- Nov 2023
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: The paper by McGinnis et al. uses a combination of genetic and biochemical approaches to understand how the conserved 5'-3' RNA exonuclease Xrn1 affects autophagy in response to methionine starvation in S. cerevisiae. The authors present evidence Xrn1 affects autophagy primarily via its effect on regulating TORC1 signaling. They present some evidence that Xrn1's effect on TORC1 singnaling is via its physical interaction with the SEACIT complex.
Strengths: The experiments in general for this paper are clear and have proper controls.
Weaknesses:<br /> The authors seem to try and fit the data to a simplistic model rather than embrace the complexity of the data. I will give some examples below.
1) Figure 1 clearly shows that xrn1d results in loss of tight repression of autophagy. Specifically, the 0 timepoint has increased autophagy in both the idh-GFP and ALP assays. However, it is incorrect to say that it is related in any way to methionine deprivation. The same basic pattern of regulation occurs in WT and xrn1d strains. The only difference is the "leakiness" of repression at t=0.
2) Figure 2 shows that catalytically inactive Xrn1 has the same autophagy phenotype as a deletion, indicating that Xrn1 enzymatic activity is important for function. However, it is also clear that xrn1-deletion cells expressing wt Xm1-flag do not repress autophagy as well as XRN+ cells, even though the amount of expressed protein seems similar. Does this imply the flag-tag may be a less active version of the protein? This should be discussed.
3) Figure 3 shows Xrn1-loss effects TORC signaling and that npr2-deletion inhibits autophagy. The surprising result is that a xrn1d/npr2d behaves like WT with regards to autophagy. This needs to be discussed. To me, this seems to strongly suggest that methionine repression of autophagy is occurring downstream of both xrn1 and npr2. Measuring p-S6 in the double mutant may be informative.
4) Figure 4 appears to show that even in the absence of GTR1, autophagy is repressed in rich media, active in YPL-SL, but still responds to methionine repression. This does not seem consistent with the model presented in Figure 5. Shouldn't loss of GTR1 result in repressed Torc1? The GTP and GDP-lock mutants are either all on, or all off. Why is deletion different? This needs to be explained and discussed. Also, the Figure legend does not match figures (problem after Fig4b).
5) Figure 5B shows GTR1 IP with Xrn1-FLAG. However, there are no negative controls in this experiment, so the result could be background. RNAaseA and RNA addition experiments are convincing.
6) Line 254-255. The lead sentence is simply not supported by the data. There is no evidence that Xrn1 actually affects the regulation of Gtr1/2 binding states.
7) Line 259-260. This is again overstated. Just because a mutant can be rescued by Gtr1-GTP-locked, does not say anything about RNA decay. In fact, the double mutant has extra high levels of some ATG RNA's, so I have no idea how the Gtr1 rescues.
8) Line 268-281. Your model here ignores the fact that methionine regulation takes place in the absence of both xrn1 and npr2. Therefore the model, as proposed, can't be correct.
9) Line 290-300. The slow growth rate of Xrn1 mutants may be affecting the metabolite levels. I felt that this entire paragraph was overly speculative.
-
-
web.archive.org web.archive.org
-
This is, like THE foundational keystone document to the problem I'm trying to communicate for "builds and burdens".
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public Review):
Anderson, Henikoff, Ahmad et al. performed a series of genomics assays to study Drosophila spermatogenesis. Their main approaches include (1) Using two different genetic mutants that arrest male germ cell differentiation at distinct stages, bam and aly mutant, they performed CUT&TAG using H3K4me2, a histone modification for active promoters and enhancers; (2) Using FACS sorted pure spermatocytes, they performed CUT&TAG using antibodies against RNA PolII phosphorylated Ser 2, H4K16ac, H3K9me2, H3K27me3, and ubH2AK118. They also compare these chromatin profiling results with the published single-cell and single-nucleus RNA-seq data. Their analyses are across the genome but the major conclusions are about the chromatin features of the sex chromosomes. For example, the X chromosome is lack of dosage compensation as well as inactivation in spermatocytes, while Y chromosome is activated but enriched with ubH2A in spermatocytes. Overall, this work provides high-quality epigenome data in testes and in purified germ cells. The analyses are very informative to understand and appreciate the dramatic chromatin structure change during spermatogenesis in Drosophila. Some new analyses and a few new experiments are suggested here, which hopefully further take advantage of these data sets and make some results more conclusive.
Major comments: 1. The step-wise accumulation of H3K4me2 in bam, aly and wt testes are interesting. Is it possible to analyse the cis-acting sequences of different groups of genes with distinct H3K4me2 features, in order to examine whether there is any shared motif(s), suggesting common trans-factors that potentially set up the chromatin state for activating gene expression in a sequential manner?
While the histone H3K4me2 mark is low and more widespread at genes active in late spermatocytes and in spermatids (shown in Figure 2C and some examples in Figure 1C-D), we suggest that this may be due to a general decrease in the importance of this modification in late spermatogenesis rather than a specific feature of those genes. We point this out in lines 146-152. This idea is supported by the widespread change in RNAPII distribution in all genes in the germline, shown in Figure 3F and supplementary Figure 2.
- Pg. 4, line 141-142: "we cannot measure H3K4me2 modification at the bam promoter in bam mutant testes or at the aly promoter in aly mutant testes", what are the allelic features of the bam mutant and aly mutant? Are the molecular features of these mutations preventing the detection of H3K4me2 at the endogenous genes' promoters? Also, the references cited (Chen et al., 2011) and (Laktionov et al., 2018) are not the original research papers where these two mutants were characterized.
We have corrected these citations to the original papers. We clarified in the text that the bamΔ86 allele is a deletion of almost all of the coding sequence (reported in Bopp, D., Horabin, J.I., Lersch, R.A., Cline, T.W., Schedl, P. (1993). Expression of the Sex-lethal gene is controlled at multiple levels during Drosophila oogenesis. Development 118(3): 797--812.). The aly1 allele is also a P element-induced mutation; it is not molecularly characterized (it was first described here: Lin, T.Y., Viswanathan, S., Wood, C., Wilson, P.G., Wolf, N., Fuller, M.T. (1996). Coordinate developmental control of the meiotic cell cycle and spermatid differentiation in Drosophila males. Development 122(4): 1331--1341.) We noticed a lack of reads for various histone modifications in aly mutants in part of the gene, suggesting that the deletion is limited to the promoter and the first exon. Signal for the H3K4me2 modification is at background levels for the distal portion of aly, suggesting that the deletion inactivates the gene.
- The original paper that reported the Pc-GFP line and its localization is: Chromosoma 108, 83 (1999).
We are citing the first published description of this marker in the male germline (lines 291-293).
The Pc-GFP is ubiquitously expressed and almost present in all cell types. In Figure 6B, there is no Pc-GFP signals in bam and aly mutant cells.
We apologize, our labeling of the figure was easily overlooked - the bam and aly genotypes do not carry the PcGFP marker, since we didn’t need it for staging the germline nuclei. We have clarified this in the figure.
According to the Method "one testis was dissected", does it mean that only one testis was prepared for immunostaining and imaging? If so, definitely more samples should be used for a more confident conclusion.
We corrected the text to make it clear that all cytological examinations were repeated at least times (lines 438-439).
Also, why use 3rd instar larval testes instead of adult testes?
Generally, we find that immunostaining of the larval testes is cleaner, and we now mention this in the Methods (lines 439-440). We have immunostained both larval and adult testes for these markers with consistent results.
Finally, it is better to compare fixed tissue and live tissue, as the Pc-GFP signal could be lost during fixation and washing steps. Please refer to the above paper [Chromosoma 108, 83 (1999)] for Pc-GFP in spermatogonial cells and Development 138, 2441-2450 (2011) for Pc-GFP localization in aly mutant.
We are using PcGFP staining for staging with antibody detection of other chromatin features, which requires fixed material, although we have compared PcGFP signal in both live and fixed tissue. We have added the 1999 reference for nuclear staging in the male germline.
- Ubiquitinylation of histone H2A is typically associated with gene silencing, here it has been hypothesized that ubH2A contributes to the activation of Y chromosome. This conclusion is strenuous, as it entirely depends on correlative results.
We agree that this is a correlation. We cite in the text examples where uH2A is associated with gene activation. We have added a comment to clarify that this is a correlation (lines 318-320), and now present an alternative that uH2A on the Y chromosome may be moderating expression from these highly active genes (lines 405-407).
For example, the lack of co-localization of ubH2A immunostaining and Pc-GFP are not convincing evidence that ubH2A is not resulting from PRC1 dRing activity. It would be a lot stronger conclusion by using genetic tools to show this. For example, if dRing is knocked down (using RNAi driven by a late-stage germline driver such as bam-Gal4) or mutated in spermatocytes (using mitotic clonal analysis), would they detect changes of ubH2A levels?
We have tested multiple constructs to knockdown dRING using the bam-GAL4 driver although we have not reported it in the manuscript. These knockdowns have no effect on uH2A staining in the testis, on motile sperm production, or on male fertility, although these RNAi constructs do produce Polycomb phenotypes when expressed in somatic cells from an en-GAL4 driver. This is the reason why we point out in the text that there are multiple alternative candidates for an H2A ubiquitin ligase in the Drosophila genome and that in other species RING1 is not responsible for sex body uH2A in the male germline (lines 394-396).
- Regarding "X chromosome of males is thought to be upregulated in early germline cells", it has been shown that male-biased genes are deprived on the X chromosome [Science 299:697-700 (2003); Genome Biol 5:R40 (2004); Nature 450:238-241 (2007)], so are the differentiation genes of spermatogenesis [Cell Research 20:763-783 (2010)]. It would be informative to discuss the X chromatin features identified in this work with these previous findings.
We now mention that the Drosophila X chromosome is moderately depleted of male germline-expressed genes (lines 362-363).
For example, the lack of RNAPII on X chromosome in spermatocytes could be due to a few differentiation genes expressed in spermatocytes located on the X chromosome.
We show in Figure 3B that there is a minor non-significant reduction in RNAPII on the X chromosome in spermatocytes. This small reduction might be due to the moderate paucity of male germline-expressed genes on this chromosome, but since it is non-significant we have not discussed it.
Reviewer #2 (Public Review):
Anderson et al profiled chromatin features, including active chromatin marks, RNA polymerase II distribution, and histone modifications in the sex chromosomes of spermatogenic cells in Drosophila. The results are new and the experiments and analyses look well done, including with appropriate numbers of replicates. Results were parsed by comparing them among two arrest mutants and wildtype, as well as in FACS-sorted spermatocytes. The authors also profiled larval wing discs to serve as reference-somatic cells, which allowed them to focus only on features in their testis data that were associated with germ cells. Their results were further refined by categorizing the genes of interest based on available single nucleus RNA seq expression profiles. The authors document interesting phenomena, such as differences in the distribution of RNAPIIS2p on some genes in germ cells vs somatic cells, the presence of a uH2A body beginning in early spermatocytes, and high levels of uH2A on the Y chromosome and little or none on the X. The former is intriguing because this modification is usually associated with silencing, yet the Y chromosome is active in spermatogenic cells. The authors interpret some of their data as implying a lack of dosage compensation of the X chromosome in spermatocytes.
The data are believable and new, but it is not fully clear how to interpret them. The paper's interpretations rely on subtractive logic to parse results from mixtures of cells down to cell type, extracting spermatogonia, spermatocyte, etc. features by comparing bam mutants (only spermatogonia) to aly mutants (spermatogonia and early spermatocytes but no later stages) to wildtype (all spermatogenic stages), and extracting testis germline data by comparison to wing disc soma; their FACS sorted spermatocytes also have heterogeneity. I recognize that the present paper was a lot of work and am not suggesting that the authors redo their study using methods that give more purity and precision of stage (https://doi.org/10.1126/science.aal3096, https://doi.org/10.1101/gad.335331.119), but they should be aware of them and of their results.
The pulse-release system that the reviewer points to is an interesting system, but more limited in material and in useable markers than the systems we used here. We have added to our discussion of the the limitations of subtractive comparisons between arrest genotypes, both in regards to using mutants that may alter gene expression programs, and to how subtractive comparisons may limit our detection of differences between cell types (lines 143-147).
The conclusions about dosage compensation are indirect, but are consistent with the current model documented in the studies cited by the authors, as well as earlier studies (doi: 10.1186/jbiol30).
We disagree; our data directly speaks to the molecular mechanisms at play. Our profiling of the H4K16acetylation mark and RNAPII in isolated spermatocytes (Figure 4) demonstrates that current models are correct, and so are useful for settling this point in the literature.
Reviewer #1 (Recommendations For The Authors):
Throughout the manuscript, it is better to cite the original research papers.
We have added citations for the original characterizations of bam and aly alleles used, for the descriptions of PCGFP in spermatocytes, and for issues raised by reviewer comments.
Minor comments:
Pg.2, line 70-71: "Germline stem cells at the apical tip of the testis asymmetrically divide to birth spermatogonia", should be gonialblast.
Fixed (line 71).
Pg.2, line 71: "four rapid mitotic divisions", the spermatogonial cell cycle lasts several hours-- "rapid" is subjective and relative, better to leave this word out.
Fixed (line 71).
Reviewer #2 (Recommendations For The Authors):
Other than the major issue raised in the public review this paper only needs a few minor modifications, listed by line number below. The first one would be considered essential by this reviewer.
27: In the sentence that ends on this line, please add the word testis after Drosophila.
Fixed (line 27).
119: It must be known from the Fly Cell Atlas data whether these genes do begin to express in spermatogonia.
Collated expression values from the FCA are provided in Supplementary Table 2. In many cases there is detectable expression of these genes in spermatogonia, although transcript abundance peaks in early spermatocytes.
198: remove "distribution of".
Fixed (line 200).
311: enrichment relative to what?
Fixed (line 313). It is relative to signal in wing discs.
344: other aspects could be regulated such as elongation, termination.
We have added caveats to our speculations in this sentence (lines 340-356). The increased signal we see in gene bodies could be due to slower RNAPII elongation, but we don’t see a way that changes in termination would produce this pattern.
369: This part of the paper seems overly speculative, given the many molecular differences between dosage compensation mechanisms of Drosophila vs mammals, and studies that indicate that MSCI does occur in Drosophila (DOI: 10.3390/genes12111796).
We disagree, and this is a central point in our manuscript. The paper referred to here does not directly assess MSCI in Drosophila, instead they argue that MSCI could be the force driving the evolutionary depletion of male-germline-expressed genes they describe. These and many studies in the literature have conflated the effects of a lack of X dosage compensation and of MSCI in the male germline. Our direct measurements of RNAPII in spermatocytes demonstrates that there is no dosage compensation nor is there MSCI. Further, profiling of histone modifications associated with Drosophila somatic dosage compensation (H4K16ac) or with mammalian MSCI (uH2A, H3K9me2) show that the molecular mechanisms found in these other settings are not in play in the Drosophila male germline. As we have established these biological differences between mammals and Drosophila, it is appropriate to now speculate on why these differences may be, which we do on lines 374-384.
(several lines): Can the authors justify their assumption that chromatin features of larval wing disc cells will match those of somatic cells of adult testes?
We don’t only compare germline features to somatic cells of the wing disc, but also to genes with somatic expression in the testes annotated by FCA expression data (H3K4me2 in Figure 2C, RNAPII in Figure 3F). Note in Supplementary Figure 2 the distribution of RNAPII in whole testes (which includes somatic cells) is similar to that of larval wing discs, confirming that the differences we describe are specific to germline cells.
-
Reviewer #1 (Public Review):
Anderson, Henikoff and Ahmad et al. performed a series of genomics assays to study Drosophila spermatogenesis. Their main approaches include (1) Using two different genetic mutants that arrest male germ cell differentiation at distinct stages, bam and aly mutant, they performed CUT&TAG using H3K4me2, a histone modification for active promoters and enhancers; (2) Using FACS sorted pure spermatocytes, they performed CUT&TAG using antibodies against RNA PolII phosphorylated Ser 2, H4K16ac, H3K9me2, H3K27me3, and ubH2AK118. They also compare these chromatin profiling results with the published single-cell and single-nucleus RNA-seq data. Their analyses are across the genome but the major conclusions are about the chromatin features of the sex chromosomes. For example, the X chromosome is lack of dosage compensation as well as inactivation in spermatocytes, while Y chromosome is activated but enriched with ubH2A in spermatocytes. Overall, this work provides high quality epigenome data in testes and in purified germ cells. The analyses are very informative to understand and appreciate the dramatic chromatin structure change during spermatogenesis in Drosophila.
-
-
docdrop.org docdrop.org
-
What a great tour the summary can be found in the timestamps for the video, but I'd like to point out a few things. Through Maggie's daily tag. She has a field for what's on her mind. This makes it really easy to scan through the list and see how that's changed. Over previous weeks, we show an advanced way to set it up, which is how she originally set it up as well as a simpler way to capture similar benefits.
What a nice feature
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #3 (Public Review):
Summary:<br /> This study aims to investigate the stoichiometric effect between core factors and partners forming the heterodimeric transcription factor network in living cells at endogenous expression levels. Using state-of-the-art single-molecule analysis techniques, the authors tracked individual RARα and RXRα molecules labeled by HALO-tag knock-in. They discovered an asymmetric response to the overexpression of counter-partners. Specifically, the fact that an increase in RARα did not lead to an increase in RXRα chromatin binding is incompatible with the previous competitive core model. Furthermore, by using a technique that visualizes only molecules proximal to partners, they directly linked transcription factor heterodimerization to chromatin binding.
Strengths:<br /> The carefully designed experiments, from knock-in cell constructions to single-molecule imaging analysis, strengthen the evidence of the stoichiometric perturbation response of endogenous proteins. The novel finding that RXR, previously thought to be a target of competition among partners, is in excess provides new insight into key factors in dimerization network regulation. By combining the cutting-edge single-molecule imaging analysis with the technique for detecting interactions developed by the authors' group, they have directly illustrated the relationship between the physical interactions of dimeric transcription factors and chromatin binding. This has enabled interaction analysis in live cells that was challenging in single-molecule imaging, proving it is a powerful tool for studying endogenous proteins.
Weaknesses:<br /> As the authors have mentioned, they have not investigated the effects of other T2NRs or RXR isoforms. These invisible factors leave room for interpretation regarding the origin of chromatin binding of endogenous proteins (Recommendations 4). In the PAPA experiments, overexpressed factors are visualized, but changes in chromatin binding of endogenous proteins due to interactions with the overexpressed proteins have not been investigated. This might be tested by reversing the fluorescent ligands for the Sender and Receiver. Additionally, the PAPA experiments are likely to be strengthened by control experiments (Recommendations 5).
-
-
www.theguardian.com www.theguardian.com
-
Die WHO will bei der kommenden COP28 das Thema der Gesundheit offensiv in den Mittelpunkt stellen. Zum ersten Mal wird ein ganzer Tag Gesundheitsthemen gewidmet sein. Der Guardian hat dazu mit Maria Neira. der WHO-Verantwortlichen für Umweltgesundheit, gesprochen. https://www.theguardian.com/world/2023/nov/04/politicians-who-delay-climate-action-must-live-with-consequences-says-who-expert
-
-
-
Non-aims (but may happen anyway):
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Public Reviews:
Reviewer #1 (Public Review):
Summary: Hansen et al. dissect the molecular mechanisms of bacterial ice nucleating proteins mutating the protein systematically. They assay the ice nucleating ability for variants changing the R-coils as well as the coil capping motifs. The ice nucleation mechanism depends on the integrity of the R-coils, without which the multimerization and formation of fibrils are disrupted.
Strengths: The effects of mutations are really dramatic, so there is no doubt about the effect. The variants tested are logical and progressively advance the story. The authors identify an underlying mechanism involving multimerization, which is plausible and compatible with EM data. The model is further shown to work in cells by tomography.
Weaknesses: The theoretical model presented for how the proteins assemble into fibrils is simple, but not supported by much data.
Agreed. This theoretical INP multimer model was introduced to promote discussion and elicit ideas on how to prove or disprove it. The length and width of the fibres are defined by cryo-ET results, in which the narrow width is just sufficient to accommodate a dimer of the INPs, and the long length requires that several INPs are joined end to end. Their antiparallel arrangement produces identical ends to the dimer and avoids steric clash of the C-terminal cap structures as well as the C-terminal GFP tag. This model can accommodate the wide range of INPs lengths seen in nature (due to different numbers of water-organizing coils) and introduced in mutagenesis experiments (Forbes et al. 2022). It defines a critical role for the R-coil subdomain in joining the dimers together and explains why this region cannot be shortened by more than a few coils either in nature or by experimentation.
In response to specific criticisms of the model (Fig. 9), we have redesigned this to be less schematic and to incorporate several copies of the AlphaFold-predicted structure.
Reviewer #2 (Public Review):
Summary:
This paper further investigates the role of self-assembly of ice-binding bacterial proteins in promoting ice-nucleation. For the P. borealis Ice Nucleating Protein (PbINP) studied here, earlier work had already determined clearly distinct roles for different subdomains of the protein in determining activity. Key players are the water-organizing loops (WO-loops) of the central beta-solenoid structure and a set of non-water-organizing C-terminal loops, called the R-loops in view of characteristically located arginines. Previous mutation studies (using nucleation activity as a read-out) had already suggested the R-loops interact with the WO loops, to cause self-assembly of PbINP, which in turn was thought to lead to enhanced ice-nucleating activity. In this paper, the activities of additional mutants are studied, and a bioinformatics analysis on the statistics of the number of WO- and R-loops is presented for a wide range of bacterial ice-nucleating proteins, and additional electron-microscopy results are presented on fibrils formed by the non-mutated PbINP in E coli lysates.
Strengths:
-A very complete set of additional mutants is investigated to further strengthen the earlier hypothesis.
-A nice bioinformatics analysis that underscores that the hypothesis should apply not only to PbINP but to a wide range of (related) bacterial ice-nucleating proteins.
-Convincing data that PbINP overexpressed in E coli forms fibrils (electron microscopy on E coli lysates).
Weaknesses:
-The new data is interesting and further strengthens the hypotheses put forward in the earlier work. However, just as in the earlier work, the proof for the link between self-assembly and ice-nucleation remains indirect. Assembly into fibrils is shown for E coli lysates expressing non-mutated pbINP, hence it is indeed clear that pbINP self-associates. It is not shown however that the mutations that lead to loss of ice-nucleating activity also lead to loss of self-assembly. A more quantitative or additional self-assembly assay could shine light on this, either in the present or in future studies.
The control cryo-ET experiment where the R-coils were deleted and INP fibres were not seen is consistent with a link between the loss of ice-nucleating activity and the loss of self-assembly. However, we agree that a more direct measurement of the physical state of INP molecules is needed to prove the link.
-Also the "working model" for the self-assembly of the fibers remains not more than that, just as in the earlier papers, since the mutation-activity relationship does not contain enough information to build a good structural model. Again, a better model would require different kinds of experiments, that yield more detailed structural data on the fibrils.
Reviewer #1 also raised these criticisms of the model, which we have responded to (above). Testing the model is a focus of our continuing experiments on INPs.
Reviewer #3 (Public Review):
Summary: in this manuscript, Hansen and co-authors investigated the role of R-coils in the multimerization and ice nucleation activity of PbINP, an ice nucleation protein identified in Pseudomonas borealis. The results of this work suggest that the length, localization, and amino acid composition of R-coils are crucial for the formation of PbINP multimers.
Strengths: The authors use a rational mutagenesis approach to identify the role of the length, localisation, and amino acid composition of R-coils in ice nucleation activity. Based on these results, the authors hypothesize a multimerization model. Overall, this is a multidisciplinary work that provides new insights into the molecular mechanisms underlying ice nucleation activity.
Weaknesses: Several parts of the work appear cryptic and unsuitable for non-expert readers. The results of this work should be better described and presented.
In revising the manuscript for reposting we have rewritten sections to make it more accessible to the non-expert. Incorporating the detailed recommendations of the reviewers has been helpful in this effort.
Recommendations for the authors: please note that you control which revisions to undertake from the public reviews and recommendations for the authors
Reviewer #1 (Recommendations For The Authors):
Introduction: Curiously, there is no mention at all in the introduction of what the biological function of these ice-nucleating proteins is.
We added the following text to the first paragraph of the Introduction: ”INP-producing bacteria are widespread in the environment where they are responsible for initiating frost (4) and atmospheric precipitation (5). As such, these bacteria play a significant role in the Earth’s hydrological cycle and in agricultural productivity.”
Line 70: TXT, SLT, and Y motifs are mentioned, but only the first is described. Also, TXT name alternates between TXT and TxT in the manuscript. (I think the latter is more correct).
These putative water-organizing motifs are introduced in the preceding paper (new ref 8). We now use TxT consistently throughout the manuscript and have converted SLT to SxT because L is an inward-pointing residue that is not directly involved in water organization.
Line 236: A construct with repeats deleted is tested for thermostability, but it is not really explained what hypothesis this experiment is supposed to test.
This is an observation that adds information about the stability of the INP multimers and will need to be explained by the structure.
Line 267: The authors test a mutant where the N-terminal coil is disrupted and find a big effect. Nevertheless, no conclusion is drawn. What does this result mean?
On the contrary, INP activity is not appreciably affected by N-terminal deletion.
Line 269: The CryoEM begins rather abruptly with technical details. Consider introducing the paragraph with a brief statement about what you want to investigate. Also, the analysis seems a little half-hearted.
Given that the authors describe other EM studies of fibrils of the same protein it would be nice with a clear statement about what is new in their study and how it compares to previous studies.
We have added this statement about why we used Cryo-EM: “The idea that INPs must assemble into larger structures to be effective at ice nucleation has persisted since their discovery (6). In the interim the resolving power of cryo-EM has immensely improved. Here we elected to use cryo-electron tomography to view the INP multimers in situ and avoid any perturbation of their superstructure during isolation.”
Fig. 7B: Single-letter amino acid codes are always capitalized.
We have revised this figure to use capital letters for the amino acids.
Fig. 9: This figure is really hard to read even though it is very simplistic. I would consider making a figure with several copies of the AlphaFold model instead. Especially panel D, I do not know what is supposed to show.
We have followed this advice and have completely revised the figure using copies of the AlphaFold model. Panel D (now C) shows two cross-sections through the AlphaFold model.
Line 355 onwards: The model of the INP is the weakest part of the manuscript. This reviewer considers that the model is crude and it is unclear what information the model is supported by. The authors might want to consider running an AlphaFold multimer to get a better model of at least the dimer.
Our objective now is to validate or disprove the model by experimentation using protein-protein cross-linking in conjunction with mass spectrometry, and higher resolution cryo-EM methods.
Reviewer #2 (Recommendations For The Authors):
I would suggest more frankly discussing the weaknesses mentioned in my public review, as well as approaches that could be used in the future to address these.
In the cryo-ET analysis, INP mutations of the R-coils that lead to loss of ice-nucleating activity fail to show fibres in the bacteria (Fig. S4), which is consistent with the loss of self-assembly. We are working on physical methods that can assess the degree of assembly of the different INP constructs and mutations. We are working to validate and improve the working model of INP multimers.
Reviewer #3 (Recommendations For The Authors):
Abstract
Line 18. Below 0 Celsius should be < 0 {degree sign}C.
Done
Line 25. E. coli should be Escherichia coli
Done
Line 29. E. coli should be in italics.
Done
Introduction
The introduction is weak and not suitable for non-expert readers. Moreover, in some parts it is cryptic and it is not clear whether the authors are describing INP in general or PbINP. The introduction should be reorganized to highlight the novelty of this paper compared to Forbes et al. 2022.
The changes we have made to the Introduction can be seen in the ‘documents compared’ version where the changes are tracked.
Line 45. It is unclear whether this paragraph is a result reported in the literature or the result of this work. Please clarify.
These are results reported in the literature as indicated by the references cited in the paragraph.
Line 54. It is not clear whether this paragraph describes PbINP or INP in general.
This paragraph begins with INPs in general and then focuses on PbINP.
Results
Line 109. This section would benefit from a paragraph in which the authors describe the rationale for this bioinformatic analysis.
We added the following Statement: “A bioinformatic analysis of bacterial INPs was undertaken to identify their variations in size and sequence to understand what is common to all that could guide experiments to probe higher order structure and help develop a collective model of the INP multimer.”
Some information is needed on the selected sequences such as sequence identity, what do the authors mean by nr database?
The abbreviation nr has been replaced by ‘non-redundant’. As explained in that same paragraph the sequences selected were those from long-read sequences that could be relied on to accurately count the number of solenoid coils.
Line 144. The standard deviation is necessary to understand whether these differences are statistically significant.
These have been added as p values.
Figure 2. I noticed that the authors used GFP-tagged PbINP. Why? In addition, panel C is never mentioned in the manuscript.
The GFP tag was used to confirm expression of the PbINP in E. coli. We have added this sentence: “As previously described these constructs were tagged with GFP as an internal control for INP production, and its addition had no measured effect on ice nucleation activity (8).”The GFP tag was also useful as in internal control for the heat denaturation experiments featured in Fig. 6, where it lost its fluorescence between 65 and 75 °C.
Fig. 2C is now cited alongside Fig. 2B.
Figure 3. In my opinion, the results of the R-coil deletion should also be shown in Figure 2. Line 171. This section is cryptic. A logo sequence or an alignment of WO-coils and R-coils of PbINP could be helpful for the reader. Instead of the architecture of the whole protein, it would be useful to have the sequence of the R-coils with the residues that the authors mutagenised.
The logo sequences are available in Fig. 1.
Line 202. Here, the authors describe a new experimental setup. As the Materials and Methods section follows the Discussion, the authors should state in the first paragraph of the Results section that IN activity was measured on whole cells.
We have now modified the introductory sentence to read: “Ice nucleation assays were performed on intact E. coli expressing PbINP to assess the activity of the incremental replacement mutants.”
Line 202. The authors investigated the effects of pH and temperature (Line 223) on the IN activity. The authors should better introduce the rationale for these experiments and how they fit within the work.
We have now modified the following sentence to provide the rationale: “To see how important electrostatic interactions were in the multimerization of PbINP as reflected by its ice nucleation activity, it was necessary to lyse the E. coli to change the pH surrounding the INP multimers.”
