996 Matching Annotations
  1. Last 7 days
    1. In the placebo arm, patients with E545K/E542K mutation had shorter PFS and overall survival than those with wild-type PIK3CA (Supplementary Table 2), suggesting that PIK3CA mutations in the helical domain might play a ro

      [Paragraph-level] PMCID: PMC5355930 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Predictive, Prognostic

      Justification: Predictive: The passage suggests that patients with E545K/E542K mutations had shorter progression-free survival (PFS) and overall survival, indicating a potential role of these mutations in resistance to hormone therapy. Prognostic: The mention of shorter PFS and overall survival in patients with the E545K/E542K mutations indicates a correlation with disease outcome independent of therapy.

      Gene→Variant (gene-first): 5290:E542K 5290:E545K

      Genes: 5290

      Variants: E542K E545K

    2. In the placebo arm, patients with E545K/E542K mutation had shorter PFS and overall survival than those with wild-type PIK3CA (Supplementary Table 2), suggesting that PIK3CA mutations in the helical domain might play a ro

      [Paragraph-level] PMCID: PMC5355930 Section: RESULTS PassageIndex: 9

      Evidence Type(s): Predictive, Prognostic

      Justification: Predictive: The passage suggests that patients with E545K/E542K mutations had shorter progression-free survival (PFS) and overall survival, indicating a potential role of these mutations in resistance to hormone therapy. Prognostic: The mention of shorter PFS and overall survival in patients with the E545K/E542K mutations indicates a correlation with disease outcome independent of therapy.

      Gene→Variant (gene-first): 5290:E542K 5290:E545K

      Genes: 5290

      Variants: E542K E545K

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript follows up previous work from this group using a conditional TCF4 mouse where Cre-expression turns "on" expression of TCF4 to investigate whether postnatal re-expression of TCF4 is effective to correct phenotypes related to Pitt-Hopkins Syndrome (PTHS) in humans. Results may inform gene therapy human PTHS gene therapy efforts on effective developmental windows for gene therapy. The authors demonstrate that re-expression of TCF4, induced by retro-orbital (RO) AAV-PHP.eB-Cre, during 2-4th postnatal week, does not rescue brain or body weight, anxiety-like or nest-building behaviors, but rescues an object location memory task, a measure of cognition. These results are novel and interesting in that they reveal distinct developmental roles for TCF4 in distinct behaviors and suggest that TCF4 plays a role in the mature brain in hippocampal and memory-related plasticity. Results may inform gene therapy design in PTHS.

      Strengths:

      The results are rigorous and high quality. Multiple methods are used to assess AAV-mediated re-expression of Cre, reactivation of TCF4, and the developmental time course of expression. Multiple behavioral phenotypes and molecular rescue are assessed. Most behavioral phenotypes are reproducible and robust, and it is clear whether a rescue was observed.

      Weaknesses:

      (1) Although the authors demonstrate the time course and spatial extent of Cre and a Cre-reporter (TdTom) in the brain with the AAV-Cre, it is unclear how many cells are transduced. Similarly, the authors do not measure TCF4 levels with immunohistochemistry or western blot. So the level of protein reactivation is unknown. A possible reason the rescue is incomplete is that the TCF4 protein is not induced in a large % of neurons in specific brain regions that mediate specific behaviors, such as the hippocampus vs. the striatum.

      (2) The authors perform bulk qPCR to demonstrate a 20% increase in TCF4 RNA with Cre-mediated activation. It is unclear why the full gene reactivation is not observed. An alternative interpretation of the incomplete rescue of the phenotypes is that full TCF4 expression is required at later developmental time points.

    1. Without further federal commitments, 70,000 programs might close, wiping out 3.2 million slots and $9 billion in annual parent earnings,

      Establishing what's at stake, showing that not passing the funding isn't a neutral act, it's harmful.

  2. Feb 2026
  3. Jan 2026
    1. Mercutio. Without his roe, like a dried herring:

      Pun: "Roe" sounds like "Romeo." Without "ro," he's just "me o"- empty and sad. Also, a dried fish.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02932

      Corresponding author(s): Amit Tzur

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      • *

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements

      We thank all Referees for their insightful comments and thoughtful review of our manuscript.

      • *

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      __! Original comments by Reviewers #1-3 are in gray. __


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The study highlights a dephosphorylation switch mediated by PP2A as a critical mechanism for coupling E2F7/8 degradation to mitotic exit and G1 phase. The study is clear and experiments are well conducted with appropriate controls

      I have some concerns highlighted below:

      Point 1. In this sentence: This intricate network of feedback mechanisms ensures the orderly progression of the cell cycle. What feedback mechanism are the authors referring to?

      Thank you for pointing this out. We aimed for a general comment. The original line was replaced with: “The intricate network of (de)phosphorylation and (de)ubiquitination events in cycling cells establishes feedback mechanisms that ensure orderly cell cycle progression.

      Point 2. Characterization of disorder in the N-terminal segments of E2F7 and E2F8

      What does it mean disorder in this title?

      “Disorder” is a structural biology term for describing an unstructured (floppy) region in a protein. We suggest the following title in hope to improve clarity: “The N-terminal segments of E2F7 and E2F8 are intrinsically unstructured”

      Point 3. In the paragraph on the untimely degradation of E2F8 the authors keep referring to APC/C Cdc20, however the degradation is triggered by the Ken box which is specifically recognised by APC/C Cdh1. Can it be due to another ligase not APC/C?

      In our anaphase-like system, Cdh1 cannot associate with the APC/C due to persistently high Cdk1 activity, maintained by the presence of non-degradable Cyclin B1. While the KEN-box is classically recognized as a Cdh1-specific motif, previous studies have also clearly demonstrated that APC/C-Cdc20 can mediate the degradation of KEN-box substrates. For example, BubR1 interacts with Cdc20 via two KEN-box motifs (PMIDs: 25383541, 27939943 and 17406666). Nek2A is targeted for degradation by the APC/C in mitotic egg extracts lacking Cdh1, in a manner that depends on both D-box and KEN-box motifs (PMID: 11742988). CENP-F degradation in Cdh1-null cells has been shown to be dependent on both Cdc20 and a KEN-motif (PMID: 20053638). Thus, the most simple explanation for our results is that degradation is KEN box dependent and controlled by Cdc20.

      Regarding alternative E3 ligases, KEN-box mutant variants of non-phosphorylatable E2F8 remained stable in APC/CCdc20-active extracts, suggesting that this degradation is indeed APC/C-specific.

      Please also see our response to Reviewer #3, Point 3.

      Point 4. The assays to detect dephosphorylation are rather indirect so it is difficult to establish whether phosphorylation of CDK1 and dephosphorylation by PP2A on the fragments is direct.

      First, the phosphorylation sites analyzed in this study conform to the full and most canonical Cdk1 consensus motif: S/TPxK/R. While recognizing that other kinases are proline directed as well, the cell cycle dependent manner of this control, and presence of a similar CDK-dependent mechanism for Cdc6, points us towards considering the role of CDKs.

      Second, consistent with the direct role of CDK1 in this regulation, NMR experiments demonstrate conformational shifts of recombinant E2F8 following incubation with Cdk1–Cyclin B1 (not included in manuscript, but shown here for reviewer consideration); see Figure below. We have not yet established equivalent biochemical systems for PP2A.

      Figure legend: NMR-based monitoring of E2F7 (a-c) and E2F8 (d-f) phosphorylation by Cdk1.

      a(d). 15N,1H-HSQC spectrum of E2F7(E2F8) prior to addition of Cdk1. Threonine residues of interest, T45 (T20) conforming to the consensus sequence (followed by a proline), and T84 (T60) lacking the signature sequence are annotated. b(e). Strips from the 3D-HNCACB spectrum used for assigning E2F7(E2F8) residues. Black (green) peaks indicate a correlation with the 13Cα (13Cβ) of the same and previous residues. The chemical shifts assigned to T45 (T20) and T84 (T60) match the expected values for K44(K19) and P83(P59), thereby confirming the assignment. c(f). Top, overlay of subspectra before adding Cdk1 (black) and after 16 h of activity (red) at 298 K. Bottom, change in intensities of the T45/T84 in E2F7 and T20/T60 in E2F8 showing how NMR monitors phosphorylation and distinguishes between various threonine residues.


      Third, PP2A is likely the principal phosphatase counteracting Cdk1-mediated phosphorylation during mitotic exit, targeting numerous APC/C substrates (PMID: 31494926). In light of our findings and the extensive literature, it is therefore reasonable to propose that E2F7 and E2F8 may also be direct PP2A targets.

      Fourth, we cannot fully exclude the possibility that dephosphorylation of E2F7 and E2F8 by PP2A occurs indirectly. Nevertheless, indirect studies of PP2A substrate identification in the literature often rely on similar genetic perturbations, chemical inhibition, cell-free systems (coupled with immunodepletion, inhibitory peptides/proteins, and small-molecule inhibitors), and phosphoproteomics. Moreover, more direct assays are not without caveats, as they lack the cellular stoichiometric context, an important limitation for relatively promiscuous enzymes such as phosphatases.

      Importantly, repeated attempts (conventional [Co-IP] and less conventional [affinity microfluidics]) to detect interactions between PP2A and E2F7 and E2F8 were unsuccessful. This result was unfortunate but not surprising, given that transient substrate–phosphatase interactions are often challenging to capture experimentally.

      Given our evidence showing the regulation of E2F7 and E2F8 degradation in a manner that depends on Cdk1 and PP2A, the title of the manuscript remains appropriate: "Cdk1 and PP2A constitute a molecular switch controlling orderly degradation of atypical E2Fs.”

      Please also see our response to Reviewer #3 Point 1.

      Point 5. Although there seems to be a control by phosphorylation and dephosphorylation (which could be indirect), it is difficult to establish the functional consequences of this observation. The authors propose a feedback mechanism which regulates the temporal activation inactivation of E2F7/8 however, there are no evidence in support of this.

      The components being studied here have been extensively characterized, as have the direct and indirect interactions that connect them and ensure orderly cell cycle progression. For example: i) The E2F1–E2F7/8 transcriptional circuitry functions as a negative feedback loop; ii) Cdk1 and PP2A counteract one another’s activity; iii) E2F1 promotes the disassembly of APC/CCdh1; iv) E2F7 and E2F8 are APC/C substrates with cell cycle-relevant degradation patterns; and v) Loss of Cdh1 leads to premature S-phase entry.

      Our study brings these components together into a coherent regulatory module operating in cycling cells, revealed through cell-free biochemistry and newly developed methodologies with broad applicability to signaling research. We believe that advancing mechanistic understanding at this level of central regulators is impactful. And notably, this is a model, which we expect others in the field to test. We stand behind the result of each individual experiment and based on those findings are proposing a feedback circuit.

      To address your suggestion, we incorporated phenotypic analyses (see Figure on the next page). Although modest and variable due to transient overexpression, these data align with the mechanistic model proposed in our study.

      In Panel a, overexpression of E2F7 or E2F8 reduces E2F1 and its target Plk1, consistent with the established negative feedback within the E2F1–E2F7/8 transcriptional circuitry. A broader impact on cell cycle progression was also evident: G1-phase cells increased and S-phase cells decreased (Panel b), hinting at a delayed G1–S transition when E2F1, an essential driver of S-phase and mitotic entry, is downregulated by excess E2F7 or E2F8.

      We next examined the effects of hyper- vs. hypo-phosphorylation–mimicking mutants of E2F7 and E2F8 on E2F1 and Plk1 (Panels c and d). Both raw data (top) and quantification (bottom) are shown. Despite ectopic overexpression, our experimental conditions highlighted the diffenrential outcome of the two phospho-mutant variants. Speificially, E2F1 and Plk1 levels were consistently higher upon expression of non-phosphorylatable variants of E2F7 (T45A/T68A) and E2F8 (T45D/T68D) relative to their phophomimetic counterparts (T45D/T68D; T20D/T44D). These findings suggest that E2F1 downregulation is more pronounced when E2F7/E2F8 are hyper-phosphorylated at Cdk1-regulated sites that control their half-lives. Furthermore, the proportion of S-phase cells was consistently lower for the phospho-mimicking mutants compared with the non-phosphorylatable variants, with complementary, though less pronounced, shifts in G1-phase cells (Panel e).

      Figure legend: Evidence for cell cycle control linked to Cdk1–PP2A regulation of the E2F1–E2F7/E2F8 axis.

      a) Immunoblot analysis showing reduced E2F1 and its target protein Plk1 upon E2F7/E2F8 overexpression. Antibodies used for immunoblotting (IB) are indicated. b) Cell cycle phase distribution after E2F7/E2F8 overexpression, based on DNA content. Left: representative histograms. Right: quantification of G1- and S-phase cells. Means (x) with individual biological replicates (color-coded; N = 4) are shown. c,d) Top: E2F1 and Plk1 protein levels in cells expressing phosphomimetic (TT-DD) or non-phosphorylatable (TT-AA) E2F7 (c) or E2F8 (d) variants. Antibodies used are indicated (*distorted signal excluded). Bottom: quantification relative to loading controls. Means (x) with individual values (N = 3/4) are shown. e) Cell cycle phase distribution following expression of E2F7/E2F8 phospho-mutant variants. Means (x) with individual values (N = 4) are shown. All experiments were performed in HEK293T cells. Cells were fixed 40–44 h post-transfection. DNA content was assessed using propidium iodide (PI). Mutation sites: T45/T68 (E2F7); T20/T44 (E2F8. Statistical significance was determined by two-tailed Student’s t-test; P-values are indicated.


      Taken together, these results support a model in which Cdk1-site (de)phosphorylation modulates the stability of E2F7 and E2F8, thereby shaping E2F1 output and influencing cell cycle preogresion.

      Point 6. Reviewer #1 (Significance (Required)):

      The study is a good and well conducted work to understand the mechanisms regulating degradation of E2F7/8 by APC/C. This is crucial to establish coordinated cell cycle progression. While the hypothesis that disruption of this mechanism is likely responsible for altered cell cycle progression, there are no evidence this is just a back up pathway, whose functional significance could be limited to lack of APC/C Cdh1 activity. These experiments are rather difficult but the authors could comment on the limitation of the study and emphasise the hypothetical alterations which could result from the alterations of the described feedback loop

      We thank Reviewer #1 for this comment. Accordingly, we have expanded the discussion to further elaborate on the potential molecular outcomes and limitations of our study.

      Reviewer #2 (Evidence, reproducibility, and clarity (Required)):

      Summary: The authors provide strong biochemical evidence that the regulation of E2F7 and E2F8 by APC is affected by CDK1 phosphorylation and potentially by PP2A dependent dephosphorylation. The authors use both full length and N-terminal fragments of E2F8 in cell-free systems to monitor protein stability during mitotic exit. The detailed investigation of the critical residues in the N-terminal domain of E2F8 (T20/T44) is well supported by the combination of biochemical and cell biology approaches.

      We thank Reviewer #2 for their encouraging feedback.

      Point 1. Major: It is unclear how critical the APC-dependent destruction of E2F7 and E2F8 is for cell cycle progression or other cellular processes. Prior studies have reported that Cyclin F regulation of E2F7 is critical for DNA repair and G2-phase progression. This study would be improved if the authors could provide a cellular phenotype caused by the lack of APC dependent regulation of E2F8 and/or E2F7.

      We thank Reviewers #2 and #1 for this comment, which prompted substantial revisions. Below, we reiterate our response to Reviewer #1.

      The molecular components examined in this study are well established in the literature. Key principles include: (i) the reciprocal regulation between E2F1 and its repressors, E2F7 and E2F8, which forms a transcriptional feedback loop; (ii) the opposing activities of Cdk1 and PP2A; (iii) the capacity of E2F1 to attenuate APC/CCdh1 activity; (iv) the fact that E2F7 and E2F8 are APC/C substrates with defined cell cycle–dependent degradation patterns; and (v) the requirement for Cdh1 to prevent premature S-phase entry.

      Our study integrates these elements into a unified framework operating in proliferating cells. This framework is supported by biochemical reconstitution experiments and newly developed methodological tools, which we anticipate will be broadly applicable for dissecting signaling pathways. We view this type of mechanistic synthesis as valuable for the field. Importantly, we do not present this as a definitive model, but rather as a testable regulatory circuit constructed from robust individual findings.

      In response to your request, we incorporated additional phenotypic analyses (see Figure, next page). Although modest and variable due to transient overexpression, the results are consistent with the regulatory architecture we propose.

      In panel a, elevating E2F7 or E2F8 levels reduces E2F1 and its downstream target Plk1, consistent with the established inhibitory feedback exerted by E2F7 and E2F8 on E2F1. Additionally, we observed an increase in G1-phase cells and a decrease in S-phase cells (Panel b), hinting at a delayed G1–S transition when E2F1, a key transcriptional engine of S- and M-phase entry, is downregulated by excess E2F7 or E2F8.

      Figure legend: Evidence for cell cycle control linked to Cdk1–PP2A regulation of the E2F1–E2F7/E2F8 axis.

      a) Immunoblot analysis showing reduced E2F1 and its target protein Plk1 upon E2F7/E2F8 overexpression. Antibodies used for immunoblotting (IB) are indicated. b) Cell cycle phase distribution after E2F7/E2F8 overexpression, based on DNA content. Left: representative histograms. Right: quantification of G1- and S-phase cells. Means (x) with individual biological replicates (color-coded; N = 4) are shown. c,d) Top: E2F1 and Plk1 protein levels in cells expressing phosphomimetic (TT-DD) or non-phosphorylatable (TT-AA) E2F7 (c) or E2F8 (d) variants. Antibodies used are indicated (*distorted signal excluded). Bottom: quantification relative to loading controls. Means (x) with individual values (N = 3/4) are shown. e) Cell cycle phase distribution following expression of E2F7/E2F8 phospho-mutant variants. Means (x) with individual values (N = 4) are shown. All experiments were performed in HEK293T cells. Cells were fixed 40–44 h post-transfection. DNA content was assessed using propidium iodide (PI). Mutation sites: T45/T68 (E2F7); T20/T44 (E2F8. Statistical significance was determined by two-tailed Student’s t-test; P-values are indicated.


      We next examined how phospho-regulation of E2F7 and E2F8 influences cell cycle control by comparing the effects of phospho-mimetic and non-phosphorylatable variants on E2F1 levels and cell cycle distribution (panels c and d). Both the raw data and the corresponding quantitative analyses are presented. Despite exogenous overexpression, we identified conditions that distinguish the behaviors of the two mutant classes. Cells expressing the phospho-mimetic variants consistently exhibited lower E2F1 and Plk1 levels than those expressing the non-phosphorylatable forms. This pattern supports a model in which phosphorylation of key Cdk1 sites in E2F7 and E2F8 elevates their stability, thereby enhancing their ability to suppress E2F1. Panel e extends these observations to cell cycle behavior: compared with the non-phosphorylatable variants, The phospho-mimetic forms of E2F7 and E2F8 consistently lower the proportion of S-phase cells, accompanied by corresponding shifts in the G1 population.

      The central aim of this manuscript is to define how the Cdk1–PP2A axis is integrated into the APC/C–E2F1 regulatory network controlling cell cycle progression. Collectively, our findings support a model in which Cdk1/PP2A-dependent (de)phosphorylation modulates the stability of E2F7 and E2F8, thereby fine-tuning E2F1 activity and cell cycle progression.

      Point 2. Minor: All optional: It would have been interesting to see the T20A/T44A/KM in the live cell experiment (Figure 3F).

      This is an excellent point. Following Reviewer #2’s request, we generated a stable cell line expressing a KEN-box mutant variant of E2F8-T20A/T44A (N80 fragment). The figure below demonstrates the impact of the KEN-box mutation on the dynamics of N80-E2F8-T20A/T44A in HeLa cells. Together, our data from both cellular and cell-free systems show that the temporal dynamics of both wild-type and non-phosphorylatable variants of E2F8 depends on the KEN degron. Please note that due to differences in the flow cytometer settings used for acquiring the original measurements and those newly generated at the Reviewer’s request, the numeric data for N80-E2F8-T20A/T44A-KEN mutant will not be integrated into the original plots shown in the original Figure 3c–e in the manuscript.

      Figure legend: Dynamics of mutant variants of N80-E2F8-EGFP in HeLa cells.

      Top: Bivariate plots showing DNA content (DAPI) vs. EGFP fluorescence, with G1/G1-S phases and G2/M phases highlighted (black and gray frames, respectively). Bottom: Histograms showing EGFP signal distributions within these cell cycle phases. Blue arrows highlight subpopulations of G2/M cells with relatively low EGFP levels. The data was generated by flow cytometry.


      Point 3. Figure 4C-D - include the corresponding blots for the WT E2F7.

      This is a good point, which we previously overlooked. The requested data will be integrated in the revised manuscript.

      Point 4. It is unclear how selective or potent the PP2A inhibitors are that are used in Figure 5. Is it possible to include known targets of PP2A (positive controls for PP2A inhibition) in the analysis performed in Figure 5?

      Thank you for this helpful suggestion. Following Reviewer #2’s comment, we performed gel-shift assays of Cdc20 and C-terminal fragment of KIF4 (Residues: 732-1232), both known targets of PP2A (PMIDs: 26811472; 27453045). See data below.

      __Figure legend: PP2A inhibitor LB-100 block protein dephosphorylation in G1-like extracts. __

      Time-dependent gel shifts of mitotically phosphorylated Cdc20 and the C-terminal fragment of KIF4 (residues 732–1232) following incubation in G1 extracts supplemented with LB-100 or okadaic acid (OA; positive control). Substrates (IVT, 35S-labeled) were resolved by PhosTag SDS–PAGE and autoradiography.


      Point 5. Is the APC still active in LB-100 or OA treated conditions? Is it possible to demonstrate the APC is active using known substrates in this assay (e.g., Securin (Cdc20) and Geminin (Cdh1) or similar).

      This is an excellent point and we should have clarified this previously. Importantly, treatment with 250 µM LB-100 does not abolish APC/C-mediated degradation (otherwise, the assay would not be viable), but it does attenuate degradation kinetics. This is reflected by the prolonged half-lives of Securin and Geminin relative to mock-treated extracts (see below). Consistently, we noted in the manuscript: “Although APC/C-mediated degradation is also affected, it remains efficient, allowing us to measure relative half-lives of APC/C targets that cannot undergo PP2A-mediated dephosphorylation.” Following this comment, and one by Reviewer #3, these data will be included in the revised manuscript.


      __Figure legend: APC/C-specific activity in cell extracts treated with LB-100. __

      Time-dependent degradation of EGFP–Geminin (N-terminal fragment of 110 amino acids) and Securin in extracts supplemented with LB-100 and/or UbcH10 (recombinant). A control reaction contained dominant-negative (DN) UbcH10. Proteins (IVT, 35S-labeled) were resolved by SDS-PAGE and autoradiography.


      Reviewer #2 (Significance (Required)): Advance: A detailed analysis is provided for the critical N-terminal residues in E2F7 and E2F8 that when phosphorylated are capable of restricting APC destruction. The work builds on prior work that had identified the APC regulation of E2F7 and E2F8.

      Point 6. Audience: The manuscript would certainly appeal to a broad basic research audience that is interested in the regulation of APC substrates and/or E2F axis control via E2F7 & E2F8. The study could have a broader interest if the destruction of E2F7 or E2F8 could be shown to be biologically relevant (e.g., critical for cell fate decision G1 vs G0, G1 length, timely S-phase onset, or expression of E2F1 target genes in the subsequent cell cycle).

      To clarify, we subdivided Reviewers’ comments into separate points. Reviewer #2’s Points 1 and 6 address essentially the same issue; our detailed response is therefore provided under Point 1. We again thank Reviewer #2 for raising this concern, which led to substantial revisions to both the manuscript text and the supporting data.

      We thank Reviewer #2 for their constructive comments and criticism.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This manuscript presents a well-structured study on the regulatory interplay between Cdk and Phosphatase in controlling the degradation of atypical E2Fs, E2F7 and E2F8. The work is relevant in the field of cell cycle regulation and provides new mechanistic insights into how phosphorylation and dephosphorylation govern APC/C-mediated degradation. The use of complementary cell-based and in vitro approaches strengthens the study, and the findings have significant implications for understanding the timing of transcriptional regulation in cell cycle progression.

      Point 1. However, several points in this paper require further clarification for it to have a meaningful impact on the research community. The characterization of the phosphatase is unclear to me. The use of OA is necessary to guide the research, but it is not precise enough to rule out PP1 and then identify which PP2A is involved - PP2A-B55 or PP2A-B56. To clarify this, the regulatory subunits should either be eliminated or inhibited using the inhibitors developed by Jakob Nilsson's team.

      We are grateful for this comment, which prompted an extensive series of experiments that have undoubtedly strengthened our manuscript.

      First, we wish to clarify that LB-100, unlike okadaic acid (OA), is not considered a PP1 inhibitor.

      Second, we have conducted a large set of experiments to address this important question of the strict identity of the phosphatase involved in the dephosphorylation of atypical E2Fs.

      I. We initially attempted to immunodeplete the catalytic subunit of PP2A (α) from G1 extracts as a means to validate PP2A-dependent dephosphorylation. In retrospect, this was a naïve approach given the protein’s high abundance; although immunoprecipitation was successful, immunodepletion was inefficient, preventing us from using this strategy (see Panel a in the figure below). As an alternative, we incubated immunopurified PP2A-Cα with mitotic phosphorylated E2F7 and E2F8 fragments (illustrated in Panel b). A time-dependent gel-shift assay demonstrated enhanced dephosphorylation in the presence of immunopurified PP2A-Cα (Panel c) compared to immunopurified Plk1 (control reaction), suggesting that mitotically phosphorylated E2F7 and E2F8 are targeted by PP2A.

      Figure legend: Immunopurified PP2A-Cα facilitates dephosphorylation of E2F7 and E2F8 in cell extracts. a) Inefficient immunodepletion (ID) of the catalytic subunit α of PP2A (PP2A-Cα) from cell extracts despite three rounds of immunopurification, as detected by immunoblotting (IB) with anti-PP2A-Cα and anti-BIP (loading control; LC) antibodies (BD bioscience, Cat#: 610555; Cell Signaling Technology, Cat#: 3177). Briefly, G1 cell extracts were diluted to ~10 mg/mL in a final volume of 65 μL. Anti-PP2A-Cα antibodies (3 μg) were coupled to protein G magnetic DynabeadsTM (15 μL; Novex, Cat#: 10004D) for 20 min at 20 °C. For each depletion round, antibody-coupled beads were incubated with cell extracts for 15 min at 20 °C. Cell extracts and beads were sampled after each step to assess immunodepletion and immunopurification (IP) efficiency. Equivalent immunopurification steps are shown for Plk1 (bottom). b) Schematic of the dephosphorylation assay using mitotically phosphorylated in vitro translated (IVT) targets and immuno-purified PP2A-Cα/Plk1. c) Dephosphorylation of mitotically phosphorylated E2F7 and E2F8 fragments, detected by electrophoretic mobility shifts in Phos-Tag SDS-PAGE. Immunopurified Plk1 was used for control reactions (antibodies: Santa Cruz Biotechnology: Cat#: SC-17783). *Image was altered to improve visualization of mobility shifts.


      II. Next, we used pan-B55-specific antibodies for immunodepletion of all B55-type subunits. This approach was unsuccessful despite five rounds of immunopurification (see Panel a in the figure below). Both suboptimal binding and the high abundance of endogenous B55 subunits likely contributed to this outcome. Thus, dephosphorylation in B55-depleted extracts could not be tested.

      Figure legend: PP2A-B55 facilitates dephosphorylation of E2F7 and E2F8 fragments.

      a) __Immunodepletion (ID) of B55 subunits in G1 extracts is inefficient despite five rounds of immunopurification; assessed by immunoblotting (IB) using anti-pan-B55 and anti-Cdk1 (loading control; LC) antibodies (see previous figure for more details). Cell extracts and beads were sampled after each round to monitor immunodepletion and immunopurification efficiency. b) Schematic of a dephospho-rylation assay using immuno-purified B55 subunits. __c) __Dephosphorylation of mitotically phosphorylated E2F7 and E2F8 fragments by immuno-purified B55. Control reactions performed with immuno-purified Plk1. d) __Schematic of a dephosphorylation assay performed in G1 cell extracts supplemented with B55-interacting (B55i) or control peptides (see peptide sequence on next page). RO-3306 was added to limit Cdk1 activity. __e) __Dephosphorylation of E2F7 and E2F8 fragments (mitotically phosphorylated) in G1 extracts supplemented with B55-interacting/control peptides. __f) __Schematic of the dephosphorylation assay using in vitro–translated B55/B56 subunits (unlabeled). __g) __Dephosphorylation of mitotically phosphorylated E2F7 (top) and E2F8 (bottom) fragments in reticulocyte lysate containing B55/B56 subunits. Dephosphorylation was assessed by electrophoretic mobility shifts in Phos-Tag SDS-PAGE. Panels marked with an asterisk were adjusted to improve visualization of gel-shifts. Arrowheads denote distinct, time-dependent mobility-shifted forms of E2F7 and E2F8 fragments. Antibodies used: anti-pan-B55 (ProteinTech, Cat#: 13123-1-AP); anti-Plk1 (Santa Cruz Biotechnology, Cat#: SC-17783); anti-Cdk1 (Santa Cruz Biotechnology, Cat#: SC-53217). Dynabeads™ (Novex, Cat#: 10004D) were used for immunopurification.


      As with PP2A-Cα, we incubated immunoprecipitated B55 subunits with mitotically phosphorylated E2F7 and E2F8 fragments (illustrated in Panel b). The results were less definitive compared to PP2A-Cα; nevertheless, they demonstrated accelerated dephosphorylation in the presence of immunopurified B55 subunits (Panel c) relative to Plk1 (control). These results hint at B55-mediated dephosphorylation of E2F7 and E2F8.

      III. Given that PP2A-B55 could be immunodepleted satisfactorily, despite successful immunoprecipitation, we ordered the B55-specific peptide and corresponding control peptide reported recently by Jakob Nilsson’s team as PP2A-B55 inhibitors (see below).

      Figure legend: Adapted from Kruse, T., et al., 2024; ____Science Advances. Figure 3, Panel B. ____PMID: 39356758.


      Despite our long-anticipated wait for these peptides to arrive, this line of experimentation proved disappointing. We wish to elaborate:

      The study by Kruse et al. (PMID: 39356758) is an elegant integration of classical enzymology, performed at the highest level, with structural insight into the conserved PP2A-B55 binding pocket that governs substrate specificity. Their work identified a consensus peptide that binds PP2A-B55 specifically with nanomolar affinity.

      Kruse et al. provide compelling evidence for a direct and specific interaction between their reported B55 inhibitor (B55i) and PP2A-B55. Their data show that the engineered inhibitor disrupts the binding of helical elements that underlie substrate recognition by PP2A-B55.

      However, we could not find direct evidence of PP2A-B55 enzymatic inhibition by the B55i peptide; for example, a B55-specific in vitro dephosphorylation assay demonstrating sensitivity to B55i in a dose-dependent manner. To the best of our understanding, the sole functional consequence described by Kruse et al. was the delay in mitotic exit observed upon expression of YFP-tagged B55i peptides in cells. However, this approach is indirect, given the long interval between cell manipulation and analysis and the complexity of mitotic exit. Furthermore, we assumed that the requested reagents had been validated in cell-free extracts; however, Kruse et al. do not report any experiments performed in these systems. We, in fact, became uncertain whether we had correctly understood Reviewer #3’s request to use these reagents and therefore sought clarification from the Editor.

