Figure 4 depicts a prominent frequency peak in the alpha band, illustrating the specific frequency range through which information flows from the cerebellum to the parietal areas." There are two peaks discernible in Figure 4, one notably lower than the alpha band (rather theta or even delta), the other at around 30 Hz. Nevertheless, the authors report and discuss a peak in the alpha band.

      (iii) In the abstract: "Notably, high-frequency connectivity was absent during the listening condition." and p.9 "In contrast with what we reported for the speaking condition, during listening, there is only a significant connectivity in low frequency to the left temporal area but not a reverse connection in the high frequencies."

      While Fig. 4 shows significant connectivity from R-CB6 to A5 in the gamma frequency range for the speaking, but not for the listening condition, interpreting comparisons between two effects without directly comparing them is a common statistical mistake (Makin and Orban de Xivry). The spectrally-resolved connectivity in the two conditions actually look remarkably similar and I would thus refrain from highlighting this statement and indicate clearly that there were no significant differences between the two conditions.

      (iv) "This result indicates that in low frequencies, the sensory-motor area and cerebellum predominantly transmit information, while in higher frequencies, they are more involved in receiving it."

      I don't think that this statement holds in its generality: L-CB6 and R-3b both show strong output at high frequencies, particularly in the speaking condition. While they seem to transmit information mainly to areas outside A5 and STS these effects are strong and should be discussed.

      We appreciate the reviewer's thoughtful comments. We acknowledge that not all connectivity patterns strictly adhere to the initial observation regarding feedback and feedforward communication. It's true that our primary focus was on interactions between brain regions known to be crucial for speech prediction, including auditory, somatosensory, and cerebellar areas. However, we also presented connectivity patterns across other regions to provide a more comprehensive picture of the speech network. We believe this broader perspective can be valuable for future research directions.

      Regarding the reviewer's observation about the alpha band peak in Figure 4, we agree that a closer examination reveals the connectivity from right cerebellum to the left parietal is in a wider low frequency range. We will refrain from solely emphasizing the alpha band and acknowledge the potential contribution of lower frequencies to cerebellar-parietal communication.

      We also appreciate the reviewer highlighting the need for a more nuanced interpretation of the listening condition connectivity compared to the speaking condition. The reviewer is correct in pointing out that while Figure 4 suggests a high-frequency connectivity from L-A5 to R-CB only in the speaking condition, a direct statistical comparison between conditions might not reveal a significant difference. We will revise the manuscript to clarify this point.

      Finally, a closer examination of Figure 3 revealed that the light purple and dark green edges in the speaking condition for R-CB6 and L-3b suggest outgoing connections at low frequencies, while other colored edges indicate information reception at high frequencies. We acknowledge that exceptions to this directional pattern might exist and warrant further investigation in future studies.

      (4) "However, definitive conclusions should be drawn with caution given recent studies raising concerns about the notion that top-down and bottom-up signals can only be transmitted via separate frequency channels (Ferro et al., 2021; Schneider et al., 2021; Vinck et al., 2023)."

      I appreciate this note of caution and think it would be useful if it were spelled out to the reader why this is the case so that they would be better able to grasp the main concerns here. For example, Schneider et al. make a strong point that we expect to find Granger-causality with a peak in a specific frequency band for areas that are anatomically connected when the sending area shows stronger activity in that band than the receiving one, simply because of the coherence of a signal with its own linear projection onto the other area. The direction of a Granger causal connection would in that case only indicate that one area shows stronger activity than the other in the given frequency band. I am wondering to what degree the reported connectivity pattern can be traced back to regional differences in frequency-specific source strength or to differences in source strength across the two conditions.

      This is indeed an important point. That is why we are discussing our results with great caution and specifically point the reader to the relevant literature. We are indeed thinking about a future study where we investigate this connectivity using other connectivity metrics and a detailed consideration of power.

      Reviewer #3 (Public Review):

      In the current paper, Abbasi et al. aimed to characterize and compare the patterns of functional connectivity across frequency bands (1 Hz - 90 Hz) between regions of a speech network derived from an online meta-analysis tool (Neurosynth.org) during speech production and perception. The authors present evidence for complex neural dynamics from which they highlight directional connectivity from the right cerebellum to left superior temporal areas in lower frequency bands (up to beta) and between the same regions in the opposite direction in the (lower) high gamma range (60-90 Hz). Abbasi et al. interpret their findings within the predictive coding framework, with the cerebellum and other "higher-order" (motor) regions transmitting top-down sensory predictions to "lower-order" (sensory) regions in the lower frequencies and prediction errors flowing in the opposite direction (i.e., bottom-up) from those sensory regions in the gamma band. They also report a negative correlation between the strength of this top-down functional connectivity and the alignment of superior temporal regions to the syllable rate of one's speech.

      Strengths:

      (1) The comprehensive characterization of functional connectivity during speaking and listening to speech may be valuable as a first step toward understanding the neural dynamics involved.

      (2) The inclusion of subcortical regions and connectivity profiles up to 90Hz using MEG is interesting and relatively novel.

      (3) The analysis pipeline is generally adequate for the exploratory nature of the work.

      Weaknesses:

      (1) The work is framed as a test of the predictive coding theory as it applies to speech production and perception, but the methodological approach is not suited to this endeavor.

      We agree that we cannot provide definite evidence for predictive coding in speech production and perception and we believe that we do not make that claim in the manuscript. However, our results are largely consistent with what can be expected based on predictive coding theory.

      (2) Because of their theoretical framework, the authors readily attribute roles or hierarchy to brain regions (e.g., higher- vs lower-order) and cognitive functions to observed connectivity patterns (e.g., feedforward vs feedback, predictions vs prediction errors) that cannot be determined from the data. Thus, many of the authors' claims are unsupported.

      We will revise the manuscript to more clearly differentiate our results (e.g. directed Granger-Causality from A to B) from their interpretation (potentially indicating feedforward or feedback signals).

      (3) The authors' theoretical stance seems to influence the presentation of the results, which may inadvertently misrepresent the (otherwise perfectly valid; cf. Abbasi et al., 2023) exploratory nature of the study. Thus, results about specific regions are often highlighted in figures (e.g., Figure 2 top row) and text without clear reasons.

      Our connectograms reveal a multitude of results that we hope is interesting to the community. At the same time the wealth of findings poses a problem for describing them. We did not see a better way then to highlight specific connections of interest.

      (4) Some of the key findings (e.g., connectivity in opposite directions in distinct frequency bands) feature in a previous publication and are, therefore, interesting but not novel.

      We actually see this as a strength of the current manuscript. The computation of connectivity is here extended to a much larger sample of brain areas. It is reassuring to see that the previously reported results generalise to other brain areas.

      (5) The quantitative comparison between speech production and perception is interesting but insufficiently motivated.

      We thank the reviewer for this comment. We have addressed that in detail in response to the point (1&4) of reviewer 1.

      (6) Details about the Neurosynth meta-analysis and subsequent selection of brain regions for the functional connectivity analyses are incomplete. Moreover, the use of the term 'Speech' in Neurosynth seems inappropriate (i.e., includes irrelevant works, yielding questionable results). The approach of using separate meta-analyses for 'Speech production' and 'Speech perception' taken by Abbasi et al. (2023) seems more principled. This approach would result, for example, in the inclusion of brain areas such as M1 and the BG that are relevant for speech production.

      We agree that there are inherent limitations in automated meta-analysis tools such as Neurosynth. Papers are used in the meta-analysis that might not be directly relevant. However, Neurosynth has proven its usefulness over many years and has been used in many studies. We also agree that our selection of brain areas is not complete. But Granger Causality analysis of every pair of ROIs leads to complex results and we had to limit our selection of areas.

      (7) The results involving subcortical regions are central to the paper, but no steps are taken to address the challenges involved in the analysis of subcortical activity using MEG. Additional methodological detail and analyses would be required to make these results more compelling. For example, it would be important to know what the coverage of the MEG system is, what head model was used for the source localization of cerebellar activity, and if specific preprocessing or additional analyses were performed to ensure that the localized subcortical activity (in particular) is valid.

      There is a large body of evidence demonstrating that MEG can record signals from deep brain areas such as thalamus and cerebellum including Attal & Schwarz 2013, Andersen et al, Neuroimage 2020; Piastra et al., 2020; Schnitzler et al., 2009. These and other studies provide evidence that state-of-the-art recording (with multichannel SQUID systems) and analysis is sufficient to allow reconstruction of subcortical areas. However, spatial resolution is clearly reduced for these deep areas. We will add a statement in the revised manuscript to acknowledge this limitation.

      (8) The results and methods are often detailed with important omissions (a speech-brain coupling analysis section is missing) and imprecisions (e.g., re: Figure 5; the Connectivity Analysis section is copy-pasted from their previous work), which makes it difficult to understand what is being examined and how. (It is also not good practice to refer the reader to previous publications for basic methodological details, for example, about the experimental paradigm and key analyses.) Conversely, some methodological details are given, e.g., the acquisition of EMG data, without further explanation of how those data were used in the current paper.

      We will revise the relevant sections of the manuscript.

      (9) The examination of gamma functional connectivity in the 60 - 90 Hz range could be better motivated. Although some citations involving short-range connectivity in these frequencies are given (e.g., within the visual system), a more compelling argument for looking at this frequency range for longer-range connectivity may be required.

      Given previous evidence of connectivity in the gamma band we think that it would be a weakness to exclude this frequency band from analysis.

      (10) The choice of source localization method (linearly constrained minimum variance) could be explained, particularly given that other methods (e.g. dynamic imaging of coherent sources) were specifically designed and might potentially be a better alternative for the types of analyses performed in the study.

      Both LCMV and DICS are beamforming methods. We used LCMV because we wanted used Granger Causality which requires broadband signals. DICS would only provide frequency-specific band-limited signals.

      (11) The mGC analysis needs to be more comprehensively detailed for the reader to be able to assess what is being reported and the strength of the evidence. Relatedly, first-level statistics (e.g., via estimation of the noise level) would make the mGC and DAI results more compelling.

      We perform group-level cluster-based statistics on mGC while correcting for multiple comparisons across frequency bands and brain parcels and report only significant results. This is an established approach that is routinely used in this type of studies.

      (12) Considering the exploratory nature of the study, it is essential for other researchers to continue investigating and validating the results presented in the current manuscript. Thus, it is concerning that data and scripts are not fully and openly available. Data need not be in its raw state to be shared and useful, which circumvents the stated data privacy concerns.

      We acknowledge the reviewer's concern regarding the full availability of the dataset. Due to privacy limitations on the collected data, we are unable to share it publicly at this time. However, to promote transparency and enable further exploration, we have provided the script used for data analysis and an example dataset. This example dataset should provide a clear understanding of the data structure and variables used in the analysis. Additionally, we are happy to share the complete dataset upon request from research teams interested in performing in-depth secondary analyses.

    1. In the middle panel, the alignments are sorted by their (TM-align-obtained) TM-score. Vertical lines indicate the number of alignments with a TM-score ≥ 0.5. The arrow denotes the largest difference in that number between GTalign (732,024) and Foldseek (13,371)

      The middle panel presents the data in a way that I've never seen before, and I had quite a difficult time wrapping my head around. I think my confusion boils down to these two main concerns: (1) Why are the curves in the left panels repeated in the middle panels? and (2) I think it is incorrect to label the x-axis as "# top hits". I would have understood this plot right away if the curves were removed and the x-axis label was replaced with "# hits with TM-score > 0.5".

    1. 2 weeks ago - Subramanian Swamy (born 15 September 1939) is an Indian politician, economist and statistician. Before joining politics, he was a professor of Mathematical Economics at the Indian Institute of Technology, Delhi. He is known for his Hindu nationalist views. Swamy was a member of the Planning ...

      [

      🌐

      Wikipedia

      en.wikipedia.org› wiki › Subramanian_Swamy

      Subramanian Swamy - Wikipedia

      ](https://en.wikipedia.org/wiki/Subramanian_Swamy)

      2 weeks ago - Subramanian Swamy (born 15 September 1939) is an Indian politician, economist and statistician. Before joining politics, he was a professor of Mathematical Economics at the Indian Institute of Technology, Delhi. He is known for his Hindu nationalist views. Swamy was a member of the Planning ...

      [

      🌐

      X

      twitter.com› Swamy39

      Subramanian Swamy (@Swamy39) - X

      ](https://twitter.com/Swamy39)

      January 30, 2023 - The latest tweets from Subramanian Swamy (@Swamy39)

      [

      🌐

      bloomberg.com

      bloomberg.com› news › videos › 2024-06-12 › bofa-s-subramanian-says-things-today-are-kind-of-awesome-for-stocks

      Watch BofA's Subramanian: Things Today Are 'Kind of Awesome' - Bloomberg

      ](https://www.bloomberg.com/news/videos/2024-06-12/bofa-s-subramanian-says-things-today-are-kind-of-awesome-for-stocks)

      1 week ago - Connecting decision makers to a dynamic network of information, people and ideas, Bloomberg quickly and accurately delivers business and financial information, news and insight around the world - Americas+1 212 318 2000

      [

      🌐

      youtube.com

      youtube.com› watch

      BofA's Subramanian Says Things Today Are 'Kind of Awesome' for Stocks - YouTube

      ](https://www.youtube.com/watch?v=Hk1zfCuBaHI)

      1 week ago - Savita Subramanian, head of US equity and quantitative strategy at Bank of America, makes the case for a "Goldilocks" scenario for stocks and says, "that's t...

      [

      🌐

      Psuconnect

      psuconnect.in› news › girija-subramanian-appointed-as-new-cmd-of-new-india-assurance › 43089

      Girija Subramanian appointed as new CMD of New India Assurance

      ](https://www.psuconnect.in/news/girija-subramanian-appointed-as-new-cmd-of-new-india-assurance/43089)

      2 days ago - Girija Subramanian, Chief Managing Director of Agriculture Insurance Company (AIC) has taken over as the CMD of New India Assurance (NIA). The appointment of Ms. Subramanian as the new CMD of NIA after the approval from the Appointments Committee of Cabinet (ACC) under the Ministry of

      Videos

      [

      🌐youtube.com

      Coalition Government In India: Challenges & Way Forward - Dr ...

      5 days ago

      ](https://www.youtube.com/watch?v=780GhP73DUI)

      [

      🌐youtube.com

      Should Muslims Be Worried About Their Safety In India? Dr. ...

      May 6, 2024

      ](https://www.youtube.com/watch?v=SwoA2ikIPV0)

      [

      🌐youtube.com

      Dr. Subramanian Swamy Reveals PM Modi's Next Moves After Winning ...

      May 3, 2024

      ](https://www.youtube.com/watch?v=XJPbNPKJ8Uo)

      [

      🌐bloomberg.com

      Watch BofA's Subramanian: Things Today Are 'Kind of Awesome' ...

      1 week ago

      ](https://www.bloomberg.com/news/videos/2024-06-12/bofa-s-subramanian-says-things-today-are-kind-of-awesome-for-stocks)

      [

      🌐youtube.com

      BofA's Subramanian Says Things Today Are 'Kind of Awesome' ...

      1 week ago

      ](https://www.youtube.com/watch?v=Hk1zfCuBaHI)

      [

      🌐youtube.com

      Fall of Modi & Future Rise of BJP - Dr Subramanian Swamy - YouTube

      2 weeks ago

      ](https://www.youtube.com/watch?v=mZKZBg9m4Ao)

      [

      🌐

      Oregonstate

      chemistry.oregonstate.edu› directory › mas-subramanian

      Mas Subramanian | Department of Chemistry

      ](https://chemistry.oregonstate.edu/directory/mas-subramanian)

      September 23, 2022 - Heo, J., Ravichandran, R., Laurita, G., Muir, S., Subramanian, M.A., Wager, J.F., Keszler, D.A. New multi-functional chalcogenides as photovoltaic and thermoelectric materials. American Chemical Society, Division of Energy & Fuels, (2014) 59, 579-580

      [

      🌐

      Theprint

      theprint.in› author › anusha-subramanian

      Anusha Subramanian

      ](https://theprint.in/author/anusha-subramanian/)

      4 days ago - India's digital platform for latest news and reports, Lok Sabha Elections 2024, insightful analyses, opinion on politics, policy, governance, economy, education, defence and culture.

      [

      🌐

      Harvard

      hsph.harvard.edu› sv-subramanian

      S V Subramanian's Faculty Website | Harvard T.H. Chan School of Public Health

      ](https://www.hsph.harvard.edu/sv-subramanian/)

      April 26, 2021 - S ("Subu") V Subramanian is Professor of Population Health and Geography at Harvard University, Faculty Chair of the Center for Geographic Analysis at Harvard University. He is the Principal Investigator of the Geographic Insights Lab based at the Harvard Center for Population and Development ...

      [

      🌐

      Bloomberg

      bloomberg.com› news › articles › 2024-06-12 › bofa-s-subramanian-says-things-are-kind-of-awesome-for-stocks

      BofA's Subramanian Says Things 'Kind of Awesome' for Stocks - Bloomberg

      ](https://www.bloomberg.com/news/articles/2024-06-12/bofa-s-subramanian-says-things-are-kind-of-awesome-for-stocks?srnd=markets-vp)

      1 week ago - As naysayers fret over a potential slowdown from the prospect of interest rates remaining elevated for longer, Bank of America Corp.'s Savita Subramanian says the economy looks good, a backdrop that will continue to bode well for US stocks.

      Find elsewhere

      GoogleBingMojeek

      [

      🌐

      Facebook

      facebook.com› Swamy39

      Dr. Subramanian Swamy

      ](https://www.facebook.com/Swamy39/)

      March 24, 2023 - Dr. Subramanian Swamy. 707,762 likes - 4,173 talking about this. President of Virat Hindustan Sangam,Fmr Cabinet Minister,6 terms MP,Member BJP,Harvard Ph.D Economics

      [

      🌐

      Oregonstate

      subramanian.chem.oregonstate.edu

      Subramanian Research Group | Subramanian Research Group

      ](https://subramanian.chem.oregonstate.edu/)

      Where Discoveries Happen - 2023 Spring Group Photo (L-R, back row-front row): Owen, Jun, Shiva, Shivani, Gary, Alyssa, Jenny, Anjali, Mas, Yu-An, Erin

      [

      🌐

      Tgh

      doctors.tgh.org› doctor › npi_1932549359 › Vijay+Subramanian

      About Vijay Subramanian MD

      ](https://doctors.tgh.org/doctor/npi_1932549359/Vijay+Subramanian)

      Vijay Subramanian, MD, is board certified in general surgery. He earned his Bachelor of Medicine and Bachelor of Surgery at Christian Medical College in Vellore, India. He completed his fellowship in abdominal transplantation, hepatobiliary and pancreatic surgery at Washington University School ...

      [

      🌐

      PIIE

      piie.com› experts › senior-research-staff › arvind-subramanian

      Arvind Subramanian | PIIE

      ](https://www.piie.com/experts/senior-research-staff/arvind-subramanian)

      March 10, 2016 - Arvind Subramanian, senior fellow at the Peterson Institute for International Economics, has been associated with the Institute since 2007. He was the Dennis Weatherstone Senior Fellow at the Institute during 2013--14 and was on leave for public service from 2014 to August 2023.

      [

      🌐

      Twitter

      twitter.com› Swamy39 › status › 1798207016307216532

      Subramanian Swamy

      ](https://twitter.com/Swamy39/status/1798207016307216532)

      Subramanian Swamy

      [

      🌐

      Charlotte

      cci.charlotte.edu › home › kalpathi subramanian

      Kalpathi Subramanian - College of Computing and Informatics

      ](https://cci.charlotte.edu/directory/kalpathi-subramanian/)

      December 28, 2018 - Kalpathi Subramanian's research interests are in the areas of Computer Graphics, Scientific, Engineering and Medical Visualization, and more recently, Computer Science Education. Current research projects also include virtual and augmented reality applications in different disciplinary areas.

      [

      🌐

      Purdue

      bio.purdue.edu› People › profile › subram68.html

      subramanian - Department of Biological Sciences - Purdue University

      ](https://www.bio.purdue.edu/People/profile/subram68.html)

      (Structural Biology and Biophysics) Macromolecular structure and function using diffraction and cryo-EM. Enzyme mechanisms, protein-protein and protein-ligand interactions - The laboratory has a long term interest in understanding the relationship between atomic resolution structures and molecular ...

      [

      🌐

      Missouri

      medicine.missouri.edu› faculty › venkateswaran-subramanian-phd

      Venkateswaran Subramanian, PhD - MU School of Medicine

      ](https://medicine.missouri.edu/faculty/venkateswaran-subramanian-phd)

      The Subramanian Lab's research is dedicated to identifying efficient therapeutic targets for the complex life-threatening sexually dimorphic aortic vascular disease - abdominal aortic aneurysms (AAA). AAA is an asymptomatic permanent dilation of abdominal aorta which often cause death by ...

      [

      🌐

      Wikipedia

      en.wikipedia.org› wiki › Subramaniam

      Subramaniam - Wikipedia

      ](https://en.wikipedia.org/wiki/Subramaniam)

      April 29, 2024 - Subramaniam, Subrahmaniam, Subramaniam or Subramanian (Tamil: சுப்பிரமணியம்; Telugu: శుబ్రహ్మనియమం) is a South Indian male given name. Due to the South Indian tradition of using patronymic surnames it may also be a surname for males and females.

      Notable peopleOther uses

      [

      🌐

      Harvard Law School

      hls.harvard.edu › home › faculty › guhan subramanian

      Guhan Subramanian - Harvard Law School | Harvard Law School

      ](https://hls.harvard.edu/faculty/guhan-subramanian/)

      2 weeks ago - Guhan Subramanian is the Joseph Flom Professor of Law and Business at the Harvard Law School and the Douglas Weaver Professor of Business Law at the Harvard Business School. He is the first person in the history of Harvard University to hold tenured appointments at both HLS and HBS.

      [

      🌐

      Ku

      pharmtox.ku.edu› people › jai-subramanian

      Jai Subramanian | Department of Pharmacology & Toxicology

      ](https://pharmtox.ku.edu/people/jai-subramanian)

      Subramanian's research focuses on synaptic plasticity associated with learning and memory and their dysfunction in mouse models of neurodegenerative disorders. His lab utilizes state of the art approaches, such as single neuron genetic manipulations, in vivo synaptic labeling and multi-color ...

      [

      🌐

      Utexas

      me.utexas.edu› people › faculty-directory › subramanian

      Venkat Subramanian

      ](https://www.me.utexas.edu/people/faculty-directory/subramanian)

      January 4, 2021 - Walker Department of Mechanical Engineering at the Cockrell School, University of Texas at Austin

      Related queries

      [

      is subramanian swamy a lawyer

      ](https://search.brave.com/search?q=is%20subramanian%20swamy%20a%20lawyer&source=relatedQueries)[

      subramanian swamy history

      ](https://search.brave.com/search?q=subramanian%20swamy%20history&source=relatedQueries)[

      s.v. subramanian

      ](https://search.brave.com/search?q=s.v.%20subramanian&source=relatedQueries)[

      subramanian swamy net worth

      ](https://search.brave.com/search?q=subramanian%20swamy%20net%20worth&source=relatedQueries)[

      dr subramanian

      ](https://search.brave.com/search?q=dr%20subramanian&source=relatedQueries)[

      subramanian swamy age

      ](https://search.brave.com/search?q=subramanian%20swamy%20age&source=relatedQueries)[

      subramanian swamy daughter

      ](https://search.brave.com/search?q=subramanian%20swamy%20daughter&source=relatedQueries)[

      why subramanian swamy speaks against bjp

      ](https://search.brave.com/search?q=why%20subramanian%20swamy%20speaks%20against%20bjp&source=relatedQueries)

      Next

      [

      Subramanian Swamy

      ](https://en.wikipedia.org/wiki/Subramanian_Swamy)

      Indian politician

      swamy39.blogspot.com

      Swamy in 2019

      subramanian swamy

      Subramanian Swamy (born 15 September 1939) is an Indian politician, economist and statistician. Before joining politics, he was a professor of Mathematical Economics at the Indian Institute of Technology, Delhi. He is known for his Hindu nationalist views. Swamy was a member of the Planning ... Wikipedia

      Factsheet

      Member of Parliament, Rajya Sabha\ In office 26 April 2016 -- 24 April 2022

      ConstituencyNominated

      In office 1988--1994

      More about Subramanian Swamy

      Profiles

      🌐Wikipedia🌐Facebook🌐Instagram🌐Quora🌐LOC🌐Wikidata🌐X🌐Idref🌐VIAF🌐DNB

      Data from Wikipedia

      Feedback

      Resources

      Brave Search Premium

      Brave Search Help

      Transparency Report

      Report a security issue

      Status

      Products

      Brave Browser

      Brave Search

      Brave Wallet

      Brave Talk

      Brave Firewall + VPN

      Brave Playlist

      Brave News

      Brave Rewards

      Brave Search API

      Brave Ads

      Policies

      Privacy Policy

      Terms of Use

    1. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Nagarajan et al. study the impact of early damage to the anterior cingulate cortex (ACC) on the vocal development of marmoset monkeys. AAC lesions were performed on neonatal marmosets and their vocal patterns and the spectrotemporal features of their calls were analyzed compared to control groups during the first six weeks of life. While the vocal repertoire was not significantly affected by ACC lesions, the authors described notable differences in the social contact call, the phee call. Marmosets with ACC damage made fewer social contact calls, and when they did, these calls were shorter, louder, and monotonic. Additionally, the study revealed that ACC damage in infancy led to permanent alterations in downstream brain areas involved in social vocalizations, such as the amygdala and periaqueductal gray.

      Strengths:

      This study suggests that the ACC plays a crucial role in the normal development of social vocal behavior in infant marmosets. Studying vocal behavior in marmosets can provide insights into the neural mechanisms underlying human speech and communication disorders due to their similarity in brain structure and social behavior.

      The methods are robust and reliable with precise localization of the lesions with neuroimaging and histological examination.

      Weaknesses:

      It is striking to find that the vocal repertoire of infant marmosets was not significantly affected by ACC lesions. During development, the neural circuits are still maturing and the role of different brain regions may evolve over time. While the ACC likely contributes to vocalizations across the lifespan, its relative importance may vary depending on the developmental stage. In neonates, vocalizations may be more reflexive or driven by physiological needs. At this stage, the ACC may play a role in basic socioemotional regulation but may not be as critical for vocal production. Since the animals lived for two years, further analysis might be helpful to elucidate the precise role of ACC in the vocal behavior of marmosets.

      - Figure 3D. According to the Introduction "...infant ACC lesions abolish the characteristic cries that infants normally issue when separated from its mother". Are the present results in marmosets showing the opposite effect? Please discuss.

      - Figure 3E and Discussion. Phees are mature contact calls and cries immature contact calls (Zhang et al, 2019, Nat Commun). Therefore, I would rather say that the proportion of immature (cries) contact calls increases vs the mature (phee, trill, twitters) contact calls in the ACC group. Cries are also "isolated-induced contact calls" to attract the attention of the caregivers.

      - Figure 4D. Animal location and head direction within the recording incubator can have significant effects on the perceived amplitude of a call. Were these factors taken into account?

      - Figure 4E. When a phee call has a higher amplitude, as is the case for the ACC group (Figure 4D), the energy of the signal will be concentrated more strongly at the phee call frequency ~8KHz. This concentration of the energy reduces the variability in the frequency distribution, leading to lower entropy. The interpretation of the results should be reconsidered. A faint call (control group) can exhibit more variability in the frequency content since the energy is distributed across a wider range of frequencies contributing to higher entropy. It can still be "fixed, regular, and stereotyped" if the behavior is consistent or predictable with little variation. Also, to define ACC calls as "monotonic" I would rather search for the lack of frequency modulation, amplitude variation, or narrower bandwidth.

      - Apart from the changes in the vocal behavior, did the AAC lesions manifest in any other observable cognitive, emotional, or social behavior? ACC plays a role in processing pain and modulating pain perception. Could that be the reason for the observed increase in the proportion of cries in the ACC group and the increase in the phee call amplitude? Did the cries in the ACC group also display a higher amplitude than the cries in the control group?

      - Discussion. Louder calls have the potential to travel longer distances compared to fainter calls, possess higher energy levels, and can propagate through the environment more effectively. If the ACC group produced louder phee syllables, how could be the message conveyed over long distances "deficient, limited, and/or indiscriminate"?

    1. Reviewer #2 (Public Review):

      Summary

      This manuscript by Petty and Bruno delves into the still poorly understood role of higher-order thalamic nuclei in the encoding of sensory information by examining the activity in the Pom and LP cells in mice performing an associative learning task. They developed an elegant paradigm in which they conditioned head-fixed mice to attend to a stimulus of one sensory modality (visual or tactile) and ignore a second stimulus of the other modality. They recorded simultaneously from POm and LP, using 64-channel electrode arrays, to reveal the context-dependency of the firing activity of cells in higher-order thalamic nuclei. They concluded that behavioral training reshapes activity in these secondary thalamic nuclei. I have no major concerns with the manuscript's conclusions, but some important methodological details are lacking and I feel the manuscript could be improved with the following revisions.

      Strengths

      The authors developed an original and elegant paradigm in which they conditioned head-fixed mice to attend to a stimulus of one sensory modality, either visual or tactile, and ignore a second stimulus of the other modality. As a tactile stimulus, they applied gentle air puffs on the distal part of the vibrissae, ensuring that the stimulus was innocuous and therefore none aversive which is crucial in their study.

      It is commonly viewed that the first-order thalamus performs filtering and re-encoding of the sensory flow; in contrast, the computations taking place in high-order nuclei are poorly understood. They may contribute to cognitive functions. By integrating top-down control, high-order nuclei may participate in generating updated models of the environment based on sensory activity; how this can take place is a key question that Petty and Bruno addressed in the present study.

      Weaknesses

      (1) Overall, methods, results, and discussion, involving sensory responses, especially for the Pom, are confusing. I have the feeling that throughout the manuscript, the authors are dealing with the sensory and non-sensory aspects of the modulation of the firing activity in the Pom and LP, without a clear definition of what they examined. Making subsections in the results, or a better naming of what is analyzed could convey the authors' message in a clearer way, e.g., baseline, stim-on, reward.

      In line #502 in Methods, the authors defined "Sensory Responses. We examined each cell's putative sensory response by comparing its firing rate during a "stimulus period" to its baseline firing rate. We first excluded overlapping stimuli, defined as any stimulus occurring within 6 seconds of a stimulus of a different type. We then counted the number of spikes that occurred within 1 second prior to the onset of each stimulus (baseline period) and within one second of the stimulus onset (stimulus period). The period within +/-50ms of the stimulus was considered ambiguous and excluded from analysis."

      Considering that the responses to whisker deflection, while weak and delayed, were shown to occur, when present, before 50 ms in the Pom (Diamond et al., 1992), it is not clear what the authors mean and consider as "Sensory Responses"?

      Precise wording may help to clarify the message. For instance, line #134: "Of cells from tactilely conditioned mice, 175 (50.4%) significantly responded to the air puff, as defined by having a firing rate significantly different from baseline within one second from air puff onset (Figure 3d, bottom)", could be written "significantly responded to the air puff" should be written "significantly increased (or modified if some decreased) their firing rate within one second after the air puff onset (baseline: ...)". This will avoid any confusion with the sensory responses per se.

      (2) To extend the previous concern, the latency of the modulation of the firing rate of the Pom cells for each modality and each conditioning may be an issue. This latency, given in Figure S2, is rather long, i.e. particularly late latencies for the whisker system, which is completely in favor of non-sensory "responses" per se and the authors' hypothesis that sensory-, arousal-, and movement-evoked activity in Pom are shaped by associative learning. Latency is a key point in this study.

      Therefore,<br /> - latencies should be given in the main text, and Figure S2 could be considered for a main figure, at least panels c, d, and e, could be part of Figure 3.

      - the Figure S2b points out rather short latency responses to the air puff, at least in some cells, in addition to late ones. The manuscript would highly benefit from an analysis of both early and late latency components of the "responses" to air puffs and drafting grating in both conditions. This analysis may definitely help to clarify the authors' message. Since the authors performed unit recordings, these data are accessible.

      - it would be highly instructive to examine the latency of the modulation of Pom cells firing rate in parallel with the onset of each behavior, i.e. modification of pupil radius, whisking amplitude, lick rate (Figures 1e, g and 3a, b). The Figure 1 does not provide the latency of the licks in conditioned mice.

      - the authors mention in the discussion low-latency responses, e.g., line #299: "In both tactilely and visually conditioned mice, movement could not explain the increased firing rate at air puff onset. These low-latency responses across conditioning groups is likely due in part to "true" sensory responses driven by S1 and SpVi."; line #306: "Like POm, LP displayed varied stimulus-evoked activity that was heavily dependent on conditioning. LP responded to the air puff robustly and with low latency, despite lacking direct somatosensory inputs."<br /> But which low-latency responses do the authors refer to? Again, this points out that a robust analysis of these latencies is missing in the manuscript but would be helpful to conclude.

      (3) Anatomical locations of recordings in the dorsal part of the thalamus. Line #122 "Our recordings covered most of the volume of POm but were clustered primarily in the anterior and medial portions of LP (Figure 2d-f). Cells that were within 50 µm of a region border were excluded from analysis."<br /> How did the authors distinguish the anterior boundary of the LP with the LD nucleus just more anterior to the LP, another higher-order nucleus, where whisker-responsive cells have been isolated (Bezdudnaya and Keller, 2008)?

      (4) The mention in the Methods about the approval by an ethics committee is missing.<br /> All the surgery (line #381), i.e., for the implant, the craniotomy, as well as the perfusion, are performed under isoflurane. But isoflurane induces narcosis only and not proper anesthesia. The mention of the use of analgesia is missing.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors aimed to develop and validate an automated, deep learning-based system for scoring the Rey-Osterrieth Complex Figure Test (ROCF), a widely used tool in neuropsychology for assessing memory deficits. Their goal was to overcome the limitations of manual scoring, such as subjectivity and time consumption, by creating a model that provides automatic, accurate, objective, and efficient assessments of memory deterioration in individuals with various neurological and psychiatric conditions.

      Strengths:

      Comprehensive Data Collection:<br /> The authors collected over 20,000 hand-drawn ROCF images from a wide demographic and geographic range, ensuring a robust and diverse dataset. This extensive data collection is critical for training a generalizable and effective deep learning model.

      Advanced Deep Learning Approach:<br /> Utilizing a multi-head convolutional neural network to automate ROCF scoring represents a sophisticated application of current AI technologies. This approach allows for detailed analysis of individual figure elements, potentially increasing the accuracy and reliability of assessments.

      Validation and Performance Assessment:<br /> The model's performance was rigorously evaluated against crowdsourced human intelligence and professional clinician scores, demonstrating its ability to outperform both groups. The inclusion of an independent prospective validation study further strengthens the credibility of the results.

      Robustness Analysis Efficacy:<br /> The model underwent a thorough robustness analysis, testing its adaptability to variations in rotation, perspective, brightness, and contrast. Such meticulous examination ensures the model's consistent performance across different clinical imaging scenarios, significantly bolstering its utility for real-world applications.

      Weaknesses:

      Insufficient Network Analysis for Explainability:<br /> The paper does not sufficiently delve into network analysis to determine whether the model's predictions are based on accurately identifying and matching the 18 items of the ROCF or if they rely on global, item-irrelevant features. This gap in analysis limits our understanding of the model's decision-making process and its clinical relevance.

      Generative Model Consideration:<br /> The critique suggests exploring generative models to model the joint distribution of images and scores, which could offer deeper insights into the relationship between scores and specific visual-spatial disabilities. The absence of this consideration in the study is seen as a missed opportunity to enhance the model's explainability and clinical utility.

      Appraisal and discussion:<br /> By leveraging a comprehensive dataset and employing advanced deep learning techniques, they demonstrated the model's ability to outperform both crowdsourced raters and professional clinicians in scoring the ROCF. This achievement represents a significant step forward in automating neuropsychological assessments, potentially revolutionizing how memory deficits are evaluated in clinical settings. Furthermore, the application of deep learning to clinical neuropsychology opens avenues for future research, including the potential automation of other neuropsychological tests and the integration of AI tools into clinical practice. The success of this project may encourage further exploration into how AI can be leveraged to improve diagnostic accuracy and efficiency in healthcare.

      However, the critique regarding the lack of detailed analysis across different patient demographics, the inadequacy of network explainability, and concerns about the selection of median crowdsourced scores as ground truth raises questions about the completeness of their objectives. These aspects suggest that while the aims were achieved to a considerable extent, there are areas of improvement that could make the results more robust and the conclusions stronger.

    1. Author response:

      The following is the authors’ response to the original reviews.

      In the revised manuscript we have included an additional study that significantly contributes to the conclusions and models of the original version. Briefly, Figure 3 now describes our characterization of the diaphragm and laryngeal muscle activities (electromyography, EMG) during endogenous vocalizations. These EMGs also serve as representations of the brainstem breathing central pattern generator (CPG) inspiratory and post-inspiratory generating neurons, respectively. In our original submission, we found that many of the vocalizations had changes in pitch that mirrored the change in expiratory airflow (we termed positive intonation), and we proposed that the coordination of breathing muscles (like the inspiratory muscles) and larynx patterned this. This mechanism is akin to our findings for how neonatal cries are rhythmically timed and produced (Wei et al. 2022). The newly presented EMG data re-inforces this idea. We found that for vocalizations with positive intonation, the inspiratory diaphragm muscle has an ectopic burst(s) of activity during the expiration phase which corresponds to a decrease in airflow and pitch, and this is followed by laryngeal muscle activity and increased pitch. This can be cycled throughout the expiration to produce complex vocalizations with oscillations in pitch. A basal breath is hardwired for the laryngeal muscle activity to follow the diaphragm, so the re-cycling of this pattern nested within an expiration (a ‘mini-breath’ in a ‘breath’) demonstrates that the vocalization patterning system engages the entire breathing CPG. This contrasts with the canonical model that activity of the laryngeal premotor neurons control all aspects of producing / patterning vocalizations. Furthermore, this mechanism is exactly how the iRO produces and patterns neonatal vocalizations (Wei et al. 2022) and motivates the likely use of the iRO in adult vocalizations.

      Response to recommendations for the authors:

      Reviewer #1:

      (1) The authors should note in the Discussion that the cellular and circuit mechanisms by which the vocalization pattern generator integrates with the respiratory pattern generator to control expiratory airflow have not been fully worked out, requiring future studies.

      This was noted in the discussion section “The iRO likely patterns intonation for endogenous phonation”.

      (2) Please change the labeling of the last supplemental figure to Figure Supplemental 5.

      Thank you for identifying this.

      Reviewer #2:

      Major concerns

      (1) While it is true that modulation of activity in RAm modulates the laryngeal opening, this statement is an incomplete summary of prior work. Previous studies (Hartmann et al., 2020; Zhang et al., 1992, 1995) found that activation of RAm elicits not just laryngeal adduction but also the production of vocal sounds, albeit vocal sounds that were spectrally dissimilar from speciestypical vocalizations. Moreover, a recent study/preprint that used an activity-dependent labeling approach in mice to optogenetically activate RAm neurons that were active during USV production found that re-activation of these neurons elicits USVs that are acoustically similar to natural USVs (Park et al., 2023). While the authors might not be required to cite that recent preprint (as it is not yet peer-reviewed), the fact that activation of RAm elicits vocal sounds is clear evidence that its effects go beyond modulating the size of the laryngeal opening, as this alone would not result in sound production (i.e., RAm activation must also recruit expiratory airflow). The authors should include these relevant studies in their Introduction. Moreover, the rationale for the model proposed by the authors (that RAm controls laryngeal opening whereas iRO controls expiratory airflow) is unclear with regard to these prior studies. The authors should include a discussion of how these prior findings are consistent with their model (as presented in the Introduction, as well as in Figure 4 and relevant Discussion) that RAm modulates the size of laryngeal opening but not expiratory airflow.

      An introduction and discussion of the Veerakumar et. al. 2023 and Park et. al. 2024 manuscripts describing RAm in mice has now been included.

      The iRO serves to coordinate the breath airflow and laryngeal adduction to produce sound and the intonation within it that mirrors the breath airflow. This occurs because the iRO can control the breathing CPG (synaptic input to the preBötC inspiratory pacemaker) and is premotor to multiple laryngeal muscles (Wei et. al. 2022). The modulation of the expiratory airflow is by inducing momentary contraction of the diaphragm (via excitation of the preBötC) which opposes (a.k.a. slows) expiration. This change in flow results in a decrease in pitch (Fig. 3 in the revised manuscript, Wei et. al. 2022).

      It is our understanding that the basic model for RAm evoked USVs is that RAm evokes laryngeal adduction (and presumed abdominal expiratory muscle activation) and this activity is momentarily stopped during the breath inspiration by inhibition from the preBötC (Park et. al. 2024). So, in this basic model, any change in pitch and expiratory airflow would be controlled by tuning RAm activity (i.e., extent of laryngeal adduction). In this case, the iRO induced inspiratory muscle activity should not occur during expiration, which is not so (Fig. 3). Note, the activity of abdominal expiratory muscles during endogenous and RAm evoked USVs has not been characterized, so the contribution of active expiration remains uncertain. This is an important next step.

      We have now included a discussion of this topic which emphasizes that iRO and RAm likely have reciprocal interactions (supported by the evidence of this anatomical structure). These interactions would explain why excitation of either group can evoke USVs and, perhaps, the extent that either group contributes to a USV explains how the pitch / airflow changes. An important future experiment will be to determine the sufficiency of each site in the absence of the other.

      (2) The authors provide evidence that the relationship between expiratory airflow and USV pitch is variable (sometimes positive, sometimes negative, and sometimes not related). While the representative spectrograms clearly show examples of all three relationship types, no statistical analyses are included to evaluate whether the relationship between expiratory airflow and USV pitch is different than what one would expect by chance. For example, if USV pitch were actually unrelated to expiratory airflow, one might nonetheless expect spurious periods of positive and negative relationships. The lack of statistical analyses to explicitly compare the observed data to a null model makes it difficult to fully evaluate to what extent the evidence provided by the authors supports their claims.

      We have now included two null distributions and compared our observed correlation values to these. The two distributions were created by taking each USV / airflow pair and randomly shuffling either the normalized USV pitch values (pitch shuffled) or the normalized airflow values (airflow shuffled) to simulate the distribution of data should no relationship exist between the USV pitch and airflow.

      (3) The relationship between expiratory airflow and USV pitch comes with two important caveats that should be described in the manuscript. First, even in USV types with an overall positive relationship between expiratory airflow and pitch contour, the relationship appears to be relative rather than absolute. For example, in Fig. 2E, both the second and third portions of the illustrated two-step USV have a positive relationship (pitch goes down as expiratory airflow goes down). Nonetheless, the absolute pitch of the third portion of that USV is higher than the second portion, and yet the absolute expiratory airflow is lower. The authors should include an analysis or description of whether the relationship between expiratory airflow and USV pitch is relative vs.

      absolute during periods of 'positive intonation'.

      The relationship between pitch and airflow is relative and this in now clarified in the text. To determine this, we visualized the relationship between the two variables by scatterplot for each of the USVs syllables and, as the reviewer notes, a given airflow cannot predict the resulting frequency and vice versa.

      (4) A second important caveat of the relationship between expiratory airflow and USV pitch is  that changes in expiratory airflow do not appear to account for the pitch jumps that characterize mouse USVs (this lack of relationship also seems clear from the example shown in Fig. 2E). This caveat should also be stated explicitly.

      The pitch jumps do not have a corresponding fluctuation in airflow, and this is now stated in the results and discussion.

      (5) The authors report that the mode of relationship between expiratory airflow and USV pitch (positive intonation, negative intonation, or no relationship) can change within a single USV. Have the authors considered/analyzed whether the timing of such changes in the mode of relationship coincides with pitch jumps? Perhaps this isn’t the case, but consideration of the question would be a valuable addition to the manuscript.