Line 245. This work is supported by a model provided by Alphafold. I wonder how reliable this model is; the authors should indicate the quality of the model and provide the accuracy values of the residuals.
This information is now provided in Figure S1.
Line 259. Typically in mutagenesis studies, a key residue is substituted with alanine to create a loss of function variant. In this case, the authors have made the following substitutions F1204D, D1208L, and Y1230D, it is not clear to me why the authors have replaced an aromatic residue with one of aspartic acid that is negatively charged.
We have justified these more extreme changes as follows: “For an enhanced effect of the mutations hydrophobic residues were replaced with charged ones and vice versa.”
Line 269. This paragraph seems completely unrelated to the section entitled: The β-solenoid of INPs is stabilized by a capping structure at the C terminus, but not at the N terminus.
We had omitted the sub-heading “Cryo-electron tomography reveals INPs multimers form bundled fibres in recombinant cells”, which is now in place.
Discussion
Overall, the discussion is too long and some parts appear cryptic, this section should be reorganized.
The changes we have made to the Discussion can be seen in the ‘documents compared’ version where the changes are tracked.
Line 354. It is not clear what experimental evidence supports this model. In the results, this model is never mentioned and it is not clear whether it was obtained by computational analysis or not.
The model is presented in the Discussion because it was not arrived at by experimentation but is an attempt to integrate the observations made in the Results section. The experimental evidence that supports this model is reviewed in the Discussion section: “Working model of the INP multimer is consistent with the properties of INPs and their multimers.”
Line 354. The authors used GFP-tagged PbINP. The Authors should discuss the role of GFP in this model and IN activity. A measurement of IN activity on PbINP without GFP would be useful.
We have previously shown in Ref 8 that the GFP tag has no detrimental effect on ice nucleation activity. Our model for the INP multimer can accommodate this C-terminal tag without any steric hindrance.
Line 364. The Authors hypothesize that electrostatic interactions stabilize end-to-end dimer associations. To test this hypothesis, the authors should measure the activity of IN at increasing concentrations of NaCl. It is known that high salt concentrations shield charges by preventing the formation of electrostatic intermolecular interactions.
We have added this sentence to the Discussion: “Another useful test of the electrostatic component to the multimer model would be to study the effects of increasing salt concentration on ice nucleation activity of the E. coli extracts.”
Line 439. Conclusions should be useful for the reader.
Material and Methods
In several sections, the authors refer to what has already been published in Forbes et al. However, the minimum information should also be described in this work. In addition, the Authors should indicate the number of replicates.
The ice nucleation assays on whole cells were done on the WISDOM apparatus, which integrates 100’s of individual measurements to obtain a T50 value. These T50 values were confirmed by assays on the nanoliter osmometer apparatus. The numbers of replicates used on the nanoliter osmometer apparatus are indicated by box and whisker plots in Figs. 5 & 6 with boxes and bars showing quartiles, with medians indicated by a centre line.
Line 500. This paragraph should be removed as the results are not described in the manuscript.
This is a Methods section that describes how that INPs were expression in E. coli. It has details that are important for researchers who want to repeat our findings, such as the use of the Arctic Express strain for producing INP.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
"MAGIC" was introduced by the Rong Li lab in a Nature letters article in 2017. This manuscript is an extension of this original work and uses a genome wide screen the Baker's yeast to decipher which cellular pathways influence MAGIC. Overall, this manuscript is a logical extension of the 2017 study, however the manuscript is challenging to follow, complicated by the data often being discussed out of sequence. Although the manuscripts make claims of a mechanism being pinpointed, there are many gaps and the true mechanisms of how the factors identified in the screen influence MAGIC is not clear. A key issue is that there are many assumptions drawn on previous literature, but central aspects of the mechanisms being proposed are not adequately shown.
Key comments:
- Reasoning and pipelines presented in the first two sections of the results are disordered and do not follow figure order. In some instances, the background to experimental analyses such as detailing the generation of spGFP constructs in the YKO mutant library, or validation of Snf1 activation are mentioned after respective results are discussed. This needs to be fixed.
We thank the reviewer for pointing out potential confusion to readers. We have revised the first two sections according to reviewer’s suggestion. (Page 4-6)
- In general there is a lack of data to support microscopy data and supporting quantification analysis. The validity of this data could be significantly strengthened with accompanying western blots showing accumulation of a given constructs in mitochondrial sub compartments (as was the case in the lab’s original paper in 2017).
We appreciate the reviewer’s suggestion on biochemical validations. However, the validity of this imaging-based assay for detecting import of cytosolic misfolded proteins into mitochondria, including the use of FlucSM as a model misfolding-prone protein, was carefully established in our previous study by using appropriate controls, super resolution imaging, APEX-based proximity labeling, and classical biochemical fractionation and protease protection assay (Ruan et al., 2017 Nature, ref. 10). We have reminded readers of these validation experiments in the previous study on Page 4, line 14-17.
In recent years, advancements in imaging-based tools have allowed many protein interactions and dynamic processes, which were previously examined by using biochemical assays in lysates of populations of cells, to be observed with various level of quantitation in live cells with intact cellular compartments. Many of these assays, e.g., the RUSH assay for ER to Golgi transport, FRAP-based analysis for nuclear/cytoplasmic shuttling of proteins, or FRET-based assays for protein-protein interactions, have been well accepted and even embraced by the respective fields of study once validated with genetic and biochemical approaches. The advantages for live-cell imaging-based assays are often their unique ability to report dynamic processes or unstable molecular species with spatiotemporal sensitivity. Respectfully, it is our view, based on our own experience, that the traditional protease protection assay is not adequate or sufficiently quantitative for examining the presence of unstable misfolded proteins in mitochondrial sub-compartments, given the obligatorily lengthy in vitro cell lysis and mitochondrial isolation process, during which the unstable proteins are continuously being degraded. This likely explains our previous biochemical fractionation result that only weak protein signals were detected in the matrix fraction (Ruan et al., 2017 Nature, ref. 10). In addition, unlike stably folded, native mitochondrial matrix proteins, misfolded/unfolded proteins such as Lsg1 or FlucSM are highly susceptible to protease treatment. This sensitivity makes the assay unreliable for detecting such proteins if trace amount of the protease penetrates mitochondrial membranes during cell lysis even without detergent treatment.
While we agree that protease protection assay is highly valuable for qualitative detection of the presence of a protein in certain mitochondrial compartments or determining its topology on membranes, this assay (regrettably in our hands) does not allow quantitative comparisons that were necessary for this study, because of inherent sample to sample variation, yet the laborious and low throughput nature of this assay makes it difficult for adequate statistical analysis. Furthermore, the level of protein detection in various fractions is highly sensitive to how the sample is treated with protease and detergent. Our imaging-based quantification, on the other hand, allows us to compare increased or decreased presence of GFP11-tagged proteins in mitochondria under different metabolic conditions or in different mutant or wild-type strains. Data from hundreds of cells and at least three independent biological replicates allowed us to apply adequate statistical analysis to aid our conclusion.
- Much of the mechanisms proposed relies on the Snf1 activation. This is however not shown but assumed to be taking place. Given that this activation is central to the mechanism proposed, this should be explicitly shown here - for example survey the phosphorylation status of the protein.
Both REG1 deletion and low glucose conditions have been demonstrated extensively for Snf1 phosphorylation and activation in yeast (e.g., many seminal papers from Marian Carlson’s and other lab, such as ref. 24-28). In our study, we have indeed corroborated this by showing that Mig1 was exported from the nucleus in Δreg1 mutant and in low glucose conditions (Figure 1—figure supplement 2H and I. The mechanism of Snf1-mediated nuclear export of Mig1 has been characterized in detail as well (e.g., ref. 29-31).
Recommendations for the authors: please note that you control which, if any, revisions, to undertake
Reviewer #1 (Recommendations For The Authors):
SPECIFIC COMMENTS
Genetic Screen o Line 20 - the narrative moves to SNF1, but the reasoning for the selection of this Class I substrate is not defined. What was the basis for this selection - what happened to the other Class I substrates. It is stated in the text that the other Class I proteins show the same increase in spGFP signal. The data showing this should be included in the Supp Figure 1 for transparency.
We have moved the narratives of Snf1 function to the second section and clarified that we were interested in this gene due to its central role in metabolism and mitochondrial functions that may influence MAGIC (Page 5: line 16-20). Other genes in class 1 were shown in Table S1. Detailed discussion of other genes in this category is beyond the scope of this study.
Snf1/AMPK prevents MP accumulation in mitochondria:
The FlucDM data in human RPE-1 mitochondria seems to be added to only increase the significance of the work. The mechanisms suggested here with Hap4 would not be possible in human cells as there is no homologue of this protein in human cells. Making generalisations that these pathways are conserved based on this one experiment is not appropriate.
We appreciate this feedback. Although the focus of this study is the regulation of MAGIC by the yeast AMPK Snf1, we would like to share our initial observation that suggests a similar role of AMPK in human RPE-1 cells. We acknowledge that the underlying mechanisms regarding the downstream transcription factors and pathway for misfolded protein import could be different in mammalian cells, but the overall effect of AMPK in mitochondrial biogenesis is well known to resemble that of Snf1. To avoid making over-generalization, we changed our statement of conclusion to: ‘These results suggest that AMPK in human cells regulates MP accumulation in mitochondria following a similar trend as in yeast, although the underlying mechanisms might differ between these organisms.’ (Page 7: line 2-4)
Mechanisms of MAGIC regulation by Snf1:
While the lysosome is ruled out here the authors have not considered the proteasomes. Is there a reason for this? Given accumulation of aggregates outside of mitochondria, and previous connections of the proteasome to mitochondrial quality control this would be an obvious thing to check. We examined the role of lysosomal degradation here because it is known to be activated under Snf1active condition (ref. 37). We appreciate this feedback and have included a new analysis on MG132treated FlucSM spGFP strains in which PDR5 gene was deleted to avoid drug efflux.
This result suggests that the proteosome inhibitor did not ablate the difference in FlucSM accumulation between these conditions. That MG132 promoted mitochondrial accumulation of FlucSM in both high glucose and low glucose conditions was not surprising, as FlucSM is also degraded by proteasome in the cytosol (Ruan et al., 2017 Nature, ref. 10), and preventing this pathway could divert more of such protein molecules toward MAGIC. (Page 7: line 26-29).
Line 13 "we hypothesized that elevated expression of mitochondrial preproteins induced by the activation of Snf1-Hap4 axis (REF) may outcompete MPs for import channels". This statement has some assumptions. The authors have not shown that Snf1 is activated in thier models and more importantly that they have an accumulation of mitochondrial preproteins. The data that follows using the cytosolic domains of the receptors is hard to rationalise without seeing evidence that there is in fact pre-protein accumulation or impacts on the mitochondrial proteome in this system.
As stated in our response to main point [3], Snf1 activation in reg1 mutant or in low glucose is evidenced by our data showing Mig1 export from nucleus to cytoplasm and had also been shown in many previous publications. A recent study (Tsuboi et al., 2020 eLife) also showed a dramatic increase in mitochondrial volume fraction in Δreg1 cells and wild-type cells in respiratory conditions, further supporting the role of Snf1 in mitochondrial biogenesis. We have provided relevant references in the manuscript (ref. 24-28).
The ability of Tom70 cytosolic domain (Tom70cd), which can bind mitochondrial preproteins but not localize to mitochondria due to lack of N-terminal targeting sequence, to compete with endogenous Tom70 for mitochondrial preproteins has been well documented (ref. 47-49). However, we agree with the reviewer that a future quantitative proteomics study to measure changes in mitochondrial proteome under Tom70cd over-expression could allow more accurate interpretation of our experimental result.
AMPK protects cellular fitness during proteotoxic stress:
The inhibition of preprotein import by overexpressing the cytosolic domains of receptors is not supported with some proof of principle data. If this was working as the authors assume, it is not clear why only an effect with Tom70 is observed. The majority of the mitochondrial proteome is imported via Tom20/Tom22 so this does not align with what the authors are suggesting. Is the Tom70CD and any associated Hsp proteins facilitating the observed changes to the MPs?
We thank the reviewer for raising this point. We expressed different TOM receptor cytosolic domains but found that Tom70cd had the strongest rescue on MAGIC under AMPK activation conditions. It is possible that certain Tom70 substrates or Tom70-assoicated heat shock proteins inhibit the import of MAGIC substrates. We admit that a clear explanation of this unexpected observation necessitates a better understanding of how native and MAGIC substrates are selected and imported by the outer-membrane channel. We can only offer our best interpretation based on the current state of the understanding, and we feel that we have been careful to acknowledge such in the manuscript.
While the effect of AMPK inactivation reducing FUS accumulation was striking, this was all in the context of overexpression and may not be physiologically relevant - or may occur very transiently under basal conditions. Is GST an appropriate control here, why not use WT FUS? Likewise, one representative image is shown in Figure 5 - can the authors show western blotting that mitochondrial accumulation of FUS can be reduced with AMPK activation?
We thank the reviewer for this suggestion, however, overexpressed FUS WT is also aggregation prone (Zhihui Sun et al., 2011, PloS Biology; Shulin Ju, 2011, PloS Biology; Jacqueline C. Mitchell et., 2013, Acta Neuro). We believe that GST, as a well-folded protein, is an appropriate control (Ruan et al., 2017 Nature, ref. 10). As we discussed in response to main point [1], the in vitro assay involving protease protection and western blots do not allow reliable quantitative comparison in our hands.
In text changes.
The analysis pipeline of the YKO mutant library should be introduced at the very start of the first paragraph, not the end.
Addressed on Page 4, second paragraph
"Fluc" should be introduced as "Firefly luciferase" within the first paragraph of the first section, also need to define SM and DM in FlucSM/FlucDM - these appear to be missing.
Addressed in both Introduction (Page 2: line 29; Page 3: line 8-9) and re-clarified in Result (Page 5: line 27-29)
The role of Reg1 should be explicitly stated in the text, not just in the figure.
Addressed on Page 6: line 3-6
Figure 1H legend states Reg1 (WT) is Snf1-inactive and Reg1 KO is Snf1-active. This wording is confusing and is not supported by data, but by assumption. If the authors want to use this wording then evidence needs to be provided - as suggested above.
We have changed this and other legends to only show genotypes and medium conditions.
"Tom70cd overexpression also exacerbated growth rate reduction due to FlucSM expression in HG medium (Figure 4A; Figure 4 - figure supplement 1A)" should be figure supplement 1B.
Fixed on Page 10: line 10
"These results suggest that glucose limitation protects mitochondria and cellular fitness during FlucSM induced proteotoxic stress through Snf1-dependent inhibition of MP import into mitochondria". The phrase "Snf1-dependent inhibition of MP import into mitochondria" may be misleading, as Snf1 isn't modulating import directly but is acting on transcriptional regulators to modulate mitochondrial import under stress.
We restated the conclusion as follows: ‘These results suggest that Snf1 activation under glucose limitation protects mitochondrial and cellular fitness under FlucSM-associated proteotoxic stress.’ (Page 10: line 20- 21)
"... Significantly increased the fraction of spGFP-positive and MMP-low cells in both HG and LG medium (Figure 4G-K)" should be (Figure 4J-K).
Fixed on Page 11: line 3
Reviewer #2 (Public Review):
Work of Rong Li´s lab, published in Nature 2017 (Ruan et al, 2017), led the authors to suggest that the mitochondrial protein import machinery removes misfolded/aggregated proteins from the cytosol and transports them to the mitochondrial matrix, where they are degraded by Pim1, the yeast Lon protease. The process was named mitochondria as guardian in cytosol (MAGIC).
The mechanism by which MAGIC selects proteins lacking mitochondrial targeting information, and the mechanism which allows misfolded proteins to cross the mitochondrial membranes remained, however, enigmatic. Up to my knowledge, additional support of MAGIC has not been published. Due to that, MAGIC is briefly mentioned in relevant reviews (it is a very interesting possibility!), however, the process is mentioned as a "proposal" (Andreasson et al, 2019) or is referred to require "further investigation to define its relevance for cellular protein homeostasis (proteostasis)" (Pfanner et al, 2019).
Rong Li´s lab now presents a follow-up story. As in the original Nature paper, the major findings are based on in vivo localization studies in yeast. The authors employ an aggregation prone, artificial luciferase construct (FlucSM), in a classical split-GFP assay: GFP1-10 is targeted to the matrix of mitochondria by fusion with the mitochondrial protein Grx5, while GFP11 is fused to FlucSM, lacking mitochondrial targeting information. In addition the authors perform a genetic screen, based on a similar assay, however, using the cytosolic misfolding-prone protein Lsg1 as a read-out.
My major concern about the manuscript is that it does not provide additional information which helps to understand how specifically aggregated cytosolic proteins, lacking a mitochondrial targeting signal could be imported into mitochondria. As it stands, I am not convinced that the observed FlucSM-/Lsg1-GFP signals presented in this study originate from FlucSM-/Lsg1-GFP localized inside of the mitochondrial matrix. The conclusions drawn by the authors in the current manuscript, however, rely on this single approach.
In the 2017 paper the authors state: "... we speculate that protein aggregates engaged with mitochondria via interaction with import receptors such as Tom70, leading to import of aggregate proteins followed by degradation by mitochondrial proteases such as Pim1." Based on the new data shown in this manuscript the authors now conclude "that MP (misfolded protein) import does not use Tom70/Tom71 as obligatory receptors." The new data presented do not provide a conclusive alternative. More experiments are required to draw a conclusion.
In my view: to confirm that MAGIC does indeed result in import of aggregated cytosolic proteins into the mitochondrial matrix, a second, independent approach is needed. My suggestion is to isolate mitochondria from a strain expressing FlucSM-GFP and perform protease protection assays, which are well established to demonstrate matrix localization of mitochondrial proteins. In case the authors are not equipped to do these experiments I feel that a collaboration with one of the excellent mitochondrial labs in the US might help the MAGIC pathway to become established.
We thank Reviewer 2 for these suggestions, but we would like to respectfully offer our difference in opinion:
a. Regarding the suggestion “to isolate mitochondria from a strain expressing FlucSM-GFP and perform protease protection assays”, in our previous study (Ruan et al., 2017 Nature, ref. 10), we have indeed applied two independent biochemical approaches: APEX-mitochondrial matrix proximity labeling and classic protease protection assay using non-spGFP strains, both consistently confirmed the entry of misfolded proteins into mitochondria under proteotoxic stress. Our super-resolution imaging further confirmed the import of the split GFP-labeled proteins to be inside mitochondria. Moreover, as we discussed in response to Reviewer 1’s main point [2], while the suggested biochemical assay is useful for validating topology within mitochondria, it is not quantitative and may not reliably report the in vivo accumulation of misfolded proteins in mitochondria due to the isolation process that takes hours, during which the unstable proteins could be continuously degraded within mitochondria.
While we agree with the reviewer that we do not yet understand how misfolded proteins are imported into mitochondria, it would be unfair to state “as it stands, I am not convinced..” simply because the underlying mechanism remains to be elucidated. We would like to point out that targeting sequences for many well-established mitochondrial proteins are still not well defined. It is well known that mitochondrial targeting sequences are not as uniformly predictable as, for example, nuclear targeting sequences. Our finding that deletion of TOM6 enhances the import of misfolded proteins suggest that their import may involve the TOM channel in a more promiscuous conformation, which may reduce the requirement for a specific sequence-based targeting signal associated with the substrate.
b. Regarding the role of Tom70, in our 2017 study, using proteomics and subsequently immunoprecipitation we validated the binding, albeit not necessarily direct, between misfolded protein FlucSM and Tom70. Therefore, “we speculate that protein aggregates engaged with mitochondria via interaction with import receptors such as Tom70”. Recent studies from different labs confirmed the interactions between Tom70 and aggregation prone proteins (Backes et al., 2021, Cell Reports; Liu et al., 2023, PNAS). In the current study, surprisingly, knockout of TOM70 did not block MAGIC, suggesting redundant components of mitochondria import system may facilitate the recruitment of misfolded proteins in the absence of Tom70, and this does not contradict the notion that Tom70 helps tether protein aggregates to mitochondria.
c. Regarding other studies also showing the import of misfolding or aggregation-prone cytosolic proteins into mitochondria, there have been at least several recent studies in the literature for mammalian cells involving either model substrates or disease proteins (e.g., ref. 12-15; 56-58; Vicario, M. et al. 2019 Cell Death Dis.). The studies are briefly mentioned in Introduction (Page 3, paragraph 2). The present manuscript documents a major effort from our group using whole genome screen in yeast to understand the mechanism and regulation of MAGIC. Many of the screen hits have yet to be studied in detail. We full agree that much remains to be understood about whether and how this pathway affects proteostasis and what might be the evolutionary origin for such a mechanism.
Additional comments:
The genetic screen:
The genetic screen identified five class 1 deletion strains, which lead to enhanced accumulation of Lsg1GFP and a larger set of class 2 mutants, which lead to reduced accumulation. Please note, in my opinion it is not clear that accumulation of the reporters occurs inside the mitochondria. In any case, the authors selected one single protein for further analysis: Snf1, the catalytic subunit of the yeast SNF complex, which is required for respiratory growth of yeast.
The results of the screen are not discussed in any detail. The authors mention that ribosome biogenesis factors are abundant among class 2 mutants. Noteworthy, Lsg1 is involved in 60S ribosomal subunit biogenesis. As Lsg1-GFP11 is overexpressed in the screen this should be discussed. Class 2 mutants also .include several 40S ribosomal subunit proteins (only one of the 60S subunit). What does this imply for the MAGIC model? Also, it should be discussed that the screen did not identify reg1 and hap4, which I had expected as hits based on the data shown in later parts of the manuscript.
We apologize for the confusion, but the GFP11 tag was in fact knocked into the C-terminus of Lsg1 in the endogenous LSG1 locus, and so Lsg1 was not overexpressed in the screen. We have made sure that this information is clearly conveyed in the revised manuscript (Page 4: line 20-22). How the ribosome small subunit affects MAGIC is beyond the focus of the current study and will be pursued in the future.
Regarding why certain mutants did not come out of our initial screen, this is not unexpected as the YKO collection, although extremely valuable to the community, is known to be potentially affected by false knockouts, suppressor accumulation and cross contamination (for references, e.g., Puddu et al., 2019 Nature). Additionally, high-through screens can also miss real hits. In our experience using this collection in several studies, we often found additional hits from analysis of genes implicated by known genetic or biochemical interactions.
Mutant yeast strains and growth assays:
The Δreg1 strain grows poorly in all growth conditions and frequently accumulates extragenic suppressor mutations (Barrett et al, 2012). It would be good to make sure that this is not the case in the strains employed in this study. My suggestion is to do (and show) standard yeast plating assays with the relevant mutant strains including Δreg1, snf1, hap4, Δreg1Δhap4 without the split GFP constructs and also with them (i.e. the strains that were used in the assays).
We thank the reviewer for the suggestion. We were indeed aware of potential accumulation of suppressor mutations from the YKO library. Therefore, deletion mutants like Δreg1 and loss of TFs downstream of Snf1 that we used in the study after the initial screen were all freshly made and validated. At least 3 independent colonies were analyzed for each mutant (mentioned in Methods & Materials; Page 33, line 57). Moreover, the plating assay suggested here may not reveal additional information other than growth, which was taken into consideration during our experiments.
Activation of Snf1 in the relevant strains should be tested with the commercially available antibody recognizing active Snf1, which is phosphorylated at Snf1-T210.
Snf1 activation was validated by the Mig1 exporting from the nucleus. We also noted above that many studies have clearly demonstrated Snf1 activation in reg1 mutant and under low glucose growth (e.g., ref. 24-28).
Effects of Snf1, Reg1, Hap4 and respiratory growth conditions:
The authors show that split GFP reporters show enhanced accumulation during fermentative growth, in Δsnf1, and Δreg1Δhap4 and fail to accumulate during respiratory growth, in Δreg1 and upon overexpression of HAP4. Analysis of Δhap4 should be included in Fig. 2. The suggestion that upon activation of Snf1 enhanced Hap4-dependent expression "outcompetes" misfolded protein import seems unlikely as only a fraction of mitochondrial genes is under control of Hap4. Without further experimental evidence I do not find that a valid assumption. More likely, the membrane potential plays a role: it is low during fermentative growth, in Δsnf1 and Δreg1Δhap4, and high during respiratory growth and in Δreg1 (Hübscher et al, 2016). Such an effect of the membrane potential seems to contradict the findings in the 2017 paper and the issue should be clarified and discussed. In any case, these data do not reveal that GFP reporters accumulate inside of the mitochondria. Based on the currently available evidence they may accumulate in close proximity/attached to the mitochondria. This has to be tested directly (see above).
We have included our analysis of Δhap4 in Page 8: line 14-15 and Figure 2—figure supplement 1H. Consistent with our result for Δreg1Δhap4 in glucose-rich medium, HAP4 deletion also resulted in a significant increase in mitochondrial accumulation of FlucSM in low glucose medium compared to WT. It did not have effect in high glucose condition in which Snf1 is largely inactive.
It is our view that the importance of Hap4 should not be judged by the number of nuclear encoded mitochondrial proteins they regulate. Still, this sub-group comprises a considerable number of proteins (at least 55 genes upregulated by Hap4 overexpression, ref. 43), and certain substrates may be more competitive with misfolded cytosolic proteins for import. Our genetic data strongly suggest that the inhibitory effect of active Snf1 on MAGIC is through Hap4, although we agree with the reviewer that detailed mechanism on how Hap4 substrates may compete with misfolded proteins need to be addressed in future studies.
Membrane potential is important for mitochondrial import. During respiratory growth and in Δreg1, membrane potential is well known to be elevated comparing to fermentative condition (e.g., Figure 4C). Our observation that the import of misfolded proteins into mitochondria is reduced under these conditions simply suggests that this reduction is not due to a lack of membrane potential. This is not in any way contradictory to our 2017 finding that misfolded protein import requires membrane potential (ref. 10).
Again, the accumulation of misfolded proteins in mitochondria, especially the model protein FlucSM, has been validated by using super resolution imaging (Figure 1—figure supplement 1A) in addition to the protease protection assay in our 2017 study.
Introduction and Discussion:
Both are really short, too short in my view. Please provide some background of the general principals of mitochondrial protein import and information of how exactly translocation of cytosolic, aggregated proteins (lacking targeting information) is supposed to work. I do not understand exactly how the authors actually envisage the process.
We thank the reviewer for the suggestion. In the revised manuscript, we have extended both Introduction (Page 2-3) and Discussion section (Page 11-13)
The results from the 2022 eLife paper (Liu et al, 2022), which suggests that Tom70 may "regulate both the transcription/biogenesis and import of mitochondrial proteins so the nascent mitochondrial proteins do not compromise cytosolic proteostasis or cause cytosolic protein aggregation" should be discussed with regard to the data obtained with overexpression of the Tom70 soluble domain.
We thank the reviewer for pointing out that study and we have included a brief comment in Discussion section (Page 12: line 13-16). As the function of Tom70 appears to be complex, we cannot exclude the possibility that overexpression of the cytosolic domain has additional or indirect effects in addition to that due to preprotein binding.
Andreasson, C., Ott, M., and Buttner, S. (2019). Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 20, e47865.
Barrett, L., Orlova, M., Maziarz, M., and Kuchin, S. (2012). Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot Cell 11, 119-128.
Hubscher, V., Mudholkar, K., Chiabudini, M., Fitzke, E., Wolfle, T., Pfeifer, D., Drepper, F., Warscheid, B., and Rospert, S. (2016). The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae. Nucleic Acids Res. 44, 5629-5645.
Liu, Q., Chang, C.E., Wooldredge, A.C., Fong, B., Kennedy, B.K., and Zhou, C. (2022). Tom70-based transcriptional regulation of mitochondrial biogenesis and aging. Elife 11
Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20, 267-284.
Ruan, L., Zhou, C., Jin, E., Kucharavy, A., Zhang, Y., Wen, Z., Florens, L., and Li, R. (2017). Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443-446.
I prefer to have "all in one", also due to time limitation.
It would be great to be able to upload the review file as otherwise formatting and symbols get lost.
Reviewer #3 (Public Review):
In this study, Wang et al extend on their previous finding of a novel quality control pathway, the MAGIC pathway. This pathway allows misfolded cytosolic proteins to become imported into mitochondria and there they are degraded by the LON protease. Using a screen, they identify Snf1 as a player that regulates MAGIC. Snf1 inhibits mitochondrial protein import via the transcription factor Hap4 via an unknown pathway. This allows cells to adapt to metabolic changes, upon high glucose levels, misfolded proteins an become imported and degraded, while during low glucose growth conditions, import of these proteins is prevented, and instead import of mitochondrial proteins is preferred.
This is a nice and well-structured manuscript reporting on important findings about a regulatory mechanism of a quality control pathway. The findings are obtained by a combination of mostly fluorescent protein-based assays. Findings from these assays support the claims well.
While this study convincingly describes the mechanisms of a mitochondria-associated import pathway using mainly model substrates, my major concern is that the physiological relevance of this pathway remains unclear: what are endogenous substrates of the pathway, to which extend are they imported and degraded, i.e. how much does MAGIC contribute to overall misfolded protein removal (none of the experiments reports quantitative "flux" information). Lastly, it remains unclear by which mechanism Snf1 impacts on MAGIC or whether it is "only" about being outcompeted by mitochondrial precursors.
We thank Reviewer 3 for the positive and encouraging comments on our manuscript. We agree with the reviewer that identifying MAGIC endogenous substrates and understanding what percentage of them are degraded in mitochondria are very important issues to be addressed. We are indeed carrying out projects to address these questions. We also agree with Reviewer 3 that the effect of Snf1 on MAGIC may have additional mechanisms in addition to precursors competition, such as Tom6 mediated conformational changes of TOM pores. In the revised manuscript, we had added a discussion to address these comments (Page 12: line 21-28).
Reviewer #3 (Recommendations For The Authors):
- In their screen, the authors utilize differences in GFP intensity as a measure for import efficiency. However, reconstitution of the GFP from GFP1-10 and GFP11 in the matrix might also be affected (folding factors, differential degradation).