      In vitro, Kruse et al. reported nanomolar binding affinities for B55i (Figure S14). In our cell extracts, however, we required concentrations of approximately 250 μM to detect an effect on dephosphorylation, evident as altered electrophoretic mobility of both E2F7 and E2F8 (Panel e). At this concentration, the peptide also caused nonspecific effects, rendering the extracts highly viscous (‘gooey’), at times preventing part of the reaction mixture from passing through a 10 μL pipette tip.

      The gel-shift assays shown in Panel e (Page 16) do demonstrate delayed dephosphorylation in extracts treated with the B55i peptide relative to the control peptide. Nevertheless, we prefer to exclude these data because the peptide concentrations required for the assay compromised extract integrity. Moreover, we believe that the PP2A-B55–specific peptide described by Nilsson et al. requires additional validation before it can be considered a reliable functional inhibitor in cell-free systems or in vivo. Accordingly, we are unable to directly address the experiments as suggested.

      IV. In the final set of experiments (Page 16, Panels f and g), we supplemented dephosphorylation reactions with in vitro–translated B55/B56 subunits (illustrated in Panel f). Although the expected concentration of in vitro–translated proteins in reticulocyte lysate is relatively low (100–400 nM), we reasoned that supplementing the reactions with excess of regulatory B subunits (non-radioactive) could still promote dephosphorylation in a differential manner that reflects the B55/B56 preference of E2F7 and E2F8.

      We cloned and in vitro expressed all nine B55/B56 regulatory subunits. While the exact amount of each subunit introduced into the reaction cannot be precisely determined, their expression levels were reasonably uniform (see figure below).

      __Figure legend: Expression of B55/B56 subunits in reticulocyte lysate. __B55/B56 subunits were cloned into the pCS2 vector and expressed in reticulocyte lysate supplemented with ³⁵S-Methionin. Proteins were resolved by SDS–PAGE and autoradiography.


      Returning to Panel g (Page 16), B55 subunits facilitated the accumulation of lower–electrophoretic mobility forms of both E2F7 and E2F8 fragments to the greatest extent. This is evident from the distinct lower–mobility species that emerge over time (marked by arrowheads) and the smear intensity corresponding to the buildup of dephosphorylated forms. Among the tested subunits, B55β exerted the strongest effect on both substrates, suggesting that mitotically phosphorylated E2F7 and E2F8 display a heightened preference for the PP2A-B55β holoenzyme. Control reactions with reticulocyte lysate are also shown.

      Taken together, our original and newly added data indicate that PP2A, specifically PP2A-B55, counteracts Cdk1-dependent phosphorylation during mitotic exit. Importantly, cell cycle regulators such as Cdc20 can be targeted by both PP2A-B55 and PP2A-B56 holoenzymes. Thus, while we are confident in concluding that mitotically phosphorylated E2F7 and E2F8 are targeted by PP2A-B55, we cannot rule out the possibility of functional interactions between E2F7/E2F8 and PP2A-B56.

      V. Last, but certainly not least, we used AlphaFold 3 to model interactions between the N-terminal fragments of E2F7 and E2F8 and the PP2A regulatory subunits. To clarify: for us, AlphaFold 3 remains very much a computational “black box,” and although this may sound like an overstatement, we did not anticipate obtaining meaningful or interpretable output.

      According to the AlphaFold 3 developer guidelines, the Interface Predicted Template Modeling (IPTM) score is the primary confidence metric for protein–protein interaction predictions. IPTM values above 0.8 indicate high-confidence predictions, whereas values below 0.6 likely reflect failed interaction predictions. In our models, none of the predicted interactions exceeded 0.6 (see figure below). Nevertheless, for both E2F7 and E2F8 fragments, IPTM scores were consistently higher for B55 subunits than for B56 subunits, with B55β yielding the highest scores (each interaction was modeled five times).

      __Figure legend: AlphaFold 3 predicts preferential interactions between E2F7 and E2F8 and PP2A-B55β. __Protein–protein interaction predictions between N-terminal fragments of E2F7 and E2F8 and B55/B56 regulatory subunits of PP2A were generated using AlphaFold 3 (AF3). The plot shows IPTM scores from five models per protein pair.


      Even if one assumes a scenario in which AlphaFold 3 scores are inaccurate or effectively random, such non-specific behavior would not be expected to produce: (i) a reproducible preference of two distinct substrates for B55β and B55γ, in that order (the modeled fragments of E2F7 and E2F8 share The ability of AlphaFold 3, and specifically the IPTM metric, to predict bona fide PP2A B55/B56–substrate interactions remains unvalidated. Accordingly, we do not rely on these predictions as experimental evidence. Nonetheless, in retrospect, the IPTM scores for the E2F7 and E2F8 fragments proved, unexpectedly, to be highly informative. While we are not the first to explore AlphaFold in the context of PP2A phosphatases (e.g., Kruse et al.), at this early stage of AlphaFold 3 these observations are compelling and may ultimately have implications for PP2A-mediated signaling that extend well beyond the cell-cycle field.

      Point 2. It would also be valuable for this study to investigate the mechanisms underlying this regulation. In particular, is it exclusive to E2F7-8 or could other substrates contribute to the generalisation of this regulatory process?

      Assuming Reviewer #3 is referring to the cell cycle mechanism regulating E2F7 and E2F8 half-life via conditional degrons, we wish to clarify that the temporal dynamics of APC/C targets regulated by dephosphorylation has been demonstrated previously. Examples include KIFC1, CDC6, and Aurora A (PMIDs: 24510915; 16153703; 12208850, respectively).

      Point 3. The observation that Cdc20 may target E2F8 is interesting but needs to be further clarified to ensure that weak Cdh1 activity does not contribute to this degradation. Elimination of Cdc20 would be necessary to support the authors' conclusion.

      We gratefully acknowledge this input. The newly implemented experiment and corresponding findings are presented on the next page. The immunodepletion (ID) procedure (Panel a) achieved >60% reduction of Cdc20 and Plk1 in mitotic extracts (Panel b), as confirmed by immunoblotting (IB). Plk1-depleted extracts were used to validate extract-specific activity after successive rounds of immunodepletion at 20°C. Bead-bound Cdc20 and Plk1 were also analyzed by IB for validation (Panel b, right).

      As expected, the phospho-mimetic E2F8 fragment (T20D/T44D) remained stable in Plk1- and Cdc20-depleted mitotic extracts, serving as negative control (Panel c). In contrast, degradation of the non-phosphorylatable variant (T20A/T44A), as well as the APC/CCdc20 substrate Securin (positive control), was strongly hampered in Cdc20-depleted extracts compared to Plk1-depleted extracts. These results confirm that the untimely degradation of the non-phosphorylatable E2F8 in mitotic extracts is Cdc20-dependent.

      Figure legend: Untimely degradation of the non-phosphorylatable E2F8 in mitotic extracts is Cdc20-dependent.____a) Schematic of the immunodepletion (ID) protocol; additional technical details are provided below. b) Plk1 (top) and Cdc20 (bottom) levels in NDB mitotic extracts before and after three rounds of immunodepletion, as detected by immunoblotting (IB). Plk1 and Cdc20 levels were normalized to Tubulin and Cdk1, respectively. Both normalized and raw values are presented as percentages. Immunoprecipitation (IP) efficiency is shown on the right. c) Degradation profiles of phospho-mutant E2F8 variants and Securin (positive control) in NDB mitotic extracts depleted of Plk1 (control) or Cdc20.

      __ ---__

      Point 4. This study focuses on two proteins of the E2F family. These two proteins share similar domains, phosphorylation sites and a KEN box. However, their sensitivity to APC is different. What might explain this difference? Are there any inhibitory sequences for E2F7? Or why is the KEN box functional in E2F8 but not in E2F7?

      This is an excellent question. Here are our thoughts: The processivity of polyubiquitination by the APC/C varies between substrates in ways that influence degradation rate and timing (PMID: 16413484). Although E2F7 and E2F8 are related, their sequence identity is below

      50%, and their C-terminal domains differ substantially (see below) [FIGURE]. These structural differences likely contribute to differences in APC/C-mediated processivity and, consequently, to variations in protein half-lives. Additionally, E2F8 contains two functional KEN-boxes involved in its degradation, whereas E2F7 has only one. This may increase the kon rate of E2F8 for the APC/C, further enhancing its recognition and ubiquitination. Furthermore, re-examining the study by de Bruin and Westendorp (PMID: 26882548, Figure 2f; copied below), we note that the dynamic of inducibly expressed EGFP-tagged E2F7 in cells exiting mitosis is milder compared to E2F8 (see the black lines in both charts). This, as well as the oversensitivity of E2F7 degradation to Cdh1 downregulation accord with E2F7 being less potent substrate of APC/CCdh1.

      Figure legend: Adapted from Boekhout et al., 2016; ____EMBO Reports. Figure 2, Panel F. ____PMID: 26882548.


      The stability of the E2F7 fragment in cells and extracts was unexpected. We initially hypothesized that the unique N-terminal tail of E2F7 masks the KEN-box, functioning as an inhibitory sequence. However, removal of this region did not restore degradation (original manuscript; Figure 1e). Furthermore, extending the fragment by 20 additional residues failed to confer degradation (original manuscript; Figure S2). These observations suggest that E2F7 may require a distal or modular docking site for APC/C recognition. We did not pursue this question further.

      Point 5. An additional element that could strengthen this work would be referencing the study by Catherine Lindon: J Cell Biol, 2004 Jan 19;164(2):233-241. doi: 10.1083/jcb.200309035. In Figure 1 of this article, there is a degradation kinetics analysis of APC/C complex substrates such as Aurora-A/B, Plk1, cyclin B1, and Cdc20. This could help position the degradation of E2F7/8 relative to known APC/C targets. This can be achieved by synchronizing cells with nocodazole and then removing the drug to allow cells to progress and complete mitosis.

      This is an interesting point and one we should have clarified better previously. The temporal dynamics of E2F8 in synchronized HeLa S3 cells, relative to three known APC/C substrates, were reported in our previous study (PMID: 31995441; Figure 1a, copied on the right). Specifically, protein levels were measured for Cyclin B1, Securin, and Kifc1. Unlike Cyclin B1 and Securin, which are targeted by both APC/CCdc20 and APC/CCdh1, Kifc1 is degraded exclusively by APC/CCdh1. Cells were released from a thymidine–nocodazole block.

      Following Reviewer #3’s comment, we re-blotted the original HeLa S3 synchronous extracts. The new data [FIGURE] can be incorporated into the revised manuscript if requested.

      Point 6. Minor points: Does phosphorylation of E2F7-8 proteins alter their NMR profile? This could help understand how phosphorylation/dephosphorylation affects their sensitivity to the APC/C complex.

      Excellent suggestion. Indeed, we had originally aimed to include a more extensive set of NMR data in this manuscript. Our goal was to monitor E2F7 and E2F8 fragments in cell extracts and assess structural changes induced by phosphorylation and dephosphorylation during mitosis and mitotic exit. However, purifying the E2F7 fragment proved more challenging than anticipated. In addition, the extract-to-substrate ratio requires further optimization: Substrate concentrations must be high enough for reliable NMR detection, but below levels that would saturate the enzymatic activity in the extracts.

      That said, the short answer to the reviewer’s question is Yes: NMR profiles of E2F7 and E2F8 fragment do change following incubation with recombinant Cdk1–Cyclin B1 (see next page). If possible, we wish to exclude these NMR data from the manuscript.

      Point 7. Do these substrates bind to the APC/C complex before degradation? Does E2F7 bind better than E2F8?

      We were unable to detect interactions between endogenous E2F7 and E2F8 and the APC/C complex. In general, detecting endogenous E2F8, and especially E2F7, by immunoblotting proved challenging, making co-immunoprecipitation (Co-IP) even more difficult.

      Figure legend: NMR-based monitoring of E2F7 (a-c) and E2F8 (d-f) phosphorylation by Cdk1.

      a(d). 15N,1H-HSQC spectrum of E2F7(E2F8) prior to addition of Cdk1. Threonine residues of interest, T45 (T20) conforming to the consensus sequence (followed by a proline), and T84 (T60) lacking the signature sequence are annotated. b(e). Strips from the 3D-HNCACB spectrum used for assigning E2F7(E2F8) residues. Black (green) peaks indicate a correlation with the 13Cα (13Cβ) of the same and previous residues. The chemical shifts assigned to T45 (T20) and T84 (T60) match the expected values for K44(K19) and P83(P59), thereby confirming the assignment. c(f). Top, overlay of subspectra before adding Cdk1 (black) and after 16 h of activity (red) at 298 K. Bottom, change in intensities of the T45/T84 in E2F7 and T20/T60 in E2F8 showing how NMR monitors phosphorylation and distinguishes between various threonine residues.


      However, interactions between EGFP-tagged E2F7 snd E2F8 and Cdh1 have been demonstrated previously (PMID: 26882548, Figure 2e). In contrast, only the N-terminal fragment of E2F8, but not the corresponding fragment of E2F7, was found to bind Cdh1 (see figure on the right). This observation is consistent with the stability of the E2F7 fragment in APC/C-active extracts.

      __Figure legend: N-terminal fragment of E2F8 but not E2F7 binds Cdh1. __

      Co-Immunoprecipitation (IP) was performed in HEK293 cells transfected with EGFP-tagged E2F7/E2F8 fragments, using GFP-Trap® (Chromotek, Cat#: GTMA-20). Antibodies used for immunoblotting: ant-GFP (Santa Cruz Biotechnology: Cat#: SC-9996); anti-Cdh1 (Sigma-Aldrich, Cat#: MABT1323).


      Point 8. Why do the authors state that 250 µM of LB-100 has little effect on APC/C activity?

      We thank Reviewers #2 and 3 for raising this point. As shown in the manuscript, treatment with 250 µM LB-100 does not abolish APC/C-mediated degradation (otherwise, the assay would not be viable). However, it does attenuate degradation kinetics, as reflected by the prolonged half-lives of Securin and Geminin (see figure below).

      __Figure legend: APC/C-specific activity in cell extracts treated with LB-100. __

      Time-dependent degradation of EGFP–Geminin (N-terminal fragment of 110 amino acids) and Securin in extracts supplemented with LB-100 and/or UbcH10 (recombinant). A control reaction contained dominant-negative (DN) UbcH10. Proteins (IVT, 35S-labeled) were resolved by SDS-PAGE and autoradiography.


      Point 9. How can E2F8 be a substrate for both the SCF and APC/C complexes? (If I understood correctly.)

      This can happen because they are degraded by different E3 at different times during the cell cycle. To clarify further, certain proteins can be targeted by both the APC/C and SCF complexes, reflecting distinct regulatory needs. A classic example is CDC25A, as shown by M. Pagano and A. Hershko in 2002 (PMID: 12234927). Additional examples include the APC/C inhibitor EMI1 (PMIDs: 12791267 [SCF] and 29875408 [APC/C]).

      Reviewer #3 (Significance (Required)): This manuscript presents a well-structured study on the regulatory interplay between Cdk and Phosphatase in controlling the degradation of atypical E2Fs, E2F7 and E2F8. The work is relevant in the field of cell cycle regulation and provides new mechanistic insights into how phosphorylation and dephosphorylation govern APC/C-mediated degradation. The use of complementary cell-based and in vitro approaches strengthens the study, and the findings have significant implications for understanding the timing of transcriptional regulation in cell cycle progression.

      We wish to thank Reviewer #3 for their positive and encouraging view of our work.

  4. Dec 2025
    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1(Public review):

      In this manuscript, Pagano and colleagues test the idea that the protein GMCL1 functions as a substrate receptor for a Cullin RING 3 E3 ubiquitin ligase (CUL3) complex. Using a pulldown approach, they identify GMCL1 binding proteins, including the DNA damage scaffolding protein 53BP1. They then focus on the idea that GMCL1 recruits 53BP1 for CUL3-dependent ubiquitination, triggering subsequent proteasomal degradation of ubiquitinated 53BP1.

      In addition to its DNA damage signalling function, in mitosis, 53BP1 is reported to form a stopwatch complex with the deubiquitinating enzyme USP28 and the transcription factor p53 (PMID: 38547292). These 53BP1-stopwatch complexes generated in mitosis are inherited by G1 daughter cells and help promote p53-dependent cell cycle arrest independent from DNA damage (PMID: 38547292). Several studies show that knockout of 53BP1 overcomes G1 cell cycle arrest after mitotic delays caused by anti-mitotic drugs or centrosome ablation (PMID: 27432897, 27432896). In this model, it is crucial that 53BP1 remains stable in mitosis and more stopwatch complex is formed after delayed mitosis.

      Major concerns:

      Pagano and coworkers suggest that 53BP1 levels can sometimes be suppressed in mitosis if the cells overexpress GMCL1. They carry out a bioinformatic analysis of available public data for p53 wild-type cancer cell lines resistant to the anti-mitotic drug paclitaxel and related compounds. Stratifying GMCL1 into low and high expression groups reveals a weak (p = 0.05 or ns) correlation with sensitivity to taxanes. It is unclear on what basis the authors claim paclitaxel-resistant and p53 wild-type cancer cell lines bypass the mitotic surveillance/timer pathway. They have not tested this. Figure 3 is a correlation assembled from public databases but has no experimental tests. Figure 4 looks at proliferation but not cell cycle progression or the length of mitosis. The main conclusions relating to cell cycle progression and specifically the link to mitotic delays are therefore not supported by experimental data. There is no imaging of the cell cycle or cell fate after mitotic delays, or analysis of where the cells arrest in the cell cycle. Most of the cell lines used have been reported to lack a functional mitotic surveillance pathway in the recent work by Meitinger. To support these conclusions, the stability of endogenous 53BP1 under different conditions in cells known to have a functional mitotic surveillance pathway needs to be examined. A key suggestion in the work is that the level of GMCL1 expression correlates with resistance to taxanes. For the mitotic surveillance pathway, the type of drug (nocodazole, taxol, etc) used to induce a delay isn't thought to be relevant, only the length of the delay. Do GMCL1-overexpressing cells show resistance to anti-mitotics in general?

      We thank the reviewer for this insightful comment. We propose that GMCL1 promotes CUL3-dependent ubiquitination of 53BP1 during prolonged mitotic arrest, thereby facilitating its proteasome-dependent degradation. To evaluate the potential clinical relevance of this mechanism, we stratified cancer cell lines based on GMCL1 mRNA expression using publicly available datasets from DepMap (PMID: 39468210). We observed correlations between GMCL1 expression levels and taxane sensitivity that appear to reflect specific cancer type-drug combinations. To experimentally evaluate this correlation and obtain mechanistic insights, we performed knockdown experiments in hTERT-RPE1 cells, which are known to possess an intact mitotic surveillance pathway. Silencing of GMCL1 alone inhibited cell proliferation and induced apoptosis, while co-depletion of either TP53BP1 or USP28 significantly rescued these effects. These results suggest that GMCL1 modulates the stability of 53BP1 and therefore the availability of the 53BP1-USP28-p53 ternary complex in cells with a functional mitotic surveillance pathway (MSP) (new Figure 5I,J) directly linking GMCL1 to the regulation of the MSP complex. Moreover, to further support our mechanism, we assessed the effect of GMCL1 levels on cell cycle progression. Briefly, following nocodazole synchronization and release, we treated cells with EdU and performed FACS analyses at different times. Knockdown of GMCL1 alone led to a delayed cell cycle progression, but co-depletion of either TP53BP1 or USP28 restored this phenotype (new Figure 3A and new Supplementary Figure 3A-C). These results are consistent with our proliferation data and suggest that the observed effects of GMCL1 are specific to mitotic exit. Finally, overexpression of GMCL1 accelerates cell cycle progression (as assessed by FACS analyses) upon release from prolonged mitotic arrest (new Figure 3B and new Supplementary Figure 3D-E). 

      Importantly, if GMCL1 specifically degrades 53BP1 during prolonged mitotic arrests, the authors should show what happens during normal cell divisions without any delays or drug treatments. How much 53BP1 is destroyed in mitosis under those conditions? Does 53BP1 destruction depend on the length of mitosis, drug treatment, or does 53BP1 get degraded every mitosis regardless of length? Testing the contribution of key mitotic E3 ligase activities on mitotic 53BP1 stability, such as the anaphase-promoting complex/cyclosome (APC/C) is important in this regard. One previous study reported an analysis of putative APC/C KEN-box degron motifs in 53BP1 and concluded these play a role in 53BP1 stability in anaphase (PMID: 28228263).

      Physiological mitosis under unperturbed conditions is typically brief (approximately 30 minutes), making protein quantification during this window challenging. Despite this, we tried by synchronizing cells using RO-3306 and releasing them into drug-free medium to assess GMCL1 dynamics during normal mitosis. Under these conditions, GMCL1 expression was similar to that in asynchronous cells and higher than the levels upon extended mitosis. However, when we attempted to measure the half-life of proteins using cycloheximide, most cells died, likely due to the toxic effect of cycloheximide in cells subjected to co-treatment with RO-3306 or nocodazole. This is the same reasons why in Figure 2C, we assessed 53BP1 in daughter cells rather than mitotic cells. 

      There is no direct test of the proposed mechanism, and it is therefore unclear if 53BP1 is ubiquitinated by a GMCL1-CUL3 ligase in cells, and how efficient this process would be at different cell cycle stages. A key issue is the lack of experimental data explaining why the proposed mechanism would be restricted to mitosis. Indirect effects, such as loss of 53BP1 from the chromatin fraction during M phase upon GMCL1 overexpression, do not necessarily mean that 53BP1 is degraded. PLK1-dependent chromatin-cytoplasmic shuttling of 53BP1 during mitotic delays has been described previously (PMID: 38547292, 37888778). These papers are cited in the text, but the main conclusions of those papers on 53BP1 incorporation into a stopwatch complex during mitotic delays have been ignored. Are the authors sure that 53BP1 is destroyed in mitosis and not simply re-localised between chromatin and non-chromatin fractions? At the very least, these reported findings should be discussed in the text.

      To examine whether GMCL1 promotes 53BP1 ubiquitination in cells, we expressed in cells Trypsin-Resistant Tandem Ubiquitin-Binding Entity (TR-TUBE), a protein that binds polyubiquitin chains. Abundant, endogenous ubiquitinated 53BP1 co-precipitated with TR-TUBE constructs only when wild-type GMCL1 but not the E142K GMCL1 mutant, was expressed (new Figure 2D).  The PLK1-dependent incorporation of 53BP1 into the stopwatch complex and the chromatin-cytoplasmic shuttling of 53BP1 during mitotic delays is now discussed in the text. That said, compared to parental cells, 53BP1 levels in the chromatin fraction are high in two different GMCL1 KO clones in M phase arrested cells (Figure 2A-B).  This increase does not correspond to a decrease in the 53BP1 soluble fraction (Figure 2A and new Supplementary Figure 2D), suggesting decreased 53BP1 is not due to re-localization. The increased half-life of 53BP1 in daughter cells (Figure 2C), also supports this hypothesis. 

      The authors use a variety of cancer cell line models throughout their study, most of which have been reported to lack a functional mitotic surveillance pathway. U2OS and HCT116 cells do not respond normally to mitotic delays, despite being annotated as p53 WT. Other studies have used p53 wild-type hTERT RPE-1 cells to study the mitotic surveillance pathway. If the model is correct, then over-expressing GMCL1 in hTERT-RPE1 cells should suppress cell cycle arrest after mitotic delays, and GMCL1 KO should make the cells more sensitive to delays. These experiments are needed to provide an adequate test of the proposed model.

      We greatly appreciate the reviewer’s suggestion regarding overexpression of GMCL1 in hTERT-RPE1 cells. To address this, we generated stable RPE1 cells expressing V5-tagged GMCL1 and conducted EdU incorporation assays following nocodazole synchronization and release. Overexpression of GMCL1 enhanced cell cycle progression compared to control cells (new Figure 3B and new Supplementary Figure 3D-E) after mitotic arrest, consistent with our model. We, therefore, propose that GMCL1 controls 53BP1 stability to suppress p53-dependent cell cycle arrest.

      We also want to point out that while some papers suggest that HCT116 and U2OS cells do not have an intact mitotic surveillance pathway, others have shown that the MSP is indeed functioning in HCT116 cells and can be triggered with variable efficiency in U2OS cells (PMID: 38547292). This is likely due to high heterogeneity and extensive clonal diversity of cancer cell lines grown in different labs. Please see examples in PMIDs: 3620713, 30089904, and 30778230. In particular, PMID: 30089904 shows that this heterogeneity correlates with considerably different drug responses. 

      To conclude, while the authors propose a potentially interesting model on how GMCL1 overexpression could regulate 53BP1 stability to limit p53-dependent cell cycle arrest, it is unclear what triggers this pathway or when it is relevant. 53BP1 is known to function in DNA damage signalling, and GMCL1 might be relevant in that context. The manuscript contains the initial description of GMCL1-53BP1 interaction but lacks a proper analysis of the function of this interaction and is therefore a preliminary report.

      We hope that the new experiments, along with the clarifications provided in this response letter and revised manuscript, offer the reviewer increased confidence in the robustness and validity of our proposed model.

      Reviewer #2 (Public review):

      This study investigates the role of GMCL1 in regulating the mitotic surveillance pathway (MSP), a protective mechanism that activates p53 following prolonged mitosis. The authors identify a physical interaction between 53BP1 and GMCL1, but not with GMCL2. They propose that the ubiquitin ligase complex CRL3-GMCL1 targets 53BP1 for degradation during mitosis, thereby preventing the formation of the "mitotic stopwatch" complex (53BP1-USP28-p53) and subsequent p53 activation. The authors show that high GMCL1 expression correlates with resistance to paclitaxel in cancer cell lines that express wild-type p53. Importantly, loss of GMCL1 restores paclitaxel sensitivity in these cells, but not in p53-deficient lines. They propose that GMCL1 overexpression enables cancer cells to bypass MSP-mediated p53 activation, promoting survival despite mitotic stress. Targeting GMCL1 may thus represent a therapeutic strategy to re-sensitize resistant tumors to taxane-based chemotherapy.

      Strengths:

      This manuscript presents potentially interesting observations. The major strength of this article is the identification of GMCL1 as a 53BP1 interaction partner. The authors identified relevant domains and showed that GMCL1 controls 53BP1 stability. The authors further show a potentially interesting link between GMCL1 status and sensitivity to Taxol.

      Weaknesses:

      However, the manuscript is significantly weakened by unsubstantiated mechanistic claims, overreliance on a non-functional model system (U2OS), and overinterpretation of correlative data. To support the conclusions of the manuscript, the authors must show that the GMCL1-dependent sensitivity to Taxol depends on the mitotic surveillance pathway.

      To demonstrate that GMCL1-dependent taxane sensitivity is mediated through the mitotic surveillance pathway (MSP), we now performed experiments using hTERT-RPE1 (RPE1) cells, a widely used, non-transformed cell line known to possess a functional MSP.  We compared RPE1 cells with knockdown of GMCL1 alone to those with simultaneous knockdown of GMCL1 and either TP53BP1 or USP28. Upon paclitaxel (Taxol) treatment, cells with GMCL1 knockdown exhibited suppressed proliferation and increased apoptosis. Notably, these phenotypes were rescued by co-depletion of TP53BP1 or USP28 (new Figure 5I,J). These results support the notion that GMCL1 contributes to MSP activity, at least in part, through its regulation of 53BP1.       

      To further strengthen our mechanistic experiments, we assessed the effect of GMCL1 levels on cell cycle progression. Following nocodazole synchronization and release, we treated cells with EdU and performed FACS analyses at different times. Knockdown of GMCL1 alone led to a delay in cell cycle progression, but co-depletion of either TP53BP1 or USP28 alleviate this phenotype (new Figure 3A and new Supplementary Figure 3A, B). These results are consistent with our proliferation data.

      Reviewer #3 (Public review):

      Summary:

      In this study, Kito et al follow up on previous work that identified Drosophila GCL as a mitotic substrate recognition subunit of a CUL3-RING ubiquitin ligase (CRL3) complex.

      Here they characterize mutants of the human ortholog of GCL, GMCL1, that disrupt the interaction with CUL3 (GMCL1E142K) and that lack the substrate interaction domain (GMCL1 BBO). Immunoprecipitation followed by mass spectrometry identified 9 proteins that interacted with wild-type FLAG-GMCL1 and GMCL1 EK but not GMCL1 BBO. These proteins included 53BP1, which plays a well-characterized role in double-strand break repair but also functions in a USP28-p53-53BP1 "mitotic stopwatch" complex that arrests the cell cycle after a substantially prolonged mitosis. Consistent with the IP-MS results, FLAG-GMCL1 immunoprecipitated 53BP1. Depletion of GMCL1 during mitotic arrest increased protein levels of 53BP1, and this could be rescued by wild-type GMCL1 but not the E142K mutant or a R433A mutant that failed to immunoprecipitate 53BP1.

      Using a publicly available dataset, the authors identified a relatively small subset of cell lines with high levels of GMCL1 mRNA that were resistant to the taxanes paclitaxel, cabazitaxel, and docetaxel. This type of analysis is confounded by the fact that paclitaxel and other microtubule poisons accumulate to substantially different levels in various cell lines (DOI: 10.1073/pnas.90.20.9552 , DOI: 10.1091/mbc.10.4.947 ), so careful follow-up experiments are required to validate results. The correlation between increased GMCL1 mRNA and taxane resistance was not observed in lung cancer cell lines. The authors propose this was because nearly half of lung cancers harbor p53 mutations, and lung cancer cell lines with wild-type but not mutant p53 showed the correlation between increased GMCL1 mRNA and taxane resistance. However, the other cancer cell types in which they report increased GMCL1 expression correlates with taxane sensitivity also have high rates of p53 mutation. Furthermore, p53 status does not predict taxane response in patients (DOI: 10.1002/1097-0142(20000815)89:4<769::aid-cncr8>3.0.co;2-6 , DOI: 10.1002/(SICI)1097-0142(19960915)78:6<1203::AID-CNCR6>3.0.CO;2-A , PMID: 10955790).

      The authors then depleted GMCL1 and reported that it increased apoptosis in two cell lines with wild-type p53 (MCF7 and U2OS) due to activation of the mitotic stopwatch. This is surprising because the mitotic stopwatch paper they cite (DOI: 10.1126/science.add9528 ) reported that U2OS cells have an inactive stopwatch and that activation of the stopwatch results in cell cycle arrest rather than apoptosis in most cell types, including MCF7. Beyond this, it has recently been shown that the level of taxanes and other microtubule poisons achieved in patient tumors is too low to induce mitotic arrest (DOI: 10.1126/scitranslmed.3007965 , DOI: 10.1126/scitranslmed.abd4811 , DOI: 10.1371/journal.pbio.3002339 ), raising concerns about the relevance of prolonged mitosis to paclitaxel response in cancer. The findings here demonstrating that GMCL1 mediates degradation of 53BP1 during mitotic arrest are solid and of interest to cell biologists, but it is unclear that these findings are relevant to paclitaxel response in patients.