      We analyzed a subset of USVs with pitch jumps that were defined by a change >10 kHz, at least 5ms long, and had one or two jumps. The intonation relationships between the sub-syllables within a USV type were not stereotyped as evidenced by the same syllable being composed of combinations of both modes.

      (6) The authors incorrectly state that PAG neurons important for USV production have been localized to the ventrolateral PAG. Tschida et al., 2019 report that PAG-USV neurons are located predominantly in the lateral PAG and to a lesser extent in the ventrolateral PAG (see Fig. 5A from that paper). The finding that iRO neurons receive input from VGlut2+ ventrolateral PAG neurons represents somewhat weak evidence that these neurons reside downstream of PAG-USV neurons. This claim would be strengthened by the inclusion of FOS staining (following USV production), to assess whether the Vglut+ ventrolateral PAG neurons that provide input to iRO are active in association with USV production.

      This comment correctly critiques that our PAG à iRO tracing does not demonstrate that the labeled PAG neurons are sufficient nor necessary for vocalization. Directly demonstrating that activation and inhibition the PAG-iRO labeled neurons ectopically drives or prevents endogenous USVs is an important next step. While FOS implies this connectivity, it does not definitely establish it and so this experiment is impacted by some of the caveats of our tracing (e.g. PAG neurons that drive sniffing might be erroneously attributed to vocalization).

      Our reading of the literature could not identify an exact anatomical location within the mouse PAG and this site appears to vary within a study and between independent studies (like within and between Tschida et. al. 2019 and Chen et. al. 2021). The labeling we observed aligns with some examples provided in these manuscripts and with the data reported for the retrograde tracing from RAm (Tschida et al 2019).

      (7) In Figure S5A, the authors show that USVs are elicited by optogenetic activation of iRO neurons during periods of expiration. In that spectrogram, it also appears that vocalizations were elicited during inspiration. Are these the broadband vocalizations that the authors refer to in the Results? Regardless, if optogenetic activation of iRO neurons in some cases elicits vocalization both during inspiration and during expiration, this should be described and analyzed in the manuscript.

      The sound observed on the spectrogram during inspiration is an artefact of laser evoked head movements that resulted in the fiber cable colliding with the plethysmography chamber. In fact, tapping an empty chamber yields the same broad band spectrogram signal. The evoked USV or harmonic band vocalization is distinct from this artefact and highlighted in pink.

      (8) Related to the comment above, the authors mention briefly that iRO activation can elicit broadband vocalizations, but no details are provided. The authors should provide a more detailed account of this finding.

      The broadband harmonic vocalizations we sometimes observe upon optogenetic stimulation of AAV-ChR2 expressing iRO neurons are akin to those previously described within the mouse vocal repertoire (see Grimsley et. al .2011). We have added this citation and mentioned this within the text. 

      (9) The effects of iRO stimulation differ in a couple of interesting ways from the effects of PAGUSV activation. Optogenetic activation of PAG-USV neurons was not found to entrain respiration or to alter the ongoing respiratory rate and instead resulted in the elicitation of USVs at times when laser stimulation overlapped with expiration. In contrast, iRO stimulation increases and entrains respiratory rate, increases expiratory and inspiratory airflow, and elicits USV production (and also potentially vocalization during inspiration, as queried in the comment above). It would be informative for the authors to add some discussion/interpretation of these differences.

      We have added a section of discussion to describe the how these different results may be explained by the iRO being a vocal pattern generator versus the PAG as a ‘gating’ signal to turn on the medullary vocalization patterning system (iRO and RAm). See discussion section ‘The iRO likely patterns intonation for endogenous phonation’.

      (10) The analysis shown in Fig. 4D is not sufficient to support the author’s conclusion that all USV types elicited by iRO activation are biased to have more positive relationships between pitch and expiratory airflow. The increase in the relative abundance of down fm USVs in the opto condition could account for the average increase in positive relationship when this relationship is considered across all USV types in a pooled fashion. The authors should consider whether each USV type exhibits a positive bias. Although such a comparison is shown visually in Fig. 4G, no statistics are provided. All 7 USV types elicited by optogenetic activation of iRO should be considered collectively in this analysis (rather than only the 5 types currently plotted in Fig. 4G).

      In the original submission the statistical analysis of r values between opto and endogenous conditions was included in the figure legend (‘panels E-G, two-way ANOVA with Sidak’s post-hoc test for two-way comparisons was used; all p-values > 0.05), and this has not changed in the revised manuscript. We have now provided the suggested comparison of opto vs endogenous USVs without down fm (Fig. 5D). This positive shift in r is statistically significant (…).

      (11) The evidence that supports the author’s model that iRO preferentially regulates airflow and that RAm preferentially regulates laryngeal adduction is unclear. The current study finds that activation of iRO increases expiratory (and inspiratory) airflow and also elicits USVs, which means that iRO activation must also recruit laryngeal adduction to some extent. As the authors hypothesize, this could be achieved by recruitment of RAm through iRO’s axonal projections to that region.

      Note, it is more likely that iRO is directly recruiting laryngeal adduction as they are premotor to multiple laryngeal muscles like the thyroarytenoid and cricothyroid (Wei et. al. 2022). The ‘Discussion’ now includes our ideas for how the iRO and RAm likely interact to produce vocalizations.

      In the recent preprint from Fan Wang’s group (Park et al., 2023), those authors report that RAm is required for USV production in adults, and that activation of RAm elicits USVs that appear species-typical in their acoustic features and elicits laryngeal adduction (assessed directly via camera). Because RAm activation elicits USVs, though, it must by definition also recruits expiratory airflow. Can the authors add additional clarification of how the evidence at hand supports this distinction in function for iRO vs RAm?

      See response to ‘Major Concern #1”.

      Minor concerns 

      (1) The authors might consider modifying the manuscript title. At present, it primarily reflects the experiments in Figure 2.

      We have provided a title that we feel best reflects the major point of the manuscript. We hope that this simplicity enables it to be recognized by a broad audience of neuroscientists as well as specialists in vocalization and language.

      (2) The statement in the abstract that "patterns of pitch are used to create distinct 'words' is somewhat unclear. Distinct words are by and large defined by combinations of distinct phonemes. Are the authors referring to the use of "tonemes" in tonal languages? If so, a bit more explanation could be added to clarify this idea. This minor concern includes both the Abstract, as well as the first paragraph of the Introduction.

      We have clarified this line in the abstract to avoid the confusing comparison between mouse vocalizations and human speech. In the introduction we have expanded our explanation to clarify that variations in pitch are a component of spoken language that add additional meaning and depth to the underlying, phonemic structure. 

      (3) Multiple terms are used throughout the manuscript to refer to expiratory airflow: breath shape (in the title), breath pattern, deviations in exhalation, power of exhalation, exhalation strength, etc. Some of these terms are vague in meaning, and a consolidation of the language would improve the readability of the abstract and introduction.

      We have chosen a smaller selection of descriptive words to use when describing these breath features.

      (4) Similarly, "exhalation" and "expiration" are both used, and a consistent use of one term would help readability.

      See point 3.

      (5) In a couple of places in the manuscript, the authors seem to state that RAm contains both laryngeal premotor neurons as well as laryngeal motor neurons. This is not correct to our knowledge., but if we are mistaken, we would ask that the authors add the relevant references that report this finding.

      It is our understanding that the RAm is defined as the anatomical region consistent with the murine rostral and caudal ventral respiratory groups composed of multiple premotor neuron pools to inspiratory, expiratory, laryngeal, and other orofacial muscles. This is supported by neurons within RAm that reflect multiple phases of the inspiratory and expiratory cycle (Subramanian et. al. 2018) and excitation of sub-regions within RAm modulating multiple parts of the breathing control system (Subramanian et. al. 2018 and Subramanian 2009). Rabies tracing of the various premotor neurons which define the anatomical region of RAm in the mouse shows that they surround the motor neurons in the loose region of the nucleus ambiguus (the anatomical location of RAm) for multiple muscles of the upper airway system, such as the thyroarytenoid (Wu et. al. 2017, Dempsey et. al. 2021 and Wei et. al. 2022). Given that the name RAm reflects a broad anatomical location, we have used it to describe both the premotor and motor neurons embedded within it. We have now clarified this in the text.

      (6) The statistical analysis applied in Figure 1C is somewhat confusing. The authors show two distributions that appear different but report a p-value of 0.98. Was the analysis performed on the mean value of the distributions for each animal, the median, etc.? If each animal has two values (one for USV+ breaths and one for USV- breaths), why not instead compare those with a paired t-test (or Wilcoxon rank sign)? Additional information is needed to understand how this analysis was performed.

      The original manuscript version used a two-way anova to compare the normalized histogram of instantaneous frequency for breaths with (USV+) or without (USV-) for each animal (first factor: USV+/-, second factor: Frequency). The p-value for the first factor (USV) was 0.98 showing no statistically significant effect of USV on the distribution of the histogram.

      For simplicity, we have instead performed the analysis as suggested and include a bar graph. This analysis shows that the instantaneous frequency of USV breaths is, in fact, statistically significantly lower than those without USVs. We have updated the figure legend and text to reflect this.

      (7) The use of the word "syllable" to describe parts of a USV that are produced on a single breath may be confusing to some scientists working on rodent USVs. The term 'syllable' is typically used to describe the entirety of a USV, and the authors appear to use the term to describe parts of a USV that are separated by pitch jumps. The authors might consider calling these parts of USVs "sub-syllables".

      We have clarified these descriptions throughout the text. We now refer to the categories as ‘syllable types’, define ‘syllables’ as ‘a continuous USV event’ with no more than 20ms of silence within and finally ‘sub-syllables’ to refer to components of the syllable separated by jumps in frequency (but not gaps in time).

      (8) In Figure S3, final row, the authors show a USV produced on a single breath that contains two components separated by a silent period. This type of bi-syllabic USV may be rare in adults and is similar to what the authors showed in their previous work in pups (multiple USVs produced on a single expiration, separated by mini-inspirations). One might assume that the appearance of such USVs in pups and their later reduction in frequency represents a maturation of vocalrespiratory coordination. Nonetheless, the appearance of bi-syllabic USVs has not been reported in adult mice to our knowledge, and the authors might consider further highlighting this finding.

      We were also struck by the similarity of these USVs to our study in neonates and such types of similarities sparked an interest in the role of the iRO in patterning adult USVs. We now include a description of the presence and abundance of bi- and tri-syllablic calls observed in our recordings to highlight this finding.

      (9) Figure 4 is referenced at the end of the second Results section, but it would seem that the authors intended to reference Figure 2. 

      For simplicity we included some of the referenced data within Fig. S5. We appreciate the recommendation.

      (10) In the optogenetic stimulation experiments, the authors should clarify why bilateral stimulation was applied. Was unilateral stimulation ineffective or less effective? The rationale provided for the use of bilateral stimulation (to further localize neural activation) is unclear.

      The iRO is bilateral and, we presume, functions similarly. So, we attempted to maximally stimulate the system. We have clarified this in the methods.

      (11) Figure Supplemental '6' should be '5'.

      Thanks!

      (12) Last sentence of the Introduction: "Lasty" should be "lastly".

      Thanks!

      (13) There are two references for Hage et al., 2009. These should be distinguished as 2009a and 2009b for clarity.

      Thanks!

    1. Author response:

      The following is the authors’ response to the current reviews.

      We thank the reviewers and editor for their careful review of our work. We believe the resulting manuscript is much stronger. We agree with the comments made by Reviewer #2 regarding additional histology and neuronal data analysis, which will be presented in subsequent work.


      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Weaknesses):

      It was not always clear what the lesion size was. This information is important for future applica- tions, for example, in the visual cortex, where neurons are organized in retinotopy patterns.

      We thank the reviewer for this feedback. While there is some variation in lesion volume for a given parameter set, we have added more details of the volumes of lesions created in our testing (Fig. 4 and Fig. 5).

      It would be helpful if the author could add some discussion about whether and how this method could be used in other types of array/multi-contact electrodes, such as passive neuropixels, S- probes, and so on. In addition, though an op-amp was used in the design, it would still be helpful if the author could provide a recommended range for the impedance of the electrodes.

      We thank the reviewer for this suggestion. We have both added a demonstration of use in a differ- ent multielectrode probe type (with a U-probe) in Fig. 8, and we have added a discussion about which types of multielectrode probes would be suitable on Page 15, Line 420.

      “We demonstrated that our electrolytic lesioning technique works with a linear multicontact probe by testing with a U-Probe in ex vivo rabbit cortex. There are no particular limitations that would prevent our specific electrolytic lesioning technique and device from working with any passive multielectrode probe. The main requirements for use are that the probe has two electrodes that can directly (via whatever necessary adapters) connect to the lesioning device, such that arbitrary current can be passed into them as the anode and cathode. This would limit use of probes, like Neuropixels, where the on-chip acquisition and digitization circuitry generally precludes direct connection to electrodes [1], [2]. The impedance of the multielectrode probe should not be an issue, due to the use of an op amp. We showed use  with a Utah array (20-800 kΩ) and a U-Probe (1-1.5 MΩ). The specific op amp used here has a voltage range of ± 450 V, which assuming a desired output of 150 µA of current would limit electrode impedance to 6 MΩ. Though a different op amp could easily be used to accommodate a higher electrode impedance, it is unlikely that this would be necessary, since most electrodes have impedances between 100 kΩ to 1 MΩ [3].”

      Reviewer 2 (Public Weaknesses):

      In many of the figures, it is not clear what is shown and the analysis techniques are not well described.

      We thank the reviewer for this feedback. We hope that our edits to both the figures and the text have improved clarity for readers.

      The flexibility of lesioning/termination location is limited to the implantation site of the multielec- trode array, and thus less flexible compared to some of the other termination methods outlined in Appendix 2.

      We thank the reviewer for this point. You are right that the lesioning location is limited to the multielectrode array’s implantation site, while other methods in Appendix 2 do not require prox- imity of the lesion location and the electrophysiology recording site. However, we believe that the closeness of the lesioning location to the microelectrode array is a strength - guaranteeing record- ings from the perilesional area - even with the small negative of reduced flexibility. Multielectrode arrays can be implanted in many areas of cortex. If one wanted to study distal effects of a lesion, additional electrophysiology probes could be implanted to record from those areas. We have noted this on Page 3, Line 117.

      “While the link between the lesion location and the multielectrode location technically con- strains the lesion to an area of cortex in which a multielectrode array could be implanted, we see the connection as a positive, because it ensures recording some neuroelectrophysiology from the perilesional area in which recovery is hypothesized to occur (see Appendix 1Data Availabilityappendix.41).”

      Although the extent of the damage created through the Utah array will vary based on anatomical structures, it is unclear what is the range of lesion volumes that can be created with this method, given a parameter set. It was also mentioned that they performed a non-exhaustive parameter search for the applied current amplitude and duration (Table S1/S2) to generate the most suitable lesion size but did not present the resulting lesion sizes from these parameter sets listed. Moreover, there’s a lack of histological data suggesting that the lesion size is precise and repeatable given the same current duration/amplitude, at the same location.

      We thank the reviewer for this thoughtful feedback. We have added figures (Figs. 4 and 5), where we show the relationship between estimated lesion volume and the current amplitude and duration parameters. These figures include more data from the tests in Supplementary File 1 and Supplementary File 2. While there is some variation in lesion volume for a given current amplitude and duration, there is still a clear relationship between the parameters and lesion volume.

      It is unclear what type of behavioral deficits can result from an electrolytic lesion this size and type (∼3 mm in diameter) in rhesus macaques, as the extent of the neuronal loss within the damaged parenchyma can be different from past lesioning studies.

      While we appreciate the reviewer’s interest in the behavioral deficits associated with our lesions in rhesus macaques, reporting these falls beyond the scope of this manuscript. Future work will explore the behavioral deficits associated with these lesions

      The lesioning procedure was performed in Monkey F while sedated, but no data was presented for Monkey F in terms of lesioning parameters, lesion size, recorded electrophysiology, histological, or behavioral outcomes. It is also unclear if Monkey F was in a terminal study.

      We apologize for not being more explicit about the parameters used for the lesion in Monkey F. We have added this in Results on Page 5, Line 209 and in Methods on Page 19, Line 586.

      “After this validation and refinement, one proof-of-concept lesion (150 µA direct current passed through adjacent electrodes for 45 seconds) was performed in an in vivo sedated rhe- sus macaque (Monkey F) in order to validate the safety of the procedure.”

      “This lesion was created by applying 150 µA of direct current to two adjacent electrodes in the microelectrode array for 45 seconds.”

      We also clarified the parameters used for the other lesions in Monkeys H and U in Results on Page 7, Line 233 and in Methods on Page 19, Line 586.

      “In all of the fourteen lesions across two awake-behaving rhesus macaques (150 µA direct current passed through adjacent electrodes for 30 or 45 seconds (30s for Monkey U and 45s for Monkey H, except lesion H200120 which was for 50 seconds)), the current source worked as expected, providing a constant current throughout the duration of the procedure.”

      “In these lesions, 150 µA of direct current was applied to two adjacent electrodes in the mi- croelectrode array for 30 or 45 seconds (30s for Monkey U, 45s for Monkey H), except in lesion H200120 where current was applied for 50 seconds.”

      Monkey F was euthanized shortly after the lesion, so we now mention this on Page 19, Line 583.

      “Based on this, and a lack of physiological signs of pain from the anaesthetized pig studies, a lesion was performed on a sedated rhesus macaque who was subsequently euthanized due to unrelated health complications (Monkey F; 16 year-old adult, male rhesus macaque) in order to further verify safety before use in awake-behaving rhesus.”

      Because Monkey F was sedated and then euthanized shortly after, there is no behavioral data. As the lesion in sedated Monkey F was used to validate the safety of the procedure, any further data and analysis fall beyond the scope of this manuscript.

      As an inactivation method, the electrophysiology recording in Figure 5 only showed a change in pairwise comparisons of clustered action potential waveforms at each electrode (%match) but not a direct measure of neuronal pre and post-lesioning. More evidence is needed to suggest robust neuronal inactivation or termination in rhesus macaques after electrolytic lesioning. Some exam- ples of this can be showing the number of spike clusters identified each day, as well as analyzing local field potential and multi-unit activity.

      The reviewer has pointed out some short comings of the original analysis, which we believe have since been addressed with the revised analysis. LFP and spiking activity are functional measures that are more ambiguous in terms of loss and are also the subject of another manuscript currently under revision.

      The advantages over recently developed lesioning techniques are not clear and are not discussed.

      We thank the reviewer for noting this. We have added a section, also responding to their later request for us to compare our work to Khateeb et al. 2022, by adding a section to the Discussion on Page 16, Line 434.

      “Perhaps the most unique advantage of our technique in comparison with other existing inactivation methods lies in Design Consideration #1: stable electrophysiology pre- and post-inactivation (Appendix 1Data Availabilityappendix.41). While several methods exist that allow for localization and size control of the inactivation (Design Consideration #2) and cross compatibility across regions and species (Design Consideration #3), few have achieved compatibility with stable electrophysiology. For example, some studies record electrophysiology only after the creation of the lesion, preventing comparison with baseline neuronal activity [4]. One recent study, Khateeb, et al., 2022, developed an inactivation method that is effectively combined with stable electrophysiology by creating photothrombotic lesions through a chronic cranial window integrated with an electrocorticography (ECoG) array [5], which may be appropriate for applications where local field potential (LFP) recording is sufficient. This approach has trade-offs with regards to the three design considerations presented in Appendix 1Data Availabilityappendix.41.

      While Khateeb, et al., present a toolbox with integrated, stable electrophysiology from an ECoG array pre- and post- inactivation (Design Consideration #1), it demonstrated recordings from an ECoG array with limited spatial resolution. While a higher density ECoG array that would provide higher spatial resolution could be used, increasing the density of opaque electrodes might occlude optical penetration and constrain photothrombotic lesions. Further, ECoG arrays are limited to recording LFP, not electrophysiology at single neuron resolution, potentially missing meaningful changes in the neuronal population activity after lesioning. Khateeb, et al., demonstrated localization and control the size of inactivation (Design Consideration #2). In this manuscript, we have shown that the amount and duration of direct current are significant determinants of lesion size and shape, while with photothrombotic lesions, light intensity and aperture diameter are the significantly relevant parameters. One potential advantage of photothrombotic approaches is the use of optical tools to monitor anatomical and physiological changes after lesioning through the cranial window, though the research utility of this monitoring remains to be demonstrated.

      Although the method presented by Khateeb, et al., shows some cross-compatibility (Design Consideration #3), it has greater limitations in comparison with the method presented here. For example, while Khateeb, et al., notes that the approach could be adapted for use in smaller organisms, no modification is needed for use in other species with this work’s approach–so long as a multielectrode probe is implantable. In this manuscript we demon- strate electrolytic lesioning spanning two multielectrode probes across rabbits, pigs, sheep, and rhesus macaques, and our same device could be easily used with other smaller species, like rats, in which multielectrode probes have been successfully implanted [6]. Further, the approach in Khateeb, et al., is limited to superficial brain structures, due to the need for opti- cal accessibility. As noted, fiber optics could allow access to deeper structures, which would bring associated additional tissue damage, but deeper structure lesioning was not demon- strated. In contrast, the approach presented here can be used in any region of cortex in which a multielectrode probe can be implanted, which, depending on the probe used, does not limit it to surface structures. For example, we demonstrated use of our lesioning tech- nique with a linear U-probe (Fig. 8figure.caption.25), which could be used to reach deeper layers of cortex or specific deep cortical structures. In both techniques, the location of the lesion is tied to the location of the electrophysiology (for Khateeb et al., wherever the cra- nial window and ECoG array are; for this technique, wherever the multielectrode probe has been implanted), which ensures that the electrophysiology will include recordings from the perilesional area. Neither work addresses the potential of their technique to induce chronic post-lesion behavioral effects, which is a key goal for future work.”

      There is a lack of quantitative histological analysis of the change in neuronal morphology and loss.

      We appreciate the reviewer’s desire for a quantitative histological analysis, however this falls out- side of the scope of this manuscript. We are not attempting to make strong claims about the number of neurons lost through lesioning or thoroughly characterize morphological changes in the neurons. The histology is intended to show that lesioning did lead to a loss of neurons, but the precise num- ber of neurons lost is neither in scope nor is likely to be highly conserved across lesions.

      There is a lack of histology data across animals and on the reliability of their lesioning techniques across animals and experiments.

      We thank the reviewer for this point. As stated above, we have now added Fig. 4 and Fig. 5, which includes volume estimates based on the histology from more of our ex vivo and in vivo testing across animals.

      There is a lack of data on changes in cortical layers and structures across the lesioning and non- lesioning electrodes.

      We acknowledge that the histology does not have the level of detail that is expected from many modern studies. However, the goal here was dramatically different: we sought to calibrate a novel lesion device, ensure it’s safe use in large mammals (specifically, non-human primates) and pro- vide estimates of the lesion size to compare with the literature. The extent of histology that could be performed and the tools available to us prevent such an in depth analysis. We can say based on shank length of the Utah arrays used and known anatomy that we have affected layer 2/3 and maybe a bit of layer 4.

      Reviewer 1 (Recommendations For The Authors):

      Figure 5b. It would be helpful if the author could plot the delta match separately for the lesion elec- trodes, near neighbor electrodes, and far neighbors. This would help understand the lesion effect, specifically whether the effect is selective (e.g., more potent for the lesion and adjacent electrodes.)

      The fact that neuron loss is not particularly selective can already be seen in the spike waveform plots, arranged spatially on the array. Plenty of clear change is observed far from the lesion elec- trodes (marked with black dots) as well as nearby. We have made mention of this localized non- specificity in the main text and have ensured to remphasize in the figure legened. While a nice suggestion, we currently don’t feel this result rises to the level of a figure given it is not highly specific spatially.

      Reviewer 2 (Recommendations For The Authors):

      Overall the quality of the paper, the figures and the analysis used could be significantly improved. There is a lack of scientific rigor in the presentation of figures and analysis techniques. It is not clear what the authors are trying to communicate through the figures and their choice of figures to show is confusing (see below).

      We thank the reviewer for their pointed critiques and believe we have addressed their concerns with many changes to the text, a revamped waveforms analysis, and both the expansion and addition of results.

      The neurophysiology data shown doesn’t suggest neuronal loss, it only shows change which needs strong control data to show it is due to a lesion.

      As detailed below, we have presented a revised analysis that provides this control. While the reviewer is right to point out we can distinguish actual neuron loss from neuron silencing, we be- lieve the new analysis rigorously indicates new rates of sample turnover beyond those expected from healthy state.

      The histology figure should be replaced with a high-quality representation without folds.

      We understand the reviewer’s suggestion. While ideally we would have many histology slices from each lesion, due to cost, we were only able to collect one histology slice per lesion. The folds were introduced by the company that performed the H&E staining, and we unfortunately cannot remove the folds. Therefore, despite the folds, this is the best and only image from this lesion. We hope that the markings on the figure and the comment in the caption is sufficient to explain to readers that the folds are not a result of the lesion but instead a result of the histology process.

      The authors suggest that this lesioning method will be compatible with any available multielec- trode probe theoretically. Since all testing was done with a Utah array, it will be helpful to add an explanation about potential constraints that will make a given array compatible with this method.

      We thank the reviewer for this suggestion. As stated above, we have both added a demonstration of use in a different multielectrode probe type (with a U-probe) in Fig. 8, and we have added a discussion about which types of multielectrode probes would be suitable on Page 15, Line 420.

      The authors should cite and discuss previous studies using electrolytic lesioning in awake-behaving animals to study the causal connection between the brain and behavior. (One example study: Morissette MC, Boye SM. Electrolytic lesions of the habenula attenuate brain stimulation reward. Behavioural brain research. 2008 Feb 11;187(1):17-26.)

      We thank the reviewers for this suggestion. We have added a mention of existing electrolytic le- sioning studies on Page 2, Line 88.

      “Prior termination studies mostly measure behavioral output, with no simultaneous measures of neuronal activity during the behavior, impairing their ability to provide insight into the causal connection between the brain and behavior [7]–[11], or with no baseline (i.e., pre- lesion) measures of neuronal activity [4].”

      The authors should compare their technique with other recent lesioning studies in primates (e.g. Khateeb et al, 2022)

      We again thank the reviewer for this point. Specifically not mentioning Khateeb et al. 2022 was a submission error on our part; we cited the paper in Appendix 2 in the version uploaded to the eLife submission portal, but we had uploaded the version prior to citing it to bioRxiv. We have combined addressing this with addressing a previous comment, as mentioned above, with a section in the Discussion on Page 16, Line 434.

      In Appendix 2, the authors suggest that a major limitation of optogenetics and chemogenetic in- activation methods is the lack of rhesus-compatible constructs. However, several viral constructs have successful implementation in rhesus monkeys so far (e.g. Galvan A, Stauffer WR, Acker L, El-Shamayleh Y, Inoue KI, Ohayon S, Schmid MC. Nonhuman primate optogenetics: recent advances and future directions. Journal of Neuroscience. 2017 Nov 8;37(45):10894-903; Tremblay et al, Neuron 2020)

      We thank the reviewer for pointing us to these papers. We have added a more thorough description of what we meant by lack of rhesus-compatible constructs in that Appendix.

      “However, other challenges exist with using optogenetics as an inactivation method in nonhu- man primates, including difficulty reliably affecting behavior [12]. While several constructs for rhesus macaques have been developed [13], [14], reports of successfully inducing be- havioral effects have a small effect size and are less numerous than might be expected [12], and several null results have been published [15]–[17]. Other remaining challenges include the need to develop a head-mounted, battery powered light delivery system for multi-day delivery of light and difficulty integrating illumination with simultaneous chronic neuro- electrophysiology.”

      For Figure 5b, only pairwise comparison results from monkey U (L11-14) are shown. It is unclear why such results from monkey H were shown in Figure 5a but not in 5b.

      We thank the reviewer for pointing out this unconventional one monkey result. As described in the original submission, we previously omitted Monkey H from the analysis in Figure 5b (now Figure 7) since some of the lesions were closely spaced together, preventing well defined pre- and post- lesion rates of turnover. Never-the-less we have included Monkey H in all the revised analysis and believe even the less cleanly separated data shows useful indications of neuron loss or silencing evoked by the lesion.

      Behavioral data (during a motor task) from the awake behaving monkeys (U and H) would greatly strengthen the claim that this lesioning method is capable of creating a behavioral effect and can be adopted to study the relationship between neural function and behavior outcomes.

      While we are grateful for the reviewer’s interest in the application of our lesioning technique to studies involving behavior, a behavioral analysis of the effects of our electrolytic lesions falls be- yond the scope of this Tools and Resources manuscript. We would also like to point out that we do not claim that we have achieved a behavioral deficit in this manuscript.

      Figure 2 would benefit from an illustration of the Utah array placement and the location of the sites used for lesioning. The authors can either overlay the illustrations on the current ex-vivo and histology images or create a separate schematic to demonstrate that for the readers. Also, Figure 2B needs to be replaced with one without the folds to avoid confusion for the readers.

      We have added Figure 2 - figure supplement 1, which shows both the location within the Utah array of the two electrodes used to create the lesions as well as the relative size of the surface area of the lesion and the array. Unfortunately, as the lesion was created under the array, the exact location of the array relative to the lesion is unknown.

      As mentioned above, Figure 2B is the only histological image from that lesion. We hope that the markings in the image as well as the caption sufficiently explain that the folds are unrelated to the lesion itself.

      Figure 3, the conical region is not well delineated. Data across animals and lesion volume with respect to different parameters should be included.

      We have included a supplemental figure, Figure 3 - figure supplement 1, where we have used a dashed white line to clearly indicate the area of damaged parenchyma, in case it was not clear in Figure 3a. We have also added volume estimates from lesions across animals and different param- eters. The ex vivo estimates are shown in Figure 4 and the in vivo estimates are shown in Figure 5.

      Figure 4: it is not clear what is being communicated, and where the voltage traces are from.

      We thank the reviewer for noting this confusion. We have added some lines in the text to explain what the voltage traces show, both in the caption to Fig. 6 and in the text on Page 7, Line 238.

      “Traces only capture the values while the lesioning device was turned on (45 seconds for most lesions and 50 seconds for lesion H200120). A) Voltage traces. Discontinuity at the beginning of the traces indicates transient voltages that were too rapid to be captured by the voltmeter, lasting between 0.13 and 0.33 s. The fluctuating voltages, especially the rapid in- crease in voltage at the beginning of lesioning, emphasize the importance of using a current source to deliver consistent amounts of current into the brain.”

      “The voltage across the microelectrode array fluctuated much more than the current did, em- phasizing that we made the correct choice in using a current source to ensure delivery of consistent amounts of current into the brain (Fig. 6figure.caption.19).”

      Figure 5: why did the authors choose to use matching units as a measure of the lesion? It is surprising that there are still units on the location that the authors claim to be a lesion. To clarify that it would be helpful to show the location of the lesion in Figure 4a. Also, what can we conclude about the lesion induction when we see units on the lesion electrode? The change in unit match shows that there is a change in the network (although the authors need to show control for that so we know those changes don’t happen due to natural dynamics). It is not clear what is the time duration for pre-pre and post-post (i.e. minutes, seconds, hours). Do these comparisons come from the same time frame or are they coming from two fragments of time for both pre and post- conditions?

      Aside from post-mortem histology and tissue assays, there is no good way to confirm neuron loss with chronically implanted electrode arrays in nonhuman primates. Waveforms were chosen as they are the one readily isolated physical measure of the system we are injuring. Although functional measures of activity could indicate neuron loss (topic of following papers), there are many conceivable changes in firing rate patterns that could manifest spuriously as loss, making the estimation of loss even more ambiguous and challenging this way.

      We believe the new Figure 7 will make the procedure much more clear, while also providing the control requested by the reviewer, illustrating that new statistical categories of altered waveforms emerge during a lesion, beyond those associated with typical changes in waveform composition within multi-unit recordings seen during recording sample turnover fom healthy animals. We further note that by confining this analysis to four day spans at most, we have limited the impact of daily sample turnover described in the literature (Gallego, 2020).

      The time duration for pre-session versus pre-session (pre-post and post-post), is some multiple of the approximate 24 hours between each daily recording session. Therefore, since restricting our- selves to four days separation, between 24 and 96 hours. Spikes are sampled from successful trial periods (so on the order of seconds, compiled into minutes across the whole recording session). Although already described in the main text, these points have been reemphasized in the figure legend.

      CNO (line 931) needs to be explained.

      We thank the reviewer for this point. We have defined CNO and its relevance in Appendix 2.

      “Additionally, chronic inactivation over days may be logistically challenging, as the half life of clozapine N-oxide (CNO, a ligand used to activate DREADD receptors) is on the order of hours.”

    1. Reviewer #1 (Public Review):

      In this study, the authors engineer the endogenous left boundary of the Drosophila eve TAD, replacing the endogenous Nhomie boundary by either a neutral DNA, a wildtype Nhomie boundary, an inverted Nhomie boundary, or a second copy of the Homie boundary. They perform Micro-C on young embryos and conclude that endogenous Nhomie and Homie boundaries flanking eve pair with head-to-tail directionality to form a chromosomal stem loop. Abrogating the Nhomie boundary leads to ectopic activation of genes in the former neighboring TAD by eve embryonic stripe enhancers. Replacing Nhomie by an inverted version or by Homie (which pairs with itself head-to-head) transformed the stem loop into a circle loop. An important finding was that stem and circle loops differentially impact endogenous gene regulation both within the eve TAD and in the TADs bracketing eve. Intriguingly, an eve TAD with a circle loop configuration leads to ectopic activation of flanking genes by eve enhancers - indicating compromised regulatory boundary activity despite the presence of an eve TAD with intact left and right boundaries.

      The results obtained are of high-quality and are meticulously discussed. This work advances our fundamental understanding of how 3D genome topologies affect enhancer-promoter communication.

      This study raises interesting questions to be addressed in future studies.

      First, given the unique specificity with which Nhomie and Homie pair (and exhibit "homing" activity), the generalizability of TAD formation by directional boundary pairing remains unclear. Testing whether boundary pairing is a phenomenon restricted to exceptional loci picked for study, rather than a broader rule of TAD formation, would best be done through the development of untargeted approaches to study boundary pairing.

      Second, boundary pairing is one of several mechanisms that may form chromosomal contact domains such as TADs. Other mechanisms include cohesin-mediated chromosomal loop extrusion and the inherent tendency of transcriptionally active and inactive chromatin to segregate (or compartmentalize). The functional interplay between these possible TAD-forming mechanisms remains to be further investigated.

    1. A mold of some nameless little white boy with a basin on his head. The same child cast in concrete and painted enamel-white to live in every single yard on the island. She could see his pristine whiteness didn’t last. He was encased in the blades of sea fans and an ooze of pink coral. Sea stars nested in his basin. Not a bird in sight. Just shoals of fish floating around, indifferent to this child’s drowning.

      Former village being transcorporeal

    1. n New Year’s Day 2020, I was zipping up my fleece to head outside when the phone in the kitchen rang. I picked it up to find a reporter on the line. “Dr. Fauci,” he said, “there’s something strange going on in Central China. I’m hearing that a bunch of people have some kind of pneumonia. I’m wondering, have you heard anything?”

      Dr. Fauci first hears of COVID-19

    1. Reviewer #3 (Public Review):

      Bing et al. attempt to address fundamental mechanisms of TAD formation in Drosophila by analyzing gene expression and 3D conformation within the vicinity of the eve TAD after insertion of a transgene harboring a Homie insulator sequence 142 kb away in different orientations. These transgenes along with spatial gene expression analysis were previously published in Fujioka et al. 2016, and the underlying interpretations regarding resulting DNA configuration in this genomic region were also previously published. This manuscript repeats the expression analysis using smFISH probes in order to achieve more quantitative analysis, but the main results are the same as previously published. The only new data are the Micro-C and an additional modeling/analysis of what they refer to as the 'Z3' orientation of the transgenes. The rest of the manuscript merely synthesizes further interpretation with the goal of addressing whether loop extrusion may be occurring or if boundary:boundary pairing without loop extrusion is responsible for TAD formation. The authors conclude that their results are more consistent with boundary:boundary pairing and not loop extrusion; however, most of this imaging data seems to support both loop extrusion and the boundary:boundary models. This manuscript lacks support, especially new data, for its conclusions. Furthermore, there are many parts of the manuscript that are difficult to follow. There are some minor errors in the labelling of the figures that if fixed would help elevate understanding. Lastly, there are several major points that if elaborated on, would potentially be helpful for the clarity of the manuscript.

      Major Points:

      (1) The authors suggest and attempt to visualize in the supplemental figures, that loop extrusion mechanisms would appear during crosslinking and show as vertical stripes in the micro-C data. In order to see stripes, a majority of the nuclei would need to undergo loop extrusion at the same rate, starting from exactly the same spots, and the loops would also have to be released and restarted at the same rate. If these patterns truly result from loop extrusion, the authors should provide experimental evidence from another organism undergoing loop extrusion.<br /> (2) On lines 311-314, the authors discuss that stem-loops generated by cohesin extrusion would possibly be expected to have more next-next-door neighbor contacts than next-door neighbor contacts and site their models in Figure 1. Based on the boundary:boundary pairing models in the same figure would the stem-loops created by head-to-tail pairing also have the same phenotype? Making possible enrichment of next-next-door neighbor contacts possible in both situations? The concepts in the text are not clear, and the diagrams are not well-labeled relative to the two models.<br /> (3) The authors appear to cite Chen et al., 2018 as a reference for the location of these transgenes being 700nM away in a majority of the nuclei. However, the exact transgenes in this manuscript do not appear to have been measured for distance. The authors could do this experiment and include expression measurements.<br /> (4) The authors discuss the possible importance of CTCF orientation in forming the roadblock to cohesin extrusion and discuss that Homie orientation in the transgene may impact Homie function as an effective roadblock. However, the Homie region inserted in the transgene does not contain the CTCF motif. Can the authors elaborate on why they feel the orientation of Homie is important in its ability to function as a roadblock if the CTCF motif is not present? Trans-acting factors responsible for Homie function have not been identified and this point is not discussed in the manuscript.<br /> (5) The imaging results seem to be consistent with both boundary:boundary interaction and loop extrusion stem looping.<br /> (6) The authors suggest that the eveMa TAD could only be formed by extrusion after the breakthrough of Nhomie and several other roadblocks. Additionally, the overall long-range interactions with Nhomie appear to be less than the interactions with endogenous Homie (Figures 7, 8, and supplemental 5). Is it possible that in some cases boundary:boundary pairing is occurring between only the transgenic Homie and endogenous Homie and not including Nhomie?<br /> (7) In Figure 4E, the GFP hebe expression shown in the LhomieG Z5 transgenic embryo does not appear in the same locations as the LlambdaG Z5 control. Is this actually hebe expression or just a background signal?<br /> (8) Figure 6- The LhomieG Z3 late-stage embryo appears to be showing the ventral orientation of the embryo rather than the lateral side of the embryo as was shown in the previous figure. Is this for a reason? Additionally, there are no statistics shown for the Z3 transgenic images. Were these images analyzed in the same way as the Z5 line images?<br /> (9) Do the Micro-C data align with the developmental time points used in the smFISH probe assays?

    1. ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ FREE_FASTPATH, /* Free to cpu slab */ FREE_SLOWPATH, /* Freeing not to cpu slab */ FREE_FROZEN, /* Freeing to frozen slab */ FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ FREE_REMOVE_PARTIAL, /* Freeing removes last object */ ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ ALLOC_SLAB, /* Cpu slab acquired from page allocator */ ALLOC_REFILL, /* Refill cpu slab from slab freelist */ ALLOC_NODE_MISMATCH, /* Switching cpu slab */ FREE_SLAB, /* Slab freed to the page allocator */ CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ DEACTIVATE_BYPASS, /* Implicit deactivation */ ORDER_FALLBACK, /* Number of times fallback was necessary */ CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ CPU_PARTIAL_FREE, /* Refill cpu partial on free */ CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ NR_SLUB_STAT_ITEMS

      Possible features

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript by Bimbard et al., a new method to perform stable recordings over long periods of time with neuropixels, as well as the technical details on how the electrodes can be explanted for follow-up reuse, is provided. I think the description of all parts of the method is very clear, and the validation analyses (n of units per day over time, RMS over recording days...) are very convincing. I however missed a stronger emphasis on why this could provide a big impact on the ephys community, by enabling new analyses, new behavior correlation studies, or neurophysiological mechanisms across temporal scales that were previously inaccessible with high temporal resolution (i.e. not with imaging).

      Strengths:

      Open source method. Validation across laboratories. Across species (mice and rats) demonstration of its use and in different behavioral conditions (head-fixed and freely moving).

      Weaknesses:

      Weak emphasis on what can be enabled with this new method that didn't exist before.

    2. Reviewer #2 (Public Review):

      Summary:

      This work by Bimbard et al., introduces a new implant for Neuropixels probes. While Neuropixels probes have critically improved and extended our ability to record the activity of a large number of neurons with high temporal resolution, the use of these expensive devices in chronic experiments has so far been hampered by the difficulty of safely implanting them and, importantly, to explant and reuse them after conclusion of the experiment. The authors present a newly designed two-part implant, consisting of a docking and a payload module, that allows for secure implantation and straightforward recovery of the probes. The implant is lightweight, making it amenable for use in mice and rats, and customizable. The authors provide schematics and files for printing of the implants, which can be easily modified and adapted to custom experiments by researchers with little to no design experience. Importantly, the authors demonstrate the successful use of this implant across multiple use cases, in head-fixed and freely moving experiments, in mice and rats, with different versions of Neuropixels probes, and across 8 different labs. Taken together, the presented implants promise to make chronic Neuropixel recordings and long-term studies of neuronal activity significantly easier and attainable for both current and future Neuropixels users.

      Strengths:

      - The implants have been successfully tested across 8 different laboratories, in mice and rats, in head-fixed and freely moving conditions, and have been adapted in multiple ways for a number of distinct experiments.

      - Implants are easily customizable and the authors provide a straightforward approach for customization across multiple design dimensions even for researchers not experienced in design.

      - The authors provide clear and straightforward descriptions of the construction, implantation, and explant of the described implants.

      - The split of the implant into a docking and payload module makes reuse even in different experiments (using different docking modules) easy.

      - The authors demonstrate that implants can be re-used multiple times and still allow for high-quality recordings.

      - The authors show that the chronic implantations allow for the tracking of individual neurons across days and weeks (using additional software tracking solutions), which is critical for a large number of experiments requiring the description of neuronal activity, e.g. throughout learning processes.

      - The authors show that implanted animals can even perform complex behavioral tasks, with no apparent reduction in their performance.

      Weaknesses:

      - While implanted animals can still perform complex behavioral tasks, the authors describe that the implants may reduce the animals' mobility, as measured by prolonged reaction times. However, the presented data does not allow us to judge whether this effect is specifically due to the presented implant or whether any implant or just tethering of the animals per se would have the same effects.

      - While the authors make certain comparisons to other, previously published approaches for chronic implantation and re-use of Neuropixels probes, it is hard to make conclusive comparisons and judge the advantages of the current implant. For example, while the authors emphasize that the lower weight of their implant allows them to perform recordings in mice (and is surely advantageous), the previously described, heavier implants they mention (Steinmetz et al., 2021; van Daal et al., 2021), have also been used in mice. Whether the weight difference makes a difference in practice therefore remains somewhat unclear.

      - The non-permanent integration of the headstages into the implant, while allowing for the use of the same headstage for multiple animals in parallel, requires repeated connections and does not provide strong protection for the implant. This may especially be an issue for the use in rats, requiring additional protective components as in the presented rat experiments.