Upon Snf1 activation, the protein abundance of mitochondrial chaperones such as Hsp10, Hsp60, and Mdj1, and mitochondrial proteases such as Pim1 are not significantly changed (ref. 35). Therefore, it is unlikely that the folding and degradation capacity of mitochondrial matrix is drastically affected by Snf1 activation.
To examine the effect of Snf1 activation on spGFP reconstitution, Grx5 spGFP strain was constructed in which the endogenous mitochondrial matrix protein Grx5 was C-terminally tagged with GFP11 at its genomic locus, and GFP1-10 was targeted to mitochondria through cleavable Su9 MTS (MTS-mCherryGFP1-10) (ref. 10). Only modest reduction in Grx5 spGFP intensity was observed in LG compared to HG, and no significant difference after adjusting the GFP1-10 abundance (spGFP/mCherry ratio) (Figure 1— figure supplement 3A-D). These data suggest that any effect on spGFP reconstitution is insufficient to explain the drastic reduction of MP accumulation in mitochondria under Snf1 activation. Overall, our results demonstrate that Snf1 activation primarily prevents mitochondrial accumulation of MPs, but not that of normal mitochondrial proteins. (Page 6: line 17-25).
We admit, however, that to fully rule out these factors, specific intra-mitochondrial folding or degradation reporter assays would be needed.
- Scoring of protein import always takes place using fluorescence-based assays. These always require folding of the "sensors" in the matrix. An additional convincing approach that would not rely on matrix folding could be pulse chase approaches coupled to fractionation assays and immunoprecipitation.
We thank reviewer 3 for this suggestion. In our previous study, we applied two different biochemical assays: APEX proximity labeling, and mitochondrial fractionation followed by protease protection. Both confirmed the entry of misfolded proteins into mitochondria as observed by using split GFP. As we discussed in response to Reviewer 1’s main point [3], the fractionation assays are not quantitative enough for the comparisons made in our study. In particular, during the over 2-hour assay, misfolded proteins continue to be degraded within mitochondria. By using proper controls, our spGFP system provides quantitative comparisons for mitochondrial accumulation of misfolded proteins in non-disturbed physiological conditions.
- Could the pathway be reconstituted in vitro with isolated mitochondria to test for the "competition hypothesis"
This is an excellent suggestion, but setting up such a reconstituted system is a project on its own. The study documented in this manuscript already encompasses a large amount of work that we feel should be published timely.
- Fluorescence figures are not colour blind friendly (red-green). This should be improved by changing the color scheme.
We thank reviewer 3 for pointing this out and sincerely apologize for any inconvenience. However, we are unfortunately unable to change all images within a limited time. We will adopt another color scheme in future work.
- spGFP in human cells appears to form "spot-like" structures. What are these granules?
We indeed observed granule-like structures by spGFP labeled FUS in mitochondria, which is interesting, but we did not investigate this further because it is a not a focus of this study.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Overall, we were pleased that the reviewers found our study carefully designed and interesting. We have addressed their comments below.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
The manuscript by Kern, et al., demonstrates that phagocytosis in macrophages is regulated in part by the intermolecular distance of phagocytosis-promoting receptors engaging phagocytic targets. Cells expressing chimeric receptors containing cytosolic domains of Fc receptors (FcR) and defined ligand-binding DNA domains were used to drive phagocytosis of opsonized glass beads coated with complementary DNA ligands of defined spacing and number. These so-called origami ligands allowed manipulation of receptor spacing following engagement, which allowed the demonstration that tight spacing of ligands (7 nm or 3.5 nm) optimized signaling for phagocytosis. The study is carefully performed and convincing. I have a few technical concerns and minor suggestions.
- __ It is assumed that the origami preparations were entirely uniform. How much variation was there? Is that supported by TIRF microscopy of origami preparations? Was the TIRF microscopy calibrated for uniformity of fluorescence (ie., shade correction)?__ Our laboratory, Dong et al., has extensively characterized the origami uniformity and robustness of these exact pegboards. This paper was just posted on bioRxiv (Dong et. al, 2021). We have also cited this paper in our revised manuscript in reference to the characterization of the DNA origami (Line 117).
We did not use any shade correction. Instead we only collected data from a central ROI in our TIRF field. To check for uniformity of illumination, we plotted the origami pegboard fluorescent intensity along the x and y axis. We observed very modest drop off in signal - the average signal intensity of origamis within 100 pixels of the edge is 76 ± 6% the intensity of origamis in a 100 pixel square in the center of the ROI. Fitting this data with a Gaussian model resulted in very poor R values. While this may account for some of the variation in signal intensity at individual points, we expect the normalized averages of each condition to be unaffected. We have amended the methods to describe this strategy (Lines 851-854).
(Image could not be uploaded)
__ Likewise, how much variation was there in the expression of the chimeric receptors? Large variation in receptor numbers per cell could significantly alter the quantitative studies. Aside from the flow sorting for cells expressing two different molecules, how were cells selected for analysis?__
We thank the reviewer for bringing up this point. We confirmed comparable receptor expression levels at the cell cortex of the DNA CAR-𝛾 and the DNA CAR-adhesion used throughout the paper. We also have confirmed that receptor levels at the cell cortex were similar for the large DNA CAR constructs used in Figure 6C-D. This data is now included in Figures S5 and S7. We have also altered the text to include this (lines 169-172):
Expression of the various DNA CARs at the cell cortex was comparable, and engulfment of beads functionalized with both the 4T and the 4S origami platforms was dependent on the Fc𝛾R signaling domain (Figure S5).
When quantifying bead engulfment, cells were selected for analysis based on a threshold of GFP fluorescence, which was held constant throughout analysis for each individual experiment. We have amended the “Quantification of engulfment” methods section to convey this (lines 921-923).
__ The scale of the origami relative to the cells is difficult to discern in Figures 2C and D. Additional text would be helpful to indicate, for example, that the spots on the Fig. 2D inset indicate entire origami rather than ligand spots on individual origami particles.__
Thank you for pointing this out, we see how the legend was unclear and have corrected it (lines 453-454), including specifically noting “Each diffraction limited magenta spot represents an origami pegboard.” We have also outlined the cell boundary in yellow to make the cell size more clear.
__ Figure 5 legend, line 482: How was macrophage membrane visualized for these measurements?__
We have added the following clarification (line 535-536): “The macrophage membrane was visualized using the DNA CAR𝛾, which was present throughout the cell cortex.”
__ line 265: "our data suggest that there may be a local density-dependent trigger for receptor phosphorylation and downstream signaling". This threshold-dependent trigger response was also indicated in the study of Zhang, et al. 2010. PNAS.__
The Zhang et al. study was influential in our study design, and we wish to give the appropriate credit. Zhang et al. found that a sufficient amount of IgG is necessary to activate late (but not early) steps in the phagocytic signaling pathway. In contrast, our study addresses IgG concentration in small nanoclusters. We find that this nanoscale density affects receptor phosphorylation. Thus, we think these two studies are distinct and complementary.
Lines 283-287 now read:
While this model has largely fallen out of favor, more recent studies have found that a critical IgG threshold is needed to activate the final stages of phagocytosis (Zhang et al., 2010). Our data suggest that there may also be a nanoscale density-dependent trigger for receptor phosphorylation and downstream signaling.
__ line 55: Rephrase, “we found that a minimum threshold of 8 ligands per cluster maximized FcgR-driven engulfment.” It is difficult to picture how a minimum threshold maximizes something.__
We now state “we found that 8 or more ligands per cluster maximized FcgR-driven engulfment.”
__ line 184: Rephrase, "we created... pegboards with very high-affinity DNA ligands that are predicted not to dissociate on a time scale of >7 hr". Remove "not".__
Thank you for pointing this out, it is now correct.
Reviewer #1 (Significance (Required)):
This study provides a significant advance in understanding about the molecular mechanisms of signaling for particle ingestion by phagocytosis.
--
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The manuscript on “Tight nanoscale clustering of Fcg-receptors using DNA origami promotes phagocytosis" studies how clustering and nanoscale spacing of ligand molecules for a chimeric Fcg-receptors influence the phagocytosis of functionalized silicon beads by macrophage cell lines. The basis of this study is the design of a chimeric Fc-receptor (DNA-CARg) comprising an extracellular SNAP-tag domain that can be loaded with single-stranded (ss) DNA, the transmembrane part of CD86 and the cytosolic part of the Fc-receptor g-chain containing an immunoreceptor tyrosine-based activation motif (ITAM) as well as a C-terminal green fluorescent protein (GFP). As control the authors used a similar designed DNA-CAR that is lacking the intracellular ITAM-containing FCg tail. The chosen target for this chimeric DNA-CAR, are silicon beads covered by a lipid bilayer that contains biotin-labelled lipids that, via Neutravidin, can be loaded with a biotinylated DNA origami pegboard displaying complimentary ss-DNA as ligand for the DNA-CAR. The DNA origami pegboard contains four ATTO647N fluorescence for visualization and the ssDNA ligand in different quantities and spacing. Using these principles, the authors study how ligand affinity, concentration and spacing influence the activation of the DNA-CARg and the engulfment of the loaded beads.
The authors show that bead engulfment is increased between 2 till 8 ssDNA ligands on the pegboard. After this, ligand numbers do not play a role anymore in the engulfment. They then study the role of the ligand spacing using pegboards that either contain 4 single strand DNA ligands in close (7nm/3,5nm) proximity or a more spaced version using 21/17,5 nm or 35/38,5 nm. The authors find that the bead engulfment is maximally and positively affected by the close spacing of the ssDNA ligands. In their final experiments the authors vary the design of the DNA-CARs by tetramerization of the ITAM-containing Fcg-signaling subunit. In their discussion the authors mention different possibilities for the effect of spacing on the engulfment process.
I think that, in general, this is an interesting study. However, it has some caveats and open issues that should be clarified before its publication.
**Major comments**
- __ As a general comment, it is somewhat a pity that the authors did not use the endogenous FcR as a control. It would have been quite easy for the authors to place the SNAP-tag domain on the Fcg extracellular domain which would allow to do all their experiments in parallel, not only with the DNA-CAR, but also with a DNA-containing wild type receptor. Such a control would be important because, by using a CD86 transmembrane domain, the authors do not know whether the nanoscale localization of their chimeric receptors is reflecting that of the endogenous Fcg receptor.__
We agree with the reviewer completely. We have repeated experiments shown in Figure 4A with a DNA-CAR containing the Fc𝛾 transmembrane domain instead of CD86 as the reviewer suggests. We also included a DNA-CAR version of the Fc𝛾R1 alpha chain, although this construct was not expressed as well as the others. These data are now included in Figure S5, and referenced in lines 167-168.
__ An important issue that is discussed by the authors but not addressed in this manuscript is whether the different amount and spacing of the ligand is only impacting on signaling or also on the mechanical stress of the cells. Indeed, mechanical stress on the cytoskeleton arrangement could influence the engulfment process. For this, it would be very important to test that the different bead engulfment, for example, those shown in Fig. 4, is strictly dependent on signaling kinases. The authors should repeat the experiment of Fig. 4 a and b in the presence or absence of kinase inhibitors such as the Syk inhibitor R406 or the Src inhibitor PP2 to show whether the different phase of engulfment is dependent on the signaling function of these kinases. This crucial experiment is clearly missing from their study.__
We agree this is an interesting point. We find that ligand spacing affects receptor phosphorylation; however this does not preclude effects on downstream aspects of the signaling pathway. We will clarify this by adding the following comment to the manuscript (line 299-301):
While our data pinpoints a role for ligand spacing in regulating receptor phosphorylation, it is possible that later steps in the phagocytic signaling pathway are also directly affected by ligand spacing.
The DNA-CAR-adhesion in Figure 1 strongly suggests that intracellular signaling is essential for phagocytosis. We have now included additional controls using this construct as detailed in our response to point 3 below. Unfortunately, Src and Syk inhibitors or knockout abrogate Fc𝛾R mediated phagocytosis (for example, PMIDs 11698501, 9632805, 12176909, 15136586) and thus would eliminate phagocytosis in both the 4T and 4S conditions. This precludes analysis of downstream steps in the phagocytic signaling pathway.
__ Another problem of this study is that the authors show in Fig. 1A the control DNA-CAR-adhesion but then hardly use it in their study. For example, the crucial experiments shown in Fig. 4 should be conducted in parallel with DNA-CAR-adhesion expressing macrophage cells. This study could provide another indication whether or not ITAM signaling is important for the engulfment process.__
We have added this control. It is now included in Figure S5 and S7. Figure 3D also shows that the DNA-CAR-adhesion combined with the 4T origami pegboards does not activate phagocytosis and we have amended the text to make this more clear (line 152).
__ Another important aspect is how the concentration of the loaded origami pegboard is influencing the engulfment process. In particular, it would be interesting to show the padlocks with different spacings such as the 4T closed spacing versus 4s large spacing show a different dependency on the concentration of this padlock loading on the beads. This would be another important experiment to add to their study.__
We agree that this is an interesting question. We suspect that at a very high origami density, 4S signaling would improve, and potentially approach the 4T. However, we are currently coating the beads in saturating levels of origami pegboards. Thus we cannot increase origami pegboard density and address this directly.
**Minor comments:**
- __ The definition of the ITAM is Immunoreceptor Tyrosine-based Activation Motif and not "Immune Tyrosine Activation Motif" as stated by the authors.__ We have corrected this.
__ The authors discuss that it is the segregation of the inhibitory phosphatase CD45 from the clustered Fc receptors is the major mechanism explaining their finding that 4T closed spacing is more effective than 4s large spacing. With the event of the CRISPR/Cas9 technology it is trivial to delete the CD45 gene in the genome of the RAW264.7 macrophage cell line used in this study and I am puzzled why they author are not conducting such a simple but for their study very important experiment (it takes only 1-2 month to get the results).__
This experiment may be informative but we have two concerns about its feasibility. First, CD45 is a phosphatase with many different roles in macrophage biology, including activating Src family kinases by dephosphorylating inhibitory phosphorylation sites (PMID 8175795, 18249142, 12414720). Second, CD45 is not the only bulky phosphatase segregated from receptor nanoclusters. For example, CD148 is also excluded from the phagocytic synapse (PMID 21525931). CD45 and CD148 double knockout macrophages show hyperphosphorylation of the inhibitory tyrosine on Src family kinases, severe inhibition of phagocytosis, and an overall decrease in tyrosine phosphorylation (PMID 18249142). CD45 knockout alone showed mild phenotypes in macrophages. We anticipate that knocking out CD45 alone would have little effect, and knocking out both of these phosphatases would preclude analysis of phagocytosis. Because of our feasibility concerns and the lengthy timeline for this experiment, we believe this is outside of the scope of our study.
In our discussion, we simplistically described our possible models in terms of CD45 exclusion, as the mechanisms of CD45 exclusion have been well characterized. This was an error and we have amended our discussion to read (lines 335-343):
As an alternative model, a denser cluster of ligated receptors may enhance the steric exclusion of the bulky transmembrane proteins like the phosphatases CD45 and CD148 (Bakalar et al., 2018; Goodridge et al., 2012; Zhu, Brdicka, Katsumoto, Lin, & Weiss, 2008).
Reviewer #2 (Significance (Required)):
The innovative part of this study is the combination of SNAP-tag attached, chimeric Fc-receptor with the DNA origami pegboard technology to address important open question on receptor function.
**Referees cross-commenting**
I find most of my three reviewing colleagues reasonable
I also agrée to Reviewer #1 comments 2
Likewise, how much variation was there in the expression of the chimeric receptors? Large variation in receptor numbers per cell could significantly alter the quantitative studies. Aside from the flow sorting for cells expressing two different molecules, how were cells selected for analysis?
But I want to add it is not only the amount of receptors but ils the nanoscale location that is key to receptor function
We have ensured that all receptors are trafficked to the cell surface. We have also measured their intensity at the cell cortex as discussed in response to Reviewer 1.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
This is a very nicely done synthetic biology/biophysics study on the effect of ligands spacing on phagocytosis. They use a DNA based recognition system that the group has previously use to investigate T cell signaling, but express the SNAP tag linked transmembrane receptor in a macrophage cell line and present the ligands using DNA origami mats to control the number and spacing of complementary ligands that are designed to be in the typical range for low or high affinity FcR, a receptor that can trigger phagocytosis. The study offers some very nice quantitative data sets that will be of immediate interest to groups working in this area and, in the future, for design of synthetic receptors for immunotherapy applications. Other groups are working on similar platform for TCR. I don't feel there is any need for more experiments, but I have some questions and suggestions. Answering and considering these could clarify the new biological knowledge gained.
We thank the reviewer for their support of our manuscript. Given the reviewer’s statement that no new experiments are required, we have answered their questions to the best of our ability given the current data. Should the editor decide that any of these topics require experimental data to enhance the significance of the paper, we are happy to discuss new experiments.
Reviewer #3 (Significance (Required)):
I think the significance would be increased by addressing these questions, that would help understand how the synthesis system described related to other system directed as similar questions and more natural settings.
- __ The densities of the freely mobile DNA ligands required to trigger phagocytosis is quite high. Was the length of the DNA duplexes optimized? The entire complex for both the intermediate and high affinity duplexes seems quite short, perhaps The extracellular domain of the DNA-CAR (SNAP tag and ssDNA strand) are approximately 10 nm (PMID 28340336). The biotinylated ligand ssDNA is attached to the bilayer via neutravidin, resulting in a predicted 14 nm intermembrane spacing. The endogenous IgG FcR complex is 11.5 nm. Bakalar et al (PMID 29958103) tested the effect of antigen height on phagocytosis and found that the shortest intermembrane distance tested (approximately 15 nm) was the most effective. As the reviewer notes, the optimal distance between macrophage and target may be larger than our DNA-CAR. However we think the intermembrane spacing in our system is within the biologically relevant range.
We saw robust phagocytosis at 300 molecules/micron of ssDNA, which is similar to the IgG density used on supported lipid bilayer-coated beads in other phagocytosis studies (PMID 29958103, 32768386). As the reviewer noticed, this is significantly higher than ligand density necessary to activate T cells (PMID 28340336). We have added a comment on ligand density to lines 96-97.
__ Are the origami mats generally laterally mobile on the bilayers. If so, what is the diffusion coefficient? Can one detect the mats accumulating in the initial interface between the bead and cell, particularly in cased where there is no phagocytosis? Would immobility of the mats make them more efficient at mediating phagocytosis compared to the monodispersed ligands, which I assume are highly mobile and might even be "slippery".__
We have confirmed that our bead protocol generally produces mobile bilayers, where his-tagged proteins can freely diffuse to the cell-bead interface (see accumulation of a his-tagged FRB binding to a transmembrane FKBP receptor at the cell-bead synapse below). We can qualitatively say that the origamis appear mobile on a planar lipid bilayer (see Dong et. al 2021 and images below). Directly measuring the diffusion coefficient on the beads is extremely difficult because the beads themselves are mobile (both diffusing and rotating), and cannot be imaged via TIRF. We do not see much accumulation of the origami at cell-bead synapses. This could reflect lower mobility of the origamis, or could be because the relative enrichment of origamis is difficult to detect over the signal from unligated origamis.
Overall, we expect the origami pegboards (tethered by 12 neutravidins) are less mobile than single strand DNA (tethered by a single neutravidin, supported by qualitative images below). We are uncertain whether this promotes phagocytosis. At least one study suggests that increased IgG mobility promotes phagocytosis (PMID 25771017). However, the zipper model would suggest that tethered ligands may provide a better foothold for the macrophage as it zippers the phagosome closed (PMID 14732161). Hypothetically, ligand mobility could affect signaling in two ways - first by promoting nanocluster formation, and second by serving as a stable platform for signaling as the phagosome closes. Since our system has pre-formed nanoclusters, the effect of ligand mobility may be quite different than in the endogenous setting.
(Image could not be uploaded)
In the above images, a 10xHis-FRB labeled with AlexaFluor647 was conjugated to Ni-chelating lipids in the bead supported lipid bilayer. The macrophages express a synthetic receptor containing an extracellular FKBP and an intracellular GFP. Upon addition of rapamycin, FRB and FKBP form a high affinity dimer, and FRB accumulates at the bead-macrophage contact sites.
(Image could not be uploaded)
In the above images, single molecules were imaged for 3 sec. The tracks of each molecule are depicted by lines, colored to distinguish between individual molecules. The scale bar represents 5 microns in both panels.
__ Breaking down the analysis into initiation and completion is interesting. When using the non-signalling adhesion constructs, would they get to the initiation stage or would that attachment be less extensive than the initiation phase.__
This is an interesting question. While we did not include the DNA-CAR-adhesion in our kinetic experiments, we have now quantified the frequency of cups that would match our ‘initiation’ criteria in 3 representative data sets where macrophages were fixed after 45 minutes of interaction with origami pegboard-coated beads. We found that an average of 16/125 of 4T beads touching DNA-CAR-adhesion macrophages met the ‘initiation’ criteria and an average of 2/125 were eaten (14% total). In comparison, we examined 4T beads touching DNA CAR𝛾 macrophages and found that on average 23/125 met the ‘initiation’ criteria, and 45/125 were already engulfed (54%). This suggests that the DNA-CAR-adhesion alone may induce enough interaction to meet our initiation criteria, but without active signaling from the FcR this extensive interaction is rare. We have added this data in a new Figure S6 and commented on this in lines 213-215.
__ It would be interesting to put these results in perspective of earier work on spacing with planar nanoarrays, although these can't be applied to beads. For integrin mediated adhesion there was a very distinct threshold for RGD ligand spacing that could be related to the size of some integrin-cytoskeletal linkers (PMID: 15067875). On the other hand, T cell activation seemed more continuous with changes in spacing over a wide range with no discrete threshold (PMID: 24117051, 24125583) unless the spacing was increased to allow access to CD45, in which case a more discrete threshold was generated (PMID: 29713075). The results here for phagocytosis with the very small ligands that would likely exclude CD45 seems to be more of a continuum without a discrete threshold, although high densities of ligand are needed. This issue of continuous sensing vs sharp threshold is biologically interesting so would be good assess this by as consistent standards are possible across systems.__
We agree that this is an interesting body of literature worth adding to our discussion. We have added a paragraph that puts our study in the context of prior work on related systems, including these nanolithography studies (Line 364-382):
How does the spacing requirements for Fc𝛾R nanoclusters compare to other signaling systems? Engineered multivalent Fc oligomers revealed that IgE ligand geometry alters Fcε receptor signaling in mast cells (Sil, Lee, Luo, Holowka, & Baird, 2007). DNA origami nanoparticles and planar nanolithography arrays have previously examined optimal inter-ligand distance for the T cell receptor, B cell receptor, NK cell receptor CD16, death receptor Fas, and integrins (Arnold et al., 2004; Berger et al., 2020; Cai et al., 2018; Deeg et al., 2013; Delcassian et al., 2013; Dong et al., 2021; Veneziano et al., 2020). Some systems, like integrin-mediated cell adhesion, appear to have very discrete threshold requirements for ligand spacing while others, like T cell activation, appear to continuously improve with reduced intermolecular spacing (Arnold et al., 2004; Cai et al., 2018). Our system may be more similar to the continuous improvement observed in T cell activation, as our most spaced ligands (36.5 nm) are capable of activating some phagocytosis, albeit not as potently as the 4T. Interestingly, as the intermembrane distance between T cell and target increases, the requirement for tight ligand spacing becomes more stringent (Cai et al., 2018). This suggests that IgG bound to tall antigens may be more dependent on tight nanocluster spacing than short antigens. Planar arrays have also been used to vary inter-cluster spacing, in addition to inter-ligand spacing (Cai et al., 2018; Freeman et al., 2016). Examining the optimal inter-cluster spacing during phagosome closure may be an interesting direction for future studies.
--
Additional experiments performed in revision
In addition to these reviewer comments, we have added additional controls validating the DNA-CAR-4x𝛾 used in Figure 6c,d. We compared the DNA-CAR-4x𝛾 to versions of the DNA-CAR-1x𝛾-3x𝛥ITAM construct with the functional ITAM in the second and fourth positions (see the schematics now included Figure S7). We found that four individual receptors with a single ITAM each were able to induce phagocytosis regardless of which position the ITAM was in. However the DNA-CAR-4x𝛾 construct, which also contains 4 ITAMs, was not. This further validates the experiment presented in 6c,d. We also fixed minor errors we discovered in the presentation of data for Figures 1C and S1A.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Manuscript number: RC-2023-02157
Corresponding author(s): Satish, Mishra
1. General Statements [optional]
We thank the editor and reviewers for their helpful comments. We have successfully addressed most of the comments. We are performing some additional experiments as suggested by the reviewers and will be included if considered further. We attempted to pulldown the S14 interacting partner using anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify interactome using mass spectrometry but failed. So, accordingly, we have toned down the conclusion.
The point-by-point response to the reviewer’s comments is given as follows.
2. Description of the planned revisions
Reviewer #1:
Figure 1F You have not formally shown that this signal corresponds to palmitoylated S14. Could be heavy chain. Response: The possibility of a heavy chain is negligible because we have used sporozoite samples and probed it with an anti-rabbit antibody conjugated to HRP. Also, the size of the S14 bands does not correspond to heavy chain. However, we have toned down the conclusion. Currently, we are performing the depalmitoylation experiment, and data will be included in the next round of revision.
Reviewer #2
Line 149: To definitively state S14 is a membrane protein, biochemical assays proving such should be performed. (or perhaps genetic mutation of the predicted palmitoylation site?) Otherwise, this should be rephrased. Response: We are performing the depalmitoylation assay, and the data will be included during the second round of revision. However, we have rephrased the sentence in the current version of the manuscript.
Lines 257-258: for yeast 2-hybrid, the controls of expressing S14, GAP45 and MTIP together with control proteins where no interaction would be predicted are absent. Response: We are performing experiments with additional controls, and data will be included in the next round of revision.
Reviewer #3
Conclusions that S14 knockout does not impact the expression and organization of two surface proteins, CSP and TRAP, and two IMC rely on a qualitative analysis only. However, quantitative analysis to support their observations is missing. Response: We are quantifying the IFA images and data will be included in the next round of revision.
3. Description of the revisions that have already been incorporated in the transferred manuscript
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
Summary: The authors have identified a sporozoite gliding motility protein through bioinformatic analysis. From the main text I do not know how, or what bioinformatic analysis was performed, in order to focus on this protein which is called S14. The authors then go on to tag the protein, produce a KO and show its involvement in gliding motility. The KO shows that parasites lacking S14 fail to invade the mosquito salivary glands. This is due to a motility defect. Y2H and docking studies are used to define an interaction with MTIP and GAP45, two known components of the glideosome. Response: We identified this gene from the Kaiser et al., 2004 paper (DOI: 10.1046/j.1365-2958.2003.03909.x). The S14 was found to be highly upregulated in salivary gland sporozoites but lacked signal sequence and transmembrane domain. Next, we looked into other sporozoite proteins lacking signal sequence and transmembrane domain and found several gliding-associated proteins with similar properties. By using the guilt-by-association principle (DOI: 10.1186/gb-2009-10-4-104), we studied the following properties of existing glideosome components along with S14: (1) Classical pathway secretion using the signal peptide (SignalP, https://services.healthtech.dtu.dk/services/SignalP-5.0) (http://dx.doi.org/10.1016/j.jmb.2004.05.028). (2) Nonclassical pathway secretion (SecretomeP , https://services.healthtech.dtu.dk/services/SecretomeP-1.0/) (10.1093/protein/gzh037). (3) Presence of transmembrane domains (TMHMM , https://services.healthtech.dtu.dk/services/TMHMM-2.0/) (10.1006/jmbi.2000.4315). (4) Presence of a potential palmitoylation site (CSS-Palm, http://bioinformatics.lcd-ustc.org/css_palm) (Ren et al, 2008). This is a similar association prediction method as employed by the STRING database. However, mentioning that we identified a gliding motility protein by bioinformatic analysis was wrong, and we modified the sentence.
Major comments: The paper is sometimes hard to follow and lacks clarity. The reason: important information is omitted, or explained at the end of a section rather than at first mention; experimental details that are of essence need to be mentioned or explained in the main text; there is ample use of the word 'bioinformatic' without explaining what kind of analysis was performed in the main text. I cite from the abstract: 'In silico analysis of a novel protein, S14, which is uniquely upregulated in salivary gland sporozoites, suggested its association with glideosome-associated proteins.' I cite from the introduction: 'A study comparing transcriptome differences between sporozoites and merozoites using suppressive subtraction hybridization found several genes highly upregulated in sporozoites and named them 'S' genes (Kaiser et al, 2004). We narrowed it down to a candidate named S14, which lacked signal peptide and transmembrane domains.' From reading the main text, I do not know why Plasmodium berghei S14 was chosen in this manuscript. S14 is one of 25 transcripts identified by Kappe et al in Plasmodium yoelii (https://doi.org/10.1046/j.1365-2958.2003.03909.x) to be upregulated in sporozoites. The material and methods section does not explain either why S14 was chosen. Perhaps the authors could update Figure 2 from Kappe et al with the most recent annotations from plasmodb. Response: We have edited the manuscript for clarity and mentioned the name of the bioinformatic analysis performed. We chose S14 from Kaiser et al., 2004 (https://doi.org/10.1046/j.1365-2958.2003.03909.x) that identified transcripts in P. yoelii. We work on the rodent malaria parasite P .berghei and validated S14 transcripts by qPCR which showed its upregulation in sporozoites.
Rodent malaria parasites P. berghei and P. yoelii have been used extensively as models of human malaria. Both species have been widely used in studies on the biology of Plasmodium sporozoites and liver stages due to the availability of efficient reverse genetics technologies, and the ability to analyze these parasites throughout the life cycle stages have made these two species the preferred models for the analysis of Plasmodium gene function. A genetic screen and phenotype analysis were performed in P. berghei (DOI: 10.1016/j.cell.2017.06.030 and DOI: 10.1016/j.cell.2019.10.030) that makes in-depth characterization easier due to the availability of reagents and preliminary gene-phenotype like its dispensability in the blood. As suggested by this reviewer, we have updated the most recent annotations from PlasmoDB.
