36 Matching Annotations
  1. Sep 2023
  2. Mar 2022
    1. No need to construct strings that then need to be deconstructed later.
    2. I believe we need the break free of these anachronistic designs and use event loggers, not message loggers
    3. µ/log's idea is to replace the "3 Pillars of Observability" with a more fundamental concept: "the event"

      bold goal

    4. Event-based data is easy to index, search, augment, aggregate and visualise therefore can easily replace traditional logs, metrics and traces.
  3. Jan 2022
  4. Dec 2021
    1. In this example, Bigipedia informs us that the DOI is referenced by the article page. Note that because the subject is not a DOI, the metadata must be supplied in the subj key. $ curl "https://bus.eventdata.crossref.org/events" \ --verbose \ -H "Content-Type: application/json" \ -H "Authorization: Token token=591df7a9-5b32-4f1a-b23c-d54c19adf3fe" \ -X POST \ --data '{"id": "dbba925e-b47c-4732-a27b-0063040c079d", "source_token": "b1bba157-ab5b-4cb8-9ac8-4beb2d6405ff", "subj_id": "http://bigipedia.com/pages/Chianto", "obj_id": "https://doi.org/10.3403/30164641u", "relation_type_id": "references", "source_id": "bigipedia", "license: "https://creativecommons.org/publicdomain/zero/1.0/", "subj": {"title": "Chianto", "issued": "2016-01-02", "URL": "http://bigipedia.com/pages/Chianto"}}'
      • SUBJECT is Page, no DOI
        • metadata in object "subj"
    1. El púlsar binario PSR J0737 como banco de pruebas de la relatividad general Por Francisco R. Villatoro, el 16 diciembre, 2021. Categoría(s): Astronomía • Ciencia • Física • Noticias • Physics • Relatividad • Science ✎ 3

      l púlsar binario PSR J0737 como banco de pruebas de la relatividad general Por Francisco R. Villatoro, el 16 diciembre, 2021. Categoría(s): Astronomía • Ciencia • Física • Noticias • Physics • Relatividad • Science ✎ 3

      Hulse y Taylor recibieron el Premio Nobel de Física en 1993 por su estudio del púlsar binario PSR B1913+16 (el primero que se descubrió en 1974), que observó de forma indirecta la emisión de ondas gravitacionales. Se publica en Physical Review X un análisis similar del púlsar binario PSR J0737−3039A/B, descubierto en 2003. El púlsar binario PSR J0737 es un banco de pruebas único para el estudio de la relatividad general ya que está situado a solo dos mil años luz de la Tierra, ambas estrellas de neutrones se observan como púlsares y su inclinación orbital es muy próxima a 90 °, luego se puede observar cómo el espaciotiempo curvo del plano orbital modifica los pulsos emitidos. Las observaciones durante 16 años de la precesión del periastro siguen la fórmula de la emisión gravitacional cuadripolar de Einstein con un error menor del 0.013 % (el resultado obtenido tras 2.5 años de observaciones tenía un error del 0.05 % y se publicó en 2006 en Science). Sin lugar a dudas un púlsar binario que habrá que seguir durante las próximas décadas para mejorar estas estimaciones.

      Además de probar la fórmula cuadripolar de Einstein, se ha probado el retraso debido al efecto de Shapiro (en un espaciotiempo curvo las señales de radio viajan durante más tiempo y las observamos retrasadas). También se han realizado otras pruebas de la relatividad que hasta ahora no se habían podido realizar con otros púlsares binarios. Por ejemplo, se ha medido la deformación relativista de la órbita (debido al acoplamiento relativista entre el espín (rotación de las estrellas de neutrones) y el momento angular de su órbita). En estas pruebas los resultados tienen mucha mayor incertidumbre, pero en todos los casos son compatibles con las predicciones de la relatividad general de Einstein. Esta teoría, a la que muchos físicos quieren matar cuanto antes, además de muy bella es muy robusta y promete reinar en la física durante muchas décadas.

      El artículo es M. Kramer, I. H. Stairs, …, G. Theureau, «Strong-field Gravity Tests with the Double Pulsar,» Physical Review X 11: 04150 (13 Dec 2021), doi: https://doi.org/10.1103/PhysRevX.11.041050, arXiv:2112.06795[astro-ph.HE] (13 Dec 2021); más información divulgativa en Lijing Shao, «General Relativity Withstands Double Pulsar’s Scrutiny,» Physics 14: 173 (13 Dec 2021) [web].