    3. Author response:

      Reviewer 1:

      Summary:

      In this manuscript by Bimbard et al., a new method to perform stable recordings over long periods of time with neuropixels, as well as the technical details on how the electrodes can be explanted for follow-up reuse, is provided. I think the description of all parts of the method is very clear, and the validation analyses (n of units per day over time, RMS over recording days...) are very convincing. I however missed a stronger emphasis on why this could provide a big impact on the ephys community, by enabling new analyses, new behavior correlation studies, or neurophysiological mechanisms across temporal scales

      Strengths:

      Open source method. Validation across laboratories. Across species (mice and rats) demonstration of its use and in different behavioral conditions (head-fixed and freely moving).

      Weaknesses:

      Weak emphasis on what can be enabled with this new method that didn't exist before.

      We thank the reviewer for highlighting the limited discussion around scientific impact. Our implant has several advantages which combine to make it much more accessible than previous solutions. This enables a variety of recording configurations that would not have been possible with previous designs, facilitating recordings from a wider range of brain regions, animals, and experimental setups. In short, there are three key advances:

      (1) Adaptability: The CAD files can be readily adapted to a wide range of configurations (implantation depth, angle, position of headstage, etc.). Labs have already, modified the design to optimise for their needs, and re-shared with the community.

      (2) Weight:  Because of the lightweight design, experimenters can i) perform complex and demanding freely moving tasks as we exemplify in the manuscript, and ii) implant female and water restricted mice while respecting animal welfare weight limitations.

      (3) Cost: At ~$10, our implant is significantly cheaper than published alternatives, which makes it affordable to more labs and means that testing modifications is cost-effective.

      We will make these features clearer in the manuscript.

      Reviewer 2:

      Summary:

      This work by Bimbard et al., introduces a new implant for Neuropixels probes. While Neuropixels probes have critically improved and extended our ability to record the activity of a large number of neurons with high temporal resolution, the use of these expensive devices in chronic experiments has so far been hampered by the difficulty of safely implanting them and, importantly, to explant and reuse them after conclusion of the experiment. The authors present a newly designed two-part implant, consisting of a docking and a payload module, that allows for secure implantation and straightforward recovery of the probes. The implant is lightweight, making it amenable for use in mice and rats, and customizable. The authors provide schematics and files for printing of the implants, which can be easily modified and adapted to custom experiments by researchers with little to no design experience. Importantly, the authors demonstrate the successful use of this implant across multiple use cases, in head-fixed and freely moving experiments, in mice and rats, with different versions of Neuropixels probes, and across 8 different labs. Taken together, the presented implants promise to make chronic Neuropixel recordings and long-term studies of neuronal activity significantly easier and attainable for both current and future Neuropixels users.

      Strengths:

      - The implants have been successfully tested across 8 different laboratories, in mice and rats, in head-fixed and freely moving conditions, and have been adapted in multiple ways for a number of distinct experiments.

      - Implants are easily customizable and the authors provide a straightforward approach for customization across multiple design dimensions even for researchers not experienced in design.

      - The authors provide clear and straightforward descriptions of the construction, implantation, and explant of the described implants.

      - The split of the implant into a docking and payload module makes reuse even in different experiments (using different docking modules) easy.

      - The authors demonstrate that implants can be re-used multiple times and still allow for high-quality recordings.

      - The authors show that the chronic implantations allow for the tracking of individual neurons across days and weeks (using additional software tracking solutions), which is critical for a large number of experiments requiring the description of neuronal activity, e.g. throughout learning processes.

      - The authors show that implanted animals can even perform complex behavioral tasks, with no apparent reduction in their performance.

      Weaknesses:

      - While implanted animals can still perform complex behavioral tasks, the authors describe that the implants may reduce the animals' mobility, as measured by prolonged reaction times. However, the presented data does not allow us to judge whether this effect is specifically due to the presented implant or whether any implant or just tethering of the animals per se would have the same effects.

      The reviewer is correct: some of the differences in mouse reaction time could be due to the tether rather than the implant. As these experiments were also performed in water-restricted female mice with the heavier Neuropixels 1.0 implant, our data represent the maximal impact of the implant, and we will highlight this in the revision.

      - While the authors make certain comparisons to other, previously published approaches for chronic implantation and re-use of Neuropixels probes, it is hard to make conclusive comparisons and judge the advantages of the current implant. For example, while the authors emphasize that the lower weight of their implant allows them to perform recordings in mice (and is surely advantageous), the previously described, heavier implants they mention (Steinmetz et al., 2021; van Daal et al., 2021), have also been used in mice. Whether the weight difference makes a difference in practice therefore remains somewhat unclear.

      The reviewer is correct: without a direct comparison, we cannot be certain that our smaller, lighter implant improves behavioural results (although this is supported by the literature, e.g. Newman et al, 2023). However, the reduced weight of our implant is critical for several laboratories represented in this manuscript due to animal welfare requirements. Indeed, in Daal et al the authors “recommend a [mouse] weight of >25 g for implanting Neuropixels 1.0 probes.” This limit precludes using (the vast majority of) female mice, or water-restricted animals. Conversely, our implant can be routinely used with lighter, water-restricted male and female mice. We will emphasise this point in the revision.

      - The non-permanent integration of the headstages into the implant, while allowing for the use of the same headstage for multiple animals in parallel, requires repeated connections and does not provide strong protection for the implant. This may especially be an issue for the use in rats, requiring additional protective components as in the presented rat experiments.

      We apologise for not clarifying the various headstage options in the manuscript and we will address this in the revision. Our repository has headplate holder designs (in the XtraModifications/Mouse_FreelyMoving folder). This allows leaving the headstage on the implant, and thus minimize the number of connections (albeit increasing the weight for the mouse). Indeed, mice recorded while performing the task described in our manuscript had the head-stage semi-permanently integrated to the implant, and we will highlight this in the revision.

      Reviewer 3:

      Summary:

      In this manuscript, Bimbard and colleagues describe a new implant apparatus called "Apollo Implant", which should facilitate recording in freely moving rodents (mice and rats) using Neuropixels probes. The authors collected data from both mice and rats, they used 3 different versions of Neuropixels, multiple labs have already adopted this method, which is impressive. They openly share their CAD designs and surgery protocol to further facilitate the adaptation of their method.

      Strengths:

      Overall, the "Apollo Implant" is easy to use and adapt, as it has been used in other laboratories successfully and custom modifications are already available. The device is reproducible using common 3D printing services and can be easily modified thanks to its CAD design (the video explaining this is extremely helpful). The weight and price are amazing compared to other systems for rigid silicon probes allowing a wide range of use of the "Apollo Implant".

      Weaknesses:

      The "Apollo Implant" can only handle Neuropixels probes. It cannot hold other widely used and commercially available silicon probes. Certain angles and distances are not possible in their current form (distance between probes 1.8 to 4mm, implantation depth 2-6.5 mm, or angle of insertion up to 20 degrees).

      We appreciate the reviewer’s points, but as we will discuss in the revised manuscript, one implant accommodating the diversity of the existing probes is beyond the scope of this project. However, because the design is adaptable, groups should be able to modify the current version of the implant to adapt to their electrodes’ size and format (and can highlight any issues in the Github “Discussions” area).

      With Neuropixels, the current range of depths covers practically all trajectories in the mouse brain. In rats, where deeper penetrations may be useful, the experimenter can attach the probe at a lower point in the payload module to increase the length of exposed shank. We now specify this in the Github repository.

      We have now extended the range of inter-probe distances from a maximum of 4 mm to 6.5 mm, and this will be reflected in the revised manuscript. Distances beyond this may be better served by 2 implants, and smaller distances could be achieved by attaching two probes on the same side of the docking module. In the next revision, we will add these points to the discussion.

    1. Reviewer #3 (Public Review):

      Summary: Boffi and colleagues sought to quantify the single-trial, azimuthal information in the dorsal cortex of the inferior colliculus (DCIC), a relatively understudied subnucleus of the auditory midbrain. They used two complementary recording methods while mice passively listened to sounds at different locations: a large volume but slow sampling calcium-imaging method, and a smaller volume but temporally precise electrophysiology method. They found that neurons in the DCIC were variable in their activity, unreliably responding to sound presentation and responding during inter-sound intervals. Boffi and colleagues used a naïve Bayesian decoder to determine if the DCIC population encoded sound location on a single trial. The decoder failed to classify sound location better than chance when using the raw single-trial population response but performed significantly better than chance when using intermediate principal components of the population response. In line with this, when the most azimuth dependent neurons were used to decode azimuthal position, the decoder performed equivalently to the azimuthal localization abilities of mice. The top azimuthal units were not clustered in the DCIC, possessed a contralateral bias in response, and were correlated in their variability (e.g., positive noise correlations). Interestingly, when these noise correlations were perturbed by inter-trial shuffling decoding performance decreased. Although Boffi and colleagues display that azimuthal information can be extracted from DCIC responses, it remains unclear to what degree this information is used and what role noise correlations play in azimuthal encoding.

      Strengths: The authors should be commended for collection of this dataset. When done in isolation (which is typical), calcium imaging and linear array recordings have intrinsic weaknesses. However, those weaknesses are alleviated when done in conjunction with one another - especially when the data largely recapitulates the findings of the other recording methodology. In addition to the video of the head during the calcium imaging, this data set is extremely rich and will be of use to those interested in the information available in the DCIC, an understudied but likely important subnucleus in the auditory midbrain.

      The DCIC neural responses are complex; the units unreliably respond to sound onset, and at the very least respond to some unknown input or internal state (e.g., large inter-sound interval responses). The authors do a decent job in wrangling these complex responses: using interpretable decoders to extract information available from population responses.

      Weaknesses:<br /> The authors observe that neurons with the most azimuthal sensitivity within the DCIC are positively correlated, but they use a Naïve Bayesian decoder which assume independence between units. Although this is a bit strange given their observation that some of the recorded units are correlated, it is unlikely to be a critical flaw. At one point the authors reduce the dimensionality of their data through PCA and use the loadings onto these components in their decoder. PCA incorporates the correlational structure when finding the principal components and constrains these components to be orthogonal and uncorrelated. This should alleviate some of the concern regarding the use of the naïve Bayesian decoder because the projections onto the different components are independent. Nevertheless, the decoding results are a bit strange, likely because there is not much linearly decodable azimuth information in the DCIC responses. Raw population responses failed to provide sufficient information concerning azimuth for the decoder to perform better than chance. Additionally, it only performed better than chance when certain principal components or top ranked units contributed to the decoder but not as more components or units were added. So, although there does appear to be some azimuthal information in the recoded DCIC populations - it is somewhat difficult to extract and likely not an 'effective' encoding of sound localization as their title suggests.

      Although this is quite a worthwhile dataset, the authors present relatively little about the characteristics of the units they've recorded. This may be due to the high variance in responses seen in their population. Nevertheless, the authors note that units do not respond on every trial but do not report what percent of trials that fail to evoke a response. Is it that neurons are noisy because they do not respond on every trial or is it also that when they do respond they have variable response distributions? It would be nice to gain some insight into the heterogeneity of the responses. Additionally, is there any clustering at all in response profiles or is each neuron they recorded in the DCIC unique? They also only report the noise correlations for their top ranked units, but it is possible that the noise correlations in the rest of the population are different. It would also be worth digging into the noise correlations more - are units positively correlated because they respond together (e.g., if unit x responds on trial 1 so does unit y) or are they also modulated around their mean rates on similar trials (e.g., unit x and y respond and both are responding more than their mean response rate). A large portion of trial with no response can occlude noise correlations. More transparency around the response properties of these populations would be welcome.

      It is largely unclear what the DCIC is encoding. Although the authors are interested in azimuth, sound location seems to be only a small part of DCIC responses. The authors report responses during inter-sound interval and unreliable sound-evoked responses. Although they have video of the head during recording, we only see a correlation to snout and ear movements (which are peculiar since in the example shown it seems the head movements predict the sound presentation). Additional correlates could be eye movements or pupil size. Eye movement are of particular interest due to their known interaction with IC responses - especially if the DCIC encodes sound location in relation to eye position instead of head position (though much of eye-position-IC work was done in primates and not rodent). Alternatively, much of the population may only encode sound location if an animal is engaged in a localization task. Ideally, the authors could perform more substantive analyses to determine if this population is truly noisy or if the DCIC is integrating un-analyzed signals.

      Although this critique is ubiquitous among decoding papers in the absence of behavioral or causal perturbations, it is unclear what - if any - role the decoded information may play in neuronal computations. The interpretation of the decoder means that there is some extractable information concerning sound azimuth - but not if it is functional. This information may just be epiphenomenal, leaking in from inputs, and not used in computation or relayed to downstream structures. This should be kept in mind when the authors suggest their findings implicate the DCIC functionally in sound localization.

      It is unclear why positive noise correlations amongst similarly tuned neurons would improve decoding. A toy model exploring how positive noise correlations in conjunction with unreliable units that inconsistently respond may anchor these findings in an interpretable way. It seems plausible that inconsistent responses would benefit from strong noise correlations, simply by units responding together. This would predict that shuffling would impair performance because you would then be sampling from trials in which some units respond, and trials in which some units do not respond - and may predict a bimodal performance distribution in which some trials decode well (when the units respond) and poor performance (when the units do not respond).

      Significance: Boffi and colleagues set out to parse the azimuthal information available in the DCIC on a single trial. They largely accomplish this goal and are able to extract this information when allowing the units that contain more information about sound location to contribute to their decoding (e.g., through PCA or decoding on top unit activity specifically). The dataset will be of value to those interested in the DCIC and also to anyone interested in the role of noise correlations in population coding. Although this work is first step into parsing the information available in the DCIC, it remains difficult to interpret if/how this azimuthal information is used in localization behaviors of engaged mice.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors inquire in particular whether the receptor Gpr156, which is necessary for hair cells to reverse their polarities in the zebrafish lateral line and mammalian otolith organs downstream of the differential expression of the transcription factor Emx2, also controls the mechanosensitive properties of hair cells and ultimately an animal's behavior. This study thoroughly addresses the issue by analyzing the morphology, electrophysiological responses, and afferent connections of hair cells found in different regions of the mammalian utricle and the Ca2+ responses of lateral line neuromasts in both wild-type animals and gpr156 mutants. Although many features of hair cell function are preserved in the mutants-such as development of the mechanosensory organs and the Emx2-dependent, polarity-specific afferent wiring and synaptic pairing-there are a few key changes. In the zebrafish neuromast, the magnitude of responses of all hair cells to water flow resembles that of the wild-type hair cells that respond to flow arriving from the tail. These responses are larger than those observed in hair cells that are sensitive to flow arriving from the head and resemble effects previously observed in Emx2 mutants. The authors note that this behavior suggests that the Emx2-GPR156 signaling axis also impinges on hair cell mechanotransduction. Although mutant mice exhibit normal posture and balance, they display defects in swimming behavior. Moreover, their vestibulo-ocular reflexes are perturbed. The authors note that the gpr156 mutant is a good model to study the role of opposing hair cell polarity in the vestibular system, for the wiring patterns follow the expression patterns of Emx2, even though hair cells are all of the same polarity. This paper excels at describing the effects of gpr156 perturbation in mouse and zebrafish models and will be of interest to those studying the vestibular system, hair cell polarity, and the role of inner-ear organs in animal behavior.

      Strengths:

      The study is exceptional in including, not only morphological and immunohistochemical indices of cellular identity but also electrophysiological properties. The mutant hair cells of murine maculæ display essentially normal mechanoelectrical transduction and adaptation-with two or even three kinetic components-as well as normal voltage-activated ionic currents.

    1. Identity has to come from somewhere. And this is where Derrida, according to Hagglund, becomes a revolutionary part of the philosophical solution. “For philosophical reason to advocate endless divisibility,” he writes, “is tantamount to an irresponsible empiricism that cannot account for how identity is possible” (25). This, Hagglund contends, is Derrida’s rationale for positing the trace. The nowhere of the trace becomes the ‘from somewhere’ of identity, the source of ‘originary synthesis.’

      Well, if Derrida has rejected all forms of identity, and time just keeps happening, then why do we feel the same?

      Solution: smuggle the identity back in by the magic of "trace".

      A "trace" is like pawprints in the sand. They create the illusion (or real, but who knows what the philosophers mean, really?) of identity through time. The pawprints here point to some foxes a while ago, creating an identity of fox through time.

      Similarly, memories in my head creates an identity of myself through time.

    1. Reviewer #2 (Public Review):

      Summary:

      The authors conducted a time-course of whole-body transcriptional analysis of a pest aphid, Rhopalosiphum padi, and identified four major clusters of the genes that show diurnal rhythmicity in transcription. In addition, they conducted the analysis of aphid feeding behaviour and showed that aphids salivate longer from the end of the day toward the beginning of the night while their phloem feeding time does not change throughout the day. The genes up-regulated at night time were enriched with the genes involved in metabolic activities, collaborating with the results showing a higher number of honeydew excretion at night. The authors identified the list of candidate salivary genes that show diurnal rhythmicity in the transcription and silenced a salivary gene C002 and the candidate salivary gene E8696. Silencing of these genes reduced aphid fecundity and survival rate on the host plant but not on the artificial diet.

      Strengths:

      The time-course transcription study and its analysis will be of interest to researchers studying diurnal rhythms in insect biology. Also, the analysis of aphid feeding behaviour at different times of day is interesting. This study provides variable resources for those who study insect biology.

      Weaknesses:

      It is not clear to me which data was used to define the putative salivary effectors for R. padi, but the candidate salivary gene list made by Thorpe et al consists of the aphid genes encoding secreted proteins that are up-regulated in the head samples compared to the body samples. Although some proteins were confirmed to be secreted into the aphid saliva, many genes in the list are not confirmed to be expressed in the aphid salivary glands, and their products are not confirmed to be secreted into the saliva and the plant. Is E8696 expressed in the aphid salivary glands and secreted into its host plant? Without the data confirming the expression of the gene in the salivary glands and its secretion into the saliva and into the host plant, we cannot call the protein a salivary protein. Furthermore, without the observation that E8696 has some effect on plant biology, we cannot call it an aphid effector. Therefore, I cannot agree with the parts of the manuscript that refer to E8686 as an aphid salivary effector.

      It is interesting to know that some candidate salivary gene expression showed a diurnal rhythm. However, without the knowledge of the functions of the salivary effectors, especially their targets, it is not possible to conclude that the rhythmical expression is important for the aphid performance. In addition, I wonder whether the increase in gene expression is directly correlated with the increase of protein secretion into the saliva and the plant.

      Finally, the authors examined aphid survival, fecundity, and feeding behaviour. Those are important for overall aphid performance, but they do not "shape" aphid colonization. Aphid colonisation is shaped by the mechanisms by which aphids find and select their host plant and start to feed on it. Therefore, I do not agree with the title of this manuscript and some parts of the discussion.

      I would like the authors to develop how the knowledge of the diurnal rhythm of aphid feeding can contribute to optimise pest management. I see that there are some differences in aphid metabolism and feeding behaviour between day and night, but I would like to hear how such knowledge can optimise pest management strategies.

    1. Reviewer #1 (Public Review):

      This study seeks to understand how selective mRNA translation informs cellular identity using the Drosophila brain as a model. Using drivers specific for either neurons or glia, the authors express a tagged large ribosomal subunit protein, which they then use as a handle for isolating total mRNA and ribosome footprints. Throughout the study, they compare these data sets to transcriptional and ribosome profiles from the whole fly head, which contains multiple cell types including fat tissue, pigment cells and others, in addition to neurons and glia. Using GO term analyses, they demonstrate the specificity of their cell-type-based ribosome profiling: known glial mRNAs are efficiently translated in glia and likewise in neurons as well. In further examining their RNAseq data set, they find that "neuronal" mRNAs, such as ion channels, are expressed in both neurons and glia, but are translated at higher rates in neurons. Based on this, they hypothesize that neuronal mRNAs are actively suppressed in glia, and next seek to determine the underlying mechanism. By meta-analysis of all mapped ribosome footprints, they find that glia have higher ribosome occupancies in the 5' leader of neuronal mRNAs. This is corroborated by individual ribosome occupancy profiles for several neuronal mRNAs. In 5'leaders containing upstream AUG codons, they find that the glial data sets show an enrichment of ribosomes at these upstream start sites. They thus conclude that that 5' leaders containing upstream AUGs confer translational suppression in glia.

      Overall, the sequencing data sets generated in this study and their subsequent bioinformatic analyses seem robust and reliable. Their data echo the trends of cell-type specific translational profiles seen in previous studies (e.g. 27380875, 30650354), and making their data sets and analyses accessible to the broader scientific community would be quite helpful. The findings are presented in a logical and methodical manner, and the data are depicted clearly. The authors' results that 5' leaders facilitate translation suppression is well-supported in literature. However, they overinterpret their data by claiming that such suppression is key for maintaining glial/neuronal identity (it is even featured in their title), but do not present any evidence that loss of such regulation has any impact on cellular identity. In many places, the authors do not acknowledge possible biases in their analytical methods, or consider alternate explanations for their data. These weaken the manuscript in its current form, but many of these issues which I describe below, are rectifiable with modest effort.

      (1) The authors' data in Fig. 2-S1A-B shows substantial cell-to-cell variation in RpL3::FLAG expression. The authors do not consider that this variation may cause certain neuronal/glial types to be overrepresented in their datasets. In related, the authors do not discuss whether RpL3::FLAG only present in the cell body or if it is also trafficked to the neuronal/glial processes where localized translation is known to occur (reviewed in 31270476).

      (2) The RNA-seq data set that they use to calculate translation efficiency (TE) only represents mRNAs associated with RpL3::FLAG, which is part of the large ribosome subunit. As the authors are likely aware, there are mRNAs on which the full ribosome moiety does not assemble and these are effectively excluded from this data set. Ideally, a more complete picture of the mRNA landscape can be obtained by 40S subunit profiling but I appreciate that this is technically very challenging. At minimum, this caveat needs to be acknowledged.

      How does the TPM of differentially regulated transcripts (such as those in Fig. 2H) compare between whole heads, neurons and glia? Since the whole head RNA-seq data was not from an enriched sample, this might serve as a decent proxy for showing that the neuron/glia RNA-seq data sets are representative of RNA abundance.

      (3) The analysis in Fig. 2F shows that low abundance mRNAs in glia are further translationally suppressed, which the authors point out in lines 151-152. However, this data also shows that mRNAs with a 1:1 ration in neuron:glia (which fall in the 0.5-1 and 1-2 bin) have a TE-1; this suggests that on average, mRNAs that are equally abundant are translated equally efficiently. This is the opposite of the thesis presented in Fig. 2G-H where many mRNAs of equal abundance in neurons and glia are actually poorly translated in glia. How do the authors reconcile these observations?

      It is also unclear from the manuscript whether all mRNAs were considered for the analysis in Fig. 2F or if some cutoff was employed.

      (4) Throughout the manuscript the authors favor a "translation suppression" model wherein glia (for example) actively suppress neuronal mRNAs, and this is substantiated in Fig. 3C showing higher ribosome occupancy on 5' leaders than in coding regions. However, they show no evidence that glial mRNAs (such as those indicated in Fig. 2B and 2-S2B) present a different pattern, say that of higher ribosome occupancy in CDS vs. 5' leaders. This type of a positive control is a glaring omission from many of their analyses, including ribosome occupancy at upstream AUG codons (Fig. 4).

      In related, to make a broad case (as they do in the title) that differential translation regulation specifies multiple cell types, it is necessary to show the corollary: that glial mRNAs (repo, bnb, pnt, etc) are suppressed in neurons. There is an inkling of this evidence in Fig. 3-S1 where fat body mRNAs in neurons are shown to have low ribosome occupancy in the CDS regions and enhanced occupancy in the 5' leader region. This data is not quantified, nor is a control neuron mRNA shown as a reference for what the ribosome occupancy profile of an actively translated mRNA looks like in a neuron.

      (5) The cell-type specific ribosome profiling data sets in the manuscript are from mRNAs associated with 80s subunits that have been treated with cycloheximide during sample preparation. Cycloheximide, and many other translation inhibitors, are known to non-uniformly bias reads towards start codons (PMID: 22056041,22927429). This important caveat and its implications on the start-codon occupancy analysis in Fig. 4 are not acknowledged in the manuscript.<br /> Again, the ideal resolution would be ribosome profiling data set from 40S footprinting or harringtonine-treated samples (PMIDs: 32589966, 27487212, 32589964) to show true accumulation of ribosomes at AUG codons. In the absence of such a data set, a comparative meta-analysis of the ribosome distribution around upstream and initiation AUG codons of differentially translated transcripts from neurons would be a useful control.

      (6) The authors chose Rhodopsin 1 (Rh1) as a model mRNA which is translated efficiently in neurons but suppressed in glia. Though the data in Fig. 2-S3B shows higher TE for Rh1 in neurons, the data in 5A show lower ribosome occupancy in the Rh1 CDS in neuron samples (at least in the fragment of the CDS visible). These data are somewhat contradictory.<br /> Further, given that the neuron data are from all nsyb-positive cells but that Rh1 is expressed only in R1-R6 photoreceptors, it is unclear what motivated them to chose Rh1 as opposed to an mRNA that is more broadly expressed in neurons.

      (7) Similar to the heterogeneity in nsyb- and repo-GAL4 expression in Fig. 2-S1A-B, Fig. 5C shows substantial variation in the expression of the UAS-GFP reporter driven by tub-GAL4. This variable GAL4 activity makes the mRNA abundance data difficult to interpret. Also, since the authors presume that Rh1 mRNA is expressed in glia (it is not annotated in the RNA-seq analysis in Fig. 2-S2B), would Rh1-GAL4 not be a more apt driver?<br /> These issues are further compounded by the lack of a cellular compartment marker (repo marks glial nuclei) which makes it impossible to determine which cell the mRNA signal is in. There are also no negative controls are presented for the mRNA probes.

      Most confoundingly though, the control reporter itself seems to show variable translation efficiencies from one cell to another, with high-GFP protein cells showing lower GFP mRNA and vice versa.<br /> The mRNA:protein ratio may be easier to examine by using repo-GAL4 to specifically drive the Rh1-reporter expression in glia (such as in Fig. 5-S1A) rather than simultaneous expression in both neurons and glia using tub-GAL4.

      Comments post revision: The authors have satisfactorily addressed most of my concerns with the study. I appreciate their patient clarification of many of my points, and the revision to text+figures appending more controls. My only minor gripe remains that while their data beautifully show that there is differential regulation of transcripts across neurons and glia, they do not provide evidence that such regulation is required for cell identity. However, I appreciate this is a large experimental ask worthy of another study in and of itself. Overall, I peg this an excellent study that adds substantially to the field of cell-type specific mRNA translation regulation.

    1. Anatomical MRI data is the most identifiable, as it literally is an image of the research participant, including facial details that can be matched to photo databases (Prior et al., 2009; Schwarz et al., 2019)

      دو تا رفرنس داده و گفته که تصاویر MRI چون ساختار صورت رو دارن میتونن باهاشون از روی پایگاه داده تصویر صورت رو ئیدا کرد. بنظر این مهتمرین موضوع هست. بنظرم مشکل اصلی این هست که در MEG برای داشتن head model ما تصویر کامل MRI رو باید داشته باشیم.

    1. Reviewer #2 (Public Review):

      Summary:

      In short, the paper presents a theoretical framework that predicts how resources should be optimally distributed between receptors and optics in eyes.

      Strengths:

      The authors build on the principle of resource allocation within an organism and develop a formal theory for optimal distribution of resources within an eye between the receptor array and the optics. Because the two parts of eyes, receptor arrays and optics, share the same role of providing visual information to the animal it is possible to isolate these from resource allocation in the rest of the animal. This allows for a novel and powerful way of exploring the principles that govern eye design. By clever and thoughtful assumptions/constraints, the authors have built a formal theory of resource allocation between the receptor array and the optics for two major types of compound eye as well as for camera-type eyes. The theory is formalized with variables that are well characterized in a number of different animal eyes, resulting in testable predictions.

      The authors use the theory to explain a number of design features that depend on different optimal distribution of resources between the receptor array and the optics in different types of eyes. As an example, they successfully explain why eye regions with different spatial resolution should be built in different ways. They also explain differences between different types of eyes, such as long photoreceptors in apposition compound eyes and much shorter receptors in camera type eyes. The predictive power in the theory is impressive.

      To keep the number of parameters at a minimum, the theory was developed for two types of compound eye (neural superposition, and apposition) and for camera-type eyes. It is possible to extend the theory to other types of eyes, although it would likely require more variables and assumptions/constraints to the theory. It is thus good to introduce the conceptual ideas without overdoing the applications of the theory.

      The paper extends a previous theory, developed by the senior author, that develops performance surfaces for optimal cost/benefit design of eyes. By combining this with resource allocation between receptors and optics, the theoretical understanding of eye design takes a major leap and provides entirely new sets of predictions and explanations for why eyes are built the way they are.

      The paper is well written and even though the theory development in the Results may be difficult to take in for many biologists, the Discussion very nicely lists all the major predictions under separate headings, and here the text is more tuned for readers that are not entirely comfortable with the formalism of the Results section. I must point out though that the Results section is kept exemplary concise. The figures are excellent and help explain concepts that otherwise may go above the head of many biologists.

  5. erika-klics.showit.site erika-klics.showit.site
    1. .Possibility lies in asking the better questions. We'll ask you to get curious about your own assumptions—about the industry, about what you do, about what hiring teams want—and we'll encourage you to get curious about003.Ask for More.We work with leaders. We expect you to show up with the same level of leadership you bring into your role. We don't settle, and we'll never ask you too either.of yourself and those around you004.I sat on the other side of the table, hiring leaders as an agency recruiter, an in-house recruiter, a Head of Talent, and a hiring manager, for more than 10 years.

      Can you add an intro section above this section (which again I think is FAB!)?

      Something that hooks the reader and makes them feel seen. It would be talking about some of the situations they might have been facing to get them here, some of the common challenges that lead into your insider perspective as an agency recruiter and in-house recruiter.

      I'd speak to the frustration they're feeling, and then lead into the issues causing that frustration (which you cover in this section)

    1. Reviewer #1 (Public Review):

      The study is thorough and systematic, and in comparing three well-separated hypotheses about the mechanism leading from grid cells to hexasymmetry it takes a neutral stand above the fray which is to be particularly appreciated. Further, alternative models are considered for the most important additional factor, the type of trajectory taken by the agent whose neural activity is being recorded. Different sets of values, including both "ideal" and "realistic" ones, are considered for the parameters most relevant to each hypothesis. Each of the three hypotheses is found to be viable under some conditions, and less so in others. Having thus given a fair chance to each hypothesis, nevertheless, the study reaches the clear conclusion that the first one, based on conjunctive grid-by-head-direction cells, is much more plausible overall; the hypothesis based on firing rate adaptation has intermediate but rather weak plausibility; and the one based on clustering of cells with similar spatial phases in practice would not really work. I find this conclusion convincing, and the procedure to reach it, a fair comparison, to be the major strength of the study.

      What I find less convincing is the implicit a priori discarding of a fourth hypothesis, that is, that the hexasymmetry is unrelated to the presence of grid cells. Full disclosure: we have tried unsuccessfully to detect hexasymmetry in the EEG signal from vowel space and did not find any (Kaya, Soltanipour and Treves, 2020), so I may be ranting off my disappointment, here. I feel, however, that this fourth hypothesis should be at least aired, for a number of reasons. One is that a hexasymmetry signal has been reported also from several other cortical areas, beyond entorhinal cortex (Constantinescu et al, 2016); true, also grid cells in rodents have been reported in other cortical areas as well (Long and Zhang, 2021; Long et al, bioRxiv, 2021), but the exact phenomenology remains to be confirmed. Second, as the authors note, the conjunctive mechanism is based on the tight coupling of a narrow head direction selectivity to one of the grid axes. They compare "ideal" with "Doeller" parameters, but to me the "Doeller" ones appear rather narrower than commonly observed and, crucially, they are applied to all cells in the simulations, whereas in reality only a proportion of cells in mEC are reported to be grid cells, only a proportion of them to be conjunctive, and only some of these to be narrowly conjunctive. Further, Gerlei et al (2020) find that conjunctive grid cells may have each of their fields modulated by different head directions, a truly surprising phenomenon that, if extensive, seems to me to cast doubts on the relation between mass activity hexasymmetry and single grid cells.

      Finally, a variant of the fourth hypothesis is that the hexasymmetry might be produced by a clustering of head direction preferences across head direction cells similar to that hypothesized in the first hypothesis, but without such cells having to fire in grid patterns. If head direction selectivity is so clustered, who needs the grids? This would explain why hexasymmetry is ubiquitous, and could easily be explored computationally by, in fact, a simplification of the models considered in this study.

    2. Reviewer #3 (Public Review):

      This is an interesting and carefully carried out theoretical analysis of potential explanations for hexadirectional modulation of neural population activity that has been reported in the human entorhinal cortex and some other cortical regions. The previously reported hexadirectional modulation is of considerable interest as it has been proposed to be a proxy for the activation of grid cell networks. However, the extent to which this proposal is consistent with the known firing properties of grids hasn't received the attention it perhaps deserves. By comparing the predictions of three different models this study imposes constraints on possible mechanisms and generates predictions that can be tested through future experimentation.

      Overall, while the conclusions of the study are convincing, I think the usefulness to the field would be increased if null hypotheses were more carefully considered and if the authors' new metric for hexadirectional modulation (H) could be directly contrasted with previously used metrics. For example, if the effect sizes for hexadirectional modulation in the previous fMRI and EEG data could be more directly compared with those of the models here, then this could help in establishing the extent to which the experimental hexadirectional modulation stands out from path hexasymmetry and how close it comes to the striking modulation observed with the conjunctive models. It could also be helpful to consider scenarios in which hexadirectional modulation is independent of grid firing, for example perhaps with appropriate coordination of head direction cell firing.

    1. Hahaha you’re going to have to start slipping the UPS guy a $20 to keep it on the hush hush. “Don’t worry honey, I am getting them to fix up and sell”

      reply to u/baxter1207 at https://www.reddit.com/r/typewriters/comments/1da0voq/repairsclean_ups/l7jg8nl/

      I'm pretty sure those exact words have escaped my lips...

      Her: "I know you've got five typewriters already, and I'm not counting the one I know you're hiding underneath the bed. Which ones are you going to sell??"

      Me (in my head): Where am I going to stash the 12th machine when it arrives later today? At least it's an ultraportable, so it won't take up as much space. Why is my least favorite machine that I want to sell her favorite machine? Will selling it upset the delicate typewriter balance in the house? I can always say that the typewriter coming on Tuesday is a parts machine that I'm using to repair two of the others so I can sell them. Is this how all typewriter repair shops began?

      Me: I'm trying to finish up refinishing the two executive tanker desks and the filing cabinet in the garage first so I can get them out and make some space.

      😁

    1. the council emerges and Julius II has persuaded every crowned head of Europe to join into a Holy League and help him attack Venice and take all the former Borgia territories and turn them into his new papal Roman Empire.

      Everyone vs. Venice!

    1. Reviewer #1 (Public Review):

      In this paper, Wu et al. investigated the physiological roles of CCDC113 in sperm flagellum and HTCA stabilization by using CRISPR/Cas knockouts mouse models, co-IP, and single sperm imaging. They find that CCDC113 localizes in the linker region among radial spokes, the nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) RS, N-DRC, and DMTs and interacts with axoneme-associated proteins CFAP57 and CFAP91, acting as an adaptor protein that facilitates the linkage between RS, N-DRC, and DMTs within the sperm axoneme. They show the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and CFAP91, DRC2 could not colocalize with DMTs in Ccdc113-/- spermatozoa. Interestingly, the data also indicate that CCDC113 could localize on the HTCA region, and interact with HTCA-associated proteins. The knockout of Ccdc113 could also produce acephalic spermatozoa. By using Sun5 and Centlein knockout mouse models, the authors further find SUN5 and CENTLEIN are indispensable for the docking of CCDC113 to the implantation site on the sperm head. Overall, the experiments were designed properly and performed well to support the authors' observation in each part. Furthermore, the study's findings offer valuable insights into the physiological and developmental roles of CCDC113 in the male germ line, which can provide insight into impaired sperm development and male infertility. The conclusions of this paper are mostly well supported by data, but some points need to be clarified and discussed.<br /> (1) In Figure 1, a sperm flagellum protein, which is far away from CCDC113, should be selected as a negative control to exclude artificial effects in co-IP experiments.<br /> (2) Whether the detachment of sperm head and tail in Ccdc113-/- mice is a secondary effect of the sperm flagellum defects? The author should discuss this point.<br /> (3) Given that some cytoplasm materials could be observed in Ccdc113-/- spermatozoa (Fig. 5A), whether CCDC113 is also essential for cytoplasmic removal?<br /> (4) Although CCDC113 could not bind to PMFBP1, the localization of CCDC113 in Pmfbp1-/- spermatozoa should be also detected to clarify the relationship between CCDC113 and SUN5-CENTLEIN-PMFBP1.

    2. Reviewer #2 (Public Review):

      Summary:

      In the present study, the authors select the coiled-coil protein CCDC113 and revealed its expression in the stages of spermatogenesis in the testis as well as in the different steps of spermiogenesis with expression also mapped in the different parts of the epididymis. Gene deletion led to male infertility in CRISPR-Cas9 KO mice and PAS staining showed defects mapped in the different stages of the seminiferous cycle and through the different steps of spermiogenesis. EM and IF with several markers of testis germ cells and spermatozoa in the epididymis indicated defects in flagella and head-to-tail coupling for flagella as well as acephaly. The authors' co-IP experiments of expressed CCDC113 in HEK293T cells indicated an association with CFAP91 and DRC2 as well as SUN5 and CENTLEIN.

      The authors propose that CCDC113 connects CFAP91 and DRC2 to doublet microtubules of the axoneme and CCDC113's association with SUN5 and CENTLEIN to stabilize the sperm flagellum head-to-tail coupling apparatus. Extensive experiments mapping CCDC13 during postnatal development are reported as well as negative co-IP experiments and studies with SUN5 KO mice as well as CENTLEIN KO mice.

      Strengths:

      The authors provide compelling observations to indicate the relevance of CCDC113 to flagellum formation with potential protein partners. The data are relevant to sperm flagella formation and its coupling to the sperm head.

      Weaknesses:

      The authors' observations are consistent with the model proposed but the authors' conclusions for the mechanism may require direct demonstration in sperm flagella. The Walton et al paper shows human CCDC96/113 in cilia of human respiratory epithelia. An application of such methodology to the proteins indicated by Wu et al for the sperm axoneme and head-tail coupling apparatus is eagerly awaited as a follow-up study.

    3. Author response:

      eLife assessment

      This study presents a valuable finding on sperm flagellum and HTCA stabilization. The evidence supporting the authors' claims is incomplete. The work will be of broad interest to cell and reproductive biologists working on cilium and sperm biology.

      We thank the Editor and the two referees for their time in carefully reviewing our work, and we are grateful for the helpful guidance about how to improve our study. We will supplement the experiments and provide quantitative data guided by the referees’ comments in the revised manuscript. Additionally, we will polish the manuscript and add further context to help readers understand the significance of this work.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper, Wu et al. investigated the physiological roles of CCDC113 in sperm flagellum and HTCA stabilization by using CRISPR/Cas knockouts mouse models, co-IP, and single sperm imaging. They find that CCDC113 localizes in the linker region among radial spokes, the nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) RS, N-DRC, and DMTs and interacts with axoneme-associated proteins CFAP57 and CFAP91, acting as an adaptor protein that facilitates the linkage between RS, N-DRC, and DMTs within the sperm axoneme. They show the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and CFAP91, DRC2 could not colocalize with DMTs in Ccdc113-/- spermatozoa. Interestingly, the data also indicate that CCDC113 could localize on the HTCA region, and interact with HTCA-associated proteins. The knockout of Ccdc113 could also produce acephalic spermatozoa. By using Sun5 and Centlein knockout mouse models, the authors further find SUN5 and CENTLEIN are indispensable for the docking of CCDC113 to the implantation site on the sperm head. Overall, the experiments were designed properly and performed well to support the authors' observation in each part. Furthermore, the study's findings offer valuable insights into the physiological and developmental roles of CCDC113 in the male germ line, which can provide insight into impaired sperm development and male infertility. The conclusions of this paper are mostly well supported by data, but some points need to be clarified and discussed.

      We thank Reviewer #1 for his or her critical reading and the positive assessment.

      (1) In Figure 1, a sperm flagellum protein, which is far away from CCDC113, should be selected as a negative control to exclude artificial effects in co-IP experiments.

      We greatly appreciate Reviewer #1’s insightful suggestion. We will include a negative control in the co-IP experiment to eliminate potential artificial effects.

      (2) Whether the detachment of sperm head and tail in Ccdc113-/- mice is a secondary effect of the sperm flagellum defects? The author should discuss this point.

      Good question. Given that CCDC113 could localized in the sperm neck region, and interact with SUN5 and CENTELIN, CCDC113 may directly function in the sperm head and tail connection. Indeed, PAS staining revealed that Ccdc113–/– sperm heads with abnormal orientation in stages V–VIII seminiferous epithelia (Fig. 6C), and transmission electron microscopy (TEM) analysis further revealed that the disruption of CCDC113 caused the detachment of the destroyed coupling apparatus from the sperm head in step 9–11 spermatids (Fig. 6D). All these results suggest that the detachment of sperm head and tail in Ccdc113–/– mice may be not a secondary effect of the sperm flagellum defects. And we have discuss this point as below:

      CCDC113 could interact with SUN5 and CENTLEIN, but not PMFBP1 (Fig. 7A-C), and CCDC113 was in the cytoplasm in Sun5–/– and Centlein–/– spermatozoa (Fig. 7L, K). In addition, CCDC113 colocalizes with SUN5 in the HTCA region, and the immunofluorescence staining in spermatozoa shows that SUN5 is closer to the sperm nucleus than CCDC113 (Fig. 7G, H). Therefore, SUN5 and CENTLEIN may be more closed to the sperm nucleus compared with CCDC113. PAS staining revealed that Ccdc113–/– sperm heads with abnormal orientation in stages V–VIII seminiferous epithelia (Fig. 6C), and transmission electron microscopy (TEM) analysis further revealed that the disruption of CCDC113 caused the detachment of the destroyed coupling apparatus from the sperm head in step 9–11 spermatids (Fig. 6D). All these results suggest that the detachment of sperm head and tail in Ccdc113–/– mice may be not a secondary effect of the sperm flagellum defects.

      (3) Given that some cytoplasm materials could be observed in Ccdc113-/- spermatozoa (Fig. 5A), whether CCDC113 is also essential for cytoplasmic removal?

      Good question. Unremoved cytoplasm could be detected in spermatozoa by using transmission electron microscopy (TEM) analysis, including disrupted mitochondria, damaged axonemes, and large vacuoles, indicating cytoplasmic removal defects in Ccdc113–/– mice. We have discussed this point as below:

      “Unremoved cytoplasm could be detected in spermatozoa by using transmission electron microscopy (TEM) analysis, including disrupted mitochondria, damaged axonemes, and large vacuoles, indicating cytoplasmic removal defects in Ccdc113–/– mice (Fig. 5A).”

      (4) Although CCDC113 could not bind to PMFBP1, the localization of CCDC113 in Pmfbp1-/- spermatozoa should be also detected to clarify the relationship between CCDC113 and SUN5-CENTLEIN-PMFBP1.

      We are thankful to Reviewer #1 for this suggestion. We will analyze the localization of CCDC113 in Pmfbp1-/- spermatozoa to clarify the relationship between CCDC113 and SUN5-CENTLEIN-PMFBP1.

      Reviewer #2 (Public Review):

      Summary:

      In the present study, the authors select the coiled-coil protein CCDC113 and revealed its expression in the stages of spermatogenesis in the testis as well as in the different steps of spermiogenesis with expression also mapped in the different parts of the epididymis. Gene deletion led to male infertility in CRISPR-Cas9 KO mice and PAS staining showed defects mapped in the different stages of the seminiferous cycle and through the different steps of spermiogenesis. EM and IF with several markers of testis germ cells and spermatozoa in the epididymis indicated defects in flagella and head-to-tail coupling for flagella as well as acephaly. The authors' co-IP experiments of expressed CCDC113 in HEK293T cells indicated an association with CFAP91 and DRC2 as well as SUN5 and CENTLEIN.