Reproducibility: None of the main Figures or Figure legends define ' N = '. For example I cite: 'The S14 KO clonal lines were first analyzed for asexual blood-stage propagation, and for this, 200 µl of iRBCs with 0.2% parasitemia was intravenously injected into a group of mice.' There are 2 mentions of 'N=' in the supplementary figures. I have not found any others.
I'm not sure what the convention is. Should unpublished data for this gene (PBANKA_0605900) found in pberghei.eu (a database for mutant berghei parasites) be cited? After all it confirms their findings.
The authors need to use more recent references for some of their statements; see some comments below. __Response: __We have mentioned N in the figures legends of the revised manuscript and also mentioned the unpublished data of RMGM. We have also added recent references in the revised manuscript.
Minor comments:
line 1-2 Add the Plasmodium species of this study.
Response: Added.
abstract Which species do you work with?
Response: We have mentioned P. berghei in the abstract of the revised manuscript.
29 mosquito salivary glands and human host hepatocytes
Response: Corrected.
30 to the glideosome, a protein complex containing [...]
Response: Corrected.
32-33 What kind of in silico analysis suggested S14 is part of the glideosome? S14 is not uniquely upregulated; there are other S-type genes identified by Kappe and Matuschewski. 25 I believe.
Response: Mentioning that in silico analysis suggested S14 is part of the glideosome was a wrong statement, and we have modified the sentence for clarity in the revised manuscript.
32 Please point out he species were S genes were identified. SGS of which species?
Response: The S genes were identified in the transcriptomic study of Plasmodium yoelii.
34 expression: change to transcription
Response: Changed.
39 What kind of in silico analysis was used here? and therefore malaria transmission
__Response: __In silico, protein-protein docking interaction analysis was used.
55 A single zygote transforms into a single ookinete, which establishes a single oocyst, which in turn can produce thousands of midgut sporozoites. Please correct the life cycle passage.
Response: Corrected. located or anchored in the IMC? And located between the IMC and plasma membrane?
Response: Glideosome is located between the plasma membrane and IMC, and the same has been corrected in the revised manuscript.
61-63 Refer to Table S1 and its contents here 64 Name the known GAPs. Response: Done.
65-67 Which transmembrane domain proteins? Please add more recent references than King 1988.
Response: We have added TRAP as a transmembrane domain protein and updated the reference.
71-72 TRAP was the first protein found to be ...
Response: Corrected.
74-76 Add additional, more recent references: for example search Frischknecht and TRAP
Response: Added.
76 S6 (TREP) is also [...]
Response: Done.
88 Some of these proteins are also expressed in ookinetes.
Response: Corrected.
89-91 The sentence needs a verb.
Response: Added.
88-96 Please add some more recent glideosome papers. After 2013.
Response: Added.
91 Why do you call it a peripheral protein?
Response: Because the GAP45 was detected at the periphery of the merozoite in P. falciparum. As there are no such reports in sporozoites hence we have removed peripheral in the revised manuscript.
91-93 There are more recent citations for GAP45 and GAP50. Response: We have added recent citations.
96 Insert a reference here.
Response: Added.
99 Please define the gliding-associated proteins. What are they? Aren't there papers on GAP40, 45 and 50? DOI: 10.1016/j.chom.2010.09.002
Response: Done.
99 .... What prompted you to identify a novel GAP? And why is S14 classified as a GAP?
Response: This was a wrong statement, which we removed in the revised manuscript.
99-102 What kind of bioinformatic study? Why was S14 chosen? Please outline how you ended up with S14. Any other proteins that came out of the bioinformatic screen from the list of S genes?
Response: We identified S14 from the Kaiser et al., 2004 paper and analyzed its properties using the “guilt-by-association” principle. The analysis showed that S14 had properties similar to GAP45 and MTIP. The S14 upregulation in sporozoites and its properties similar to known GAPs, we were prompted to study this gene's function.
How many proteins were identified in the screen for sporozoite upregulated proteins by Kappe and Matuschewski?
Response: 25 genes were identified in that paper, including the two characterized genes CSP and TRAP during that study.
102-103 Define the nonclassical secretion pathway. Please reference GAP45 and GAP50 data for the nonclassical pathway.
Response: When proteins are secreted out of the cytosol without predictable or known signal sequences or secretory motifs are classified as non-classically secreted proteins, and the pathway is called a non-classical protein secretory pathway. References: https://doi.org/10.1371/journal.pone.0125191; https://doi.org/10.1016/S0171-9335(99)80097-1; doi: 10.3389/fmicb.2016.00194
105 Please add P. berghei to the title, the abstract, the introduction.
Response: Added.
111 The results section does not outline what bioinformatic analysis was used
Response: The guilt-by-association principle was used, and it is outlined in the revised manuscript.
112-114 Please specify the exact number of upregulated in sporozoites genes. I think it was 25. And add the species the study was performed in. Why did you choose the Kappe study but not the uis genes from berghei?
Response: It was 25, and the species was P. yoellli. The domains of all 25 proteins are shown in Figure 2 of Kappe study. It intrigued us after having a glance at it. Later, we confirmed the upregulation of S14 transcripts in P. berghei sporozoites and chose to study the function of this gene.
114-115 How did you narrow it down to S14? The Kappe paper lists 25 S-type genes from P. yoelii.
Response: The domains of all 25 proteins are shown in the Kappe study. Two proteins, S14 and S15, lack signal sequence and transmembrane domain, which intrigued us after glancing at them. We chose S14 because its microarray induction is higher compared to S15.
118 Plasmodia is not the plural for a group of different Plasmodium species. Use: [...] conserved among Plasmodium spp.
Response: Corrected.
118-119 Which proteins did you analyze? And how did you analyze them? Where is the data for this analysis? Outline the amino acids that predict palmitoylation? The nonclassical pathway?
Response: The proteins we analyzed are given in Table S1. We analyzed them by the guilt-by-association principle. The data for this analysis is shown in Table S1. The amino acids predicted to be palmitoylated are C59 and C228 (S14), C5 (GAP45), C8 and C5 (MTIP). Non-classical pathway secretion was predicted by SecretomeP ( 10.1093/protein/gzh037).
119-122 Here: do you mean S14 has similar properties as GAP 45 and GAP50? Define the nonclassical pathway? How do you know S14 is in the IMC?
Response: The similar properties of S14 and GAP45 are Signal Peptide Prediction, Prediction of Non-classical pathway secretion, number of predicted transmembrane domains and prediction of Palmitoylation signal. GAP50 was wrongly mentioned here and has been removed from the revised manuscript.
When proteins are secreted out of the cytosol without predictable or known signal sequences or secretory motifs are classified as non-classically secreted proteins. The pathway is called a non-classical protein secretory pathway.
Our colocalization data of S14 with GAP45 and MTIP indicated that S14 is in the IMC.
122-123 Please reference the bioinformatic analysis plus URL that allows targeting to the IMC to be analyzed.
Response: All the URLs with references are given in the method section, lines 348-358 in the revised manuscript.
123-124 Please reference the URLs for TM, palmitoylation, and interactions analyses.
Response: All URLs with references are given in the method section, lines 348-358 in the revised manuscript.
125-127 How did you predict that S14 is secreted via the nonclassical pathway?
Response: We predicted non-classical pathway secretion of S14 using - SecretomeP (https://services.healthtech.dtu.dk/services/SecretomeP-1.0/) (10.1093/protein/gzh037).
128-130 Define the nonclassical pathway when it first appears in your manuscript.
The citation Moskes 2004 is not in the reference list
Response: The nonclassical pathway is defined in lines 105-107. The citation Moskes 2004 has been included in the revised manuscript.
132 Which membrane?
Response: Live S14-mCherry localization on the membrane does not differentiate between the outer membrane or IMC. Hence, only membrane is mentioned. Next, in Figure 4A, we confirmed S14 localization on IMC by treating sporozoites with Triton X-100 and colocalizing with IMC proteins GAP45 and MTIP.
134-135 In which species?
Response: We have mentioned P. berghei in the text in the revised manuscript.
141-142 Please include images of blood stage and liver stage parasites.
Response: Blood and liver stage images are included in the revised manuscript as Figure S2.
142-143 Which membrane?
Response: Live S14-mCherry localization on the membrane does not differentiate between the outer membrane or IMC. Hence, only membrane is mentioned. Next, in Figure 4A, we confirmed S14 localization on IMC by treating sporozoites with Triton X-100 and colocalizing with IMC proteins GAP45 and MTIP.
148-149 I cannot find the specific figure you refer to; I checked the online version of the Frenal 2010 paper.
Response: Electromobility shifts of GAP45 due to the palmitoylation have been reported in (Rees-Channer et al, 2006; DOI: 10.1016/j.molbiopara.2006.04.008). Frenal 2010 paper has stated about two bands but experimentally, it was shown in Rees-Channer et al, 2006 in Figures 1 and 2B.
175 gland, we counted [...]
Response: Corrected.
177 Compared to the
Response: Corrected.
177-179 Failed to invade (absolutely)? Or invaded in highly reduced numbers?
Response: Corrected.
182-186 Please be precise: I think you mean you let all types of mosquitoes take a blood meal; s14 knockout-infected mosquitoes did not infect mice.
Response: Corrected.
181-202 Perhaps use paragraphs to indicate the different types of experiments performed here.
Response: Done.
204 Please introduce paragraphs to identify the different experiments in this section
Response: Done.
208 Outer or inner membrane of what? IMC, the plasma membrane?
Response: We treated sporozoites with Triton X-100 to analyze whether S14 is present on the outer membrane (plasma membrane) or IMC.
228 onwards Structural models were obtained from whom? Which species did you use for the docking study? Could you use in one approach 3 berghei proteins, and confirm your docking studies with the falciparum proteins? That would strengthen your model. Should you include a negative control protein in the approach? Response: The structural models were obtained using the trROSETTA server. We used P. berghei for the docking study. In the old annotation and RMGM, the ortholog of P. berghei (PBANKA_0605900) in P.falciparum (PF3D7_1207400) was indicated. However, the updated PlasmodDB does not show PBANKA_0605900 ortholog in P. falciparum. We did try to generate structure models of P. falciparum MTIP, GAP45 and S14 using the trROSETTA server. We successfully reproduced the structure of MTIP, and GAP45 but the quality of S14 structure was unsuitable for the interaction studies. The negative control cannot be included in this kind of study because it gives a false interface, and none of the previous studies have used negative control.
250-251 Was all of the gene cloned? Please define amino acid range. discussion
Response: Full-length gene of S14, MTIP and GAP45 was cloned and the same has been mentioned in materials and methods in the revised manuscript.
Please discuss data from https://elifesciences.org/articles/77447 in relation to your protein Response: Discussed.
298-300 More recent glideosome papers exist. For example https://doi.org/10.1038/s42003-020-01283-8
Response: Included.
340 List the proteins you analysed. Add URL (websites) to the analyses tools.
Response: They are listed in Table S1. The method section gives all the URLs with references, lines 348-358 in the revised manuscript.
343 Known association from the literature: how was this done?
Response: The interactions demonstrated by different groups have been summarized in the review by Boucher & Bosch, 2015 (doi: 10.1016/j.jsb.2015.02.008).
346-349 A few glideosome components? On what basis were they selected and which are they? Response: The analysis showed that S14 had properties similar to GAP45 and MTIP. Additionally, S14 localized with GAP45 and MTIP, hence selected for interaction studies.
471 Can AlphaFold Structure Predictions be used in the docking studies?
Response: Even the Alphafold AI is trained on existing sequence/structure information despite being advertised as a de novo prediction system. That's why it can't produce good quality structures of evolutionarily unique proteins such as S14. We initially started our protein model generation by alphafold2, but the quality of the structure was very low; then we further used the trRosetta server (https://yanglab.nankai.edu.cn/trRosetta/), which shows the quality of all three protein structures above 95 after validation by using UCLA-DOE LAB-SAVES V6.0 (https://saves.mbi.ucla.edu/).
tr-Rosetta includes inter-residue distance, orientation distribution by a deep-neural network, and homologous template to improve the accuracy of models (DOI: 10.1038/s41596-021-00628-9).
We have given the model structure generated using alphafold2 for your reference.
Model generated by using AlphaFold2.ipynb (https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb#scrollTo=kOblAo-xetgx).
Structure quality assessment by __http://saves.mbi.ucla.edu/.__
GAP 45
__S14 __
MTIP
487 What parts of theses genes was cloned? Define the amino acid range.
Response: The full-length protein-encoding gene was cloned.
714 Please split the table into A Mosquito bite and B haemolymph Sporozoites Response: Done.
Figure 1 For clarity, maybe write S14::mCherry
Response: Done.
Figure 1 It would be useful to show blood stage parasite images.
Response: Blood stage parasite image is included in the revised manuscript as Figure S2.
Figure 2G Haemolymph sporozoites ?
Response: Done.
Figure 8 You argued that S14 is a membrane-bound protein through palmitoylation. Here the protein is shown to be cytoplasmic. Please update our model with more recent ones. Response: We have shown that S14 colocalizes with GAP45 and MTIP, suggesting its IMC localization. We have updated our model in Figure 8.
Figure S2B It would be good to include a positive control for these PCRs.
Response: We have replaced the figure's new gel with a positive control.
Figure S3 It would be good to include a positive control for these PCRs. Response: We already have positive controls in Figure S3C and S3F for all the primer pairs used.
Tabel S1 Table S1 is only mentioned twice in the text: lines 124 and 128. There is no mention that the table contains all (??) known gliding motility proteins.
Response: The table does not contain all the gliding proteins; however, most of the proteins mentioned in the Boucher & Bosch, 2015 paper (doi: 10.1016/j.jsb.2015.02.008) were included.
Table S1 The algorithms / websites used for bioinformatic prediction need to be listed here.
Response: Included.
Table S2 Add the plasmodb gene identifiers here. The table does not show all Plasmodium spp. but a selection. Response: All the orthologs mentioned in Figure S1 and Table S2 are not shown in the updated PlasmoDB. Accordingly, we have removed the Figure S1 and Table S2 in the revised manuscript__.__
Reviewer #1 (Significance (Required)):
General assessment: The authors provide an in-depth analyses of the Plasmodium berghei protein S14 and its involvement in gliding motility. Response: Thank you.
Advance: This paper is the first analysis of the S14 protein. The authors suggest a bridging function for the protein between MTIP and GAP45. Response: Thank you.
Audience: Gliding motility is of interest to the apicomplexan field. I think this particular proteins is specific to Plasmodium spp. Response: Thank you.
Reviewer #2
Summary:
The authors tag the sporozoite protein S14 in P. berghei and show localization near the sporozoite plasma membrane. They also convincingly show, through the generation of S14 knockout lines, that S14 is required for sporozoite motility and thereby also salivary gland and hepatocyte invasion. Their bioinformatic results support possible interactions between S14 and the inner membrane complex proteins MTIP and GAP45. These analyses were performed with these specific candidate proteins rather than being unbiased searches for potential interaction partners. The yeast 2-hybrid data to support these possible protein interactions need further controls.
Lines 143-144: Unless the sporozoites were not permeablized prior to staining, it is not clear if the protein is "on" the plasma membrane or just under the plasma membrane. Furthermore, this statement anyway seems contradictory to the authors' interpretation of Figure 4A. Response: Live S14-mCherry localization on the membrane does not differentiate between the outer membrane or IMC. Next, in Figure 4A, we confirmed S14 localization on IMC by treating sporozoites with Triton X-100 and colocalizing with IMC proteins GAP45 and MTIP. Further, we ensured that mCherrey signals were bleached post-fixation and performed IFA with and without permeabilization. We revealed the mCherry and CSP signals using Alexa 488 and Alexa 594, respectively. We observed the mCherrey signal with permeablized sporozoites, not without permeabilization.
Line 218: "This result indicates that S14 is present within the inner membrane of sporozoites." While this data shows that S14 is not in the plasma membrane of the parasite, how can the authors be sure it is at the IMC? Response: S14 colocalization with MTIP and GAP45 suggested its localization on IMC.
Line 225-226: This sentence overreaches in its conclusion. There is no indication that this protein provides the power or force behind the sporozoites forward movement. Several proteins are known to be required for gliding motility, but they are not all force-providing factors. Response: We have modified the sentence, and now it states, ‘These data demonstrate that S14 is an IMC protein, essential for the sporozoite's gliding motility.
Minor comments:
Line 99: "the role of gliding-associated proteins is unexplored" There are several publications on GAP40, GAP45 and GAP50 (some of which are referenced in the previous paragraph). Response: We have included the reference for studied proteins and modified the sentence for clarity.
Line 114: "We narrowed it down to a candidate" Narrowed down how? Or rephrase. Response: We identified the S14 gene from the Kaiser et al., 2004 paper (DOI: 10.1046/j.1365-2958.2003.03909.x) and rephrased the sentence in the revised manuscript.
Lines 120-123 are strangely written, and I don't follow the logic. What "similar properties" do GAP45 and GAP50 have with S14 and are they really indicative of function? Also if palmitoylation and myristylation and nonclassical secretion are present in most eukaryotes, why would they necessarily be evidence of IMC targeting? Response: It was wrongly written, we have modified the sentence for clarity.
Line 148-149. I did not see examples of this electromobility shift of GAP45 in this publication (although I may have overlooked it).
Response: Electromobility shifts of GAP45 due to the palmitoylation have been reported in (Rees-Channer et al, 2006; DOI: 10.1016/j.molbiopara.2006.04.008). Frenal 2010 paper has stated about two bands, but experimentally it was shown in Rees-Channer et al, 2006 in Figure 1 and 2B.
Table 1 legend should preferably specify that hemolymph sporozoites were used for IV infections. Response: Done.
Line 228: Should be rephrased for accuracy. "revealed the" should be replaced with "suggests" Response: Replaced.
Lines 305-307: I don't entirely understand the logic laid out here.
Response: This was written about GAP45 and MTIP coordination; however, it has been removed in the revised manuscript.
Lines 320-322: "We hypothesize that S14 possibly plays a structural role and maintains the stability of IMC required for the activity of motors during gliding and invasion." The data about the IMC structure shown is fluorescence microscopy - and there no change is observed in the IMC in the knockout line. I suggest removing or rephrasing this point if no extra data is provided to show this. Response: We have removed this sentence in the revised manuscript.
Reviewer #2 (Significance (Required)):
The work gives insights into an unstudied, conserved Plasmodium protein, S14, which the authors show is critical for Plasmodium transmission from mosquitoes. The parasite genetics and phenotyping demonstrating this are strong. The conclusions about interactions with glideosome/inner membrane complex components need further experimental support. The work is of interest to the Plasmodium field and may be also of interest to people interested in other protozoan parasites or in cellular motility.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
The manuscript by Gosh and colleagues demonstrates that S14 is a glideosome-associated protein in sporozoites. S14 knockout sporozoites fail to infect mosquito salivary glands and liver cells in the mammalian host. These sporozoites are also defective in gliding motility as S14 localizes to the inner membrane. S14 was shown to interact with the glideosome-associated proteins GAP45 and MTIP using the yeast two-hybrid system. The authors also provide an in-silico prediction on the S14, GAP45 and MTIP interaction.
Major issues:
Overall, there is information lacking in the manuscript, including on the figure legends, regarding experiments replication and n analyzed.
For complementation, the authors engineered an independent S14 knockout line. For this line is clear that parasites failed to infect salivary glands contrarily to the knockout line. Despite not showing it, did the authors confirm that this knockout line has no defects in infecting mosquito midguts and producing sporozoites? Response: We analyzed the midgut for sporozoite formation, which was comparable to the original KO line, and included the data (Figure 2D) in the revised manuscript.
Did the authors conduct IV injections in mice with a higher number of sporozoites? Hemolymph sporozoites are less infectious than sporozoites collected from the salivary glands and I was wondering whether patent infections with S14 ko sporozoites can be obtained by injecting a higher inoculum. The same applies to the infectivity experiments with HepG2cells. Response: We increased the sporozoites dose and infected mice with 10,000 hemolymph sporozoites, but no infection was observed (Table 1). No EEFs were observed in HepG2 cells infected with 10,000 S14 KO hemolymph sporozoites.
Please provide information on the number of sporozoites that were analyzed in the trails experiment. Response: We analyzed 210, 225, and 212 sporozoites for WT GFP, S14 KO c1, and S14 KO c2, respectively.
Minor issues:
In Figure 1. F) WB on S14-3xHA-mCherry tagged sporozoites showing two bands on the WB. The Palm-band is only inferred thus I suggest correcting the figure to S14-3xHA-mcherry. On 1D all the mcherry signal is detected on the membrane but then on WB, a smaller fraction is palm? What is the explanation for the ratio between the two bands? Why so distinct CSP intensity bands between wt and tagged line? Were very distinct amounts of protein loaded?
Response: We have corrected the Palm-S14-3xHA-mcherry to S14-3xHA-mcherry.
This reviewer raises a valid point regarding the discrepancy between IFA and Western blot. The non-palmitoylated S14-mCherrey signal was possibly corrected after deconvolution in image 1D and mainly the membrane signal was prominent. In Figure 1C, many sporozoites show some cytosolic signal, perhaps representing non-palmitoylated S14. Western blot concentrates the protein of interest as a single band, allowing more accurate visualization of protein.
The distinct CSP intensity bands between wt and the tagged line are due to the loading of a higher amount of parasite lysate in WT lane. To ensure that the western blot signal is specific to S14, we loaded a higher amount of protein in WT.
Figure 1. A) Statistical analysis is missing. Not clear if the bars represent mean values +/- standard deviation. No information on the material and methods of how the relative expression was calculated. Response: No error bars are shown in Figure 1 because it was performed once.
In the introduction lines 54 and 58 I suggest replacing humans with mammalian host. Response: Replaced.
Line 58. Not clear why the ref Ripp et al., 2021 is used for a general sentence to introduce the Plasmodium life cycle. Response: Removed.
Line 72: I suggest replacing "TRAP mutant" with "TRAP knockouts" (Sultan et al., 1997). More recently there are TRAP mutants with impaired motility and normal invasion of mosquito salivary glands (Klug et al., 2020) Response: Replaced.
Lines 78 to 86: In this paragraph, authors refer to several proteins involved in sporozoite gliding motility and host cell invasion, however for most of the studies this conclusion comes from the characterization of knockouts defective phenotype and actually a direct role for some of these molecules in the process awaits clear demonstration. Response: We have replaced involved with implicated.
Line 78: Authors do not consider that maebl knockout sporozoites display reduced adhesion, including to cultured hepatocytes, which could contribute to the defects in multiple biological processes, such as in gliding motility, hepatocyte wounding, and invasion. Response: We have corrected maebl role in the revised manuscript.
Line 80: I suggest authors reconcile the contradictory reports in the literature on the role of TRSP in sporozoites invasion. Response: We have removed this reference in the revised manuscript.
Line 82-83: Please revise it. Response: Revised.
Table 1. Correct table as when sporozoites were transmitted by mosquito bite the term "number of sporozoites injected" does not apply. Please give more details on the bite experiments. Is this the number of mosquitoes for all four animals? For how long the mosquitoes were allowed to bite? Response: For clarity, we have split the table into A Mosquito bite and B haemolymph Sporozoites. We used ten mosquitoes/mice in the bite experiment. Mosquitos were allowed to probe for blood meal for 20 minutes, and the feeding was ensured by observing mosquitoes post-blood meal; approximately 70% of mosquitoes received the blood meal in all the cages.
Line 288 and 289. There are several publications showing that maebl knockout sporozoites are impaired at invading the mosquito salivary glands and at infecting the vertebrate host contradicting Kariu et al., 2002 findings in the vertebrate host. Response: We have removed maebl from this line.
Line 290. I suggest "was most likely due to" instead of " due to" as sporozoite adhesion to cells was not evaluated. Response: Corrected.
Line 291: "Cellular transmigration and host cell invasion are prerequisites for gliding motility" please revise. Response: Revised.
Line 437: indicate which clone was used.
Response: Indicated (3D11).
Line: 463: indicate the % of the gel in the SDS-PAGE Response: We have used 10% SDS-PAGE gel and it is indicated in the revised manuscript.
Line 499: indicate the version of the GraphPad Prism software. Response: GraphPad Prism version 9.
Figure S3 legend needs to be corrected. Panels in the figure are from A to F while in legend G and H are included. Response: Corrected.
4. Description of analyses that authors prefer not to carry out
Reviewer #2
Line 39-41: "Using in silico and the yeast two-hybrid system, we showed the interaction of S14 with the glideosome-associated proteins GAP45 and MTIP. Together, our data show that S14 is a glideosome-associated protein" Although these interactions can be speculated based on the results shown, these interactions were not confirmed in this study. Response: We attempted to pulldown the S14 interacting partner using anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify interactome using mass spectrometry but failed. Hence, we selected two known IMC localized gliding proteins MTIP and GAP45. Performing pull-down from sporozoites is challenging, so we checked this interaction using yeast 2-hybrid assay and bioinformatic analysis for protein-protein interaction.
In order to claim interaction between S14 and IMC proteins, interaction needs to be shown experimentally. Well-controlled yeast 2-hybrid would be a start - then interaction would be more than just speculative. But immunoprecipitation from sporozoites or other biochemical interactions would give more support to this idea. Response: We attempted to pulldown the S14 interacting partner using an anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify interactome using mass spectrometry but failed. Hence, we selected two known IMC localized gliding proteins MTIP and GAP45. Performing pull-down from sporozoites is challenging, so we checked this interaction using yeast 2-hybrid assay and bioinformatic analysis for protein-protein interaction.
Reviewer #3
The authors provide convincing data on the S14 localization in the inner membrane of sporozoites and interaction with GAP45 and MTIP using the yeast model. Did the authors consider conducting co-IP followed by MS analysis to pull down S14 in the complex with GAP45 and MTIP? Response: We attempted to pulldown the S14 interacting partner using an anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify the interactome using mass spectrometry but failed. Hence, we selected two known IMC localized gliding proteins, MTIP and GAP45. Performing pull-down from sporozoites is challenging, so we checked this interaction using yeast 2-hybrid assay and bioinformatic analysis for protein-protein interaction.
__Reviewer #3 (Significance (Required)):____ __ Sporozoite gliding motility is a critical feature of parasite infectivity. Impairment of this important feature has been described for several mutant/knockout parasite lines. This study goes beyond the phenotypic analysis of mutant parasites to infer the role of S14 by providing more mechanistic evidence to show S14 interaction with other glideosome-associated proteins. However, this interaction was investigated using the two-hybrid system in yeast. Still, in sporozoites, no experiments were conducted to evaluate the interaction between these proteins.
Response: We attempted to pulldown the S14 interacting partner using an anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify interactome using mass spectrometry but failed. Hence, we selected two known IMC localized gliding proteins, MTIP and GAP45. Performing pull-down from sporozoites is challenging, so we checked this interaction using yeast 2-hybrid assay and bioinformatic analysis for protein-protein interaction.
Please consider I'm not an expert on the in-silico interaction studies.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary:
The authors tag the sporozoite protein S14 in P. berghei and show localization near the sporozoite plasma membrane. They also convincingly show, through the generation of S14 knockout lines, that S14 is required for sporozoite motility and thereby also salivary gland and hepatocyte invasion. Their bioinformatic results support possible interactions between S14 and the inner membrane complex proteins MTIP and GAP45. These analyses were performed with these specific candidate proteins rather than being unbiased searches for potential interaction partners. The yeast 2-hybrid data to support these possible protein interactions need further controls.
Major comments:
Line 39-41: "Using in silico and the yeast two-hybrid system, we showed the interaction of S14 with the glideosome-associated proteins GAP45 and MTIP. Together, our data show that S14 is a glideosome-associated protein" Although these interactions can be speculated based on the results shown, these interactions were not confirmed in this study.
Lines 143-144: Unless the sporozoites were not permeablized prior to staining, it is not clear if the protein is "on" the plasma membrane or just under the plasma membrane. Furthermore, this statement anyway seems contradictory to the authors' interpretation of Figure 4A.
Line 218: "This result indicates that S14 is present within the inner membrane of sporozoites." While this data shows that S14 is not in the plasma membrane of the parasite, how can the authors be sure it is at the IMC?
Line 149: To definitively state S14 is a membrane protein, biochemical assays proving such should be performed. (or perhaps genetic mutation of the predicted palmitoylation site?) Otherwise, this should be rephrased.
Line 225-226: This sentence overreaches in its conclusion. There is no indication that this protein provides the power or force behind the sporozoites forward movement. Several proteins are known to be required for gliding motility, but they are not all force-providing factors.
Lines 257-258: for yeast 2-hybrid, the controls of expressing S14, GAP45 and MTIP together with control proteins where no interaction would be predicted are absent.
In order to claim interaction between S14 and IMC proteins, interaction needs to be shown experimentally. Well-controlled yeast 2-hybrid would be a start - then interaction would be more than just speculative. But immunoprecipitation from sporozoites or other biochemical interactions would give more support to this idea.
Minor comments:
Line 99: "the role of gliding-associated proteins is unexplored" There are several publications on GAP40, GAP45 and GAP50 (some of which are referenced in the previous paragraph).
Line 114: "We narrowed it down to a candidate" Narrowed down how? Or rephrase.
Lines 120-123 are strangely written, and I don't follow the logic. What "similar properties" do GAP45 and GAP50 have with S14 and are they really indicative of function? Also if palmitoylation and myristylation and nonclassical secretion are present in most eukaryotes, why would they necessarily be evidence of IMC targeting?
Line 148-149. I did not see examples of this electromobility shift of GAP45 in this publication (although I may have overlooked it).
Table 1 legend should preferably specify that hemolymph sporozoites were used for IV infections.
Line 228: Should be rephrased for accuracy. "revealed the" should be replaced with "suggests"
Lines 305-307: I don't entirely understand the logic laid out here.
Lines 320-322: "We hypothesize that S14 possibly plays a structural role and maintains the stability of IMC required for the activity of motors during gliding and invasion." The data about the IMC structure shown is fluorescence microscopy - and there no change is observed in the IMC in the knockout line. I suggest removing or rephrasing this point if no extra data is provided to show this.