      Una manera de destacar la excepcionalidad del púlsar binario PSR J0737 es compararlo con el famoso PSR B1913, que ha sido estudiado durante 35 años. Esta figura muestra la precesión del periastro de la órbita; la diferencia en la densidad de puntos entre 0 y −20 es notable. Así se explica que el nuevo resultado para PSR J0737 tras 16 años tenga un error menor del 0.013 %, cuando para PSR B1913 solo se alcanzó el 0.2 %; por cierto, para las fusiones de agujeros negros observadas por LIGO-Virgo el error típico ronda el 20 %. No le he dicho, pero supongo que sabrás que el periastro de una órbita elíptica es el punto donde la distancia entre ambos cuerpos es mínima; se llama perihelio cuando uno de los cuerpos es el Sol y perigeo cuando es la Tierra. El fenómeno que mide esta figura es análogo a la precesión del perihelio de la órbita de Mercurio, que Einstein usó como guía hacia la formulación correcta de su teoría de la gravitación.

      ASTROFÍSICACIENCIAEXPERIMENTOFÍSICANOTICIASPÚLSARTEORÍA DE LA RELATIVIDAD GENERAL

      3 Comentarios Mario dice: 17 diciembre, 2021 a las 5:10 pm Francis Hay una frase que no entiendo, favor revisar: «…,luego sus señales se observa cómo el espaciotiempo curvo del plano orbital modificada la señal que observamos». Atte Mario

      RESPONDER Francisco R. Villatoro dice: 17 diciembre, 2021 a las 9:15 pm Gracias, Mario.

      RESPONDER Mario dice: 19 diciembre, 2021 a las 10:07 pm Francis, entiendo que por el efecto shapiro las señales de radio se ven retrasadas; pero para notar tal retraso tiene que haber una referencia. Cuál es esa referencia?

      RESPONDER Deja un comentario

    1. Evidence Record Creates observations of type landing-page-url for annotates relation types. Creates observations of type plaintext for discusses relation types.
      • SEE
      • In Evidence:
      • "candidates": [ { "type": "landing-page-url",
    2. Discusses: { "license": "https://creativecommons.org/publicdomain/zero/1.0/", "obj_id": "https://doi.org/10.1146/annurev.earth.32.082503.144359", "source_token": "8075957f-e0da-405f-9eee-7f35519d7c4c", "occurred_at": "2015-05-11T04:03:44Z", "subj_id": "https://hypothes.is/a/qNv_Ei5ZSnWOWO54GXdFPA", "id": "00054d54-7f35-4557-b083-7fa1f028856d", "evidence_record": "https://evidence.eventdata.crossref.org/evidence/20170413-hypothesis-a37bc9bf-1dc0-4c8a-b943-2e14beb4de6f", "terms": "https://doi.org/10.13003/CED-terms-of-use", "action": "add", "subj": { "pid": "https://hypothes.is/a/qNv_Ei5ZSnWOWO54GXdFPA", "json-url": "https://hypothes.is/api/annotations/qNv_Ei5ZSnWOWO54GXdFPA", "url": "https://hyp.is/qNv_Ei5ZSnWOWO54GXdFPA/www.cnn.com/2015/05/05/opinions/sutter-sea-level-climate/#", "type": "annotation", "title": "The various scenarios presented should be specified as being global averages of expected sea level rise. The sea level rise observed locally will vary significantly, due to a lot of different geophysical factors.", "issued": "2015-05-11T04:03:44Z" }, "source_id": "hypothesis", "obj": { "pid": "https://doi.org/10.1146/annurev.earth.32.082503.144359", "url": "https://doi.org/10.1146/annurev.earth.32.082503.144359" }, "timestamp": "2017-04-13T10:40:18Z", "relation_type_id": "discusses" }
      • URL (Landing) in annotations!
    3. Annotates: { "license": "https://creativecommons.org/publicdomain/zero/1.0/", "obj_id": "https://doi.org/10.1007/bfb0105342", "source_token": "8075957f-e0da-405f-9eee-7f35519d7c4c", "occurred_at": "2015-11-04T06:30:10Z", "subj_id": "https://hypothes.is/a/NrIw4KlKTwa7MzbTrMAyjw", "id": "00044ac9-d729-4d3f-a2c8-618bcdf1d252", "evidence_record": "https://evidence.eventdata.crossref.org/evidence/20170412-hypothesis-de560308-e500-4c55-ba28-799d7b272039", "terms": "https://doi.org/10.13003/CED-terms-of-use", "action": "add", "subj": { "pid": "https://hypothes.is/a/NrIw4KlKTwa7MzbTrMAyjw", "json-url": "https://hypothes.is/api/annotations/NrIw4KlKTwa7MzbTrMAyjw", "url": "https://hyp.is/NrIw4KlKTwa7MzbTrMAyjw/arxiv.org/abs/quant-ph/9803052", "type": "annotation", "title": "[This article](http://arxiv.org/abs/quant-ph/9803052) was referenced by [\"Decoherence\"](http://web.mit.edu/redingtn/www/netadv/Xdecoherenc.html) on Sunday, September 25 2005.", "issued": "2015-11-04T06:30:10Z" }, "source_id": "hypothesis", "obj": { "pid": "https://doi.org/10.1007/bfb0105342", "url": "http://arxiv.org/abs/quant-ph/9803052" }, "timestamp": "2017-04-12T07:16:20Z", "relation_type_id": "annotates" }
      • An arXiv page (article with DOI) is considered OBJECT (DOI)
      • This example is an AUTO-REFERENCE !!!