      The authors propose that CCDC113 connects CFAP91 and DRC2 to doublet microtubules of the axoneme and CCDC113's association with SUN5 and CENTLEIN to stabilize the sperm flagellum head-to-tail coupling apparatus. Extensive experiments mapping CCDC13 during postnatal development are reported as well as negative co-IP experiments and studies with SUN5 KO mice as well as CENTLEIN KO mice.

      Strengths:

      The authors provide compelling observations to indicate the relevance of CCDC113 to flagellum formation with potential protein partners. The data are relevant to sperm flagella formation and its coupling to the sperm head.

      We are grateful to Reviewer #2 for his or her recognition of the strength of this study.

      Weaknesses:

      The authors' observations are consistent with the model proposed but the authors' conclusions for the mechanism may require direct demonstration in sperm flagella. The Walton et al paper shows human CCDC96/113 in cilia of human respiratory epithelia. An application of such methodology to the proteins indicated by Wu et al for the sperm axoneme and head-tail coupling apparatus is eagerly awaited as a follow-up study.

      We thank Reviewer 2 for his/her kindly help in improving the manuscript. We now understand that directly detection of CCDC113 precise localization in sperm axoneme and head-tail coupling apparatus (HTCA) using cryo-electron microscopy (cryo-EM) could powerfully strengthen our model. Recent advances in cryo-electron microscopy (cryo-EM) have facilitated the analysis of axonemal structures and determined the structures of native axonemal DMTs from mouse, bovine, and human sperm (Leung et al., 2023; Zhou et al., 2023). However, some high-resolution structures of sperm axoneme and HTCA regions, including those involving CCDC113, remain to be detected. Thus, we would like to discuss this point and regard it as an important follow-up study.

      References:

      Bazan, R., Schröfel, A., Joachimiak, E., Poprzeczko, M., Pigino, G., & Wloga, D. (2021). Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet, 17(3), e1009388.

      Ghanaeian, A., Majhi, S., McCafferty, C. L., Nami, B., Black, C. S., Yang, S. K., Legal, T., Papoulas, O., Janowska, M., Valente-Paterno, M., Marcotte, E. M., Wloga, D., & Bui, K. H. (2023). Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. Nat Commun, 14(1), 5741.

      Leung, M. R., Zeng, J., Wang, X., Roelofs, M. C., Huang, W., Zenezini Chiozzi, R., Hevler, J. F., Heck, A. J. R., Dutcher, S. K., Brown, A., Zhang, R., & Zeev-Ben-Mordehai, T.  (2023). Structural specializations of the sperm tail. Cell, 186(13), 2880-2896.e2817

      Walton, T., Gui, M., Velkova, S., Fassad, M. R., Hirst, R. A., Haarman, E., O'Callaghan, C., Bottier, M., Burgoyne, T., Mitchison, H. M., & Brown, A. (2023). Axonemal structures reveal mechanoregulatory and disease mechanisms. Nature, 618(7965), 625-633.

      Zhou, L., Liu, H., Liu, S., Yang, X., Dong, Y., Pan, Y., Xiao, Z., Zheng, B., Sun, Y., Huang, P., Zhang, X., Hu, J., Sun, R., Feng, S., Zhu, Y., Liu, M., Gui, M., & Wu, J. (2023). Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell, 186(13), 2897-2910.e2819.

    1. Again I don’t know what that means, to have associations and contextualisations always present with a text, a structuralist’s dream, but… it’s different.

      whatever brain wiring I am suffering with, I have this going all the time. I cannot read anything without associations and contexts popping up in my head all the time. Many times I wish I can turn them off and just read the damn words :)

    1. that causality is not singular and so if you address a problem 00:11:06 that's created by a multiple causal process with a singular response you don't actually do anything but make it worse

      for - quote, key insight - progress trap - Nora Bateson

      quote - progress trap - Nora Bateson - Nora hits the head of the nail with this observation - There are always multiple causes to one result - and by addressing only one cause, we cannot solve the problem, but in fact - allow it to continue and often make it worse - This is essentially another way of stating the teachings of millenia of Eastern philosophy, - that the universe is - infinitely interconnected - and its inherent nature of continuous transformation - Therefore, any state, which might be recognized as a problem state - is the result of many different causes and conditions coalescing

    2. you don't meet something head-on you meet it around you meet it within you meet it 00:04:24 totally in ecological systems nothing is happening one thing at a time there's not a solution to a problem

      for - key insight - problem solving paradox - emptiness

      key insight- problem solving paradox - emptiness - Due to the complex nature of reality - in which everything we perceive is connected to so many other things beyond our wildest imagination - a - *problem" doesn't have - a "solution" - Why not? - because a problem is human attention devoted to one aspect in our entire field of view (nature) - It's like looking at one stitch in the entire fabric of a weave - That one stitch could be so critical that tearing it off - can cause the entire fabric to fall apart - This massive connectedness and innumerable relationships is also described by the Eastern philosophical terms - emptiness - interdependent origination - references already provided in earlier annotations of this video.

    1. Ultimately there was one clear fit for Juraj, and once he saw it was possible to land that job, he went all-in. He shared extra materials. He prepped testimonials and references from past employers. And together we worked through stories and experiences to address all the potential flags they might have about him head-on

      I feel like you could go into even more detail here, because it's such an important part of the process. I feel like I want to join Juraj behind the scenes as he lands this job. The questions I have here are: Which stories did he share? What were those extra materials? And, most importantly, what did he have to say when he received the YES, you're it?

    1. Here I intend to withdraw my intention as far as possible, withoutgiving it up, and to let it rest in such a way that the matter-inherent reference connections can come into their own with mein an undisturbed way. It is a certain kind of concentration, inwhich I do not concentrate on anything in particular, but keepexternal disturbances, irrelevant thoughts, distractions as far awayfrom me as possible, and try to empty my head to such an extentthat a certain context of experience can come into play within me.

      Here, the key component of affinitive attention is explained to be relevancy. This is in direct opposition to the kind of affinitive movement you might find on Wikipedia, where each link to a mentioned keyword can only take you into a different context, as articles aren't meant to explain each other. This is also a strength of Scholia and Hypothes.is.

    Tags

    Annotators

    1. Let’s call this the ‘Soul-Soul strategy’ in contradistinction to the Soul-First strategies of Habermas and Zahavi (or the Separate-but-Equal strategy suggested by Pinker above). What makes this option so attractive, I think, anyway, is the problem that so cripples the Soul-First and the Separate-but-Equal options: the empirical fact that the brain comes first. Gunshots to the head put you to sleep. If you’ve ever wondered why ‘emergence’ is so often referenced in philosophy of mind debates, you have your answer here. If Zahavi’s ‘transcendental subject,’ for instance, is a mere product of brain function, then the Soul-First strategy becomes little more than a version of Creationism and the phenomenologist a kind of Young-Earther. But if it’s emergent, which is to say, a special product of brain function, then he can claim to occupy an entirely natural, but thoroughly irreducible ‘level of explanation’–the level of us.

      There are 3 possibilities:

      1. Soul-soul strategy. This is the strategy of Brassier and Dennett. Their idea is that it is evolutionarily stable for human-animals to simulate aspects of a person, even though they don't have it. This is stable because science requires intelligent objects (such as humans) that are running a simulation of persons.
      2. Soul-first strategy. This is the strategy of some phenomenologists, like Heideggar, Habermas, and Zahavi. This argues that what we think we are is the basis of all perception, and thus all of science, therefore science can never overthrow what we think we are.
      3. Separate-but-equal strategy. This is the idea that there are physical systems in the world (humans with brains) that sometimes operate according to neuroscience, and other times operate according to morality. The domain of neuroscience and the domain of morality are separate-but-equal, and cannot occur simultaneously, because they are self-contained and autonomous from each other. This is similar to how a deck of cards is sometimes in a bridge game, and other times in a poker game, but never is a deck simultaneously in both games.
  6. May 2024
    1. Reviewer #1 (Public Review):

      Summary:

      Using a mouse model of head and neck cancer, Barr et al show that tumor-infiltrating nerves connect to brain regions via the ipsilateral trigeminal ganglion, and they demonstrate the effect this has on behavior. The authors show that there are neurites surrounding the tumors using a WGA assay and show that the brain regions that are involved in this tumor-containing circuit have elevated Fos and FosB expression and increased calcium response. Behaviorally, tumor-bearing mice have decreased nest building and wheel running and increased anhedonia. The behavior, Fos expression, and heightened calcium activity were all decreased in tumor-bearing mice following nociceptor neuron elimination.

      Strengths:

      This paper establishes that sensory neurons innervate head and neck cancers and that these tumors impact select brain areas. This paper also establishes that behavior is altered following these tumors and that drugs to treat pain restore some but not all of the behavior. The results from the experiments (predominantly gene and protein expression assays, cFos expression, and calcium imaging) support their behavioral findings both with and without drug treatment.

      Weaknesses:

      Study suggests that the effects of their tumor models of mouse behavioral are largely non-specific to the tumor as most behaviors are rescued by analgesic treatment. So, most of the changes were likely due to site-specific pain and not a unique signal from the tumor.

    2. Reviewer #2 (Public Review):

      Summary:

      Cancer treatments are not just about the tumor - there is an ever-increasing need for treating pain, fatigue, and anhedonia resulting from the disease as patients are undergoing successful but prolonged bouts with cancer. Using an implantable oral tumor model in the mouse, Barr et al describe neural infiltration of tumors, and posit that these nerve fibers are transmitting pain and other sensory signals to the brain that reduce pleasure and motivation. These findings are in part supported by anatomical and transcriptional changes in the tumor that suggest sensory innervation, neural tracing, and neural activity measurements. Further, the authors conduct behavior assays in tumor-bearing animals and inhibit/ablate pain sensory neurons to suggest the involvement of local sensory innervation of tumors in mediating cancer-induced malaise.

      Strengths:

      • This is an important area of research that may have implications for improving the quality of life of cancer patients.

      • The studies use a combination of approaches (tracing and anatomy, transcriptional, neural activity recordings, behavior assays, loss-of-function) to support their claims.

      • Tracing experiments suggest that tumor-innervating afferents are connected to brain nuclei involved in oral pain sensing. Consistent with this, the authors observed increased neural activity in those brain areas of tumor-bearing animals. It should be noted that some of these brain nuclei have also been implicated in cancer-induced behavioral alterations in non-head and neck tumor models.

      • Experiments are for the most part well-controlled, and approaches are validated.

      • The paper is well-written and the layout was easy to follow.

      Weaknesses:

      • The main claim is that tumor-infiltrating nerves underlie cancer-induced behavioral alterations, but the experimental interventions are not specific enough to support this. For example, all TRPV1 neurons, including those innervating the skin and internal organs, are ablated to examine sensory innervation of the tumor. Within the context of cancer, behavioral changes may be due to systemic inflammation, which may alter TRPV1 afferents outside the local proximity of tumor cells. A direct test of the claims of this paper would be to selectively inhibit/ablate nerve fibers innervating the tumor or mouth region.

      • Behavioral results from TRPV1 neuron ablation studies are in part confounded by differing tumor sizes in ablated versus control mice. Are the differences in behavior potentially explained by the ablated animals having significantly smaller tumors? The differences in tumor sizes are not negligible. One way to examine this possibility might be to correlate behavioral outcomes with tumor size.

    1. Reviewer #3 (Public Review):

      Summary:

      This study employs an optogenetics approach aimed at activating oncogene (KRASG12V) expression in a single somatic cell, with a focus on following the progression of activated cell to examine tumourigenesis probabilities under altered tissue environments. The research explores the role of stemness factors (VENTX/NANOG/OCT4) in facilitating oncogenic RAS (KRASG12V)-driven malignant transformations. Although the evidence provided are incomplete, the authors propose an important mechanism whereby reactivation of re-programming factors correlates with the increased likelihood of a mutant cell undergoing malignant transformation.

      Strengths:

      · Innovative Use of Optogenetics: The application of optogenetics for precise activation of KRAS in a single cell is valuable to the field of cancer biology, offering an opportunity to uncover insight into cellular responses to oncogenic mutations.<br /> · Important Observations: The findings concerning stemness factors' role in promoting oncogenic transformation are important, contributing data to the field of cancer biology.

      Weaknesses:

      Lack of Methodological Clarity: The manuscript lacks detailed descriptions of methodologies, making it difficult to fully evaluate the experimental design and reproducibility, rendering incomplete evidence to support the conclusion. Improving methodological transparency and data presentation will crucially strengthen the paper's contributions to understanding the complex processes of tumourigenesis.<br /> Sub-optimal Data Presentation and Quality:

      The resolution of images throughout the manuscript are too low. Images presented in Figure 2 and Figure 4 are of very low resolution. It is very hard to distinguish individual cells and in which tissue they might reside.<br /> Lack of quantitative data and control condition data obtained from images of higher magnification limits the ability to robustly support the conclusions.

      Here are some details:<br /> · Tissue specificity of the cells express KRASG12V oncogene: In this study, the ubiquitin promoter was used to drive oncogenic KRASG12V expression. Despite this, the authors claim to activate KRAS in a single brain cell based on their localized photo-activation strategy. However, upon reviewing the methods section, the description was provided that 'Localized uncaging was performed by illumination for 7 minutes on a Nikon Ti microscope equipped with a light source peaking at 405 nm, Figure 1. The size of the uncaging region was controlled by an iris that defines a circular illumination with a diameter of approximately 80 μm.' It is surprising that an epi-fluorescent microscope with an illumination diameter of around 80μm can induce activation in a single brain cell beneath skin tissue. Additionally, given that the half-life for mTFP maturation is around 60 minutes, it is likely that more cells from a variety of different lineages could be activated, but the fluorescence would not be visible until more than 1-hour post-illumination. Authors might want to provide more evidence to support their claim on the single cell KRAS activation.<br /> · Stability of cCYC: The manuscript does not provide information on the half-life and stability of cCYC. Understanding these properties is crucial for evaluating the system's reliability and the likelihood of leakiness, which could significantly influence the study's outcomes.<br /> · Metastatic Dissemination claim: Typically, metastatic cancer cells migrate to and proliferate within specific niches that are conducive to outgrowth, such as the caudal hematopoietic tissue (CHT) or liver. In figure 3 A, an image showing the presence of mTFP expressing cells in both the head and tail regions of the larva, with additional positive dots located at the fin fold. This is interpreted as "metastasis" by the authors. However, the absence of a supportive cellular compartment within the fin-fold tissue makes the presence of mTFP-positive metastatic cells there particularly puzzling. This distribution raises concerns about the spatial specificity of the optogenetic activation protocol.<br /> The unexpected locations of these signals suggest potential ectopic activation of the KRAS oncogene, which could be occurring alongside or instead of targeted activation. This issue is critical as it could affect the interpretation of whether the observed mTFP signal expansion over time is due to actual cell proliferation and infiltration, or merely a result of ectopic RAS transgene activation.<br /> · Image Resolution Concerns: The cells depicted in Figure 3C β, which appear to be near the surface of the yolk sac and not within the digestive system as suggested in the MS, underscore the necessity for higher-resolution imaging. Without clearer images, it is challenging to ascertain the exact locations and states of these cells, thus complicating the assessment of experimental results.<br /> · The cell transplantation experiment is lacking protocol details: The manuscript does not adequately describe the experimental protocols used for cell transplantation, particularly concerning the origin and selection of cells used for injection into individual larvae. This omission makes it difficult to evaluate the reliability and reproducibility of the results. Such as the source of transplanted cells:<br /> • If the cells are derived from hyperplastic growths in larvae where RAS and VX (presumably VENTX) were locally activated, the manuscript fails to mention any use of fluorescence-activated cell sorting (FACS) to enrich mTFP-positive cells. Such a method would be crucial for ensuring the specificity of the cells being studied and the validity of the results.<br /> • If the cells are obtained from whole larvae with induced RAS + VX expression, it is notable and somewhat surprising that the larvae survived up to six days post-induction (6dpi) before cells were harvested for transplantation. This survival rate and the subsequent ability to obtain single cell suspensions raise questions about the heterogeneity of the RAS + VX expressing cells that transplanted.<br /> · Unclear Experimental Conditions in Figure S3B: The images in Figure S3B lack crucial details about the experimental conditions. It is not specified whether the activation of KRAS was targeted to specific cells or involved whole-body exposure. This information is essential for interpreting the scope and implications of the results accurately.<br /> · Contrasting Data in Figure S3C compared to literature: The graph in Figure S3C indicates that KRAS or KRAS + DEX induction did not result in any form of hyperplastic growth. This observation starkly contrasts with previous literature where oncogenic KRAS expression in zebrafish led to significant hyper-proliferation and abnormal growth, as evidenced by studies such as those published in and Neoplasia (2018), DOI: 10.1016/j.neo.2018.10.002; Molecular Cancer (2015), DOI: 10.1186/s12943-015-0288-2; Disease Models & Mechanisms (2014) DOI: 10.1242/dmm.007831. The lack of expected hyperplasia raises questions about the experimental setup or the specific conditions under which KRAS was expressed. The authors should provide detailed descriptions of the conditions under which the experiments were conducted in Figure S3B and clarifying the reasons for the discrepancies observed in Figure S3C are crucial. The authors should discuss potential reasons for the deviation from previous reports.

      Further comments:

      Throughout the study, KRAS-activated cell expansion and metastasis are two key phenotypes discussed that Ventx is promoting. However, the authors did not perform any experiments to directly show that KRAS+ cells proliferate only in Ventx-activated conditions. The authors also did not show any morphological features or time-lapse videos demonstrating that KRAS+ cells are motile, even though zebrafish is an excellent model for in vivo live imaging. This seems to be a missed opportunity for providing convincing evidence to support the authors' conclusions.

      There were minimal experimental details provided for the qPCR data presented in the supplementary figures S5 and S6, therefore, it is hard to evaluate result obtained.

    1. eLife assessment

      In the current study, the authors describe how sex and age affect the consequence of traumatic brain injury in Drosophila. They find that females are more sensitive than males, and mated females are sensitive whereas virgin females are not. This fundamental work substantially advances our understanding of how sex-dependent response to traumatic brain injury occurs, by identifying the Sex Peptide and the immune system as modulators of sex differences. The authors provide a compelling set of results, showing that female Sex Peptide signaling in Drosophila adversely affects late-life neurodegeneration after early-life exposure to repetitive mild head injury.

    2. Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors use the Drosophila model system to study the impact of mild head trauma on sex-dependent brain deficits. They identify Sex Peptide as a modulator of greater negative outcome in female flies. Additionally, they observe that increased age at the time of injury results in worse outcomes, especially in females, and that this is due to chronic suppression of innate immune defense networks in mated females. The results demonstrate a novel signaling pathway that promotes age- and sex-dependent outcomes after head injury.

      Strengths:

      The authors have modified their previously reported TBI model in flies to mimic mild TBI, which is novel. Methods are explained in detail, allowing for reproducibility. Experiments are rigorous with appropriate statistics. A number of important controls are included. The work tells a complete mechanistic story and adds important data to increase our understanding of sex-dependent differences in recovery after TBI. The discussion is comprehensive and puts the work in the context of the field.

      Weaknesses:

      A very minor weakness is that exact n values should be included in the figure legends. There should also be confirmation of knockdown by RNAi in female flies either by immunohistochemistry or qRT-PCR if possible.

    3. Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors used a Drosophila model to show that exposure to repetitive mild TBI causes neurodegenerative conditions that emerge late in life and disproportionately affect females. In addition to well-known age-dependent impact, the authors identified Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits.

      Strengths:

      The authors have presented a compelling set of results showing that female Sex Peptide signaling adversely affects late-life neurodegeneration after early-life exposure to repetitive mild head injury in Drosophila. They have (1) compared the phenotypes of adult male and female flies sustaining TBI at different ages, and the phenotypes of virgin females and mated females, (2) compared the phenotypes of eliminating SP signaling in mating females and introducing SP-signaling into virgin females, (3) compared transcriptomic changes of different groups in response to TBI. The results are generally consistent and robust.

      Weaknesses:

      The authors have made their claims largely based on assaying climbing index and vacuole formation as the only indicators of late-life neurodegeneration after TBI. However, these phenotypes are not really specific to TBI-related neurodegeneration, and the significance and mechanisms of especially vacuole formation are not clear. The authors should perform additional analyses on TBI-related neurodegeneration in flies, which have been shown before (Genetics. 2015 Oct; 201(2): 377-402). Furthermore, it is also really surprising to see so few DEGs even in wild-type males and mated females, and to see that none of the DEGs overlapped among groups or are even related to the SP-signaling. This raises questions about the validity of the RNA-seq analysis. It is critical to independently verify their RNA-sequencing results and to add some more molecular evidence to support their conclusion. Finally, it is unknown what the implication of female fly mating and its associated Sex Peptide signaling would be to mammalians or humans, and what are the mechanisms underlying the sexual dimorphism.

    4. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors use the model organism Drosophila to explore the sex and age impacts of a TBI method. They find age and sex differences: older age is susceptible to mild TBI and females are also more susceptible. In particular, they pursue a finding that virgin vs mated females show different responses: virgins are protected but mated females succumb to TBI with climbing deficits. In fact, virgin females compared to mated females are largely protected. They discover that this is associated with exposure of the females to Sex Peptides in the reproductive neurons of the female reproductive tract. When they extend to RNAseq of brains, they show that there are very few genes in common between males, mated females, virgins and females mated with males lacking Sex Peptide. The few chronic genes associated with mated females seem associated with the immune system. These findings suggest that mated females have a compromised immune system, which might make them more vulnerable.

      Strengths:

      This is an interesting paper that allows a detailed comparison of sex and age in TBI which is largely only possible in such a simple model, where large numbers and many variations can be addressed. Overall the findings are interesting.

      Weaknesses:

      Although the findings beyond Sex Peptide are observational, the work sets the stage for more detailed studies to pursue the role of the genes they find by RNAseq and whether for example, boosting the innate immune system would protect the mated females, among other experiments.

      We thank the reviewer for their time and effort in evaluating our manuscript. We agree that future studies are needed to further determine the role of the genes that we have identified through RNA sequencing in the late life emergence of neurodegenerative conditions after the exposure to mild head trauma. We would like to investigate whether elevating mated female immunity can mitigate the risk for age-dependent neurodegeneration after mild head trauma.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors use the Drosophila model system to study the impact of mild head trauma on sex-dependent brain deficits. They identify Sex Peptide as a modulator of greater negative outcome in female flies. Additionally, they observe that increased age at the time of injury results in worse outcomes, especially in females, and that this is due to chronic suppression of innate immune defense networks in mated females. The results demonstrate a novel signaling pathway that promotes age- and sex-dependent outcomes after head injury.

      Strengths:

      The authors have modified their previously reported TBI model in flies to mimic mild TBI, which is novel. Methods are explained in detail, allowing for reproducibility. Experiments are rigorous with appropriate statistics. A number of important controls are included. The work tells a complete mechanistic story and adds important data to increase our understanding of sex-dependent differences in recovery after TBI. The discussion is comprehensive and puts the work in the context of the field.

      Weaknesses:

      A very minor weakness is that exact n values should be included in the figure legends. There should also be confirmation of knockdown by RNAi in female flies either by immunohistochemistry or qRT-PCR if possible.

      We thank the reviewer for the evaluation of our manuscript and for the suggestion to include the exact n values in the figure legends. We will include the n values in our revision.

      Regarding RNAi knockdown of sex peptide receptors (SPRs), we agree that confirmation of the knockdown by IHC or qRT-PCR will further strengthen our findings.  It should be noted, however, that the RNAi line we used has been extensively validated by Yapici et al., 2007 and several subsequent publications. Importantly, the effectiveness of SPR knockdown is evident in female flies as they exhibit dramatically reduced egg laying and, importantly, lack the typical post-mating behaviors (such as rejection of male flies after initial mating) observed in the wild type mated female flies. In fact, female flies with RNAi-mediated SPR knockdown behave identically to females mated with SP-null male flies, confirming the effective disruption of the SP-SPR signaling pathway. We will revise the manuscript to make these points clear. 

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors used a Drosophila model to show that exposure to repetitive mild TBI causes neurodegenerative conditions that emerge late in life and disproportionately affect females. In addition to well-known age-dependent impact, the authors identified Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits.

      Strengths:

      The authors have presented a compelling set of results showing that female Sex Peptide signaling adversely affects late-life neurodegeneration after early-life exposure to repetitive mild head injury in Drosophila. They have (1) compared the phenotypes of adult male and female flies sustaining TBI at different ages, and the phenotypes of virgin females and mated females, (2) compared the phenotypes of eliminating SP signaling in mating females and introducing SP-signaling into virgin females, (3) compared transcriptomic changes of different groups in response to TBI. The results are generally consistent and robust.

      Weaknesses:

      The authors have made their claims largely based on assaying climbing index and vacuole formation as the only indicators of late-life neurodegeneration after TBI. However, these phenotypes are not really specific to TBI-related neurodegeneration, and the significance and mechanisms of especially vacuole formation are not clear. The authors should perform additional analyses on TBI-related neurodegeneration in flies, which have been shown before (Genetics. 2015 Oct; 201(2): 377-402). Furthermore, it is also really surprising to see so few DEGs even in wild-type males and mated females, and to see that none of the DEGs overlapped among groups or are even related to the SP-signaling. This raises questions about the validity of the RNA-seq analysis. It is critical to independently verify their RNA-sequencing results and to add some more molecular evidence to support their conclusion. Finally, it is unknown what the implication of female fly mating and its associated Sex Peptide signaling would be to mammalians or humans, and what are the mechanisms underlying the sexual dimorphism.

      We thank the reviewer for the thorough evaluation of our manuscript. The reviewer raised a very important question: whether the neurodegeneration observed in our model is specific to TBI. As the reviewer rightly pointed out, the neurodegenerative phenotypes are unlikely specific to TBI-related neurodegeneration. Throughout the manuscript, we have tried to convey the notion that the mild physical impacts to the head represent one form of environmental insults, which in combination with other risk factors such as aging can lead to the emergence of neurodegenerative conditions. It should be noted that the negative geotaxis assay and vacuolation quantification are two well-established approaches to assess sensorimotor deficits and frank brain degeneration in fly brains.

      It is important to emphasize that the head-specific impacts delivered to the flies in our study are much milder than those used in previous studies. As we showed in our figure 1, this very mild form of head trauma (referred to as vmHT) did not cause any death, nor affected the lifespan of the injured flies. Our supplemental data also show very minimal structural neuronal damage and essentially no acute and chronic apoptosis induced by vmHT exposure. Consistently, we did not observe any exoskeletal or eye damage immediately following injuries, nor did we observe any retinal degeneration and pseudopupil loss at the chronic stage of these flies. We will incorporate these important points in the revision. 

      We agree that future studies are needed to independently validate our RNA sequencing results. We believe that the small number of DEGs are likely due to two unique features of our study: (1) the very mild nature of our injury paradigm and (2) the chronic examination timepoint that was long after the head injury and SP exposure, which distinguish our study from previous fly TBI studies.  As pointed out in the manuscript, our study was aimed to understand how early life exposure to repetitive head traumatic insults could lead to the late-life onset of neurodegenerative conditions. We hope to further validate our results in our next phase of experiments using single-cell RNA sequencing and RT-qPCR.

      As the reviewer pointed out, it would be very interesting to explore the possible roles of sex peptide-signaling in other animals and humans. As far as we know, there is no known mammalian ortholog to the insect sex peptide, so it would be difficult to study SP or an SP-like molecule in mammalian models. However, we believe that prolonged post-mating changes associated with reproduction in female fruit flies contribute to their elevated vulnerability to neurodegeneration.  In this regard, drastic changes within the biology of female mammals associated with reproduction can potentially lead to vulnerability to neurodegeneration. We agree that this demands further study, which may be done with future collaborators using rodent or large animal models.  We have discussed this point in the manuscript, but will revise it to further clarify the discussion.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02413R

      Corresponding author(s): Hammond, Gerald

      1. General Statements [optional]

      We are grateful to the three reviewers for such thorough and thoughtful comments. Data or re-writes that we have on hand that address many of these comments have been incorporated already. We also have a comprehensive experimental plan to address all of the remaining major comments. Reviewer’s comments are in light italics, whilst our responses appear in regular font below. We added reviewer numbering for ease of cross-reference to the original comments, with the format: reviewer X’s comment number N as #X.N

      • *

      *Overall, we were thrilled that the reviewers agreed that our work is of significance and broad interest: *

      • *

      “The development of a new, superior PA-sensor is a significant advance in the fields of lipid signaling and specific lipid-protein interactions, that will benefit research on lipid-mediated cellular signaling and intracellular lipid trafficking.” – reviewer 1.

      “The lipid biology community would be highly interested in using the new PA-binding tool to study lipid localization in live cells.” – reviewer 2.

      “Tracking intracellular phosphatidic acid (PA) in live cells is essential for understanding its cellular functions, leading to the development of genetically encoded lipid biosensors. While several PA biosensors have been developed, they often suffer from limited sensitivity or specificity.” – reviewer 3

      2. Description of the planned revisions

      #1.2: P 4 and Fig. 2 mention a 'novel domain structure', responsible for binding of PA and PIP2 (in vitro). What exactly is this novel domain structure? Why have the two parts of Nir1-LNS, the AAH and the 263 amino acid domain, not been tested in similar liposome assays as in Fig. 2A? Lipid binding in vivo, as tested in the experiment of Fig. 2D, is confounded by endogenous PA binding proteins.PA is expected to bind the SIDGS motif, as this is conserved from the Lipin catalytic motif (p. 5). However, experimental evidence of this appears to be lacking. Nevertheless, it is several times presented as a fact in the text. Pag. 7: 'This suggests that the SIDGS motif alone is not the sole PA binding pocket as the LNS2 domain requires both that motif and the amphipathic helix for sustained binding to membrane embedded PA.' Pag. 13: '... One reason for this difference could be that the Nir1-LNS2 is not a novel bona fide PA binding pocket. Rather, it requires both the SIDGS motif and an N-terminal amphipathic helix for membrane interactions (Figure 2). These conclusions therefore appear to be not accurate and would need te be rephrased. If the authors could show that PA binding by Nir1-LNS can be eliminated by mutating residues in the SIDGS motif, this would not only substantiate the above claims, but also make for a negative control protein, next to Nir1-LNS2. For future applications of Nir1-LNS2 as PA biosensor in other organisms this would be useful.

      In addition to the already included data on cellular binding of the R784E mutant, we do plan to test this variant in the liposome binding assays to show loss of PA binding abilities as the reviewer has suggested. We also plan to evaluate proper folding of the R784 mutant through circular dichroism.

      • *

      #1.7. Fig. 2A suggests cooperativity in binding of Nir1-LNS2 to PA-containing liposomes. Please mention/comment! Does binding to PIP2-containing liposomes also exhibit cooperativity?

      Using a nonlinear fit, we were able to determine Hill coefficients for PA binding. This has now been included in Figure 2B (formerly Figure 2A) and the following text has been added to page 6, left column, third paragraph: “In addition, we found that Nir1-LNS2 bound PA-rich liposomes in a concentration dependent manner (Figure 2B). By fitting the binding curve to this data, we found that the interaction of Nir1-LNS2 with PA provided a Kd value of ~19 mol%. Interestingly, Nir1-LNS2 binds to PA in a highly cooperative manner. The Hill coefficient for the interaction of Nir1-LNS2 with PA was calculated to be approximately 4 (Figure 2B).”

      However, due to the liposome binding assay used that utilizes a set total lipid concentration but alters mol% lipids, the Kd that we determined is not a “traditional” Kd. Therefore, we plan to repeat this assay using constant PA concentrations but increasing total concentrations of lipid so that we can make a better fit and get a more accurate Kd value and Hill coefficient. We also plan to do the same assay with PIP2 to determine Kd values and Hill coefficients for that interaction.

      • *

      #2.2. The authors mention high affinity of Nir1-LNS2, but it lacks in vitro characterization that should demonstrate the higher affinity of Nir1-LNS2 compared to conventional probes such as Spo20. The authors should perform side-by-side comparison in Fig 2 to compare the PA affinity and specificity of Nir1-LNS2 compared to Spo20.

      We plan to take the reviewer’s advice and directly compare Spo20-PABDx2 (and/or the single PABD depending on what we can get to purify correctly) and Nir1-LNS2 in the liposome binding assay.

      Additionally, we propose to further characterize these sensors in cells as well. To start, we have added a direct comparison of the Spo20-PABDx2 and Nir1-LNS2 response to PA production at the PM (by PMA stimulation) and at mitochondria (by FKBP-DGKa) in Figure 4. The text has been updated to reflect this on p.10, left paragraph, 3rd paragraph: “Importantly, we also observed that Nir1-LNS2 responds to this ectopic PA production quicker and more robustly than NES-PABDx2-Spo20 does, as can be seen when the responses from Figure 4F are plotted together (Figure 4H). When analyzing the responses to PA production at the PM by PMA stimulation in Figure 1D and Figure 1F, we similarly see that the Nir1-LNS2 translocates to the PM more robustly and in a shorter timeframe (Figure 4G). This suggests that the Nir1-LNS2 can serve as a high affinity PA biosensor at various cellular locations.”

      Furthermore, as suggested in the “General Assessment” we propose to use the FKBP-DGKa system to produce PA on other organelles such as the Golgi and ER and then we can directly compare the response of Spo20-PABDx2 and Nir1-LNS2 to the increase in PA at these organelles. This data will be added to Figure 4 for a full comparison of the sensors across cellular locations.

      • *

      #2.4. Fig 3 and Fig 4 need the validation of PIP depletion/production using PIP-binding probes.

      We propose to repeat the experiments using TIRF in figure 3 as it will give us increases sensitivity, and also compare selectivity with the currently used spo20-based biosensors.

      • *

      #2.“General assessment”: The existing PA-binding probe using Spo20 is indeed quite blunt, which takes minutes to see appreciable accumulation of the probe upon PA production. Nir1-LNS2 can be indeed useful if it offers better spatiotemporal precision. However, the advantage of this tool over existing tools is not convincing without head-to-head comparison of either (1) in vitro characterization of PA binding affinity and selectivity between Nir1-LNS2 and Spo20 or (2) response to PA produced on different subcellular localizations other than plasma membrane and mitochondria (e.g., endosomes, golgi, and endoplasmic reticulum).

      In order to address the selectivity of Nir1-LNS2 and Spo20, we propose to repeat the experiments in Figure 3 with the PJ enzymes in order to see how the PM PIPs affect Spo20 membrane binding, as described in our response to #2.4. Previously published data, as well as our own unpublished observations suggest that Spo20 interacts with the anionic PIPs to a greater extent than Nir1-LNS2 does (Nakanishi et al., 2004 doi: 10.1091/mbc.e03-11-0798; Horchani et al., 2014 doi: 10.1371/journal.pone.0113484). If we can show that Spo20’s interactions with the PM are significantly influenced by the PIPs, then this will add more evidence to the idea that Nir1-LNS2 is more selective for PA.

      As described in response to #2.2, we are also planning a side-by-side comparison of spo20 based protein binding on liposomes alongside Nir1-LNS2.

      Also, as discussed above, we agree with the reviewer that looking at the Nir1-LNS2 and Spo20 responses to PA production at other organelles would increase confidence that Nir1-LNS2 has a higher affinity for PA. We propose to add these experiments to Figure 4.

      • *

      #3.1. The direct measurement of the binding affinity of Nir1-LNS2 with PA, e.g., Kd, is essential; this information will help the field explore the potential usage of Nir1-LNS2.

      Using a nonlinear fit, we were able to determine Hill coefficients for PA binding. This has now been included in Figure 2B (formerly Figure 2A) and the following text has been added to p.6, left column, 3rd paragraph: “In addition, we found that Nir1-LNS2 bound PA-rich liposomes in a concentration dependent manner (Figure 2B). By fitting a nonlinear curve to this data, we found that the interaction of Nir1-LNS2 with PA provided a Kd value of ~19 mol%. Interestingly, Nir1-LNS2 binds to PA in a highly cooperative manner. The Hill coefficient for the interaction of Nir1-LNS2 with PA was calculated to be 4.323 (Figure 2B)…. This suggests that the amphipathic helix and the SIDGS-containing domain may both interact with the membrane leading to the cooperative nature of Nir1-LNS2’s binding of PA-rich liposomes (Figure 2B).”

      However, due to the liposome binding assay used that utilizes a set total lipid concentration but alters mol% lipids, the Kd that we determined is not a “traditional” Kd. Therefore, we plan to repeat this assay using higher total lipid concentrations with a fixed PA mol% so that we can make a better fit and get a more accurate Kd value and Hill coefficient. Furthermore, we plan to directly compare Spo20-PABDx2 (and/or the single PABD depending on what we can get to purify correctly) and Nir1-LNS2 in the liposome binding assay to directly compare their affinities for PA in vitro, as described in response to #2.2.

      • *

      #3.2. As mentioned by the authors, there is a confusing inconsistency regarding why Nir1-LNS2 binds to PIP2 in vitro but not in cells. Going beyond what has been discussed in the manuscript, there is a possibility that PIP2 could induce Nir1-LNS2 aggregation, leading to pelleting after centrifugation, among many other possibilities. I recommend the authors perform additional in vitro experiments, including but not limited to the liposome floatation assay to directly examine Nir1-LNS2 binding to the liposomes with varied compositions.

      This is an excellent suggestion. We plan to check for aggregation by liposome flotation with Nir1-LNS2 in the presence of high mol% of PA and PIP2. In addition, we will also perform circular dichroism to see if PA or PIP2 liposomes are inducing any unfolding of Nir1-LNS2.

      #3.3. In Fig. 2D, it would be beneficial to examine the constructs Nir1-613-630 and Nir1-631-894, comparing them with Nir1-LNS2 using liposome sedimentation and floatation assays to evaluate the contribution of the SIDGS motif and the amphipathic helix in binding PA.

      Per our response to #1.2, we looked around the SIDGS motif to find the residue that would mediate the binding of membrane embedded PA, which our data suggests is R784 (Figure 2D). We do plan to test the R784 mutant in the liposome binding assays to show loss of PA binding abilities as the reviewer has suggested. We also plan to evaluate proper folding of the R784 mutant through circular dichroism.

      • *

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      #1.1: CCH treatment of HEK293A cells leads to the PM localization of the DAG sensor C1ab-Prkd1 as well as Nir1-LNS2 (Fig. 5), and the kinetics of these changes - Nir1-LNS2 would lag behind C1ab-Prkd1 fluorescence - is taken as evidence for Nir1-LNS2's specific binding of PA rather than DAG: Pag. 10: 'When we look at the first 2-minutes after CCh addition, we see that C1ab-Prkd1 moves to the PM much faster than Nir1-LNS2 does (Figure 5D). The delay in Nir1-LNS2 translocation makes sense given DAG is produced first and then converted into PA, again indicating that Nir1-LNS2 is specific for PA. 'Fig. 5 legend: 'The Nir1-LNS2 response to PLC depends on PA and not DAG.(...) (D) Nir1-LNS2 translocation to the PM (data replicated from Figure 5C) lags behind C1ab-Prkd1 (data replicated from Figure 5B) in response to CCh addition. 'The validity of the conclusion from this experiment seems questionable. The argument relies on the low values of Nir1-LNS2's normalized fluorescence intensity compared to C1ab-Prkd1's, in the first two minutes of stimulation, when DAG is expected to accumulate (Fig. 5D). However, if Nir1-LNS2 would bind DAG, the resulting fluorescence is expected to be low, i.e. compared to the much higher signal resulting from subsequent PA binding. Moreover, in this system, which co-expresses the two sensor proteins, competition in binding may account for the apparent precedence of one sensor over the other. Thus, even if the increase in C1ab-Prkd1 fluorescence would precede Nir1-LNS2 - following the authors' interpretation - this would not exclude binding of DAG by Nir1-LNS2.Fig. 5D shows the confocal images of cells after 30 sec CCH treatment using the two sensors, next to the respective controls, replicated from Fig. 5B/C. However, in Fig. 5D, different colors are used for Nir1-LNS2 than in Fig. 5C, which makes comparison along the time course difficult. In conclusion, the data presented in Fig. 5 do not exclude DAG binding by Nir1-LNS2, and modification of the conclusions from this experiment throughout the ms (including the cited sentences) is recommended. Consider removal of Figure 5D. Despite these considerations, the authors' final conclusion regarding the specificity of Nir1-LNS2 towards PA appears well supported (e.g. by the data presented in Figure 4).

      We agree with the reviewer that the interpretation of the kinetic data is ambiguous and does not fully negate the idea that Nir1-LNS2 may bind to DAG. We have modified the interpretation accordingly. However, we have left the kinetic comparison of the DAG vs Nir1-LNS2 biosensors since these reflect the expected dynamics of the two lipids downstream of PLC. The data are now interpreted as follows on p. 10, right column, second paragraph: “The PM accumulation lagged that of DAG, consistent with conversion of DAG to PA by DGKs (Figure. 5D). Alternatively, in cells treated with CCh and then atropine, Nir1-LNS2 localized to the PM after CCh was added but was then observed returning to the cytoplasm over the 15-minute treatment with atropine as PA levels declined (Figure 5C). Overall, this experiment shows that Nir1-LNS2 binding to the PM follows the expected kinetic profile of DGK-produced PA.” Likewise, the legend for figure 5 is now labelled “Nir1-LNS2 detects PLC stimulated PA production.” to remove explicit conclusions about PA vs DAG binding.

      #1.2: P 4 and Fig. 2 mention a 'novel domain structure', responsible for binding of PA and PIP2 (in vitro). What exactly is this novel domain structure? Why have the two parts of Nir1-LNS, the AAH and the 263 amino acid domain, not been tested in similar liposome assays as in Fig. 2A? Lipid binding in vivo, as tested in the experiment of Fig. 2D, is confounded by endogenous PA binding proteins.PA is expected to bind the SIDGS motif, as this is conserved from the Lipin catalytic motif (p. 5). However, experimental evidence of this appears to be lacking. Nevertheless, it is several times presented as a fact in the text. Pag. 7: 'This suggests that the SIDGS motif alone is not the sole PA binding pocket as the LNS2 domain requires both that motif and the amphipathic helix for sustained binding to membrane embedded PA.' Pag. 13: '... One reason for this difference could be that the Nir1-LNS2 is not a novel bona fide PA binding pocket. Rather, it requires both the SIDGS motif and an N-terminal amphipathic helix for membrane interactions (Figure 2). These conclusions therefore appear to be not accurate and would need te be rephrased. If the authors could show that PA binding by Nir1-LNS can be eliminated by mutating residues in the SIDGS motif, this would not only substantiate the above claims, but also make for a negative control protein, next to Nir1-LNS2. For future applications of Nir1-LNS2 as PA biosensor in other organisms this would be useful.

      We have clarified that the domain architecture of the Nir1-LNS2 is not a novel domain structure generally, but novel for a PA binding protein which are typically just helices such as that seen in Spo20. Figure 2 is now titled “Nir1-LNS2 shows specificity for PA and PIP2 in vitro, based on a novel PA-binding domain.”

      We have also clarified that the SIDGS motif is not the actual location of PA binding, but rather is only the motif conserved with the Lipin/Pah active site. R784 appears to be a PA coordinating residue near the SIDGS, as the positive residue can interact with the negative lipid. Furthermore, we agreed with the reviewer that mutating this residue to perturb PA binding was a much more convincing experiment. We have now included this data in Figure 2 and rewritten the following passages.