Significance
The work gives insights into an unstudied, conserved Plasmodium protein, S14, which the authors show is critical for Plasmodium transmission from mosquitoes. The parasite genetics and phenotyping demonstrating this are strong. The conclusions about interactions with glideosome/inner membrane complex components need further experimental support. The work is of interest to the Plasmodium field and may be also of interest to people interested in other protozoan parasites or in cellular motility.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary: The authors have identified a sporozoite gliding motility protein through bioinformatic analysis. From the main text I do not know how, or what bioinformatic analysis was performed, in order to focus on this protein which is called S14. The authors then go on to tag the protein, produce a KO and show its involvement in gliding motility. The KO shows that parasites lacking S14 fail to invade the mosquito salivary glands. This is due to a motility defect. Y2H and docking studies are used to define an interaction with MTIP and GAP45, two known components of the glideosome.
Major comments: The paper is sometimes hard to follow and lacks clarity. The reason: important information is omitted, or explained at the end of a section rather than at first mention; experimental details that are of essence need to be mentioned or explained in the main text; there is ample use of the word 'bioinformatic' without explaining what kind of analysis was performed in the main text. I cite from the abstract: 'In silico analysis of a novel protein, S14, which is uniquely upregulated in salivary gland sporozoites, suggested its association with glideosome-associated proteins.' I cite from the introduction: 'A study comparing transcriptome differences between sporozoites and merozoites using suppressive subtraction hybridization found several genes highly upregulated in sporozoites and named them 'S' genes (Kaiser et al, 2004). We narrowed it down to a candidate named S14, which lacked signal peptide and transmembrane domains.' From reading the main text, I do not know why Plasmodium berghei S14 was chosen in this manuscript. S14 is one of 25 transcripts identified by Kappe et al in Plasmodium yoelii (https://doi.org/10.1046/j.1365-2958.2003.03909.x) to be upregulated in sporozoites. The material and methods section does not explain either why S14 was chosen. Perhaps the authors could update Figure 2 from Kappe et al with the most recent annotations from plasmodb.
Reproducibility: None of the main Figures or Figure legends define ' N = '. For example I cite: 'The S14 KO clonal lines were first analyzed for asexual blood-stage propagation, and for this, 200 µl of iRBCs with 0.2% parasitemia was intravenously injected into a group of mice.' There are 2 mentions of 'N=' in the supplementary figures. I have not found any others.
I'm not sure what the convention is. Should unpublished data for this gene (PBANKA_0605900) found in pberghei.eu (a database for mutant berghei parasites) be cited? After all it confirms their findings.
The authors need to use more recent references for some of their statements; see some comments below.
Minor comments:
line
1-2 Add the Plasmodium species of this study. abstract Which species do you work with? 29 mosquito salivary glands and human host hepatocytes 30 to the glideosome, a protein complex containing [...] 32-33 What kind of in silico analysis suggested S14 is part of the glideosome? S14 is not uniquely upregulated; there are other S-type genes identified by Kappe and Matuschewski. 25 I believe. 32 Please point out he species were S genes were identified. SGS of which species? 34 expression: change to transcription 39 What kind of in silico analysis was used here? and therefore malaria transmission 55 A single zygote transforms into a single ookinete, which establishes a single oocyst, which in turn can produce thousands of midgut sporozoites. Please correct the life cycle passage. located or anchored in the IMC? And located between the IMC and plasma membrane? 61-63 Refer to Table S1 and its contents here 64 Name the known GAPs.
65-67 Which transmembrane domain proteins? Please add more recent references than King 1988. 71-72 TRAP was the first protein found to be ... 74-76 Add additional, more recent references: for example search Frischknecht and TRAP 76 S6 (TREP) is also [...] 88 Some of these proteins are also expressed in ookinetes. 89-91 The sentence needs a verb. 88-96 Please add some more recent glideosome papers. After 2013. 91 Why do you call it a peripheral protein? 91-93 There are more recent citations for GAP45 andGAP50. 96 Insert a reference here. 99 Please define the gliding-associated proteins. What are they? Aren't there papers on GAP40, 45 and 50? DOI: 10.1016/j.chom.2010.09.002 99 .... What prompted you to identify a novel GAP? And why is S14 classified as a GAP? 99-102 What kind of bioinformatic study? Why was S14 chosen? Please outline how you ended up with S14. Any other proteins that came out of the bioinformatic screen from the list of S genes? How many proteins were identified in the screen for sporozoite upregulated proteins by Kappe and Matuschewski? 102-103 Define the nonclassical secretion pathway. Please reference GAP45 and GAP50 data for the nonclassical pathway. 105 Please add P. berghei to the title, the abstract, the introduction. 111 The results section does not outline what bioinformatic analysis was used 112-114 Please specify the exact number of upregulated in sporozoites genes. I think it was 25. And add the species the study was performed in. Why did you choose the Kappe study but not the uis genes from berghei? 114-115 How did you narrow it down to S14? The Kappe paper lists 25 S-type genes from P. yoelii. 118 Plasmodia is not the plural for a group of different Plasmodium species. Use: [...] conserved among Plasmodium spp. 118-119 Which proteins did you analyze? And how did you analyze them? Where is the data for this analysis? Outline the amino acids that predict palmitoylation? The nonclassical pathway? 119-122 Here: do you mean S14 has similar properties as GAP 45 and GAP50? Define the nonclassical pathway? How do you know S14 is in the IMC? 122-123 Please reference the bioinformatic analysis plus URL that allows targeting to the IMC to be analyzed. 123-124 Please reference the URLs for TM, palmitoylation, and interactions analyses. 125-127 How did you predict that S14 is secreted via the nonclassical pathway? 128-130 Define the nonclassical pathway when it first appears in your manuscript. The citation Moskes 2004 is not in the reference list 132 Which membrane? 134-135 In which species? 141-142 Please include images of blood stage and liver stage parasites. 142-143 Which membrane? 148-149 I cannot find the specific figure you refer to; I checked the online version of the Frenal 2010 paper. 175 gland, we counted [...] 177 Compared to the 177-179 Failed to invade (absolutely)? Or invaded in highly reduced numbers? 182-186 Please be precise: I think you mean you let all types of mosquitoes take a blood meal; s14 knockout-infected mosquitoes did not infect mice. 181-202 Perhaps use paragraphs to indicate the different types of experiments performed here. 204 Please introduce paragraphs to identify the different experiments in this section 208 Outer or inner membrane of what? IMC, the plasma membrane? 228 onwards Structural models were obtained from whom? Which species did you use for the docking study? Could you use in one approach 3 berghei proteins, and confirm your docking studies with the falciparum proteins? That would strengthen your model. Should you include a negative control protein in the approach? 250-251 Was all of the gene cloned? Please define amino acid range. discussion Please discuss data from https://elifesciences.org/articles/77447 in relation to your protein
298-300 More recent glideosome papers exist. For example https://doi.org/10.1038/s42003-020-01283-8 340 List the proteins you analysed. Add URL (websites) to the analyses tools. 343 Known association from the literature: how was this done? 346-349 A few glideosome components? On what basis were they selected and which are they?
471 Can AlphaFold Structure Predictions be used in the docking studies? 487 What parts of theses genes was cloned? Define the amino acid range. 714 Please split the table into A Mosquito bite and B haemolymph Sporozoites Figure 1 For clarity, maybe write S14::mCherry Figure 1 It would be useful to show blood stage parasite images. Figure 1F You have not formally shown that this signal corresponds to palmitoylated S14. Could be heavy chain. Figure 2G Haemolymph sporozoites ? Figure 8 You argued that S14 is a membrane-bound protein through palmitoylation. Here the protein is shown to be cytoplasmic. Please update our model with more recent ones.
Figure S2B It would be good to include a positive control for these PCRs. Figure S3 It would be good to include a positive control for these PCRs.
Tabel S1 Table S1 is only mentioned twice in the text: lines 124 and 128. There is no mention that the table contains all (??) known gliding motility proteins. Table S1 The algorithms / websites used for bioinformatic prediction need to be listed here. Table S2 Add the plasmodb gene identifiers here. The table does not show all Plasmodium spp. but a selection.
Significance
General assessment: The authors provide an in-depth analyses of the Plasmodium berghei protein S14 and its involvement in gliding motility.
Advance: This paper is the first analysis of the S14 protein. The authors suggest a bridging function for the protein between MTIP and GAP45.
Audience: Gliding motility is of interest to the apicomplexan field. I think this particular proteins is specific to Plasmodium spp.
-
-
gitlab.com gitlab.com
-
I think we are a victim of behavioural norms and so many of the apps that I use have this pattern. That's not to say it's the right behaviour, but it may be hard to break the pattern for users.
-
-
www.liberation.fr www.liberation.fr
-
Wenige Tage nach dem „2023 State of the Climate report“ listet der „Interconnected Disaster Report“ der UN University sechs Bedrohungen für die lebenserhaltenden Systeme des Planeten auf, darunter Gletscherschmelze, Grundwasserverlust, Artensterben und Erhitzung. Nur ein transformativer Wandel statt aufschiebender Lösungen kann die wachsenden Risiken miteinander verbundener Katastrophen verringern. https://www.liberation.fr/environnement/climat/climat-la-vie-sur-la-planete-terre-est-en-etat-de-siege-alertent-des-scientifiques-20231025_2MHSFZZWUNHZPPBONAUFLKKUZM/
Studie: https://interconnectedrisks.org/
Merh zum 2023 State of the Climate report: https://hypothes.is/search?q=tag%3A%22report%3A%202023%20state%20of%20the%20climate%20report%22
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Dear Editor,
Herewith we submit our fully revised peer-reviewed preprint that had been reviewed by Review Commons. We thank the Review Commons team and reviewers for thoroughly commenting on our preprint and providing very useful additional points for consideration and discussion.
You will find - the revised manuscript (third preprint version uploaded on biorxiv)<br /> - two reviewer letters (through Review Commons), - our rebuttal letter<br /> - a revised manuscript version with highlighted changes.
Our manuscript reports that an active form of FIT, an essential transcription factor for root iron acquisition in plants, forms dynamic nuclear condensates in response to a blue light stimulus.<br /> A hallmark of our work is the thorough investigation of the nature of the FIT nuclear bodies in plant cells, that we were able to characterize as highly dynamic condensates in which active FIT homo- and heteromeric protein complexes can accumulate preferentially. Through co-localization with nuclear body markers, we found that these FIT condensates are related to speckles, which are a sub-type of nuclear bodies connected with splicing activities. This suggests that FIT condensates are linked with post-transcriptional regulation mechanisms.
The reviewers highlight that an “impressive set of microscopic techniques” has been combined to study in a unique manner the characteristics and functionalities of FIT nuclear bodies in living plant cells. We show that FIT nuclear bodies can be formed in roots of Arabidopsis thaliana. The microscopic imaging techniques we used to characterize the nature and functionalities of FIT nuclear bodies in plant cells have several constraints related to sensitivity and a required strength of fluorescent protein signal. For technical reasons to be able to apply qualitative and quantitative imaging techniques, we conducted the investigation of FIT condensates in Nicotiana benthamiana, a classical and widely used plant protein expression system.
As stated in the reviews, the connection between plant nutrition and nuclear bodies is an “unprecedented” new mode of regulation. The significance of our work is underlined by the fact that we report a “very precise cellular and molecular mechanism in nutrition” that is as yet “still largely unexplored in this context”. Therefore, our study “sheds light on the functional role of this membrane-less compartment and will be appreciated by a large audience.”
We propose that condensate formation is a mechanism that may steer iron nutrition responses by providing a link between iron and light signaling. For sessile plants, it is absolutely essential that environmental signals are sensed and integrated with developmental and physiological programs so that plants can rapidly adjust to a changing environment and potential stress situations. Since iron is a micronutrient that may be toxic when present in excess, e.g. through catalyzing oxidative stress, plants strictly control the acquisition and allocation of iron. Hence, FIT nuclear bodies may be regulatory hubs that integrate at the sub-nuclear level environmental signaling inputs in the control of micronutrient uptake, possibly connected with splicing.
Our work lays the ground for future studies that can address the proof of concept in more detailed manner in plants exposed to varying environmental conditions to reveal the interconnection of environmental and nutritional signaling.
We prepared a revised preprint in which we address all reviewer comments. Please find our revision and our detailed response to all reviewer comments.
With these changes, we hope that our peer-reviewed preprint can receive a positive vote,
We are looking forward to your response,
Sincerely
Petra Bauer and Ksenia Trofimov on behalf of all authors
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity):
In this paper entitled " FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) accumulates in homo- and heterodimeric complexes in dynamic and inducible nuclear condensates associated with speckle components", Trofimov and colleagues describe for the first time the function of FIT in nuclear bodies. By an impressive set of microscopies technics they assess FIT localization in nuclear bodies and its dynamics. Finally, they reveal their importance in controlling iron deficiency pathway. The manuscript is well written and fully understandable. Nonetheless, at it stands the manuscript present some weakness by the lack of quantification for co-localization and absence controls making hard to follow authors claim. Moreover, to substantially improve the manuscript the authors need to provide more proof of concepts in A. thaliana as all the nice molecular and cellular mechanism is only provided in N. bentamiana. Finally, some key conclusions in the paper are not fully supported by the data.<br /> Please see below:
Main comments:
1) For colocalization analysis, the author should provide semi-quantitative data counting the number of times by eyes they observed no, partial or full co-localization and indicate on how many nucleus they used.
Authors:
We have added the information in the Materials and Method section, lines 731-734:
In total, 3-4 differently aged leaves of 2 plants were infiltrated and used for imaging. One infiltrated leaf with homogenous presence of one or two fluorescence proteins was selected, depending on the aim of the experiment, and ca. 30 cells were observed. Images are taken from 3-4 cells, one representative image is shown.
In all analyzed cases, except in the case of colocalization of FIT and PIF4 fusion proteins, the ca. 30 cells had the same localization and/or colocalization patterns. This information has also been added in the figure legends. Each experiment was repeated at least 2-3 times, or as indicated in the figure legend.
2) Do semi-quantitative co-localization analysis by eyes, on FIT NB with known NB makers in the A. thaliana root. For now, all the nicely described molecular mechanism is shown in N. benthamiana which makes this story a bit weak since all the iron transcriptional machinery is localized in the root to activate IRT1.
Authors:
The described approach has been very optimal, and we were able to screen co-localizing marker proteins in FIT NBs in N. benthamiana to better identify the nature of FIT NBs. This has been successful as we were able to associate FIT NBs with speckles. The N. benthamiana system allowed optimal microscopic observation of fluorescence proteins and quantification of FIT NB characteristics in contrast to the root hair zone of Arabidopsis where Fe uptake takes place. FIT is expressed at a low level in roots and also in leaves, whereby fluorescence protein expression levels are insufficient for the here-presented microscopic studies. The tobacco infiltration system is also well established to study FIT-bHLH039 protein interaction and nuclear body markers. We discuss this point in the discussion, see line 489-500.
3) The authors need to provide data clearly showing that the blue light induce NB in A. thaliana and N. benthamiana.
Authors:
For tobacco, see Figure 1B (t = 0, 5 min) and Supplemental Movies S1. For Arabidopsis, please see Figure 1A (t = 0, 90 and 120 min) and Supplemental Figure S1A. We provide an additional image of pFIT:cFIT-GFP Arabidopsis control plants, showing that NB formation is not detected in plants that were grown in white light and not exposed to blue light before inspection (Supplemental Figure S1B). We state, that upon blue light exposure, plants had FIT NBs in at least 3-10 nuclei of 20 examined nuclei in the root epidermis in the root hair zone (in three independent experiments with three independent plants). White-light-treated plants showed no NB formation unless an additional exposure to blue light was provided (in three independent experiments, three independent plants per experiment and with 15 examined nuclei per plant).
4) Direct conclusion in the manuscript:
- Line 170: At this point of the paper the author cannot claim that the formation of FIT condensates in the nucleus is due to the light as it might be indirectly linked to cell death induced by photodamaging the cell using a 488 lasers for several minutes. This is true especially with the ELYRA PS which has strong lasers made for super resolution and that Cell death is now liked to iron homeostasis. The same experiment might be done using a spinning disc or if the authors present the data of the blue light experiment mentioned above this assumption might be discarded. Alternatively, the author can use PI staining to assess cell viability after several minutes under 488nm laser.
Authors:
As stated in our response to comment 3, we have included now a white light control to show that FIT NB formation is not occurring under the normal white light conditions. Since the formation of FIT NBs is a dynamic and reversible process (Figure 1A), it indicates that the cells are still viable, and that cell death is not the reason for FIT NB formation.
- Line 273: I don't agree with the first part of the authors conclusion, saying that "wild-type FIT had better capacities to localize to NBs than mutant FITmSS271AA, presumably due its IDRSer271/272 at the C-terminus. This is not supported by the data. In order to make such a claim the author need to compare the FA of FIT WT with FITmSS271AA by statistical analysis. Nonetheless, the value seems to be identical on the graphs. The main differences that I observed here are, 1) NP value for FITmSS271AA seems to be lower compared to FIT-WT, suggesting that the Serine might be important to regulate protein homedimerization partitioning between the NP and the NB. 2) To me, something very interesting that the author did not mention is the way the FA of FITmSS271AA in the NB and NP is behaving with high variability. The FA of those is widely spread ranging from 0.30 to 0.13 compared to the FIT-WT. To me it seems that according to the results that the Serine 271/272 are required to stabilize FIT homodimerization. This would not only explain the delay to form the condensate but also the decreased number and size observed for FITmSS271AA compared to FIT-WT. As the homodimerization occurs with high variability in FITmSS271AA, there is less chance that the protein will meet therefore decreasing the time to homodimerize and form/aggregate NB.
Authors:
We fully agree. We meant to describe this result it in a similar way and thank you for help in formulating this point even better. Rephrasing might make it better clear that the IDRSer271/272 is important for a proper NB localization, lines 272-278:
“Also, the FA values did not differ between NBs and NP for the mutant protein and did not show a clear separation in homodimerizing/non-dimerizing regions (Figure 3D) as seen for FIT-GFP (Figure 3C). Both NB and NP regions showed that homodimers occurred very variably in FITmSS271AA-GFP.
In summary, wild-type FIT could be partitioned properly between NBs and NP compared to FITmSS271AA mutant and rather form homodimers, presumably due its IDRSer271/272 at the C-terminus.”
- Line 301: According to my previous comment (line 273), here it seems that the Serine 271/272 are required only for proper partitioning of the heterodimer FIT/BHLH039 between the NP and NB but not for the stability of the heterodimer formation. However, it might be great if the author would count the number of BHLH039 condensates in both version FITmSS271AA and FIT-WT. To my opinion, they would observe less BHLH039 condensate because the homodimer of FITmSS271AA is less likely to occur because of instability.
Authors:
bHLH039 alone localizes primarily to the cytoplasm and not the nucleus, and the presence of FIT is crucial for bHLH039 nuclear localization (Trofimov et al., 2019). Moreover, bHLH039 interaction with FIT depends on SS271AA (Gratz et al., 2019). We therefore did not consider this experiment for the manuscript and did not acquire such data, as we did not expect to achieve major new information.
5) To wrap up the story about the requirements of NB in mediating iron acquisition under different light regimes, provide data for IRT1/FRO2 expression levels in fit background complemented with FITmSS271AA plants. I know that this experiment is particularly lengthy, but it would provide much more to this nice story.
Authors:
Data for expression of IRT1 and FRO2 in FITmSS271AA/fit-3 transgenic Arabidopsis plants are provided in Gratz et al. (2019). To address the comment, we did here a NEW experiment. We provide gene expression data on FIT, BHLH039, IRT1 and FRO2 splicing variants (previously reported intron retention) to explore the possibility of differential splicing alterations under blue light (NEW Supplemental Figure S6 and S7, lines 454-466). Very interestingly, this experiment confirms that blue light affects gene expression differently from white light in the short-term NB-inducing condition and that blue light can enhance the expression of Fe deficiency genes despite of the short 1.5 to 2 h treatment. Another interesting aspect was that the published intron retention was also detected. A significant difference in intron retention depending on iron supply versus deficiency and blue/white light was not observed, as the pattern of expression of transcripts with respective intron retentions sites was the same as the one of total transcripts mostly spliced.
Minor comments
In general, I would suggest the author to avoid abbreviation, it gets really confusing especially with small abbreviation as NB, NP, PB, FA.
Authors:
We would like to keep the used abbreviations as they are utilized very often in our work and, in our eyes, facilitate the understanding.
Line 106: What does IDR mean?
Authors:
Explanation of the abbreviation was added to the text, lines 105-108:
“Intrinsically disordered regions (IDRs) are flexible protein regions that allow conformational changes, and thus various interactions, leading to the required multivalency of a protein for condensate formation (Tarczewska and Greb-Markiewicz, 2019; Emenecker et al., 2020).”
Line 163-164: provide data or cite a figure properly for blue light induction.
Authors:
We have removed this statement from the description, as we provide a white light control now, lines 157-158:
“When whole seedlings were exposed to 488 nm laser light for several minutes, FIT became re-localized at the subnuclear level.”
Line 188: Provide Figure ref.
Authors:
Figure reference was added to the text, lines 184-185:
“As in Arabidopsis, FIT-GFP localized initially in uniform manner to the entire nucleus (t=0) of N. benthamiana leaf epidermis cells (Figure 1B).”
Line 194: the conclusion is too strong. The authors conclude that the condensate they observed are NB based on the fact the same procedure to induce NB has been used in other study which is not convincing. Co-localization analysis with NB markers need to be done to support such a claim. At this step of the study, the author may want to talk about condensate in the nucleus which might correspond to NB. Please do so for the following paragraph in the manuscript until colocalization analysis has not been provided. Alternatively provide the co-localization analysis at this step in the paper.
Authors:
We agree. We changed the text in two positions.
Lines 176-178__: “__Since we had previously established a reliable plant cell assay for studying FIT functionality, we adapted it to study the characteristics of the prospective FIT NBs (Gratz et al., 2019, 2020; Trofimov et al., 2019).”
Lines 192-193: “__We deduced that the spots of FIT-GFP signal were indeed very likely NBs (for this reason hereafter termed FIT NBs).”
Line 214: In order to assess the photo bleaching due to the FRAP experiment the quantification of the "recovery" needs to be provided in an unbleached area. This might explain why FIT recover up to 80% in the condensate. Moreover, the author conclude that the recovery is high however it's tricky to assess since no comparison is made with a negative/positive control.
Authors:
In the FRAP analysis, an unbleached area is taken into account and used for normalization.
We reformulated the description of Figure 1F, lines 212-214:
“According to relative fluorescence intensity the fluorescence signal recovered rapidly within FIT NBs (Figure 1F), and the calculated mobile fraction of the NB protein was on average 80% (Figure 1G).”
Line 220-227: The conclusion it's too strong as I mentioned previously the author cannot claim that the condensate are NBs at this step of the study. They observed nuclear condensates that behave like NB when looking at the way to induce them, their shape, and the recovery. And please include a control.
Authors:
Please see the reformulated sentences and our response above.
Lines 176-178: “Since we had previously established a reliable plant cell assay for studying FIT functionality, we adapted it to study the characteristics of the prospective FIT NBs (Gratz et al., 2019, 2020; Trofimov et al., 2019).”
Lines 192-193: “__We deduced that the spots of FIT-GFP signal were indeed very likely NBs (for this reason hereafter termed FIT NBs).”
Line 239: It's unappropriated to give the conclusion before the evidence.
Authors:
Thank you. We removed the conclusion.
Line 240: Figure 2A, provide images of FIT-G at 15min in order to compare. And the quantification needs to be provided at 5 minutes and 15 minutes for both FIT-G WT and FIT-mSS271AA-G counting the number of condensates in the nucleus. Especially because the rest of the study is depending on these time points.
Authors:
This information is provided in the Supplemental Movie S1C.
Line 241: the author say that the formation of condensate starts after 5 minutes (line 190) here (line 241) the author claim that it starts after 1 minutes. Please clarify.
Authors:
In line 190 we described that FIT NB formation occurs after the excitation and is fully visible after 5 min. In line 241 we stated that the formation starts in the first minutes after excitation, which describes the same time frame. We rephrased the respective sentences.
Lines 185-188: “A short duration of 1 min 488 nm laser light excitation induced the formation of FIT-GFP signals in discrete spots inside the nucleus, which became fully visible after only five minutes (t=5; Figure 1B and Supplemental Movie S1A).”
Lines 239-242: “While FIT-GFP NB formation started in the first minutes after excitation and was fully present after 5 min (Supplemental Movie S1A), FITmSS271AA-GFP NB formation occurred earliest 10 min after excitation and was fully visible after 15 min (Supplemental Movie S1C).”
Line 254: Not sure what the authors claim "not only for interaction but also for FIT NB formation ". To me, the IDR is predicted to be perturbed by modeling when the serines are mutated therefore the IDR might be important to form condensates in the nucleus. Please clarify.
Authors:
The formation of nuclear bodies is slow for FITmSS271AA as seen in Figure 2. Previously, we showed that FITmSS271AA homodimerizes less (Gratz et al., 2019.) Therefore, the said IDR is important for both processes, NB formation and homodimerization. We have added this information to make the point clear, lines 253-255:
“This underlined the significance of the Ser271/272 site, not only for interaction (Gratz et al., 2019) but also for FIT NB formation (Figure 2).”
Line 255: It's not clear why the author test if the FIT homodimerization is preferentially associated with condensate in the nucleus.
Authors:
We test this because both homo- and heterodimerization of bHLH TFs are generally important for the activity of TFs, and we unraveled the connection between protein interaction and NB formation. We state this in lines 228-232.
Line 269-272: It's not clear to what the authors are referring to.
Authors:
We are describing the homodimeric behavior of FIT and FITmSS271AA assessed by homo-FRET measurements that are introduced in the previous paragraph, lines 256-268.
Line 309: This colocalization part should be presented before line 194.
Authors:
We find it convincing to first examine and characterize the process underlying FIT NB formation, then studying a possible function of NBs. The colocalization analysis is part of a functional analysis of NBs. We thank the reviewer for the hint that colocalization also confirms that indeed the nuclear FIT spots are NBs. We will take this point and discuss it, lines 516-522:
“Additionally, the partial and full colocalization of FIT NBs with various previously reported NB markers confirm that FIT indeed accumulates in and forms NBs. Since several of NB body markers are also behaving in a dynamic manner, this corroborates the formation of dynamic FIT NBs affected by environmental signals.”
“In conclusion, the properties of liquid condensation and colocalization with NB markers, along with the findings that it occurred irrespective of the fluorescence protein tag preferentially with wild-type FIT, allowed us to coin the term of ‘FIT NBs’.”
Line 328: add the ref to figure, please.
Authors:
Figure reference was added to the text, lines 330-332:
“The second type (type II) of NB markers were partially colocalized with FIT-GFP. This included the speckle components ARGININE/SERINE-RICH45-mRFP (SR45) and the serine/arginine-rich matrix protein SRm102-mRFP (Figure 5).”
Line 334: It seems that the size of the SR45 has an anormal very large diameter between 4 and 6 µm. In general a speckle measure about 2-3µm in diameter. Can the author make sure that this structure is not due to overexpression in N. benthamiana or make sure to not oversaturate the image.
Authors:
Thank you for this hint. Indeed, there are reports that SR45 is a dynamic component inside cells. It can redistribute depending on environmental conditions and associate into larger speckles depending on the nuclear activity status (Ali et al., 2003). We include this reference and refer to it in the discussion, lines 557-564:
“Interestingly, typical FIT NB formation did not occur in the presence of PB markers, indicating that they must have had a strong effect on recruiting FIT. This is interesting because the partially colocalizing SR45, PIF3 and PIF4 are also dynamic NB components. Active transcription processes and environmental stimuli affect the sizes and numbers of SR45 speckles and PB (Ali et al., 2003; Legris et al., 2016; Meyer, 2020). This may indicate that, similarly, environmental signals might have affected the colocalization with FIT and resulting NB structures in our experiments. Another factor of interference might also be the level of expression.”
Line 335: It seems that the colocalization is partial only partial after induction of NB. The FIT NB colocalize around SR45. But it's hard to tell because the images are saturated therefore creating some false overlapping region.
Authors:
The localization of FIT with SR45 is partial and occurs only after FIT has undergone condensation, see lines 335-338.
Line 344-345: It's unappropriated to give the conclusion before the evidence.
Authors:
We explain at an earlier paragraph that we will show three different types of colocalization and introduce the respective colocalization types within separate paragraphs accordingly, see lines 314-321.
Line 353: increase the contrast in the image of t=5 for UAP56H2 since it's hard to assess the colocalization.
Authors:
This is done as noted in the figure legend of Figure 6.
Line 381-382: "In general" does not sound scientific avoid this kind of wording and describe precisely your findings.
Authors:
We rephrased the sentence, line 387-388:
Localization of single expressed PIF3-mCherry remained unchanged at t=0 and t=15 (Supplemental Figure S5A).
Line 384-385: Provide the data and the reference to the figure.
Authors:
We apologize for the misunderstanding and rephrased the sentence, line 389-391:
After 488 nm excitation, FIT-GFP accumulated and finally colocalized with the large PIF3-mCherry PB at t=15, while the typical FIT NBs did not appear (Figure 7A)
Line 386: The structure in which FIT-G is present in the Figure 7A t=15 is not alike the once already observed along the paper. This could be explained by over-expression in N. benthamiana. Please explain.
Authors:
Thank you for the hint. We discuss this in the discussion part, see lines 555-568.
Line 393: Explain and provide data why the morphology of PIF4/FIT NB do not correspond to the normal morphology.
Authors:
Thank you for the valuable hints. Several reasons may account for this and we provide explanations in the discussion, see lines 555-568.
Line 396-398: It seems also from the data that co-expression of PIF4 of PIF3 will affect the portioning of FIT between the NP and the NB.
Authors:
We can assume that residual nucleoplasm is depleted from protein during NB formation. This is likely true for all assessed colocalization experiments. We discuss this in lines 492-494.
The discussion is particularly lengthy it might be great to reduce the size and focus on the main findings.