      Strengths:

      This study identified 53BP1 as a target of CRL3GMCL1-mediated degradation during mitotic arrest. AlphaFold3 predictions of the binding interface, followed by mutational analysis, identified mutants of each protein (GMCL1 R433A and 53BP1 IEDI1422-1425AAAA) that disrupted their interaction. Knock-in of a FLAG tag into the C-terminus of GMCL1 in HCT116 cells, followed by FLAG immunoprecipitation, confirmed that endogenous GMCL1 interacts with endogenous CUL3 and 53BP1 during mitotic arrest.

      Weaknesses:

      The clinical relevance of the study is overinterpreted. The authors have not taken relevant data about the clinical mechanism of taxanes into account. Supraphysiologic doses of microtubule poisons cause mitotic arrest and can activate the mitotic stopwatch. However, in physiologic concentrations of clinically useful microtubule poisons, cells proceed through mitosis and divide their chromosomes on mitotic spindles that are at least transiently multipolar. Though these low concentrations may result in a brief mitotic delay, it is substantially shorter than the arrest caused by high concentrations of microtubule poisons, and the one mimicked here by 16 hours of 0.4 mg/mL nocodazole, which is not used clinically and does not induce multipolar spindles. Resistance to mitotic arrest occurs through different mechanisms than resistance to multipolar spindles. No evidence is presented in the current version of the manuscript that GMCL1 affects cellular response to clinically relevant doses of paclitaxel.

      We agree that it would be an overstatement to claim that GMCL1 and p53 regulates paclitaxel sensitivity in cancer patients in a clinical context. The correlations we observed were based on publicly available cancer cell lines from datasets catalogued in CCLE and DepMap, which do not fully account for clinical heterogeneity and patient-specific factors. In response to this important point, we have revised the text accordingly. 

      In the experiments shown in former Figure 4A-H (now Figure 5A-H) and in those shown in the new Figure 5I-J, we used 100 nM paclitaxel to test the hypothesis that low GMCL1 levels sensitizes cancer cells in a p53-dependent manner. Here, paclitaxel was chosen to mimic the conditions reported in the PRISM dataset (PMID: 32613204), which compiles the proliferation inhibitory activity of 4,518 compounds tested across 578 cancer cell lines. Consistent with our cell cycle findings, the paclitaxel sensitivity caused by GMCL1 depletion was reverted by silencing 53BP1 or USP28 (new Figure 5I-J), again supporting the involvement of the stopwatch complex. We are unsure about how to model the “physiologic concentrations of clinically useful microtubule poisons” in cell-based studies. A recent review notes that “The time above a threshold paclitaxel plasma concentration (0.05 mmol/L) is important for the efficacy and toxicity of the drug” (PMID: 28612269).  Two other reviews mention that the clinically relevant concentration of paclitaxel is considered to be plasma levels between 0.05–0.1 μmol/L (approximately 50–100 nM) and that in clinical dosing, typical patient plasma concentrations after paclitaxel infusion range from 80–280 nM, with corresponding intratumoral concentrations between 1.1–9.0 μM, due to drug accumulation in tumor tissue (PMIDs: 24670687 and  29703818).  We have now emphasized in the revised text the rationale for using 100 nM paclitaxel in our experiments.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      General comments on the Figures:

      (1) Western blots lack molecular weight markers on most panels and are often over-exposed and over-contrasted, rendering them hard to interpret.

      We have now included molecular weight markers in all Western blot panels. We have also reprocessed the images to avoid overexposure and excessive contrast, ensuring that the bands are clearly visible and interpretable.

      (2) Input and IP samples do not show percentage loading, so it is hard to interpret relative enrichments.

      In the revised figures, we have indicated what % of the input was loaded.

      (3) The authors change between cell line models for their experiments, and this is not clear in the figures. These are important details for interpreting the data, as many of the cell lines used are not functional for the mitotic surveillance pathway.

      In the revised manuscript, we have clearly indicated the specific cell lines used in each experiment in the figure legends. Additionally, to address concerns regarding the mitotic surveillance pathway, we have included new experiments using hTERT-RPE1 cells, which have been reported to possess a functional mitotic surveillance pathway (MSP) (Figure 4I-J).

      (4) No n-numbers are provided in the figure legends. Are the Western blots provided done once, or are they reproducible? Many of the blots would benefit from quantification and presentation via graphs to test for reproducible changes to 53BP1 levels under the different conditions.

      As now indicated in the methods section, we have conducted each Western blot no less than three times, yielding results that exhibit a high degree of reproducibility. A representative Western blot has been selected for each figure. We did not include densiometric quantification of immunoblots, given that the semi-quantitative nature of this technique would lead to an overinterpretation of our data; unfortunately, this is a limitation of the technique. In fact, eLife and other similar scientific journals do not adhere to the practice of quantifying Western blots. One exception to this norm is for protein half-life studies, which is done to measure the kinetics of decay rates and their internal comparisons. Accordingly, the experiments in Figure 2C were quantified.

      (5) Graphs displayed in the supplementary figures are blacked out, and individual data points cannot be visualised. All graphs should have individual data points clearly visible.

      We revised the quantified graphs and replaced them with scatter plots to clearly display individual data points, showing sample distribution.

      Additional experiments with specific comments on Figures:

      (1) Figure 1C-D: the relative amount of 53BP1 co-precipitating with FLAG-tagged GMCL1 WT appears very different between the two experiments. If the idea is that MLN4924 (Cullin neddylation inhibitor) makes the interaction easier to capture, then this should be explained in the text, and ideally shown on the same gel/blot -/+ MLN4924.

      We now present the samples treated with and without MLN4924 on the same gel/blot to allow direct comparison (new Figure 1D) and clarified this point in the text.

      (2) Figure 1E: The figure legend states that GMCL1 was immunoprecipitated, but the Figure looks as though FLAG-tagged 53BP1 was the bait protein being immunoprecipitated? Can the authors clarify?

      We thank the reviewer for pointing out the discrepancy between the figure and the figure legend in Figure 1E. The immunoprecipitation was indeed performed using FLAG-tagged 53BP1, and we have now rectified the figure legend accordingly. 

      (3) Figure 1F: Rather than parental cell lysate, the better control would be to IP FLAG from another FLAG-tagged expressing cell line, to rule out non-specific binding with the FLAG tag at the non-overexpressed level. 

      Figure 1F shows interaction at the endogenous level. The specificity of binding with overexpressed proteins is shown in Figures 1C and 1D.

      The USP28 blot is over-exposed and makes it hard to see any changes in electrophoretic mobility - it looks as though there is a change between the parental and the KI cell line? It is surprising that USP28 would co-IP with GMCL1 (presumably because USP28 is bound to 53BP1) if the function of GMCL1-53BP1 interaction is to promote 53BP1 degradation. Can the authors reconcile this? Crucially, if the authors claim that the 53BP1-GMCL1 interaction is specific to prolonged mitosis, then this experiment should be repeated and performed with asynchronous, normal-length mitosis, and prolonged mitosis conditions. This is vital for supporting the claim that this interaction only occurs during prolonged mitoses and does not occur in every mitosis regardless of length.

      This is a good point. Unfortunately, many of the protein-protein interactions occur post lysis. Therefore, we could not observe differences in asynchronous vs. mitotic cells.

      (4) Figure S1F: Label on blot should be CUL3 not CUI3.

      We thank the reviewer for pointing this out and we have corrected the typo.

      (5) Figure 2A: The authors suggest an increase in chromatin-bound 53BP1 in GMCL1 KO U2OS cells, specifically in M phase. Again, is this time in mitosis dependent, or would this be evident in every mitosis, regardless of length? Such an experiment would benefit from repetition and quantification to test whether the observed effect is reproducibly consistent. If the authors' model is correct, simply treating U2OS WT mitotic cells with MG132 during the mitotic arrest and performing the same fractionation should bring 53BP1 levels up to that seen in GMCL1 KO cells under the same conditions.

      The reviewer’s suggestion to assess 53BP1 accumulation in wild-type U2OS cells treated with MG132 during mitotic arrest is indeed highly relevant. However, treatment with MG132 during prolonged mitosis consistently led to significant cell death, making it technically challenging to evaluate 53BP1 levels under these conditions.

      (6) Figure 2B: The authors restore GMCL1 expression in the KO U2OS cells using WT and 2 distinct mutant cDNAs. However, the expression of these constructs is not equivalent, and thus their effects cannot be directly compared. It is also surprising that GMCL1 is much higher in M phase samples in this experiment (shouldn't it be destroyed?), when no such behaviour has been observed in the other figures.

      There is no evidence in our study or others that GMCL1 should be destroyed in M phase.  We show that the R433A mutant is expressed at a level very similar to the WT protein, yet it doesn’t promote the degradation of 53BP1. It is true that the E142K is expressed less in mitotic cells whereas is the most expressed in asynchronous cells. For some reason, this mutant has an inverse behavior compared to the WT, limiting the interpretation of this result. We now mention this in the text. 

      (7) Figure 2C: The CHX experiment would benefit from inclusion of a control protein known to have a short half-life (e.g. c-myc, p53). Is GMCL1 known to have a relatively short half-life? It looks as though GMCL1 disappears after 1 h CHX treatment (although hard to definitively tell in the absence of molecular weight markers). 53BP1 appears to continue declining in the absence of GMCL1, which is surprising if p53BP1 degradation requires GMCL1. How can the authors reconcile this?

      As a control for the CHX chase experiments, we included p21, whose protein levels decreased in a CHX-dependent. GMCL1 itself also appeared to undergo degradation upon CHX treatment, but it doesn’t disappear completely.

      (8) Supplemental Figure 2:

      Transcription is largely inhibited in M phase, so the p53 target gene transcripts present in M phase are inherited from the preceding G2 phase. The qPCR's thus need a reference sample to compare against. I.e., was p21/PUMA/NOXA mRNA already low in G2 in the GMCL1 KO + WT cells before they entered mitosis? Or is the mRNA stability affected during M phase specifically? Is this effect on the mRNA dependent on the time in mitosis?

      It is well established that transcription is not entirely shut down during mitosis, particularly for a subset of genes involved in cell cycle regulation. For example, p21, PUMA, NOXA, and p53 mRNAs have been shown to remain actively transcribed during mitosis (see Table S5 in PMID: 28912132). However, we currently lack direct evidence that p53 activation during mitosis, specifically through the mitotic surveillance pathway, drives the transcription of p21, PUMA, or NOXA mRNAs during M phase. In the absence of such mechanistic data, we opted to exclude these analyses from the final figures.

      Panel B: blots are too over-exposed to see differences in p53 stability under the different conditions. Mitotic samples should be included to show how these differ from the G1 samples.

      The background of all blot images has been adjusted to ensure clarity and consistency.

      Panel D: The authors show no significant difference in the cell cycle profiles of the GMCL1 KO and reconstituted cells compared to parental U2OS cells. This should also be performed in the G1 daughter cells following a prolonged mitosis, to test the effect of the different GMCL1 constructs on G1 cell cycle arrest. U2OS cells have been reported not to have a functional mitotic surveillance pathway (Meitinger et al, Science, 2024), so U2OS cells are perhaps not a good model for testing this.

      We performed cell cycle profiling using EdU incorporation in hTERT-RPE1 cells, which possess a functional MSP, to evaluate cell cycle progression in daughter cells following prolonged mitosis. We observed that GMCL1 knockdown alone leads to G1-phase arrest. In contrast, co-depletion of GMCL1 with either 53BP1 or USP28 bypasses this arrest, indicating that GMCL1 regulates cell cycle progression in an MSP-dependent manner. Please see also the answer to the public review above. 

      (9) Figure 3:

      The authors show expression data for GMCL1 in the different cancer cell lines. This should be validated for a subset of cancer cell lines at the GMCL1 protein level, and cross-correlated to their MSP/mitotic timer status. Does GMCL1 depletion or knockout in p53 wild-type cancer cell lines overexpressing GMCL1 protein restore mitotic surveillance function?

      We were unable to assess GMCL1 protein levels using publicly available proteomics datasets, as GMCL1 expression was not detected. In p53 wild-type hTERT-RPE1 cells, GMCL1 knockdown impaired the mitotic surveillance pathway, as evidenced by G1-phase arrest following prolonged mitosis (new Figure 3A and new Supplementary Figure 3A, B). This arrest was rescued by co-depletion of either TP53BP1 or USP28, indicating that GMCL1 acts upstream of the MSP.

      (10) Figure 4:

      The authors show siRNA experiments depleting GMCL1 and testing the effects of GMCL1 loss on cell viability and apoptosis induction. This is performed in different cell line backgrounds. However, there is no demonstration that any of the observed effects are due to a lack of GMCL1 activity on 53BP1. These experiments need to be repeated in 53BP1 co-depleted cells to test for rescue. Without this, the interpretation is purely correlative.

      We assessed the effects of GMCL1 knockdown, alone or in combination with TP53BP1 or USP28 knockdown, on cell viability and apoptosis in hTERT-RPE1 cells using siRNA. Knockdown of GMCL1 alone led to a significant reduction in cell viability and an increase in apoptosis. However, co-depletion of GMCL1 with either TP53BP1 or USP28 restored both cell viability and apoptosis levels to those observed in control cells (new Figure 5I,J).

      (11) Text comments:

      Line 257: HeLa cells supress p53 through the E6 viral protein and are not "mutant" for p53.

      The authors should cite early work by Uetake and Sluder describing the effects of spindle poisons on the mitotic surveillance pathway.

      We appreciate the reviewer’s comments – We have now made the necessary corrections.

      Reviewer #2 (Recommendations for the authors):

      Major Points:

      (1) Unsubstantiated Mechanistic Claims:

      In Figures 3 and 4, the authors show correlations between GMCL1 expression and sensitivity to Taxol. However, they fail to demonstrate that the mitotic stopwatch is mechanistically involved. To support this conclusion, the authors must test whether deletion of 53BP1, USP28, or disruption of their interaction rescues Taxol sensitivity in GMCL1-depleted cells. Since 53BP1 also plays a role in DNA damage response, such rescue experiments are necessary to distinguish between mitotic surveillance-specific and broader stress-response effects. Deletion of USP28 would be particularly informative.

      We sought to experimentally determine whether GMCL1 is involved in regulating the mitotic stopwatch. Knockdown of GMCL1 alone resulted in reduced cell proliferation and increased apoptosis. In contrast, co-depletion of GMCL1 with either TP53BP1 or USP28 restored both proliferation and apoptosis levels to those observed in control cells (new Figure 5I, J). To further strengthen our mechanistic experiments, we assessed the effect of GMCL1 levels on cell cycle progression. We conducted EdU incorporation assays following nocodazole synchronization and release. Knockdown of GMCL1 alone led to a delay in G1 progression, whereas co-depletion of either TP53BP1 or USP28 rescued normal cell cycle progression (new Figure 3A and new Supplementary Figure 3A, B). These results are consistent with our proliferation data and suggest that GMCL1 functions upstream of the ternary complex, likely by regulating 53BP1 protein levels.

      (2) Model System Limitations (U2OS Cells):

      The use of U2OS cells is highly problematic for investigating the mitotic surveillance pathway. U2OS cells lack a functional mitotic stopwatch and do not arrest following prolonged mitosis in a 53BP1/USP28-dependent manner (PMID: 38547292). Therefore, conclusions drawn from this model system about the function of the mitotic surveillance pathway are not substantiated. Key experiments should be repeated in a cell line with an intact pathway, such as RPE1.

      We now performed all key experiments also hTERT-RPE1 cells (see above). We also would like to point out that while some papers suggest that HCT116 and U2OS cells do not have an intact mitotic surveillance pathway, others have showed that the MSP is indeed functioning in HCT116 cells and can be triggered with variable efficiency in U2OS cells (PMID: 38547292).  This is likely due to high heterogeneity and extensive clonal diversity of cancer cell lines grown in different labs. Please see examples in PMIDs: 3620713, 30089904, and 30778230. In particular, PMID: 30089904 shows that this heterogeneity correlates with considerably different drug responses. 

      (3) Misinterpretation of p53 Activity Timing:

      The manuscript states that "GMCL1 KO cells led to decreased mRNA levels of p21 and NOXA during mitosis" (line 194). However, it is well established that the mitotic surveillance pathway activates p53 in the G1 phase following prolonged mitosis-not during mitosis itself (PMID: 38547292). Therefore, the observed changes in mRNA levels during mitosis are unlikely to be relevant to this pathway.

      We currently lack direct evidence that p53 activated during mitosis through the mitotic surveillance pathway directly influences the transcription of p21, PUMA, or NOXA mRNAs during M phase. Therefore, we have chosen to exclude these data from the final figures.

      (4) Incorrect Interpretation of 53BP1 Chromatin Binding:

      The authors claim that 53BP1 remains associated with chromatin during mitosis, which contradicts established literature. It is known that 53BP1 is released from chromatin during mitosis via mitosis-specific phosphorylation (PMID: 24703952), and this is supported by more recent findings (PMID: 38547292). A likely explanation for the discrepancy may be contamination of mitotic fractions with interphase cells. The chromatin fraction data in Figure 2C must be interpreted with caution.

      Our method to synchronize in M phase is rather stringent (see Supplementary Figure 3D as an example). The literature indicates that the bulk of 53BP1 is released from chromatin during mitosis. Yet, even in the two publications mentioned by the reviewer, there is a difference in the observable amount of 53BP1 bound to chromatin (compare Figure 2B in PMID: 38547292 and Figure 5A in PMID: 24703952). The difference is likely due to the different biochemical approaches used to purify chromatin bound proteins (salt and detergent concentrations, sonication, etc.). Using our fractionation approach, we can reliably separate the soluble fraction (containing also the nucleoplasmic fraction) and chromatin associated proteins as indicated by the controls such as a-Tubulin and Histon H3.  We have now mentioned these limitations when comparing different fractionation methods in our discussion section.

      (5) Inadequate Citation of Foundational Literature:

      The literature on the mitotic surveillance pathway is relatively limited, and it is essential that the authors provide a comprehensive and accurate account of its development. The foundational work by the Sluder lab (PMID: 20832310), demonstrating a p53-dependent arrest following prolonged mitosis, must be cited. Furthermore, the three key 2016 papers (PMID: 27432896, 27432897, 27432896) that identified the involvement of USP28 and 53BP1 in this pathway are critical and should be cited as the basis of the mitotic surveillance pathway.

      In contrast, the manuscript currently emphasizes publications that either contribute minimally or have been contradicted by prior and subsequent work. For example: PMID: 31699974, which proposes Ser15 phosphorylation of p53 as critical, has been contradicted by multiple groups (e.g., Holland, Oegema, and Tsou labs).

      PMID: 37888778, which suggests that 53BP1 must be released from kinetochores, is inconsistent with findings that indicate kinetochore localization is not relevant.

      The authors should thoroughly revise the Introduction to reflect what this reviewer would describe as a more accurate and scholarly approach to the literature.

      We have substantially revised both the Introduction and Discussion sections to incorporate important references kindly suggested by the reviewer.

      Minor Points:

      (1) Overexposed Western Blots:

      The Western blots throughout the manuscript are heavily overexposed and saturated, obscuring differences in protein levels and hindering data interpretation. The authors should provide properly exposed blots with quantification where appropriate.

      We have provided Western blot images with appropriate exposure levels and included quantification where appropriate (i.e., to measure the kinetics of decay rates as in Figure 2C). For all the other immunoblots, we did not include densiometric quantification, given that the semi-quantitative nature of this technique would lead to overinterpretation of our data. This is, unfortunately, a limitation of the technique. In fact, eLife and other similar scientific journals do not adhere to the practice of quantifying Western blot analyses. 

      (2) Missing information in the graphs in Figure 2C and 4; S2? How many repeats? What are the asterisks?

      Panels referenced above have been repeated several times, and further details are now provided in the figure legends.

      Reviewer #3 (Recommendations for the authors):

      (1)   The claim that GMCL1 modulates paclitaxel sensitivity in cancer should be toned down

      .

      We agree that it would be an overstatement to claim that GMCL1 regulates paclitaxel sensitivity in cancer patients in a clinical context. The correlations we observed were based on publicly available, cell line–based datasets, which do not fully account for clinical heterogeneity and patient-specific factors. In response to this important point, we have revised our statements and corresponding text accordingly. We now placed greater emphasis on our molecular and cell biology studies.

      (2) Additional experiments in low, physiologically relevant concentrations of paclitaxel would be interesting. It is possible that these concentrations activate the mitotic stopwatch in a portion of cells, in addition to inducing cell death due to chromosome loss, activation of an immune response, and chromothripsis. Results should be interpreted in the context of this complexity.

      Please see the response to the public review. 

      (3) It would be helpful to show that CUL3 interacts with 53BP1 only in the presence of GMCL1.

      We show that the binding of 53BP1 to GMCL1 is independent of the ability of GMCL1 to bind CUL3 (Figure 1C, D). The binding between 53BP1 and CUL3 is difficult to detect (Figure 1F) likely because it’s not direct but mediated by GMCL1.

      (4) The GMCL1 "KO" lines appear to still express a low level of GMCL1 (Figure 2A), which should be acknowledged

      We have included the GMCL1 mRNA expression data, as measured by RT-PCR, in Supplementary Figure 1G, demonstrating that GMCL1 expression was undetectable under the tested conditions.

      (5) Additional description of the methods is warranted. This is particularly true for the database analysis that forms the basis for the claim that GMCL1 overexpression causes resistance to paclitaxel and other taxanes presented in Figure 3, the methodology used to obtain M-phase cells, and the concentration and duration of taxol treatment.

      We have now extensively revised the Methods section.  

      (6) "Taxol" and "paclitaxel" are used interchangeably throughout the manuscript. Consistency would be preferable.

      We have revised the manuscript to maintain consistency in the use of the terms “Taxol” and “paclitaxel” and now refer to “paclitaxel” when discussing that individual compound; “taxanes” when referring collectively to cabazitaxel, docetaxel and paclitaxel; and “Taxol” has been removed entirely to avoid redundancy or confusion.    

      (7) It is unclear why it is claimed that GMCL1 interacts "specifically" with 53BP1 (line 176) since multiple interactors were identified in the IP-MS study

      We meant that the GMCL1 R433A mutant loses its ability to bind 53BP1, suggesting that the GMCL1-53BP1 interaction is not an artifact. We have now clarified the text. 

      (8) The bottom row in Figure S3 is misleading. Paclitaxel is not uniformly effective in every tumor of any given type, and so resistance occurs in every cancer type.

      We fully agree that cancer is highly heterogeneous and that paclitaxel efficacy varies across tumors, even within the same histological subtype. Our intension was not to suggest uniform sensitivity/resistance, but rather to provide a high-level overview using aggregated data. We acknowledge that this coarse-grained representation may unintentionally imply overly generalized conclusions. To avoid potential misinterpretation, we have removed the corresponding panel in the revised paper.

    1. and Italy, Khrushchev (with Castro’s agreement) began an,initially, secret placement of Soviet missiles in Cuba.The Russian buildup was detected by U–2 flights,while the Russians rushed to construct the supporting in-frastructure for the missiles, bombers, and defending SA-2 surface-to-air missile sites and MiG fighters. Russianmerchant ships bound for Cuba were scrutinized for sus-pected weapons systems. Eventually there was clear evi-dence that intermediate and medium-range missilelaunch pads hade been constructed despite Khrushchev’sassertion that no construction was ongoing—only themovement of agricultural machinery to aid in moderniz-ing the Cuban agrarian sector.Bromley then follows a timeline illustrating moves andcountermoves by the two key players. US aircraft conductedreconnaissance over Cuba. Strategic Air Command dis-persed its forces and maintained armed, airborne B–52s inanticipation of possible nuclear strikes. Soviet submarinesreached their stations off the US Atlantic coast and in theCaribbean, while the US Navy aggressively tracked them.Soviet anti-ship missiles were activated in Cuba. Kennedydeclared a blockade (quarantine) of Cuba (an act of war?).The Soviets, on October 27, 1962, shot down a US U–2, po-tentially pushing the crisis to the brink. A few days later aSoviet submarine crew, unsure of whether or not they werealready at war, came far too close to launching a nucleartorpedo at threatening US Navy surface vessels.The Cuban Missile Crisis was the single most unnerv-ing crisis of many during that era, one complicated by achain of often unanticipated events. It might sound like ahighly imaginative Cold War novel, but it did happen, asthis monograph makes very clear.A complicating sideshow was the need for each side torein in its own players. The Pentagon’s JCS wanted to in-vade Cuba. Submariners were ready to employ nuclear tor-pedoes. US destroyer commanders were itching to depthcharge Soviet submarines. Somehow, both direct and indi-rect exchanges between the two sides managed to end thecrisis.These monographs very effectively revisit Cold Warmoments of incredible consequence. For those of us whohave firsthand memories, reading the two volumes broughtthem all back. For readers with no firsthand knowledge,Bromley has provided an easy-to-follow account of whathappened, the impacts, and how we escaped a nuclear war.Without a question, these are very good reference materi-als and well worth the time to read.John Cirafici, Milford DEA6M2/3 Zero-sen; New Guinea and the Solomons1942 & Operation RO-GO 1943; Japanese Air PowerTackles the Bougainville Landings. Both by MichaelJohn Claringbould. Oxford UK: Osprey, 2023. Maps. Tables.Diagrams. Illustrations. Photographs. Appendices. Bibliog-raphy. Index. Pp. 80 and 96. Cost: $23.00 and $25.00 pa-perback. ISBN: 978-1-4728-5749-1 and 978-1-4728-5557-2-1In these two books, Michael Claringbould take thereader to the South Pacific at the time when the Japanesejuggernaut was stopped, and the allies began to take theinitiative in the theater. The A6M2/3 plays a leading rolein both books. Claringbould is an accomplished writer andan even better researcher, using his Japanese languageskills to bring new anecdotes and lessons to a well-knownstory. He frequently drops Japanese terms and phrasesthroughout his writing (ofttimes, it seems more to establishhis bona fides than to enlighten the reader).A6M2/3 Zero-sen is most effective when it provides auniquely detailed picture of the life of a Japanese aviatordeployed to a forward area. By mid-1942, the Japanesesupply chain was already stretched and under increasingpressure, so daily life and operations were harsh by anystandard. Claringbould’s research seems to have found aunique supply of anecdotes. He does not hesitate to callother writers to task for their failures to do the same, e.g.,criticizing Martin Caiden for his sterilization of the 1957Saburo Sakai biography Samurai for being an unrecogniz-able version of the original Japanese publication.This book abandoned the usual color profiles in favorof color schematics of air engagements. While eye-catching,the two-dimensional diagrams were more confusing thanhelpful. In his previous publications, Claringbould alsomakes clear that he believes regional geography and cli-mate are unappreciated factors that had significant tacti-cal and strategic impact.The A6M2/3 fighters were the heart of his story. Thebook shows that Japanese fighters were capable of domi-nating opposition when in the hands of skilled pilots. Inthe hands of novices, however, engagements with P–39s,F4Fs, and P–40s were more of an even match—and Japan-ese aircraft losses were much harder to replace. Pilots wereirreplaceable. Claringbould notes that, while the upgradeof the A6M2 to the A6M3 standard was significant, theSakae radial had reached the end of its evolution. Melzerstates in Wings for the Rising Sun that the Sakae radialdesign was a direct outgrowth of the Pratt & Whitney-Mit-subishi partnership. Once the war ended that partnership,Mitsubishi hit a technological dead end.Operation RO-GO 1943 moves the clock forward sixmonths as the Japanese struggled to regain the theaterinitiative. In doing so, Claringbould shows the results ofthe Japanese inability to both effectively redress the Zero-sen’s shortcomings and replace the loss of skilled aviators.He again beats the drum of geography and climate as op-erational factors that impacted the Japanese more thanthe allies. What began as a Japanese offensive strokequickly turned into a defensive battle to protect Truk andRabaul with demoralized and ill-equipped Japanese Army149JOURNAL OF THE AFHF/ SPRING 2024

      alksjdf

  5. bafybeig7nrhxx3nyb5rfmuj7cfy5xbl4ldtwr57ol6lykibww625qkxnke.ipfs.dweb.link bafybeig7nrhxx3nyb5rfmuj7cfy5xbl4ldtwr57ol6lykibww625qkxnke.ipfs.dweb.link
  6. Nov 2025
    1. By using Artificial Intelligence based technology in an effectiveand ethical way, being supported by teachers and policymakers, students at theFaculty of Economic Sciences, University of Oradea can acquire the necessarycommunication skills in Business English in order to be successful in today’sinterconnected world
    2. Our research, undergone through semi-structured interview, inthe qualitative phase, as an instrument for data collection, has revealed the fact that42% of the interviewed students use Artificial Intelligence in improving BusinessEnglish communication skills
    3. In order to examine and get a clear image of the usage of Artificial Intelligence inlearning foreign languages, having clear reference to Business English, we havechosen key informants that could provide relevant information, being chosenfollowing the inclusion criteria: 1. Economics students who have English selectionexam scores above 80 points; 2. Economics students who have taken Introductionto Business English Course during the first semester.
    4. The appearance of Artificial Intelligence has revolutionized not only the students’traditional methods of learning but also the teachers’ teaching methods, bringing newideas and new opportunities to all aspects of the teaching/learning process
    5. Therefore, this study comes as ahelpful perspective regarding the students’ opinion in using Artificial Intelligencebased technology and how they can help in developing their communication skills.
    6. The lack of confidence andanxiety about making errors are only two of the main reasons to take intoconsideration when talking about communication in Business English.
    7. Business English is a complex field which requires a lot of practice in order to bemastered. The focus of the course is communication. Since the students nowadayshave proved to be digital literate from an early age, the use of the artificialintelligence-based tools in teaching have shown an increased interest in the learningprocess
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Authors’ reply (____Ono et al)

      Review Commons Refereed Preprint #RC-2025-03137

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Ono et al addressed how condensin II and cohesin work to define chromosome territories (CT) in human cells. They used FISH to assess the status of CT. They found that condensin II depletion leads to lengthwise elongation of G1 chromosomes, while double depletion of condensin II and cohesin leads to CT overlap and morphological defects. Although the requirement of condensin II in shortening G1 chromosomes was already shown by Hoencamp et al 2021, the cooperation between condensin II and cohesin in CT regulation is a new finding. They also demonstrated that cohesin and condensin II are involved in G2 chromosome regulation on a smaller and larger scale, respectively. Though such roles in cohesin might be predictable from its roles in organizing TADs, it is a new finding that the two work on a different scale on G2 chromosomes. Overall, this is technically solid work, which reports new findings about how condensin II and cohesin cooperate in organizing G1 and G2 chromosomes.

      We greatly appreciate the reviewer’s supportive comments. The reviewer has accurately recognized our new findings concerning the collaborative roles of condensin II and cohesin in establishing and maintaining interphase chromosome territories.

      Major point:

      They propose a functional 'handover' from condensin II to cohesin, for the organization of CTs at the M-to-G1 transition. However, the 'handover', i.e. difference in timing of executing their functions, was not experimentally substantiated. Ideally, they can deplete condensin II and cohesin at different times to prove the 'handover'. However, this would require the use of two different degron tags and go beyond the revision of this manuscript. At least, based on the literature, the authors should discuss why they think condensin II and cohesin should work at different timings in the CT organization.

      We take this comment seriously, especially because Reviewer #2 also expressed the same concern. 