      From Page 6, left column, last paragraph: “The putative Lipin catalytic motif DxDxT is partially conserved in Nir1-LNS2 as a SIDGS motif spanning residues 742-746. We looked for positively charged residues nearby that could bind to the PA in the membrane and coordinate its entrance into the SIDGS site. The active site of the Lipins has a nearby Arg residue which was predicted to perform this role (Khayyo et al., 2020). AlphaFold analysis of Nir1-LNS2 showed that this residue was also conserved in Nir1-LNS2 as R784, and that the side chain of the Arg sticks out toward the membrane interface where it would be able to contact the negatively charged PA (Figure 2C).

      The conservation of these features between the Lipins and Nir1-LNS2 suggests that PA binds this positively charged residue near the SIDGS pocket within Nir1-LNS2 (Kim et al., 2013; Khayyo et al., 2020). However, for efficient catalytic activity, the Lipins also require an N-terminal amphipathic helix for membrane interaction. This helix is made up of residues 1-18 in Tetrahymena thermophila Pah2 (Khayyo et al., 2020), and residues 613-630 in the N-terminus of Nir1-LNS2 are predicted to form a similar amphipathic helix (Figure 2C). We therefore tested whether the N-terminal helix of Nir1-LNS2 was necessary for interaction with PA at the PM. We made two truncations of the Nir1-LNS2 construct: Nir1-613-630 is the isolated amphipathic helix, while Nir1-631-894 is the rest of the domain excluding the helix but including the SIDGS motif. Surprisingly, neither truncated construct responded to PMA by binding the PM, and they even showed reduced basal PM localization (Figure 2D).

      Although Figure 2D suggests that the SIDGS motif alone is not sufficient for membrane interactions, we probed into the suspected PA binding residue R784 by mutating it into a negatively charged Glu residue, which should disrupt its interaction with the negatively charged lipid. The R784E mutation completely ablated Nir1-LNS2 interactions at the PM after PMA stimulation and showed reduced association with the PM even before PMA stimulation (Figure 2D).

      Altogether, our data suggests that the LNS2 domain requires both the larger SIDGS-containing domain and the amphipathic helix for sustained binding to membrane-embedded PA, but that the PA may directly interact with R784 near the SIDGS motif. Therefore, the Nir1-LNS2 provides a novel PA binding domain with a tertiary structure beyond the simple amphipathic helices found in Spo20.”

      We have also rewritten this sentence in the discussion, p. 14, right column, second paragraph: “As far as the use of Nir1-LNS2 as a biosensor, the one caveat is the discrepancy in its specificity: in vitro PA and PIP2 were sufficient to recruit Nir1-LNS2 to PC liposomes (Figure 2), but in vivo only PA was sufficient for mitochondrial recruitment (Figure 4). One reason for this difference could be that the Nir1-LNS2 requires R784 near the SIDGS pocket and an N-terminal amphipathic helix for membrane interactions (Figure 2).”


      #1.3. Pag. 7: '...small caveat to consider when using Nir1-LNS2 to study PA, the data also demonstrates that Nir1-LNS2 is not specifically interacting with any of the PM PIPs in cellular membranes.'This seems not accurate, since the data in Fig. 3 suggest that PI4P could be involved in membrane localization of Nir1-LNS2. It remains however unresolved whether this is a specific interaction with this PIP.

      We have rewritten the text on Page 8, right column, first paragraph accordingly: “This data suggests that decreasing the anionic charge of the membrane through depletion of PIPs slightly reduces Nir1-LNS2’s ability to interact with the PM, but it doesn’t fully re-localize the sensor. Therefore, this is a caveat to consider when using Nir1-LNS2 to study PA.”

      • *

      #1.4. Please note that the presence of PE increases the ionization (and negative charge) of PIP2 (Graber et al., 2012) rather than dilutes the negative charge as stated in the Discussion on p.13. Please revise!

      We have updated the text on Page 14, right column, last paragraph: “The presence of other lipids such as PI, the formation of PIP2-rich domains, and even interactions with neighboring proteins can increase hydrogen bonding of PIP2and dilute the negative charge (Graber et al., 2012; Borges-Araújo and Fernandes, 2020). Phosphatidylethanolamine on the other hand, increases PIP2 ionization and its negative charge, though these effects are also thought to be reduced by PIP2 intramolecular hydrogen bonding which competes for the charges on the lipid (Graber et al., 2012).”

      #1.5. P 1 The authors may consider adding a 4th criterium for a lipid biosensor: the sensor should not serve as a sink for the lipid by removing/sequestering it from the active pool, thereby interfering with other interactions/conversions.

      We agree that biosensors should not sequester a significant fraction of their cognate lipids and affect downstream pathways by competing with endogenous binding partners. We have rewritten the following text regarding Figure 6 to make this distinction more clear:

      Page 13, left column, last paragraph: “As Nir1-LNS2 shows high affinity for PA across cell lines, this brings up the concern that use of Nir1-LNS2 will sequester PA and inhibit endogenous signaling pathways that depend on PA…Therefore, we conclude that use of Nir1-LNS2 as a PA biosensor does not sequester significant amounts of PA. It is suggested that cellular homeostasis may compensate for the amount of bound lipid by increasing synthesis of free lipid, as this has been seen with the PIP2 biosensor PH-PLCd1 (Traynor-Kaplan et al., 2017). While PA has a plethora of cellular functions, the fact that Nir1-LNS2 expression does not disrupt MCS formation shows promise that the high affinity of Nir1-LNS2 will not inhibit downstream PA signaling.

      #1.6. Nir1 lacks a PITP domain (Fig. 1), yet is referred to as lipid transfer protein: please elaborate/explain.

      The following text has been added to Page 2, left column, last paragraph to clarify this point: “This family of proteins, made up of Nir1, Nir2, and Nir3, form ER-PM membrane contact sites (MCS) to exchange PA and phosphatidylinositol (PI) between the compartments (Cockcroft and Raghu, 2016; Kim et al., 2015). While Nir1 lacks a functional PITP domain, it was initially classified as part of the PITP family based on the homology of its other domains with Nir2 and Nir3. Furthermore, Nir1 has a role in lipid transfer by facilitating Nir2 recruitment to the MCS (Quintanilla et al., 2022).”

      • *

      #1.8. Indicate the concentrations of PC and protein in the legend to Fig. 2 panels A and B. M&M says 2 mM PC, according to the PA-concentrations above panel 2A, this should be 1 mM. Please clarify.

      We have corrected the typo in panel 2A (now panel 2B) and have updated the Figure 2 legend as follows, “(A) A representative SDS-PAGE gel is shown for Nir1-LNS2 binding to various PM lipids in POPC liposomes. (B) A representative SDS-PAGE gel is shown for Nir1-LNS2 binding of increasing PA molar concentrations in POPC liposomes. For both A and B, the lipids indicated were mixed with POPC to produce a 2 mM solution, then 50 uL of the resulting liposome mixture was incubated with 50 uL of Nir1-LNS2 at ~1 mg/mL. Supernatant (S) and pellet (P) lanes were quantified using ImageJ to determine percent protein bound. The protein-only control pellet was used as a baseline (input). Nir1-LNS2 appears on the gel at 37 kDa.”

      #1.9. In Fig. 2B, PI is missing. Any specific reason?

      We have updated the text on Page 6, left column, second paragraph to discuss the low levels of PI at the PM, which is why we did not include this lipid. “Using this same PC background, we tested the efficacy of the PM lipids DAG, PA, PS, PI4P and PIP2 in recruiting Nir1-LNS2 to membranes. While PI serves as a substrate for PI4P and PIP2 synthesis (collectively referred to as the phosphatidylinositol phosphates (PIPs)) at the PM, levels of PI at the PM are very low compared to the PIPs and therefore PI itself was not tested (Zewe et al., 2020; Pemberton et al., 2020).”

      #1.10. Move Fig. 2C to the Introduction and extend it to illustrate the shared conserved features of Nir1-LNS2 and lipin.

      We would like to keep the diagram of the Nir1-LNS2 in Figure 2 where the features are discussed in more detail than in the introduction. However, we did add this sentence to the introduction __on p.2, right column, second paragraph __that refers the reader to the cartoon in Figure 2. “These features are conserved in the Nir LNS2 domains, except for the catalytic Asp in the DxDxT motif and another Mg2+-coordinating residue (Figure 2C).”

      #1.11. P 13. 'While real-time IMPACT does not directly report on PA levels as it does not use the endogenous PLD substrate PC, ...'It is true that this method doesn't directly report on PA levels, but that is because it uses a click chemistry probe as substrate for PLD's transphosphatidylation reaction. Contrary though to what is stated by the authors, this reaction still uses the endogenous substrate of PLD, PC (Liang et al. 2019; www.pnas.org/cgi/doi/10.1073/pnas.1903949116).

      We have rewritten the aforementioned sentence in the discussion (Page 15, right column, second paragraph): “While real-time IMPACT does not directly report on PA levels as it creates a unique fluorescent lipid, it offers several advantages such as being able to interrogate lipid trafficking over time.”

      #1.12. Fig. 1K: Control must have been treated with PMA plus vehicle (DMSO); if so, please indicate that vehicle was added.

      Figure 1K and its legend have been updated. The legend now reads “Stimulating HEK293A cells with 100 nM PMA and 750 nM of the PLD inhibitor FIPI reduces the Nir1-LNS2 response to PMA and cell media (Veh)”

      #1.13. Figure 6C: How is DFt/Fpre defined? Add to legend.

      We have updated the Figure 6 legend to read “MCS formation was quantified as the change in fluorescence at a given time (Ft) divided by the fluorescence before CCh stimulation (Fpre).”

      #1.14. P 4: 'The boundaries of the Nir2-LNS2 (Uniprot: O00562) and Nir3-LNS2 (Uniprot: Q9BZ72) were also defined using AlphaFold predictions of the structure of these domains.' How was the extent of each of these domains determined - they are much larger than the previously published sequences of LNS2 domains (Kim et al. 2013; Embo Rep. 14:891-899. doi:10.1038/embor.2013.113)?

      We have clarified the definition of boundaries by updating the following sentence on Page 4, right column, 5thparagraph: “The boundaries of the Nir2-LNS2 (Uniprot: O00562) and Nir3-LNS2 (Uniprot: Q9BZ72) were also defined using AlphaFold predictions of the structure of these domains. Previous definitions of the Nir2-LNS2 domain have considered the domain smaller than we do here (Kim et al., 2013, 2015) . However, according to AlphaFold, the boundaries set previously exclude a large N-terminal beta barrel that is conserved in the Lipin/Pah PAPs, as well as disrupt the domain fold that is homologous to the Lipin active site. Therefore, we are confident that our constructs include the entire LNS2 fold.”

      #1.15. In Fig. 3 legend, specify the starting condition of Nir1-LNS2 binding?? Which fluorescence are we looking at?

      This figure has now been revised in response to __point #3.5, __which hopefully also clarified this point.


      #1.16. In legend to Fig. 6 please specify the fluorescent tags used. Have they been shown not to affect protein function?

      We have updated the figure legend to specify that GFP-Nir2 was used in conjunction with iRFP-Nir1-LNS2, we also changed the text on Page 13, right column, second paragraph that refers to this experiment. It now reads “We co-expressed a GFP-tagged Nir2 and either iRFP-Nir1-LNS2 or iRFP-TubbyC, a PIP2 biosensor that is not expected to affect MCS formation. It should be noted that although we have used the NG-tagged Nir1-LNS2 the most extensively, the iRFP and mCherry-tagged biosensors have behaved the same as the NG-tagged version in the experiments where we utilized them.”

      • *

      #2.1. Nir1-LNS2 seems to show variable basal localization across different representative images presented in the manuscript. A part of them were justified by the effect of other anionic species by PIP (such as Fig 3 where they co-expressed PIP-degrading enzymes). For example, cells in Fig 1F and those in Fig 4F show quite different basal localization of Nir1-LNS2. Is it due to difference in expression level, cell conditions, or other factors The significant amount of plasma membrane basal localization seems to indicate that Nir1-LNS2 localization is affected by its binding to PI(4,5)P2.? The significant and potentially variable plasma membrane localization of Nir1-LNS1 can limit the utility of this probe.

      We have added Supplemental Figure 1 __to show the range of Nir1-LNS2 basal localization compared to NES-PABDx2-Spo20 and PASS. We believe that this localization is due to variable amounts of basal PA combined with some non-selective anionic interactions at the PM. The following paragraph has been added to __page 7, left column, first paragraph to discuss this point, “Since the R784E mutant showed reduced basal PM localization, we wanted to further characterize the basal localization of the wild-type Nir1-LNS2. The basal localization of wild-type Nir1-LNS2 varies somewhat between cells, but analysis of all of the cells used throughout this study determines that the basal PM/Cyt ratio of the wild-type Nir1-LNS2 is 1.0644 ± 0.0672, which suggests that at resting conditions Nir1-LNS2 is slightly enriched at the PM (Supplemental Figure 1A, 1D). When we did the same analysis for all the cells where we expressed NES-PABDx2-Spo20 or PASS, we obtained a basal PM/Cyt ratio of 1.1318 ± 0.0954 for NES-PABDx2-Spo20 and a ratio of 0.6861 ± 0.0143 for PASS (Supplemental Figure 1B, 1C, 1E). We believe that the basal localization of these sensors reflects variable PA levels in the PM at resting conditions. FRET based imaging of PA has indicated that there are detectable levels of PA under basal conditions, and this approach also showed some variability in basal PA levels as we see with the spread of Nir1-LNS2’s basal localization (Nishioka et al., 2010). Overall, our data suggests that the high affinity of Nir1-LNS2 for PA is reflected in both its basal localization and its response to stimulations such as PMA.”

      To address the idea that PIP2 is responsible for the basal localization of Nir1-LNS, we have added the following to the discussion on p.15, left column, second paragraph: “Aside from concerns about specificity, the ability of Nir1-LNS2 to interact with PIP2 in liposomes could suggest that the basal PM localization of Nir1-LNS2 is due to it binding PIP2. However, selective depletion of PI(4,5)P2 did not affect basal Nir1-LNS2 localization to the PM (Figure 3C) and was not able to recruit the probe to mitochondria (Figure 4A-C). We did see FKBP-PJ reduce the association of Nir1-LNS2 with the PM under resting conditions (Figure 3E, 3F), suggesting a possible non-specific ionic interaction with polyanionic inositol lipids. Another mechanism to explain these data would be phosphoinositide-dependence of PA production. Phosphoinositides are well-known to regulate the recruitment of PLD isoforms and type II DGKs to the PM as well as their catalytic activity there (Sciorra et al., 2002; Du et al., 2003; Hodgkin et al., 2000; Liscovitch et al., 1994; Kume et al., 2016). Therefore, we suggest that the effects of FKBP-PJ could be reducing basal PLD and DGK activity and hence lowering resting PA levels. That could explain the loss of both basal Nir1-LNS2 PM association when FKBP-PJ is expressed, and Nir1-LNS2’s PM interactions as FKBP-PJ is recruited to the membrane to further deplete phosphoinositides. While this study cannot fully substantiate this hypothesis, the role of PIP2 in PLD activity and PA production is an interesting hypothesis that warrants further investigation.

      • *

      #2.3. Fig 1 shows Nir1-LNS2 translocates to plasma membrane upon PMA stimulation in a PLD activity-dependent manner. However, the image in Fig1K is not super convincing since there is already a decent amount of plasma membrane localization of the sensor at t = 0 min, which looks considerably different from the t = 0 min image shown in 1F.

      We have updated the images both in Figure 1F and Figure 1K to best represent the mean basal localization as determined in Supplemental Figure 1.

      • *

      #2.4. Fig 3 and Fig 4 need the validation of PIP depletion/production using PIP-binding probes.

      These controls are shown in Figure 4B. We have only included PH-PLCd1 to show PIP2 levels as the large PIP2 production by a PIP5K also indicates the large elevation of the substrate PI4P.

      This control data has now been included in Figure 3, and is referenced by the Figure 3 legend and the following text from p.8, left column, 4th paragraph: “As a negative control, we expressed a doubly catalytically dead mutant of PJ. When PJ-Dead was recruited to the PM, we confirmed that PIP2 and PI4P levels remained unaltered by seeing stable association of the PIP2 biosensor Tubby(c) with the PM (Figure 3A). We observed no loss of the PM localization of Nir1-LNS2 with PJ-Dead recruitment (Figure 3A, 3E). When the active PJ was expressed in HEK293A cells, there was a slight loss of Nir1-LNS2 at the PM even before PJ recruitment (Figure 3B, 3E), although this was not significant as compared to pre-stimulated cells expressing PJ-Dead (Figure 3F). However, Nir1-LNS2 did move off the PM into the cytosol after PJ recruitment, to a similar extent that the PIP2 biosensor Tubby(c) moved off the PM (Figure 3B, 3E). AUC analysis of the Nir1-LNS2 response showed there was a significant reduction of Nir1-LNS2 PM localization (Figure 3G).

              Since PJ depletes both PIP2 and PI4P, we examined which of these lipids specifically contribute to Nir1-LNS2 membrane binding. We utilized an FKBP-INPP5E construct that depletes PIP2 but does not deplete PI4P at the PM, as seen by the significant loss of PM-localized Tubby(c) (Figure 3C). Then FKBP-Sac1, an FKBP-PJ construct that has a catalytically dead INPP5E domain, but an active Sac1 domain was used to deplete PI4P without altering PIP2 levels, as seen by removal of the PI4P biosensor P4Mx1 from the PM (Figure 3D). Recruitment of FKBP-INPP5E did not significantly affect Nir1-LNS2 localization (Figure 3C, 3E, 3G). However, recruitment of FKBP-Sac1 slightly, but not significantly affected Nir1-LNS2 localization (Figure 3D, 3E, 3G). This data suggests that decreasing the anionic charge of the membrane through depletion of PIPs slightly reduces Nir1-LNS2’s ability to interact with the PM, but it doesn’t fully re-localize the sensor. Therefore, this is a small caveat to consider when using Nir1-LNS2 to study PA.”
      
      • *

      #2.“Advance”: The key significance of the manuscript, which is the superiority of Nir1-LNS2 over existing PA-binding probes, is not clear from the data provided. Other than that part, the study does not seem to include significant finding, since the binding of Nir1-LNS2 to PA itself is already known (EMBO Rep. 2013 Oct; 14(10): 891-899, Mol Biol Cell. 2022 Mar 1;33(3):br2).

      While the Kim et al., paper referenced by the reviewer does show that the LNS2 binds to PA, this same group later published data showing that the LNS2 binds to both PA and DAG. (Kim et al., 2015 doi: 10.1016/j.devcel.2015.04.028). Therefore, we believe our data which unequivocally shows that the LNS2 does not bind DAG, is a significant advancement in the field. Aside from the creation of the new biosensor, it progresses our understanding of the mechanism of the Nir family lipid transfer proteins, which are vital to PM lipid homeostasis.

      To highlight this point, we have added the following paragraph to the discussion on p.14, right column, 1st paragraph: “The lack of Nir1-LNS2 binding to DAG-rich liposomes (Figure 2), DAG produced at the mitochondria (Figure 4), and DAG analogs (Figure 5) shows that the LNS2 domains only binds to PA rather than to PA and DAG as has been reported previously (Kim et al., 2015). In this study, we redefined the boundaries of the LNS2 domain based on the structure of the Lipin/Pah family domains and the AlphaFold prediction for the Nir1-LNS2. The new boundaries included the entire fold that is conserved between the Lipins/Pahs and the Nirs. Therefore, we suspect that the expansion of the LNS2 domain in our work explains the differences in our data and the published literature regarding DAG binding. Importantly, the data obtained with our amended Nir1-LNS2 suggests that within the context of the lipid transfer cycle and MCS formation, the Nir family of PITPs translocate to the PM solely based on PA. This information will be important as the field continues to determine the exact mechanism of the Nir PITPs in lipid homeostasis.”

      • *

      #3.4. Due to PA's versatile biological roles, the evidence provided by the MCS experiment is far from enough to conclude that Nir1-LNS2 does not interfere with PA function. Further examination of various endogenous pathways is warranted before making the statement "Therefore, Nir1-LNS2 can be used ...... without concern of affecting downstream events".

      We have rewritten the quoted sentence for a more nuanced interpretation on p.13, right column, second paragraph:“While PA has a plethora of cellular functions, the fact that Nir1-LNS2 expression does not disrupt MCS formation shows promise that the high affinity of Nir1-LNS2 will not inhibit downstream PA signaling.”


      #3.5. In Fig. 3A-D (Left), it is unclear to what extent PIPs are reduced after treatment with FKBP-tagged PIP phosphatases. The treatment depicted in the illustration should be accompanied by data, e.g., % of PIPs being degraded after treatment.

      This comment is addressed in our response to #2.4, where we show the addition of control biosensors for PIP2 and PI4P, and also propose new experiments in TIRFM for more sensitive and precise measurements.

      • *

      4. Description of analyses that authors prefer not to carry out


      __#1.1a: __Have the authors considered using the DGK inhibitor R59022 to selectively block the conversion of DAG to PA by DGK? Such an experiment could provide additional evidence for the requirement of DGK activity and consequent PA formation for Nir1-LNS2 membrane localization.

      We did indeed attempt experiments with R59022, and have made several unexpected findings with the compound that go way beyond the scope of the current manuscript. In short, although R59022 reduces DGK catalytic activity, it also potently drives over-expressed or endogenous DGKalpha to the plasma membrane, and induces large accumulations of PM PA. This complicated interpretation of data obtained with this compound. We are currently preparing a manuscript detailing the novel and unexpected effects.

      #3.6. In Fig. 4C, the plasma membrane (PM) localization of Nir1-LNS2 and NES-PABDx2-Spo20, as determined by the "intensity PM/Cyto," should be analyzed following the ectopic production of PI4P and PIP2. Although mitochondria do not apparently recruit Nir1-LNS2 or NES-PABDx2-Spo20 after induced PI4P and PIP2 production, it remains possible that the subsequent trafficking of PI4P and PIP2 from mitochondria might sequester the biosensors away from the PM into the cytoplasm, thereby reducing the "intensity PM/Cyto" of Nir1-LNS2.

      We cannot easily determine the PM/cyt ratio in this experiment as we included a mitochondrial marker rather than a PM marker when imaging. However, based on the images, there is no change in the PM intensity of the Nir1-LNS2 and NES-PABDx2-Spo20 biosensors. The images included in Figure 4 are representative of this localization.

      #3.7. It would be valuable to determine the half-life (stability) of Nir1-LNS2.

      In all of our transient transfections, the Nir1-LNS2 shows good stability where we don’t expect degradation to be a major concern. Furthermore, stability has not usually been factor considered in the creation any of the current widely used lipid biosensors.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      The authors reported a new PA-binding probe Nir1-LNS2, which potentially offers advantages over conventional tools with its higher sensitivity for PA. The authors performed extensive characterization in different cell lines to test the ability of Nir1-LNS2 to selectively bind to PA without disrupting endogenous PA signaling. While the tool is potentially useful as a new PA-binding probe with higher spatiotemporal precision, the data provided in the manuscript are not enough to support their claims and conclusions. Especially, the data do not fully support that the Nir1-LNS2 offers more sensitive and selective binding to PA than conventional PA-binding probes using Spo20.

      Major comments:

      1. Nir1-LNS2 seems to show variable basal localization across different representative images presented in the manuscript. A part of them were justified by the effect of other anionic species by PIP (such as Fig 3 where they co-expressed PIP-degrading enzymes). For example, cells in Fig 1F and those in Fig 4F show quite different basal localization of Nir1-LNS2. Is it due to difference in expression level, cell conditions, or other factors? The significant amount of plasma membrane basal localization seems to indicate that Nir1-LNS2 localization is affected by its binding to PI(4,5)P2. The significant and potentially variable plasma membrane localization of Nir1-LNS1 can limit the utility of this probe.
      2. The authors mention high affinity of Nir1-LNS2, but it lacks in vitro characterization that should demonstrate the higher affinity of Nir1-LNS2 compared to conventional probes such as Spo20. The authors should perform side-by-side comparison in Fig 2 to compare the PA affinity and specificity of Nir1-LNS2 compared to Spo20.

      Minor comments:

      1. Fig 1 shows Nir1-LNS2 translocates to plasma membrane upon PMA stimulation in a PLD activity-dependent manner. However, the image in Fig1K is not super convincing since there is already a decent amount of plasma membrane localization of the sensor at t = 0 min, which looks considereably different from the t = 0 min image shown in 1F.
      2. Fig 3 and Fig 4 need the validation of PIP depletion/production using PIP-binding probes.
      3. In Discussion: "while in vivo it solely binds to PA (Fig 4)" - this claim does not seem to be true according to Fig 4, where the overexpression of PIP-degrading enzymes did affect the Nir1-LNS2 basal localization.

      Significance

      General assessment:

      The existing PA-binding probe using Spo20 is indeed quite blunt, which takes minutes to see appreciable accumulation of the probe upon PA production. Nir1-LNS2 can be indeed useful if it offers better spatiotemporal precision. However, the advantage of this tool over existing tools is not convincing without head-to-head comparison of either (1) in vitro characterization of PA binding affinity and selectivity between Nir1-LNS2 and Spo20 or (2) response to PA produced on different subcellular localizations other than plasma membrane and mitochondria (e.g., endosomes, golgi, and endoplasmic reticulum).

      Advance:

      The key significance of the manuscript, which is the superiority of Nir1-LNS2 over existing PA-binding probes, is not clear from the data provided. Other than that part, the study does not seem to include significant finding, since the binding of Nir1-LNS2 to PA itself is already known (EMBO Rep. 2013 Oct; 14(10): 891-899, Mol Biol Cell. 2022 Mar 1;33(3):br2).

      Audience:

      The lipid biology community would be highly interested in using the new PA-binding tool to study lipid localization in live cells.

      My expertise is PA signaling and deveopment of engineered phospholipase Ds, which can produce PA on demand at various subcellular locations.

  7. www.tripleeframework.com www.tripleeframework.com
    1. Engagement should create an environment of active time-on-task learning (

      The most creative use of technology in learning is what I saw in my daughter’s dance class during COVID. Her dance teacher is truly a gifted educator and artist and she teaches 2nd grade as well as the advanced Jazz classes at my daughter’s studio. During the second year of COVID, schools and dance classes went to distance learning yet again. It was tradition to choreograph a short holiday dance at Christmas time. My daughter’s class choreographed a holiday dance where each person in the class did a video of one body part (right leg, left leg, right arm, left arm, torso and head), then they put them all together in to one video. I believe this technique utilized all three facets of the Triple E framework. The students were engaged with each other and worked together to create one dance with many people, learning was enhanced by choreographing as well as dancing, and it was extended to learning how to edit and combine video to create their holiday musical artwork.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This valuable work performed fMRI experiments in a rodent model of absence seizures. The results provide new information regarding the brain's responsiveness to environmental stimuli during absence seizures. The authors suggest reduced responsiveness occurs during this type of seizure, and the evidence leading to the conclusion is solid, although reviewers had divergent opinions.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this paper, the effects of two sensory stimuli (visual and somatosensory) on fMRI responsiveness during absence seizures were investigated in GEARS rats with concurrent EEG recordings. SPM analysis of fMRI showed a significant reduction in whole-brain responsiveness during the ictal period compared to the interictal period under both stimuli, and this phenomenon was replicated in a structurally constrained whole-brain computational model of rat brains.

      The conclusion of this paper is that whole-brain responsiveness to both sensory stimuli is inhibited and spatially impeded during seizures.

      Reviewer #2 (Public Review):

      Summary:

      This study examined the possible affect of spike-wave discharges (SWDs) on the response to visual or somatosensory stimulation using fMRI and EEG. This is a significant topic because SWDs often are called seizures and because there is non-responsiveness at this time, it would be logical that responses to sensory stimulation are reduced. On the other hand, in rodents with SWDs, sensory stimulation (a noise, for example) often terminates the SWD/seizure.

      In humans, these periods of SWDs are due to thalamocortical oscillations. A certain percentage of the normal population can have SWDs in response to photic stimulation at specific frequencies. Other individuals develop SWDs without stimulation. They disrupt consciousness. Individuals have an absent look, or "absence", which is called absence epilepsy.

      The authors use a rat model to study the responses to stimulation of the visual or somatosensory systems during and in between SWDs. They report that the response to stimulation is reduced during the SWDs. While some data show this nicely, the authors also report on lines 396-8 "When comparing statistical responses between both states, significant changes (p<0.05, cluster-) were noticed in somatosensory auditory frontal..., with these regions being less activated in interictal state (see also Figure 4). That statement is at odds with their conclusion. I do not see that this issue was addressed.

      See comments below starting with “We acknowledge the reviewer…”.

      They also conclude that stimulation slows the pathways activated by the stimulus. I do not see any data proving this. It would require repeated assessments of the pathways in time. This issue was not addressed.

      See comments below starting with “We acknowledge the reviewer…”.

      The authors also study the hemodynamic response function (HRF) and it is not clear what conclusions can be made from the data. This is still an issue. No conclusions appear to be possible to make.

      See comments below starting with “We acknowledge the reviewer…”.

      Finally, the authors use a model to analyze the data. This model is novel and while that is a strength, its validation is unclear. The authors did not add any validation of their model.

      See comments below starting with “We acknowledge the reviewer…”.

      Strengths:

      Use of fMRI and EEG to study SWDs in rats.

      Weaknesses:

      Several aspects of the Methods and Results were improved but some are still are unclear.

      We acknowledge the reviewer for the concerns of we not addressing the comments above. However, we emphasize that most of the comments were addressed in the already sent “Response to Review Comments” and in the updated manuscript. Here we repeat the responses and provide also additional clarifications to some of the comments.

      We thank the reviewer for noting the discrepancy in the statement of “less activated in interictal state”. The statement should have been written vice versa. We also address that the direction of activation change between groups can be misinterpreted based on statistical maps itself (Figure 3) where only statistical changes are visible and not the polarity of response (can be seen in Figure 4). Therefore, we have made a following changes in the section 3.3.: “There were more voxels with significant changes of activity during interictal state compared to ictal state (136% more). Comparing the statistical responses between interictal and ictal states revealed significant changes (p<0.05, cluster-level corrected) in the visual, somatosensory, and medial frontal cortices. In the ictal state, these regions showed significant hemodynamic decreases when comparing to interictal state, and these polarity changes can be seen the hemodynamic response functions (Figure 4).”

      We agree with the reviewer that there are no data showing slowing of the pathways in response to stimulus. However, we are a bit confused about this comment, as to what part in conclusion section it refers to. We did not intentionally claim that stimulation slows the activated pathways in the manuscript.

      Reviewer is right that strong claims cannot be made from HRF by itself. Therefore, we have avoided to such phrasing throughout the manuscript. In the conclusion section, we speculate that HRF decreases “could play a role in decreased sensory perception” but also state that “further studies are required”. The observed HRF decreases (rather than increases) in the cortex when stimulation was applied during SWD, was discussed in section 4.4., where we speculated that neuronal suppression (possible apparent in negative HRFs) caused by SWD can prevent responsiveness. Conclusion now states the following: “Moreover, the detected decreases in the cortical HRF when sensory stimulation was applied during spike-and-wave discharges, could play a role in decreased sensory perception. Further studies are required to evaluate whether this HRF change is a cause or a consequence of the reduced neuronal response.”

      We point out that the main validation of the model and its details were provided in the previous answer to the reviewer and added to the manuscript. The model presented in the paper is based on a mean-field formalism that captures neuronal activity at the mesoscale level. This mean-field formalism is derived via a detailed statistical description of the activity of a spiking neuronal population of excitatory and inhibitory with conductance-based synaptic interactions. Thus, the validation of the mean-field model is performed via direct comparison between the dynamics obtained from the mean-field model and the dynamics obtained from the underlying spiking neural network model. This comparison is shown in the supplementary material of the manuscript, where the transition studied in the paper between interictal (asynchronous irregular activity) and ictal (SWD dynamics) activity, which is predicted by the mean-field model, is indeed observed in the underlying spiking neuronal model. The existence of these two types of dynamics and the transition between them is the main component of the model used to build the analysis of the responsiveness performed in the paper (which has been properly validated).

      Reviewer #3 (Public Review):

      Summary:

      This is an interesting paper investigating fMRI changes during sensory (visual, tactile) stimulation and absence seizures in the GAERS model. The results are potentially important for the field and do suggest that sensory stimulation may not activate brain regions normally during absence seizures. But the findings are limited by substantial methodological issues that do not enable fMRI signals related to absence seizures to be fully disentangled from fMRI signals related to the sensory stimuli.

      Strengths:

      Investigating fMRI brain responses to sensory stimuli during absence seizures in an animal model is a novel approach with potential to yield important insights.

      Use of an awake, habituated model is a valid and potentially powerful approach.

      Weaknesses:

      The major difficulty with interpreting the results of this study is that the duration of the visual and tactile stimuli were 6 seconds, which is very close to the mean seizure duration per Table 1. Therefore the HRF model looking at fMRI responses to visual or auditory stimuli occurring during seizures was simultaneously weighting both seizure activity and the sensory (visual or auditory) stimuli over the same time intervals on average. The resulting maps and time courses claiming to show fMRI changes from visual or auditory stimulation during seizures will therefore in reality contain some mix of both sensory stimulation-related signals and seizure-related signals. The main claim that the sensory stimuli do not elicit the same activations during seizures as they do in the interictal period may still be true. But the attempts to localize these differences in space or time will be contaminated by the seizure related signals.

      In their response to this comment the authors state that some seizures had longer than average duration, and that they attempted to model the effects of both seizures and sensory stimulation. However these factors do not mitigate the concern because the mean duration of seizures and sensory stimulation remain nearly identical, and the models used therefore will not be able to effectively separate signals related to seizures and related to sensory stimulation.

      Regressors for seizures were formed by including periods of seizures without any stimulation present. In theory, if seizures were perfectly modeled by the regressor, the left variance is completely orthogonal to the main effect of the stimulus. Furthermore, only the cases where the seizures are longer than the stimulus are used to calculate the responsiveness of the stimulus (while the cases where the seizures are shorter than the stimulus are used as nuisance regressors to account for error variance). However, we agree with the reviewer that in practice all effects of the seizure cannot be removed completely from the effect of stimulus. We have addressed this concern in the “physiologic and methodology consideration” section: “We note a caution that presented maps and time courses showing fMRI changes from visual or whisker stimulation during seizures may contain a mixture of both sensory stimulation-related signals and seizure-related signals. To minimize this contamination in the linear model used, we considered both stimulation and seizure-only states as regressors of interest and used seizure-only responses as nuisance regressors to account for error variance. Thereby, the effects caused by the stimulation should be separated as much as possible from the effects caused by the seizure itself.”

      The claims that differences were observed for example between visual cortex and superior colliculus signals with visual stim during seizures vs interictal remain unconvincing due to above.

      Maps shown in Figure 3 do not show clear changes in the areas claimed to be involved.

      In their response the authors enlarged the cross sections. However there are still discrepancies between the images and the way they are described in the text. For example, in the Results text the authors say that comparing the interictal and ictal states revealed less activation in the somatosensory cortex during the ictal than during the interictal state, yet Figure 3 bottom row left shows greater activation in somatosensory cortex in this contrast.

      We note that the direction of activation change between groups can be misinterpreted based on statistical maps itself (Figure 3) where only statistical changes are visible and not the polarity of response (can be seen in Figure 4). Therefore, we have made the following changes to the section 3.3.: “There were more voxels with significant changes of activity during interictal state compared to ictal state (136% more). Comparing the statistical responses between interictal and ictal states revealed significant changes (p<0.05, cluster-level corrected) in the visual, somatosensory, and medial frontal cortices. In the ictal state, these regions showed significant hemodynamic decreases when comparing to interictal state, and these polarity changes can be seen the hemodynamic response functions (Figure 4).”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Authors have revised this paper with a lot of detail. The paper can be accepted for publication in this version.

      Reviewer #2 (Recommendations For The Authors):

      Reviewer #1

      (1) The analysis in this paper does not directly answer the scientific question posed by the authors, which is to explore the mechanisms of the reduced brain responsiveness to external stimuli during absence seizures (in terms of altered information processing), but merely characterizes the spatial involvement of such reduced responsiveness. The same holds for the use of mean-field modeling, which merely reproduces experimental results without explaining them mechanistically as what the authors have claimed at the head of the paper.

      We agree with the reviewer that the manuscript does not answer specifically about the mechanisms of reduced brain responsiveness. The main scientific question addressed in the manuscript was to compare whole-brain responsiveness of stimulus between ictal and interictal states. The sentence that can lead to misinterpretations in the manuscript abstract: "The mechanism underlying the reduced responsiveness to external stimulus remains unknown." was therefore modified to the following "The whole-brain spatial and temporal characteristics of reduced responsiveness to external stimulus remains unknown".

      This change did not address the issue. The problem is that there is no experimentation to address the underlying mechanisms of the results. I also think the changed language in the abstract is less clear than the original.

      We fully agree that this manuscript does not answer or claim to be answering about the mechanisms of reduced brain responsiveness. The main scientific question addressed in the manuscript was to compare whole-brain responsiveness of stimulus between ictal and interictal states, by means of hemodynamics and mean-field simulation.

      We have changed the language of the abstract to the following:

      “In patients suffering absence epilepsy, recurring seizures can significantly decrease their quality of life and lead to yet untreatable comorbidities. Absence seizures are characterized by spike-and-wave discharges on the electroencephalogram associated with a transient alteration of consciousness. However, it is still unknown how the brain responds to external stimuli during and outside of seizures.

      This study aimed to investigate responsiveness to visual and somatosensory stimulation in GAERS, a well-established rat model for absence epilepsy. Animals were maintained in a non-curarized awake state allowing for naturally occurring seizures to be produced inside the magnet. They were imaged continuously using a quiet zero-echo-time functional magnetic resonance imaging (fMRI) sequence. Sensory stimulations were applied during interictal and ictal periods. Whole brain responsiveness and hemodynamic responses were compared between these two states. Additionally, a mean-field simulation model was used to mechanistically explain the changes of neural responsiveness to visual stimulation between interictal and ictal states.

      Results showed that, during a seizure, whole-brain responses to both sensory stimulations were suppressed and spatially hindered. In several cortical regions, hemodynamic responses were negatively polarized during seizures, despite the application of a stimulus. The simulation experiments also showed restricted propagation of spontaneous activity due to stimulation and so agreed well with fMRI findings. These results suggest that sensory processing observed during an interictal state is hindered or even suppressed by the occurrence of an absence seizure, potentially contributing to decreased responsiveness during this absence epileptic process.”

      The authors also study the hemodynamic response function (HRF) and it is not clear what conclusions can be made from the data.

      The response of the authors did not clarify this issue. Instead, they explained why they examined HRF and that they can only speculate what the data means.

      Reviewer is right that strong claims cannot be made from HRF by itself. Therefore, we have avoided to such phrasing throughout the manuscript. In the conclusion section, we speculate that HRF decreases “could play a role in decreased sensory perception” but also state that “further studies are required”.

      Finally, the authors use a model to analyze the data. This model is novel and while that is a strength, its validation is unclear. The conclusion is that the modeling supports the conclusions of the study, which is useful.

      Details about the model were added.

      This is not entirely satisfactory because there is still no validation of the model.

      We point out that the main validation of the model and its details were provided in the previous answer to the reviewer and added to the manuscript. The model presented in the paper is based on a mean-field formalism that captures neuronal activity at the mesoscale level. This mean-field formalism is derived via a detailed statistical description of the activity of a spiking neuronal population of excitatory and inhibitory with conductance-based synaptic interactions. Thus, the validation of the mean-field model is performed via direct comparison between the dynamics obtained from the mean-field model and the dynamics obtained from the underlying spiking neural network model. This comparison is shown in the supplementary material of the manuscript, where the transition studied in the paper between interictal (asynchronous irregular activity) and ictal (SWD dynamics) activity, which is predicted by the mean-field model, is indeed observed in the underlying spiking neuronal model. The existence of these two types of dynamics and the transition between them is the main component of the model used to build the analysis of the responsiveness performed in the paper (which has been properly validated).

      How is ROI defined in this paper? What type of atlas is used?

      Anatomical ROIs were drawn based on Paxinos and Watson rat brain atlas 7th edition. Region was selected if there were statistically significant activations detected inside that region, based on activation maps. We clarified the definition of ROI as the following:<br /> "Anatomical ROIs, based on Paxinos atlas (Paxinos and Watson rat brain atlas 7th edition), were drawn on the brain areas where statistical differences were seen in activation maps."

      This is helpful, but the unstained brain does not show the borders of the areas. Therefore just saying an atlas was used is not enough. How in an unstained brain can the areas be accurately outlined?

      Areas of the brain were differentiated by co-registering the functional MRI images with an T1-weighted anatomical reference brain that was created on site from the same data set that was used for the manuscript. Potential co-registration inaccuracies created by using a reference brain measured in different site, sequence and a rat strain can be thus avoided. T1-images create sufficient contrast to differentiate main brain areas, but for more accurate border definition (e.g., to differentiate different thalamic nuclei), a coordinate system of the atlas and coordinates known in the used anatomical brain, were used to pinpoint exact borders of the brain areas.

      Reviewer #2

      The following also is not precise:

      "Although seizures are initially triggered by hyperactive somatosensory cortical neurons, the majority of neuronal populations are deactivated rather than activated during the seizure, resulting in an overall decrease in neuronal activity during SWD (McCafferty et al. 2023)."

      What neuronal populations? Cortex? Which neurons in the cortex? Those projecting to the thalamus? What about thalamocortical relay cells? Thalamic gabaergic neurons?

      Please check that these issues were corrected.

      The issues were addressed as follows:

      “Although SWDs are initially triggered by hyperactive somatosensory cortical neurons, neuronal firing rates, especially in majority of frontoparietal cortical and thalamocortical relay neurons, are decreased rather than increased during SWD, resulting in an overall decrease in activity in these neuronal populations (McCafferty et al., 2023). Previous fMRI studies have demonstrated blood volume or BOLD signal decreases in several cortical regions including parietal and occipital cortex, but also, quite surprisingly, increases in subcortical regions such as thalamus, medulla and pons (David et al., 2008; McCafferty et al., 2023).”

      Results

      After removing problematic animals and sessions, was there sufficient power? There probably wasn't enough to determine sex differences.

      After removing problematic sessions, we found statistically significant results (multiple comparison corrected) results in both activation maps, and hemodynamic responses. To determine sex differences, there were not enough animals for statistical findings (p>0.05).

      This is not the question. The question is whether there was sufficient power.

      A simple power calculation was performed as follows: considering a t-test, a risk alpha of 0.05, a power of 0.8, matched pairs (seizure/control), we can detect an effect size of 0.37 with our 4 animals, considering repeated measurements (4 sessions/animal x 11 seizure/control pairs per session). This is now mentioned in the manuscript.

      Table 1 has no statistical comparisons.

      Table 1 is purely an illustration of stimulation and seizure occurrence. There is no specific interest to compare stimulation types (in what state of seizure it occurred) as it does not provide any meaningful inferences to the study.

      Table 1 could be improved by statistics. More could be said and there would be justification to include it.

      We thank the reviewer for the suggestion, but as it is yet unclear to what statistical comparison would be feasible to do, we opt to leave it out.

      Statistical activation maps - it is not clear how this was done.

      Creation of statistical maps are explained in section 2.5.3.

      This section is not clear.

      We have added a reference (https://doi.org/10.1002/hbm.460020402) for readers to familiarize themselves with the concept of statistical parametric mapping.

      Fig 3 "F-contrast maps." Please explain.

      Creation of statistical maps are explained in section 2.5.3.

      This section is unclear.

      We have added a reference (https://doi.org/10.1002/hbm.460020402) for readers to familiarize themself with the concept of statistical parametric mapping.