Authors:
We shortened the discussion.
Referees cross-commenting
All good for me, I think that the comments/suggestions from Reviewer #2 are valid and fair. If they are addressed they will improve considerably the manuscript.
Reviewer #1 (Significance):
This manuscript is describing an unprecedent very precise cellular and molecular mechanism in nutrition throughout a large set of microscopies technics. Formation of nuclear bodies and their role are still largely unexplored in this context. Therefore, this study sheds light on the functional role of this membrane less compartment and will be appreciated by a large audience. However, the fine characterization is only made using transient expression in N. Bentamiana and only few proofs of concept are provided in A. thaliana stable line.
Reviewer #2 (Evidence, reproducibility and clarity):
The manuscript of Trofimov et al shows that FIT undergoes light-induced, reversible condensation and localizes to nuclear bodies (NBs), likely via liquid-liquid phase separation and light conditions plays important role in activity of FIT. Overall, manuscript is well written, authors have done a great job by doing many detailed and in-depth experiments to support their findings and conclusions.
However, I have a number of questions/comments regarding the data presented and there are still some issues that authors should take into account.
Major points/comments:
1) Authors only focused on blue light conditions. Is there any specific reason for selecting only blue light and not others (red light or far red)?
Authors:
There are two main reasons: First, in a preliminary study (not shown) blue light resulted in the formation of the highest numbers of NBs. Second, iron reductase activity assays and gene expression analysis under different light conditions showed a promoting effect under blue light, but not red light or dark red light (Figure 9). This indicated to us, that blue light might activate FIT, and that active FIT may be related to FIT NBs.
2) Fig. 3C and D: as GFP and GFP-GFP constructs are used as a reference, why not taking the measurements for them at two different time points for example t=0 and t=5 0r t=15???
Authors:
Free GFP and GFP-GFP dimers are standard controls for homo-FRET that serve to delimit the range for the measurements.
3) Line 27-271: Acc to the figure 3d, for the Fluorescence anisotropy measurement of NBs appears to be less. Please explain.
Authors:
FA in NBs with FITmSS271AA is variable and the value is lower than that of whole nucleus but not significantly different compared with that in nucleoplasm. We describe the results of Figure 3D in lines 272-275.
4) Figure 4: For the negative controls, data is shown at only t=0, data should be shown at t=5 also to prove that there is no decrease in fluorescence in these negative controls when they are expressed alone without bhlh39 as there is no acceptor in this case.
Authors:
Neither for FIT/bHLH039 nor the FITmSS271AA/bHLH039 pair, there is a significant decrease in the fluorescence lifetime values between t=0 and t=5/15. FIT-G is a control to delimit the range. The interesting experiment is to compare the protein pairs of interest between the different nuclear locations at t=5/15.
5) Line 300-301: In Figure 4D and 4E. Fluorescence lifetime of G measurement at t=0 seems very similar for both FIT-G as well as FITmSS but if we look at the values of t=0 for FIT-G+bhlh039 it is greater than 2.5 and for FITmSS271AA-G+bhlh039 it is less which suggests more heterodimeric complexes to be formed in FITmSS271AA-G+bhlh039. Similar pattern is observed for NBs and NPs, according to the figure 4d and E.
Therefore, heterodimeric complexes accumulated more in case of FITmSS271AA-G+bhlh039 as compared to FIT-G+bhlh039 (if we compare measurement values of Fluorescence lifetime of G of FITmSS271AA-G+bhlh039 with FIT-G+bhlh039).
Please comment and elaborate about this further.
Authors:
These conclusions are not valid as the experiments cannot be conducted in parallel. Since the experiments had to be performed on different days due to the duration of measurements including new calibrations of the system, we cannot compare the absolute fluorescence lifetimes between the two sets.
6) Figure 4: For the negative controls, data is shown at only t=0, data should be shown at t=5 also to prove that there is no decrease in fluorescence in these negative controls when they are expressed alone without bhlh39 as there is no acceptor in this case.
Authors:
Please see our response to your comment 4).
7) Line 439-400: As iron uptake genes (FRO2 and IRT1) are more induced in WT under blue light conditions and FRO2 is less induced in case of red-light conditions. So, what happens to Fe content of WT grown under blue light or red light as compared to WT grown under white light. Perls/PerlsDAb staining of WT roots under different light conditions will add more information to this.
Authors:
We focused on the relatively short-term effects of blue light on signaling of nuclear events that could be related to FIT activity directly, particularly gene expression and iron reductase activity as consequence of FRO2 expression. These are both rapid changes that occur in the roots and can be measured. We suspect that iron re-localization and Fe uptake also occur, however, in our experience differences in metal contents will not be directly significant when applying the standard methods like ICP-MS or PERLs staining.
Minor comments:
Line 75-76: Rephrase the sentence
Authors:
We rephrased the sentence, lines 73-74:
“As sessile organisms, plants adjust to an ever-changing environment and acclimate rapidly. They also control the amount of micronutrients they take up.”
Line 119: Rephrase the sentence
Authors:
We rephrased the sentence, line 118-119:
“Various NBs are found. Plants and animals share several of them, e.g. the nucleolus, Cajal bodies, and speckles.”
Line 235-236: rephrase the sentence
Authors:
We rephrased the sentence, line 232-234:
“In the work of Gratz et al. (2019), the hosphor-mimicking FITmS272E protein did not show significant changes in its behavior compared to wild-type FIT.”
Line 444: Correct the sentence “Fe deficiency versus sufficiency”
Authors:
We corrected that, line 449-451:
“In both, the far-red light and darkness situations, FIT was induced under iron deficiency versus sufficiency, while on the other side, BHLH039, FRO2 and IRT1 were not induced at all in these light conditions (Figure 9I-P).”
Referees cross-commenting
I agree with R1 suggestions/comments and i think manuscript quality will be much better if authors carry out the experiments suggested by R1. I believe this will also strengthen their conclusions.
Reviewer #2 (Significance):
Overall, manuscript is well written, authors have done a nice job by doing several key experiments to support their findings and conclusions. However, the results and manuscript can be improved further by addressing some question raised here. This study is interesting for basic scientists which unravels the crosstalk of light signaling in nutrient signaling pathways.
-
-
-
Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
*Reviewer #1 (Evidence, reproducibility and clarity (Required)): *
*In their study, Yamano et al. dissect the mechanism of TBK1 activation and downstream effects, especially in its relation to mitophagy adaptor OPTN. The authors find that OPTN's interaction with ubiquitin and the autophagy machinery, forming contact sites between mitochondria and autophagic membranes, results in TBK1 accumulation and subsequent autophosphorylation. Based on these findings, the authors propose a self-propagating feedback loop wherein OPTN phosphorylation by TBK1 promotes recruitment and accumulation of OPTN to damaged mitochondria and specifically the autophagosome formation site. This formation site is then involved in TBK1 autophosphorylation, and the activated TBK1 can then further phosphorylate other pairs of OPTN and TBK1. A OPTN monobody investigation strengthens their findings. *
*Critique: *
-
It would be helpful if the authors could more clearly highlight the previous findings in OPTN-TBK1 relationship and which gaps in the understanding their study addresses.* We thank the reviewer for this comment. As suggested, we have highlighted previous findings and detailed in the Discussion how the study advances our understanding of TBK1 activation.
-
It is not always clear whether experiments have been replicated sufficiently; this should be indicated in the figure descriptions.* In the original manuscript, most of the data shown was derived from duplicated experiments. For the revised version, we repeated experiments as needed to generate the replication necessary (i.e, N = 3) for determining statistical significance. Error bars and statistical significance have been added to the graphs and figure legends accordingly.
-
During the discussion, references to the figures that indicate conclusions should be added where appropriate.* We thank the reviewer for the suggestion. References to figures have been added were appropriate to the Discussion.
*Figure 1 / Result "OPTN is required for TBK1 phosphorylation and subsequent autophagic Degradation": *
*o In a) the TBK1 and TOMM20 blots feature an image artefact that makes it appear like the blots are stitched together or there was a problem with the digital imager. The quantification in b) seems to be missing replications. *
We found that the artifact came from an automatic pixel interpolation process in Adobe Photoshop when the image was rotated by a small angle. We have provided the original immunoblotting data below as evidence that the data were not stitched from separate images. More accurate representations of the images without the artifact are now shown in Fig1 A of the revised manuscript.
For Fig 1b, the experiment was independently replicated three times with error bars added to each plot on the graph.
*o g) should feature the wt cell line on the same blot for better comparability as well as quantification and replication like done in f) *
As suggested, we have included the WT cell line in the immunoblot (See Fig 1g). In addition, Reviewer 2 asked that we provide data for Penta KO cells without exogenous expression of the autophagy adaptors and expressed concern regarding the lower expression of NDP52 relative to OPTN. To address these issues, we repeated the mitophagy experiments and detected phosphorylated TBK1 in six different cell lines: WT, Penta KO, Penta KO stably expressing OPTN at both low and high expression levels, and Penta KO stably expressing NDP52 at low and high expression levels. Immunoblots of phos-TBK1(pS172), TBK1, OPTN, NDP52, TOMM20, and actin were generated under four different conditions (DMSO, valinomycin for 1 hr, valinomycin for 3 hrs, and valinomycin in the presence of bafilomycin for 3 hrs). In addition, phos-TBK1 abundance in the six cell lines was determined in response to val and baf for 3 hrs and the expression levels of NDP52 and OPTN were similarly determined in response to DMSO. Error bars based on three independent experiments have been incorporated into the data, which are shown in Figure 1g and 1h of the revised manuscript.
*o h) is missing the blots for controls actin and TOMM20 *
Immunoblots for actin and TOMM20 have been added, please see Fig 1i in the revised manuscript.
*o In the text to e/f), the authors write that NDP52 KO effect on pS172 are comparable to controls, though the quantitation in f) indicates that pS172 signal is indeed significantly reduced compared to wt *
The reviewer is correct, the phos-TBK1 (pS172) signal in NDP52 KO cells is reduced compared to that in WT cells, but is only moderately lower in NDP52 KO cells relative to OPTN KO. We regret the error, which has been corrected in the revised manuscript.
*o In the text to h/i), the authors write "there was a significant increase in the TBK1 pS172 signal in cells overexpressing OPTN", though the quantification in i) does not indicate significance levels *
We performed statistical analyses on the phos-TBK1 (pS172) levels between cells with or without OPTN overexpression and have added the degree of significance to Fig 1j. As indicated in the original manuscript, there was a significant increase in phos-TBK1 (pS172) levels when OPTN was overexpressed.
*Figure 2 / Result "OPTN association with the autophagy machinery is required for TBK1 activation": ** o In b), pTBK1 at val 1 hr only features one dot/experiment per cell line *
Three independent replicates of the experiment (val 1 hr) were performed. The levels of phos-TBK1 (pS172), total TBK1, and actin were quantified, and the graph was remade with error bars and statistical significance incorporated. Please see Fig 2b in the revised manuscript.
*o In the text to c), the authors claim that the mutants reduce/abolish the recruitment of OPTN to the autophagosome site. A costain for LC3, as done for SupFig 1b, would be necessary to support that specific claim. *
To address the reviewer’s concern regarding the recruitment of OPTN mutants to the autophagosomal formation site, we performed two different experiments. First, when OPTN WT is recruited to the contact site between the autophagosomal formation site and damaged mitochondria, it should be heterogeneously distributed across mitochondria. In contrast, OPTN mutants that are unable to associate with the autophagosome formation sites should be largely localized to damaged mitochondria since the mutants are still capable of binding ubiquitin. When we examined the mitochondrial distribution of OPTN WT following valinomycin treatment for 1 hr, more than 80% of the Penta KO cells exhibited a heterogeneous distribution, whereas only 10% of the cells showed a similar distribution for OPTN 4LA or OPTN 4LA/F178A (please see Fig 2g in the revised manuscript). Although the OPTN F178A mutant exhibited 50% heterogeneous distribution (Fig 2g), this may be because OPTN F178A retains the ability to interact with ATG9A vesicles. In fact, our previous mitophagy analyses (Keima-based FACS analysis, Yamano et al 2020 JCB), which are strongly correlated with OPTN mitochondrial distribution, showed that the OPTN F178A mutant moderately (~ 60%) induced mitochondrial degradation. This degradation effect was slightly higher (80%) with OPTN WT but significantly lower (9%) with the 4LA/F178A mutant. In the second experiment, Penta KO cells expressing either OPTN WT or the OPTN mutants were immunostained for exogenous FLAG-tagged OPTN, endogenous WIPI2, and HAP60 (a mitochondrial marker) after valinomycin treatment for 1 hr (see Fig 2e and 2f in the revised manuscript). Because LC3B is assembled on the autophagosomal formation site as well as completed autophagosomes, we detected endogenous WIPI2 because WIPI2 is only recruited to autophagosomal formation sites (Dooley et al. 2014 Mol Cell). Confocal microscopy images and their associated quantification data indicate that WIPI2 foci formation during mitophagy was reduced in Penta KO cells expressing the OPTN mutants (4LA, F178A and 4LA/F178A) as compared to Penta KO cells expressing OPTN WT.
*o d) and g) as simple confirmations of KO/KD efficiency might be better suited for the supplemental part, or blots for FIP/ATG be included with the blots in e) and h) *
Based on the reviewer comments, we performed additional experiments related to Figure 2 and have incorporated the new data into the revised figure. The original Figure 2d, e, f, g, h, and I have been moved to supplemental Figure 5.
*o In the text to e), the authors claim that the levels of pS172 in the KO cell lines did not increase during mitophagy, though the blot and quantification in f) seem to indicate an increase. The results therefore don't seem to align completely with the claims that pS172 generation in response to mitophagy requires the autophagy machinery, or that FIP200 and ATG9A rather than ATG5 are critical for TBK1 phosphorylation. *
Although newly generated pS172 TBK1 was reduced in FIP200 KO and ATG9A KO cells relative to WT cells, the signals gradually increased. In the autophagy KO cell lines (FIP200 KO and ATG9A KO), phos-TBK1 accumulates prior to mitophagy stimulation. Although suggesting it is mitophagy-independent, phos-TBK1 accumulation prior to mitophagy stimulation in autophagy KO cell lines complicated interpretation of the results. To avoid this issue, we used siRNA to transiently knock down FIP200 and ATG9A. As shown in the original manuscript (Fig 2g, h, I in the original manuscript, supplementary Fig 5d, e, f in the revised manuscript), knockdown of FIP200 and ATG9A prior to mitophagy induction allowed us to observe mitophagy-dependent phosphorylation of TBK1. This result strongly suggests that the autophagy machinery does induce TBK1 phosphorylation in response to Parkin-mediated mitophagy. However, TBK1 phosphorylation still increases, albeit very slightly, in the FIP200 and ATG9A knock down cells. Thus, it may be reasonable to assume that OPTN-dependent phosphorylation of TBK1 can occur to a certain degree even in the absence of autophagy components. We have noted this in the Discussion.
While conducting experiments for the revised manuscript, we determined that TAX1BP1 is responsible for the accumulation of phos-TBK1 in the autophagy KO cell lines under basal conditions. When TAX1BP1 is knocked down in FIP200 KO or ATG9A KO cells, the basal accumulation of phos-TBK1 was eliminated and then we could observe mitophagy-specific TBK1 phosphorylation (please see Fig 2h, i, j, k in the revised manuscript). These results showed that mitophagy-dependent phos-TBK1 is largely attenuated in FIP200KO and was almost completely eliminated in ATG9A KO cells (Fig 2k in the revised manuscript).
*o f) is missing significance indications. Its description has a typo: "bad" instead of "baf" *
Newly synthesized pTBK1 (pS172) during mitophagy was quantified and statistical significance incorporated into the figure (please see supplementary Fig 5c). The identified typo has been corrected.
*Figure 3 / Result "TBK1 activation does not require OPTN under basal autophagy conditions": *
*o In the text to SupFig2, the authors claim that pS172 levels are significantly elevated, but no significance levels are indicated *
Statistical significance was determined for all proteins shown in original supplementary Fig 2 and the results have been incorporated into the relevant figure. The original supplementary Fig 2 is now supplementary Fig 6.
*o In the text to a), NBR1 is claimed to colocalize with Ub, but no costaining with Ub is shown. The claimed lacking colocalization of OPTN with Ub is not obvious from the images; a quantification might be appropriate. *
Since the anti-NBR1 antibody used in the original manuscript is derived from mouse, we were unable to use it in conjunction with the mouse ubiquitin antibody. Because ubiquitin-positive foci and NBR1-positive foci contain p62 (original Fig 3a) and NBR1 and p62 are known to tightly interact each other (Kirkin et al. 2009 Mol Cell and Sanchez-Martin et al. 2020 EMBO Rep), we stated that "NBR1 colocalizes with Ub". However, the reviewer is correct. To remedy this confusion, we obtained a rabbit anti-NBR1 antibody (a gift from the Masaaki Komatsu group) and used it to co-immunostain with anti-Ub antibodies (please see supplementary Fig 7a of the revised manuscript). NBR1 foci colocalize with both ubiquitin and p62 in FIP200 KO and ATG9A KO cells. Further, based on comments from Reviewer 2, we purchased several anti-TBK1 antibodies and identified one that was able to detect endogenous TBK1 by immunostaining (see Figure 1 for reviewers in our response to Reviewer 2 below). Using this anti-TBK1 antibody, we showed that a part of TBK1 also associates with ubiquitin and p62-positive aggregates.
*o In the text to b), the authors make reference to significant changes, but replication/ quantification/ significance testing is missing. *
We independently performed the same experiments three times. The levels of TBK1, phos-TBK1 (pS172), all five autophagy adaptors, and TOMM20 in both the supernatants and pellets have been quantified with error bars and statistical significance indicated. These results have been incorporated into Figure 3c in the revised manuscript.
*Figure 4b) is missing the pTBK1 data that is referenced in the text. In the text to figure 5 c/d), the authors claim that certain mutants have no significant effect on mitophagy, though d) is missing significance testing *
*Figure 6 c/d/i) appear to be missing replication. *
For Figure 4b, phos-TBK1 was immunoblotted (See Fig 4b of the revised manuscript). For Figure 5b and d, statistical significance was determined for the effect of TBK1 mutations on autophosphorylation and OPTN phosphorylation and the effect of the TBK1 mutants on Parkin-mediated mitophagy. For Figure 6 c/d/I, the experiment was repeated; error bars and statistical significance have been added to the associated graphs.
*Reviewer #1 (Significance (Required)): Removal of damaged mitochondria by the mitophagy pathway provides an important safeguarding mechanism for cells. The Pink1/Parkin mechanism linked to numerous modulators and adaptor proteins ensures an efficient targeting of damaged mitochondria to the phagophore. The Ser/Thr kinase TBK1, in addition of multiple roles in innate immunity, is a major mitophagy regulator as has been revealed by the Dikic and Youle groups in 2016 (Richter et al., PNAS). The mechanistic insights provided by this manuscript add to a growing body of studies of how the autophagy machinery interconnects with cellular signalling networks. Although parts of the results need to be further validated, the data shown is of high quality, revealing an important conceptual advance. The paper is interesting and of general relevance beyond the signalling and autophagy community. *
We would like to thank Reviewer 1 for the comments and suggestions, many of which improved our manuscript. We hope that the reviewer’s comments have been adequately addressed in the revised manuscript.
*Reviewer #2 (Evidence, reproducibility and clarity (Required)): Summary In this manuscript, Yamano and colleagues show that as for Sting-mediated TBK1 activation, Optn provides a platform for TBK1 activation by autophosphorylation and that TBK1 is activated after the interaction of Optn with the autophagy machinery and ubiquitin and not before. They show that TBK1 phosphorylation is blocked by bafilomycine A1, an inhibitor of vacuolar ATPases that blocks the late phase of autophagy. Furthermore, they demonstrate that Optn is require for TBK1 phosphorylation since variation of Optn expression regulates TBK1 phosphorylation in response to PINK/Parkin-mediated autophagy. Interestingly, using immunofluorescence microscopy, they show that Optn forms sphere like structures at the surface of damage mitochondria which are more dispersed in the absence of TBK1. In addition, TBK1 is also recruited at the surface of damage mitochondria and as Optn and NDP52 (but not p62) colocalize with LC3B in response to PINK/Parkin-mediated mitophagy. Next, it is demonstrated that the Leucin zipper and LIR domains of Optn (which modulate Optn interaction with autophagosome) play an important role for TBK1 activation. Additionally, the autophagy core is shown to be required for TBK1 activation. Under basal conditions, depletion of the autophagosome machinery leads to an increase in autophagy receptors (except Optn) and TBK1 phosphorylation which colocalize with ubiquitin in insoluble moieties. In contrast, Optn remains cytosolic and is dispensable for TBK1 activation in these conditions. Then, using the fluoppi technic, the authors demonstrate that the generation of Optn-Ubiquitin condensates recruits and activates TBK1. They express in HCT116 TBK1-deficient cells engineered or pathological ALS mutations of TBK1 that affect ubiquitin interaction, structure, dimerization and kinase activity of TBK1. The expression level of TBK1 was only affected by the dimerization-deficient mutations. None of the mutations impaired Optn and TBK1 ubiquitination. Interestingly, some ALS-associated mutations affect TBK1 activity and it is said in the text that the dimerization-deficient mutations of TBK1 affect its activity proportionally to their level of expression, which is not really correct (the expression level of the mutants is very heterogenous and not always correlate to their activity). Regarding their effect on mitophagy, the authors claim that the phosphorylation of TBK1 correlate with mitophagy which is not really the case. By using TBK1 inhibitor or TBK1-depleted cells, the authors conclude that TBK1 is the only kinase phosphorylating Optn. However, BX-795 is not completely specific to TBK1. Finally, the authors use monobodies against Optn effective in inhibiting mitophagy in NDP52 KO cells. Some of the monobodies have been shown to form a ternary complex with Optn and TBK1, while others compete for the interaction between Optn and TBK1 which involves the amino-terminal region of Optn and the C-terminal region of TBK1. Monobodies that compete for the interaction of Optn with TBK1 could alter the cellular distribution of Optn and inactivate TBK1, but they do not alter the ubiquitination of Optn. Finally, these monobodies inhibit 50% of mitophagy. *
*Major and minor points: Introduction The first paragraph of the Introduction section is confused and difficult to read. First and second paragraphs (page 3 and top of page 4) are dedicated to macroautophagy processes but ended with one sentence on Parkin-mediated autophagy without further introduction, while all processes regarding mitophagy are detailed in the next paragraph. Links between ideas developed are also somewhat missing. For example, in page 6, the three last sequences detailed the phosphorylation of autophagosome component, the fact that Optn and TBK1 genes are involved in neurodegenerative diseases and autophosphorylation of TBK1 as a pre-requirement for TBK1 activation without evident links between them, except "interestingly". *
In response to the reviewer’s suggestion, we have rewritten the Introduction. The first paragraph focused on introducing the molecular mechanism underlying macroautophagy and the second paragraph focused on Parkin-mediated mitophagy. As the reviewer indicated, the ALS mutations and TBK1 phosphorylation during Parkin-mediated mitophagy are not well related, so we moved the background material on the relationship between OPTN and TBK1 in neurodegenerative diseases to the beginning of the section describing Figure 5. We believe these changes have made the Introduction easier to read and understand.
*Results *
*Major points: *
*1- Results are often over-interpreted regarding data obtained leading to inadequate conclusions (see below for details); *
We regret the reviewer’s concerns regarding over-interpretation. To address this issue, we have carefully considered the data, performed additional experiments where necessary, and rewritten the results accordingly. Please see our point-by-point responses below.
*2- Quantification of protein levels detected by western blot are provided as "relative intensities" without referring to specific loading control or to total protein when -phosphorylated forms are quantified (Fig. 1b, 1d, 1f, 1i, 2b, 2f, 2i, 5b, 7b, supplemental figures 2b). *
For the immunoblots, we loaded the same amount of total cell lysate and the phosphorylated forms were quantified relative to the total protein input. This has been mentioned in the Materials and Methods.
*3- In western blotting experiments, authors described slower migrating bands as "ubiquitinated" forms of detected proteins, but never provided experimental evidences that it could be the case. Use of non-specific deubiquitinase incubation of extracts prior to western blot could help to correctly identified ubiquitination versus other post-translational modifications such as phosphorylation, glycosylation, acetylation etc... *
We appreciate the reviewer’s suggestion. The cell lysates after mitophagy induction were incubated in vitro with a recombinant USP2 core domain (non-specific DUB), and then immunoblotted. As shown in supplemental Fig 1 of the revised manuscript, the slower migrating OPTN bands disappeared in a USP2-dependent manner. The slower migrating NDP52 and TOMM20 bands likewise disappeared. These results confirm that the slower migrating OPTN, NDP52, and TOMM20 bands are ubiquitinated.
*4- Conclusions from data obtained by immunofluorescent imaging are often drawn from only one image presented without further statistical analysis. *
Statistical significance was determined for the immunofluorescent data (original figures 1j, 2c and 3a). Please see Fig 1l, 2f, 2g, and 3a in the revised manuscript.
*Page 7: - authors referred to TBK1 phosphorylation induced by mitophagy induction as "TBK1 phosphorylation induced by Parkin-mediated ubiquitination" while mitophagy can be induced independently of Parkin (ex: via mitochondrial receptors) and without any evidence (according to referee's knowledge) of a link between ubiquitination by Parkin and TBK1 phosphorylation. *
As the reviewer indicated, Parkin-independent and ubiquitination-independent mitophagy pathways are also known (i.e. receptor-mediated mitophagy driven by NIX, BNIP3, BCL2L13, FKBP8, FUNDC1, or Atg32). Therefore, references to "mitophagy" in our manuscript were reworded as "Parkin-mediated mitophagy". Since TBK1 phosphorylation is observed before mitochondria are degraded and is dependent on Parkin-mediated ubiquitin (for example, see Fig 1c), we use the phrase "TBK1 phosphorylation triggered by Parkin-mediated OMM ubiquitination".
*Fig 1g: Western blots performed in Penta KO cells without exogene expression of any autophagy receptors should be provided as control. Furthermore, lower expression of NDP52 relative to that of Optn (using flag antibodies) should be discussed as it can explained the differential levels in TBK1 phosphorylation observed. *
As suggested, we repeated the experiment using Penta KO cells in the absence of exogeneous autophagy adaptor expression. Furthermore, we expressed different amounts of NDP52 and OPTN (indicated as low and high in the figure) in Penta KO cells to rule out the possibility that higher TBK1 phosphorylation is induced by simple overexpression of autophagy adaptor (please see Fig 1g and h in the revised manuscript). At high NDP52 expression (2.5-3.0-fold higher than endogenous NDP52), phosphorylated TBK1 was reduced to ~30% the level of that observed in WT cells after 3 hrs with val and baf. In contrast, Penta KO cells with higher OPTN expression (3.0-fold higher than endogenous OPTN) had phosphorylated TBK1 signals that were 2-fold higher than those in WT cells. Based on these results, we concluded that OPTN is an important adaptor for TBK1 activation during Parkin-mediated mitophagy.
*Page 8: Supplemental Fig 1a: - The inability of authors to observe TBK1 endogenous signal in HeLa cells using commercially available antibodies is surprising as many publications reported successful staining (see Figure 1 of Suzuki et al. 2013 Cell type-specific subcellular localization of phospho-TBK1 in response to cytoplasmic viral DNA. PLoS One. 8:e83639 among others) as well as commercial promotion (see Anti-NAK/TBK1 antibody from Abcam reference: ab235253). *
For the original manuscript, anti-TBK1 antibodies purchased from abcam (ab235253), CST (#3013S), Proteintech (28397-1-AP), and GeneTex (GTX12116) for immunostaining were unable to yield TBK1-positive signals (please see Fig 1 for reviewers below). WT and TBK1-/- HCT116 cells stably expressing Parkin were treated with valinomycin for 1 hr and immunostained with the indicated antibodies. Anti-phos-TBK1 antibody (CST, #5483) was used as a positive control. Based on these results, we stated in the original manuscript that the "endogenous TBK1 signal could not be observed using commercially available antibodies". At the reviewer’s suggestion, we purchased anti-TBK1 antibodies from abcam (ab40676) and CST (#38066). As shown in the figure below, the immunofluorescent signals generated by these antibodies were detected in WT, but not in TBK1-/- cells. The CST (#38066) antibody yielded a stronger signal, most of which was on damaged mitochondria. Thanks to this suggestion, we repeated the experiment using the new anti-TBK1 antibody. Furthermore, based on a suggestion from Reviewer 3, we detected mitochondrial recruitment of TBK1 during mitophagy stimulation (valinomycin for 30 min or 2 hrs in the presence and absence of bafilomycin; supplemental Fig 2 in the revised manuscript). We also detected association of endogenous TBK1 with ubiquitin-positive condensates in WT, FIP200KO, and ATG9A KO cells (Fig 3a and supplementary Fig 7a in the revised manuscript).
*- Conclusions of the localization of signal on mitochondria (dispersed, in the periphery or at contact sites) are clearly over-interpreted in the absence of other membrane or autophagosome specific labeling and statistical colocalization analyses of multiple images. It is particularly difficult to assess any difference between Tax1BP1, p62 and NBR1 localization on mitochondria subdomains. *
We previously expressed each FLAG-tagged autophagy adaptor in Penta KO cells and observed their localization during Parkin-mediated mitophagy and found that exogenous FLAG-tagged OPTN and NDP52, but not p62, colocalized with LC3B (Yamano et al 2020 JCB). No one has assessed and compared the localization of all five endogenous autophagy adaptors. Although we still believe that the results (supplemental Fig1 in the original manuscript) are informative for researchers in the autophagy field, we decided to remove that data from the revised manuscript since they are not the main focus of the study. We will consider publishing those data elsewhere in the future after co-staining with autophagosome markers and assessing the statistical significance of colocalization as the reviewer suggested.
*Page 9: *
*- First part of results ended without any conclusions. *
As detailed in the previous response, we have removed results for mitophagic recruitment of autophagy adaptors (supplementary Figure 1 in the original manuscript).