      First of all, we must admit that the basic information underlying the “handover” idea was insufficiently explained in the original manuscript. Let us make it clear below:

      • Condensin II bound to chromosomes and is enriched along their axes from anaphase through telophase (Ono et al., 2004; Hirota et al., 2004; Walther et al., 2018).
      • In early G1, condensin II is diffusely distributed within the nucleus and does not bind tightly to chromatin, as shown by detergent extraction experiments (Ono et al., 2013).
      • Cohesin starts binding to chromatin when the cell nucleus reassembles (i.e., during the cytokinesis stage shown in Fig. 1B), apparently replacing condensins I and II (Brunner et al., 2025).
      • Condensin II progressively rebinds to chromatin from S through G2 phase (Ono et al., 2013). The cell cycle-dependent changes in chromosome-bound condensin II and cohesin summarized above are illustrated in Fig. 1A. We now realize that Fig. 1B in the original manuscript was inconsistent with Fig. 1A, creating unnecessary confusion, and we sincerely apologize for this. The fluorescence images shown in the original Fig. 1B were captured without detergent extraction prior to fixation, giving the misleading impression that condensin II remained bound to chromatin from cytokinesis through early G1. This was not our intention. To clarify this, we have repeated the experiment in the presence of detergent extraction and replaced the original Fig. 1B with a revised panel. Figs. 1A and 1B are now more consistent with each other. Accordingly, we have modified the correspsonding sentences as follows:

      Although condensin II remains nuclear throughout interphase, its chromatin binding is weak in G1 and becomes robust from S phase through G2 (Ono et al., 2013). Cohesin, in contrast, replaces condensin II in early G1 (Fig. 1 B)(Abramo et al., 2019; Brunner et al., 2025), and establishes topologically associating domains (TADs) in the G1 nucleus (Schwarzer et al., 2017; Wutz et al., 2017)*. *

      While there is a loose consensus in the field that condensin II is replaced by cohesin during the M-to-G1 transition, it remains controversial whether there is a short window during which neither condensin II nor cohesin binds to chromatin (Abramo et al., 2019), or whether there is a stage in which the two SMC protein complexes “co-occupy” chromatin (Brunner et al., 2025). Our images shown in the revised Fig. 1B cannot clearly distinguish between these two possibilities.

      From a functional point of view, the results of our depletion experiments are more readily explained by the latter possibility. If this is the case, the “interplay” or “cooperation” rather than the “handover” may be a more appropriate term to describe the functional collaboration between condensin II and cohesin during the M-to-G1 transition. For this reason, we have avoided the use of the word “handover” in the revised manuscript. It should be emphasized, however, that given their distinct chromosome-binding kinetics, the cooperation of the two SMC complexes during the M-to-G1 transition is qualitatively different from that observed in G2. Therefore, the central conclusion of the present study remains unchanged.

      For example, a sentence in Abstract has been changed as follows:

      a functional interplay between condensin II and cohesin during the mitosis-to-G1 transition is critical for establishing chromosome territories (CTs) in the newly assembling nucleus.

      While the reviewer suggested one experiment, it is clearly beyond the scope of the current study. It should also be noted that even if such a cell line were available, the proposed application of sequential depletion to cells progressing from mitosis to G1 phase would be technically challenging and unlikely to produce results that could be interpreted with confidence.

      Other points:

      Figure 2E: It seems that the chromosome length without IAA is shorter in Rad21-aid cells than H2-aid cells or H2-aid Rad21-aid cells. How can this be interpreted? This comment is well taken. A related comment was made by Reviewer #3 (Major comment #2). Given the substantial genetic manipulations applied to establish multiple cell lines used in the present study, it is, strictly speaking, not straightforward to compare the -IAA controls between different cell lines. Such variations are most prominently observed in Fig. 2E, although they can also be observed to lesser extent in other experiments (e.g., Fig. 3E). This issue is inherently associated with all studies using genetically manipulated cell lines and therefore cannot be completely avoided. For this reason, we focus on the differences between -IAA and +IAA within each cell line, rather than comparing the -IAA conditions across different cell lines. In this sense, a sentence in the original manuscript (lines 178-180) was misleading. In the revised manuscript, we have modified the corresponding and subsequent sentence as follows:

      Although cohesin depletion had a marginal effect on the distance between the two site-specific probes (Fig.2, C and E), double depletion did not result in a significant change (Fig.2, D and E), consistent with the partial restoration of centromere dispersion (Fig. 1G).

      • *

      In addition, we have added a section entitled “Limitations of the study” at the end of the Discussion to address technical issues that are inevitably associated with the current approach.

      Figure 3: Regarding the CT morphology, could they explain further the difference between 'elongated' and 'cloud-like (expanded)'? Is it possible to quantify the frequency of these morphologies? In the original manuscript, we provided data that quantitatively distinguished between the “elongated” and “cloud-like” phenotypes. Specifically, Fig. 2E shows that the distance between two specific loci (Cen 12 and 12q15) is increased in the elongated phenotype but not in the cloud-like phenotype. In addition, the cloud-like morphology was clearly deviated from circularity, as indicated by the circularity index (Fig. 3F). However, because circularity can also decrease in rod-shaped chromosomes, these datasets alone may not be sufficiently convincing, as the reviewer pointed out. We have now included an additional parameter, the aspect ratio, defined as the ratio of an object’s major axis to its minor axis (new Fig. 3F). While this intuitive parameter was altered upon condensin II depletion and double depletion, again, we acknowledge that it is not sufficient to convincingly distinguish between the elongated and cloud-like phenotypes proposed in the original manuscript. For these reasons, in the revised manuscript, we have toned down our statements regarding the differences in CT morphology between the two conditions. Nonetheless, together with the data from Figs. 1 and 2, it is that the Rabl configuration observed upon condensin II depletion is further exacerbated in the absence of cohesin. Accordingly, we have modified the main text and the cartoon (Fig 3H) to more accurately depict the observations summarized above.

      Figure 5: How did they assign C, P and D3 for two chromosomes? The assignment seems obvious in some cases, but not in other cases (e.g. in the image of H2-AID#2 +IAA, two D3s can be connected to two Ps in the other way). They may have avoided line crossing between two C-P-D3 assignments, but can this be justified when the CT might be disorganized e.g. by condensin II depletion? This comment is well taken. As the reviewer suspected, we avoided line crossing between two sets of assignments. Whenever there was ambiguity, such images were excluded from the analysis. Because most chromosome territories derived from two homologous chromosomes are well separated even under the depleted conditions as shown in Fig. 6C, we did not encounter major difficulties in making assignments based on the criteria described above. We therefore remain confident that our conclusion is valid.

      That said, we acknowledge that our assignments of the FISH images may not be entirely objective. We have added this point to the “Limitations of the study” section at the end of the Discussion.

      Figure 6F: The mean is not indicated on the right-hand side graph, in contrast to other similar graphs. Is this an error? We apologize for having caused this confusion. First, we would like to clarify that the right panel of Fig. 6F should be interpreted together with the left panel, unlike the seemingly similar plots shown in Figs. 6G and 6H. In the left panel of Fig. 6F, the percentages of CTs that contact the nucleolus are shown in grey, whereas those that do not are shown in white. All CTs classified in the “non-contact” population (white) have a value of zero in the right panel, represented by the bars at 0 (i.e., each bar corresponds to a collection of dots having a zero value). In contrast, each CT in the “contact” population (grey) has a unique contact ratio value in the right panel. Because the right panel consists of two distinct groups, we reasoned that placing mean or median bars would not be appropriate. This was why no mean or median bars were shown in in the tight panel (The same is true for Fig. S5 A and B).

      That said, for the reviewer’s reference, we have placed median bars in the right panel (see below). In the six cases of H2#2 (-/+IAA), Rad21#2 (-/+IAA), Double#2 (-IAA), and Double#3 (-IAA), the median bars are located at zero (note that in these cases the mean bars [black] completely overlap with the “bars” derived from the data points [blue and magenta]). In the two cases of Double#2 (+IAA) and Double#3 (+IAA), they are placed at values of ~0.15. Statistically significant differences between -IAA and +IAA are observed only in Double#2 and Double#3, as indicated by the P-value shown on the top of the panel. Thus, we are confident in our conclusion that CTs undergo severe deformation in the absence of both condensin II and cohesin.

      Figure S1A: The two FACS profiles for Double-AID #3 Release-2 may be mixed up between -IAA and +IAA. The review is right. This inadvertent error has been corrected.

      The method section explains that 'circularity' shows 'how closely the shape of an object approximates a perfect circle (with a value of 1 indicating a perfect circle), calculated from the segmented regions'. It would be helpful to provide further methodological details about it. We have added further explanations regarding the circularity in Materials and Methods together with a citation (two added sentences are underlined below):

      To analyze the morphology of nuclei, CTs, and nucleoli, we measured “circularity,” a morphological index that quantifies how closely the shape of an object approximates a perfect circle (value =1). Circularity was defined as 4π x Area/Perimeter2, where both the area and perimeter of each segmented object were obtained using ImageJ. This index ranges from 0 to 1, with values closer to 1 representing more circular objects and lower values correspond to elongated or irregular shapes (Chen et al, 2017).

      Chen, B., Y. Wang, S. Berretta and O. Ghita. 2017. Poly Aryl Ether Ketones (PAEKs) and carbon-reinforced PAEK powders for laser sintering. J Mater Sci 52:6004-6019.

      Reviewer #1 (Significance (Required)):

      Ono et al addressed how condensin II and cohesin work to define chromosome territories (CT) in human cells. They used FISH to assess the status of CT. They found that condensin II depletion leads to lengthwise elongation of G1 chromosomes, while double depletion of condensin II and cohesin leads to CT overlap and morphological defects. Although the requirement of condensin II in shortening G1 chromosomes was already shown by Hoencamp et al 2021, the cooperation between condensin II and cohesin in CT regulation is a new finding. They also demonstrated that cohesin and condensin II are involved in G2 chromosome regulation on a smaller and larger scale, respectively. Though such roles in cohesin might be predictable from its roles in organizing TADs, it is a new finding that the two work on a different scale on G2 chromosomes. Overall, this is technically solid work, which reports new findings about how condensin II and cohesin cooperate in organizing G1 and G2 chromosomes.

      See our reply above.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Ono et al use a variety of imaging and genetic (AID) depletion approaches to examine the roles of condensin II and cohesin in the reformation of interphase genome architecture in human HCT16 cells. Consistent with previous literature, they find that condensin II is required for CENP-A dispersion in late mitosis/early G1. Using in situ FISH at the centromere/q arm of chromosome 12 they then establish that condensin II removal causes lengthwise elongation of chromosomes that, interestingly, can be suppressed by cohesin removal. To better understand changes in whole-chromosome morphology, they then use whole chromosome painting to examine chromosomes 18 and 19. In the absence of condensin II, cells effectively fail to reorganise their chromosomes from rod-like structures into spherical chromosome territories (which may explain why CENP-A dispersion is suppressed). Cohesin is not required for spherical CT formation, suggesting condensin II is the major initial driver of interphase genome structure. Double depletion results in complete disorganisation of chromatin, leading the authors to conclude that a typical cell cycle requires orderly 'handover' from the mitotic to interphase genome organising machinery. The authors then move on to G2 phase, where they use a variety of different FISH probes to assess alterations in chromosome structure at different scales. They thereby establish that perturbation of cohesin or condensin II influences local and longer range chromosome structure, respectively. The effects of condensin II depletion become apparent at a genomic distance of 20 Mb, but are negligible either below or above. The authors repeat the G1 depletion experiment in G2 and now find that condensin II and cohesin are individually dispensable for CT organisation, but that dual depletion causes CT collapse. This rather implies that there is cooperation rather than handover per se. Overall this study is a broadly informative multiscale investigation of the roles of SMC complexes in organising the genome of postmitotic cells, and solidifies a potential relationship between condensin II and cohesin in coordinating interphase genome structure. The deeper investigation of the roles of condensin II in establishing chromosome territories and intermediate range chromosome structure in particular is a valuable and important contribution, especially given our incomplete understanding of what functions this complex performs during interphase.

      We sincerely appreciate the reviewer’s supportive comments. The reviewer has correctly acknowledged both the current gaps in our understanding of the role of condensin II in interphase chromosome organization and our new findings on the collaborative roles of condensin II and cohesin in establishing and maintaining interphase chromosome territories.

      Major comments:

      In general the claims and conclusions of the manuscript are well supported by multiscale FISH labelling. An important absent control is western blotting to confirm protein depletion levels. Currently only fluorescence is used as a readout for the efficiency of the AID depletion, and we know from prior literature that even small residual quantities of SMC complexes are quite effective in organising chromatin. I would consider a western blot a fairly straightforward and important technical control.

      Let me explain why we used immunofluorescence measurements to evaluate the efficiency of depletion. In our current protocol for synchronizing at the M-to-G1 transition, ~60% of control and H2-depleted cells, and ~30% of Rad21-depleted and co-depleted cells, are successfully synchronized in G1 phase. The apparently lower synchronization efficiency in the latter two groups is attributable to the well-documented mitotic delay caused by cohesin depletion. From these synchronized populations, early G1 cells were selected based on their characteristic morphologies (see the legend of Fig. 1C). In this way, we analyzed an early G1 cell population that had completed mitosis without chromosome segregation defects. We acknowledge that this represents a technically challenging aspect of M-to-G1 synchronization in HCT116 cells, whose synchronization efficiency is limited compared with that of HeLa cells. Nevertheless, this approach constitutes the most practical strategy currently available. Hence, immunofluorescence provides the only feasible means to evaluate depletion efficiency under these conditions.

      Although immunoblotting can, in principle, be applied to G2-arrested cell populations, we do not believe that information obtained from such experiments would affect the main conclusions of the current study. Please note that we carefully designed and performed all experiments with appropriate controls: H2 depletion, RAD21 depletion, and double depletion, with outcomes confirmed using independent cell lines (Double-AID#2 and Double-AID#3) whenever deemed necessary.

      We fully acknowledge the technical limitations associated with the AID-mediated depletion techniques, which are now described in the section entitled “Limitations of the study” at the end of the Discussion. Nevertheless, we emphasize that these limitations do not compromise the validity of our findings.

      I find the point on handover as a mechanism for maintaining CT architecture somewhat ambiguous, because the authors find that the dependence simply switches from condensin II to both condensin II and cohesin, between G1 and G2. To me this implies augmented cooperation rather than handover. I have two further suggestions, both of which I would strongly recommend but would consider desirable but 'optional' according to review commons guidelines.

      First of all, we would like to clarify a possible misunderstanding regarding the phrase “handover as a mechanism for maintaining CT architecture somewhat ambiguous”. In the original manuscript, we proposed handover as a mechanism for establishing G1 chromosome territories, not for maintaining CTs.

      That said, we take this comment very seriously, especially because Reviewer #1 also expressed the same concern. Please see our reply to Reviewer #1 (Major point).

      In brief, we agree with the reviewer that the word “handover” may not be appropriate to describe the functional relationship between condensin II and cohesin during the M-to-G1 transition. In the revised manuscript, we have avoided the use of the word “handover”, replacing it with “interplay”. It should be emphasized, however, that given their distinct chromosome-binding kinetics, the cooperation of the two SMC complexes during the M-to-G1 transition is qualitatively different from that observed in G2. Therefore, the central conclusion of the present study remains unchanged.

      For example, a sentence in Abstract has been changed as follows:

      a functional interplay between condensin II and cohesin during the mitosis-to-G1 transition is critical for establishing chromosome territories (CTs) in the newly assembling nucleus.

      Firstly, the depletions are performed at different stages of the cell cycle but have different outcomes. The authors suggest this is because handover is already complete, but an alternative possibility is that the phenotype is masked by other changes in chromosome structure (e.g. duplication/catenation). I would be very curious to see, for example, how the outcome of this experiment would change if the authors were to repeat the depletions in the presence of a topoisomerase II inhibitor.

      The reviewer’s suggestion here is somewhat vague, and it is unclear to us what rationale underlies the proposed experiment or what meaningful outcomes could be anticipated. Does the reviewer suggest that we perform topo II inhibitor experiments both during the M-to-G1 transition and in G2 phase, and then compare the outcomes between the two conditions?

      For the M-to-G1 transition, Hildebrand et at (2024) have already reported such experiments. They used a topo II inhibitor to provided evidence that mitotic chromatids are self-entangled and that the removal of these mitotic entanglements is required to establish a normal interphase nucleus. Our own preliminary experiments (not presented in the current manuscript) showed that ICRF treatment of cells undergoing the M-to-G1 transition did not affect post-mitotic centromere dispersion. The same treatment also had little effect on the suppression of centromere dispersion observed in condensin II-depleted cells.

      Under G2-arrested condition, because chromosome territories are largely individualized, we would expect topo II inhibition to affect only the extent of sister catenation, which is not the focus of our current study. We anticipate that inhibiting topo II in G2 would have only a marginal, if any, effect on the maintenance of chromosome territories detectable by our current FISH approaches.

      In any case, we consider the suggested experiment to be beyond the scope of the present manuscript, which focuses on the collaborative roles of condensin II and cohesin as revealed by multi-scale FISH analyses.

      Secondly, if the author's claim of handover is correct then one (not exclusive) possibility is that there is a relationship between condensin II and cohesin loading onto chromatin. There does seem to be a modest co-dependence (e.g. fig S4 and S7), could the authors comment on this?

      First of all, we wish to point out the reviewer’s confusion between the G2 experiments and the M-to-G1 experiments. Figs. S4 and S7 concern experiments using G2-arrested cells, not M-to-G1 cells in which a possible handover mechanism is discussed. Based on Fig. 1, in which the extent of depletion in M-to-G1 cells was tested, no evidence of “co-dependence” between H2 depletion and RAD21 depletion was observed.

      That said, as the reviewer correctly points out, we acknowledge the presence of marginal yet statistically significant reductions in the RAD21 signal upon H2 depletion (and vice versa) in G2-arrested cells (Figs. S4 and S7).

      Another control experiment here would be to treat fully WT cells with IAA and test whether non-AID labelled H2 or RAD21 dip in intensity. If they do not, then perhaps there's a causal relationship between condensin II and cohesin levels?

      According to the reviewer’s suggestion, we tested whether IAA treatment causes an unintentional decreases in the H2 or RAD21 signals in G2-arrested cells, and found that it is not the case (see the attached figure below).

      Thus, these data indicate that there is a modest functional interdependence between condensin II and cohesin in G2-arrested cells. For instance, condensin II depletion may modestly destabilize chromatin-bound cohesin (and vice versa). However, we note that these effects are minor and do not affect the overall conclusions of the study. In the revised manuscript, we have described these potentially interesting observations briefly as a note in the corresponding figure legends (Fig. S4).

      I recognise this is something considered in Brunner et al 2025 (JCB), but in their case they depleted SMC4 (so all condensins are lost or at least dismantled). Might bear further investigation.

      Methods:

      Data and methods are described in reasonable detail, and a decent number of replicates/statistical analyses have been. Documentation of the cell lines used could be improved. The actual cell line is not mentioned once in the manuscript. Although it is referenced, I'd recommend including the identity of the cell line (HCT116) in the main text when the cells are introduced and also in the relevant supplementary tables. Will make it easier for readers to contextualise the findings.

      We apologize for the omission of important information regarding the parental cell line used in the current study. The information has been added to Materials and Methods as well as the resource table.

      Minor comments:

      Overall the manuscript is well-written and well presented. In the introduction it is suggested that no experiment has established a causal relationship between human condensin II and chromosome territories, but this is not correct, Hoencamp et al 2021 (cell) observed loss of CTs after condensin II depletion. Although that manuscript did not investigate it in as much detail as the present study, the fundamental relationship was previously established, so I would encourage the authors to revise this statement.

      We are somewhat puzzled by this comment. In the original manuscript, we explicitly cited Hoencamp et al (2021) in support of the following sentences:

      • *

      (Lines 78-83 in the original manuscript)

      *Moreover, high-throughput chromosome conformation capture (Hi-C) analysis revealed that, under such conditions, chromosomes retain a parallel arrangement of their arms, reminiscent of the so-called Rabl configuration (Hoencamp et al., 2021). These findings indicate that the loss or impairment of condensin II during mitosis results in defects in post-mitotic chromosome organization. *

      • *

      That said, to make the sentences even more precise, we have made the following revision in the manuscript.

      • *

      (Lines 78- 82 in the revised manuscript)

      *Moreover, high-throughput chromosome conformation capture (Hi-C) analysis revealed that, under such conditions, chromosomes retain a parallel arrangement of their arms, reminiscent of the so-called Rabl configuration (Hoencamp et al., 2021). These findings,together with cytological analyses of centromere distributions, indicate that the loss or impairment of condensin II during mitosis results in defects in post-mitotic chromosome organization. *

      • *

      The following statement was intended to explain our current understanding of the maintenance of chromosome territories. Because Hoencamp et al (2021) did not address the maintenance of CTs, we have kept this sentence unchanged.

      • *

      (Lines 100-102 in the original manuscript)

      Despite these findings, there is currently no evidence that either condensin II, cohesin, or their combined action contributes to the maintenance of CT morphology in mammalian interphase cells (Cremer et al., 2020).

      • *

      • *

      Reviewer #2 (Significance (Required)):

      General assessment:

      Strengths: the multiscale investigation of genome architecture at different stages of interphase allow the authors to present convincing and well-analysed data that provide meaningful insight into local and global chromosome organisation across different scales.

      Limitations:

      As suggested in major comments.

      Advance:

      Although the role of condensin II in generating chromosome territories, and the roles of cohesin in interphase genome architecture are established, the interplay of the complexes and the stage specific roles of condensin II have not been investigated in human cells to the level presented here. This study provides meaningful new insight in particular into the role of condensin II in global genome organisation during interphase, which is much less well understood compared to its participation in mitosis.

      Audience:

      Will contribute meaningfully and be of interest to the general community of researchers investigating genome organisation and function at all stages of the cell cycle. Primary audience will be cell biologists, geneticists and structural biochemists. Importance of genome organisation in cell/organismal biology is such that within this grouping it will probably be of general interest.

      My expertise is in genome organization by SMCs and chromosome segregation.

      We appreciate the reviewer’s supportive comments. As the reviewer fully acknowledges, this study is the first systematic survey of the collaborative role of condensin II and cohesin in establishing and maintaining interphase chromosome territories. In particular, multi-scale FISH analyses have enabled us to clarify how the two SMC protein complexes contribute to the maintenance of G2 chromosome territories through their actions at different genomic scales. As the reviewer notes, we believe that the current study will appeal to a broad readership in cell and chromosome biology. The limitations of the current study mentioned by the reviewer are addressed in our reply above.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      The manuscript “Condensin II collaborates with cohesin to establish and maintain interphase chromosome territories" investigates how condensin II and cohesin contribute to chromosome organization during the M-to-G1 transition and in G2 phase using published auxin-inducible degron (AID) cell lines which render the respective protein complexes nonfunctional after auxin addition. In this study, a novel degron cell line was established that enables the simultaneous depletion of both protein complexes, thereby facilitating the investigation of synergistic effects between the two SMC proteins. The chromosome architecture is studied using fluorescence in situ hybridization (FISH) and light microscopy. The authors reproduce a number of already published data and also show that double depletion causes during the M-to-G1 transition defects on chromosome territories, producing expanded, irregular shapes that obscure condensin II-specific phenotypes. Findings in G2 cells point to a new role of condensin II for chromosome conformation at a scale of ~20Mb. Although individual depletion has minimal effects on large-scale CT morphology in G2, combined loss of both complexes produces marked structural abnormalities, including irregular crescent-shaped CTs displaced toward the nucleolus and increased nucleolus-CT contact. The authors propose that condensin II and cohesin act sequentially and complementarily to ensure proper post-mitotic CT formation and maintain chromosome architecture across genomic scales.

      We greatly appreciate the reviewer’s supportive comments. The reviewer has accurately recognized our new findings concerning the collaborative roles of condensin II and cohesin in the establishment and maintenance of interphase chromosome territories.

      Concenrs about statistics:

      • The authors provide the information on how many cells are analyzed but not the number of independent experiments. My concern is that there might variations in synchronization of the cell population and in the subsequent preparation (FISH) affecting the final result. We appreciate the reviewer’s important comment regarding the biological reproducibility of our experiments. As the reviewer correctly points out, variations in cell-cycle synchronization and FISH sample preparation can occur across experiments. To address this concern, we repeated the key experiments supporting our main conclusions (Figs. 3 and 6) two additional times, resulting in three independent biological replicas in total. All replicate experiments reproduced the major observations from the original analyses. These results further substantiated our original conclusion, despite the inevitable variability arising from cell synchronization or sample preparation in this type of experiments. In the revised manuscript, we have now explicitly indicated the number of biological replicates in the corresponding figures.

      The analyses of chromosome-arm conformation shown in Fig. 5 were already performed in three independent rounds of experiments, as noted in the original submission. In addition, similar results were already obtained in other analyses reported in the manuscript. For example, centromere dispersion was quantified using an alternative centromere detection method (related to Fig. 1), and distances between specific chromosomal sites were measured using different locus-specific probes (related to Figs. 2 and 4). In both cases, the results were consistent with those presented in the manuscript.

      • Statistically the authors analyze the effect of cells with induced degron vs. vehicle control (non-induced). However, the biologically relevant question is whether the data differ between cell lines when the degron system is induced. This is not tested here (cf. major concern 2 and 3). See our reply to major concerns 2 and 3.

      • Some Journal ask for blinded analysis of the data which might make sense here as manual steps are involved in the data analysis (e.g. line 626 / 627the convex hull of the signals was manually delineated, line 635 / 636 Chromosome segmentation in FISH images was performed using individual thresholding). However personally I have no doubts on the correctness of the work. We thank the reviewer for pointing out that some steps in our data analysis were performed manually, such as delineating the convex hull of signals and segmenting chromosomes in FISH and IF images using individual thresholds. These manual steps were necessary because signal intensities vary among cells and chromosomes, making fully automated segmentation unreliable. To ensure objectivity, we confirmed that the results were consistent across two independently established double-depletion cell lines, which produced essentially identical findings. In addition, we repeated the key experiments underpinning our main conclusions (Figs. 3 and 6) two additional times, and the results were fully consistent with the original analyses. Therefore, we are confident that our current data analysis approach does not compromise the validity of our conclusions. Finally, we appreciate the reviewer’s kind remark that there is no doubt regarding the correctness of our work.

      Major concerns:

      • Degron induction appears to delay in Rad21-AID#1 and Double-AID#1 cells the transition from M to G1, as shown in Fig. S1. After auxin treatment, more cells exhibit a G2 phenotype than in an untreated population. What are the implications of this for the interpretation of the experiments? In our protocol shown in Fig. 1C, cells were released into mitosis after G2 arrest, and IAA was added 30 min after release. It is well established that cohesin depletion causes a prometaphase delay due to spindle checkpoint activation (e.g., Vass et al, 2003, Curr Biol; Toyoda and Yanagida, 2006, MBoC; Peters et al, 2008, Genes Dev), which explains why cells with 4C DNA content accumulated, as judged by FACS (Fig. S1). The same was true for doubly depleted cells. However, a fraction of cells that escaped this delay progressed through mitosis and enter the G1 phase of the next cell cycle. We selected these early G1 cells and used them for down-stream analyses. This experimental procedure was explicitly described in the legends of Fig. 1C and Fig. S1A as follows:

      (Lines 934-937; Legend of Fig. 1C)

      From the synchronized populations, early G1cells were selected based on their characteristic morphologies (i.e., pairs of small post-mitotic cells) and subjected to downstream analyses. Based on the measured nuclear sizes (Fig. S2 G), we confirmed that early G1 cells were appropriately selected.

      (Lines 1114-1119; Legend of Fig. S1A)

      In this protocol, ~60% of control and H2-depleted cells, and ~30% of Rad21-depleted and co-depleted cells, were successfully synchronized in G1 phase. The apparently lower synchronization efficiency in the latter two groups is attributable to the well documented mitotic delay caused by cohesin depletion (Hauf et al., 2005; Haarhuis et al., 2013; Perea-Resa et al., 2020). From these synchronized populations, early G1 cells were selected based on their characteristic morphologies (see the legend of Fig. 1 C).

      • *

      Thus, using this protocol, we analyzed an early G1 cell population that had completed mitosis without chromosome segregation defects. We acknowledge that this represents a technically challenging aspect of synchronizing cell-cycle progression from M to G1 in HCT116 cells, whose synchronization efficiency is limited compared with that of HeLa cells. Nevertheless, this approach constitutes the most practical strategy currently available.

      • Line 178 "In contrast, cohesin depletion had a smaller effect on the distance between the two site-specific probes compared to condensin II depletion (Fig. 2, C and E)." The data in Fig. 2 E show both a significant effect of H2 and a significant effect of RAD21 depletion. Whether the absolute difference in effect size between the two conditions is truly relevant is difficult to determine, as the distribution of the respective control groups also appears to be different. This comment is well taken. Reviewer #1 has made a comment on the same issue. See our reply to Reviewer #1 (Other points, Figure 2E).

      In brief, in the current study, we should focus on the differences between -IAA and +IAA within each cell line, rather than comparing the -IAA conditions across different cell lines. In this sense, a sentence in the original manuscript (lines 178-180) was misleading. In the revised manuscript, we have modified the corresponding and subsequent sentence as follows:

      Although cohesin depletion had a marginal effect on the distance between the two site-specific probes (Fig.2, C and E), double depletion did not result in a significant change (Fig.2, D and E), consistent with the partial restoration of centromere dispersion (Fig. 1G).

      • In Figures 3, S3 and related text in the manuscript I cannot follow the authors' argumentation, as H2 depletion alone leads to a significant increase in the CT area (Chr. 18, Chr. 19, Chr. 15). Similar to Fig. 2, the authors argue about the different magnitude of the effect (H2 depletion vs double depletion). Here, too, appropriate statistical tests or more suitable parameters describing the effect should be used. I also cannot fully follow the argumentation regarding chromosome elongation, as double depletion in Chr. 18 and Chr. 19 also leads to a significantly reduced circularity. Therefore, the schematic drawing Fig. 3 H (double depletion) seems very suggestive to me. This comment is related to the comment above (Major comment #2). See our reply to Reviewer #1 (Other points, Figure 2E).

      It should be noted that, in Figure 3 (unlike in Figure 2), we did not compare the different magnitudes of the effect observed between H2 depletion and double depletion. Thus, the reviewer’s comment that “Similar to Fig. 2, the authors argue about the different magnitude of the effect (H2 depletion vs double depletion) ” does not accurately reflected our description.

      Moreover, while the distance between two specific loci (Fig. 2E) and CT circularity (Fig. 3G) are intuitively related, they represent distinct parameters. Thus, it is not unexpected that double depletion resulted in apparently different outcomes for the two measurements. Thus, the reviewer’s counter-argument is not strictly applicable here.

      That said, we agree with the reviewer that our descriptions here need to be clarified.

      The differences between H2 depletion and double depletion are two-fold: (1) centromere dispersion is suppressed upon H2 depletion, but not upon double depletion (Fig 1G); (2) the distance between Cen 12 and 12q15 increased upon H2 depletion, but not upon double depletion (Fig 2E).

      We have decided to remove the “homologous pair overlap” panel (formerly Fig. 3E) from the revised manuscript. Accordingly, the corresponding sentence has been deleted from the main text. Instead, we have added a new panel of “aspect ratio”, defined as the ratio of the major to the minor axis (new Fig. 3F). While this intuitive parameter was altered upon condensin II depletion and double depletion, again, we acknowledge that it is not sufficient to convincingly distinguish between the elongated and cloud-like phenotypes proposed in the original manuscript. For these reasons, in the revised manuscript, we have toned down our statements regarding the differences in CT morphology between the two conditions. Nonetheless, together with the data from Figs. 1 and 2, it is clear that the Rabl configuration observed upon condensin II depletion is further exacerbated in the absence of cohesin. Accordingly, we have modified the main text and the cartoon (Fig 3H) to more accurately depict the observations summarized above.