      Reviewer #3 (Recommendations For The Authors):

      Aside from the concerns listed as weaknesses above which were not addressed, most of the more minor comments were addressed by the authors in the resubmission. However, the comment below was not addressed because it is impossible to see any firing rate changes elicited by sensory stimuli (if they are present) due to the scale during seizures. The seizure signals should be removed or accounted for by the model so that any possible sensory stimulus-related signals could be seen, and displayed on the same scale as firing rates without seizures. Prior comment (unaddressed) is repeated below:

      Figure 6-figure supplement 1, the scales are very different for many of the plots so they are hard to compare. Especially in the ictal periods (D, E, F) it is hard to see if any changes are happening during ictal stimulation similar to interictal stimulation due to very different scales. The activity related to SWD is so large that it overshadows the rest, and perhaps should be subtracted out.

      These two comments were addressed and replied in the previous round of reviews. Regarding the different scales of the plots from Figure 6-figure supplement 1, we point out that all the plots in the same scale are already presented in Figure 6 of the main-text. Regarding the activity related to SWD and sensory stimulation, we remark that the effect of the stimulation should be (and was) evaluated with respect to the ongoing activity. All the results concerning the neuronal responsiveness presented in the paper evaluate the statistical significance of the changes in activity produced by the stimulation with respect to the ongoing activity (during ictal and interictal states respectively). For this reason, all the plots containing the time series of neuronal activity in the simulations include the ongoing activity (with SWD dynamics when present) for proper comparison and relevant analysis. 

      Additional changes:

      In the section 3.2., the sentence: “In addition, responses were observed in the somatosensory cortex during a seizure state.” was removed for clarification purposes as deactivation rather than activation was observed in this brain area during a seizure state.

    1. Reviewer #1 (Public Review):

      Summary:

      The paper investigates the physiological and neural processes that relate to infants' attention allocation in a naturalistic setting. Contrary to experimental paradigms that are usually employed in developmental research, this study investigates attention processes while letting the infants free to play with three toys in the vicinity of their caregiver, which is closer to a common, everyday life context. The paper focuses on infants at 5 and 10 months of age and finds differences in what predicts attention allocation. At 5 months, attention episodes are shorter and their duration is predicted by autonomic arousal. At 10 months, attention episodes are longer, and their duration can be predicted by theta power. Moreover, theta power predicted the proportion of looking at the toys, as well as a decrease in arousal (heart rate). Overall, the authors conclude that attentional systems change across development, becoming more driven by cortical processes.

      Strengths:

      I enjoyed reading the paper, I am impressed with the level of detail of the analyses, and I am strongly in favour of the overall approach, which tries to move beyond in-lab settings. The collection of multiple sources of data (EEG, heart rate, looking behaviour) at two different ages (5 and 10 months) is a key strength of this paper. The original analyses, which build onto robust EEG preprocessing, are an additional feat that improves the overall value of the paper. The careful consideration of how theta power might change before, during, and in the prediction of attention episodes is especially remarkable.

      Weaknesses:

      The levels of EEG noise across age groups and periods of attention allocation are not controlled for. I appreciate the analysis of noise reported in supplementary materials. The analysis focuses on a broad level (average noise in 5-month-olds vs 10-month-olds) but variations might be more fine-grained (for example, noise in 5mos might be due to fussiness and crying, while at 10 months it might be due to increased movements). More importantly, noise might even be the same across age groups, but correlated to other aspects of their behaviour (head or eye movements) that are directly related to the measures of interest. Is it possible that noise might co-vary with some of the behaviours of interest, thus leading to either spurious effects or false negatives? One way to address this issue would be for example to check if noise in the signal can predict attention episodes. If this is the case, noise should be added as a covariate in many of the analyses of this paper.

      Concerning cross-correlation analyses, the authors state that "Interpreting the exact time intervals over which a cross-correlation is significant is challenging". Then, they say that asymmetry is enough to conclude that attention forward predicted theta power more than vice versa. I think it could be useful to add a bit more of explanation before reaching this conclusion, explaining why such statement is correct, and how it is supported by previous work in statistics.

      Finally, the cognitive process under investigation (e.g., attention) and its operationalization (e.g., duration of consecutive looking toward a toy) are not fully distinguished, but conflated instead (e.g., "attention durations"). This does not impact the quality of the work or analyses, but it slightly reduces clarity.

      General Remarks<br /> In general, the authors achieved their aim in that they successfully showed the relationship between looking behaviour (as a proxy of attention), autonomic arousal, and electrophysiology. Two aspects are especially interesting. First, the fact that at 5 months, autonomic arousal predicts the duration of subsequent attention episodes, but at 10 months this effect is not present. Conversely, at 10 months, theta power predicts the duration of looking episodes, but this effect is not present in 5-month-old infants. This pattern of results suggests that younger infants have less control over their attention, which mostly depends on their current state of arousal, but older infants have gained cortical control of their attention, which in turn impacts their looking behaviour and arousal.

    1. Reviewer #2 (Public Review):

      Summary:

      The idea that various clinical conditions may be associated, at least partially, with a disrupted corollary discharge mechanism has been present for long. In this paper, the authors draw a link between sensory overload, a characteristic of autism spectrum disorder, and a disturbance in the corollary discharge mechanism. The authors substantiate their hypothesis with strong evidence from both the motor and perceptual domains. As a result, they broaden the clinical relevance of the corollary discharge mechanism to encompass autism spectrum disorder.

      Public comments:

      The authors write:

      "Imagine a scenario in which you're watching a video of a fast-moving car on a bumpy road. As the car hits a pothole, your eyes naturally make quick, involuntary saccades to keep the car in your visual field. Without a functional efference copy system, your brain would have difficulty accurately determining the current position of your eye in space, which in turn affects its ability to anticipate where the car should appear after each eye movement."

      I appreciate the use of examples to clarify the concept of efference copy. However, I believe this example is more related to a gain-field mechanism, informing the system about the position of the eye with respect to the head, rather than an example of efference copy per-se.

      Without an efference copy mechanism, the brain would have trouble to accurately determine where the eyes will be in space after an eye movement, and it will have trouble predicting the sensory consequences of the eye movement. But it can be argued that the gain-field mechanism would be sufficient to inform the brain about the current position of the eyes with respect the head.

      The authors write:

      "In the double-step paradigm, two consecutive saccades are made to briefly displayed targets 21,22. The first saccade occurs without visual references, relying on internal updating to determine the eye's position."

      Maybe I am missed something, but in the double-step paradigm the first saccade can occur without the help of visual references if no visual feedback is present, that is, when saccades are performed in total darkness. Was this the case for this experiment? I could not find details about room conditions in the methods. Please provide further details.<br /> In case saccades were not performed in total darkness, then the first saccade can be based on the remembered location of the first target presented, which can be derived from the retinotopic trace of the first stimuli, as well as contribution from the surroundings, that is: the remembered relative location of the first target with respect to the screen border along the horizontal meridian (i.e. allocentric cues)<br /> A similar logic could be applied to the second saccade. If the second saccade were based only on the retinotopic trace, without updating, then it would go up and 45 deg to the right, based on the example shown in Figure 1. With appropriate updating, the second saccade would go straight up. However, if saccades were not performed in total darkness, then the location of the second target could also be derived from its relationship with the surroundings (for example, the remembered distance from screen borders, i.e. allocentric cues).<br /> If saccades were not performed in total darkness, the results shown in Figures 2 and 3 could then be related to: i) differences in motor updating between AQ score groups; ii) differences in the use of allocentric cues between AQ score groups; iii) a combination of i) and ii). I believe this is a point worth mentioning in the discussion."

      The authors write:

      "According to theories of saccadic suppression, an efference copy is necessary to predict the occurrence of a saccade."

      I would also refer to alternative accounts, where saccadic suppression appears to arise as early as the retina, due to the interaction between the visual shift introduced by the eye movement, and the retinal signal associated with the probe used to measure saccadic suppression. This could potentially account for the scaling of saccadic suppression magnitude with saccade amplitude.

      Idrees, S., Baumann, M.P., Franke, F., Münch, T.A. and Hafed, Z.M., 2020. Perceptual saccadic suppression starts in the retina. Nature communications, 11(1), p.1977.

    2. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study tests the hypothesis that a high autism quotient in neurotypical adults is strongly associated with suboptimal motor planning and visual updating after eye movements, which in turn, is related to a disrupted efference copy mechanism. The implication is that such abnormal behavior would be exaggerated in those with ASD and may contribute to sensory overload - a key symptom in this condition. The evidence presented is convincing, with significant effects in both visual and motor domains, adequate sample sizes, and consideration of alternatives. However, the study would be strengthened with minor but necessary corrections to methods and statistics, as well as a moderation of claims regarding direct application to ASD in the absence of testing such patients.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study examines a hypothesized link between autism symptomatology and efference copy mechanisms. This is an important question for several reasons. Efference copy is both a critical brain mechanism that is key to rapid sensorimotor behaviors, and one that has important implications for autism given recent empirical and theoretical work implicating atypical prediction mechanisms and atypical reliance on priors in ASD.

      The authors test this relationship in two different experiments, both of which show larger errors/biases in spatial updating for those with heightened autistic traits (as measured by AQ in neurotypical (NT) individuals).

      Strengths:

      The empirical results are convincing - effects are strong, sample sizes are sufficient, and the authors also rule out alternative explanations (ruling out differences in motor behavior or perceptual processing per se).

      Weaknesses:

      My main concern is that the paper should be more transparent about both (1) that this study does not include individuals with autism, and (2) acknowledging the limitations of the AQ.

      On the first point, and I don't think this is intentional, there are several instances where the line between heightened autistic traits in the NT population and ASD is blurred or absent. For example, in the second sentence of the abstract, the authors state "Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms". I would say this is not correct because the authors did not test individuals with ASD. I don't see a problem with using ASD to motivate and discuss this work, but it should be clear in key places that this was done using AQ in NT individuals.

      For the second issue, the AQ measure itself has some problems. For example, reference 38 in the paper (a key paper on AQ) also shows that those with high AQ skew more male than modern estimates of ASD, suggesting that the AQ may not fully capture the full spectrum of ASD symptomatology. Of course, this does not mean that the AQ is not a useful measure (the present data clearly show that it captures something important about spatial updating during eye movements), but it should not be confused with ASD, and its limitations need to be acknowledged. My recommendation would be to do this in the title as well - e.g. note impaired visuomotor updating in individuals with "heightened autistic traits".

      We thank the reviewer for the kind words. We now specify more carefully that our sample of participants consists of neurotypical adults scored for autistic traits and none of them was diagnosed with autism before participating in our experiment. Regarding the Autistic Quotient Questionnaire (AQ) on page 5 of the Introduction we now write:

      “The autistic traits of the whole population form a continuum, with ASD diagnosis usually situated on the high end 31-33. Moreover, autistic traits share a genetic and biological etiology with ASD 34. Thus, quantifying autistic-trait-related differences in healthy people can provide unique perspectives as well as a useful surrogate for understanding the symptoms of ASD 31,35.”

      In the Discussion (page 9) we now write:

      ”It is essential to note that our participant pool lacked pre-existing diagnoses before engaging in the experiments and we must address limitations associated with the AQ questionnaire. The AQ questionnaire demonstrates adequate test-retest reliability 36, normal distribution of sum scores in the general population 50, and cross-cultural equivalence has been established in Dutch and Japanese samples 51-53. The AQ effectively categorizes individuals into low, average, and high degrees of autistic traits, demonstrating sensitivity for both group and individual assessments 54.

      However, evolving research underscores many aspects that are not fully captured by the self-administered questionnaire: for example, gender differences in ASD trait manifestation 55. Autistic females may exhibit more socially typical interests, often overlooked by professionals 56. Camouflaging behaviors, employed by autistic women to blend in, pose challenges for accurate diagnosis 57. Late diagnoses are attributed to a lack of awareness, gendered traits, and outdated assessment tools 58. Moving forward, complementing AQ evaluations in the general population with other questionnaires, such as those assessing camouflaging abilities 59, or motor skills in everyday situation (MOSES-test 60) becomes crucial for a comprehensive understanding of autistic traits.”

      Suggestions for improvement:

      - Figure 5 is really interesting. I think it should be highlighted a bit more, perhaps even with a model that uses the results of both tasks to predict AQ scores.

      We thank the reviewer for the suggestion. However, the sample size is relatively small for building a robust and generalizable model to predict AQ scores. Statistical models built on small datasets can be prone to overfitting, meaning that they might not accurately predict the AQ for new individuals.

      - Some discussion of the memory demands of the tasks will be helpful. The authors argue that memory is not a factor, but some support for this is needed. 

      The reviewer raises an important point regarding the potential for memory demands to influence our results. We have now also investigated the accuracy of the second saccade separately for the x and y dimension. As also shown in figure 3 panel A, a motor bias was observed only in one dimension (x), weaking the argument of memory which would imply a bias in both directions (participants remembering the position of the target relative to both screen borders for example). We performed a t-test between our subsample of participants and indeed we found a difference in saccade accuracy for the x dimension (p = 0.03) but not in the y dimension (p = 0.88).

      We now add these analyses in Discussion on page 8.

      - With 3 sessions for each experiment, the authors also have data to look at learning. Did people with high AQ get better over time, or did the observed errors/biases persist throughout the experiment? 

      We thank the reviewer for pointing this out. On page 7 (Results) we now write:

      ” Understanding how these biases might change over time could provide further insights into this mechanism. Specifically, we investigated whether participants exhibited any learning effects throughout the experiments. For data of Experiment 1 – motor updating – we divided our data into 10 separate bins of 30 trials each. We conducted a repeated measure ANOVA with the within-subject factor “number of sessions” (two main sessions of 5 bins each, ~150 trials) and the between-subject factor “group” (lower vs upper quartile of the AQ distribution). We found no main effect of “number of sessions” (F(1,7) = 0.25, p = 0.66), a main effect of “group” (F(1,7) = 2.52, p = 0.015), and no interaction between the two subsample of participants and the sessions tested (F(1,7) = 0.51, p = 0.49). Data of Experiment 2 – visual updating– were separated into 3 sessions. For each session we extracted the PSE and we conducted a repeated measure ANOVA with within subject factor “sessions” and between subject factor “groups” (lower vs upper quartile of the AQ distribution). Also here we found no main effect of sessions (F(1,13) = 0.86, p = 0.39), a main effect of group (F(1,14) = 11.85, p = 0.004), and no interaction between the two subsample of participants and the sessions tested (F(1,13) = 0.20, p = 0.73). In conclusion, the current study found no evidence of learning effects across the experimental sessions. However, a significant main effect of group was observed in both Experiment 1 (motor updating) and Experiment 2 (visual updating). Participants in the group with higher autistic traits performed systematically differently on the task, regardless of the number of sessions completed compared to those in the group with lower autistic traits.”

      Reviewer #2 (Public Review):

      Summary:

      The idea that various clinical conditions may be associated, at least partially, with a disrupted corollary discharge mechanism has been present for a long time.

      In this paper, the authors draw a link between sensory overload, a characteristic of autism spectrum disorder, and a disturbance in the corollary discharge mechanism. The authors substantiate their hypothesis with strong evidence from both the motor and perceptual domains. As a result, they broaden the clinical relevance of the corollary discharge mechanism to encompass autism spectrum disorder.

      The authors write:

      "Imagine a scenario in which you're watching a video of a fast-moving car on a bumpy road. As the car hits a pothole, your eyes naturally make quick, involuntary saccades to keep the car in your visual field. Without a functional efference copy system, your brain would have difficulty accurately determining the current position of your eye in space, which in turn affects its ability to anticipate where the car should appear after each eye movement."

      I appreciate the use of examples to clarify the concept of efference copy. However, I believe this example is more related to a gain-field mechanism, informing the system about the position of the eye with respect to the head, rather than an example of efference copy per se.

      Without an efference copy mechanism, the brain would have trouble accurately determining where the eyes will be in space after an eye movement, and it will have trouble predicting the sensory consequences of the eye movement. However it can be argued that the gain-field mechanism would be sufficient to inform the brain about the current position of the eyes with respect to the head. 

      We now used a different example. And on page 3 of Introduction, we now write:

      “During a tennis game, rapid oculomotor saccades are employed to track the high-velocity ball across the visual display. In the absence of a functional efference copy mechanism, the brain would encounter difficulty in anticipating the precise retinal location of the ball following each saccade. This could result in a transient period of visual disruption as the visual system adjusts to the new eye position. The efference copy, by predicting the forthcoming sensory consequences of the saccade, would bridge this gap and facilitate the maintenance of a continuous and accurate representation of the ball's trajectory.”

      The authors write:

      "In the double-step paradigm, two consecutive saccades are made to briefly displayed targets 21, 22. The first saccade occurs without visual references, relying on internal updating to determine the eye's position."

      Maybe I have missed something, but in the double-step paradigm the first saccade can occur without the help of visual references if no visual feedback is present, that is, when saccades are performed in total darkness. Was this the case for this experiment? I could not find details about room conditions in the methods. Please provide further details.

      In case saccades were not performed in total darkness, then the first saccade can be based on the remembered location of the first target presented, which can be derived from the retinotopic trace of the first stimuli, as well as the contribution from the surroundings, that is: the remembered relative location of the first target with respect to the screen border along the horizontal meridian (i.e. allocentric cues).

      A similar logic could be applied to the second saccade. If the second saccade were based only on the retinotopic trace, without updating, then it would go up and 45 deg to the right, based on the example shown in Figure 1. With appropriate updating, the second saccade would go straight up. However, if saccades were not performed in total darkness, then the location of the second target could also be derived from its relationship with the surroundings (for example, the remembered distance from screen borders, i.e. allocentric cues).

      If saccades were not performed in total darkness, the results shown in Figures 2 and 3 could then be related to i) differences in motor updating between AQ score groups; ii) differences in the use of allocentric cues between AQ score groups; iii) a combination of i) and ii). I believe this is a point worth mentioning in the discussion." 

      Thank you for raising the important issue of visual references in the double-step saccade task. Participants performed saccades in a dimly lit room where visual references, i.e. the screen borders, were barely visible. At the time we collected the data a laboratory that allowed performing experiments in complete darkness was not at our disposal. We acknowledge the possibility that participants could have memorized the target locations relative to the screen borders. The bias of high AQ participants could then be attributed to differences in either encoding, memorization or decoding of the target location relative to the screen borders. However, the potentially abnormal use of visual references must reflect an altered remapping process since we did not find differences in saccade landing in the vertical dimension. A t-test between our group of participants revealed a difference in saccade accuracy for the x dimension (p = 0.03) but not in the y dimension (p = 0.88). We thus agree that in addition to an altered efference copy signal in high AQ participants, altered use of visual references might also affect their saccadic remapping.

      In Discussion we now write: “Our findings suggest that a general memory deficit is unlikely to fully explain the observed bias in high-AQ participants' second saccades. As highlighted in Figure 3A, the bias was specific to the horizontal dimension, weakening the argument for a global memory issue affecting both vertical and horizontal encoding of target location. However, it's important to acknowledge that even under non-darkness conditions, participants might rely on a combination of internal updating based on the initial target location and visual cues from the environment, such as screen borders. This potential use of visual references could contribute to the observed bias in the high-AQ group. If high-AQ participants differed in their reliance on visual cues compared to the low-AQ group, it could explain the specific pattern of altered remapping observed in the horizontal dimension. This possibility aligns with our argument for an abnormal remapping process underlying the results. While altered efference copy signals remain a strong candidate, the potential influence of visual cues on remapping in this population warrants further investigation. Future studies could incorporate a darkness condition to isolate the effects of internal updating on the first saccade, and systematically manipulate the availability of visual cues throughout the task. This would allow for a more nuanced understanding of how internal updating and visual reference use interact in the double-step paradigm, particularly for individuals with varying AQ scores “.

      The authors write:

      According to theories of saccadic suppression, an efference copy is necessary to predict the occurrence of a saccade."

      I would also refer to alternative accounts, where saccadic suppression appears to arise as early as the retina, due to the interaction between the visual shift introduced by the eye movement, and the retinal signal associated with the probe used to measure saccadic suppression. This could potentially account for the scaling of saccadic suppression magnitude with saccade amplitude.

      Idrees, S., Baumann, M.P., Franke, F., Münch, T.A. and Hafed, Z.M., 2020. Perceptual saccadic suppression starts in the retina. Nature communications, 11(1), p.1977. 

      We thank the reviewer. Now on page 4 of Introduction we write:

      “Some theories consider saccadic omission and saccadic suppression as resulting from an active mechanism. In this view an efference copy would signal the occurrence of a saccade, yielding a transient decrease in visual sensitivity20-22. Others however have pointed out the possibility that a purely passive mechanism suffices to induce saccadic omission23. A recent study has found evidence for saccadic suppression already in the retina. Idrees et al.24 demonstrated that retinal ganglion cells in isolated retinae of mice and pigs respond to saccade-like displacements, leading to the suppression of responses to additional flashed visual stimuli through visually triggered retinal-circuit mechanisms. Importantly, their findings suggest that perisaccadic modulations of contrast sensitivity may have a purely visual origin, challenging the need for an efference copy in the early stages of saccadic suppression. However, the suppression they measured lasted much longer than time-courses observed in behavioral data. An efference copy signal could thus be necessary to release perception from suppression.”

      Reviewer #3 (Public Review): 

      Summary:

      This work examined efference copy related to eye movements in healthy adults who have high autistic traits. Efference copies allow the brain to make predictions about sensory outcomes of self-generated actions, and thus serve important roles in motor planning and maintaining visual stability. Consequently, disrupted efference copies have been posited as a potential mechanism underlying motor and sensory symptoms in psychopathology such as Autism Spectrum Disorder (ASD), but so far very few studies have directly investigated this theory. Therefore, this study makes an important contribution as an attempt to fill in this knowledge gap. The authors conducted two eye-tracking experiments examining the accuracy of motor planning and visual perception following a saccade and found that participants with high autistic traits exhibited worse task performance (i.e., less accurate second saccade and biased perception of object displacement), consistent with their hypothesis of less impact of efference copies on motor and visual updating. Moreover, the motor and visual biases are positively correlated, indicative of a common underlying mechanism. These findings are promising and can have important implications for clinical intervention if they can be replicated in a clinical sample.

      Strengths:

      The authors utilized well-established and rigorously designed experiments and sound analytic methods. This enables easy translations between similar work in non-human primates and humans and readily points to potential candidates for underlying neural circuits that could be further examined in follow-up studies (e.g., superior colliculus, frontal eye fields, mediodorsal thalamus). The finding of no association between initial saccade accuracy and level of autistic trait in both experiments also serves as an important control analysis and increases one's confidence in the conclusion that the observed differences in task performance were indeed due to disrupted efference copies, not confounding factors such as basic visual/motor deficits or issues with working memory. The strong correlation between the observed motor and visual biases further strengthens the claim that the findings from both experiments may be explained by the same underlying mechanism - disrupted efference copies. Lastly, the authors also presented a thoughtful and detailed mechanistic theory of how efference copy impairment may lead to ASD symptomatology, which can serve as a nice framework for more research into the role of efference copies in ASD.

      Weaknesses:

      Although the paper has a lot of strengths, the main weakness of the paper is that a direct link with ASD symptoms (i.e., sensory overload and motor inflexibility as the authors suggested) cannot be established. First of all, the participants are all healthy adults who do not meet the clinical criteria for an ASD diagnosis. Although they could be considered a part of the broader autism phenotype, the results cannot be easily generalized to the clinical population without further research. Secondly, the measure used to quantify the level of autistic traits, Autistic Quotient (AQ), does not actually capture any sensory or motor symptoms of ASD. Therefore, it is unknown whether those who scored high on AQ in this study experienced high, or even any, sensory or motor difficulties. In other words, more evidence is needed to demonstrate a direct link between disrupted efference copies and sensory/motor symptoms in ASD.

      This is a valid point, and we thank the reviewer for raising it up. Moving forward, complementing AQ evaluations in the general population with other questionnaires, such as those assessing camouflaging abilities (Hull, L., Mandy, W., Lai, MC., et al., 2019), or motor skills in everyday situation (MOSES-test, Hillus J, Moseley R, Roepke S, Mohr B. 2019 ) becomes crucial for a comprehensive understanding of autistic traits.”

      We now address this point in Discussion page 9.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      - The pothole example in the introduction was really hard to follow. I wonder if there is a better example. 

      We now used a different example. And on page 3 of Introduction, we now write:

      “During a tennis game, rapid oculomotor saccades are employed to track the high-velocity ball across the visual display. In the absence of a functional efference copy mechanism, the brain would encounter difficulty in anticipating the precise retinal location of the ball following each saccade. This could result in a transient period of visual disruption as the visual system adjusts to the new eye position. The efference copy, by predicting the forthcoming sensory consequences of the saccade, would bridge this gap and facilitate the maintenance of a continuous and accurate representation of the ball's trajectory.”

      - This is really minor; I would say that saccades are not the most frequent movement that humans perform. Some of the balance-related adjustments and even heartbeats are faster. Maybe just add "voluntary". 

      We thank the reviewer for the suggestion, now added.

      - "Severe consequences" on page 4 is a bit strong. If that were true, there would be pretty severe impairments in eye movement behavior in ASD, which I don't think is the case.

      We agree with the reviewer. We now eliminated the term “severe”.

      - The results section would read better if each experiment had a short paragraph reiterating its overall goal and the specific approach each experiment took to achieve that goal. 

      Now on page 5, for the first experiment, we write:

      ”We investigated the influence of autistic traits on visual updating during saccadic eye movements using a classic double-step saccade task. This task relies on participants making two consecutive saccades to briefly presented targets. The accuracy of the second saccade serves as an indirect measure of how effectively the participant's brain integrated the execution of the first saccade into their internal representation of visual space. Participants were divided into quartiles based on the severity of their autistic traits, as assessed by the Autistic quotient questionnaire (cite). We hypothesized that individuals with higher autistic traits would exhibit greater difficulty in visual updating compared to those with lower autistic traits. This would be reflected in reduced accuracy of their second saccades in the double-step task. Figure 2C illustrates examples from participants at the extremes of the autistic trait distribution (Autistic quotient = 3, in orange and Autistic quotient = 31, in magenta). As shown, both participants were instructed to make saccades to the locations indicated by two brief target appearances (T1 and T2), as quickly and accurately as possible, following the order of presentation. However, successful execution of the second saccade requires accurate internal compensation for the first saccade, without any visual references or feedback available during the saccade itself.”

      On page 6, for experiment 2, we write:

      ”With a trans-saccadic localization task, we explored how autistic traits affect the integration of eye movements into visual perception. Participants were presented with stimuli before and after a single saccade, creating an illusion of apparent motion. We measured the perceived direction of this displacement, which is influenced by how well the participant's brain accounts for the saccadic eye movement. We predicted that individuals with higher autistic traits would show a stronger bias in the perceived displacement direction, suggesting a less accurate integration of the eye movement into their visual perception.”

      - On page 6, the text about "vertical displacement" is confusing. The spatial displacements in this experiment were horizontal? 

      Yes, they were. The spatial displacement is horizontal, but the perceived trajectory (due to the saccade) is vertical. We now changed “vertical displacement” to “vertical trajectory”.

      - Page 6, grammatical problems in "while we report a slightly slant of the dots trajectory". 

      Thank you. Now fixed.

      - It would be helpful to discuss the apparent motion part of Experiment 2 in the main text. This important part is not made clear. 

      We now in Introduction, page 4, write:

      “In this paradigm, one stimulus is shown before and another after saccade execution. Together these two stimuli produce the perception of “apparent motion”. If stimuli are placed such that the apparent motion path is orthogonal to the saccade path, then the orientation of the apparent motion path indicates how the saccade vector is integrated into vision. The apparent motion trajectory can only appear vertical if the movement of the eyes is perfectly accounted for, that is the retinotopic displacement is largely compensated, ensuring spatial stability. However, small biases of motion direction – implying under- (or over-) compensation of the eye movement – can indicate relative failures in this stabilization process. In a seminal study, Szinte and Cavanagh 27 found a slight over-compensation of the saccade vector leading to apparent motion slightly tilted against the direction of the saccade. More importantly, when efference copies are not available, i.e. localization occurring at the time of a second saccade in a double step task, a strong saccade under-compensation occurs 28.

      This phenomenon cannot be explained by perisaccadic mislocalization of flashed visual stimuli 29,30, but the two phenomena may be related in that they may both depend upon efference copy information.”

      - Figure 1 could be improved. For example, the text talks about the motor plan, but this is not clearly shown in the figure.

      We now added the motor plan into the model. Thank you.

      - Figure 2A, the scale is off (the pictures make it look like the horizontal movement was longer than the vertical). 

      Now fixed.

      - Figure 4, it would be helpful if the task was also described in the figure. 

      We thank the reviewer for the comment. We now tried to modify the figure by also adding the perceptual judgment task.

      - Figure 5A, the y-axis shows p(correct), but that is not what the y-axis shows (the legend makes the same mistake). 

      We apologize, it’s the proportion of time participants reported the second dot to be more to the right compared to the first one. We now changed the figure and the text accordingly.

      - A recent study on motion and eye movement prediction in ASD is very relevant to the work presented here.: Park et al. (2021). Atypical visual motion-prediction abilities in autism spectrum disorder. Clinical Psychological Science, 9(5), 944-960.

      Indeed. We now refer to the cited study in Discussion, on page 9.

      Reviewer #2 (Recommendations For The Authors):

      Statistics and plotting.

      I believe some of the reported statistics are not clear. For example, the authors write:

      "Saccade landing positions of participants in the lower quartile (mean degree {plus minus} SEM: 10.17{plus minus} 0.50) did not deviate significantly from those in the upper quartile (mean degree {plus minus} SEM: 9.65 {plus minus} 0.77). This result was also confirmed by a paired sample t-test (t(7) = 0.66; p = 0.66, BF10 = 0.40)"

      Maybe I am missing something, but why use a paired-sample t-test when the upper and lower quartiles constitute different groups of participants? Shouldn't a two-sample t-test be used in this case?

      We apologize for the confusion. It is indeed a two-sample t-test.

      Along the same lines, I do not understand the link between the number of degrees of freedom reported in the t-test (7) and the number of participants reported in the study (41).

      This is also evident when looking at the scatterplot in Figure 3C. How many participants formed the averages and standard errors reported in Figures 3B and 3D? Please clarify.

      I have the same comment(s) also for the visual updating task (and related figures), where 13 degrees of freedom are reported in the t-tests. Please clarify. 

      We thank the reviewer for pointing this out. The number of participants reported in the scatter plots were indeed 42.  However, we opted to compare the averages only in the lower and upper quartile of the AQ distribution to avoid dealing with a median split (which would imply a skewed distribution). Of our sample of participants in Exp1, 8 fell into the lower quartile of the AQ distribution and 8 in the upper quartile (14 deg of freedom); from Exp 2, 8 participants fell in the lower and 7 in the upper (13 deg of freedom).

      We now fixed the values accordingly.

      Reviewer #3 (Recommendations For The Authors):

      (1) The language can be a bit misleading (especially the title and abstract) as it wasn't always clear that the participants don't actually have clinical ASD. I'd suggest avoiding using words like "symptom" as that would indicate clinical severity, and using words like "traits/characteristics" instead for more precise language. 

      We apologize for the misleading terminology used. Now fixed.

      (2) In the Intro: "...perfect compensation results in a vertical trajectory, while small biases indicate stabilization issues23-25." This is a bit confusing without knowing the details of the paradigm. Consider clarifying or at least referring to Figure 4. 

      Thank you.

      (3) In the Results: "This result was also confirmed by a paired sample t-test (t(7) = 0.66;..." This is confusing as a two-sample t-test is the appropriate test here. Also, the degree of freedom seems very low - could the authors clarify how many participants are in each subgroup (i.e., low vs. high AQ quartile), for both experiments? 

      Of our sample of participants in Exp1 8 fell into the lower quartile of the AQ distribution and 8 in the upper quartile (14 deg of freedom); from Exp 2, 8 participants fell in the lower and 7 in the upper (13 deg of freedom).

      (4) In the Methods: Experiment 2: "The first dot could appear randomly above or below gaze level at a fixed horizontal location, halfway between the two fixations (x = 0, y = -5{degree sign} or +5{degree sign} depending on the trial). The second dot was then shown orthogonal to the first one at a variable horizontal location (x = 5{degree sign} {plus minus} 2.5{degree sign})." This would mean that the position of the 2nd dot relative to the 1st one would be 2.5{degree sign}- 7.5{degree sign}, but the task description in Results and Figure 5A would suggest the horizontal location of the second dot is x = 0{degree sign} {plus minus} 2.5{degree sign}. Which one is correct? 

      The second option is the correct one. We now fixed the typo in the Methods part.

      (5) There is another study that examined oculomotor efference copies in children with ASD using a similar trans-saccadic perception task (Yao et al., 2021, Journal of Vision). In that study, they found a correlation between task performance and an ASD motor symptom (repetitive behavior). This seems quite relevant to the authors' hypothesis and discussion. 

      We thank the reviewer for the suggestion. We now added the mentioned paper in the discussion.

      (6) Please proofread the entire paper carefully as there were multiple grammatical and spelling errors.

      Thank you.

    1. Furthermore, you can also anticipate how policy interventions might affect the scholarly communications landscape in the future. For example, after the recent publication of the OSTP Guidance to Make Federally Funded Research Freely Available Without Delay, several analyses (for example, here, here and here) have been published on the impact of the Memo on publisher portfolios, highlighting that some of the most prestigious journals will be affected the most by the policy.

      aka "the Nelson memo": Dr. Alondra Nelson, the head of OSTP, delivered guidance for agencies to update their public access policies as soon as possible to make publications and research funded by taxpayers publicly accessible, without an embargo or cost. All agencies will fully implement updated policies, including ending the optional 12-month embargo, no later than December 31, 2025: https://www.whitehouse.gov/ostp/news-updates/2022/08/25/ostp-issues-guidance-to-make-federally-funded-research-freely-available-without-delay/

    1. Marta Samokishyn

      2:15 - 2:45 Research | Marta Samokishyn & Rachel Moylan & Maddie Hare, Saint Paul University & University of British Columbia & University of Ottawa Decoding New Literacies: Core Concepts & Competencies of Algorithm Literacy Literacy is defined as being deictic in nature, i.e. its definition can “change rapidly as [its] context changes” (Leu et al., 2018, p. 319). As new technologies and social challenges emerge, new literacies appear to respond to the needs, challenges, and opportunities associated with this change, in fact, “new technologies regularly and repeatedly transform previous literacies, continually redefining what it means to become literate” (Leu et al., 2018, p. 327; Lund et al., 2023). While algorithm literacy has been talked about for a while, according to Dogruel and colleagues (2022), it is still in its infancy and remains a relatively new field of study. In fact, while there is an increasing awareness among many about the impact of algorithmic systems on our socio-digital ecosystems, algorithm literacies have not yet been widely incorporated into the corpus of North American post-secondary education (Head et al., 2020). This calls for the increased visibility of algorithm literacy among scholars, as well as clear definitions that could inform the practice. This research stems from a pressing need to understand the core elements of algorithm literacy as a growing field. The presenters will provide theoretical findings of a systematic literature review about functional definitions of algorithm literacy, its’ core concepts and competencies. These theoretical findings of this study will lay the foundation for those who engage in the curriculum development and delivery of algorithm literacy intervention in the educational context.

    1. Our results show that topological defects in the actin order are necessary to shape the head of the regenerating Hydra, supporting the notion that actin topological defects are mechanical organizers of morphogenesis.

      This is a really cool study of the role of mechanosensing and actin in regeneration using a very cool model! I also really enjoyed all the microscopy images. Looking forward to learning more about Hydra and actin in future papers!

    2. To test further the requirement of actin-defects, we next turned our attention to head-regenerating tissues that failed to regenerate under compression

      I like the use of these for comparison! It's cool that you have built-in examples of when things didn't work to use for a comparison like this.

    3. Head-regenerating tissues inherited the actin nematic order, with a single topological defect on the basal disc, and longitudinal fibres expanding towards the regenerating wound

      It might be helpful to annotate an image with what these different things look like or add arrows to the existing figure for folks who aren't as familiar with looking at these images.

    4. orientation of head-regenerating tissues impacted the phenotypic distribution more than increasing agarose stiffness

      This is somewhat related to a previous comment, but is the orientation of head-regenerating tissues affected by agarose compression? It's not super clear from the data in extended figure 1a, but it seems like it could be somewhat related since at 0.5% AC there's only lateral orientation.

    5. e observed that under the softest 0.5% agarose compression (0.5% AC), all head-regenerating tissues oriented laterally

      Is this expected? Is it because they're less squished so they have room to orient? Just wondering about the biological significance

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Kroll et al. conduct an in-depth behavioral analysis of F0 knockouts of 4 genes associated with late-onset Alzheimer's Disease (AD), together with 3 genes associated with early- onset AD. Kroll and colleagues developed a web application (ZOLTAR) to compare sleep-associated traits between genetic mutants with those obtained from a panel of small molecules to promote the identification of affected pathways and potential therapeutic interventions. The authors make a set of potentially important findings vis-à-vis the relationship between AD-associated genes and sleep. First, they find that loss-of-function in late-onset AD genes universally results in nighttime sleep loss, consistent with the well-supported hypothesis that sleep disruption contributes to Alzheimer's-related pathologies. psen-1, an early-onset associated AD gene, which the authors find is principally responsible for the generation of AB40 and AB42 in zebrafish, also shows a slight increase in activity at night and slight decreases in nighttime sleep. Conversely, psen-2 mutations increase daytime sleep, while appa/appb mutations have no impact on sleep. Finally, using ZOLTAR, the authors identify serotonin receptor activity as potentially disrupted in sorl1 mutants, while betamethasone is identified as a potential therapeutic to promote reversal of psen2 knockout-associated phenotypes.

      This is a highly innovative and thorough study, yet a handful of key questions remain. First, are nighttime sleep loss phenotypes observed in all knockouts for late-onset AD genes in the larval zebrafish a valid proxy for AD risk?

      We cannot say, but it is an interesting question. We selected the four late-onset Alzheimer’s risk genes (APOE, CD2AP, CLU, SORL1) based on human genetics data and brain expression in zebrafish larvae, not based on their likelihood to modify sleep behaviour, which we could have tried by searching for overlaps with GWAS of sleep phenotypes, for example. Consequently, we find it remarkable that all four of these genes caused a night-time sleep phenotype when mutated. We also find it reassuring that knockout of appa/appb and psen2 did not cause a night-time sleep phenotype, which largely excludes the possibility that the phenotype is a technical artefact (e.g. caused by the F0 knockout method) or a property of every gene expressed in the larval brain.

      Having said that, it could still be a coincidence, rather than a special property of genes associated with late-onset AD. In addition to testing additional late-onset Alzheimer’s risk genes, the ideal way to answer this question would be to test in parallel a random set of genes expressed in the brain at this stage of development. From this random set, one could estimate the proportion of genes that cause a night-time sleep phenotype when mutated. One could then use that information to test whether late-onset Alzheimer’s risk genes are indeed enriched for genes that cause a night-time sleep phenotype when mutated.

      For those mutants that cause nighttime sleep disturbances, do these phenotypes share a common underlying pathway? e.g. Do 5-HT reuptake inhibitors promote sleep across all 4 late-onset genes in addition to psen1? Can 5-HT reuptake inhibitors reverse other AD-related pathologies in zebrafish? Can compounds be identified that have a common behavioral fingerprint across all or multiple AD risk genes? Do these modify sleep phenotypes?

      To attempt to answer these questions, we used ZOLTAR to generate predictions for all the knockout behavioural fingerprints presented in the study, in the same way as for sorl1 in Fig. 5 and Fig. 5–suppl. 1. Here are the indications, targets, and KEGG pathways which are shared by the largest number of knockouts:

      – Four indications are shared by 4/7 knockouts: “mydriasis” (dilated pupils, significant for psen1, apoea/apoeb, cd2ap, clu); “fragile X syndrome” (psen1, apoea/apoeb, cd2ap, sorl1), “insomnia” (psen2, apoea/apoeb, cd2ap, sorl1); “malignant essential hypertension” (appa/appb, psen1, apoea/apoeb, cd2ap).

      – Two targets are shared by 5/7 knockouts: “glycogen synthase kinase−3 alpha” (psen1, apoeab, cd2ap, clu, sorl1) and “neuronal acetylcholine receptor beta−2” (appa/appb, psen1, apoeab, cd2ap, clu).

      – Two KEGG pathways are shared by 5/7 knockouts: “cholinergic synapse” (psen1, apoea/apoeb, cd2ap, clu, sorl1) and “nitrogen metabolism” (appa/appb, psen1, psen2, cd2ap, clu).

      As reminder, we hypothesised that loss of Sorl1 affected serotonin signalling based on the following annotations being significant: indication “depression”, target “serotonin transporter”, and KEGG pathway “serotonergic synapse”. All three are also significant for psen2 knockouts, but none others. ZOLTAR therefore does not predict serotonin signalling to be a major theme common to all mutants with a night-time sleep loss phenotype.

      While perhaps not surprising, we find reassuring that insomnia appears in the indications shared by the largest number of knockouts. apoea/apoeb, cd2ap, sorl1 also happen to be the knockouts with the largest loss in night-time sleep.

      Particularly interesting is cholinergic signalling appearing in the most common targets and KEGG pathways. Acetylcholine signalling is a major theme in research on Alzheimer’s disease. For example, the first four drugs ever approved by the FDA to treat Alzheimer’s disease were acetylcholinesterase inhibitors, which increase acetylcholine signalling by preventing its breakdown by acetylcholinesterase. These drugs are generally considered only to treat symptoms and not modify disease course, but this view has been called into question (Munoz-Torrero, 2008; Relkin, 2007). If, as ZOLTAR suggests, mutations in several Alzheimer’s risk genes affect cholinergic signalling early in development, this would point to a potential causal role of cholinergic disruption in Alzheimer’s disease.

      We see that literature also exists on the involvement of glycogen synthase kinase-3 in AD (Lauretti et al., 2020). We plan to explore further these predictions in a future study.

      Finally, the web- based platform presented could be expanded to facilitate comparison of other behavioral phenotypes, including stimulus-evoked behaviors.

      Yes, absolutely. The behavioural dataset we used (Rihel et al., 2010) did not measure other stimuli than day/night light transitions, but the “SauronX” platform and dataset (Myers-Turnbull et al., 2022) seems particularly well suited for this. To provide some context, we and collaborators have occasionally used the dataset by Rihel et al. (2010) to generate hypotheses or find candidate drugs that reverse a behavioural phenotype measured in the sleep/wake assay (Ashlin et al., 2018; Hoffman et al., 2016). The present work was the occasion to enable a wider and more intuitive use of this dataset through the ZOLTAR app, which has already proven successful. Future versions of ZOLTAR will seek to incorporate larger drug datasets using more types of measurements.

      Finally, the authors propose but do not test the hypothesis that sorl1 might regulate localization/surface expression of 5-HT2 receptors. This could provide exciting / more convincing mechanistic support for the assertion that serotonin signaling is disrupted upon loss of AD-associated genes.

      5-HT receptor type 4a is another candidate as it was shown to interact with sorting nexin 27, a subunit of retromer (Joubert et al., 2004). We see that antibodies against human 5-HT receptor type 2 and 4a exist; whether they would work in zebrafish remains to be tested, and in our experience, the availability of antibodies suitable for immunohistochemistry in the zebrafish is a serious experimental roadblock.

      Despite these important considerations, this study provides a valuable platform for high-throughput analysis of sleep phenotypes and correlation with small-molecule-induced sleep phenotypes.

      Strengths:

      - Provides a useful platform for comparison of sleep phenotypes across genotypes/drug manipulations.

      - Presents convincing evidence that nighttime sleep is disrupted in mutants for multiple late-onset AD-related genes.

      - Provides potential mechanistic insights for how AD-related genes might impact sleep and identifies a few drugs that modify their identified phenotypes

      Weaknesses:

      - Exploration of potential mechanisms for serotonin disruption in sorl1 mutants is limited.