*- The observation that "TBK1 phosphorylation was not apparent in the Optn mutant cell lines, even after 3 hrs of valinomycin, ..." is inconsistent with detection of bands with anti-pS172-TBK1 antibodies in Fig 2a detected at 1hr (with F178A) and 3 hrs (4LA, F178A, and 4LA/F178A mutants) of treatment. *
We apologize for the confusion. This statement was clearly our mistake. We had intended to state when "all autophagy adaptors are deleted" no phosphorylated TBK1 was observed. We have rewritten this part as "TBK1 phosphorylation was not apparent in the Penta KO cells even after 3 hrs with valinomycin".
*- Similarly, decreased levels of phosphorylated TBK1 stated for F178A mutant was only observed at 1 but not 3hrs or at 3hrs in the presence of bafilomycin. *
Based on the mitophagy assay previously reported (Yamano et al 2020 JCB), the F178A mutant only moderately inhibited mitophagy (60% mitophagy with the F178A mutant vs 80% mitophagy with OPTN WT). Conversely, the 4LA mutant and 4LA/F178A double mutant had stronger inhibitory effects on mitophagy (35% for 4LA and 9% mitophagy for 4LA/F178A). Therefore, the levels of phos-TBK1 after 1 hr with valinomycin or 3 hrs with valinomycin in the presence of bafilomycin are consistent with mitophagy progression. When mitophagy proceeds efficiently, the amount of phos-TBK1 in the 1 hr val samples is reduced relative to the 3 hr val samples due to autophagic degradation.
To more clearly observe and compare the levels of mitophagy-dependent phos-TBK1 among Penta KO cells expressing OPTN WT and the mutants, we treated cells with valinomycin in the presence of bafilomycin for 0, 0.5, 1, and 2 hrs and quantified phos-TBK1. The results are shown in Fig 2c and d in the revised manuscript. The phos-TBK1 signal increased over time with val and baf treatment in all OPTN expressing cells. Cells with OPTN WT generated the most phos-TBK1, whereas the signal generated by the F178A mutant was 75% that of the OPTN WT-expressing cells and the 4LA and 4LA/F178A mutants were about 40%. The experiments were independently replicated three times and error bars and statistical significance were incorporated into the associated graph. These results indicate that OPTN association with the autophagy machinery, in particular ATG9A vesicles, is important for TBK1 activation.
*Page 10: *
*The results and their repartition between figure 2 d, e, f, g, h, I and figure 3 is a bit confusing. In these experiments, it is shown Figure 2 that the absence or depletion of the autophagy machinery increase the phosphorylation of TBK1 and in Figure 3 it is shown that not only the phosphorylation of TBK1 accumulate but also the expression of NDP52, Tax1BP1 and p62. Is it because their degradation by autophagy is blocked (like for phosphoTBK1)? *
The reviewer is correct that autophagy adaptors other than OPTN (especially TAX1BP1, p62 and NBR1) are constantly degraded by macro/micro autophagy (Mejlvang et al. 2018 J Cell Biol and Yamano et al. 2021 BBA Gen Subj). Therefore, these adaptors accumulate in autophagy deficient cell lines (original Fig 3). In this study, we found that in the absence of mitophagy stimulation phos-TBK1 accumulates in autophagy deficient cell lines. This suggests that the accumulated autophagy adaptors induce TBK1 phosphorylation under basal conditions. In the original manuscript, we claimed that TBK1 phosphorylation under basal conditions does not require OPTN since in FIP200 KO and ATG9A KO cells it did not accumulate and did not primarily colocalize with ubiquitin- and TBK1-positive foci (original Fig 3). To gain more direct evidence for the revised manuscript, we performed additional experiments and discovered that TAX1BP1 is the adaptor responsible for TBK1 autophosphorylation under basal autophagy. We treated FIP200KO and ATG9A KO cells with siRNAs against OPTN, NDP52, TAX1BP, p62, and NBR1, and immunoblotted total cell lysates with an anti-phos-TBK antibody. As shown in Fig 3f in the revised manuscript, TAX1BP1 siRNA treatment decreased phos-TBK1 levels without affecting total TBK1. This result indicates that the accumulation of TAX1BP1 in the FIP200 KO and ATG9A KO cells induced TBK1 autophosphorylation under basal conditions. Considering this result, we treated WT, FIP200 KO, and ATG9A KO cells with TAX1BP1 siRNA, and then induced Parkin-mediated mitophagy with valinomycin in the presence of bafilomycin. This strategy eliminated the basal accumulation of phos-TBK1 and allowed us to focus on mitophagy-dependent TBK1 phosphorylation. Please see revised Fig 2h, I, j, and k. The results showed that mitophagy-dependent phos-TBK1 is predominantly attenuated in FIP200 KO and ATG9A KO cells. In Figs 2 and 3, we would like to emphasize that OPTN is required for TBK1 phosphorylation in response to Parkin-mediated mitophagy, whereas TAX1BP1 is required for TBK1 phosphorylation in basal autophagy. Since Reviewer 3 commented that interpretation of the data in original Figs 2d, e, and f was challenging, we elected to move those results to the supplemental figures. We have incorporated the newly acquired data (mitophagy using FIP200 KO or ATG9A KO with TAX1BP1 siRNA cells) into the main figure. We believe that this makes the text easier for readers to understand.
*- Fig 2c: conclusions on *
*the reduction of recruitment of Optn mutants on autophagosome formation seem over-interpreted as: *
*1- no labeling with LC3 has been used to identified autophagsome, *
*2- immunofluorescent signals observed with mutants are dispersed throughout the entire mitochondria network (see the merged images) rendering impossible to distinguish between autophagosome-associated mitochondria and others. *
*The following conclusive sentence stating that association of Optn to damaged mitochondria is not sufficient for TBK1 activation based solely on IF of figure 2c seems therefore unrelated to the obtained data. *
To address concerns about the recruitment of OPTN mutants to the autophagosome formation site, we performed additional experiments. Penta KO cells and those expressing OPTN WT and mutants were treated with valinomycin for 1 hr, and FLAG-tagged OPTN, endogenous WIPI2, and HAP60 (mitochondrial marker) were detected by immunostaining. We detected endogenous WIPI2 because WIPI2 is recruited only to autophagosome formation sites (Dooley et al. 2014 Mol Cell), whereas LC3B assembles on autophagosome formation sites and is also associated with completed autophagosomes. Confocal microscopy images showed that cup-shaped OPTN WT that had been recruited to damaged mitochondria colocalized with WIPI2. Quantification further showed that during mitophagy the number of WIPI2 foci seen in cells expressing OPTN WT decreased in Penta KO cells and cells expressing OPTN mutants (4LA, F178A and 4LA/F178A). These data are shown in Fig 2e and f in the revised manuscript. In addition, we quantified the number of cells that either exhibited heterogeneous or homogeneous recruitment of OPTN to damaged mitochondria after treatment with valinomycin for 1 hr. More than 80% of Penta KO cells with OPTN WT had heterogeneous OPTN recruitment, whereas this distribution was only present in 10% of cells expressing either OPTN 4LA or OPTN 4LA/F178A. Although cells expressing the OPTN F178A mutant exhibited 50% heterogeneous recruitment, this may be because the mutant can interact with ATG9A. As mentioned above, our previous mitophagy analyses (Keima-based FACS analysis, Yamano et al 2020 JCB) showed that the OPTN F178A mutant induced ~60% mitochondrial degradation (which is correlated strongly with OPTN distribution), whereas it was 80% with OPTN WT and 9% with 4LA/F178A.
*- Fig 2d: authors should explain why ATG KO cells displayed lipidated LC3B in the absence of efficient autophagy processes. *
We thank the reviewer for the suggestion. We added the following sentence to explain the function of ATG5 in LC3B lipidation. "Since LC3B lipidation is catalyzed by ATG5, but not FIP200 and ATG9A, the lipidated form disappears only in ATG5 KO cells (Hanada et al 2007 J Biol Chem). "
*- Fig 2e: despite authors statement that TBK1 phosphorylation did not increase during mitophagy in ATG KO cells, increased pS172-TBK1 is visible in FIP200 and ATG5 KO cells especially between 1 and 3 hrs of stimulation, leading to inaccurate conclusions that TBK1 phosphorylation requires the autophagy machinery. Therefore, overall assumption that both ubiquitination and autophagy subunits are required for TBK1 autophosphorylation appears erroneous. *
As the reviewer indicated, phos-TBK1 levels gradually increased in ATG KO cells. The main text was rewritten to more accurately reflect this increase. Based on experiments using the monobodies and those conducted during the revision process, it is apparent that although the autophagy machinery may not be completely essential for TBK1 phosphorylation, it clearly facilitates TBK1 phosphorylation in response to Parkin-mediated mitophagy.
*Page 12: *
*- Fig 3a: conclusion that Optn signal is more cytosolic and did not localize with Ub condensates seems speculative as based on: *
*1- only one immunofluorescence image without statistical analysis *
*2- Optn and Ub signals are lower in images with Optn is analyzed compared to other images in which NDP52, TAX1BP1 and NBR1 are detected. *
To address these concerns, we compared and quantified the signal intensities of all endogenous autophagy adaptors in FIP200 KO and ATG9A KO cells. The quantification data are shown in Fig 3a and the immunofluorescence images are shown in supplementary Fig 6a of the revised manuscript.
*- Fig 3b: interpretation of western blot data is uncertain due to lack of appropriate loading control, especially with pellets (P) extracts. In addition, it is not clear how to conclude from the experiments in Fig 3b that autophagy adaptors other than Optn mediate TBK1 phosphorylation. *
When autophagy is inhibited, p62 accumulates in the cytosol as aggregates (Komatsu et al. 2007 Cell). Therefore, p62 should be a positive control. Indeed, Fig 3b in the original manuscript (Fig 3b and c in the revised manuscript) showed that the amount of p62 in the pellet fraction was elevated in FIP200 KO and ATG9A KO cells. Furthermore, these aggregates were also observed in the imaging data (Fig 3a and supplementary Fig 7 in the revised manuscript). As the reviewer indicated, the original manuscript did not clarify whether autophagy adaptors other than OPTN mediated TBK1 phosphorylation; however, our revised results clearly demonstrate that TAX1BP1 is the adaptor responsible inducing TBK1 autophosphorylation when basal autophagy is impaired (please see Fig 3f in the revised manuscript).
*Minor point: reference is missing in the last sentence of the paragraph stating that K48-linked chains dominate when autophagy pathways are impaired. *
While several autophagy adaptors preferentially interact with K48-linked ubiquitin chains (Donaldson et al. 2003 PNAS etc), TRAF6 is recruited to ubiquitin-condensates via p62-mediated K63-linked ubiquitination (Linares et al. 2013 Mol Cell). Furthermore, K33-linked ubiquitin chains are also present in p62-positive condensates (Nibe et al. 2018 Autophagy). Because it’s not clear which ubiquitin-linkage is dominant in the condensates, we decided to delete the sentence. We regret the confusion.
*Page 13: *
*Conversely to Optn, they find that the other autophagic receptors localize in insoluble fractions (what does it mean?) independently of TBK1 expression (experiments with DKO cells) and also independently of Optn (where is this shown?). Altogether, these experiments are far from the message of the manuscript. The title of the paragraph "TBK1 activation does not require Optn under basal autophagy conditions" is not correct because even if the level of expression of autophagic receptors and TBK1 phosphorylation are increase in response to the depletion of the autophagy machinery, it does not increase autophagy. *
According to the suggestion, we changed the title of the paragraph to "TAX1BP1, but not OPTN, mediates TBK1 phosphorylation when basal autophagy is impaired." In addition, we rewrote this section.
*- Fig 3d: authors should mention the nature of the upper band observed in Optn western blot and show the same experiment in since solely TBK1 depleted cells since they stated that "electrophoretic migration of Optn was not affected by TBK1 deletion". In addition, suggesting from these sole experiments that "NP52, TAX1BP1, p62, NBR1 and AZI2 form Ub-positive condensates where TBK1 is activated" seems over-interpretated. *
Reviewer 3 suggested we characterize the upper band in the OPTN blot (Fig 3d in the original manuscript). To determine if the band is genuine OPTN, we used phostag-PAGE to analyze cell lysates from cells treated with control siRNA or OPTN siRNA and found that both the lower and upper bands were OPTN species (please see "Figure 2 for reviewers" in our response to Reviewer 3). The same pattern was reported by the Wade Harper group (Heo et al. 2015 Mol Cell). They showed that the OPTN double band pattern on phos-tag PAGE was not affected by TBK1 deletion. We have cited this literature where appropriate in the revised manuscript. In WT cells, it is difficult to detect phosphorylation of autophagy adaptors by TBK1 because basal autophagy constantly degrades them. That’s why we used autophagy KO cell lines.
*Page 14: *
*- Fig 4: TBK1 phosphorylation was analyzed in Fig4d and not in Fig4b as stated. In addition, it is rather difficult to conclude from artificial multimerization experiments, as the authors have done, that interaction between Optn and autophagy components contributes to Optn multimerization in genuine conditions. *
Detection of phos-TBK1 has been corrected to Fig 4b. Although artificial, the fluoppi assay provides insights into how OPTN activates TBK1 and how the autophagy machinery contributes to TBK1 activation via OPTN. To determine if artificial OPTN multimerization could bypass the autophagy machinery requirement, we used the fluoppi assay. This assay was important for us to conclude that the autophagy machinery and Parkin-mediated ubiquitination allow OPTN to be assembled in close proximity to where TBK1 is activated. The main text was rewritten to better convey the benefits of the fluoppi assay.
*Page 15: *
*This work could have therapeutic consequences but the pathological mutants of TBK1 used affect ALS (Figure 5) while in the discussion it is proposed that monobodies could have a therapeutic interest in familial forms of glaucoma due to the E50K mutation of Optn. It should be better to target only one pathology. *
Both TBK1 and OPTN are causative genes for ALS and many pathogenic mutations are known to impact their function. In this study, we focused on ALS mutations in TBK1 that affect self-dimerization and investigated their impact in response to Parkin-mediated mitophagy. We created the monobodies as a tool to physically inhibit OPTN assembly at the contact site. Although our monobodies inhibit Parkin-mediated mitophagy, they would not be a useful therapeutic strategy for ALS due to the loss of function with the TBK1 mutations. However, because TBK1 E50K is a glaucomatous mutation that causes OPTN-TBK1 to bind more tightly, our monobodies might be applicable to glaucomatous pathology since they could disrupt this interaction. We thus feel that it is appropriate to mention the potential of the monobodies and their future utility in the Discussion.
*- Fig 5c, d: Authors stated that degree of TBK1 autophosphorylation correlated with OPTN phosphorylation at S177 whereas phosphorylated TBK1 is unaffected by L693Q and V700Q mutants that display decreased phosphorylated Optn In addition, authors interpretation of Figure 5 data is clearly problematic as they stated that: *
*1- neither 693Q and V700Q mutants had "significant effect on mitophagy", while decreasing efficiency from 78% to 37-51% *
*2- but conclude that 49.7% mitophagy levels of R357Q mutant is significant mitochondrial degradation. *
*Overall conclusion that mitophagy efficiency is correlated with phosphorylated TBK1 levels is therefore inaccurate. *
We regret that this section did not sufficiently describe the data. Reviewer 3 also noted that the text referencing Fig 5 was difficult to interpret. One of the reasons for the complicated data interpretation is the number of TBK1 mutants used. The L693Q and V700Q mutations used by Li et al. (2016 Nat Commun) were expected to inhibit Parkin-mediated mitophagy since those authors reported that the mutations prevented interactions with OPTN. However, our in-cell assay showed that the two mutations only moderately affected Parkin-mediated mitophagy. Furthermore, both the L693Q and V700Q mutations were engineered based on the X-ray structure, rather than being authentic pathogenic ALS mutations. To avoid any potential confusion, we decided to remove the L693Q and V700A data. We have re-evaluated the other data and have rewritten this section accordingly. Please see the revised main text.
*Discussion *
*Minor points: *
*page 20: - reference is missing in the sentence "Optn cannot oligomerize on its own on ubiquitin-decorated mitochondria". *
We have provided the appropriate reference.
*Major points: *
*Authors stated that they showed that Optn recruitment to damaged mitochondria, itself, is insufficient for TBK1 autophosphorylation, but did not show experiment of Optn recruitment to mitochondria and its consequences on TBK1 phosphorylation in the absence of mitophagy induction signal. Authors could for example target HA-Ash-6Ub to mitochondria in order to artificially recruit hAG-Optn to "ubiquitinated" mitochondria in the absence of mitophagy signal. *
We showed that the efficiency of TBK1 autophosphorylation was reduced in cells expressing the OPTN 4LA/F178A mutant, which cannot interact with the autophagy machinery (Fig 2c and d in the revised manuscript). Cells with FIP200 or ATG9A knockdown also have reduced phos-TBK1 (pS172) as shown in supplementary Fig 5e and f. The rate of phos-TBK1 (pS172) generation in ATG9AKO cells during Parkin-mediated mitophagy is reduced relative to that in WT cells (Fig 2j and k). Since a small amount of phos-TBK1 was generated in both ATG9A knockdown and KO cells (supplementary Fig 5e, f, Fig 2j and k), we concur that it would be premature to conclude that phosphorylation of TBK1 does not occur at all when autophagy core components are absent. A small amount of phos-TBK1 may be generated by OPTN that is freely distributed on the outer mitochondrial membrane. In the revised manuscript, we mention the possibility that TBK1 might be phosphorylated by OPTN independent of the autophagy machinery and were careful to avoid over-interpretation.
As shown in Fig 4, fusing OPTN with an Azami-Green tag can induce artificial multimerization and trigger the generation of phos-TBK1 (pS172). Therefore, we expect that mitochondria-targeted HA-Ash-6Ub would induce TBK1 phosphorylation in a hAG-OPTN-dependent manner as was observed with cytosolic HA-Ash-6Ub (Fig 4). The accumulation of OPTN at the contact site in Parkin-mediated mitophagy is important for TBK1 phosphorylation. Even if OPTN is forced to anchor to the mitochondria, this would induce isolation membrane formation and subsequent autophosphorylation of TBK1. Therefore, the utility of forcing OPTN to anchor to mitochondria is questionable.
*Similarly, experimental approaches used by authors lack dynamics parameters to conclude on formation and elongation of isolation membranes and contacts sites that could be probably obtained through video microscopy. *
Based on the reviewer’s comment, we performed time-lapse microscopy to observe OPTN recruitment to the contact site and followed its movement along with the elongation of isolation membranes during Parkin-mediated mitophagy. HeLa cells stably expressing GFP-OPTN and pSu9-mCherry (a mitochondrial marker) were treated with valinomycin (please see Fig 2l in the revised manuscript). Initial recruitment of GFP-OPTN near mitochondria was evident as small dot-like structures that then elongated over time to become cup-shaped structures and culminated in the formation of spherical structures. Considering the colocalization of OPTN with WIPI1/WIPI2 (markers of autophagosome formation site) in Fig 2e and supplementary Fig 2a, the time-lapse images strongly suggest that OPTN assembles at contact sites followed by elongation in tandem with isolation membranes during Parkin-mediated mitophagy.
*Finally, the model proposed by the authors does not take into account data showing that Optn basally interacts with ubiquitinated mitochondria and LC3 family members (see Wild et al., Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 2011 333:228-33), although at lower levels compared to induced conditions, relativizing the impact of the proposed model. *
According to the Reviewer 2 comment, we again read the Science paper (Wild et al. 2011) but could not find data showing that OPTN basally interacts with ubiquitinated mitochondria. At least, we think that under steady state conditions without mitophagy induction, mitochondrial ubiquitination and mitochondrial localization of OPTN are undetectable as shown in supplementary Figure 2 in our revised manuscript.
*In conclusion, this manuscript represents a lot of work but the experiments often lack controls and are over-interpretated. *
***Referees cross-commenting** *
*In my opinion, what emerges from these 3 reviews is that the results lack controls or have not been repeated enough to support the message that the interaction of Optn with ubiquitin and the ubiquitination machinery is sufficient to activate TBK1. In particular, as reviewer 1 says, the phosphorylation kinetics shown in Figure 1a are not consistent with TBK1 phosphorylation following the interaction of Optn with the ubiquitination machinery and ubiquitin. In Figure 1e, there is a decrease in TBK1 phosphorylation in contrast to WTcells as mentioned by Reviewer 1. In agreement with Reviewer 1, we believe that the WT cells are missing in Figure 1g. *
*With regard to Figure 2c, we agree with reviewer 1 that an LC3 label is missing in order to be able to interpret the data. In Figure 2e and f, we agree with reviewer 1 that it is difficult to understand why TBK1 phosphorylation increases in the absence of the autophagy machinery (FIP200 KO and ATG5KO). In Figure 3, loading controls are missing for 3b and c. The TBK1 KO cells alone are missing in Fig 2d. In Figure 2b, pTBK1 is missing. In agreement with reviewer 3, we believe that the data with fluoppi contradict the message of the manuscript since they show that TBK1 can be phosphorylated by ubiquitin in the absence of the ubiquitination machinery. In agreement with reviewer 3, we believe that the experiments in Figure 5 are very difficult to interpret. The first reviewer is right to ask the question of the replicates for figures 6c and d. *
We appreciate the summary of the reviewers’ comments. To address their concerns, we have included the appropriate controls and included the results of three independent experiments in the graphs, which now include appropriate error bars and statistical significance. Thus, we believe we have answered the most critical comments concerning the lack of controls.
In Fig 1a, phos-TBK1 was maximal following 30 min of valinomycin treatment. We confirmed using microscopy-based observations that recruitment of endogenous TBK1 and OPTN and the generation of phos-TBK1 and phos-OPTN at contact sites (marked by WIPI1) near damaged mitochondria was also maximal after 30 min of valinomycin treatment (supplementary Fig 2 and 3). Therefore, the kinetics of phos-TBK1 and phos-OPTN generation are consistent with the recruitment of OPTN-TBK1 to the contact site.
The data presented in Fig 2 clearly indicate that the autophagy components are involved in phos-TBK1 generation during Parkin-mediated mitophagy. Therefore, the claim that ubiquitination machinery is sufficient for TBK1 activation is incorrect. Although we agree that the autophagy gene deletions cannot completely inhibit TBK1 autophosphorylation, mitophagy-dependent generation of phos-TBK1 is largely impaired by ATG9A KO (Fig 2j and k). Thus, there is no doubt that isolation membrane formation is important for TBK1 activation following Parkin-mediated mitophagy.
Fig 1e - The reviewer is correct that phos-TBK1 is reduced in the NDP52 knockout. We have rewritten the main text. It is also true that NDP52 has a smaller effect on TBK1 autophosphorylation as compared to OPTN.
Fig 1g - Immunoblots using total cell lysates prepared from six different cell lines (WT, Penta KO alone, Penta KO stably expressing low or high OPTN or NDP52) under four different conditions (DMSO, valinomycin 1 hr, valinomycin 3 hrs, valinomycin + bafilomycin 3 hrs) showed that OPTN is a rate-limiting factor for TBK1 phosphorylation. Please see Fig 1g and h in the revised manuscript
Fig 2c - The recruitment of OPTN WT and associated mutants to the contact site was re-examined by immunostaining with WIPI2 labeling. We found that OPTN WT was both efficiently recruited to and formed the contact site. In contrast, the OPTN 4LA/F178A mutant was unable to interact with FIP200/LC3/ATG9A and was uniformly (i.e. homogenously) distributed on damaged mitochondria with the rate of autophagosome site formation reduced. Please see Fig 2e, f, g in the revised manuscript.
Fig 2e and f - KO of the autophagy core components FIP200 and ATG9A increased phos-TBK1 under basal, non-mitophagy-associated conditions (see Fig 3). The levels of autophagy adaptors other than OPTN also increased in FIP200 KO and ATG9A KO cells. Furthermore, as shown in Fig 3a and supplementary Fig 7, both phos-TBK1 and the autophagy adaptors accumulated in Ub-positive condensates. Based on previous reports (Mejlvang 2018 J Cell Biol), TAX1BP1, p62, and NBR1 have short half-lives and are quicky degraded by macro/micro autophagy. The accumulation of phos-TBK1 in the absence of autophagy occurs because autophagy-dependent degradation of TAX1BP1 (and other adaptors) is inhibited. This allows for the formation of Ub-positive condensates, which brings TBK1 into sufficient proximity for activation. This has been noted in the revised manuscript.
Fig 3b and 3c - We wonder if the "loading controls are missing for Fig 3b and 3c" statement might be a misinterpretation by the reviewer as TOMM20 was used as the loading control in the original Fig 3b. It was recovered in the supernatant fractions of WT, FIP200 KO, and ATG9A KO cells, indicating that the accumulation of autophagy adaptors in the pellet fractions depends on autophagy gene deletion. Similarly, actin and TOMM20 were used as loading controls in the original manuscript Fig 3c.
Fig 2d (perhaps meant to be Fig 3d) – A previous study reported that phos-tag PAGE blot of OPTN in TBK1 KO cells alone revealed no differences between WT and TBK1 KO cells (Heo et al 2015 Mol Cell). We cited this reference in the revised manuscript.
Fig 2b (perhaps meant to be Fig 4b) - Immunoblots of phos-TBK1 have been incorporated into the results of Fig 4b in the revised manuscript.
Fig 4 - We show in Fig 2 that induction of Parkin-mediated mitophagy promotes OPTN accumulation at contact sites formed by isolation membranes and ubiquitinated mitochondria, and that autophagy core subunits are required for efficient generation of phos-TBK1. Fig 3 shows that phos-TBK1 accumulates in Ub-positive condensates with TAX1BP1, rather than OPTN, and that it is responsible for phos-TBK1 accumulation. Together, these results suggest a model in which TBK1 is activated when OPTN and TBK1 are positioned near each other. We hypothesized that if we could force OPTNs into close proximity the autophagy machinery requirement for TBK1 activation might be bypassed. To assess this model, we designed the fluoppi assay shown in Fig 4. This assay was critical in that it provided an important clue for the molecular mechanism that OPTN and the autophagy machinery use to cooperatively induce TBK1 trans-autophosphorylation. Because the original manuscript may not have sufficiently conveyed our reasoning for the fluoppi analysis, we have rewritten this section. The main point of the fluoppi assay is that engineered OPTN multimerization was able to bypass the autophagy requirement for TBK1 activation.
Fig 5 - For easier interpretation, the L693Q and V700Q data, which are not related to ALS pathology, have been removed.
Fig 5d – Statistical significance has been determined for the mitophagy results and the main text has been rewritten for better clarity.
Fig 6c, d, and I – The experiments were independently replicated more than three times with statistical support and error bars incorporated into the associated graphs.
*Reviewer #2 (Significance (Required)): *
*this manuscript represents a lot of work but the experiments often lack controls and are over-interpretated. The manuscript is for a broad audience. *
For the revised manuscript, additional experiments were carefully performed with appropriate controls and the manuscript was rewritten to address concerns regarding over-interpretation. We hope that we have adequately addressed the reviewer’s comments.
*Reviewer #3 (Evidence, reproducibility and clarity (Required)): *
*The authors investigated the mechanisms by which TBK1 is phosphorylated and thus activated in PINK1/Parkin-mediated mitophagy. They show data indicating that OPTN, by interacting both with ubiquitin-coated mitochondria and with the autophagy machinery, provides a platform where OPTN-bound TBK1 can be hetero-autophosphorylated by adjacent TBK1. *
*According to the prevailing model (prior to this manuscript), TBK1 activation via autophosphorylation leads to TBK1-mediated phosphorylation of OPTN S177 and subsequent pOPTN-mediated recruitment of autophagic isolation membranes to the mitochondria. However, based on the model provided in this manuscript, OPTN needs to interact first with both autophagic membranes and ubiquitin before TBK1 can become activated. *
*This is an important topic. Overall, the experimental data are of high scientific quality. For the most part, the manuscript is clearly written. The figures have been made with great care. The novel insights are relevant. However, a number of issues need to be addressed or clarified. *
*Major comments: *
- Fig. 1a-b shows that pTBK1 (pS172) formation already peaks after 30 min of valinomycin. Even when bafilomycin is added, pTBK1 level already reaches a near maximum after 30 min of valinomycin. If the model proposed by the authors is correct and pTBK1 (pS172) formation requires extensive interaction of OPTN with both ubiquitin and autophagic isolation membranes, they should be able to show (by immunostaining) that OPTN already extensively forms peri-mitochondrial cup/sphere-shaped structures that colocalize with isolation membrane markers after only 30 min of valinomycin. In the present manuscript, they only show formation of such structures after 1-3 h of valinomycin.* We thank the reviewer for the critical comments. Based on the suggestion, we performed immunostaining to observe the recruitment of TBK1 and OPTN to damaged mitochondria as well as the generation of phos-TBK1 (pS172) and phos-OPTN (pS177). HeLa cells stably expressing Parkin and 3HA-WIPI1 were treated with valinomycin for 30 min, and then TBK1, OPTN, phos-TBK1, and phos-OPTN were immunostained along with 3HA-WIPI1 (a marker of the autophagosome formation site) and TOMM20 (a mitochondria marker). Please see supplementary Fig 2a and 3a in the revised manuscript. The TBK1, OPTN, phos-TBK1, and phos-OPTN signals formed dot-like, cup-shaped, and/or spherical structures, most of which were peri-mitochondrial and colocalized with 3HA-WIPI1. In separate experiments, HeLa cells stably expressing Parkin were treated with valinomycin in the presence or absence of bafilomycin for 30 min or 2 hrs and then immunostained. Please see supplementary Fig 2b in the revised manuscript. After 30 min valinomycin in the absence of bafilomycin, many TBK1 and OPTN signals were observed on damaged mitochondria. These signals were quantified from more than 160 cells for each of the four conditions. Each microscopic image generated contained 18-36 cells and corresponds to one dot in supplementary Fig 2c. Based on these results, the abundance of TBK1 and OPTN on mitochondria after 30 min of valinomycin was much higher than that after 2 hrs with valinomycin (supplementary Fig 2c). Similar results were obtained for phos-TBK1 and phos-OPTN (supplementary Fig 3b and c). These results are consistent with the immunoblot data (Fig1a and b).