      • 5 and accompanying text. I agree with the authors that this is a significant and very interesting effect. However, I believe the sharp bends is in most cases an artifact caused by the maximum intensity projection. I tried to illustrate this effect in two photographs: Reviewer Fig. 1, side view, and Reviewer Fig. 2, same situation top view (https://cloud.bio.lmu.de/index.php/s/77npeEK84towzJZ). As I said, in my opinion, there is a significant and important effect; the authors should simply adjust the description. This comment is well taken. We appreciate the reviewer’s effort to help clarify our original observations. We have therefore added a new section entitled “Limitations of the study” to explicitly describe the constrains of our current approach. That said, as the reviewer also acknowledges, our observations remain valid because all experiments were performed with appropriate controls.

      Minor concerns:

      • I would like to suggest proactively discussing possible artifacts that may arise from the harsh conditions during FISH sample preparation. We fully agree with the reviewer’s concerns. For FISH sample preparation, we used relatively harsh conditions, including (1) fixation under a hypotonic condition (0.3x PBS), (2) HCl treatment, and (3) a denaturation step. We recognize that these procedures inevitably affect the preservation of the original structure; however, they are unavoidable in the standard FISH protocol. We also acknowledge that our analyses were limited to 2D structures based on projected images, rather than full 3D reconstructions. These technical limitations are now explicitly described in a new section entitled “Limitations of the study”, and the technical details are provided in Materials and Methods.

      • It would be helpful if the authors could provide the original data (microscopic image stacks) for download. We thank the reviewer for this suggestion and understand that providing the original image stacks could be of interest to readers. We agree that if the nuclei were perfectly spherical, as is the case for example in lymphocytes, 3D image stacks would contain much more information than 2D projections. However, as is typical for adherent cultured cells, including the HCT116-derived cells used in this study, the nuclei are flattened due to cell adhesion to the culture dish, with a thickness of only about one-tenth of the nuclear diameter (10–20 μm). Considering also the inevitable loss of structural preservation during FISH sample preparation, we were concerned that presenting 3D images might confuse rather than clarify. We therefore believe that representing the data as 2D projections, while explicitly acknowledging the technical limitations, provides the clearest and most interpretable presentation of our results. These limitations are now described in a new section of the manuscript.

      • The authors use a blind deconvolution algorithm to improve image quality. It might be helpful to test other methods for this purpose (optional). We thank the reviewer for this valuable suggestion and fully agree that it is a valid point. We recognize that alternative image enhancement methods can offer advantages, particularly for smaller structures or when multiple probes are analyzed simultaneously. In our study, however, the focus was on detecting whole chromosome territories (CTs) and specific chromosomal loci, which can be visualized clearly with our current FISH protocol combined with blind deconvolution. We therefore believe that the image quality we obtained is sufficient to support the conclusions of this manuscript.

      Reviewer #3 (Significance (Required)):

      Advance:

      Ono et al. addresses the important question on how the complex pattern of chromatin is reestablished after mitosis and maintained during interphase. In addition to affinity interactions (1,2), it is known that cohesin plays an important role in the formation and maintenance of chromosome organization interphase (3). However, current knowledge does not explain all known phenomena. Even with complete loss of cohesin, TAD-like structures can be recognized at the single-cell level (4), and higher structures such as chromosome territories are also retained (5). The function of condensin II during mitosis is another important factor that affects chromosome architecture in the following G1 phase (6). Although condensin II is present in the cell nucleus throughout interphase, very little is known about the role of this protein in this phase of the cell cycle. This is where the present publication comes in, with a new double degron cell line in which essential subunits of cohesin AND condensin can be degraded in a targeted manner. I find the data from the experiments in the G2 phase most interesting, as they suggest a previously unknown involvement of condensin II in the maintenance of larger chromatin structures such as chromosome territories.

      The experiments regarding the M-G1 transition are less interesting to me, as it is known that condensin II deficiency in mitosis leads to elongated chromosomes (Rabl configuration)(6), and therefore the double degradation of condensin II and cohesin describes the effects of cohesin on an artificially disturbed chromosome structure.

      For further clarification, we provide below a table summarizing previous studies relevant to the present work. We wish to emphasize three novel aspects of the present study. First, newly established cell lines designed for double depletion enabled us to address questions that had remained inaccessible in earlier studies. Second, to our knowledge, no study has previously reported condensin II depletion, cohesin depletion and double depletion in G2-arrested cells. Third, the present study represents the first systematic comparison of two different stages of the cell cycle using multiscale FISH under distinct depletion conditions. Although the M-to-G1 part of the present study partially overlaps with previous work, it serves as an important prelude to the subsequent investigations. We are confident that the reviewer will also acknowledge this point.

      cell cycle

      cond II depletion

      cohesin depletion

      double depletion

      M-to-G1

      Hoencamp et al (2021); Abramo et al (2019); Brunner et al (2025);

      this study

      Schwarzer et al (2017);

      Wutz et al (2017);

      this study

      this study

      G2

      this study

      this study

      this study

      Hoencamp et al (2021): Hi-C and imaging (CENP-A distribution)

      Abramo et al (2019): Hi-C and imaging

      Brunner et al (2025): mostly imaging (chromatin tracing)

      Schwarzer et al (2017); Wutz et al (2017): Hi-C

      this study: imaging (multi-scale FISH)

      General limitations:

      (1) Single cell imaging of chromatin structure typically shows only minor effects which are often obscured by the high (biological) variability. This holds also true for the current manuscript (cf. major concern 2 and 3).

      See our reply above.

      (2) A common concern are artefacts introduced by the harsh conditions of conventional FISH protocols (7). The authors use a method in which the cells are completely dehydrated, which probably leads to shrinking artifacts. However, differences between samples stained using the same FISH protocol are most likely due to experimental variation and not an artefact (cf. minor concern 1).

      See our reply above.

      • The anisotropic optical resolution (x-, y- vs. z-) of widefield microscopy (and most other light microscopic techniques) might lead to misinterpretation of the imaged 3D structures. This seems to be the cases in the current study (cf. major concern 4). See our reply above.

      • In the present study, the cell cycle was synchronized. This requires the use of inhibitors such as the CDK1 inhibitor RO-3306. However, CDK1 has many very different functions (8), so unexpected effects on the experiments cannot be ruled out. The current approaches involving FISH inevitably require cell cycle synchronization. We believe that the use of the CDK1 inhibitor RO-3306 to arrest the cell cycle at G2 is a reasonable choice, although we cannot rule out unexpected effects arising from the use of the drug. This issue has now been addressed in the new section entitled “Limitations of the study”.

      Audience:

      The spatial arrangement of genomic elements in the nucleus and their (temporal) dynamics are of high general relevance, as they are important for answering fundamental questions, for example, in epigenetics or tumor biology (9,10). The manuscript from Ono et al. addresses specific questions, so its intended readership is more likely to be specialists in the field.

      We are confident that, given the increasing interest in the 3D genome and its role in regulating diverse biological functions, the current manuscript will attract the broad readership of leading journals in cell biology.

      About the reviewer:

      By training I'm a biologist with strong background in fluorescence microscopy and fluorescence in situ hybridization. In recent years, I have been involved in research on the 3D organization of the cell nucleus, chromatin organization, and promoter-enhancer interactions.

      We greatly appreciate the reviewer’s constructive comments on both the technical strengths and limitations of our fluorescence imaging approaches, which have been very helpful in revising the manuscript. As mentioned above, we have decided to add a special paragraph entitled “Limitations of the study” at the end of the Discussion section to discuss these issues.

      All questions regarding the statistics of angularly distributed data are beyond my expertise. The authors do not correct their statistical analyses for "multiple testing". Whether this is necessary, I cannot judge.

      We thank the reviewer for raising this important point. In our study, the primary comparisons were made between -IAA and +IAA conditions within the same cell line. Accordingly, the figures report P-values for these pairwise comparisons.

      For the distance measurements, statistical evaluations were performed in PRISM using ANOVA (Kruskal–Wallis test), and the P-values shown in the figures are based on these analyses (Fig. 1, G and H; Fig. 2 E; Fig. 3 F and G; Fig. 4 F; Fig. 6 F [right]–H; Fig. S2 B and G; Fig. S3 D and H; Fig. S5 A [right] and B [right]; Fig. S8 B). While the manuscript focuses on pairwise comparisons between -IAA and +IAA conditions within the same cell line, we also considered potential differences across cell lines as part of the same ANOVA framework, thereby ensuring that multiple testing was properly addressed. Because cell line differences are not the focus of the present study, the corresponding results are not shown.

      For the angular distribution analyses, we compared -IAA and +IAA conditions within the same cell line using the Mardia–Watson–Wheeler test; these analyses do not involve multiple testing (circular scatter plots; Fig. 5 C–E and Fig. S6 B, C, and E–H). In addition, to determine whether angular distributions exhibited directional bias under each condition, we applied the Rayleigh test to each dataset individually (Fig. 5 F and Fig. S6 I). As these tests were performed on a single condition, they are also not subject to the problem of multiple testing. Collectively, we consider that the statistical analyses presented in our manuscript appropriately account for potential multiple testing issues, and we remain confident in the robustness of the results.

      Literature

      Falk, M., Feodorova, Y., Naumova, N., Imakaev, M., Lajoie, B.R., Leonhardt, H., Joffe, B., Dekker, J., Fudenberg, G., Solovei, I. et al. (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 570, 395-399. Mirny, L.A., Imakaev, M. and Abdennur, N. (2019) Two major mechanisms of chromosome organization. Curr Opin Cell Biol, 58, 142-152. Rao, S.S.P., Huang, S.C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-Kwon, K.R., Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D. et al. (2017) Cohesin Loss Eliminates All Loop Domains. Cell, 171, 305-320 e324. Bintu, B., Mateo, L.J., Su, J.H., Sinnott-Armstrong, N.A., Parker, M., Kinrot, S., Yamaya, K., Boettiger, A.N. and Zhuang, X. (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science, 362. Cremer, M., Brandstetter, K., Maiser, A., Rao, S.S.P., Schmid, V.J., Guirao-Ortiz, M., Mitra, N., Mamberti, S., Klein, K.N., Gilbert, D.M. et al. (2020) Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nat Commun, 11, 6146. Hoencamp, C., Dudchenko, O., Elbatsh, A.M.O., Brahmachari, S., Raaijmakers, J.A., van Schaik, T., Sedeno Cacciatore, A., Contessoto, V.G., van Heesbeen, R., van den Broek, B. et al. (2021) 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science, 372, 984-989. Beckwith, K.S., Ødegård-Fougner, Ø., Morero, N.R., Barton, C., Schueder, F., Tang, W., Alexander, S., Peters, J.-M., Jungmann, R., Birney, E. et al. (2023) Nanoscale 3D DNA tracing in single human cells visualizes loop extrusion directly in situ. BioRxiv 8 of 9https://doi.org/10.1101/2021.04.12.439407. Massacci, G., Perfetto, L. and Sacco, F. (2023) The Cyclin-dependent kinase 1: more than a cell cycle regulator. Br J Cancer, 129, 1707-1716. Bonev, B. and Cavalli, G. (2016) Organization and function of the 3D genome. Nat Rev Genet, 17, 661-678. Dekker, J., Belmont, A.S., Guttman, M., Leshyk, V.O., Lis, J.T., Lomvardas, S., Mirny, L.A., O'Shea, C.C., Park, P.J., Ren, B. et al. (2017) The 4D nucleome project. Nature, 549, 219-226.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      The manuscript „Condensin II collaborates with cohesin to establish and maintain interphase chromosome territories" investigates how condensin II and cohesin contribute to chromosome organization during the M-to-G1 transition and in G2 phase using published auxin-inducible degron (AID) cell lines which render the respective protein complexes nonfunctional after auxin addition. In this study, a novel degron cell line was established that enables the simultaneous depletion of both protein complexes, thereby facilitating the investigation of synergistic effects between the two SMC proteins. The chromosome architecture is studied using fluorescence in situ hybridization (FISH) and light microscopy. The authors reproduce a number of already published data and also show that double depletion causes during the M-to-G1 transition defects on chromosome territories, producing expanded, irregular shapes that obscure condensin II-specific phenotypes. Findings in G2 cells point to a new role of condensin II for chromosome conformation at a scale of ~20Mb. Although individual depletion has minimal effects on large-scale CT morphology in G2, combined loss of both complexes produces marked structural abnormalities, including irregular crescent-shaped CTs displaced toward the nucleolus and increased nucleolus-CT contact. The authors propose that condensin II and cohesin act sequentially and complementarily to ensure proper post-mitotic CT formation and maintain chromosome architecture across genomic scales.

      Concerns about statistics:

      (1) The authors provide the information on how many cells are analyzed but not the number of independent experiments. My concern is that there might variations in synchronization of the cell population and in the subsequent preparation (FISH) affecting the final result.

      (2) Statistically the authors analyze the effect of cells with induced degron vs. vehicle control (non-induced). However, the biologically relevant question is whether the data differ between cell lines when the degron system is induced. This is not tested here (cf. major concern 2 and 3).

      (3) Some Journal ask for blinded analysis of the data which might make sense here as manual steps are involved in the data analysis (e.g. line 626 / 627the convex hull of the signals was manually delineated, line 635 / 636 Chromosome segmentation in FISH images was performed using individual thresholding). However personally I have no doubts on the correctness of the work.

      Major concerns:

      (1) Degron induction appears to delay in Rad21-AID#1 an Double-AID#1 cells the transition from M to G1, as shown in Fig. S1. After auxin treatment, more cells exhibit a G2 phenotype than in an untreated population. What are the implications of this for the interpretation of the experiments?

      (2) Line 178 "In contrast, cohesin depletion had a smaller effect on the distance between the two site-specific probes compared to condensin II depletion (Fig. 2, C and E)." The data in Fig. 2 E show both a significant effect of H2 and a significant effect of RAD21 depletion. Whether the absolute difference in effect size between the two conditions is truly relevant is difficult to determine, as the distribution of the respective control groups also appears to be different.

      (3) In Figures 3, S3 and related text in the manuscript I cannot follow the authors' argumentation, as H2 depletion alone leads to a significant increase in the CT area (Chr. 18, Chr. 19, Chr. 15). Similar to Fig. 2, the authors argue about the different magnitude of the effect (H2 depletion vs double depletion). Here, too, appropriate statistical tests or more suitable parameters describing the effect should be used. I also cannot fully follow the argumentation regarding chromosome elongation, as double depletion in Chr. 18 and Chr. 19 also leads to a significantly reduced circularity. Therefore, the schematic drawing Fig. 3 H (double depletion) seems very suggestive to me.

      (4) Fig. 5 and accompanying text. I agree with the authors that this is a significant and very interesting effect. However, I believe the sharp bends is in most cases an artifact caused by the maximum intensity projection. I tried to illustrate this effect in two photographs: Reviewer Fig. 1, side view, and Reviewer Fig. 2, same situation top view (https://cloud.bio.lmu.de/index.php/s/77npeEK84towzJZ). As I said, in my opinion, there is a significant and important effect; the authors should simply adjust the description.

      Minor concerns:

      (1) I would like to suggest proactively discussing possible artifacts that may arise from the harsh conditions during FISH sample preparation..

      (2) It would be helpful if the authors could provide the original data (microscopic image stacks) for download

      (3) The authors use a blind deconvolution algorithm to improve image quality. It might be helpful to test other methods for this purpose (optional).

      Significance

      Advance:

      Ono et al. addresses the important question on how the complex pattern of chromatin is reestablished after mitosis and maintained during interphase. In addition to affinity interactions (1,2), it is known that cohesin plays an important role in the formation and maintenance of chromosome organization interphase (3). However, current knowledge does not explain all known phenomena. Even with complete loss of cohesin, TAD-like structures can be recognized at the single-cell level (4), and higher structures such as chromosome territories are also retained (5). The function of condensin II during mitosis is another important factor that affects chromosome architecture in the following G1 phase (6). Although condensin II is present in the cell nucleus throughout interphase, very little is known about the role of this protein in this phase of the cell cycle. This is where the present publication comes in, with a new double degron cell line in which essential subunits of cohesin AND condensin can be degraded in a targeted manner. I find the data from the experiments in the G2 phase most interesting, as they suggest a previously unknown involvement of condensin II in the maintenance of larger chromatin structures such as chromosome territories. The experiments regarding the M-G1 transition are less interesting to me, as it is known that condensin II deficiency in mitosis leads to elongated chromosomes (Rabl configuration)(6), and therefore the double degradation of condensin II and cohesin describes the effects of cohesin on an artificially disturbed chromosome structure.

      General limitations:

      (1) Single cell imaging of chromatin structure typically shows only minor effects which are often obscured by the high (biological) variability. This holds also true for the current manuscript (cf. major concern 2 and 3).

      (2) A common concern are artefacts introduced by the harsh conditions of conventional FISH protocols (7). The authors use a method in which the cells are completely dehydrated, which probably leads to shrinking artifacts. However, differences between samples stained using the same FISH protocol are most likely due to experimental variation and not an artefact (cf. minor concern 1).

      (3) The anisotropic optical resolution (x-, y- vs. z-) of widefield microscopy (and most other light microscopic techniques) might lead to misinterpretation of the imaged 3D structures. This seems to be the cases in the current study (cf. major concern 4).

      (4) In the present study, the cell cycle was synchronized. This requires the use of inhibitors such as the CDK1 inhibitor RO-3306. However, CDK1 has many very different functions (8), so unexpected effects on the experiments cannot be ruled out.

      Audience:

      The spatial arrangement of genomic elements in the nucleus and their (temporal) dynamics are of high general relevance, as they are important for answering fundamental questions, for example, in epigenetics or tumor biology (9,10). The manuscript from Ono et al. addresses specific questions, so its intended readership is more likely to be specialists in the field.

      About the reviewer: By training I'm a biologist with strong background in fluorescence microscopy and fluorescence in situ hybridization. In recent years, I have been involved in research on the 3D organization of the cell nucleus, chromatin organization, and promoter-enhancer interactions.

      All questions regarding the statistics of angularly distributed data are beyond my expertise. The authors do not correct their statistical analyses for "multiple testing". Whether this is necessary, I cannot judge.

      Literature

      1. Falk, M., Feodorova, Y., Naumova, N., Imakaev, M., Lajoie, B.R., Leonhardt, H., Joffe, B., Dekker, J., Fudenberg, G., Solovei, I. et al. (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 570, 395-399.
      2. Mirny, L.A., Imakaev, M. and Abdennur, N. (2019) Two major mechanisms of chromosome organization. Curr Opin Cell Biol, 58, 142-152.
      3. Rao, S.S.P., Huang, S.C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-Kwon, K.R., Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D. et al. (2017) Cohesin Loss Eliminates All Loop Domains. Cell, 171, 305-320 e324.
      4. Bintu, B., Mateo, L.J., Su, J.H., Sinnott-Armstrong, N.A., Parker, M., Kinrot, S., Yamaya, K., Boettiger, A.N. and Zhuang, X. (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science, 362.
      5. Cremer, M., Brandstetter, K., Maiser, A., Rao, S.S.P., Schmid, V.J., Guirao-Ortiz, M., Mitra, N., Mamberti, S., Klein, K.N., Gilbert, D.M. et al. (2020) Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nat Commun, 11, 6146.
      6. Hoencamp, C., Dudchenko, O., Elbatsh, A.M.O., Brahmachari, S., Raaijmakers, J.A., van Schaik, T., Sedeno Cacciatore, A., Contessoto, V.G., van Heesbeen, R., van den Broek, B. et al. (2021) 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science, 372, 984-989.
      7. Beckwith, K.S., Ødegård-Fougner, Ø., Morero, N.R., Barton, C., Schueder, F., Tang, W., Alexander, S., Peters, J.-M., Jungmann, R., Birney, E. et al. (2023) Nanoscale 3D DNA tracing in single human cells visualizes loop extrusion directly in situ. BioRxiv https://doi.org/10.1101/2021.04.12.439407.
      8. Massacci, G., Perfetto, L. and Sacco, F. (2023) The Cyclin-dependent kinase 1: more than a cell cycle regulator. Br J Cancer, 129, 1707-1716.
      9. Bonev, B. and Cavalli, G. (2016) Organization and function of the 3D genome. Nat Rev Genet, 17, 661-678.
      10. Dekker, J., Belmont, A.S., Guttman, M., Leshyk, V.O., Lis, J.T., Lomvardas, S., Mirny, L.A., O'Shea, C.C., Park, P.J., Ren, B. et al. (2017) The 4D nucleome project. Nature, 549, 219-226.
    1. There are enough Republicans, he thinks, who know that they can’t be pro-family and then “not care about how families have the resources to raise their kids.”

      You would think. However, this could be a separate concern in of itself; addressing hypocrisy in commonly addressed political opinions and concerns

    2. It’s time for this country to adequately invest in working people

      While this addresses a broader more all-encompassing concern, it again reiterates the need/"call to action" as well as the audience being addressed in this piece

    3. And disaster looms.

      Strong linguistic choice to further stress the importance and urgency of the issue being addressed. This is done in several other places through the piece and that repetitive urgency really makes the message stronger

    4. The child-care industry has been strained for years by the difference between what parents can afford and what providers need to make.

      There's expressed concern here about how there was already a strain on the topic previous to the pandemic, and it goes on to address the issues that COVID adds to an already prevalent issue

    5. Parents to Congress: If you care about child care, show us the money

      The title and opening sentiments immediately set the tone and make it clear this is an open letter, and makes it clear to the reader that "we" is meant to be a collective voice

    6. One ray of hope united the parents braving the rain on the East Lawn of the Capitol with their babies and toddlers

      This opening sentence immediately addresses or signifies the invoked audience while later referencing the intended audience.

    1. Research on sexual harassment points ro w;-iysthat girls especially feel pressure to conform to gcndereJ norms or feel thehostility of gender dynamics particularly keenly (American Association ofUniversity Women [AAUW], 2001).

      All children experience gender normality pressure yet children that are transgender experience challenges that are unique. Therefore, they must navigate the world at a young age in a way that they will not face restriction and drawback. If they were to express themselves then they would possibly open the door for their peers to explore different experiences then the ones set in place by gender norms.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary: 

      In this manuscript, the authors identified that

      (1) CDK4/6i treatment attenuates the growth of drug-resistant cells by prolongation of the G1 phase;

      (2) CDK4/6i treatment results in an ineffective Rb inactivation pathway and suppresses the growth of drugresistant tumors;

      (3) Addition of endocrine therapy augments the efficacy of CDK4/6i maintenance; 

      (4) Addition of CDK2i with CDK4/6 treatment as second-line treatment can suppress the growth of resistant cell; 

      (5) The role of cyclin E as a key driver of resistance to CDK4/6 and CDK2 inhibition.

      Strengths: 

      To prove their complicated proposal, the authors employed orchestration of several kinds of live cell markers, timed in situ hybridization, IF and Immunoblotting. The authors strongly recognize the resistance of CDK4/6 + ET therapy and demonstrated how to overcome it. 

      Weaknesses: 

      The authors need to underscore their proposed results from what is to be achieved by them and by other researchers. 

      Reviewer #2 (Public review): 

      Summary: 

      This study elucidated the mechanism underlying drug resistance induced by CDK4/6i as a single agent and proposed a novel and efficacious second-line therapeutic strategy. It highlighted the potential of combining CDK2i with CDK4/6i for the treatment of HR+/HER2- breast cancer.

      Strengths: 

      The study demonstrated that CDK4/6 induces drug resistance by impairing Rb activation, which results in diminished E2F activity and a delay in G1 phase progression. It suggests that the synergistic use of CDK2i and CDK4/6i may represent a promising second-line treatment approach. Addressing critical clinical challenges, this study holds substantial practical implications.

      Weaknesses: 

      (1) Drug-resistant cell lines: Was a drug concentration gradient treatment employed to establish drug-resistant cell lines? If affirmative, this methodology should be detailed in the materials and methods section. 

      We greatly appreciate the reviewer for raising this important question. In the revised manuscript, we have updated the methods section (“Drug-resistant cell lines”) to more precisely describe how the drug-resistant cell lines were established. 

      (2) What rationale informed the selection of MCF-7 cells for the generation of CDK6 knockout cell lines? Supplementary Figure 3. A indicates that CDK6 expression levels in MCF-7 cells are not notably elevated. 

      We appreciate the reviewer’s insightful question about the rationale for selecting MCF-7 cells to generate CDK6 knockout cell lines. This choice was guided by prior studies highlighting the significant role of CDK6 in mediating resistance to CDK4/6 inhibitors (21-24). Moreover, we observed a 4.6-fold increase in CDK6 expression in CDK4/6i resistant MCF-7 cells compared to their drug-naïve counterparts (Supplementary Figure 3A). While we did not detect notable differences in CDK4/6 activity between wild-type and CDK6 knockout cells under CDK4/6 inhibitor treatment, these findings point to a potential non-canonical function of CDK6 in conferring resistance to CDK4/6 inhibitors.  

      (3) For each experiment, particularly those involving mice, the author must specify the number of individuals utilized and the number of replicates conducted, as detailed in the materials and methods section. 

      We sincerely thank the reviewer for bringing this to our attention. In the revised manuscript, we have explicitly stated the number of replicates and mice used for each experiment as appropriate in figure legends and relevant text to ensure transparency and clarity. 

      (4) Could this treatment approach be extended to triple-negative breast cancer?

      We greatly appreciate the reviewer’s inquiry about extending our findings to triple-negative breast cancer (TNBC). Based on the data presented in Figure 1 and Supplementary Figure 2, which include the TNBC cell line MDA-MB-231, we expect that the benefits of maintaining CDK4/6 inhibitors could indeed be applicable to TNBC with an intact Rb/E2F pathway. Additionally, our recent paper (25) indicates a similar mechanism in TNBC.

      Reviewer #3 (Public review):

      Summary: 

      In their manuscript, Armand and colleagues investigate the potential of continuing CDK4/6 inhibitors or combining them with CDK2 inhibitors in the treatment of breast cancer that has developed resistance to initial therapy. Utilizing cellular and animal models, the research examines whether maintaining CDK4/6 inhibition or adding CDK2 inhibitors can effectively control tumor growth after resistance has set in. The key findings from the study indicate that the sustained use of CDK4/6 inhibitors can slow down the proliferation of cancer cells that have become resistant, and the combination of CDK2 inhibitors with CDK4/6 inhibitors can further enhance the suppression of tumor growth. Additionally, the study identifies that high levels of Cyclin E play a significant role in resistance to the combined therapy. These results suggest that continuing CDK4/6 inhibitors along with the strategic use of CDK2 inhibitors could be an effective strategy to overcome treatment resistance in hormone receptor-positive breast cancer.

      Strengths: 

      (1) Continuous CDK4/6 Inhibitor Treatment Significantly Suppresses the Growth of Drug-Resistant HR+ Breast Cancer: The study demonstrates that the continued use of CDK4/6 inhibitors, even after disease progression, can significantly inhibit the growth of drug-resistant breast cancer. 

      (2) Potential of Combined Use of CDK2 Inhibitors with CDK4/6 Inhibitors: The research highlights the potential of combining CDK2 inhibitors with CDK4/6 inhibitors to effectively suppress CDK2 activity and overcome drug resistance. 

      (3) Discovery of Cyclin E Overexpression as a Key Driver: The study identifies overexpression of cyclin E as a key driver of resistance to the combination of CDK4/6 and CDK2 inhibitors, providing insights for future cancer treatments. 

      (4) Consistency of In Vitro and In Vivo Experimental Results: The study obtained supportive results from both in vitro cell experiments and in vivo tumor models, enhancing the reliability of the research. 

      (5) Validation with Multiple Cell Lines: The research utilized multiple HR+/HER2- breast cancer cell lines (such as MCF-7, T47D, CAMA-1) and triple-negative breast cancer cell lines (such as MDA-MB-231), validating the broad applicability of the results.

      Weaknesses: 

      (1) The manuscript presents intriguing findings on the sustained use of CDK4/6 inhibitors and the potential incorporation of CDK2 inhibitors in breast cancer treatment. However, I would appreciate a more detailed discussion of how these findings could be translated into clinical practice, particularly regarding the management of patients with drug-resistant breast cancer. 

      Thank you to the reviewer for this crucial comment. In the revised Discussion, we've broadened our exploration of clinical translation. Specifically, we emphasize that ongoing CDK4/6 inhibition, although not fully stopping resistant tumors, significantly slows their growth and may offer a therapeutic window when combined with ET and CDK2 inhibition. We also note that these approaches may work best for patients without Rb loss or newly acquired resistance-driving mutations, and that cyclin E overexpression could be a biomarker to inform patient selection. These points together highlight that our findings provide a mechanistic understanding and potential framework for clinical trials testing maintenance CDK4/6i with selective addition of CDK2i as a secondline strategy in drug-resistant HR+/HER2- breast cancer.

      (2) While the emergence of resistance is acknowledged, the manuscript could benefit from a deeper exploration of the molecular mechanisms underlying resistance development. A more thorough understanding of how CDK2 inhibitors may overcome this resistance would be valuable. 

      We thank the reviewer for this valuable suggestion. In the revised manuscript, we have expanded our Discussion to more explicitly synthesize the molecular mechanisms of resistance and how CDK2 inhibitors counteract them. Specifically, we describe how sustained CDK4/6 inhibition drives a non-canonical route of Rb degradation, resulting in inefficient E2F activation and prolonged G1 phase progression. We also highlight the role of c-Myc in amplifying E2F activity and promoting resistance, and we show that continued ET mitigates this effect by suppressing c-Myc. Importantly, we demonstrate that CDK2 inhibition alone cannot fully suppress the growth of resistant cells, but when combined with CDK4/6 inhibition, it produces durable repression of E2F and Myc target gene programs and significantly delays the G1/S transition. Finally, we identify cyclin E overexpression as a key mechanism of escape from dual CDK4/6i + CDK2i therapy, suggesting its potential as a biomarker for patient stratification . Together, these findings provide a detailed mechanistic rationale for how CDK2 inhibition can overcome specific pathways of resistance in HR<sup>+</sup>/HER2<sup>-</sup> breast cancer.

      (3) The manuscript supports the continued use of CDK4/6 inhibitors, but it lacks a discussion on the long-term efficacy and safety of this approach. Additional studies or data to support the safety profile of prolonged CDK4/6 inhibitor use would strengthen the manuscript. 

      We appreciate the reviewer’s insightful comment. In the revised manuscript, we emphasize the longterm efficacy and safety considerations of sustained CDK4/6 inhibition. Clinical trial and retrospective data have shown that continued CDK4/6i therapy can extend progression-free survival in selected patients, while maintaining a favorable safety profile (26-28). We have updated the Discussion to highlight these findings more explicitly, underscoring that while prolonged CDK4/6 inhibition slows but does not fully arrest tumor growth, it remains a clinically viable strategy when balanced against its manageable toxicity profile.

      Reviewer #1 (Recommendations for the authors): 

      It is well known that the combination therapy of CDK4/6i and ET has therapeutic benefits in ER(+) HER2(-) advanced breast cancer. However, drug resistance is a problem, and second-line therapy to solve this problem has not been established. Although some parts of the research results are already reported, the authors confirmed them by employing live cell markers, and further proved and suggested how to overcome this resistance in detail. This part is considered novel. 