      - The pipeline developed can only be used to examine sleep-related / spontaneous movement phenotypes and stimulus-evoked behaviors are not examined.

      - Comparisons between mutants/exploration of commonly affected pathways are limited.

      Thank you for these excellent suggestions, please see our answers above.

      Reviewer #2 (Public Review):

      Summary:

      This work delineates the larval zebrafish behavioral phenotypes caused by the F0 knockout of several important genes that increase the risk for Alzheimer's disease. Using behavioral pharmacology, comparing the behavioral fingerprint of previously assayed molecules to the newly generated knockout data, compounds were discovered that impacted larval movement in ways that suggest interaction with or recovery of disrupted mechanisms.

      Strengths:

      This is a well-written manuscript that uses newly developed analysis methods to present the findings in a clear, high-quality way. The addition of an extensive behavioral analysis pipeline is of value to the field of zebrafish neuroscience and will be particularly helpful for researchers who prefer the R programming language. Even the behavioral profiling of these AD risk genes, regardless of the pharmacology aspect, is an important contribution. The recovery of most behavioral parameters in the psen2 knockout with betamethasone, predicted by comparing fingerprints, is an exciting demonstration of the approach. The hypotheses generated by this work are important stepping stones to future studies uncovering the molecular basis of the proposed gene-drug interactions and discovering novel therapeutics to treat AD or co-occurring conditions such as sleep disturbance.

      Weaknesses:

      - The overarching concept of the work is that comparing behavioral fingerprints can align genes and molecules with similarly disrupted molecular pathways. While the recovery of the psen2 phenotypes by one molecule with the opposite phenotype is interesting, as are previous studies that show similar behaviorally-based recoveries, the underlying assumption that normalizing the larval movement normalizes the mechanism still lacks substantial support. There are many ways that a reduction in movement bouts could be returned to baseline that are unrelated to the root cause of the genetically driven phenotype. An ideal experiment would be to thoroughly characterize a mutant, such as by identifying a missing population of neurons, and use this approach to find a small molecule that rescues both behavior and the cellular phenotype. If the connection to serotonin in the sorl1 was more complete, for example, the overarching idea would be more compelling.

      Thank you for this cogent criticism.

      On the first point, we were careful not to claim that betamethasone normalises the molecular/cellular mechanism that causes the psen2 behavioural phenotype. Having said that, yes, to a certain extent that would be the hope of the approach. As you say, every compound which normalises the behavioural fingerprint will not normalise the underlying mechanism, but the opposite seems true: every compound that normalises the underlying mechanism should also normalise the behavioural fingerprint. We think this logic makes the “behaviour-first” approach innovative and interesting. The logic is to discover compounds that normalise the behavioural phenotype first, only subsequently test whether they also normalise the molecular mechanism, akin to testing first whether a drug resolves the symptoms before testing whether it actually modifies disease course. While in practice testing thousands of drugs in sufficient sample sizes and replicates on a mutant line is challenging, the dataset queried through ZOLTAR provides a potential shortcut by shortlisting in silico compounds that have the opposite effect on behaviour.

      You mention a “reduction in movement bouts” but note here that the number of behavioural parameters tested is key to our argument. To take the two extremes, say the only behavioural parameter we measured in psen2 knockout larvae was time active during the day, then, yes, any stimulant used at the right concentration could probably normalise the phenotype. In this situation, claiming that the stimulant is likely to also normalise the underlying mechanism, or even that it is a genuine “phenotypic rescue”, would not be convincing. Conversely, say we were measuring thousands of behavioural parameters under various stimuli, such as swimming speed, position in the well, bout usage, tail movements, and eye angles, it seems almost impossible for a compound to rescue most parameters without also normalising the underlying mechanism. The present approach is somewhere in-between: ZOLTAR uses six behavioural parameters for prediction (e.g. Fig 6a), but all 17 parameters calculated by FramebyFrame can be used to assess rescue during a subsequent experiment (Fig. 6c). For both, splitting each parameter in day and night increases the resolution of the approach, which partly answers your criticism. For example, betamethasone rescued the day-time hypoactivity without causing night-time hyperactivity, so we are not making the “straw man argument” explained above of using any broad stimulant to rescue the hypoactivity phenotype.

      Furthermore, for diseases where the behavioural defect is the primary concern, such as autism or bipolar disorder, perhaps this behaviour-first approach is all that is needed, and whether or not the compound precisely rescues the underlying mechanism is somewhat secondary. The use of lithium to prevent manic episodes in bipolar disorder is a good example. It was initially tested because mania was thought to be caused by excess uric acid and lithium can dissolve uric acid (Mitchell and Hadzi-Pavlovic, 2000). The theory is now discredited, but lithium continues to be used without a precise understanding of its mode of action. In this example, behavioural rescue alone, with tolerable secondary effects, is sufficient to be beneficial to patients, and whether it modulates the correct causal pathway is secondary.

      On the second point, we agree that testing first ZOLTAR on a mutant for which we have a fairly good understanding of the mechanism causing the behavioural phenotype could have been a productive approach. Note, however, that examples already exist in the literature. First, Hoffman et al. (2016) found that drugs generating behavioural fingerprints that positively correlate with the cntnap2a/cntnap2b double knockout fingerprint are enriched with NMDA and GABA receptor antagonists. In experiments analogous to our citalopram treatment (Fig. 5c,d), cntnap2a/cntnap2b knockout larvae were found to be overly sensitive to the NMDA receptor antagonist MK-801 and the GABAA receptor antagonist pentylenetetrazol (PTZ). Among other drugs tested, zolpidem, a GABAA receptor agonist, caused opposite effects on wild-type and cntnap2a/cntnap2b knockout larvae. Knockout larvae also had fewer GABAergic neurons in the forebrain. Second, Ashlin et al. (2018) found that the fingerprint of pitpnc1a knockout larvae clustered with anti-inflammatory compounds. Flumethasone, an anti-inflammatory corticosteroid, caused a lower increase in activity when added to knockout larvae compared to wild-type larvae. While these studies did not use precisely the same analysis that ZOLTAR runs, they used the same rationale and behavioural dataset to make these predictions (Rihel et al., 2010), which shows that approaches like ZOLTAR can point to causal processes.

      Related to your next point, we may reduce the discussion on sorl1 and serotonin and add some of the present arguments instead, depending on the results from  testing a second SSRI (see next point).

      - The behavioral difference between the sorl1 KO and scrambled at the higher dose of the citalopram is based on a small number of animals. The KO Euclidean distance measure is also more spread out than for the other datasets, and it looks like only five or so fish are driving the group difference. It also appears as though the numbers were also from two injection series. While there is nothing obviously wrong with the data, I would feel more comfortable if such a strong statement of a result from a relatively subtle phenotype were backed up by a higher N or a stable line. It is not impossible that the observed difference is an experimental fluke. If something obvious had emerged through the HCR, that would have also supported the conclusions. As it stands, if no more experiments are done to bolster the claim, the confidence in the strength of the link to serotonin should be reduced (possibly putting the entire section in the supplement and modifying the discussion). The discussion section about serotonin and AD is interesting, but I think that it is excessive without additional evidence.

      We mostly agree with this criticism. One could interpret the larger spread of the data for sorl1 larvae treated with 10 µM citalopram as evidence that the knockout larvae do indeed react differently to the drug at this dose. However, the result indeed does not survive removing the top 5 (p = 0.87) or top 3 (p = 0.18) sorl1 larvae.

      Given that the HCR did not reveal anything striking, we agree with you that too much of our argument relies on this result being robust. As you and reviewer #3 suggest, we plan on repeating this experiment with a different serotonin reuptake inhibitor (SSRI). If the other SSRI also shows a differential effect, this should strengthen the claim that ZOLTAR correctly predicted serotonin signalling as being affected by the loss of Sorl1, even if we did not discover the molecular mechanism.

      - The authors suggest two hypotheses for the behavioral difference between the sorl1 KO and scrambled at the higher dose of the citalopram. While the first is tested, and found to not be supported, the second is not tested at all ("Ruling out the first hypothesis, sorl1 knockouts may react excessively to a given spike in serotonin." and "Second, sorl1 knockouts may be overly sensitive to serotonin itself because post-synaptic neurons have higher levels of serotonin receptors."). Assuming that the finding is robust, there are probably other reasons why the mutants could have a different sensitivity to this molecule. However, if this particular one is going to be mentioned, it is surprising that it was not tested alongside the first hypothesis. This work could proceed without a complete explanation, but additional discussion of the possibilities would be helpful or why the second hypothesis was not tested.

      There are no strong scientific reasons why this hypothesis was not tested. The lead author (F Kroll) moved to a different lab and country so the project was finalised at that time. We do not plan on testing this hypothesis at this stage. However, we will adapt the wording to make it clear this is one possible alternative hypothesis which could be tested in the future, rather than the only alternative.

      - The authors claim that "all four genes produced a fairly consistent phenotype at night". While it is interesting that this result arose in the different lines, the second clutch for some genes did not replicate as well as others. I think the findings are compelling, regardless, but the sometimes missing replicability should be discussed. I wonder if the F0 strategy adds noise to the results and if clean null lines would yield stronger phenotypes. Please discuss this possibility, or others, in regard to the variability in some phenotypes.

      For the first part of this point, please see below our answer to Reviewer #3, point (2) c.

      Regarding the F0 strategy potentially adding variability, it is an interesting question which we tested in a larger dataset of behavioural recordings from F0 and stable knockouts for the same genes (unpublished). In summary, the F0 knockout method does not increase clutch-to-clutch or larva-to-larva variability in the assay. F0 knockout experiments found many more significant parameters and larger effect sizes than stable knockout experiments, but this difference could largely be explained by the larger sample sizes of F0 knockout experiments. In fact, larger sample sizes within individual clutches appears to be a major advantage of the F0 knockout approach over in-cross of heterozygous knockout animals as it increases sensitivity of the assay without causing substantial variability. We plan to report in more details on this analysis in a separate paper as we think it would dilute the focus of the present work.

      - In this work, the knockout of appa/appb is included. While APP is a well-known risk gene, there is no clear justification for making a knockout model. It is well known that the upregulation of app is the driver of Alzheimer's, not downregulation. The authors even indicate an expectation that it could be similar to the other knockouts ("Moreover, the behavioural phenotypes of appa/appb and psen1 knockout larvae had little overlap while they presumably both resulted in the loss of Aβ." and "Comparing with early-onset genes, psen1 knockouts had similar night-time phenotypes, but loss of psen2 or appa/appb had no effect on night-time sleep."). There is no reason to expect similarity between appa/appb and psen1/2. I understand that the app knockouts could unveil interesting early neurodevelopmental roles, but the manuscript needs to be clarified that any findings could be the opposite of expectation in AD.

      On “there is no reason to expect similarity […]”, we disagree. Knockout of appa/appb and knockout psen1 will both result in loss of Aβ (appa/appb encode Aβ and psen1 cleaves Appa/Appb to release Aβ, cf. Fig. 3e). Consequently, a phenotype caused by the loss of Aβ, or possibly other Appa/Appb cleavage products, should logically be found in both appa/appb and psen1 knockouts.

      On “it is well known that the upregulation of APP is the driver of Alzheimer’s, not downregulation”; we of course agree. Among others, the examples of Down syndrome, APP duplication (Sleegers et al., 2006), or mouse models overexpressing human APP show definitely that overexpression of APP is sufficient to cause AD. Having said that, we would not be so quick in dismissing APP knockout as potentially relevant to understanding of Alzheimer’s disease. Loss of soluble Aβ due to aggregation could contribute to pathology (Espay et al., 2023). Without getting too much into this intricate debate, links between levels of Aβ and risk of disease are often counter-intuitive too. For example, out of 138 PSEN1 mutations screened in vitro, 104 reduced total Aβ production and 11 even seemingly abolished the production of both Aβ40 and Aβ42 (Sun et al., 2017). In short, loss of soluble Aβ occurs in both AD and in our appa/appb knockout larvae, but the ideal approach would be to study zebrafish larvae with an in-frame deletion in the Aβ sequence within appa/appb.

      We will adapt the language to address your point. We would not want to imply, for example, that the absence of a night-time sleep phenotype for appa/appb is contradictory to the body of literature showing links between Aβ and sleep, including in zebrafish (Özcan et al., 2020). As you say, our experiment tested loss of App, including Aβ, while the literature typically reports on overexpression of APP, as in APP/PSEN1-overexpressing mice (Jagirdar et al., 2021).

      Reviewer #3 (Public Review):

      In this manuscript by Kroll and colleagues, the authors describe combining behavioral pharmacology with sleep profiling to predict disease and potential treatment pathways at play in AD. AD is used here as a case study, but the approaches detailed can be used for other genetic screens related to normal or pathological states for which sleep/arousal is relevant. The data are for the most part convincing, although generally the phenotypes are relatively small and there are no major new mechanistic insights. Nonetheless, the approaches are certainly of broad interest and the data are comprehensive and detailed.

      A notable weakness is the introduction, which overly generalizes numerous concepts and fails to provide the necessary background to set the stage for the data.

      Major points

      (1) The authors should spend more time explaining what they see as the meaning of the large number of behavioral parameters assayed and specifically what they tell readers about the biology of the animal. Many are hard to understand--e.g. a "slope" parameter.

      We agree that some parameters do not tell something intuitive about the biology of the animal. It would be easy to speculate. For example, the “activity slope” parameter may indicate how quickly the animal becomes tired over the course of the day. On the other hand, fractal dimension describes the “roughness/smoothness” of the larva’s activity trace (Fig. 2–suppl. 1a); but it is not obvious how to translate this into information about the physiology of the animal. We do not see this as an issue though. While some parameters do provide intuitive information about the animal’s behaviour (e.g. sleep duration or sunset startle as a measure of startle response), the benefit of having a large number of behavioural parameters is to compare behavioural fingerprints and assess rescue of the behavioural phenotype by small molecules (Fig. 6c). For this purpose, the more parameters the better. The “MoSeq” approach from Wiltschko et al., 2020 is a good example from literature that inspired our own Fig. 6c. While some of the “behavioural syllables” may be intuitive (e.g. running or grooming), it is probably pointless to try to explain the ‘meaning’ of the “small left turn in place with head motion” syllable (Wiltschko et al., 2020). Nonetheless, this syllable was useful to assess whether a drug specifically treats the behavioural phenotype under study without causing too many side effects. Unfortunately, ZOLTAR has to reduce the FramebyFrame fingerprint (17 parameters) to just six parameters to compare it to the behavioural dataset from Rihel et al., 2010, but here, more parameters would almost certainly translate into better predictions too, regardless of their intuitiveness.

      It is true however that we do not give much information on how some of the less intuitive parameters, such as activity slope or fractal dimension, are calculated or what they describe about the dataset (e.g. roughness/smoothness for fractal dimension). We will improve this in our revised version.

      (2) Because in the end the authors did not screen that many lines, it would increase confidence in the phenotypes to provide more validation of KO specificity. Some suggestions include:

      a. The authors cite a psen1 and psen2 germline mutant lines. Can these be tested in the FramebyFrame R analysis? Do they phenocopy F0 KO larvae?

      We unfortunately do not have those lines. We investigated the availability of importing a psen2 knockout line from abroad, but the process of shipping live animals is becoming more and more cost and time prohibitive. However, we observed the same pigmentation phenotype for psen2 knockouts as reported by Jiang et al., 2018, which is at least a partial confirmation of phenocopying a loss of function stable mutant. 

      b. psen2KO is one of the larger centerpieces of the paper. The authors should present more compelling evidence that animals are truly functionally null. Without this, how do we interpret their phenotypes?

      We disagree that there should be significant doubt about these mutants being truly functionally null,  given the high mutation rate and presence of the expected pigmentation phenotype (Jiang et al., 2018, Fig. 3f and Fig. 3–suppl. 2). The psen2 F0 knockouts were virtually 100% mutated at three exons across the gene (mutation rates were locus 1: 100 ± 0%; locus 2: 99.99 ± 0.06%; locus 3: 99.85 ± 0.24%). Additionally, two of the three mutated exons had particularly high rates of frameshift mutations (locus 1: 97 ± 5%; locus 2: 88 ± 17% frameshift mutation rate). It is virtually impossible that a functional protein is translated given this burden of frameshift mutations. Phenotypically, in addition to the pigmentation defect, double psen1/psen2 F0 knockout larvae had curved tails, the same phenotype as caused by a high dose of the γ-secretase inhibitor DAPT (Yang et al., 2008). These double F0 knockouts were lethal, while knockout of psen1 or psen2 alone did not cause obvious morphological defects. Evidently, most larvae must have been psen2 null mutants in this experiment, otherwise functional Psen2 would have prevented early lethality.

      Translation of zebrafish psen2 can start at downstream start codons if the first exon has a frameshift mutation, generating a seemingly functional Psen2 missing the N-terminus (Jiang et al., 2020). Zebrafish homozygous for this early frameshift mutation had normal pigmentation, showing it is a reliable marker of Psen2 function even when it is mutated. This mechanism is not a concern here as the alternative start codons are still upstream of two of the three mutated exons (the alternative start codons discovered by Jiang et al., 2020 are in exon 2 and 3, but we targeted exon 3, exon 4, and exon 6).

      We understand that the zebrafish community may be cautious about F0 phenotyping compared to stably generated mutants. As mentioned to Reviewer 2, we are planning to assemble a paper that expressly examines F0s vs. stable mutants to allay some of these concerns. We would also suggest that our current manuscript, which combines CRISPR-F0 rapid screening with in silico pharmacological predictions, ultimately represents a first step in characterizing the functions of genes.

      c. Related to the above, for cd2AP and sorl1 KO, some of the effect sizes seem to be driven by one clutch and not the other. In other words, great clutch-to-clutch variability. Should the authors increase the number of clutches assayed?

      Correct, there is great clutch-to-clutch variability in this behavioural assay. This is not specific to our experiments. Even within the same strain, wild-type larvae from different clutches (i.e. non-siblings) behave differently (Joo et al., 2021). This is why it is essential to compare behavioural phenotypes within individual clutches (i.e., from a single pair of parents, one male and one female), as we explain in Methods (section Behavioural video-tracking) and in the documentation of the FramebyFrame package. We often see two different experimental designs in literature: comparing non-sibling wild-type and mutant larvae, or pooling different clutches which include all genotypes (e.g., pooling multiple clutches from heterozygous in-crosses or pooling wild-type clutches before injecting them). The first experimental design causes false positive findings, as the clutch-to-clutch variability we and others (Joo et al., 2021) observe gets interpreted as a behavioural phenotype. The second experimental design should not cause false positives but will decrease the sensitivity of the assay by increasing the spread within genotypes. In both cases, the clutch-to-clutch variability is hidden, either by interpreting it as a phenotype (first case) or by adding it to animal-to-animal variability (second case). Our experimental design is technically more challenging as it requires obtaining large clutches from unique pairs of parents. However, this approach is better as it clearly separates the different sources of variability (clutch-to-clutch or animal-to-animal). As for every experiment, yes, a larger number of replicates would be better, but we do not plan to assay additional clutches at this time. Our work heavily focuses on the sorl1 and psen2 knockout behavioural phenotypes. The key aspects of these phenotypes were effectively tested in four clutches as sorl1 were also tested in the citalopram experiment (Fig. 5), and psen2 was also tested in the small molecule rescue experiment (Fig. 6 and Fig. 6–suppl. 1). In the citalopram experiment, one H2O-treated sorl1 knockout clutch (n = 10) replicates fairly well the baseline recordings in Fig. 4–suppl. 5, the other does not but had especially low sample size (n = 6).

      We also plan to test another SSRI on sorl1 knockouts, so this point will be addressed.

      (3) The authors make the point that most of the AD risk genes are expressed in fish during development. Is there public data to comment on whether the genes of interest are expressed in mature/old fish as well? Just because the genes are expressed early does not at all mean that early- life dysfunction is related to future AD (though this could be the case, of course). Genes with exclusive developmental expression would be strong candidates for such an early-life role, however. I presume the case is made because sleep studies are mainly done in juvenile fish, but I think it is really a pretty minor point and such a strong claim does not even need to be made.

      This is a fair criticism but we do not make this claim, at least not from expression. The reviewer is probably referring to the following quote:

      “[…] most of these were expressed in the brain of 5–6-dpf zebrafish larvae, suggesting they play a role in early brain development or function,”

      which does not mention future risk of Alzheimer’s disease. We do suggest that these genes have a function in development. After all, every gene that plays a role in brain development must be expressed during development, so this wording seems reasonable. As noted, the primary goal was to check that the genes we selected were indeed expressed in zebrafish larvae before performing knockout experiments. Our discussion does raise the hypothesis that mutations in Alzheimer’s risk genes impact brain development and sleep early in life, but this argument primarily relies on our observation that knockout of late-onset Alzheimer’s risk genes causes sleep phenotypes in 7-day old zebrafish larvae and from previous work showing brain structural differences in infants and children at high genetic risk of Alzheimer’s disease (Dean et al., 2014; Quiroz et al., 2015), not solely on gene expression early in life.

      (4) A common quandary with defining sleep behaviorally is how to rectify sleep and activity changes that influence one another. With psen2 KOs, the authors describe reduced activity and increased sleep during the day. But how do we know if the reduced activity drives increased behavioral quiescence that is incorrectly defined as sleep? In instances where sleep is increased but activity during periods during wake are normal or elevated, this is not an issue. But here, the animals might very well be unhealthy, and less active, so naturally they stop moving more for prolonged periods, but the main conclusion is not sleep per se. This is an area where more experiments should be added if the authors do not wish to change/temper the conclusions they draw. Are psen2 KOs responsive to startling stimuli like controls when awake? Do they respond normally when quiescent? Great care must be taken in all models using inactivity as a proxy for sleep, and it can harm the field when there is no acknowledgment that overall health/activity changes could be a confound. Particularly worrisome is the betamethasone data in Figure 6, where activity and sleep are once again coordinately modified by the drug.

      This is a fair criticism. We agree it is a concern, especially in the case of psen2 as we claim that day-time sleep is increased while zebrafish are diurnal. We do not rely heavily on the day-time inactivity being sleep (the ZOLTAR predictions or the small molecule rescue do not change whether the parameter is called sleep or inactivity), but  our choice of labelling may be misleading. We will try to test this claim by plotting the distribution of the inactive period durations. If psen2 knockout larvae indeed sleep more during the day compared to controls, we might predict that inactive periods longer than 1 minute to increase disproportionately compared to the increase in shorter inactive periods.

      To address, “are psen2 KO responsive to startling stimuli like controls when awake/when quiescent”, we can try to look at the behaviour of psen2 knockout larvae that were awake (i.e., moved in the preceding one minute) or ‘asleep’ (i.e., did not move in the preceding one minute) at the light transitions and count the proportion of psen2 knockout or control larvae which displayed a startle response. If most psen2 knockouts react to the light transition, it should at least exclude the concern that they are very unhealthy, as the reviewer suggests. This criticism seems challenging to definitely address experimentally though. A possible approach could be to use a closed-loop system which, after one minute of inactivity, triggers a stimulus which is sufficient to startle an awake larva but not an asleep larva. If psen2 knockout larvae indeed sleep more during the day, the stimulus should usually not be sufficient to startle them. Note, how to calibrate this stimulus is also not straightforward. We do not plan to test this, but our analysis of the light transitions may provide a decent proxy.

      (5) The conclusions for the serotonin section are overstated. Behavioural pharmacology purports to predict a signaling pathway disrupted with sorl1 KO. But is it not just possible that the drug acts in parallel to the true disrupted pathway in these fish? There is no direct evidence for serotonin dysfunction - that conclusion is based on response to the drug. Moreover, it is just 1 drug - is the same phenotype present with another SSRI? Likewise, language should be toned down in the discussion, as this hypothesis is not "confirmed" by the results (consider "supported"). The lack of measured serotonin differences further raises concern that this is not the true pathway. This is another major point that deserves further experimental evidence, because without it, the entire approach (behavioral pharm screen) seems more shaky as a way to identify mechanisms. There are any number of testable hypotheses to pursue such as a) Using transient transgenesis to visualize 5HT neuron morphology (is development perturbed: cell number, neurite morphology, synapse formation); b) Using transgenic Ca reporters to assay 5HT neuron activity.

      Regarding the comment, “is it not just possible that the drug acts in parallel to the true disrupted pathway”, we think no, assuming we understand correctly your question. Key to our argument is the fact that sorl1 knockout larvae react differently to the drug than control larvae. As an example, take night-time sleep bout length, which was not affected by knockout of sorl1 (Fig. 4–suppl. 5). For the sake of the argument, say only dopamine signalling (the “true disrupted pathway”) was affected in sorl1 knockouts but that serotonin signalling was intact. Assuming that citalopram specifically alters serotonin signalling, then treatment should cause the same increase in sleep bout length in both knockouts and controls as serotonin signalling is intact in both. This is not what we see, however. Citalopram caused a greater increase in sleep bout length in sorl1 knockouts than in scrambled-injected larvae. In other words, the effect is non-additive, in the sense that citalopram did not add the same number of Z-scores to sorl1 knockouts or controls. We think this shows that serotonin signalling is somehow different in sorl1 knockouts. Nonetheless, we would concede that the experiment does not necessarily says much about the importance of the serotonin disruption caused by loss of Sorl1. It could be, for example, that the most salient consequence of loss of Sorl1 is cholinergic disruption (see reply to Reviewer #1 above) and that serotonin signalling is a minor theme.

      Furthermore, we agree with you and Reviewer #2 that the conclusions are overly confident. We will repeat this experiment with another SSRI as you suggest. Your suggestions to further test the serotonin system in the sorl1 knockouts are excellent as well, however we do not plan to pursue them at this stage.

      References:

      Ashlin TG, Blunsom NJ, Ghosh M, Cockcroft S, Rihel J. 2018. Pitpnc1a Regulates Zebrafish Sleep and Wake Behavior through Modulation of Insulin-like Growth Factor Signaling. Cell Rep 24:1389–1396. doi:10.1016/j.celrep.2018.07.012

      Chen D, Wang X, Huang T, Jia J. 2022. Sleep and Late-Onset Alzheimer’s Disease: Shared Genetic Risk Factors, Drug Targets, Molecular Mechanisms, and Causal Effects. Front Genet 13. doi:10.3389/fgene.2022.794202

      Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, Hayreh D, D’Angelo G, Benzinger T, Yoon H, Kim J, Morris JC, Mintun MA, Sheline YI. 2011. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A 108:14968–14973. doi:10.1073/pnas.1107411108

      Dean DC, Jerskey BA, Chen K, Protas H, Thiyyagura P, Roontiva A, O’Muircheartaigh J, Dirks H, Waskiewicz N, Lehman K, Siniard AL, Turk MN, Hua X, Madsen SK, Thompson PM, Fleisher AS, Huentelman MJ, Deoni SCL, Reiman EM. 2014. Brain Differences in Infants at Differential Genetic Risk for Late-Onset Alzheimer Disease A Cross-sectional Imaging Study. JAMA Neurol 71:11–22. doi:10.1001/jamaneurol.2013.4544

      Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, Ozols VV, Jessing KW, Zavitz KH, Koo EH, Golde TE. 2003. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. J Clin Invest 112:440–449. doi:10.1172/JCI18162

      Espay AJ, Herrup K, Kepp KP, Daly T. 2023. The proteinopenia hypothesis: Loss of Aβ42 and the onset of Alzheimer’s Disease. Ageing Res Rev 92:102112. doi:10.1016/j.arr.2023.102112

      Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D, Ghosh M, Ijaz S, Jain RA, Kubo F, Bill BR, Baier H, Granato M, Barresi MJF, Wilson SW, Rihel J, State MW, Giraldez AJ. 2016. Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron 89:725–733. doi:10.1016/j.neuron.2015.12.039

      in ’t Veld Bas A., Ruitenberg Annemieke, Hofman Albert, Launer Lenore J., van Duijn Cornelia M., Stijnen Theo, Breteler Monique M.B., Stricker Bruno H.C. 2001. Nonsteroidal Antiinflammatory Drugs and the Risk of Alzheimer’s Disease. N Engl J Med 345:1515–1521. doi:10.1056/NEJMoa010178

      Jagirdar R, Fu C-H, Park J, Corbett BF, Seibt FM, Beierlein M, Chin J. 2021. Restoring activity in the thalamic reticular nucleus improves sleep architecture and reduces Aβ accumulation in mice. Sci Transl Med 13:eabh4284. doi:10.1126/scitranslmed.abh4284

      Jiang H, Newman M, Lardelli M. 2018. The zebrafish orthologue of familial Alzheimer’s disease gene PRESENILIN 2 is required for normal adult melanotic skin pigmentation. PLOS ONE 13:e0206155. doi:10.1371/journal.pone.0206155

      Jiang H, Pederson SM, Newman M, Dong Y, Barthelson K, Lardelli M. 2020. Transcriptome analysis indicates dominant effects on ribosome and mitochondrial function of a premature termination codon mutation in the zebrafish gene psen2. PloS One 15:e0232559. doi:10.1371/journal.pone.0232559

      Joo W, Vivian MD, Graham BJ, Soucy ER, Thyme SB. 2021. A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping. Front Behav Neurosci 14.

      Joubert L, Hanson B, Barthet G, Sebben M, Claeysen S, Hong W, Marin P, Dumuis A, Bockaert J. 2004. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci 117:5367–5379. doi:10.1242/jcs.01379

      Lauretti E, Dincer O, Praticò D. 2020. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res 1867:118664. doi:10.1016/j.bbamcr.2020.118664

      Leng Y, Ackley SF, Glymour MM, Yaffe K, Brenowitz WD. 2021. Genetic Risk of Alzheimer’s Disease and Sleep Duration in Non-Demented Elders. Ann Neurol 89:177–181. doi:10.1002/ana.25910

      Mitchell PB, Hadzi-Pavlovic D. 2000. Lithium treatment for bipolar disorder. Bull World Health Organ 78:515–517.

      Munoz-Torrero D. 2008. Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimer’s Disease. Curr Med Chem 15:2433–2455. doi:10.2174/092986708785909067

      Muto V, Koshmanova E, Ghaemmaghami P, Jaspar M, Meyer C, Elansary M, Van Egroo M, Chylinski D, Berthomier C, Brandewinder M, Mouraux C, Schmidt C, Hammad G, Coppieters W, Ahariz N, Degueldre C, Luxen A, Salmon E, Phillips C, Archer SN, Yengo L, Byrne E, Collette F, Georges M, Dijk D-J, Maquet P, Visscher PM, Vandewalle G. 2021. Alzheimer’s disease genetic risk and sleep phenotypes in healthy young men: association with more slow waves and daytime sleepiness. Sleep 44. doi:10.1093/sleep/zsaa137

      Myers-Turnbull D, Taylor JC, Helsell C, McCarroll MN, Ki CS, Tummino TA, Ravikumar S, Kinser R, Gendelev L, Alexander R, Keiser MJ, Kokel D. 2022. Simultaneous analysis of neuroactive compounds in zebrafish. doi:10.1101/2020.01.01.891432

      Özcan GG, Lim S, Leighton PL, Allison WT, Rihel J. 2020. Sleep is bi-directionally modified by amyloid beta oligomers. eLife 9:e53995. doi:10.7554/eLife.53995

      Quiroz YT, Schultz AP, Chen K, Protas HD, Brickhouse M, Fleisher AS, Langbaum JB, Thiyyagura P, Fagan AM, Shah AR, Muniz M, Arboleda-Velasquez JF, Munoz C, Garcia G, Acosta-Baena N, Giraldo M, Tirado V, Ramírez DL, Tariot PN, Dickerson BC, Sperling RA, Lopera F, Reiman EM. 2015. Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease: A Cross-Sectional Study. JAMA Neurol 72:912–919. doi:10.1001/jamaneurol.2015.1099

      Relkin NR. 2007. Beyond symptomatic therapy: a re-examination of acetylcholinesterase inhibitors in Alzheimer’s disease. Expert Rev Neurother 7:735–748. doi:10.1586/14737175.7.6.735

      Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF. 2010. Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation. Science 327:348–351. doi:10.1126/science.1183090

      Sleegers K, Brouwers N, Gijselinck I, Theuns J, Goossens D, Wauters J, Del-Favero J, Cruts M, van Duijn CM, Van Broeckhoven C. 2006. APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain J Neurol 129:2977–2983. doi:10.1093/brain/awl203

      Sun L, Zhou R, Yang G, Shi Y. 2017. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci 114:E476–E485. doi:10.1073/pnas.1618657114

      Weggen S, Rogers M, Eriksen J. 2007. NSAIDs: small molecules for prevention of Alzheimer’s disease or precursors for future drug development? Trends Pharmacol Sci 28:536–543. doi:10.1016/j.tips.2007.09.004

      Wiltschko AB, Tsukahara T, Zeine A, Anyoha R, Gillis WF, Markowitz JE, Peterson RE, Katon J, Johnson MJ, Datta SR. 2020. Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci 23:1433–1443. doi:10.1038/s41593-020-00706-3

      Yang T, Arslanova D, Gu Y, Augelli-Szafran C, Xia W. 2008. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein. Mol Brain 1:15. doi:10.1186/1756-6606-1-15

    1. he mask left my hair free, which did leave the back of my head morevulnerable, but that was just one of the sacrifices I’d had to make to go outin an unfinished costume.

      CONCERNING to say the least......

    Annotators

    1. this gain in social equality is the result of a history of protected expression that allowed gay experience to be articulated and “normalized,” in high and popular culture

      Gay marriage was only just legalized, and the terror of "the gay experience" being "normalized" is what is motivating Kagan's former party more than any fart-sniffing disagreement about positive versus negative rights. If this man opened TruthSocial his head would explode.

    1. Eye movements were recorded via an SR Research Eyelink1000 eye-tracker, which sampled eye position every millise-cond. Viewing was binocular, but only the right eye wasrecorded. Materials were displayed on a computer monitorapproximately 72 cm from participants’ eyes. Before the startof the experiment, the procedure was explained and partici-pants were instructed to read normally and for comprehen-sion. Participants were seated at the eye-tracker and placedtheir head on a chin and forehead rest to minimize headmovements. Participants then completed a calibration pro-cedure. Before the start of each trial, a fixation box appearedin the upper left quadrant of the screen. Once the participantfixated this box the stimulus computer displayed the targettext. If the participant’s apparent point of fixation did notmatch with the fixation box then the experimenter re-calibrated the eye-tracker. Once the participant had finishedreading each item, they pressed a key. A comprehensionquestion was displayed following one third of trials. A correctresponse rate of 97% indicated that participants were readingfor comprehension

      2) procedure

    1. To the organization of the city itself can be linked the primordial whole of urban form and itscontent, of philosophical form and its meaning: a privileged centre, the core of a political space,the seat of the logos governed by the logos before which citizens are ‘equal’, the regions anddistributions of space having a rationality justified before the logos (for it and by it).The logos of the Greek city cannot be separated from the philosophical logos. The oeuvre of thecity continues and is focused in the work of philosophers, who gather opinions and viewpoints,various oeuvres, and think them simultaneously and collect differences into a totality: urbanplaces in the cosmos, times and rhythms of the city and that of the world (and inversely). It istherefore only for a superficial historicity that philosophy brings to language and concept urbanlife, that of the city. In truth, the city as emergence, language, meditation comes to theoreticallight by means of the philosopher and philosophy

      To Lefebvre, the origins of the antique city is inherently philosophical. The city is the location where intellectual labour is undertaken and where the head of the Logos sits where it collects and differentiates the many fragmentary intellectual labours (politics, sciences. etc).

    Annotators

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank the reviewers for their thoughtful evaluation of our work. Our point-by-point responses to reviewer critiques follow below. Please note that any referenced changes to the manuscript are highlighted in yellow in the revised manuscript text.

      Response to Common Critiques

      1. Reviewers 1 and 2 state that some elements of this study confirm previously published results (many in murine systems). However, the reviewers also acknowledge that the mouse and human rDNA repeats may be subject to quite distinct regulation because of the much denser CG content of the human rDNA promoter (26 CpGs) vs. the mouse rDNA promoter (only 2 CpGs); these potential differences in regulation motivated this study in human cells. We evaluate the functions of rDNA methylation in human cells, which is directly relevant to understanding the regulation of rDNA function in human aging, and to understanding the functional implications of DNA methylation "aging clocks" more generally. We also apply a recently developed technology (dCas9-mediated epigenome editing) to directly test the function of rDNA methylation. Novel findings reported in this study include:
      2. Pol I - engaged rDNA repeats are hypomethylated at sites both in the promoter and the gene body; this contrasts with Pol II transcription, which is coincident with gene body methylation.
      3. rDNA copy number remains stable with age in mammals, in striking contrast to findings in other eukaryotes. rDNA copy number instability has been proposed to be a universal feature of the aging genome, and this finding refutes that possibility.
      4. Induction of DNA methylation by an average of ~20% along 7-11 of the 26 CpGs in the human rDNA repeat does not measurably inhibit rDNA transcription.
      5. Human Pol I and UBTF remain bound to rDNA promoters in the presence of elevated CpG methylation, in contrast to the murine Pol I machinery.

      Reviewers 1 and 2 questioned our strategy of mapping sequencing data to the consensus ribosomal DNA (rDNA) repeat alone. We followed the approach of Wang & Lemos Genome Research 2019, who initially described the rDNA methylation clock. Wang & Lemos also mapped genomic data to rDNA consensus sequences alone due to the computational efficiency of this approach, and describe a head-to-head comparison of mapping performance outcomes in their Methods section. Importantly, their analysis indicated that the vast majority (>98%) of sequencing reads can be mapped uniquely to the consensus human rDNA repeat (U13369.1). When we launched our study, we also initially compared the performance of mapping to the rDNA repeat consensus sequence alone versus to the whole human genome. We noted very similar performance in both cases, with the possible exception of a modest increase in simple repeat sequences being erroneously mapped to the intergenic spacer (IGS) region of the rDNA when we mapped to the rDNA repeat alone. As the reviewers pointed out, the IGS contains simple repeat sequences that are also found at numerous other non-rDNA sites in the genome. However, the minor mis-mapping of simple repeats to the IGS did not affect our analyses of non-IGS sequences, which were the focus of this study. We therefore proceeded with mapping to the rDNA consensus sequence only.

      Reviewers 1 and 2 pointed out that our dCas9-DNMT strategy induced only a 15-20% increase in rDNA methylation and questioned whether we could expect to detect downstream effects in rDNA transcription. While Reviewer 2 suggested that multiple sgRNAs could enhance methylation efficiency, it turns out that this has already been tested for other target genes and shown that multiple sgRNAs cannot increase efficiency of CpG methylation by dCas9-DNMTs (Stepper et al., Nucleic Acids Research 2017). Separately, the goal of this study was to model the effects of age-linked rDNA hypermethylation, which increases by 15-20% over mammalian lifespan (Wang & Lemos 2019; see also our Figure 1). Importantly for interpreting these data, induction of promoter methylation to a similar extent on the mouse rDNA repeat was able to direct detectable repression of rDNA transcription (Santoro et al., 2011). Further, dCas9-DNMT has been previously shown to induce a ~20% increase in CpG methylation of the Pol II target gene EpCAM and cause measurable transcriptional repression that was detectable by qPCR (Stepper et al., 2017). In contrast, we were able to induce rDNA methylation to a similar extent and observed no change in the levels of either pre-rRNA or mature rRNA. Because we see that UBF and Pol I remain bound to rDNA in spite of higher CpG methylation (Fig. 7 and Fig. S4), we interpret these data together to indicate that the human Pol I machinery can continue to engage with rDNA in the presence of intermediate levels of CpG methylation.

      Reviewer 1

      1. inactivation of rDNA transcription per se does not affect chromatin accessibility, to date only depletion or deletion of UBTF has been found to do this and even this does not enhance CpG methylation, these published findings should be referenced.

      Our analyses in Figure 2 focus on defining the relationships between chromatin accessibility, transcriptional activity, and CpG methylation throughout the human rDNA repeat. We cannot determine causation from this analysis - meaning whether chromatin accessibility influences CpG methylation or vice versa - and this point is beyond the scope of our study. Our major goal was to test whether induced CpG methylation affects transcription output.

      The authors overstate their results by writing "actively transcribed rDNA repeats are hypomethylated at their promoter" despite only one SmaI site but many CpG sites exist in the human promoter, the latter having not been assayed.

      We analyzed several pieces of data to come to this conclusion. First, ATAC-Me indicates that ATAC-accessible rDNA repeats are completely devoid of methylation both in their promoter and throughout the gene body; as UBTF binding controls rDNA accessibility (Sanij et al., JCB 2008; Hamdane et al., PLoS Genet 2014), we infer that ATAC-accessible repeats are engaged with the Pol I transcription machinery and hypomethylated. To more directly probe this question, we evaluated the methylation status of Pol I-bound rDNA repeats at five separate sites by ChIP-chop: two sites in the 5' regulatory region (5' ETS and core promoter, pooled together as "promoter" in Figure 2F) and three sites within the gene body (18S, 5.8S, and 28S, pooled together as "gene body" in Figure 2F). These data clearly indicate that Pol I preferentially binds to these regions when they are hypomethylated, as the extent of CpG methylation at these same sites is higher in input DNA and lower in Pol I-ChIPped DNA. While we do not comprehensively profile CpG methylation status of Pol I-bound DNA, these ChIP-chop analyses are consistent with our interpretation that "actively transcribed (that is, Pol I-engaged) rDNA repeats are hypomethylated at their promoter".

      Pol I's preference for binding hypomethylated promoters has been previously described in mouse cells (Santoro & Grummt 2001) and human cells (Brown & Szyf Mol Cell Biol 2007). We confirm this and also report the novel finding that rDNA gene bodies bound by Pol I are hypomethylated. This contrasts with known relationships between Pol II and CpG methylation, where genes actively transcribed by Pol II often have dense gene body CpG methylation.

      While we think it is reasonable to infer from ATAC-Me data and ChIP-chop data together that accessible and hypomethylated rDNA repeats reflect transcriptionally active repeats, we appreciate the reviewer's point that we analyzed only a select few CpG sites by Pol I ChIP-chop. We have adjusted the text to make our interpretation more parsimonious (see highlights).

      The human rDNA promoter contains many CpGs which may not affect transcription when methylated. RRBS and WGBS data can't tell us much if we don't understand which sites, when methylated, affect transcription*. *

      We agree, and this ambiguity is what motivated us to induce methylation and evaluate the consequences. In plasmid reporter experiments where the human rDNA promoter was fused to a luciferase reporter, it was shown that in vitro methylation of the plasmid potently inhibited transcription in human cells (Ghoshal et al., J Biol Chem 2004). In this study, methylation of 7/26 CpGs was sufficient to induce >75% inhibition of reporter plasmid transcription, while methylation at single sites could induce ~50% inhibition. We neglected to site this relevant study and have included a reference to it in the revised manuscript. Importantly, this plasmid reporter assay does not assess the effects of CpG methylation on the full rDNA repeat in its endogenous genomic context. We were able to induce significant CpG hypermethylation on 11/26 promoter CpGs with one guide (P+G) and on 7/26 CpGs with a second guide (P+A) (Figure 3D). This level of methylation did not induce detectable silencing of rRNA transcription. Instead, we found that both UBF (Fig. 7) and Pol I (Fig. S4) remained bound to rDNA in the presence of CpG hypermethylation.

      The argument that the mouse rDNA Pol I machinery is "exquisitely sensitive" to CpG methylation is a little misleading as there are only two CpGs in the mouse rDNA promoter. Which of the 26 human CpGs are the critical ones?