      • It is due to the arXiv Agent (?)

    4. looks in the text for links to registered content
      • "DOI:"
    5. It looks for two things: the annotation of registered content (for example Article Landing Pages) and the mentioning of registered content (for example DOIs) in the text of annotations.
      • DOI: in annotation text [OK.verified] in SUBJECT pages
      • Annotations in OBJECT pages (Landing)
    6. The Hypothes.is Agent monitors annotations
      • See examples of Evidences
      • Agent uses "url": "https://hypothes.is/api/search"
      • GUESS: filter by date of annotation? "extra": { "cutoff-date": "2005-04-13T09:08:04.578Z"
    1. Crossref Membership rules #7 state that: You must have your DOIs resolve to a page containing complete bibliographic information for the content with a link to — or information about — getting the full text of the content. Where publishers break these rules, we will alert them.
      • INTERESTING!
    2. It's always not one-to-one DOIs can be assigned to books and book chapters, articles and figures. Each Agent will do its job as accurately as possible, with minimal cleaning-up, which could affect interpretation. This means that if someone tweets the DOI for a figure within an article, we will record that figure's DOI. If they tweet the landing page URL for that figure, we will do our best to match it to a DOI. Depending on the method used, and what the publisher landing page tells us, we may match the article's DOI or the figure's DOI. Sometimes two pages may claim to be about the same DOI. This could happen if a publisher runs two different sites about the same content. It's also possible that a landing page has no DOI metadata, so we can't match it to an Event. The reverse is true: sometimes two DOIs point to the same landing page. This can happen by accident. It is rare, but does happen. This has no material effect on the current methods for reporting Events.
      • non-uniqueness: DOI <-> Page Publisher
    3. Matching also varies from publisher to publisher. For some landing page domains we can easily match the DOI. For some we need to do a bit more work. For others, it's impossible.
      • hahaha!
      • I knew it!
    4. We maintain a list of domain names that belong to publishers (see the Artifact page for more information) and track and query for those domains. When we see a URL that could be a landing page, we attempt to match it to a DOI.
      • Landing Page --> publisher(?)
      • ok: maintain a list
    5. Every Agent will attempt to match registered content items in as broad a manner as possible by looking for linked and unlinked DOIs and Article Landing Page URLs.
      • ok: unlinked too!
      • verified with hypothesis annotations! (text DOI:)
    6. They could use a hyperlinked DOI (one you can click), or a plain-text DOI (one you can't click). They could also use the Article Landing Page (the page you get to when you click on a DOI). Every source is different: we tend to see most people using Article Landing Pages on Twitter, but on Wikipedia DOIs are frequently used.
      • link to DOI (doi.org)
      • text "DOI: 10.xxx/xxx"
      • link to "publisher"(?) (http) used in Twitter (I dont use it)
    7. Event Data Agents are on the look out for links to registered content items, but people on the Web use a variety of methods to refer to them.
      • Event-Data Agents: looking for DOIs...
      • People: We are going to make it hard for you
      • Agents + Me: F**k U!
    1. Every Event starts its journey somewhere, usually in an external source. Data from that external source is processed and analyzed
      • How??? (again and again)
    2. the subject of the event, e.g. Wikipedia article on Fish the type of the relation, e.g. "references" the object of the event, e.g. article with DOI 10.5555/12345678
      • relation: subject--relation--object
    3. Every time we notice that there is a new relationship between a piece of registered content and something out in the web, we record that as an individual Event.
      • How??? (again)
    4. Each web source is referred to as a 'data contributor'. The Events, and all original data from the data contributor, are available via an API.
      • Sources
      • "Relations": --> API --> uses
    5. When a relationship is observed
      • How???
    6. a registered content item (that is, content that has been assigned a DOI by Crossref or DataCite)
      • DEF: registered content item == DOI
    7. This data is of interest to a wide range of people: Publishers may want to know how their articles are being shared, authors might want to know when people are talking about their articles, researchers may want to conduct bibliometrics research. And that's just the obvious uses.
      • case uses
    8. The Event Data service captures this activity and acts as a hub for the storage and distribution of this data. The service provides a record of instances where research has been bookmarked, linked, liked, shared, referenced, commented on etc, beyond publisher platforms. For example, when datasets are linked to articles, articles are mentioned on social media or referenced in Wikipedia.
      • "For example, when datasets are linked to articles, articles are mentioned on social media or referenced in Wikipedia."
  5. Apr 2021
  6. Feb 2021
  7. Jul 2020
  8. Apr 2020