      Overall, this research manuscript is eligible to be accepted with the appropriate addressing of questions.

      (1)The effects and biochemical changes of combination therapy of CDK4/6i and CDK2i are already known in several papers. The author needs to highlight the differences between the author's research and that of otherresearchers. 

      We thank the reviewer for the opportunity to clarify the novelty of our findings in the context of prior studies on CDK4/6i and CDK2i combination therapy. In the revised manuscript, we have updated the Discussion section to more clearly delineate how our work extends and differs from existing research.

      Specifically, we now state:

      Page 12: The combination of CDK4/6i and ET has reshaped treatment for HR<sup>+</sup>/HER2<sup>-</sup> breast cancer (1-8). However, resistance commonly emerges, and no consensus second-line standard is established. Our data show that continued CDK4/6i treatment in drug-resistant cells engages a non-canonical, proteolysis-driven route of Rb inactivation, yielding attenuated E2F output and a pronounced delay in G1 progression (Figure 7G). Concurrent ET further deepens this blockade by suppressing c-Myc-mediated E2F amplification, thereby prolonging G1 and slowing population growth. Importantly, CDK2 inhibition alone was insufficient to control resistant cells. Robust suppression of CDK2 activity and resistant-cell growth required CDK2i in combination with CDK4/6i, consistent with prior reports supporting dual CDK targeting (9-16). Moreover, cyclin E, and in some contexts cyclin A, blunted the efficacy of the CDK4/6i and CDK2i combination by reactivating CDK2. Together, these findings provide a mechanistic rationale for maintaining CDK4/6i beyond progression and support testing ET plus CDK4/6i with the strategic addition of CDK2i, as evidenced by concordant in vitro and in vivo results.

      (2) Regarding Figures 3H and 3I, I wonder if it is live cell imaging results or if the authors counter each signal via timed IF staining slides? If live cell imaging is used, the authors need to present the methods. 

      We appreciate the reviewer’s question. Figures 3H and 3I derive from a live–fixed correlative pipeline rather than purely live imaging or independently timed IF slides. We first imaged asynchronously proliferating cells live for ≥48 h to (i) segment/track nuclei with H2B fluorescence, (ii) define mitotic exit (t = 0 at anaphase), and (iii) record CDK2 activity using a CDK2 KTR in the last live frame. Immediately after the live acquisition, we pulsed EdU (10 µM, 15 min) and fixed the same wells, photobleached fluorescent proteins (3% H₂O₂ + 20 mM HCl, 2 h, RT) to prevent crosstalk, and then performed click-chemistry EdU detection, IF for phospho-Rb (Ser807/811) and total Rb, and RNA FISH for E2F1. Fixed-cell readouts (p-Rb positivity, EdU incorporation, E2F1 mRNA puncta) were mapped back to each single cell’s live-derived time since mitosis and/or CDK2 activity, enabling the kinetic plots shown in Fig. 3H–I.

      To ensure transparency and reproducibility, we added detailed methods describing this workflow in the “Immunofluorescence and mRNA fluorescence in situ hybridization (FISH)” section under a dedicated “live– fixed pipeline” paragraph, and we cross-referenced acquisition and analysis parameters in “Live- and fixed-cell image acquisition” and “Image processing and analysis.” These updates specify: EdU pulse/fix conditions, photobleaching, antibodies/probes, imaging hardware and channels, segmentation/tracking, mitosis alignment, background correction, and how fixed readouts were binned/quantified as functions of time after mitosis and CDK2 activity.

      (3) Regarding Figure 3F, seven images were obtained in same fields? The author needs to describe the meaning of the white image and the yellow and blue image of the bottom in detail. 

      Thank you for raising this point. All seven panels in Fig. 3F are from the same field of view. The top row shows the raw channels (Hoechst, p-Rb, total Rb, and E2F1 RNA FISH). The bottom row shows the corresponding processed outputs from that field: (i) nuclear segmentation, (ii) phosphorylated Rb-status classification, and (iii) cell boundaries used for single-cell RNA-FISH quantification. We have revised the figure legend to make this explicit.

      (4) The author showed E2F mRNA by ISH, but in fact, RB does not suppress E2F mRNA but suppresses protein, so the author needs to confirm E2F at the protein level.

      We sincerely appreciate the reviewer’s thoughtful suggestion to examine E2F1 at the protein level. In our study, we focused on E2F1 mRNA expression because it is a well-established and biologically meaningful readout of E2F1 transcriptional activity. Due to its autoregulatory nature (17), the release of active E2F1 protein from Rb induces the transcription of E2F1 itself, creating a positive feedback loop. As a result, E2F1 mRNA abundance serves as a direct and reliable proxy for E2F1 protein activity (18-20). Thus, quantifying E2F1 mRNA provides a biologically relevant and mechanistic indicator of Rb-E2F pathway status. To clarify this rationale, we have updated the Results section and added references supporting our use of E2F1 mRNA as a readout for E2F1 activity.

      (5) Is it possible to synchronize cells (nocodazole shake-off, Double thymidine block) under the presence of cdk4/6i? If so, then the authors need to demonstrate the delay of G1 progression via immunoblotting. 

      We thank the reviewer for this constructive suggestion. To address it, we performed nocodazole synchronization followed by release and monitored cell-cycle progression in the presence or absence of CDK4/6 inhibition.

      Specifically, we added the following new datasets to the revised manuscript:

      Fig. 3L: Live single-cell trajectories of CDK4/6 and CDK2 activities alongside the Cdt1-degron reporter after 14 hours of nocodazole (250 nM) treatment and release. We compared the averaged traces of CDK4/6 and CDK2 activities and Cdt1 intensity in parental cells (gray) and resistant cells with (red) and without (blue) CDK4/6i maintenance. These data show suppressed and delayed CDK2 activation, as well as a right-shifted S-phase entry, particularly under continuous CDK4/6 inhibition.

      Fig. 3M: Fixed-cell EdU pulse-labeling at 4, 6, 8, 12, 16, and 24 h post-release further confirms a significant delay in S-phase entry and prolonged G1 duration in CDK4/6i-maintained cells compared with naïve and withdrawn conditions.

      Together, these results directly demonstrate the delay in G1 progression following synchronized mitotic exit under CDK4/6 inhibition.

      (6) In Figure 5C the authors showed a violin plot of c-Myc level. Is this Immunohistochemical staining? The authors need to clarify the methods.

      Thank you for flagging this. The c-Myc measurements in Fig. 5C are from immunofluorescence (IF), not IHC. We now state this explicitly in the legend.

      (7) Regarding Live cell immunofluorescence tracing of live-cell reporters, the author needs to clarify the methods (excitation, emission), name of instruments, and software used.

      To address this, we have expanded the “Live-cell, fixed-cell, and tumor tissue image acquisition” section in the Materials and Methods.

      (8) Lines 475 SF1A, the authors need to correct typos. Naïve Naïve.

      We greatly appreciate the reviewer’s attention to this detail and have ensured all typos have been addressed.  

      (9) The authors need to unify Cdt1-degron(legends) Vs Cdt1 degron (figures). 

      We greatly appreciate your attention to this discrepancy. Language referring to the Cdt1 degron has been unified between figures and legends. 

      Reviewer #3 (Recommendations for the authors):

      (1) While the manuscript discusses the selection of doses for CDK4/6 inhibitors and CDK2 inhibitors, there is a lack of detailed data on the dose-response relationship. Additional data on the effects of different doses would be beneficial. 

      We appreciate the reviewer’s important comment. To address it, we performed additional dose– response experiments testing a range of CDK4/6i and CDK2i concentrations. These analyses revealed a clear synergistic interaction between the two inhibitors. The new data are now presented in Figure 6G and Supplementary Figure 8F of the revised manuscript.

      (2) In clinical trials, the criteria for patient selection are crucial for interpreting study outcomes. A detailed description of the patient selection criteria should be provided.  

      We thank the reviewer for bringing this important point to our attention. In the revised manuscript, we have clarified the patient selection criteria relevant to the interpretation of clinical outcomes. Specifically, we note that retrospective analyses suggest patients with indolent disease and no prior chemotherapy may benefit most from continued CDK4/6i plus ET. Moreover, our data and others’ indicate that clinical benefit is expected in tumors retaining an intact Rb/E2F axis, while resistance-driving alterations (e.g., Rb loss, PIK3CA, ESR1, FGFR1–3, HER2, FAT1 mutations) are likely to limit efficacy. Finally, we highlight cyclin E overexpression as a potential biomarker of resistance to combined CDK4/6i and CDK2i, underscoring the need for biomarker-guided patient stratification. These additions provide a more detailed framework for patient selection in future clinical applications.

      References

      (1) Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 2015;16:25-35

      (2) Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, et al. Palbociclib and Letrozole in Advanced Breast Cancer. New England Journal of Medicine 2016;375:1925-36

      (3) Turner NC, Slamon DJ, Ro J, Bondarenko I, Im S-A, Masuda N, et al. Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. New England Journal of Medicine 2018;379:1926-36

      (4) Dickler MN, Tolaney SM, Rugo HS, Cortés J, Diéras V, Patt D, et al. MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR(+)/HER2(-) Metastatic Breast Cancer. Clin Cancer Res 2017;23:5218-24

      (5) Johnston S, Martin M, Di Leo A, Im S-A, Awada A, Forrester T, et al. MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. npj Breast Cancer 2019;5:5

      (6) Hortobagyi GN, Stemmer SM, Burris HA, Yap Y-S, Sonke GS, Hart L, et al. Overall Survival with Ribociclib plus Letrozole in Advanced Breast Cancer. New England Journal of Medicine 2022;386:94250

      (7) Slamon DJ, Neven P, Chia S, Fasching PA, De Laurentiis M, Im S-A, et al. Overall Survival with Ribociclib plus Fulvestrant in Advanced Breast Cancer. New England Journal of Medicine 2019;382:51424

      (8) Im S-A, Lu Y-S, Bardia A, Harbeck N, Colleoni M, Franke F, et al. Overall Survival with Ribociclib plus Endocrine Therapy in Breast Cancer. New England Journal of Medicine 2019;381:307-16

      (9) Pandey K, Park N, Park KS, Hur J, Cho YB, Kang M, et al. Combined CDK2 and CDK4/6 Inhibition Overcomes Palbociclib Resistance in Breast Cancer by Enhancing Senescence. Cancers (Basel) 2020;12

      (10) Freeman-Cook K, Hoffman RL, Miller N, Almaden J, Chionis J, Zhang Q, et al. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 2021;39:1404-21 e11

      (11) Dietrich C, Trub A, Ahn A, Taylor M, Ambani K, Chan KT, et al. INX-315, a selective CDK2 inhibitor, induces cell cycle arrest and senescence in solid tumors. Cancer Discov 2023

      (12) Al-Qasem AJ, Alves CL, Ehmsen S, Tuttolomondo M, Terp MG, Johansen LE, et al. Co-targeting CDK2 and CDK4/6 overcomes resistance to aromatase and CDK4/6 inhibitors in ER+ breast cancer. NPJ Precis Oncol 2022;6:68

      (13) Kudo R, Safonov A, Jones C, Moiso E, Dry JR, Shao H, et al. Long-term breast cancer response to CDK4/6 inhibition defined by TP53-mediated geroconversion. Cancer Cell 2024

      (14) Arora M, Moser J, Hoffman TE, Watts LP, Min M, Musteanu M, et al. Rapid adaptation to CDK2 inhibition exposes intrinsic cell-cycle plasticity. Cell 2023;186:2628-43 e21

      (15) Kumarasamy V, Wang J, Roti M, Wan Y, Dommer AP, Rosenheck H, et al. Discrete vulnerability to pharmacological CDK2 inhibition is governed by heterogeneity of the cancer cell cycle. Nature Communications 2025;16:1476

      (16) Dommer AP, Kumarasamy V, Wang J, O'Connor TN, Roti M, Mahan S, et al. Tumor Suppressors Condition Differential Responses to the Selective CDK2 Inhibitor BLU-222. Cancer Res 2025

      (17) Johnson DG, Ohtani K, Nevins JR. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes & Development 1994;8:1514-25

      (18) Chung M, Liu C, Yang HW, Koberlin MS, Cappell SD, Meyer T. Transient Hysteresis in CDK4/6 Activity Underlies Passage of the Restriction Point in G1. Mol Cell 2019;76:562-73 e4

      (19) Kim S, Leong A, Kim M, Yang HW. CDK4/6 initiates Rb inactivation and CDK2 activity coordinates cell-cycle commitment and G1/S transition. Sci Rep 2022;12:16810

      (20) Yang HW, Chung M, Kudo T, Meyer T, Yang HW, Chung, Mingyu, Kudo T, et al. Competing memories of mitogen and p53 signalling control cell-cycle entry. Nature 2017;549:404-8

      (21) Yang C, Li Z, Bhatt T, Dickler M, Giri D, Scaltriti M, et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 2017;36:2255-64

      (22) Li Q, Jiang B, Guo J, Shao H, Del Priore IS, Chang Q, et al. INK4 Tumor Suppressor Proteins Mediate Resistance to CDK4/6 Kinase Inhibitors. Cancer Discov 2022;12:356-71

      (23) Ji W, Zhang W, Wang X, Shi Y, Yang F, Xie H, et al. c-myc regulates the sensitivity of breast cancer cells to palbociclib via c-myc/miR-29b-3p/CDK6 axis. Cell Death & Disease 2020;11:760

      (24) Wu X, Yang X, Xiong Y, Li R, Ito T, Ahmed TA, et al. Distinct CDK6 complexes determine tumor cell response to CDK4/6 inhibitors and degraders. Nature Cancer 2021;2:429-43

      (25) Kim S, Son E, Park HR, Kim M, Yang HW. Dual targeting CDK4/6 and CDK7 augments tumor response and anti-tumor immunity in breast cancer models. J Clin Invest 2025

      (26) Ravani LV, Calomeni P, Vilbert M, Madeira T, Wang M, Deng D, et al. Efficacy of Subsequent Treatments After Disease Progression on CDK4/6 Inhibitors in Patients With Hormone Receptor-Positive Advanced Breast Cancer. JCO Oncol Pract 2025;21:832-42

      (27) Martin JM, Handorf EA, Montero AJ, Goldstein LJ. Systemic Therapies Following Progression on Firstline CDK4/6-inhibitor Treatment: Analysis of Real-world Data. Oncologist 2022;27:441-6

      (28) Kalinsky K, Bianchini G, Hamilton E, Graff SL, Park KH, Jeselsohn R, et al. Abemaciclib Plus Fulvestrant in Advanced Breast Cancer After Progression on CDK4/6 Inhibition: Results From the Phase III postMONARCH Trial. J Clin Oncol 2025;43:1101-12

    1. , language planning isconcerned with any problem area in which language plays some ro

      This broad definition underlines language’s pervasive influence in society, from national identity to classroom interaction. It sets up a bridge between macro (national) and micro (school) policies.

    Annotators

  7. Oct 2025
    1. Configure AG-Grid Locale (Automatic)Set the AG-Grid locale in your Task Management configuration to match your application language (e.g., “en-US”, “ro-RO”, “de-DE”). AG-Grid will automatically translate all 300+ grid component keys including filters, menus, pagination, and data types

      Remove

    1. Acquiring good taste comes through using various things, discarding the ones you don’t like and keeping the ones you do. if you never try various things, you will not acquire good taste.

      This is the core point I was hoping for. I don't think it's super well supported or well argued here. But it shows up.

      We don't know who we are unless we try new things, unless we put ourselves through processes of discovery. Taste comes from trying, and the tinkerers are down to FAFO.

    1. According to a study by Norton, 68% of people who use public Wi-Fi networks are victims of cybercrime, mainly the theft of sensitive data, including passwords, bank account information, credit card numbers, chat logs, and emails [1]. Public networks are susceptible to several types of attacks, including evil twins, since packets are sent over the air.

      Thực tế cho thấy, nghiên cứu của Norton cho biết có đến 68% người dùng Wi-Fi công cộng đã trở thành nạn nhân của tội phạm mạng, chủ yếu do mất cắp dữ liệu nhạy cảm . Con số này phản ánh rõ mức độ nguy hiểm thực tế của các cuộc tấn công như Evil Twin Ngoài ra, cảnh sát liên bang Úc cáo buộc người đàn ông này đã tạo ra mạng wifi "song sinh độc ác" - mô phỏng các mạng wifi hợp pháp - để lừa người dùng nhập thông tin cá nhân của họ.

  8. bafybeibje2lf6mvlla6qirggc5kwjnk2cpcfki43qw2i2x3vbyidopdxbe.ipfs.inbrowser.link bafybeibje2lf6mvlla6qirggc5kwjnk2cpcfki43qw2i2x3vbyidopdxbe.ipfs.inbrowser.link

    Annotators

    1. saaron knew

      Sauron new

      knew that he had been wrong - not everyone would want to use the ring for their own power and Glory

      yes Frodo succumbed at the very very end but - he and Sam made it that far and - fate or Providence or the intervention of Uru? himself did the rest

      some people are capable of selfless and purely good acts

      it wasn't just just Sauron who fell - it was his entire worldview

      hope and love and care and friendship - can triumph over evil - however powerful it may seem at the time

      Description

  9. Sep 2025

    Annotators

    1. Based on research, cold water immersion affects creatine kinase and interleukin-6 levels.

      CWI significantly influences key biomarkers (CK and IL-6) and functional recovery (vertical jump performance) in female soccer players.

    2. In this study, a comparative analysis was carried out between the two groups in orderto determine which intervention is more effective between cold water immersion (CWI) andstandard temperature water immersion. Specifically, the levels of creatine kinase (CK) andinterleukin-6 (IL-6) were found to be significantly different between the control group and theCWI group, as indicated by the findings

      The study’s findings align with previous research demonstrating CWI’s efficacy in reducing CK and IL-6 levels and improving vertical jump recovery.

    3. Various methods have been suggested for athlete recovery

      CWI’s benefits are supported by previous studies showing reduced muscle soreness and improved performance metrics [26-28].

    4. both psychological and physiological recovery are essentia

      Recovery interventions such as CWI can improve both physiological and psychological aspects of post-exercise recovery.

    5. Result of IL-6 following a one-off soccer match for thermoneutral waterimmersionand cold water immersion groups

      IL-6 levels increase significantly 24h post-match in both groups, but the rise is attenuated and recovery faster in the CWI group.

    6. The interleukin-6 (IL-6) examination procedure begins with explaining the purposeof the test and obtaining consent from the patient

      IL-6 is a pro-inflammatory cytokine, elevated levels reflect systemic inflammation post-exercise.

    7. Result of CK following a one-off soccer match for thermoneutral waterimmersionand cold water immersion groups

      Both groups experience elevated CK post-match, reflecting muscle damage from intense activity.

    8. The creatine kinase (CK) examination procedure begins with explaining the purposeof the examination to the patient and ensuring consent, followed by the preparation of toolssuch as sterile syringes, blood collection tubes, and medical gloves

      CK is a biomarker of muscle damage; increased levels indicate muscle membrane disruption.

    9. Vertical jump is a test commonly used in sports and physical therapy to meas-ure lower body strength and explosive power [20]To perform this test, first, standwith your feet shoulder-width apart and your arms relaxed at your sides

      Proper technique and consistent testing conditions are critical for reliable measurements.

    10. In group intervention, participants will undergo cold water immersion (CWI)at 10°C for 15 minutes post-soccer match

      CWI at 10°C vs TWI at 26°C for 15 minutes post-match.

    11. Untreated fatigue also has anegative impact on the mental endurance of athletes, causing them to easily feel frus-trated.

      emphasizes integrated recovery (rest, nutrition, mental care)

    12. Cold water immersionsignificantly enhanced recovery in female soccer athletes after a match by reducinginflammatory and muscle damage biomarkers and improving functional performance.

      Supports CWI as a beneficial recovery method in competitive sports.

    13. CWI showed agreater reduction in IL-6 and CK levels at both 24 and 48 hours post-match compared to TWI(p < 0.05)

      CWI reduces IL-6 and CK more effectively and speeds vertical jump recovery at 24 hours.

    14. . This study aimed to evaluate theeffectiveness of CWI in enhancing post-match recovery in female soccer players by analyzingchanges in IL-6, CK levels, and vertical jump performance.

      Evaluates cold water immersion (CWI) effects on recovery in female soccer players.

    1. the bacterialflagellum operates as a wheel. It ro-tates rigidly like a propeller, drivenby a rotatory “motor” in the basalportion embedded in the cell wall.Moreover, the motor is reversible.

      All modern technologies have parallels found in nature, even if they were discovered afterwards, like in this case.

  10. Aug 2025
    1. link that has a lot of respect for people because it opens doors instead of putting up wall

      link open doors instead of putting up walls

      but if the link is into a walled garden?

  11. Jul 2025
    1. Mức điểm 2: Gia sư có thể sử dụng các công cụ ClassIn cơ bản và trao quyền cho học sinh chủ động tương tác với các công cụ giảng dạy. Mức điểm 3: Gia sư sử dụng hiệu quả các công cụ ClassIn cơ bản và nâng cao (VD: poll, timer, breakout room) và trao quyền cho học sinh chủ động tương tác với các công cụ giảng dạy. Mức điểm 4: Gia sư sử dụng hiệu quả và trao quyền cho học sinh tương tác với các công cụ ClassIn cơ bản và nâng cao (VD: poll, timer, breakout room). Gia sư cũng có thể sử dụng hiệu quả các web học trực tuyến khác (VD: Kahoot, Random Wheel, Blooket).

      Hiện tại em đã sử dụng tốt các công cụ cơ bản và có trao quyền cho học sinh tương tác. Tuy nhiên, em chưa thấy rõ tính ứng dụng thực tiễn của các công cụ nâng cao, hoặc thậm chí chưa biết đến sự tồn tại của một số công cụ đó 😲. Em mong được hướng dẫn thêm các ví dụ cụ thể để hiểu cách áp dụng hiệu quả hơn.

    2. Mức điểm 3: Học sinh hoàn thành các nhiệm vụ mà gia sư giao. Mức điểm 4: Học sinh bắt đầu chủ động đặt câu hỏi để hiểu thêm về bài học.

      Hiện tại, em đang ở mức điểm 3 – học sinh thường hoàn thành các nhiệm vụ được giao và có sự tập trung trong quá trình học. Tuy nhiên, việc học sinh chủ động đặt câu hỏi để hiểu thêm bài là điều không xảy ra thường xuyên.

      🧠 Chỉ một số học sinh nổi bật, thường là những bạn thông minh, hiếu kỳ và mạnh dạn, mới đặt câu hỏi một cách tự nhiên.

      📉 Phần lớn các em còn lại thiếu vốn từ hoặc sự tự tin, nên dù có tò mò thì cũng ít khi thể hiện bằng lời.

      ⏳ Việc chủ động hỏi cũng phụ thuộc vào thời điểm – khi chủ đề thực sự hấp dẫn hoặc được gợi mở đúng cách, học sinh mới bắt đầu có phản ứng rõ rệt.

    3. Mức điểm 2: Gia sư sử dụng các hình ảnh gợi ý và đồ vật để kiểm tra sự hiểu biết của học sinh. Mức điểm 3: Gia sư sử dụng đa dạng phương pháp (cử chỉ, ngôn ngữ cơ thể, hình ảnh và đồ vật) để giúp học sinh giao tiếp. Mức điểm 4: Gia sư ghi nhận và mở rộng những chia sẻ của học sinh dựa trên nhận thức và kinh nghiệm của học sinh/giáo viên.

      Hiện tại em đang ở mức điểm 2 – em có sử dụng hình ảnh và đồ vật để hỗ trợ học sinh giao tiếp. Tuy nhiên, em gặp một số khó khăn để tiến xa hơn:

      🔍 Kết nối sâu sắc là điều không dễ: Ngay cả với giáo viên là người Việt như em, việc thiết lập những kết nối sáng tạo và thực sự sâu sắc với học sinh là điều rất khó, vì bị giới hạn bởi cả ngôn ngữ, văn hóa lẫn bối cảnh lớp học.

      🙁 Câu hỏi mở thường không có “mở”: Những dạng câu hỏi như “Do you like...?” hoặc “What do you do after school?” về lý thuyết là "câu hỏi mở", nhưng trên thực tế chỉ dẫn đến những câu trả lời ngắn, không tạo được đà tương tác.

      🔤 Năng lực ngôn ngữ là rào cản đôi chiều: * Học sinh có vốn tiếng Anh còn hạn chế, nên dù có động lực chia sẻ, các em cũng khó diễn đạt. * Giáo viên cũng không thể “vượt ngôn ngữ” để dẫn dắt sâu, trừ khi có kỹ thuật hỗ trợ cực kỳ cụ thể và phù hợp với trình độ.

      🧠 Khái niệm “hỗ trợ phát triển ngôn ngữ” rất mơ hồ nếu không được làm rõ: Việc kỳ vọng giáo viên "phản hồi và mở rộng trải nghiệm học sinh" cần có mô hình, ví dụ minh họa cụ thể. Nếu không, giáo viên rất dễ rơi vào tình trạng “biết nên làm gì, nhưng không biết làm sao”.

      📌 Em nghĩ rằng ngay cả đội học liệu cũng sẽ gặp khó khăn trong việc clarify (làm rõ) yêu cầu này nếu không tiếp cận một cách hệ thống:

      🎯 Kỳ vọng của em: Em không mong hướng dẫn hoàn hảo, nhưng rất cần những chỉ dẫn đủ cụ thể – đơn giản – hiệu quả để: * Vượt qua sự mơ hồ * Làm được điều nhỏ trước, rồi mới đến sáng tạo sâu

    4. Mức điểm 1: Từ vựng HOẶC cấu trúc câu được dạy trong ngữ cảnh. Mức điểm 2: Cả từ vựng và cấu trúc câu đều được dạy trong ngữ cảnh. Mức điểm 3: Cả từ vựng và cấu trúc câu được dạy trong ngữ cảnh và liên hệ với kiến thức học sinh đã có nhằm giúp học sinh hiểu một cách dễ dàng và áp dụng hiệu quả.

      Em nghĩ cách dạy hiện tại của mình đang nghiêng về mức 1, vì em thường giới thiệu từ vựng kèm hình ảnh để học sinh phát âm, sau đó cho học sinh ghép từ với hình ảnh. Với phần ngữ pháp, em cung cấp trực tiếp quy tắc và ví dụ, rồi cho học sinh làm bài tập áp dụng.

      Cách tiếp cận của em mang tính suy diễn (deductive reasoning) – nghĩa là học sinh được tiếp cận kiến thức rõ ràng ngay từ đầu trước khi luyện tập – thay vì khám phá ngữ pháp qua ví dụ (inductive). Tuy về hình thức có vẻ thụ động, nhưng em cho rằng đây là cách đơn giản, hiệu quả và phù hợp với nhiều học sinh trình độ cơ bản.

      🧠 Lập luận so sánh: Deductive vs. Inductive reasoning (trong dạy ngữ pháp cho EFL learners) Tiêu chí Deductive reasoning Inductive reasoning Cách tiếp cận Cung cấp quy tắc rõ ràng → học sinh luyện tập áp dụng. Đưa ví dụ → học sinh tự khám phá quy tắc ngữ pháp. Thời gian & sự rõ ràng Hiểu nhanh, tiết kiệm thời gian – đặc biệt hữu ích trong lớp học có thời lượng hạn chế. Tốn thời gian hơn, học sinh dễ rơi vào suy đoán sai nếu thiếu vốn từ/ngữ cảnh. Phù hợp với trình độ nào Rất phù hợp với học sinh trình độ thấp – vốn từ và ngữ cảm chưa đủ để tự rút quy tắc. Thường chỉ phù hợp với học sinh có vốn tiếng Anh phong phú, thường xuyên tiếp xúc với ngôn ngữ (như người bản ngữ). Tính khả thi trong lớp học EFL Cao – giáo viên chủ động điều tiết nội dung, học sinh dễ theo dõi và luyện tập. Thấp – yêu cầu thời gian, kỹ năng ngôn ngữ nền tốt, khó áp dụng đồng đều cho cả lớp.

      📌 Lý do chính: Học sinh EFL không được "expose" (tiếp xúc tự nhiên) với ngôn ngữ như người bản ngữ, nên việc tự suy luận ngữ pháp từ ví dụ thường gây nhiễu hoặc hiểu sai.

      Trong khi đó, phương pháp deductive cung cấp khung ngữ pháp rõ ràng, giúp học sinh dễ dàng kết nối với bài tập, kiểm tra và củng cố kiến thức ngay trong buổi học.

    5. Mức điểm 1: Gia sư đưa ra các hướng dẫn bằng ngôn từ một cách rõ ràng trong mỗi hoạt động giảng dạy. Mức điểm 2: Gia sư sử dụng hiệu quả bộ câu hỏi kiểm tra hướng dẫn (Instruction Checking Questions - ICQs) để kiểm tra mức độ hiểu của học sinh về các chỉ dẫn. Mức điểm 3: Giáo viên đưa hướng dẫn một cách hiệu quả bằng cách sử dụng lời nói và ngôn ngữ cơ thể để giúp học sinh hiểu rõ những gì họ cần làm trong một hoạt động. Mức điểm 4: Học sinh có thể hiểu và thực hành được ít nhất 80% hoạt động trong lớp theo hướng dẫn của Gia sư trong các hoạt động/nhiệm vụ.

      Em đang ở mức điểm 1. Trong giờ học, em thường đưa ra hướng dẫn bằng lời một cách rõ ràng, sau đó kiểm tra sự hiểu của học sinh bằng cách quan sát hành vi thực tế đúng/sai (true/false behaviour checking) – ví dụ như học sinh có làm đúng yêu cầu không – thay vì sử dụng các câu hỏi kiểm tra chỉ dẫn (ICQs). Em thấy đây là cách nhanh và hiệu quả trong bối cảnh lớp học hiện tại.

      Ngoài ra, em rất ấn tượng với cách sử dụng ngôn ngữ cơ thể của một số giáo viên để tăng sự rõ ràng và sinh động. Tuy nhiên, em chưa dành thời gian luyện tập kỹ năng này, nên vẫn chưa áp dụng được nhiều. Em mong muốn sẽ cải thiện điều này trong thời gian tới.

    6. Mức điểm 2: Gia sư luôn ra hiệu cho học sinh trước khi chuyển sang hoạt động tiếp theo. (VD: Now, we're gonna learn about vocabulary/Let's move on to grammar). Mức điểm 3: Gia sư kết hợp các kỹ thuật chuyển hoạt động một cách có chủ đích và hiệu quả trong giờ học. (VD: bài hát, câu hát, nhịp điệu, vỗ tay, vv + let's move on to...)

      Các phần đề mục trong buổi học thường theo một khung cố định và được lặp lại qua nhiều buổi, nên em ưu tiên chuyển hoạt động một cách ngắn gọn, rõ ràng, chủ yếu mang tính thông báo nhằm tiết kiệm thời gian và đảm bảo sự liền mạch của tiết học. Vì vậy, em hiện chưa áp dụng các kỹ thuật chuyển hoạt động mang tính sáng tạo như bài hát, vỗ tay hay trò chơi nhỏ.