      Immediately following this statement in the Discussion, we state that "the human rDNA promoter is significantly more CG-rich than the mouse rDNA promoter". We have revised this section to emphasize the difference (26 CpGs in human vs. only 2 in the mouse) and discuss this point raised by the reviewer: which are the critical CpGs in the human rDNA? Here again it is relevant to cite the human rDNA promoter reporter assays performed by Ghoshal et al., J Biol Chem 2004. These data indicate that CpG methylation of 7/26 promoter CpGs interferes with transcription from an rDNA reporter plasmid. Notably, it is unclear how generalizable findings from reporter assays are to the genomic context of the endogenous full length rDNA sequence. Our data indicate that partial methylation of 7-11 CpGs in the human rDNA promoter causes no detectable rDNA inhibition, and indeed does not displace UBF or Pol I (Fig. 7; Fig. S4).

      Antibody SC13125 used for UBF ChIP sees nearly exclusively the shorter transcriptionally inactive UBF2 variant. These data need to be repeated with an antibody that detects both UBF forms.

      We thank the reviewer for raising the important issue of UBTF splice isoforms. Relevant citations demonstrating that the SC13125 antibody recognizes only UBF2 would have been very helpful. The human UBTF gene is alternatively spliced into full-length UBF1 (exon 8 retained) and UBF2 (exon 8 spliced out). The deletion of exon 8 results in a 37 amino acid deletion in UBF2 corresponding to residues 221-268 in HMG box 2 of UBF1 (see Ensembl entry ENSG00000108312.16). The truncation of HMG box 2 makes UBF2 a far less potent transcriptional activator than UBF1. Because of the small molecular weight difference between these two isoforms, preference of an antibody for one vs. another isoform is not readily apparent by Western blotting. However, according to the manufacturer of the UBTF antibody used in this study, the immunogen corresponds to residues 1-220 of UBTF1, which is immediately N-terminal to the residues deleted in UBF2 (AAs 221-268, encoded by exon 8). The antibody's immunogen is thus entirely sequence that is shared between UBF1 and UBF2. Further, a previous study performed immunoprecipitation followed by mass spectrometry using this antibody and reported detection of UBF1-specific peptides (Drakas et al., PNAS 2004). Therefore, absent our knowledge of any evidence to the contrary, we conclude that this antibody recognizes UBF1 and possibly also UBF2.

      We thank the reviewer for raising this point and have adjusted the text to avoid the misleading implication that we are unambiguously detecting only the UBF1 isoform; all mentions of "UBF1" in the revised text have been replaced with "UBTF".

      Setting aside the question about the UBTF antibody reagent used, we observe consistent results by evaluating both UBTF (Figure 7) and Pol I (Figure S4) binding to rDNA in spite of CpG methylation; therefore, we conclude that the human Pol I machinery is not displaced from the human rDNA promoter by intermediate levels of CpG methylation.

      Reviewer 2

      1. There is very little discussion concerning the methylation status of the IGS...the Kobayashi lab has convincingly demonstrated that rDNA repeats fall into 2 classes. Those in which the supposedly active repeats lack methylation on promoters and coding regions and those in which both promoters and coding regions are heavily methylated. In both cases the IGS is fully methylated.

      We cite this study in the Discussion (reference 18 in bibliography) and agree that this work is relevant to ours; we have adjusted the text to emphasize this point. Notably, this previous analysis of CpG methylation patterns by long-read sequencing implied that active repeats may be entirely hypomethylated along their coding sequence; our data more directly demonstrate this both by ATAC-Me and by Pol I ChIP-chop (Fig. 2).

      There is no description of how rRNA levels were assessed. I suggest this could be further complemented by in vivo incorporation studies such as EU labeling.

      We apologize for this lack of clarity. rRNA levels were assessed by qPCR of the 45S pre-rRNA (Fig. 3A) and of mature 28S rRNA (Fig. 3B), and these data are presented as a fold change in each rDNA-targeting sgRNA compared to a non-targeting control sgRNA. The primersets used are listed in Supplementary Table 1.

      While we agree that EU labeling could be useful for detecting nucleolar transcription, qPCR detection of the 45S rRNA also sensitively reports nascent transcription and we think is sufficient to address this question.

      Reviewer 3

      1. The study points to differences between mouse and human rDNA and the effect of DNA methylation on transcriptional output. Did the mouse rDNA dataset also measure transcription output to correlate with DNA methylation age differences?

      The original study that defined the rDNA methylation clock (Wang & Lemos Genome Research 2019) did not evaluate rDNA transcription in parallel. More generally, the relationship of age-linked "clock" CpG methylation sites to expression / function of CpG methylated loci is very unclear, and testing the potential relationship between age-linked rDNA methylation and function was the major goal of this study.

      Did the spacer promoter also get methylated and did that affect UBF and Pol I binding?

      While the existence and function of a spacer promoter has been more clearly defined in the mouse rDNA repeat, recent evidence indicates that the Pol I transcription machinery also binds a second location about 800 bp upstream of the core promoter in the human rDNA repeat (Mars et al G3 2018). The guides that we used to direct CpG methylation recognize single unique sites in the core rDNA promoter and do not recognize sequences in this putative spacer promoter, and we did not analyze methylation at the spacer promoter. Analysis of the spacer promoter is generally beyond the scope of this study, as it is unknown whether there is any relationship between spacer promoter methylation and aging progression.

    1. Reviewer #3 (Public Review):

      Summary:

      The paper proposes an alternative to the attractor hypothesis, as an explanation for the fact that grid cell population activity patterns (within a module) span a toroidal manifold. The proposal is based on a class of models that were extensively studied in the past, in which grid cells are driven by synaptic inputs from place cells in the hippocampus. The synapses are updated according to a Hebbian plasticity rule. Combined with an adaptation mechanism, this leads to patterning of the inputs from place cells to grid cells such that the spatial activity patterns are organized as an array of localized firing fields with hexagonal order. I refer to these models below as feedforward models.

      It has already been shown by Si, Kropff, and Treves in 2012 that recurrent connections between grid cells can lead to alignment of their spatial response patterns. This idea was revisited by Urdapilleta, Si, and Treves in 2017. Thus, it should already be clear that in such models, the population activity pattern spans a manifold with toroidal topology. The main new contributions in the present paper are (i) in considering a form of recurrent connectivity that was not directly addressed before. (ii) in applying topological analysis to simulations of the model. (iii) in interpreting the results as a potential explanation for the observations of Gardner et al.

      Strengths:

      The exploration of learning in a feedforward model, when recurrent connectivity in the grid cell layer is structured in a ring topology, is interesting. The insight that this not only align the grid cells in a common direction but also creates a correspondence between their intrinsic coordinate (in terms of the ring-like recurrent connectivity) and their tuning on the torus is interesting as well, and the paper as a whole may influence future theoretical thinking on the mechanisms giving rise to the properties of grid cells.

      Weaknesses:

      (1) In Si, Kropff and Treves (2012) recurrent connectivity was dependent on the head direction tuning, in addition to the location on a 2d plane, and therefore involved a ring structure. Urdapilleta, Si, and Treves considered connectivity that depends on the distance on a 2d plane. The novelty here is that the initial connectivity is structured uniquely according to latent coordinates residing on a ring.

      (2) The paper refers to the initial connectivity within the grid cell layer as one that produces an attractor. However, it is not shown that this connectivity, on its own, indeed sustains persistent attractor states. Furthermore, it is not clear whether this is even necessary to obtain the results of the model. It seems possible that (possibly weaker) connections with ring topology, that do not produce attractor dynamics but induce correlations between neurons with similar locations on the ring would be sufficient to align the spatial response patterns during the learning of feedforward weights.

      (3) Given that all the grid cells are driven by an input from place cells that span a 2d manifold, and that the activity in the grid cell network settles on a steady state which is uniquely determined by the inputs, it is expected that the manifold of activity states in the grid cell layer, corresponding to inputs that locally span a 2d surface, would also locally span a 2d plane. The result is not surprising. My understanding is that this result is derived as a prerequisite for the topological analysis, and it is therefore quite technical.

      (4) The modeling is all done in planar 2d environments, where the feedforward learning mechanism promotes the emergence of a hexagonal pattern in the single neuron tuning curve. Under the scenario in which grid cell responses are aligned (i.e. all neurons develop spatial patterns with the same spacing and orientation) it is already quite clear, even without any topological analysis that the emerging topology of the population activity is a torus.

      However, the toroidal topology of grid cells in reality has been observed by Gardner et al also in the wagon wheel environment, in sleep, and close to boundaries (whereas here the analysis is restricted to the a sub-region of the environment, far away from the walls). There is substantial evidence based on pairwise correlations that it persists also in various other situations, in which the spatial response pattern is not a hexagonal firing pattern. It is not clear that the mechanism proposed in the present paper would generate toroidal topology of the population activity in more complex environments. In fact, it seems likely that it will not do so, and this is not explored in the manuscript.

      (5) Moreover, the recent work of Gardner et al. demonstrated much more than the preservation of the topology in the different environments and in sleep: the toroidal tuning curves of individual neurons remained the same in different environments. Previous works, that analyzed pairwise correlations under hippocampal inactivation and various other manipulations, also pointed towards the same conclusion. Thus, the same population activity patterns are expressed in many different conditions. In the present model, this preservation across environments is not expected. Moreover, the results of Figure 6 suggest that even across distinct rectangular environments, toroidal tuning curves will not be preserved, because there are multiple possible arrangements of the phases on the torus which emerge in different simulations.

      (6) In real grid cells, there is a dense and fairly uniform representation of all phases (see the toroidal tuning of grid cells measured by Gardner et al). Thus, the highly clustered phases obtained in the model (Fig. S1) seem incompatible with the experimental reality. I suspect that this may be related to the difficulty in identifying the topology of a torus in persistent homology analysis based on the transpose of the matrix M.

      (7) The motivations stated in the introduction came across to me as weak. As now acknolwledged in the manuscript, attractor models can be fully compatible with distortions of the hexagonal spatial response patterns - they become incompatible with this spatial distortions only if one adopts a highly naive and implausible hypothesis that the attractor state is updated only by path integration. While attractor models are compatible with distortions of the spatial response pattern, it is very difficult to explain why the population activity patterns are tightly preserved across multiple conditions without a rigid two-dimentional attractor structure. This strong prediction of attractor models withstood many experimental tests - in fact, I am not aware of any data set where substantial distortions of the toroidal activity manifold were observed, despite many attempts to challenge the model. This is the main motivation for attractor models. The present model does not explain these features, yet it also does not directly offer an explanation for distortions in the spatial response pattern.

      (8). There is also some weakness in the mathematical description of the dynamics. Mathematical equations are formulated in discrete time steps, without a clear interpretation in terms of biophysically relevant time scales. It appears that there are no terms in the dynamics associated with an intrinsic time scale of the neurons or the synapses (a leak time constant and/or synaptic time constants). I generally favor simple models without lots of complexity, yet within this style of modelling, the formulation adopted in this manuscript is unconventional, introducing a difficulty in interpreting synaptic weights as being weak or strong, and a difficulty in interpreting the model in the context of other studies.

      In my view, the weaknesses discussed above limit the ability of the model, as it stands, to offer a compelling explanation for the toroidal topology of grid cell population activity patterns, and especially the rigidity of the manifold across environments and behavioral states. Still, the work offers an interesting way of thinking on how the toroidal topology might emerge.

    1. According to the head of Poland’s Armament Agency, General Artur Kuptel, describing the system in Polish media earlier this month, radars suspended from the tethered balloons will monitor the sky as far as Ukraine, Belarus, and the Russian exclave of Kaliningrad from Polish air space.Advertisement · Scroll to continue

      Hm, nice establishing shot?

    1. this 3D printer has an infinite build  volume because it can print itself higher.   0:05 it can print metals and Plastics, but  most importantly it can print itself.   0:11 imagine it creating two copies of itself in  48 hours, after two weeks one would have 2 000   0:17 printers, after a month over 10 million. this lets  us do amazing things. Send one of those to Mars   0:24 and by the time any humans show up, the printers  will have reproduced and built a luxury Mars base.   0:30 or if you feel like it, replace the production  capacity of China in just a couple of months.   0:35 anyway, exponential numbers are fun  and all but assembling 10 times the   0:39 printers prusa has ever sold in just  a month, is hard, especially on Mars. 0:46 if we want our wildest dreams to come true, we  have to figure out how we can put a big box,   0:53 into a smaller box. I hope you  can see where I'm going with this.   0:58 you see, I am making a printer that can  create an exact copy of itself and not   1:03 just the plastic parts. the motion system,  the motors, the electronics, all of it. 1:10 I am making a printer that requires no assembly  no fuss print it and start printing with it yes   1:17 I am making a print in place printer if it can  replicate itself then it can print anything.   1:23 it will be a printer that will end the age of  centralized mass production, freed by the shackles   1:28 of yesterday's production techniques and with the  help of AI we will create unique items for all.  1:34 why is your iPhone the same size as  everybody else's if your hands are not?  1:37 why does your coffee machine not add the  right amount of sugar and milk by itself?  1:43 why would you download a car? if you can generate  a unique one that fits your needs exactly. 1:56 ow well the software isn't entirely there  yet, but let's make sure this thing does   2:00 what it's supposed to do if you want  the printer to copy itself without   2:04 progressively becoming smaller and smaller  and smaller we have to solve this problem.   2:09 which I'm pretty sure is impossible,  however there's another way   2:13 here we have two completely identical boxes  neither one fits in the other but watch this: 2:24 huh this could work. 2:26 this is infinity as the name implies it  has the ability to print infinitely High.   2:32 it can do this all thanks to this new setup that  moves all the components, Motors, Electronics,   2:38 hotend, everything from the printer base onto  the Gantry of the 3D printer. with this the   2:44 entire printer can climb onto its four legs, and  when there are no more likes to climb, it can   2:49 simply print them higher. it does this by having  the z-axis mechanism inside the build volume,   2:55 thereby it is able to print onto its own legs and  extend them while it's printing an other part.   3:01 so this does the same thing as a treadmill  printer? one that uses a rolling bed to print   3:07 infinitely long objects? on first glance  you might think so, but you would be wrong.  3:12 you see the reason this printer has  an infinite z-axis is not to be able   3:16 to print swords or other big things,  but rather to be able to print itself,   3:22 the infinite build volume is merely  a side effect of its main objective.  3:26 if you measure the height and the side of  this printer, you will see it fits on the   3:30 build plate and when you measure the  length, well that's why it can grow!  3:34 let's use this simplified frame to easier  understand how this works. when a printer   3:39 starts copying itself it's not big enough,  so then it extends itself until it fits.   3:44 oh and who said you have to print  the printer the same size every time?   3:49 make the first copy larger and then the  second one even larger, well congrats you   3:55 have extended your build volume in all three axis  and now you can print a full-sized car at home. 4:00 with this goal of self-reproduction it should  make sense why there's a lot of focus on making   4:04 the majority of the parts printable and  to reduce the number of non-printed parts.   4:09 at the moment the printer only needs four screws   4:13 these, hold all of these parts in place, and  because most of the parts are printed it can be   4:19 assembled from scratch in just 15 minutes. wait a second what is this about:   4:25 a majority of the parts are printed, and quick  assembly. what are we Savages? does he want us   4:35 to bang rocks together to make tools to  assemble that thing too? what is this? 4:40 this is the key to our wildest dreams!  and don't worry about printing metals   4:44 and electronics you'll see soon how to  do that at home for less than 100 bucks. 4:48 let me instead show you why this initial design is   4:51 such a great base for a printer that  can create a full-size copy of itself,   4:56 actually it's not just able to print a full-sized  copy of itself but rather two at a time. this   5:04 allows us to use the actual printers that are  being printed as the z-axis legs and thereby save   5:08 time on not having to print those separately. this idea was already implemented in the first   5:13 version but it was later removed to save time  between iterations of which there were many,   5:20 just like every other project that is "going to be  done by the end of the week". you know how it is.  5:27 the most iteration hungry part to develop  were the z-axis legs you know these things.  5:32 these legs are simply made by cutting along the  length of an internally threaded tube, initially   5:38 the legs used a standard thread profile, but under  load that profile creates axial and Radial forces.   5:44 usually this is not a problem because radial  forces cancel out. but with this design the   5:50 threads are only engaging on one quarter of  the circumference, the radal forces push the   5:56 legs away from the worm gear thereby getting  disengaged and causing the printer to fall. 6:00 No! keeps falling down on this side.. Gahh 6:08 a bracket was used as a quick fix,   6:10 however this does not allow us to do  this so a proper solution is needed.  6:15 if we look at the root problem, it's clear  that the positive thread angle is the issue.  6:21 by reducing this to a negative value the threats  will no longer push themselves away, but rather   6:26 attract each other. and because we know that  these threats are only going to be used in this   6:31 application, we can even make them directional  and thereby easier to print. look at how this   6:36 screw is holding onto one of its legs with no  additional help. this is exactly what we needed!  6:43 we are not done yet! but if you've made it  this far into the video and you're thinking:   6:48 this guy could be a valuable member to  our team! then feel free to reach out   6:51 via my social media or email I'm always  looking for new projects to work on! 6:55 this printer is printing onto  the already existing legs rather   6:58 than just an arbitrary point on a build  plate as a normal printer usually would.   7:03 predictably this causes some  problems we otherwise wouldn't have:  7:07 are the limit switches not perfectly mounted?  that's a problem. are your cheap pre-cut frame   7:13 rods cheaply pre-cut thereby altering the distance  between the ladders and offsetting the extension   7:18 prints? that's a problem. does cura slicer  create travel paths through "do not print"-zones,   7:24 causing your printer to crash and forcing  you to print each extension individually?   7:31 that's a problem! do you have nine hours of  video of troubleshooting and problem solving   7:35 that you now have to somehow condense  into an entertaining 30 second segment? 7:41 the main challenge we are facing at the moment is  determining the position of the printhead relative   7:45 to the legs. this is a very familiar problem  what traditional machinists experience every day,   7:51 and luckily for us we can look at what they're  doing and use the same type of touch tool they   7:56 use to precisely determine the position of  the tool head, relative to the workpiece.  8:00 but it's a three thousand dollar  thing really the solution we need?   8:05 or should we rather just put a conical tip  on the BL touch sensor that's already on this   8:09 printer and use trigonometry to figure  out the exact position? I don't know,   8:14 but maybe you do! creating a fully print in  place 3D printer is not easy for one person. 8:21 and that is where project quine comes  in. at the moment it consists of Sean,   8:25 Alex and me. and the three of us have been  working on this idea for a small while now.   8:29 we need your help. I'm not asking for money,  even though we currently don't have funding.   8:34 but rather I'm asking for your time and  effort! we are releasing all our work for   8:39 free, and I hope that you, yes you dear  viewer, will look at it and add to it!  8:43 the infinity is solely an instrument that  can perform a few pieces, but once it's   8:48 played together with an orchestra of  ideas, it will become a masterpiece!  8:51 hence why I hope to see your ideas  in the future of this project! 8:56 Engineers like you and me run on coffee, so  let's speed up the printer's development by   9:01 improving our coffee making process! a subject  I've already explored! so go check that out!  9:07 in upcoming videos I will show you how you  can print medals and electronics at home,   9:10 so don't forget to subscribe! as you can tell this, is not this,   9:15 and the YouTube algorithm does not take  kindly to hour-long technical breakdowns so   9:20 I will upload an in-depth technical review for my  patreons. thanks for watching, I'm sunshine. bye!

      @misc{sunshine_2023, title={it can 3D-Print onto itself?!}, url={https://www.youtube.com/watch?v=Ek_7tBOCcAI}, journal={YouTube}, author={SunShine}, year={2023}, month={Sep} }

  8. docs.libp2p.io docs.libp2p.io
    1. Reviewer #2 (Public Review):

      This manuscript by Amen, Yoo, Fabra-Garcia et al describes a human monoclonal antibody B1E11K, targeting EENV repeats which are present in parasite antigens such as Pfs230, RESAs, and 11.1. The authors isolated B1E11K using an initial target agnostic approach for antibodies that would bind gamete/gametocyte lysate which they made 14 mAbs. Following a suite of highly appropriate characterization methods from Western blotting of recombinant proteins to native parasite material, use of knockout lines to validate specificity, ITC, peptide mapping, SEC-MALS, negative stain EM, and crystallography, the authors have built a compelling case that B1E11K does indeed bind EENV repeats. In addition, using X-ray crystallography they show that two B1E11K Fabs bind to a 16 aa RESA repeat in a head-to-head conformation using homotypic interactions and provide a separate example from CSP, of affinity-matured homotypic interactions.

      There are some minor comments and considerations identified by this reviewer, These include that one of the main conclusions in the paper is the binding of B1E11K to RESAs which are blood stage antigens that are exported to the infected parasite surface. It would have been interesting if immunofluorescence assays with B1E11K mAb were performed with blood-stage parasites to understand its cellular localization in those stages.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In "BDNF signaling requires matrix metalloproteinase-9 during structural synaptic plasticity", Legutko et al. used two-photon microscopy and glutamate uncaging to show that rapid release (seconds) of MMP-9 from dendritic spines following synaptic stimulation as well as MMP-9 dependent activation of TrkB. The authors also show and MMP-dependent increase on dendritic spine volume. These data support the possibility that MMP-9 rapidly activates BDNF to promote the spine maturation required for LTP. All is all the manuscript is well written, and the data is convincing and important.

      Answer: We thank the reviewer for that comment.

      Questions/Concerns:

      • The authors show cell free cleavage of BDNF by recombinant MMP-9. It would be more convincing to show that MMP-9 cleaved BDNF using concentrated supernatants following synaptic stimulation in control versus inhibitor treated slices. Answer: In the present study we focus on a single-spine approach; thus, we did not include general stimulation techniques and biochemical analyses. To our knowledge, there is no method to show BDNF cleavage by MMP-9 directly at a single synapse. We agree with the reviewer that the general stimulation is important; however, at the synapse, there is potentially a whole array of proteases such as plasmin, tissue plasminogen activator (tPA) that might not only create catalytic cascade and proteolytically activate MMP-9 but also directly cleave proBDNF. When stimulating neurons and analysing supernatants, it is therefore impossible to determine if MMP-9 directly digests proBDNF to mBDNF or, alternatively, whether it is just a part of a proteolytic cascade leading to BDNF maturation. Therefore, our result where we use recombinant proteins provide an important piece of evidence that MMP-9 can indeed cleave proBDNF directly. Of note, experiments using brain extracts have been published previously, for example in a paper of Mizoguchi et al., J.Neurosci. (2011); DOI:10.1523/JNEUROSCI.3118-11.2011, where the authors showed increased cleavage of BDNF after pentylenetetrazole kindling and the kindling induced proBDNF cleavage was decreased in MMP-9 KO mice.

      • The concentration of the MMP-9/13 inhibitor used was quite high and would also inhibit MMP-1, -3 and -7. This concern is, however, abrogated by the use of the MMP-9 KO. But it might be important to mention that the inhibitor is not MMP-9 specific at higher concentrations. Answer: To comply with this remark, we have stressed the notion in the Discussion of the revised ms.:

      "There are over twenty MMPs with overlapping substrate specificity (Fields, 2015; Cieplak & Strongin, 2017) and there are no fully specific, commercially available inhibitors for MMP-9. Since Inhibitor I might affect also other MMPs, to further test the involvement of the protease in sLTP, we have used hippocampal slice cultures prepared from MMP-9 KO mice and their WT littermates (Fig. 1E, 1F)."

      • In figure 1C vs E, as well as Fig 3C vs E, it appears that the DMSO to inhibitor (1C and 3C) change is larger than the WT vs MMP-9 KO (1E and 3E). Is this possibly because DMSO has a potentiating effect and/or because the inhibitor is getting other MMPs or the MMP-9 KO has compensatory increases in other MMPs? __Answer: __At the concentrations used in the study (not exceeding 0.08%), we do not consider DMSO having any potentiating effect. As we discuss in the manuscript, the difference between DMSO control and MMP-9 WT is most likely due to differences between genetic lines of the mice. This is also a reason why each set of experiments has its own control. Of note, in the paper preceding this study, Harvard et al., Nature (2016); doi:10.1038/nature19766, spine volume change induced by uncaging, vary between 200 and 300% depending on mice strain used in the experiment.

      • The idea that MMP-9 and pro-BDNF are in the same vesicular stores is an interesting and very plausible one. Perhaps the authors could discuss what is known about the types of vesicles thought to harbor these two proteins. Answer: To follow on this remark, we added information about the vesicles containing BDNF and MMP-9 in the Discussion:

      "Given that the release kinetics of BDNF and MMP-9 are similar, one could speculate that the effect of MMP-9 inhibition on early TrkB activation can be achieved because both, MMP-9 and BDNF are co-localized and co-released from the same release vesicles. BDNF is widely considered to be stored and released from Large Dense-Core Vesicles (Dieni et al, 2012; Kojima et al, 2020), and MMP-9 release although not studied in neurons but in cell lines, also points to the same type of vesicles (Stephens et al, 2019)."

      • It might be useful to add to the discussion pathological conditions such as major depression and post-stroke plasticity in which MMP-9 dependent BDNF activation could be important. Answer: We thank the reviewer for that suggestion. We have added the information about MMP-9 and BDNF link in the brain pathologies in the Discussion:

      "Additionally, our data may provide a functional link between the involvement of MMP-9 and BDNF in various brain pathologies, in which such a link has previously been implicated, for example in addiction (Cheng et al, 2019), schizophrenia (Pan et al, 2022; Yamamori et al, 2013), ischemic stroke (Li et al, 2022) or even following cochlear implantation (Matusiak et al, 2023)."

      Reviewer #1 (Significance (Required)):

      The results are significant to understanding synaptic plasticity in health and disease.

      __Answer: __We thank the reviewer for that comment stressing the importance of our study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The study addresses the molecular mechanisms of activity-dependent morphological plasticity of dendritic spines, focusing on the role of MMP-9 and BDNF-TrkB in the signalling and biochemical activities that lead to and maintain spine enlargement ('structural LTP', sLTP) induced experimentally.

      It is based on a combination of 2-photon imaging of spine morphology, 2-photon imaging of MMP-9-SEP fluorescence, 2-photon FLIM of a biosensor for TrkB activity and 2-photon glutamate uncaging in organotypic hippocampal brain slices. In addition, it includes an assay of protein digestion based on Western immuno blots.

      As results, the study reports that diminishing MMP-9 activity (pharmacologically or genetically) in the slices reduces sLTP, that repetitive glutamate uncaging evokes the release of MMP-9 from the spines that undergo sLTP, and that this effect can be blocked by pharmacological blockade of NMDA or exocytosis, that repetitive glutamate uncaging on a spine increases TrkB activation in the spine, and that this effect is diminished in slices from MMP-9 KO animals or treated by an MMP-9 blocker, and that MMP-9 can cleave proto-BDNF into mature BDNF in a cell-free medium.

      The experiments are technically challenging but they are well conceived, designed and executed. The conclusions are well supported by the results, which are clearly discussed in light of the substantial and somewhat contradictory literature.

      Reviewer #2 (Significance (Required)):

      The study provides a finer view of the dynamic role of MMP-9 in activity-dependent spine plasticity, reinforcing and expanding existing knowledge on this timely topic.

      The study is well executed and the conclusions are warranted. The study is an experimental tour de force, even if the biological results and insights are rather incremental and don't force us to revise our main assumptions or expectations.

      Answer: We thank the reviewer for that comment and the appreciation of our work.

      I only have a few questions and suggestions:

      • 2: Do TeTx and AP5 treatments also block spine enlargement? The MMP9-SEP and mCherry signals in the spines are going up, what about their ratio F/R? __Answer: __Yes, we do have results showing that TeTx and AP5 block spine enlargement, however we did not present them in the original manuscript. The AP5 application on spine enlargement was previously demonstrated for example by Tanaka and co-workers (2008); DOI: 10.1126/science.1152864, and the effect of TeTx on LTP and insertion of AMPA receptors has also been demonstrated multiple times for example by Penn et al., Nature (2017); doi:10.1038/nature23658. To comply with the reviewer's request we have included the data in the revised version of the manuscript (Figure 2C).

      As far as the F/R ratio is concerned we shall stress that the aim of our experiments was to show the release of MMP-9 into extracellular space upon uncaging. We have initially tried to analyse the ratio of F/R, however the green signal that comes from MMP9-SEP does not accumulate at the spine, apparently being rapidly diffused. Therefore, the overall red signal for mCherry increases much faster (mCherry fills the cytoplasm in the spine) than the MMP9-SEP; therefore, the F/R ratio is decreasing over time. Figure 2G shows that increases in MMP9-SEP fluorescence are only transient (around 0.5 s) after uncaging pulses.

      • 3B shows increased TrkB activation after glutamate uncaging, but is it possible to see the spine enlargement in the FRET-FLIM signal/images? Answer: Yes, it is possible to observe spine enlargement during FRET-FLIM experiments by counting photons from the red channel (RFP) as well as from the green one (GFP), however due to technical difficulties spine volume change was measured in separate experiments.

      • Fix: mW and Chameleon in the Methods section - corrected

      • Consider streamlining the Discussion a bit - we have reviewed the discussion
      • Consider adding a schematic to summarise the new and existing findings Answer: We thank the reviewer for the suggestion, we have added a schematic summarising the paper as a separate figure (Fig.4).

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this short report, Legutko et al address the role of MMP9 in BDNF signaling in the context of structural long-term potentiation (sLTP). In particular, they assess whether MMP9 is secreted fast enough to mediate the cleavage of proBDNF in mBDNF during sLTP. The study uses 2-photon imaging of hippocampal organotypic slices, glutamate uncaging and FRET-based sensors of TrkB activity. The authors demonstrate that MMP9 is secreted within seconds upon 2-photon glutamate uncaging and that MMP9 secretion precedes spine enlargement. They also show that MMP9 can cleave proBDNF in vitro. However, the role of MMP9 in sLTP and associated TrkB signaling remains speculative at the end of the manuscript.

      Major comments

      • The title of the first result section "spine head enlargement during structural plasticity depends on MMP9 activity" is an overstatement. The authors provide evidence that MMP inhibition and MMP9 KO decrease spine enlargement during the early phase of sLTP. However, after the first few minutes, spines still display long-term enlargement, and no difference between WT and MMP9 KO mice can be detected. These data suggest that MMP9 is only involved in the initial phase of sLTP, and that other MMPs are involved in sLTP.

      __Answer: __We thank the reviewer for that comment. We have change the wording in the revised manuscript to accommodate the suggestion.

      • The authors cannot conclude that "spine head enlargement during sLTP depends on MMP9 activity".

      __Answer: __We thank the reviewer for that comment. We have changed the title and wording in the revised manuscript to accommodate the suggestion.

      • The authors should apply Inhibitor I on MMP9 KO slices to determine if MMPs other than MMP9 are involved in spine enlargement.

      __Answer: __We thank the reviewer for the suggestion, and indeed we agree that other MMPs might be involved in spine enlargement induced by glutamate uncaging. Furthermore, applying Inhibitor I will not resolve the question which MMPs or other proteases are involved in the spine enlargement. Applying Inhibitor I on MMP-9 KO slices would only eliminate one of the proteases. To deal with this difficult issue, we have used slices from MMP-9 KO mice and showed the influence of MMP-9 on the transient phase of spine enlargement induced by glutamate uncaging.

      • If Inhibitor I still impacts sLTP in MMP9 KO slice, it would greatly benefit this study to determine which MMPs are involved (for example by analyzing the expression patterns of MMPs in their neurons and selectively inactivating those expressed with shRNAs).

      Answer: The proposed experiment is an excellent suggestion for a future project however it is not an easy experiment to perform. MMPs expression pattern could be assessed by single cell RNA sequencing to distinguish it from for example astrocytic expression, however it often fails to detect mRNAs which are expressed at low level. For example mRNA coding MMP-9 belongs to this group as its mRNA is kept at very low level, see, e.e.g, Konopacki et al., Neuroscience (2007); https://doi.org/10.1016/j.neuroscience.2007.08.026, Dziembowska et al. J.Neurosci (2012); https://doi.org/10.1523/JNEUROSCI.6028-11.2012. There is also quite low correlation between mRNA levels and protein levels at a global scale, see e.g., Reimegård et al., Comm. Biol. (2021); https://doi.org/10.1038/s42003-021-02142-w, therefore predictive power of mRNA sequencing for the importance of a particular protein might not be sufficiently informative. Moreover, the situation is even more complex in neurons which are strongly compartmentalized, and where local translation plays a significant role. We have previously studied this particular aspect for MMP-9, Dziembowska et al. J.Neurosci. (2012); DOI:10.1523/JNEUROSCI.6028-11.2012..

      • The title of the third/last result section "TrkB signaling depends on MMP9 activity" is also an overstatement. In Figure 3, the authors show that the pharmacological inhibition of MMPs slightly inhibits TrkB signaling in the early phase of sLTP, and almost abolishes TrkB signaling in the second phase (> 3 min after uncaging). However, the data suggesting a specific role for MMP9 in TrkB signaling are not convincing (Figure 3E-F). The activation of trkB during sLTP is weak even in WT, the peak of trkB activation upon glutamate uncaging in not disrupted in MMP9 KO mice, and the data are noisy. It is a major concern that the authors cannot convincingly show that TrkB signaling is altered in MMP9-deficient neurons. Answer: To the best of our knowledge, using FRET-FLIM sensors is the best and state-of-the-art method to track biochemical changes (such as receptor activation) in real time using live preparations. The method is very sensitive and published previously by one of the authors of the current study where TrkB sensor is activated in the same magnitude (Harward et al., Nature, 2016; doi: 10.1038/nature19766). Moreover similar magnitude of sensor activation was reported previously in single dendritic spines for other sensors using FLIM-FRET method: Rho GTPases (Hedrick et al., Nature 2016; doi: 10.1038/nature19784), IGF1R (Tu et al., Sci Advanc. 2023; doi: 10.1126/sciadv.adg0666) or CaMKII (Chang et al., Nat. Commun. 2019; https://doi.org/10.1038/s41467-019-10694-z). The noise is to be expected, as we are imaging small compartments in a short time where collecting enough number of photons is challenging. Similarly to previous studies using FRET-FLIM sensors, we bin experimental points to reduce noise for statistical analysis. Notably, the biological effect we observe, namely sensor activation, is well above the experimental noise that in inevitable in this experimental approach. For statistical analyses we have used repeated measures ANOVA, which is very sensitive to noise and signal fluctuation. The differences we measure are statistically significant.

      • The authors discuss that the problem might stem from mouse genetic backgrounds. However, if the MMP9 KO mouse model is not appropriate to answer the question, the authors should use another one (i.e. MMP9 knockdown using sh/siRNAs).

      Answer: We believe that the effect of MMP-9 KO in this experiment is evident, as supported by Fig. 3 E,F and statistical analysis. Furthermore, the experiment with the inhibitor further supports our reasoning.

      • In addition to the graphs, the authors should mention in the text the percentage of inhibition compared to WT). This would make the results easier to read.

      Answer: To comply with this request the appropriate information has been added to the revised manuscript.

      • The change in TrkB activation following glutamate uncaging is low (max 5-7 % at the peak, compared to 200% for spine volume). This raises the question of the physiological relevance of TrkB activation in this model. The authors should include experiments with a trkB inhibitor to assess whether it prevents sLTP in WT and MMP9 KO mice. They should also discuss other potential targets of MMP9. This would strengthen the rationale of the experiments. Answer: Previously published results using the same TrkB sensor (Harward et al., Nature, 2016; doi: 10.1038/nature19766), show exactly the same change in binding fraction calculated from a change in GFP fluorescence lifetime. These data are also in agreement with well-established standard in the field, see, e.g., Rho GTPases (Hedrick et al., Nature 2016; doi: 10.1038/nature19784), IGF1R (Tu et al., Sci Advanc. 2023; doi: 10.1126/sciadv.adg0666) or CaMKII (Chang et al., Nat. Commun. 2019; https://doi.org/10.1038/s41467-019-10694-z). In response to the comment we have addressed this issue in the Discussion in the revised ms.

      Minor comments

      • In the introduction, the authors should provide more context. Could the authors develop the "long standing debate on which enzymes process proBDNF to mBDNF"? Answer: We have removed the sentence as we realized it was too confusing and the paper does not compare between different proteases which may process proBDNF to mBDNF.

      • In the result section:

      • First paragraph, the last sentence should be moved from the end of the paragraph to before "During sLTP induction...".

      Answer: Following the reviewer suggestion, we have moved the sentence.

      • Several paragraphs in the result section lack a proper conclusion/interpretation, which makes it difficult to read. Examples: after (Fig. 2E), after (Fig. 2F). The authors should explicit what their results mean.

      Answer: We have changed the paragraphs and tried to explain the results better.

      • Clarify when and for how long the MMP inhibitor was applied. Answer: The inhibitor was applied 30 min. before stimulation. We have added the information in the Methods section.

      • In figure 1, The authors observe a specific alteration of the early, transient, sustained increase in spine head volume in MMP9 KO mice. The later phase of sLTP is not impacted, which means that sLTP is induced and maintained in the KO. Could the authors discuss the role/importance of this transient peak in spine head volume? Answer: In response to this comment, we have discussed this issue in the revised ms. as follows:

      " The transient spine expansion might be important for the remodeling of the synapse (Lang et al, 2004) and is associated with NMDAR-dependent formation of "memory gel" created by enlargement pool of actin (Honkura et al, 2008; Kasai et al, 2010; Bonilla-Quintana & Rangamani, 2024). It has also been reported that TrkB activity can influence actin dynamics (Woo et al, 2019; Hedrick et al, 2016), in some instances in concert with integrin 1 (Wang et al, 2016), which is also activated by MMP-9 (Wang et al, 2008; Michaluk et al, 2009, 2011) and further supports our observations."

      Reviewer #3 (Significance (Required)):

      The manuscript aims to bring conceptual advance in our understanding of structural synaptic plasticity by investigating the role and timing of MMP9 secretion in TrkB signaling. Previous work from the Yasuda lab and others have shown that trkB is activated early on by BDNF during sLTP. However, how, when and where BDNF is cleaved from proBDNF in mBDNF is poorly understood. The authors demonstrate that the pharmacological inhibition of metalloproteases attenuates structural long-term plasticity (sLTP) and that MMP9 is secreted early enough to cleave proBDNF. They also show that MMP9 can cleave proBDNF in BDNF in vitro. Whether MMP9 specifically cleaves BDNF during sLTP and whether this cleavage is physiologically relevant for sLTP remain an open question.

      This report will be of interest to neurobiologists interested in the molecular mechanisms of synaptic plasticity.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this short report, Legutko et al address the role of MMP9 in BDNF signaling in the context of structural long-term potentiation (sLTP). In particular, they assess whether MMP9 is secreted fast enough to mediate the cleavage of proBDNF in mBDNF during sLTP. The study uses 2-photon imaging of hippocampal organotypic slices, glutamate uncaging and FRET-based sensors of TrkB activity. The authors demonstrate that MMP9 is secreted within seconds upon 2-photon glutamate uncaging and that MMP9 secretion precedes spine enlargement. They also show that MMP9 can cleave proBDNF in vitro. However, the role of MMP9 in sLTP and associated TrkB signaling remains speculative at the end of the manuscript.

      Major comments

      1. The title of the first result section "spine head enlargement during sLTP depends on MMP9 activity" is an overstatement. The authors provide evidence that MMP inhibition and MMP9 KO decrease spine enlargement during the early phase of sLTP. However, after the first few minutes, spines still display long-term enlargement, and no difference between WT and MMP9 KO mice can be detected. These data suggest that MMP9 is only involved in the initial phase of sLTP, and that other MMPs are involved in sLTP.
        • The authors cannot conclude that "spine head enlargement during sLTP depends on MMP9 activity".
        • The authors should apply Inhibitor I on MMP9 KO slices to determine if MMPs other than MMP9 are involved in spine enlargement.
        • If Inhibitor I still impacts sLTP in MMP9 KO slice, it would greatly benefit this study to determine which MMPs are involved (for example by analyzing the expression patterns of MMPs in their neurons and selectively inactivating those expressed with shRNAs).
      2. The title of the third/last result section "TrkB signaling depends on MMP9 activity" is also an overstatement. In Figure 3, the authors show that the pharmacological inhibition of MMPs slightly inhibits TrkB signaling in the early phase of sLTP, and almost abolishes TrkB signaling in the second phase (> 3 min after uncaging). However, the data suggesting a specific role for MMP9 in TrkB signaling are not convincing (Figure 3E-F). The activation of trkB during sLTP is weak even in WT, the peak of trkB activation upon glutamate uncaging in not disrupted in MMP9 KO mice, and the data are noisy. It is a major concern that the authors cannot convincingly show that TrkB signaling is altered in MMP9-deficient neurons.
        • The authors discuss that the problem might stem from mouse genetic backgrounds. However, if the MMP9 KO mouse model is not appropriate to answer the question, the authors should use another one (i.e. MMP9 knockdown using sh/siRNAs).
        • In addition to the graphs, the authors should mention in the text the percentage of inhibition compared to WT). This would make the results easier to read.
      3. The change in TrkB activation following glutamate uncaging is low (max 5-7 % at the peak, compared to 200% for spine volume). This raises the question of the physiological relevance of TrkB activation in this model. The authors should include experiments with a trkB inhibitor to assess whether it prevents sLTP in WT and MMP9 KO mice. They should also discuss other potential targets of MMP9. This would strengthen the rationale of the experiments.

      Minor comments

      1. In the introduction, the authors should provide more context. Could the authors develop the "long standing debate on which enzymes process proBDNF to mBDNF"?
      2. In the result section:
        • First paragraph, the last sentence should be moved from the end of the paragraph to before "During sLTP induction...".
        • Several paragraphs in the result section lack a proper conclusion/interpretation, which makes it difficult to read. Examples: after (Fig. 2E), after (Fig. 2F). The authors should explicit what their results mean.
      3. Clarify when and for how long the MMP inhibitor was applied.
      4. In figure 1, The authors observe a specific alteration of the early, transient, sustained increase in spine head volume in MMP9 KO mice. The later phase of sLTP is not impacted, which means that sLTP is induced and maintained in the KO. Could the authors discuss the role/importance of this transient peak in spine head volume?

      Significance

      The manuscript aims to bring conceptual advance in our understanding of structural synaptic plasticity by investigating the role and timing of MMP9 secretion in TrkB signaling. Previous work from the Yasuda lab and others have shown that trkB is activated early on by BDNF during sLTP. However, how, when and where BDNF is cleaved from proBDNF in mBDNF is poorly understood. The authors demonstrate that the pharmacological inhibition of metalloproteases attenuates structural long-term plasticity (sLTP) and that MMP9 is secreted early enough to cleave proBDNF. They also show that MMP9 can cleave proBDNF in BDNF in vitro. Whether MMP9 specifically cleaves BDNF during sLTP and whether this cleavage is physiologically relevant for sLTP remain an open question.

      This report will be of interest to neurobiologists interested in the molecular mechanisms of synaptic plasticity.

    1. Alan Clark Agreed...also; learning = change in behaviour, is another widely held belief.

      Reply to John Whitfield: I think that one is mostly a semantic issue. In some definitions of learning, learning does equate to a change in behavior. In parenting for example, how is learning measured? If the behavior is changed. Therefore, for parenting, learning is a change in behavior.

      I'd argue for many books the same is true, what is the use of a book if the knowledge is only in your head. Application, thus changing one's behavior, is essential for the proper use. Obviously this is not for everything the case, but I am highlighting a few scenarios where it would be accurate to say that learning is a change in behavior.

      Nothing is ever black and white, it is quite simplistic to say such things, often there is a lot of nuance going on.


      Comment link: https://www.linkedin.com/feed/update/urn:li:activity:7197621782743252992?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A7197621782743252992%2C7198233333577699328%29&dashCommentUrn=urn%3Ali%3Afsd_comment%3A%287198233333577699328%2Curn%3Ali%3Aactivity%3A7197621782743252992%29

      Link for Hypothes.is context: https://www.linkedin.com/feed/update/urn:li:activity:7197621782743252992/?commentUrn=urn:li:comment:(activity:7197621782743252992,7198233333577699328)&dashCommentUrn=urn:li:fsd_comment:(7198233333577699328,urn:li:activity:7197621782743252992)