      Trừ khi hoạt động tiếp theo là phần nội dung trọng tâm, em mới dành thời gian dẫn dắt kỹ hơn để học sinh hiểu rõ mục tiêu và chuẩn bị tinh thần.

      Tóm lại, em tin rằng sự nhất quán và đơn giản trong cách chuyển hoạt động, nếu được sử dụng phù hợp với đặc điểm lớp học, vẫn có thể giúp học sinh duy trì được nhịp lớp và tập trung vào nội dung chính một cách hiệu quả.

  12. Jun 2025
    1. nu implică excluderea obligaţiei autorităţii publice competente de a urmări respectarea reglementărilor urbanistice existente.

      Supraetajarea cu 20% nu implică excluderea obligaţiei autorităţii publice competente de a urmări respectarea reglementărilor urbanistice existente.

  13. May 2025
    1. Research on sexual harassment points ro w;-iysthat girls especially feel pressure to conform to gcndereJ norms or feel thehostility of gender dynamics particularly keenly (American Association ofUniversity Women [AAUW], 2001).

      Thorne’s statement, as well as the studies mentioned above, remind us that gender-based traditional expectations, especially when it comes to conformity, can place an additional socialization burden on girls, just as dress codes often unfairly target women. It’s not just about what to wear; it’s about the control of gender by social rules and everyday activities. This is evident in the broader school environment, where gender-specific power relations influence students’ daily lives, often in subtle but harmful ways.

  14. Apr 2025
  15. inst-fs-iad-prod.inscloudgate.net inst-fs-iad-prod.inscloudgate.net
    1. Learning his history in college was of great psychological importance ro Jon, providing him with role models he had been missing in high school.

      This shows the gap in culturally relevant schools that many Black students experience. Black historical narratives came late into the education curriculum. Without exposure to a diverse range of Black intellectual, political role models, students like Jon could only learn the idea that they are being alienated outside of the legacy. This delay in learning stifles the sense of belonging and accomplishment of black student. This again emphasizes the importance of including multiple narratives in early education to promote confidence and establish cultural identity.

    1. Besides these shell field-marker genes, the transcription factor engrailed was also suppressed in the shell gland region of both species after Ro-41-5253 treatment.

      Are there canonical RAR/RXR or RAR/RAR binding site in the promoter of engrailed?

    2. In contrast, 246 and 47 genes were down- and up-regulated in both Ro-41-5253 and atRA treated larvae, respectively (Fig. 3a), suggesting there may be some level of similarity between atRA and Ro-41-5253 treated embryo

      If RAR does not bind atRA, how do you explain the similarity here between treatments with atRA and Ro-41-5253?

    3. If Ro-41-5253 blocks the atRA signal, a common set of genes would be expected to show an inverted response to these treatments.

      This is a really intriguing study on the conservation of RAR in guiding developmental patterning across species. Congratulations! I'm curious if cofactors that bind NHRs to activate (coactivators) or repress (corepressors) transcription are conserved in C. gigas? I'm wondering what type of transcriptional responses you anticipate for addition of agonist and antagonist vs. no ligand? Could you see active repression in the absence of ligand, which may complicate your interpretation, especially if, as you suggest later, atRA may not bind RAR in this species.

    1. hd,4,rt?n'nB,p I ron h4 and toobng afl | t hrr' r' lh'r( vou ar'1 vrn-' i" r.''*..*" I nor -" a dre,m Hrtqom;n rr'I atvou esgt bdJl' luii"in'np in oo,c, Mrn'ar': I eot tu trl'" h"ld of rhr' her" uorld babv' {nd a"""m"i.iil',v, t,r r"u, eee -Jnd go ro "orl'pa'sionalelv nowl Vrn'at : Is,r ,o. ha rqe ml l,6 l rn ih"lrns ro dealh babv: {nd hi' w"nan ut - ini'tter a"g"iin ainu btings nis fsts dovn on his thilhs) - Your eggs is s€itingcoldl

      This dialogue gives the reader a look into the struggles between the traditional and the modern way of thinking within the family. Right after this argument the personality of Beneatha creates good support of this family conflict.

    1. ro Henry as a symbol of strength but this time in contrast to Stepin’ Fetchit, a

      I think the speaker is suggesting Mr. T.s representation on T.V. is complicated--on one level, a stereotype; on another, an aspiration figure of strength and power.

    1. applied to complex dilemmas surrounding social issues such as policing, criminal justice, health care, education, immigration, and social services.

      they use the infrotion from our techologicol ro applied to criminal justuce healthcare

  16. Mar 2025
    1. Turning to obstruents, the most obvious diachronic process is the palatalization of Latin velars c-, g- before front vowels in words such as cēna(m) ‘dinner’ > It. [ˈʧeːna], Ro. [ˈʧinə]. Less common is the diachronic palatalization of the velars c-, g- before /a/, a typical feature of northern Romance (see §39.3.1), which first gave rise to the palatal stops [c ɟ].

      palatalization

    1. Data HCL aprobare4/15/2005, 3:00 AMNr. HCL prelungire5Data HCL prelungire2/18/2020, 2:00 AMData expirării1/1/2023, 2:00 AM

      Exista o actualizare din 2013 si un din 2022

  17. Feb 2025
    1. the joint committee’s report to the National Green Tribunal (NGT) pointed out that the RO purifiers also waste almost double the water that they actually purify as ‘reject water’.

      This seems likely to be inaccurate

    2. RO is a simple, yet effective method for filtering out harmful contaminants like TDS (total dissolved solids), host of toxins, arsenic, fluoride, silica, etc. from water

      TDS is not a harmful substance. This is misleading

    3. reverse osmosis filter (RO filter) channels water through a semi-permeable membrane to remove dissolved solids. These dissolved solids include harmful contaminants like lead, mercury, chromium-6, chlorine, etc

      need to do a pre-test to see if the water actually contains any of these in concerning levels before hasting into an RO setup

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Anbarcia et al. re-evaluates the function of the enigmatic Rete Ovarii (RO), a structure that forms in close association with the mammalian ovary. The RO has generally been considered a functionless structure in the adult ovary. This manuscript follows up on a previous study from the lab) that analyzed ovarian morphogenesis using high-resolution microscopy (McKey et al., 2022). The present study adds finer details to RO development and possible function by 1) identifying new markers for OR sub-regions (e.g. GFR1a labels the connecting rete) suggesting that the sub-regions are functionally distinct, 2) showing that the OR sub-regions are connected by a luminal system that allows transport of material from the extra-ovarian rete (EOR) to the inter-ovarian rete (IOG), 3) identifies proteins that are secreted into the OR lumen and that may regulate ovarian homeostasis, and finally, 4) better defines how the vasculature, nervous, and immune system integrates with the OR.

      Strengths:

      The data is beautifully present and convincing. They show that the RO is composed of three distinct domains that have unique gene expression signatures and thus likely are functionally distinct.

    2. Reviewer #3 (Public review):

      Summary:

      The rete ovarii (RO) has long been disregarded as a non-functional structure within the ovary. In their study, Anbarci and colleagues have delineated the markers and developmental dynamics of three distinct regions of the RO - the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). Notably focusing on the EOR, the authors presented evidence illustrating that the EOR forms a convoluted tubular structure culminating in a dilated tip. Intriguingly, microinjections into this tip revealed luminal flow towards the ovary containing potentially secreted functional proteins. Additionally, the EOR cells exhibit associations with vasculature, macrophages, and neuronal projections, proposing the notion that the RO may play a functional role in ovarian development during critical ovariogenesis stages. By identifying marker genes within the RO, the authors have also suggested that the RO could serve as a potential structure linking the ovary with the neuronal system.

      Strengths:

      Overall, the reviewer commends the authors for their systematic research on the RO, shedding light on this overlooked structure in developing ovaries. Furthermore, the authors have proposed a series of hypotheses that are both captivating and scientifically significant, with the potential to reshape our understanding of ovarian development through future investigations.

      Weaknesses:

      Although the manuscript lacks conclusive data to support many of its conclusions, the authors provide highly constructive discussions that offer valuable insights for future research on the rete ovarii in the field.

    3. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Weaknesses: 

      It is not always clear what the novel findings are that this manuscript is presenting. It appears to be largely similar to the analysis done by McKey et al. (2022) but with more time points and molecular markers. The novelty of the present study's findings needs to be better articulated. 

      The previous study focused on placing the Rete Ovarii in the context of ovarian development. The current study focuses on the novel findings that the EOR is a active structure that sends fluid/information to the ovary. We show this by characterizing the presence of secretory proteins in the RO epithelial cells, by dye injections into the EOR and observing transport of the dye to the ovary, and by collection of EOR fluid followed by proteomic analysis. We also show that RO is embedded in an elaborate vascular network and contacted by neurons. None of this data was not discussed in the McKey 2022 paper. 

      Reviewer #2 (Public Review):

      Clarifications: 

      (1) Is there any comparative data on the proteomics of RO and rete testis in early development? With some molecular markers also derived from rete testis, it would be better to provide the data or references.

      To the best of our knowledge, there are no available proteomic datasets of the embryonic or early postnatal mouse Rete Testis or Epididymis. The authors agree that having this information would be very useful. 

      (2) Although the size of RO and its components is quite small and difficult to operate, the researchers in this article had already been able to perform intracavitary injection of EOR and extract EOR or CR for mass spectrometry analysis. Therefore, can EOR, CR, or IOR be damaged or removed, providing further strong evidence of ovarian development function?

      We attempted to genetically ablate the RO by expressing the diphtheria toxin receptor (DTR) in RO cells and adding DT. This approach was not successful in ablating the RO. We also tried to use Pax2/8 homo- and heterozygous mutants for ablation (as used in the McKey 2022 paper), but so far, we cannot find a genetic combination that ablates the RO, but not the oviduct, uterus and/or kidneys. We have also embarked on a study to surgically remove the RO. This assay is taking some time to optimize. The goal of the current study was to characterize the cells along the length of the RO and to present evidence that it is a secretory appendage of the ovary.

      (3) Although IOR is shown on the schematic diagram, it cannot be observed in the immunohistochemistry pictures in Figure 1 and Figure 3. The authors should provide a detailed explanation.

      An annotation has been added to Figure 1 to indicate the IOR. As the images within the panels are of maximum intensity projections, it is often difficult to clearly see the IOR as it is deeper within the ovary. In Figure 3, the view of the ovary is from the ventral side:  this view does not allow for clear visualization of the IOR.

      Reviewer #3 (Public Review):

      Weaknesses: 

      There is a lack of conclusive data supporting many conclusions in the manuscript. Therefore, the paper's overall conclusions should be moderated until functional validations are conducted.

      We have moderated the conclusions where appropriate

      Reviewer #1 (Recommendations For The Authors):

      (1) The introduction is relatively brief and does not mention some historical data/hypotheses on the role of the RO in ovarian function (e.g. regulation of meiotic entry) or development (e.g. Mayère et al., 2022).

      Mayere 2022 was cited in line 57. Steins hypothesis about entry into meiosis has been added line 58.

      (2) L82-84: It is stated that KRT8 was first identified as a potential RO marker by sc/snRNAseq (Anbarci et al., 2023) and then validated in this manuscript. However, KRT8 was used by McKey et al. (2022) as a RO marker, and they noted there that KRT8 was enriched in the EOR. It is not clear why McKey et al. is not cited as the primary reference validating KRT8 as an EOR marker.

      The embryonic and neonatal timecourse description from KRT8 expression is first identified in this paper. McKey 2022 only highlights KRT8 at E18.5 A reference has been added to address this line 85

      (3) Figure 1: Can the IOR be seen in these images? If so, please label. 

      The label has been added.

      (4) L107: It is hypothesized that "the RO may respond to or interpret homeostatic cues." Can transcriptomics data shed light on what signals the RO may be capable of responding to? E.g. what receptors are expressed by cells of the RO (e.g. ER, LHCGR, FSHR)?

      The RO expresses ESR1, PGR, INSR, IGF1R. The IOR exclusively expresses LHCGR and FSHR.This has been added to the manuscript line 309

      (5) L152: Mass spec was used to identify proteins secreted into the lumen of the RO. These proteins were then compared to the mammalian secretome to filter out possible nonsecreted protein contaminants. Finally, the candidates were compared to the RO scRNAseq data from Anbarci et al., (2023). This method gives a very conservative candidate list. However, it may also be informative to compare the sc/snRNA-seq gene list directly to the secretome to ID other possible candidate-secreted proteins that may not have been detected in the mass spec data set. 

      There are quite a number of secreted proteins that are also not actively secreted. This is a good suggestion for future analysis. For the current study we wanted to take a more conservative approach, and chose to do proteomics to determine proteins that are actively secreted. 

      (6) L195: It is not clear if IGFBP2 is expressed by both OR and granulosa cells or only granulosa cells. It would be informative to know what ovarian cell types express both IGFBP2 and IGF1R (e.g. from sc/snRNA-seq)? This information is referenced in the discussion (L285-287) but would be better to reference it in the results section for clarity.

      Both RO and granulosa cells express IGFBP2 and IGF1R. A sentence has been added to results for clarity. (Line 197)

      (7) L295: "...the RO participates in endocrine signaling..." might be more accurate to say "...the RO responds to endocrine signaling...".

      The authors agreed that this statement is more accurate and the changes have been made. 

      Reviewer #3 (Recommendations For The Authors): 

      Several issues significantly affect the paper's quality in the current version. Firstly, there is a lack of conclusive data supporting many conclusions in the manuscript. For instance, the assertion in line 105 that "EOR was directly innervated by neurons" lacks substantial evidence beyond basic immunofluorescent staining. 

      We agree that the term “innervated” might be a step too far since we rely on IF evidence.  We changed the wording of this sentence to say, “The EOR was directly contacted by neurons”.

      In another pivotal experiment illustrated in Figure 3, the provided images lack temporal continuity and quantitative analysis, suggesting the incorporation of time-lapse imaging for improved sequential presentation in Figure 3.

      The microscope where we can perform injections cannot record movies.  We have tried moving the rete to another microscope after injection, but so far, we have been unable to capture dextran moving through the RO. We therefore believe that transport is rapid, but future experiments will be needed to optimize this imaging.

      Moreover, relying solely on proteomics analysis, as seen in lines 188-189, makes it challenging to assert conclusions such as "EOR actively secretes proteins." Therefore, the paper's overall conclusions should be moderated until functional validations are conducted. 

      The findings that (1) the cells of the EOR express SNARE complex proteins at their apical surfaces and (2) luminal fluid expelled from the EOR contains abundant secreted proteins strongly suggest that the RO is involved in active secretion. We use the word “suggest” in this sentence, lines 188-189 as we realize that further experiments should be done to validate this conclusion.

      Furthermore, the predominant methods in this study involve immunostaining and imaging. However, the current images exhibit a notable inconsistency in color definitions for different markers by the authors. For instance, in Figure 2.A/C, PAX8 is portrayed as cyan, while in D, it is represented in yellow. Similarly, in Figure 4, E-CAD is depicted using both cyan and yellow. Utilizing different colors for the same protein within a figure can significantly confuse readers' interpretation of the experiments. Rectifying these inconsistencies is essential to enhance the clarity and comprehension of the experimental results.

      These colors were chosen to be visible to those with color image impairments. We typically used cyan and magenta to emphasize the most important markers in the image. When E-Cad and KRT8 were often used to emphasized or landmark a structure by localization of these protein. When KRT8 and E-Cad were highlighted, they were represented in cyan and magenta for visibility. When these proteins were used as a landmark to orient the reader and not as the main point, they were labeled in yellow.

      At last, many markers in this study are derived from bulk and single-cell sequencing of developing RO. However, it seems that these important data were separated into another paper as a preprint. If this data were incorporated into the current manuscript, the manuscript would become more comprehensive for guiding future research on the RO.

      Since we have single cell and single nuclei data from fetal and adult estrus and metestrus stages, we found that incorporating all this data into the present manuscript was overwhelming. Instead, we devoted another manuscript to presenting and validating that data. We believe a quick look at the sequencing manuscript will make this clear.

    1. Iemand

      Dit klopt niet, SGP 2 gaat over het feit dat de rechter niet bevoegd is de staat te bevelen specifieke maatregelen te treffen. ro 4.6.2

  18. Jan 2025
    1. "My madrinha was a real mother to me. Dona Gra�as raised me with care and great sacrifice. In those days food was scarce, and some days all we had to eat was the coarsest manioc flour, farinha de ro�a. I found it hard to swallow because of a.sickness that injured my throat when I was a small baby. It made my godmother sad to see me getting skinny, so she begged a few spoonfuls of the finest whitest f arinha every day from her patroa so that she could make me a smooth custard� When there was no other food, Madrinha would take an ear of hard Indian corn, and she would roast it and coax me into eating the dried kernels one by one. I was close to dying more than once, but my godmother fought with me to stay alive. And she won !

      One thing I find really interesting and thought-provoking is how the godmother, Dona Graças, showed such deep care and sacrifice for the child, even though she was struggling herself. The passage highlights how love and nurturing can exist even in extreme poverty, but it also makes me wonder, how do people decide who to care for when resources are so limited? In contrast to the idea of mortal neglect that Scheper-Hughes describes, here we see someone fighting to keep a child alive despite hardship. It makes me think about what factors shape these different responses, why do some caregivers withhold care while others, like Dona Graças, give everything they have? Is it purely personal, or do certain social or cultural conditions encourage one response over the other?

    1. Leasing Quattro by Sansiri Experience ultimate luxury living at Quatt ro by Sansi ri. Enjoy a wide range of amenit ies, butler service, and a prime location near BTS station. Start 40,000.-/ Month Register

      เปลี่ยนเป็น xxx

    1. What saved many Alto households were the rented garden plots, their small ro,ados, often a few kilometers outside of town, where women and men cultivated basic foodstuffs to feed their families

      This part of the text highlights the resilience and resourcefulness of the Alto community, particularly in the context of economic hardship. The roçados, or garden plots, are depicted as a crucial lifeline for families, highlighting small-scale agriculture's role in survival. What stands out is the emphasis on both men and women working the plots, yet the broader text frequently highlights the extra burdens placed on women, particularly in domestic and labor roles. The gendered labor division here raises broader questions about how unpaid or undervalued work contributes to the community’s survival. What implications does this have for understanding the complex dynamics of gender roles in survival strategies within poor communities?

    1. La sfârșitul veacului trecut și la începutul veacului nostru, sub domnia absolută a clasicismului, s-au făcut reguli, un cod întreg de legi după care artiștii trebuiau să-și creeze operele. Aceste reguli țineau ca-ntr-un corset strâmt literatura, sugrumând-o. Victor Hugo, înconjurat de o legiune întreagă de talente, a dat asalt împotriva clasicismului, l-a învins, romantismul a sfărâmat toate regulile și legile estetice ale clasicismului. Rămasă fără reguli, fără legi, critica de la începutul epocii romantismului nu putea să fie decât cu totul arbitrară. Neavând legi, criticii au căpătat putere prea mare, nimic nu-i oprea de-a judeca după gustul și placul lor. Puterea prea mare în literatură, ca și în politică, e stricătoare. Criticii dădeau numele de talente, de maeștri, de genii, după hatâr, după gradul de prietenie: iată de unde vine și plângerea artiștilor de la începutul veacului împotriva criticii, cum și superficialitatea criticii, cu mici excepții. Și nici nu putea să fie altfel. Operă bună, rea, de talent, genială... ce cuvinte largi și cu ce înțeles nehotărât și relativ! Din două opere de artă de aceeași valoare, e foarte ușor să arăți că una-i de talent și alta slabă, pentru aceasta n-ai decât să schimbi termenii de comparație.

      k

    2. Și trebuie să ne spunem sincer păperea: nu învinuim deloc nici pe dl Morna, nici pe alții; părerile lor sunt o urmare neînlăturată a direcției greșite a criticii noastre în general (pentru că oricât ar fi de neînsemnată, dar tot avem și noi o critică). Această direcție nu este a criticii moderne, ci a criticii care a fost în Franța pe la începutul veacului. Critica se credea pe atunci judecător chemat a judeca pe scriitori și operele lor. Critica dădea sentințe, împărțea titluri: cutare operă e bună, cutare rea; cutare magistrală, sublimă, genială; cutare stupidă etc. Bineînțeles că în astfel de împrejurări critica trebuia să ajungă un judecător părtinitor și aducător de întuneric și zavistie în literatură. Pentru ce? Pentru un cuvânt foarte simplu. Care este condiția esențială ca judecătorul să nu cadă în arbitrar? Condiția de căpetenie este ca regulile, legile după care judecă să fie bine hotărâte, foarte lămurite; altfel orice judecător va fi arbitrar.

      m

    3. Am adus aceste exemple din Taine și Faguet pentru a arăta cât de imparțială — relativ, bineînțeles — e critica din Occidentul Europei, de ce spirit relativist eminamente științific e însuflețită. Ea pricepe că un om în general, și mai cu seamă un om genial, e ceva prea complex; că o creațiune artistică e prea multilaterală ca să poată fi caracterizată numai prin laude sau prin huliri, care prin faptul că sunt numai laude ori huliri sunt unilaterale. Critica europeană a înțeles că, imperfecția omenească fiind în natura omului, imperfecția artistică e în natura artistului și, mai mult decât atâta, ea a înțeles că meritele și neajunsurile, partea negativă și cea pozitivă ale unei creațiuni artistice se țin strâns legate, se condiționează una pe alta, și nu se poate pricepe bine chiar partea pozitivă a creațiunii, dacă nu se pricepe partea negativă.

      !

    4. Am adus aceste exemple din Taine și Faguet pentru a arăta cât de imparțială — relativ, bineînțeles — e critica din Occidentul Europei, de ce spirit relativist eminamente științific e însuflețită.

      ft imp

    1. My students teli me about an iirportant new skill: it involves maintaining eyecontact with someone while you text ro*.o.r" else; it's hard, but it can be done

      Is this not absolutely ridiculous? We are a creature that thrives on communication, and need it to survive. Put down your damn phone and have a real, meaningful connection with someone. The phone can wait, as there is nothing more important than living in the present.

    2. My students teli me about an iirportant new skill: it involves maintaining eyecontact with someone while you text ro*.o.r" else;

      I personally hate that this is becoming normalized! I do not believe someone is paying attention to the conversation were having if they are going on their phone at the same time. It should not be considered a "skill" to do this.

    3. My students teli me about an iirportant new skill: it involves maintaining eyecontact with someone while you text ro*.o.r" else

      Very very unfortunately, tech has evolved in such torturous ways as to have me trying to make eye contact with a professor as I check my phone under the table for the necessary log-in code to pull up my note-taking software on my laptop. Dear lord, I just want to take notes! (I guess typing in a username and password just doesn't cut it these days---now we need both of those, an entire additional device, a cup of sugar and a forklift certification to even log into something anymore...)

    4. students teli me about an iirportant new skill: it involves maintaining eyecontact with someone while you text ro*.o.r" else; it's hard, but it can be done'Over the past 15 years, I've studied technologies of mobile.connection and talk

      I think that eye contact has become an important skill that is not done very well. Maintaining eye contact is a good way to make good connections.

    1. I owed a debtto the Joint and HIAS workers in Austria, ro the blond girl whogave me a jacket at Madame Eva's house, to Oswald Prager, whopulled us off the train station in Vienna, pudgy Mr. Prager in hiscrumpled blue blazer who almost drowned in a sea of migrantsand still kept his shit together. I owed rhem, and tonight, ¡welveyears later, the bill came, pried open my mouth, squeezed out thememories, compelled me to say something encouraging.

      He/She owed them all for the gifts received that now had to be payed back in charitable projects that he/she once attended.

    Annotators

  19. Dec 2024
    1. While large language models (LLMs)have greatly improved the coherence and fluencyof summaries (Liu et al., 2023a), persistent issuesremain, such as unfaithful statements (hallucina-tions), omission of key information (low complete-* Corresponding Author.† This work is conducted independently and is not relatedto the author(s)’ position at Hyperconnect and Amazon.ness), and verbosity (low conciseness) in the sum-maries (Lee et al., 2024; Song et al., 2024)

      Trong khi LLM cải thiện rõ rệt tính mạch lạc và trôi chảy của bản tóm tắt, một số vấn đề vẫn còn tốn đọng: thiếu trung thực, thiếu thông tin quan trọng và dài dòng.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      The findings of Ziolkowska and colleagues show that a specific projection from the nucleus reuniens of the thalamus (RE) to dorsal hippocampal CA1 neurons plays an important role in fear extinction learning in male and female mice. In and of itself, this is not a particularly new finding, although the authors' identification of structural alterations from within dorsal CA1 stratum lacunosum moleculare (SLM) as a candidate mechanism for the learning-related plasticity is potentially novel and exciting. The authors use a range of anatomical and functional approaches to demonstrate structural synaptic changes in dorsal CA1 that parallel the necessary role of RE inputs in modulating extinction learning. Yet, the significance of these findings is substantially limited by several technical shortcomings in the experimental design, and the authors' central interpretation. Otherwise, there remain several strengths in the design and interpretation that offset some of these concerns.

      Given that much is already known about the role of RE and hippocampus in modulating fear learning and extinction, it remains unclear whether addressing these concerns would substantially increase the impact of this study beyond the specific area of speciality. Below, several major weaknesses will be highlighted, followed by several miscellaneous comments.

      Methodological:

      (1) One major methodological weakness in the experimental design involves the widespread misapplication of Ns used for the statistical analyses. Much of the anatomical analyses of structural synaptic changes in the RE-CA1 pathway use N = number of axons (Figs. 1, 2), N = number of dendrites (Figs. 3, 4), and N = number of sections (Fig. 7; note that there are 7 figures in total). In every instance, N = animal number should be used. It is unclear which of these results would remain significant if N = animal number were used in each or how many more animals would be required. This is problematic since these data comprise the main evidence for the authors' central conclusion that specific structural synaptic changes are associated with fear extinction learning.

      We do agree with the reviewer that N = animal number is the preferred way to present data in most of our experiments. However, in some experimental groups we observed a very low number of entries. For example, in the 5US group we found RE+/+ spines only in 3 out of 6 analyzed animals. We believe that this observation is not due to technical problems as mCherry virus transduction required to find RE+/+ spines is similar in all experimental groups and we analyzed similar volumes of tissue. While this result still allows the calculation of density of RE+/+ spines per animal it generates no entries for spine area and PSD95 mean gray value if N = animal number. Hence, we decided to use N=animals to calculate spines and boutons densities, and N=dendritic spines/boutons to calculate other spine/bouton parameters. 

      (2) There is a lack of specific information regarding what constitutes learning with respect to behavioral freezing. It is never clearly stated what specific intervals are used over which freezing is measured during acquisition, extinction, and in extinction retrieval tests. Additionally, assessment of freezing during retrieval at 5- and 30-min time points doesn't lay to rest the possibility that there were differences in the decay rate over the 30-min period (also see below).

      We added a detailed description of how learning was assessed.

      ln 125-134: “For assessment of learning we used percent of time spent by animals freezing (% freezing). Freezing behavior was defined as complete lack of movement, except respiration. To assess within-session learning (working memory) we compared pre- and post-US freezing frequency (the first 148 sec vs last 30 sec) during the CFC session (day 1). To assess formation of long-term contextual fear memory, we compared pre-US freezing (day 1) and the first 5 minutes of the Extinction session (day 2). To assess within session contextual fear extinction we ran 2-way ANOVA to assess the effect of time and manipulation on freezing frequency. Freezing data were analyzed in 5-minute bins. To assess formation of long-term contextual fear extinction memory we compared the first 5 minutes of the Extinction session (day 2) and Test session (day 3).”

      As suggested by the reviewer, we also added data for all six 5-minut bins of Extinction sessions.

      (3) A minor-to-moderate methodological weakness concerns the authors' decision to utilize saline injected groups as controls for the chemogenetics experiments (Figs. 5, 6). The correct design is to have a CNO-only group with the same viral procedure sans hM4Di. This concern is partly mitigated by the inclusion of a CNO vs. saline injection control experiment (Fig. 6).

      Figure 5 does not describe a chemogenetic experiment.

      We added new groups with control virus (CNO vs saline) to Figure 6 (now Fig. 6D and H).

      The chemogenetic experiment shown on Figure 7 has all 4 experimental groups (Control vs hM4Di and saline vs CNO).

      (4) In the electron microscopic analyses of dendritic spines (Fig. 5), comparison of only the fear acquisition versus extinction training, and the lack of inclusion of a naïve control group, makes it difficult to understand how these structural synaptic changes are occurring relative to baseline. It is noteworthy that the authors utilize the tripartite design in other anatomical analyses (Fig. 2-4).

      We added data for the Naive mice to Figure 5.

      (5) Interpretation:

      The main interpretive weakness in the study is the authors' claim that their data shows a role for the RE-CA1 pathway in memory consolidation (i.e., see Abstract). This claim is based on the premise that, although RE-CA1 pathway inactivation with CNO treatment 30 min prior to contextual fear extinction did not affect freezing at 5- and 30-min time points relative to saline controls, these rats showed greater freezing when tested on extinction retrieval 24 h thereafter. First, the data do not rule out possible differences in the decay rate of freezing during extinction training due to CNO administration. Next, the fact that CNO is given prior to training still leaves open the possibility that acquisition was affected, even if there were not any frank differences in freezing. Support for this latter possibility derives from the fact that mice tested for extinction retrieval as early as 5 min after extinction training (Fig. 6C) showed the same impairments as mice tested 24 h later (Figs. 6A). Further, all the structural synaptic changes argued to underlie consolidation were based on analysis at a time point immediately following extinction training, which is too early to allow for any long-term changes that would underlie memory consolidation, but instead would confer changes associated with the extinction training event.

      We do agree with the reviewer that our data do not allow us to conclude whether RE-CA1 pathway is involved in acquisition or consolidation of CFE memory. Therefore, we avoid those terms in the manuscript. We just conclude that RE→CA1 participates in the CFE.

      Reviewer #2 (Public review):

      Summary:

      Ziółkowska et al. characterize the synaptic mechanisms at the basis of the REdCA1 contribution to the consolidation of fear memory extinction. In particular, they describe a layer specific modulation of RE-dCA1 excitatory synapses modulation associated to contextual fear extinction which is impaired by transient chemogenetic inhibition of this pathway. These results indicate that RE activity-mediated modulation of synaptic morphology contributes to the consolidation of contextual fear extinction

      Strengths:

      The manuscript is well conceived, the statistical analysis is solid and methodology appropriate. The strength of this work is that it nicely builds up on existing literature and provides new molecular insight on a thalamo-hippocampal circuit previously known for its role in fear extinction. In addition, the quantification of pre- and post-synapses is particularly thorough.

      Weaknesses:

      The findings in this paper are well supported by the data more detailed description of the methods is needed.

      (1) In the paragraph Analysis of dCA1 synapses after contextual fear extinction (CFE), more experimental and methodological data should be given in the text:

      - how was PSD95 used for the analysis, what was the difference between RE. Even if Thy1-GFP mice were used in Fig.2, it appears they were not used for bouton size analysis. To improve clarity, I suggest moving panel 2C to Figure 3. It is not clear whether all RE axons were indiscriminately analysed in Fig. 2 or if only the ones displaying colocalization with both PSD95 and GFP were analysed. If GFP was not taken into account here, analysed boutons could reflect synapses onto inhibitory neurons and this potential scenario should be discussed.

      PSD-95 immunostaining in close apposition to boutons was used to identify RE buttons innervating CA1 (Fig 1 and 2). In these cases PSD-95 signal was not quantified. PSD-95 in close apposition to dendritic spines was used as a proxy of PSDs in CA1 (Figure 3, 4 and 7). In these cases we assessed the integrated mean gray value of PSD-95 signal per dendritic spine (Figure 3, 4) or per ROI (Figure 7). This is explained in detail in the section Confocal microscopy and image quantification (ln 149-172).

      GFP signal was not taken into account during boutons analysis. This is explained in the materials and methods section Confocal microscopy and image quantification (ln 149-172).

      We indicate that PSD-95 is a marker of excitatory synapses located both on excitatory and inhibitory neurons.

      Ln 258: RE boutons were identified in SO and SLM as axonal thickenings in close apposition to PSD-95-positive puncta (a synaptic scaffold used as a marker of excitatory synapses located both on excitatory and inhibitory neurons (Kornau et al., 1995; El-Husseini et al., 2000; Chen et al., 2011; Dharmasri et al., 2024).

      We also cite literature demonstrating that RE projects to the hippocampal formation and forms asymmetric synapses with dendritic spines and dendrites, suggesting innervation of excitatory synapses on both excitatory and aspiny inhibitory neurons (ln 673).

      As advised by the reviewer the Figure 2C panel was moved to Figure 3 (now it is Fig 3A).

      (2) in the methods: The volume of intra-hippocampal CNO injections should be indicated. The concentration of 3 uM seems pretty low in comparison with previous studies. CNO source is missing.

      This section has been rewritten to be more clear. The concentration of CNO was chosen based on the previous studies (Stachniak et al., 2014).

      ln 103: “Cannula placement. Mice were anesthetized by inhalation of 3–5% isoflurane (IsoFlo; Abbott Animal Health) in oxygen and positioned in a stereotaxic frame (51503, Stoelting, Wood Dale, IL, USA). Two holes were drilled in the skull, and a double guide cannulae (2 mm apart and 2 mm long; 26GA, Plastics One) was lowered into the holes such that the cannula tip was located over dorsal CA1 area (2 mm posterior to bregma, ±1 mm lateral, and −1.3 mm vertical). Cannulae were kept patent by using 33-gauge internal dummy cannulae (Plastics One). The animals were used in contextual fear conditioning 21 days after the cannulation. Animals received bilateral CNO (3 μM, 0.2 μl per side for 1 min; Tocris Bioscience, Cat. No. 4936) (Stachniak et al., 2014) or saline injections (0.2 μl per side) 30 minutes before Extinction session via intrahippocampal injection cannulae (33-gauge). After the infusion, the cannula was left in place for 30 seconds. The cannula placement was verified by histology, and only data from animals with correct cannula implants were included in statistical analyses.”

      (3) More details of what software/algorithm was used to score freezing should be included.

      Freezing was automatically scored with VideoFreeze™ Software (Med Associates Inc.).

      (4) Antibody dilutions for IHC should be indicated. Secondary antibody incubation time should be indicated.

      The missing information is added.

      ln 144: “Next, sections were incubated in 4°C overnight with primary antibodies directed against PSD-95 (1:500, Millipore, MAB 1598), washed three times in 0.3% Triton X-100 in PBS and incubated in room temperature for 90 minutes with a secondary antibody bound with Alexa Fluor 647 (1:500, Invitrogen, A31571).”

      (5) No statement about code and data availability is present.

      The statements are added.

      ln 785: Row data and the code used for analysis of confocal data is available at OSF (https://osf.io/bnkpx/).

      Reviewer #3 (Public review):

      Summary:

      This paper examined the role of nucleus reuniens (RE) projections to dorsal CA1 neurons in context fear extinction learning. First, they show that RE neurons send excitatory projections to the stratum oriens (SO) and the stratum lacunosum moleculare (SLM), but not the stratum radiatum (SR). After context fear conditioning, the synaptic connections between RE and dCA1 neurons in the SLM (but not the SO) are weakened (reduced bouton and spine density) after mice undergo context fear conditioning. This weakening is reversed by extinction learning, which leads to enhanced synaptic connectivity between RE inputs and dendrites in the SLM. Control experiments demonstrate that the observed changes are due to extinction and not caused by simple exposure to the context. Extinction learning also induced increases in the size (volume and surface area) of the post-synaptic density (PSD) in SLM. To establish the functional role of RE inputs to dCA1, the researchers used an inhibitory DREADD to silence this pathway during extinction learning. They observe that extinction memory (measured 2-hours or 24-hours later) is impaired by this inhibition. Control experiments show that the extinction memory deficit is not simply due to increased freezing caused by inactivation of the pathway or injections of CNO. Inhibiting the RO projection during extinction learning also reduced the levels of PSD-95 protein levels in the spines of dCA1 neurons.

      Strengths:

      Based on their results, the authors conclude that, "the RE→SLM pathway participates in the updating of fearful context value by actively regulating CFE-induced molecular and structural synaptic plasticity in the SLM.". I believe the data are generally consistent with this hypothesis, although there is an important control condition missing from the behavioral experiments.

      Weaknesses:

      (1) A defining feature of extinction learning is that it is context specific (Bouton, 2004). It is expressed where it was learned, but not in other environments. Similarly, it has been shown that internal contexts (or states) also modulate the expression of extinction (Bouton, 1990). For example, if a drug is administered during extinction learning, it can induce a specific internal state. If this state is not present during subsequent testing, the expression of extinction is impaired just as it is when the physical context is altered (Bouton, 2004). It is possible that something similar is happening in Figure 6. In these experiments, CNO is administered to inactivate the RE-dCA1 projection during extinction learning. The authors observe that this manipulation impairs the expression of extinction the next day (or 2-hours later). However, the drug is not given again during the test. Therefore, it is possible that CNO (and/or inactivation of the RE-dCA1 pathway) induces a state change during extinction that is not present during subsequent testing. Based on the literature cited above, this would be expected to disrupt fear extinction as the authors observed. To determine if this alternative explanation is correct, the researchers need to add groups that receive CNO during extinction training and subsequent extinction testing. If the deficits in extinction expression reported in Figure 6 result from a state change, then these groups should not exhibit an impairment. In contrast, if the authors' account is correct, then the expression of extinction should still be disrupted in mice that receive CNO during training and testing.

      We do agree with the reviewer that such an experiment would be interesting. However, it could be also confusing as we could not distinguish whether the possible behavioral effects are related to the state-dependent aspects of CFE or impaired recall of CFE. Importantly, previous studies showed that RE is crucial for extinction recall (Totty et al., 2023). We also show that CFE memory is impaired not only when the animals recall CFE without CNO (day 3) but also with CNO (day 4) (Figure 6C). Moreover, we do not see the effects of CNO on CFE in the control groups (Figure 6D and H). So we believe that it is unlikely that CNO results in state-dependent CFE.

      (2) In their analysis of dCA1 synapses after contextual fear extinction (CFE) (Figure 4), the authors should have compared Ctx and Ctx-Ctx animals against naïve animals (as they did in Figure 3) when comparing 5US and Ext with naïve animals. Otherwise, the authors cannot make the following conclusion; "since changes of SLM synapses were not observed in the animals exposed to the familiar context that was not associated with the USs, our data support the role of the described structural plasticity at the RE→SLM synapses in CFE, rather than in processing contextual information in general.".

      We assume that the key experimental groups to conclude about synaptic plasticity related to particular behavior are the groups that differ just by one factor/experience. For CFE that would be mice sacrificed immediately before and after CFE session (Figure 2 & 3); on the other hand to conclude about the effects of the re-exposure to the neutral context mice sacrificed before and after second exposure to the neutral context are needed (Figure 4). The naive group, as it differs by at least two manipulations from the Ext and Ctx-Ctx groups, is interesting but not crucial in both cases. This group would be necessary if we focused on the memories of FC or novel context. However, these topics are not the main focus of the current manuscript. Still, the naive group is shown on Figures 2 & 3 to check if CFE brings spine parameters to the levels observed in mice with low freezing.

      We have re-written the cited paragraph to be more precise in our conclusions.

      "Overall, our data demonstrate that synapses in all dCA1 strata undergo structural or molecular changes relevant to CFC and/or CFE. However, only in SLM CFE-induced synaptic changes are likely to be directly regulated by RE inputs as they appear on RE+ dendrites and spines. Since such changes of SLM synapses were not observed in the animals re-exposed to the neutral context, our data support the role of the described structural plasticity at the RE→SLM synapses in CFE, rather than in processing contextual information in general."

      (3) In the materials and methods section, the description of cannula placements is confusing and needs to be rewritten.

      This section has been rewritten.

      ln 103: “Cannula placement. Mice were anesthetized by inhalation of 3–5% isoflurane (IsoFlo; Abbott Animal Health) in oxygen and positioned in a stereotaxic frame (51503, Stoelting, Wood Dale, IL, USA). Two holes were drilled in the skull, and a double guide cannulae (2 mm apart and 2 mm long; 26GA, Plastics One) was lowered into the holes such that the cannula tip was located over dorsal CA1 area (2 mm posterior to bregma, ±1 mm lateral, and −1.3 mm vertical). Cannulae were kept patent by using 33-gauge internal dummy cannulae (Plastics One). The animals were used in contextual fear conditioning 21 days after the cannulation. Animals received bilateral CNO (3 μM, 0.2 μl per side for 1 min; Tocris Bioscience, Cat. No. 4936) (Stachniak et al., 2014) or saline injections (0.2 μl per side) 30 minutes before Extinction session via intrahippocampal injection cannulae (33-gauge). After the infusion, the cannula was left in place for 30 seconds. The cannula placement was verified by histology, and only data from animals with correct cannula implants were included in statistical analyses.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Other/ Minor:

      In the beginning of the second paragraph on p. 21 of the Results section, it states that "RE-dCA1 has no effect on working memory," although it was not clear what data the authors were referring to support this conclusion.

      We refer there to the changes of freezing behavior within the CFE session. This is explained now.

      Reviewer #2 (Recommendations for the authors):

      No statement about code and data availability is present.

      The statements are added.

      ln 785: “Row data and the code used for analysis of confocal data is available at OSF (https://osf.io/bnkpx/).”

    1. Tớ sắp sáu tuổi rồi và chẳng bao lâu nữatớ sẽ trở thành một người đàn ông.”

      câu nói bày tỏ rõ suy nghĩ ngây thơ, trẻ con của Zeze khi nghĩ 6 tuổi là rất lớn.

    2. “Cậu phải nhìn tận mắt mới thấy mọi thứ ở đó sạch sẽ, ngăn nắp nhưthế nào. Ông ấy có một tấm khăn trải bàn bằng vải kẻ ca rô màu đỏ vànhững chiếc tách uống cà phê thứ thiệt. Không phải cốc thiếc như11 nhà mình đâu.
      • "tấm khăn trải bàn bằng vải kẻ ca rô màu đỏ và những chiếc tách uống cà phê thứ thiệt" -> là lời khen cậu bé dành cho những đồ vật gia dụng mà đến cả nhà cậu cũng không có—tạo ra sự đối lập giữa ông Bồ và gia đình Zezé.
    3. Có một điều chắc chắn: rõ ràng, khi bám càng một chiếc xe ítquan trọng hơn, tôi không còn cảm thấy phấn khích như thế nữa và tai tôicứ nhói đau rất khó chịu.

      Máu liều từ những lần nghịch dại cùng bạn bè đã ăn sâu vào tiềm thức của Zezé.

    Annotators

  20. docdrop.org docdrop.org
    1. Second, for the process ro broaden" school administrators, from superin-tendents down to assistant principals and teachers in neighborhood schools, must take on a more active and broadly conceived role at the in-cerface between school and community.

      The school administrators, principals, vice principals, and teachers of community schools all play crucial roles in the school. So they must exert their utmost help and effort to help improve the current situation.

  21. Nov 2024
    1. Although it is clear that histone modifications robustly modulate key nuclear processes and there is strong evidence for the role of histone methylation in DNA-related processes, as outlined above, it is difficult to experimentally prove a direct causative role of any histone modification in mammalian cells

      Mac du vai tro cua histone methylation la ro rang, rat kho de chung minh chuc nang truc tiep cua chung.

    1. Operațiunile juridice menționate, efectuate în lipsa certificatului de urbanism, sunt lovite de nulitate. Solicitarea certificatului de urbanism este facultativă atunci când operațiunile de împărțeli ori comasări de parcele fac obiectul ieșirii din indiviziune, cu excepția situației în care solicitarea este făcută în scopul realizării de lucrări de construcții și/sau de lucrări de infrastructură.

      Se pot parcela fără CU dacă scopul este ieșirea din indiviziune ...

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      The authors present a thorough characterization of the mitotic protein Shugoshin (Sgo1) in the context of Cryptococcus neoformans, an interesting and medically important fungal species. Sgo1 function in chromosome segregation has been well-studied in other eukaryotic species: it recruits the error correction kinase Aurora B and Protein Phosphatase 2 to the centromere and promotes the loading of cohesion at the centromeric locus. The primary function of these proteins is to enable the bipolar attachment of sister chromatids to the spindle apparatus. In this manuscript, Polysetty et al mainly investigate the "secondary" function of Sgo1 in Spindle Assembly Checkpoint (SAC) signaling. They show that: (1) sgo1Δ cells fail to maintain a prolonged SAC response to spindle poisons, because they cannot achieve or maintain normal Bub1 recruitment at unattached kinetochores. (2) The lower Bub1 recruitment is mainly due to the loss of centromeric Aurora B recruitment and increased PP1 recruitment to the kinetochore. There are some interesting departures from the behavior Sgo1 known in other eukaryotes. (3) Sgo1 localizes to the spindle poles in C neoformans with smaller amounts dispersed along the spindle. (4) Furthermore, Sgo1 localization at the centromeres does not require Bub1 kinase activity. Based on these and other observations, the authors advance a model for how Sgo1 is recruited to the centromeres and how it promotes strong SAC response to spindle poisons.

      Main comments:

      1. In interpreting the effects of thiabendazole on colony growth, the authors should also consider the role of Sgo1 in promoting bipolar attachments by establishing centromeric cohesion and proper geometry (Indjeian and Murray Current Biology 2007, Verzijlbergen et al. eLife 2014). In the absence of Sgo1, cells are more likely to divide with wrongly attached chromosomes and become highly aneuploid, which may promote mortality. The relative importance of Sgo1 function in biorientation and SAC signaling will have to be established using known separation of function mutations in Sgo1.
      2. Unless I am missing something, the phenotypes of Sgo1 related to the SAC are completely consistent with the established model of Aurora B and PP1 roles in regulating SAC signaling. Sgo1 promotes Aurora B activity at the kinetochore, and the increased Aurora B activity can promote SAC signaling by: (1) delaying SAC silencing by creating unattached kinetochores during error correction, (2) suppressing PP1 recruitment to the kinetochore, and (3) potentially phosphorylating MELT motif-proximal residues to promote Bub1 recruitment as has been observed in Drosophila (Audette et al MBoC 2021). Conversely, Sgo1 deletion will result in hyperstabilization of even wrong kinetochore-microtubule attachments, higher PP1 recruitment and, therefore, weaker SAC signaling. These points should be discussed when interpreting the results in this study.
      3. Phenotypes related to the sgo1-K382A mutations are interesting, and they suggest that Sgo1 recruitment may be independent of Bub1 kinase activity. However, the data need to be strengthened to fully support this conclusion. First, the multiple sequence alignment for Sgo1 shows lysine residues at position 381 and 382 in Cryptococcus. This makes me wonder if the point mutation is sufficient to abolish the Sgo1-pH2A interaction. Second, the expression levels of the mutant should be compared with the wild type to confirm that the phenotype is not due to over-expression/stabilization of the mutant protein. I understand that the thiabendazole resistance of Bub1-kd is quite interesting, but Haspin kinases are also involved in loading Sgo1 at the centromere. The authors could investigate their role in Crypotcoccus to define the alternative mechanism of centromere specific Sgo1 loading.
      4. In Figure 6, the authors find strong Sgo1 colocalization at the spindle poles and what they describe as "spindle-like location along the pole-to-pole axis" (lines 358-360). The authors should consider the possibility that this is the pool of centromere associated Sgo1 because it colocalizes reasonably well with CENPA. This interpretation obviates the necessity of the complex model in Figure 6E explaining Sgo1 loading at the centromeres. Given that there must be Sgo1 at the centromeres, the null hypothesis has to be that this Sgo1 is associated with centromeres rather than microtubules. The authors could use biochemical methods to test the hypothesis. Alternatively, BiFC ro FRET based assays may be useful if the authors want to persist with cell biology experiments.

      Minor points:

      1. The authors use gene repression and over-expression using the Gal1 promoter, but do not assay protein levels for the degree of over-expression. This is fine in many cases because the phenotypes are consistent with over-expression/repression. However, it needs to be confirmed when interpreting the effects of point mutations, e.g., Bub1-kd, Sgo1-K382, etc.
      2. I found the model in 5A confusing because the arrows are used to indicate both protein recruitment and promotion/expression of downstream proteins/events. Adding to the confusion is the inverted sgo1 → Aur B direction. The authors should simplify this important panel.
      3. The model in Figure 6E is missing some information: gradients in Sgo1 and Ipl1 pools are shown, but they don't line up with the spindle direction and are not otherwise indicated on the spindle. Importantly, this model is necessary only if the authors can conclusively show that the Sgo1 along the spindle axis is associated with microtubule and not the centromere.
      4. The authors examine Sgo1's role in loading cohesin at the centromere in Figure S6. An interesting experiment would be to test the thiabendazole sensitivity of Scc1 over-expressing cells to understand whether it can suppress the effects of sgo1Δ.

      Referee Cross-Commenting

      I think Reviewer #2's comment above summarizes the all the comments effectively. I don't have anything else to add.

      Significance

      This is a well-constructed and well-executed study. However, the interpretation of many of the results and how strongly these results depart from what's already known in other systems is debatable. Almost all the results describing CnSgo1 involvement in SAC signaling reinforce the established model that Sgo1 recruits Aurora B, which suppresses the recruitment of PP1, the main antagonist for Bub1 recruitment. Thus, Δsgo1 cells are unable to mount a strong SAC response because increased PP1 recruitment antagonizes SAC signaling. In my view, the novel findings are the Bub1 kinase activity-independent loading of Sgo1 at the centromere and the surprising Sgo1 localization at the spindle poles. The manuscript will generate wider interest if the authors dissected the molecular basis of these unexpected observations rather than its established functions. Doing so will require a functional and molecular dissection of Sgo1.

    1. Commission (%)

      Quote.custom_percent e luat automat din User.commission_rate dar pe masura ce Commission (USD) se modifica manual, se va modifica automat acest procent. In pagina e un mic js care face asta

    2. Land Price Per Person: $0.00 Land Cost Total: $0.00 Flight Cost: $0.00 Insurance Cost: $0.00 Grand Total: $0.00

      preturile sunt luate din QuoteExchange (ire_quote_exchange_rates), currency = USD

      Land Price Per Person = cost_per_person Land Cost Total = total_price - flight_cost - insurance_cost Flight Cost = flight_cost Insurance Cost = insurance_cost Grand Total = total_price

    3. Quote Status

      Quote.status in model am hardcodat acesta statusuri, doar ca aici sunt grupate. statusurile sunt in ire_quote_stauses dar mai bine ori le pui direct in model ca si nomenclator ori faci alt tabel.

      Asa sunt definite acum in model public static $grouped_statuses = array( 'Initial Inquiry Stage' => array( self::STATUS_PENDING_QUOTATION, self::STATUS_WIZARD_QUOTES, // self::STATUS_CLIENT_CONTACT_BY_PHONE, // self::STATUS_EMAILED_CLIENT, self::STATUS_CLOSED_NO_QUOTE_CREATED, self::STATUS_DISABLED ), 'Quoting Stage' => array( self::STATUS_QUOTED_PENDING_CUSTOMER, self::STATUS_HOT_LEAD_DEPOSIT_PAID, self::STATUS_CUSTOM_LEAD_DEPOSIT_PAID, // self::STATUS_DUPLICATED_QUOTE, ), 'Booking Stage' => array( self::STATUS_HOT_LEAD_DEPOSIT_PAID_REVIEWING, self::STATUS_CUSTOM_LEAD_DEPOSIT_PAID_REVIEWING, self::STATUS_ACCEPTED_DEPOSIT, self::STATUS_ACCEPTED_PAID, self::STATUS_CONFIRMED_PAID, self::STATUS_PENDING_REBOOK, // self::STATUS_RESCHEDULING, self::STATUS_CANCELLED, // self::STATUS_CANCELLED_WITH_REVENUE ), );

    4. Client Name

      Pentru ca avem un quote B2B client name este pus direct in tabela de ire_quotes (modelul Quote) si anume Quote.requestor_client_name

    1. By em ploying double-talk the subo rd in a te c a n i n it ia t e lin e s of ac tio n without giving openrecognition to the e x p r e s s iv e im plica tion of such in itia tio nand w ithout putting into jeopardy th e s t a t u s d iffe re n c e betweenh im s e lf and h i s su p e ro r d in a te .

      double-talk, subordinate can communicate things without putting anything in jeopardy

    2. T h u s m others arein som e r e s p e c t s a c o lle a g u e grouping, and y e t ordinarily them is d e e d s of one, or her c o n f e s s io n s , do not seem to affectc l o s e l y the r e s p e c t th a t is a c co rd ed the other members. Onth e other hand, th e re are c o lle a g u e g ro u p in g s o f a morec o rp o ra te c h a r a c te r , w hose members are so c l o s e l y identifiedin the e y e s o f oth e r people th a t to so m e d eg re e the goodre puta tion of one p r a c titio n e r d e p e n d s on the good conduct ofth e o th e rs

      some colleague groups collective identity more tied than others could racial groups be considered a colleague group?

    3. l e a v e s th e region when they do, but when h el e a v e s he g o e s to h is employer, a co m p etito r of the teamwhose perform ance he lias w itn e s s e d , to report what he h a sseen . lie i s the p ro fe ssio n a l sho pper—th e G im bel’s man inMacy's and the M acy’s man in Gimbel’s ; he is the fashionspy and the foreigner at N atio nal Air Meets

      another type of audience- scoping out the competition

    4. And, on the sa m e grounds, just;is it is co n v e n ie n t to play o n e 's different ro u tin e s beforelifferent p e r so n s, so a l s o is it convenient to s e p a r a te thedifferent a u d i e n c e s one h a s for the sam e routine, s i n c e thati s th e only way in which each a u d i e n c e can feel th a t whilethere may be o th e r a u d i e n c e s for the sam e rou tine, none isg e ttin g so d e s ir a b le a p r e se n ta tio n o| it. Here again frontregion control is important

      makes it easier to put on right performance for each person if different audiences are separated/ don't see other sides

      I HATE MIXING FRIEND GROUPS

    5. In gen eral, wefind th a t t h o s e who help p r e se n t a team -perform ance differin the d e g re e o f dram atic d o m inan ce given e a c h of them andth a t one team -ro utine diffe rs from an o ther in the e x te n t towhich d if f e r e n tia ls in d om inance a re given i t s members

      dramtic dominance different from directive dominance - star of the ballet or sports team isn't stage director or manager

    6. And, of c o u r s e , this kind of s o lid a rityin the p r e s e n c e o f s u b o r d in a t e s a l s o o c c u rs when perform ersa re in the p r e s e n c e of su p e ro r d in a te s

      solidarity in performance always focused on putting up front in front of subordinates

    7. B ut m ost im po rtant o f a ll, we commonly find that th e d efin ition of t h e s it u a ti o n p r o je c te d by a p a r ti c u la r p a r tic ip a n t i san in te g ra l p art o f a p ro je c tio n th a t i s f o s te r e d and s u s t a in e dby t h e in tim a te c o -o pe ra tion of more than o n e p a rtic ip a n t,and, m oreover, that ea ch member o f suc h a tro u p e or c a s tof p la y e r s may be req u ired to a p p e a r in a different light ifth e te a m ’ s o v e ra ll effec t i s to be s a t i s f a c t o r y .

      oftentimes- the performance requires participants who perform roles which require adopting demeanor's

    8. We find th at c h a r la ta n p ro fe s s io n a l a c tiv ityo f o n e d e c a d e b ec o m e s an a c c e p t a b l e le g itim a te o c c u p a tio nin th e next. 3 We find th a t a c t i v i t i e s which a r e thought tobe l e g itim a te by so m e a u d i e n c e s in our s o c ie ty are thoughtby o th e r a u d i e n c e s to be r a c k e ts

      what is a lie and what is legitimate all highly flexible, temporally and culturally informed

    9. s h e s t r i v e s ro identify h e r s e l f with t h i s figure an dt h u s to se em t o h e r s e l f to be s t a b i l i z e d , j u s t i f i e d in her sple n do r

      identification with a figure- not with oneself

    10. h e p ro p e r s ig n -eq u ip m en t h a s bee n o b ta in e d and fam iliarityg a in e d in t h e m an ag e m en t of it, then t h i s equipm ent c a n beu s e d to e m b e llis h and illu m in e o n e ’s daily p e rfo rm a n c e s w itha fa v o u r a b le s o c ia l s ty le

      minimal separation between the status and the front- Here, Goffman doesn't distinguish something like yearly income attaining status than the means to attain the front of a certain status

    11. A p p e a r a n c e ’ may be ta k e n to refer tot h o s e stim uli which function at th e tim e to tell u s of th eperform er’s s o c ia l s t a t u s e s . T h e s e stimuli also te ll u s o fth e i n d i v i d u a l 's tem porary ritu a l s t a t e , th a t i s , w hether he i se n g a g in g in formal s o c ia l a c tiv i ty , work, or informal re c re a tio n ,w h eth e r or not he is c e le b r a tin g a new p h a s e in the s e a s o nc y c le or in h is lif e -c y c le . ' M a n n e r ' may be ta k e n to refer toth o s e stim uli w hich fu n ction at the tim e to warn u s of th e intera c tio n ro le th e performer will e x p e c t to play in th e on-comings it u a ti o n .

      appearance are status and other identifications (can show things like what you do for work) Manner tells us of oncoming action within a persons role (what the person expects to happen or how others are to respond)

    12. ro n t, th e n , i s th e e x p r e s s i v e e quipm ent of as ta n d a r d kind i n t e n t io n a lly or unw ittin g ly em ployed by theind iv id u al during h is perform ance. F or p relim in ary p u r p o s e s , itv.ill be c o n v e n ie n t to d i s t i n g u i s h and la b e l what s e e m to be thesta n d aril p a r t s of fron

      Labeling- The "front" of the stage

  22. christmas.fandom.com christmas.fandom.com
    1. Christmas 2 Sign in to edit History Talk (5) View source var _____WB$wombat$assign$function_____ = function(name) {return (self._wb_wombat && self._wb_wombat.local_init && self._wb_wombat.local_init(name)) || self[name]; }; if (!self.__WB_pmw) { self.__WB_pmw = function(obj) { this.__WB_source = obj; return this; } } { let window = _____WB$wombat$assign$function_____("window"); let self = _____WB$wombat$assign$function_____("self"); let document = _____WB$wombat$assign$function_____("document"); let location = _____WB$wombat$assign$function_____("location"); let top = _____WB$wombat$assign$function_____("top"); let parent = _____WB$wombat$assign$function_____("parent"); let frames = _____WB$wombat$assign$function_____("frames"); let opener = _____WB$wombat$assign$function_____("opener"); let arguments; { (function () { // we can't use mw.config here because it's too early so we need to pass this data in different way const videoDetails = { mapping: {"mediaId":"CR0MZ2ZP","connatixPlaylistId":"fa733fa7-0131-48d3-a444-611bc76031fe","impressionsPerSession":3,"isDefaultMapping":true}, impressionsPerSession: 3, }; const videoBridgeCountries = ["AE","AG","AL","AM","AR","AT","AU","AZ","BA","BB","BD","BG","BH","BN","BO","BR","BS","BY","CA","CH","CL","CN","CO","CR","CU","CY","CZ","DE","DK","DO","DZ","EC","EE","EG","ES","FI","FR","GB","GE","GF","GG","GH","GP","GR","GT","GU","GY","HK","HN","HR","HU","ID","IE","IL","IM","IN","IQ","IR","IS","IT","JE","JM","JO","JP","KE","KG","KH","KR","KW","KY","KZ","LA","LB","LK","LT","LU","LV","LY","MA","MD","ME","MK","MM","MN","MO","MQ","MT","MU","MV","MX","MY","NG","NI","NO","NP","NZ","OM","PA","PE","PH","PK","PL","PR","PS","PT","PY","QA","RE","RO","RS","RU","SA","SC","SE","SG","SI","SK","SV","TD","TH","TN","TR","TT","TW","UA","US","UY","UZ","VE","VI","VN","ZA","ZW"]; const tier3VideoBridgeCountries = ["US","GB","BE","NL","DE","AU","MX","AR","FR","MD","CA","ES","IT","PE","CO","CL","NZ"]; let hasVideoOnPage = null; function getCookieValue(cookieName) { const cookieSplit = ('; ' + document.cookie).split('; ' + cookieName + '='); return cookieSplit.length === 2 ? cookieSplit.pop().split(';').shift() : null; } function hasMaxedOutPlayerImpressionsInWiki() { const impressionsSoFar = Number(getCookieValue('playerImpressionsInWiki')) || 0; const allowedImpressions = Number(videoDetails.impressionsPerSession); return impressionsSoFar >= allowedImpressions; } function getCountryCode() { try { return JSON.parse(decodeURIComponent(getCookieValue('Geo'))).country.toLowerCase(); } catch { return null; } } function isVideoBridgeAllowedForCountry() { const countryCode = getCountryCode(); if (!countryCode) { return false; } // If it's a default mapping, then check the country whitelist from the default mapping. if (videoDetails?.mapping?.isDefaultMapping) { // If the wiki is classified as a tier3 wiki, then check the country whitelist from the tier3VideoBridge whitelist. const allowedCountriesForTier3Wikis = tier3VideoBridgeCountries.map(function (allowedTier3CountryCode) { return allowedTier3CountryCode.toLowerCase(); }) return allowedCountriesForTier3Wikis.indexOf(countryCode) !== -1; } else { // If not a default mapping wiki (so it's a wiki mapping), then check the country whitelist from the videoBridge whitelist const allowedCountries = videoBridgeCountries.map(function (allowedCountryCode) { return allowedCountryCode.toLowerCase(); }); return allowedCountries.indexOf(countryCode) !== -1; } } window.fandomIsVideoPossible = function () { if (hasVideoOnPage === null) { hasVideoOnPage = videoDetails.mapping && isVideoBridgeAllowedForCountry() && !hasMaxedOutPlayerImpressionsInWiki(); } return hasVideoOnPage; }; window.canPlayVideo = function () { return window.fandomIsVideoPossible() }; if (!window.canPlayVideo()) { document.body.classList.add('no-featured-video'); } else { document.body.classList.add('has-featured-video'); } })(); }} <iframe src="https://viahtml.hypothes.is/proxy/if_/https://www.googletagmanager.com/ns.html?id=GTM-N6XD44P" height="0" width="0" style="display:none;visibility:hidden"></iframe> A Christmas Tree, popular at Christmas. Christmas is an annual holiday celebrated on

    1. As a mother,

      Use of real parent experiences to appeal to the intended audience (parents and childcare workers) without having to use a perspective that directly points to them. This also supports their purpose, creating a concrete base from other's experiences as well as facts taken from other resources.