Furthermore, we show that Parkin expression levels affect the amount of phos-TBK1 generated during mitophagy. Please see supplementary Fig 4 in the revised manuscript. When PARKIN was integrated into HeLa cells under a CMV promoter via an AAVS1 (Adeno-associated virus integration site 1)-locus, the resultant cell line (referred to as high-Parkin) had higher Parkin levels than HeLa cells in which PARKIN was introduced by retrovirus infection (referred to as low-Parkin). In high-Parkin HeLa cells, phos-TBK1 levels reached a maximum after 30 min with valinomycin, while in low-Parkin HeLa cells, phos-TBK1 levels were comparable after 30 min and 1 hr. High-Parkin HeLa was used for Fig 1a, b, c, and d as well as supplementary Fig 1, 2, 3 and 4. For all other Figs, PARKIN genes were introduced by retrovirus infection. This is one of the reasons why val was used for 30 min in Fig1, but 1-3 hrs for the other Figs. Because 3 hrs valinomycin treatment may be unsuitable for evaluating OPTN recruitment to mitochondria/isolation membrane contact sites, we deleted the original Fig 2c and replaced it with the val 1 hr data (Please see Fig 2e in the revised manuscript).
- The authors propose that OPTN needs to interact both with ubiquitin on mitochondria and with isolation membrane proteins such as ATG9A to allow TBK1 phosphorylation. However, their fluoppi experiments in Fig. 4 seem to contradict this. In the fluoppi experiments, the authors generate multimeric OPTN-Ub foci and this is apparently sufficient to induced TBK1 phosphorylation at S172 (shown in 4d,f). In this experiment, there is no induction of autophagy or formation of isolation membranes, and TBK1 nevertheless gets activated.*
Figure 2 demonstrates that both ubiquitin on mitochondria and formation of the isolation membranes are needed to provide a platform for OPTN to assemble in close proximity to each other and subsequently induce TBK1 autophosphorylation. To determine if OPTN proximity is sufficient for TBK1 autophosphorylation (i.e., if engineered OPTN multimerization can bypass the autophagy machinery requirement for TBK1 autophosphorylation), we used the fluoppi assay. The results clearly showed that engineered OPTN multimerization induced TBK1 autophosphorylation without the need for the autophagy machinery. Although this is not a mitophagy experiment, the fluoppi assay provided crucial insights into the molecular mechanism underlying OPTN-mediated TBK1 autophosphorylation. The main text was rewritten to provide more clarity regarding the purpose of the fluoppi experiments.
- Can the authors be more concrete/specific in the discussion about the molecular mechanisms that explain why this 'platform' that is created by OPTN-autophagy machinery interactions is so crucial for TBK1 activation? If I understand the model in Fig. 7D correctly, the OPTN-autophagy machinery interactions are mainly important because they reduce the distance between OPTN-bound TBK1 molecules so that they can trans-phosphorylate each other. But if TBK1 autophosphorylation was just a matter of proximity between OPTN-bound TBK1 molecules, interaction of OPTN with densely ubiquitinated mitochondria should already be sufficient for TBK1 phosphorylation. When multiple OPTN molecule bind to one ubiquitin chain or to closely adjacent ubiquitin chains (similar to the fluoppi experiments), TBK1 molecules binding to OPTN would be expected to be already closely enough to one another for trans-autophosphorylation.*
The amount of phos-TBK1 during Parkin-mediated mitophagy was reduced in cells with the OPTN 4LA/F178A mutant, which cannot interact with the autophagy machinery (e.g. FIP200, ATG9A, and LC3) but can be targeted to mitochondria (see Fig 2c, d). ATG9AKO cells also had reduced amounts of phos-TBK1 relative to WT cells (See Fig 2j, k). Therefore, rather than OPTN-ubiquitin freely diffusing laterally on the outer membrane, we suggest that the contact site OPTN forms with ubiquitin and the autophagy machinery provides a more suitable platform for TBK1 autophosphorylation because it maintains TBK1 in a proximal position for a longer period of time.
The OPTN UBAN domain binds a ubiquitin-chain composed of two ubiquitin molecules (Oikawa et al. 2016 Nat Comm), and during Parkin-mediated mitophagy only shorter length poly-ubiquitin chains are generated on the mitochondrial surface (Swatek et al. 2019 Nature). Based on those findings, it is unlikely that multiple OPTN bind to one ubiquitin chain. Of course, we cannot rule out the possibility that TBK1 autophosphorylation does not occur on mitochondria in the absence of autophagy components. While full activation of TBK1 requires OPTN to associate with the isolation membrane, initial TBK autophosphorylation at the onset of mitophagy may occur based only on the OPTN-ubiquitin interaction. These explanations have been added to the Discussion in the revised manuscript.
Furthermore, based on comments from Reviewer 2, we performed time-lapse microscopy to observe OPTN dynamics during Parkin-mediated mitophagy (please see Fig 2l). HeLa cells stably expressing GFP-OPTN and pSu9-mCherry (a mitochondrial marker) were treated with valinomycin. GFP-OPTN was initially a peri- mitochondrial dot-like structure that elongated over time to a cup-shaped structure and which eventually ended up forming a spherical structure. The time-laps imaging showed that, at least in WT cells, OPTN is directly recruited to the contact sites and elongates along with the isolation membranes. We thus concluded that TBK1 is activated (autophosphorylated) at the contact site rather than on the outer membrane where OPTN-TBK can move freely.
- Fig. 5c,d and P. 16: the mitophagy experiments in TBK1-/- cells expressing the different mutant forms of TBK1 are hard to interpret because it is not clear which mitophagy differences are statistically significant. The main text about this part (p. 16) is also confusing.*
We regret the confusion. Reviewer 2 also noted that the main text for Fig 5 was difficult to interpret. One of the reasons that complicated interpretation of the data is the number of TBK1 mutants used. The L693Q and V700Q mutations used by Li et al. (2016 Nat Commun) were expected to inhibit mitophagy since those authors reported that the mutations prevented interactions with OPTN. However, our in-cell assay showed that the two mutants only moderately affected Parkin-mediated mitophagy. Furthermore, both L693Q and V700Q were engineered based on the X-ray structure and are not ALS pathogenic mutations. To simplify the data and to make data interpretation easier, we decided to delete the L693Q and V700A data. We also determined statistical significance and rewrote this section.
- Many graphs lack statistics: Fig. 2b (pTBK1), Fig. 2f, Fig. 5b, Fig. 5d, Fig. 6c.*
We apologize for the lack of statistical analyses. We repeated experiments (if the experiments had not been independently performed more than three times) with statistical significance and error bars incorporated into the relevant figures.
*Other comments: *
-
Fig. 1a: how do they know that the upper OPTN band is ubiquitinated OPTN? Reviewer 2 raised the same question. To demonstrate that the upper OPTN band is ubiquitinated, cell lysates after mitophagy induction were incubated in vitro* with a recombinant USP2 core domain, and the samples immunoblotted. As shown in supplementary Fig 1 in the revised manuscript, the upper OPTN band disappeared in a USP2-dependent manner. The upper NDP52 and TOMM20 bands similarly disappeared. Therefore, the upper OPTN, NDP52 and TOMM20 bands observed after mitophagy induction are ubiquitinated.
-
Fig. 1a,b: the bafilomycin stabilization of pTBK1, OPTN and pOPTN indicates that these proteins are substantially degraded by autophagy within 30-60 minutes. This seems extremely fast for mitophagy completion. Please discuss.*
According to Kulak et al. (2014 Nat Methods), autophagy adaptor abundance (OPTN: 2.32E+4 and NDP52: 3.34E+4 in HeLa cell line) is low compared to that of mitochondria (TOMM20: 1.45E+6 in HeLa cell line). This is one of the reasons why autophagic degradation of adaptors is easier to see. Degradation of phos-TBK1 was likewise easy to detect, whereas total TBK1 was not. This discrepancy is likely based on differences in the abundance of phos-TBK1 and total TBK1. In addition, because autophagy adaptors are localized outside of the mitochondrial membrane they may be easier targets for lysosomal degradation than matrix proteins, which are localized inside the outer and inner membranes.
- Fig. 1a and rest of the manuscript: is there a reason why the authors only looked at S177 phosphorylation of OPTN and not also at OPTN S473, which is also phosphorylated by TBK1?*
Both mass spectrometry and mutational analyses indicated that OPTN S473 is phosphorylated during Parkin-mediated mitophagy and that OPTN phosphorylated at S473 strongly binds ubiquitin chains (Richter et al. 2016 PNAS and Heo et al. 2015 Mol Cell). However, because a phos-S473 OPTN antibody is, to the best of our knowledge, currently not commercially available, we did not focus on S473 phosphorylation.
- Fig. 1e-f: the main text states that "NDP52 KO effects on the pS172 signal were comparable to controls", but the blot in 1e and the graph in 1f indicate a difference between NDP52KO and WT (significant difference shown in 1f). This is confusing.*
We regret the over-interpretation. As the reviewer indicated, the amount of phos-TBK generated in response to mitophagy was reduced in NDP52 KO cells relative to that in WT cells. This has been corrected. We would like to emphasize that, unlike OPTNdeletion, NDP52 deletion has relatively minor effects on TBK1 phosphorylation.
- P. 9: "TBK1 phosphorylation however was not apparent in the OPTN mutant lines, even after 3 hrs with valinomycin, indicating that autophagy adaptors are essential for TBK1 activation (Fig. 2a)". However, the pTBK1 blot in Fig. 1a does show pTBK1 formation in the OPTN mutant (4LA etc.) lines. This is confusing.*
We apologize for this error. We intended to state “TBK1 phosphorylation was not apparent in the Penta KO cells without OPTN expression even after 3 hrs with valinomycin, indicating that autophagy adaptors are essential for TBK1 activation”. This sentence has been corrected in the revised manuscript.
- P. 10: "we subtracted the basal phosphorylation signal from that generated post-valinomycin (1 hr) and bafilomycin (3 hr)". Do they mean "from that generated post-valinomycin (3 hr) and bafilomycin (3 hr)?*
The reviewer is correct, we have corrected the error.
- P. 10, same paragraph: "the phosphorylation signal was ~90 but was less than 30 in ATG9A KO cells." Unclear what they mean by 90 and 30. 90% and 30%? 90-fold and 30-fold?*
The newly generated pTBK1 levels following Parkin-mediated mitophagy were calculated as pTBK1 [val & baf 3 hrs] minus pTBK1 [DMSO]. Since pTBK1 [val & baf 3 hrs] in WT cells is set to 100%, the newly generated pTBK1 in WT cells was 100% - 5% = 95%. The calculated values for pTBK1 [DMSO] and pTBK1 [val & baf 3 hrs] in ATG9A KO cells were ~55% and ~85%, respectively. Consequently, newly generated pTBK1 in the ATG9A KO cells is ~85% - ~55% = 30%. For clarity, we modified the figure to make the meaning of the numbers more apparent.
- Fig. 3a: Do they have an idea what kind of ubiquitinated substrates are contained in the ubiquitin-positive condensates that accumulate in FIP200 KO and ATG9A KO cells (i.e. without valinomycin treatment)?*
According to Kishi-Itakura et al. (2014 J Cell Sci), ferritin accumulates in the p62 condensates in FIP200 KO and ATG9A KO cells. However, it is unknown if the ferritin in the condensates is ubiquitinated. In the original manuscript, we confirmed by immunostaining that the p62-NBR1 condensates contain ferritin (Fig 3a in the original manuscript and supplementary Fig 7b in the revised manuscript).
- P. 12 and Fig. 3a: please explain why they look at ferritin, to improve readability.*
We thank the reviewer for the suggestion. As mentioned, ferritin is a known substrate that accumulates in p62 condensates, we thus sought to confirm its presence. We have included this explanation in the revised manuscript.
- Fig. 3a: please also include Ub stain for NBR1.*
We thank the reviewer for the suggestion. We obtained a rabbit anti-NBR1 antibody that allowed us to co-immunostain with the mouse anti-ubiquitin antibody (please see supplementary Fig 7b in the revised manuscript).
- Fig. 3d: the OPTN blot shows 2 OPTN bands. What does the upper OPTN band represent here?*
To determine if the two bands are genuine OPTN, total cell lysates prepared from HeLa cells treated with control siRNA or OPTN siRNA were subjected to phos-tag PAGE followed by immunoblotting with an anti-OPTN antibody. As shown below (Figure 2 for reviewers), the two bands (indicated as blue arrowheads) were absent in the OPTN knock down cells, indicating that both are derived from OPTN. Since phosphorylated species migrate slower in phos-tag PAGE, the upper band might be a phosphorylated form. The specific Ser/Thr phosphorylated in OPTN, however, remains to be determined. Heo et al. (2015 Mol Cell) also reported the two OPTN bands on phos-tag PAGE and that both were unchanged in TBK1 KO cells, suggesting that at least the upper band is not affected by TBK1.
- P. 14 and Fig. 4b: "Here, we found that phosphorylation of ... TBK1 (S172) was induced by the OPTN-ub fluoppi (Fig. 4b)." However, Fig 4b does not show a pTBK1 blot.*
We immunoblotted phos-TBK1. Please see Fig 4b in the revised manuscript.
*Reviewer #3 (Significance (Required)): *
*The novel insights are relevant. *
*According to the prevailing model (prior to this manuscript), TBK1 activation via autophosphorylation leads to TBK1-mediated phosphorylation of OPTN S177 and subsequent pOPTN-mediated recruitment of autophagic isolation membranes to the mitochondria. However, based on the model provided in this manuscript, OPTN needs to interact first with both autophagic membranes and ubiquitin before TBK1 can become activated. *
Based on our time-lapse microscopy observations (Fig 2l), OPTN recruited to the vicinity of mitochondria was visible as a small dot-like structures that likely correspond to contact sites between mitochondria and the isolation membrane since OPTN colocalizes with WIPI1 (please see supplementary Fig 2). These results support our proposed model that OPTN interacts with both isolation membranes and ubiquitin at the onset of mitophagy. Without TBK1 activation, OPTN can interact with ATG9A vesicles, a seed for isolation membrane formation (Yamano et al 2020 JCB), and TBK1 can interact with the PI3K complex (Nguyen et al 2023 Mol Cell). Therefore, OPTN-TBK1 can be recruited to the contact site from the very beginning of mitophagy induction prior to TBK1 being fully activated. Furthermore, the proposed model also includes an OPTN-TBK1 positive feedback loop; however, the earliest reactions in the positive feedback loop are too difficult to observe. For example, it’s widely known that PINK1 and Parkin form a positive feedback loop to generate ubiquitin-chains on damaged mitochondria, but the initial reaction has yet to be observed. It remains unclear if PINK1 is the first to phosphorylate mitochondrial ubiquitin (if this is the case, it remains unknown how ubiquitin comes to mitochondria) or if cytosolic Parkin first adds ubiquitin to the outer membrane albeit with very weak activity. Similarly, in our proposed model, we cannot determine the earliest OPTN-TBK1 reaction. As described in the Discussion in the revised manuscript, it remains possible that in the absence of autophagy machinery OPTN distributed freely on the outer membrane can induce trans-autophosphorylation, albeit weakly, as the earliest reaction.
We would like to thank Reviewer 3 for the critical comments and suggestions. We have performed several of the suggested experiments, added new data, and rewritten the text. We hope that these changes have sufficiently addressed the reviewer’s concerns.
-
-
-
www.theguardian.com www.theguardian.com
-
China hat einen lange angekündigten Plan zur Methan-Reduktion veröffentlicht. Der Zeitpunkt am Ende von Gesprächen des chinesischen Klima-Beauftragten Xie Zhenhua mit seinem amerikanischen Pendant John Kerry gilt als Signal für mehr Kooperation zwischen China und den USA im Vorfeld der COP28. https://www.theguardian.com/world/2023/nov/08/china-methane-plan-climate-agreement-us
Mehr zu Methan-Emissionen und -Reduktion: https://hypothes.is/search?q=tag%3A%27process%3A+methane+reduction%27
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Cook, Watt, and colleagues previously reported that a mouse model of Spinocerebellar ataxia type 6 (SCA6) displayed defects in BDNF and TrkB levels at an early disease stage. Moreover, they have shown that one month of exercise elevated cerebellar BDNF expression and improved ataxia and cerebellar Purkinje cell firing rate deficits. In the current work, they attempt to define the mechanism underlying the pathophysiological changes occurring in SCA6. For this, they carried out RNA sequencing of cerebellar vermis tissue in 12-month-old SCA6 mice, a time when the disease is already at an advanced stage, and identified widespread dysregulation of many genes involved in the endo-lysosomal system. Focusing on BDNF/TrkB expression, localization, and signaling they found that, in 7-8 month-old SCA6 mice early endosomes are enlarged and accumulate BDNF and TrkB in Purkinje cells. Curiously, TrkB appears to be reduced in the recycling endosomes compartment, despite the fact that recycling endosomes are morphologically normal in SCA6. In addition, the authors describe a reduction in the Late endosomes in SCA6 Purkinje cells associated with reduced BDNF levels and a probable deficit in late endosome maturation.
We would like to thank the reviewers for their careful reading of the paper, their feedback has helped us to add information and experiments to the paper that enhance the clarity of the findings.
Strengths:
The article is well written, and the findings are relevant for the neuropathology of different neurodegenerative diseases where dysfunction of early endosomes is observed. The authors have provided a detailed analysis of the endo-lysosomal system in SCA6 mice. They have shown that TrkB recycling to the cell membrane in recycling endosomes is reduced, and the late endosome transport of BDNF for degradation is impaired. The findings will be crucial in understanding underlying pathology. Lastly, the deficits in early endosomes are rescued by chronic administration of 7,8-DHF.
We thank the reviewers for their positive feedback on this work.
Weaknesses:
The specificity of BDNF and TrkB immunostaining requires additional controls, as it has been very difficult to detect immunostaining of BDNF. In addition, in many of the figures, the background or outside of Purkinje cell boundaries also exhibits a positive signal.
We agree with the reviewers that the performance of the BDNF and TrkB antibodies is an important concern. We have ourselves had difficulties with the performance of many antibodies and the images in this paper are the result of many years of optimization. We have therefore added further detail about the antibody optimization to the methods section of this paper, and have carried out new staining experiments with additional controls. We have added 2 new figure panels in supplementary figures 3 and 4 to demonstrate these tests.
In the case of anti-BDNF antibodies, we have tested several antibodies and staining protocols and found that in our hands, the only antibody that reliably stained BDNF with a good signal to noise ratio was the one used in this paper (abcam ab108319). Even for this antibody, the staining was greatly enhanced by the use of a heat induced epitope retrieval (HIER) step, which allowed the visualization of BDNF within intracellular structures such as endosomes. When we quantified the intensity of this staining in our previous paper, the results were in agreement with those from a BDNF ELISA used to measure levels of BDNF in the cerebellar vermis of WT and SCA6 mice (Cook et al., 2022), which corroborates these results. As the staining was carried out in tissue sections and not dissociated cells, we also see positive signal from the BDNF staining outside of the Purkinje cells, since BDNF acts on cell-surface receptors and is thus released into the extracellular space around cells (Kuczewski et al., 2008) and is detectable in the extracellular matrix (Lam et al., 2019) and presynaptic terminals around neurons (Camuso et al., 2022; Choo et al., 2017). This is in contrast to studies that image BDNF mRNA with in-situ hybridization, which labels BDNF mRNA predominantly found in cells, and cannot tell us about sub-cellular or extracellular localization of BDNF protein. Together, these factors explain why we observe staining that is not cell- limited, but extends into the space around the cells of interest.
We have added an additional supplemental figure to demonstrate the importance of using HIER when staining slices with anti-BDNF (Supplementary figure 3). We tested HIER protocols that involved heating the slices to 95°C in a variety of buffers. The buffers tested were sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6), Tris buffer (10mM TBS, 0.05% Tween 20, pH 10), EDTA buffer (1mM EDTA, 0.05% Tween 20, pH 8) and neutral PBS. The PBS produced the best result, enhancing the staining of both anti-BDNF and anti-EEA1 antibodies (Supplementary figure 3). Therefore all slices stained using those antibodies were heated to 95°C in PBS using a heat block or thermocycler for 10 minutes, then allowed to cool before staining proceeded.
The antibody we use (abcam ab108319) has been used in hundreds of other publications, including Javed et al., 2021 who ectopically expressed BDNF and noted colocalization between the antibody staining and the GFP tag of the BDNF construct, and Lejkowska et al., 2019 who overexpressed BDNF and saw a dramatic increase in antibody staining as well. The colocalization between ectopically expressed BDNF and the antibody in these studies demonstrates the specificity of the antibody.
However, to further validate antibody specificity we used liver tissue as a negative control. In liver tissue from rodents and humans, the majority of the liver contains negligible levels of BDNF (Koppel et al., 2009; Vivacqua et al., 2014), see also the Human Protein Atlas. The exception is some cholangiocytes: epithelial cells that express BDNF at high levels (Vivacqua et al., 2014). We obtained liver tissue from a WT mouse that was undergoing surgery for an unrelated project and fixed and processed the tissue as we did for brain tissue (outlined in methods section). As we would expect, most of the cells in the liver showed BDNF immunoreactivity that was comparable to background levels (Supplementary figure 3). Interestingly, we were also able to detect sparse highly BDNF-positive cells in the liver, presumed cholangiocytes (Supp. Fig. 3). This pattern of liver BDNF expression is as predicted in the literature, and thus acts as a control for our antibody. We therefore believe that in our hands this antibody is able to stain BDNF with an appropriate degree of specificity.
We also carried out staining experiments using a second anti-TrkB antibody that we had previously used to detect TrkB via Western bloing. We carried out immunohistochemistry as previously described using tissue sections from a WT mouse. The staining with the two different antibodies was carried out at the same time and all other reagents were kept constant. We found that both antibodies labelled TrkB in a similar pattern of localization, including in the early endosomes of the Purkinje cells (Supplementary figure 4). The second antibody however did have a lower signal to noise ratio and so we believe that the original anti-TrkB antibody used in this manuscript (EMD Millipore ab9872) is optimal for staining cerebellar tissue sections in our hands.
One important concern about the conclusions is that the RNAseq experiment was conducted in 12-month- old SCA6 mice suggesting that the defects in the endo-lysosomal system may be caused by other pathophysiological events and, likewise, the impairment in BDNF signaling may also be indirect, as also noted by the authors. Indeed, Purkinje cells in SCA6 mice have an impaired ability to degrade other endocytosed cargo beyond BDNF and TrkB, most likely because of trafficking deficits that result in a disruption in the transport of cargo to the lysosomes and lysosomal dysfunction.
We agree with the reviewers that the defects in the endo-lysosomal system may be caused by other events occurring in the course of disease progression. As mentioned by the reviewers, we have noted this possibility in the text. Detailed investigation into the sequence of events and the root causes of signaling disruption in SCA6 merits future study and we aim to address this in future work. We have expanded this explanation in the text.
Moreover, the beneficial effects of 7,8-DHF treatment on motor coordination may be caused by 7,8-DHF properties other than the putative agonist role on TrkB. Indeed, many reservations have been raised about using 7,8-DHF as an agonist of TrkB activity. Several studies have now debunked (Todd et al. PlosONE 2014, PMID: 24503862; Boltaev et al. Sci Signal 2017, PMID: 28831019) or at the very least questioned (Lowe D, Science 2017: see Discussion: https://www.science.org/content/blog-post/those-compounds-aren-t- what-you-think-they-are Wang et al. Cell 2022 PMID: 34963057). Another interpretation is that 7,8-DHF possesses antioxidant activity and neuroprotection against cytotoxicity in HT-22 and PC12 cells, both of which do not express TrkB (Chen et al. Neurosci Lett 201, PMID: 21651962; Han et al. Neurochem Int. 2014, PMID: 24220540). Thus, while this flavonoid may have a beneficial effect on the pathophysiology of SCA6, it is most unlikely that mechanistically this occurs through a TrkB agonistic effect considering the potent anti-oxidant and anti-inflammatory roles of flavonoids in neurodegenerative diseases (Jones et al. Trends Pharmacol Sci 2012, PMID: 22980637).
We thank the reviewers for raising this important point. We have noted in our previous paper (Cook et al., 2022) that 7,8-DHF may not be acting as a TrkB agonist in SCA6 mice, and are in agreement that other explanations are possible. We have now added information to the text of this paper to highlight this possibility. We did show in our previous paper that 7,8-DHF administration activates Akt signaling in the cerebellum of SCA6 mice, a signaling event that is known to take place downstream of TrkB activation. Additionally, 7,8-DHF treatment led to the increase of TrkB levels in the cerebellum of SCA6 mice (Cook et al., 2022), implicating TrkB in the mechanism of action, even if mechanistically, this is not via direct TrkB activation alone. However, even if the mechanism is currently incompletely explained, we believe that 7,8- DHF remains a valuable treatment strategy for SCA6. We have tried to rewrite the Discussion to highlight what we think is the most important takeaway: that 7,8-DHF can rescue endosomal and other deficits in SCA6, even if we do not currently know the full mechanism of action. We have therefore amended the text to add more detail about other potential explanations for the mechanism of action of 7,8-DHF.
References
Camuso S, La Rosa P, Fiorenza MT, Canterini S. 2022. Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis. doi:10.1016/j.nbd.2021.105606
Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, Tanimura A, Uesaka N, Watanabe M, Sakimura K, Kano M. 2017. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun 8:195. doi:10.1038/s41467-017-00260-w
Cook AA, Jayabal S, Sheng J, Fields E, Leung TCS, Quilez S, McNicholas E, Lau L, Huang S, Watt AJ. 2022. Activation of TrkB-Akt signaling rescues deficits in a mouse model of SCA6. Sci Adv 8:3260. doi:10.1126/sciadv.abh3260
Javed S, Lee YJ, Xu J, Huang WH. 2021. Temporal dissection of Rai1 function reveals brain-derived neurotrophic factor as a potential therapeutic target for Smith-Magenis syndrome. Hum Mol Genet 31:275–288. doi:10.1093/HMG/DDAB245
Koppel I, Aid-Pavlidis T, Jaanson K, Sepp M, Pruunsild P, Palm K, Timmusk T. 2009. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice. BMC Neurosci 10:68. doi:10.1186/1471-2202-10-68
Kuczewski N, Porcher C, Ferrand N, Fiorentino H, Pellegrino C, Kolarow R, Lessmann V, Medina I, Gaiarsa JL. 2008. Backpropagating action potentials trigger dendritic release of BDNF during spontaneous network activity. J Neurosci 28:7013–7023. doi:10.1523/JNEUROSCI.1673-08.2008
Lam D, Enright HA, Cadena J, Peters SKG, Sales AP, Osburn JJ, Soscia DA, Kulp KS, Wheeler EK, Fischer NO. 2019. Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array. Sci Rep 9. doi:10.1038/s41598- 019-40128-1
Lejkowska R, Kawa MP, Pius-Sadowska E, Rogińska D, Łuczkowska K, Machaliński B, Machalińska A. 2019. Preclinical Evaluation of Long-Term Neuroprotective Effects of BDNF-Engineered Mesenchymal Stromal Cells as Intravitreal Therapy for Chronic Retinal Degeneration in Rd6 Mutant Mice. Int J Mol Sci 2019, Vol 20, Page 777 20:777. doi:10.3390/IJMS20030777
Vivacqua G, Renzi A, Carpino G, Franchitto A, Gaudio E. 2014. Expression of brain derivated neurotrophic factor and of its receptors: TrKB and p75NT in normal and bile duct ligated rat liver. Ital J Anat Embryol 119:111–129. doi:10.13128/IJAE-15138
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
We thank the reviewers and editor for their thoughful and careful evaluation of our manuscript. We appreciate your time and effort and have incorporated many of these suggestions to improve our revised manuscript.
Reviewer #1 (Public Review):
Summary: Cullinan et al. explore the hypothesis that the cytoplasmic N- and C-termini of ASIC1a, not resolved in x-ray or cryo-EM structures, form a dynamic complex that breaks apart at low pH, exposing a C-terminal binding site for RIPK1, a regulator of necrotic cell death. They expressed channels tagged at their N- and C-termini with the fluorescent, non-canonical amino acid ANAP in CHO cells using amber stop-codon suppression. Interaction between the termini was assessed by FRET between ANAP and colored transition metal ions bound either to a cysteine reactive chelator attached to the channel (TETAC) or metal-chelating lipids (C18-NTA). A key advantage to using metal ions is that they are very poor FRET acceptors, i.e. they must be very close to the donor for FRET to occur. This is ideal for measuring small distances/changes in distance on the scales expected from the initial hypothesis. In order to apply chelated metal ions, CHO cells were mechanically unroofed, providing access to the inner leaflet of the plasma membrane. At high pH, the N- and C- termini are close enough for FRET to be measured, but apparently too far apart to be explained by a direct binding interaction. At low pH, there was an apparent increase in FRET between the termini. FRET between ANAP on the N-and Ctermini and metal ions bound to the plasma membrane suggests that both termini move away from the plasma membrane at low pH. The authors propose an alternative hypothesis whereby close association with the plasma membrane precludes RIPK1 binding to the C-terminus of ASIC1a.
Strengths: The findings presented here are certainly valuable for the ion channel/signaling field and the technical approach only increases the significance of the work. The choice of techniques is appropriate for this study and the results are clear and high quality. Sufficient evidence is presented against the starting hypothesis.
Weaknesses: I have a few questions about certain controls and assumptions that I would like to see discussed more explicitly in the manuscript.
My biggest concern is with the C-terminal citrine tag. Might this prevent the hypothesized interaction between the N- and C-termini? What about the serine to cysteine mutations? The authors might consider a control experiment in channels lacking the C-terminal FP tag.
While it is certainly possible that the C-terminal citrine tag is preventing the hypothesized interaction between the intracellular termini, there are a few things that mitigate (but not eliminate) this concern. First, previous work looking at the interaction between the intracellular termini used FPs on both the N- and C-termini and concluded that in fact there is an interaction (PMID:31980622). Our channels have only a single FP, and we use a higher resolution FRET approach. Second, we aVach our citrine tag with a 11-residue linker, allowing for enhanced flexibility of the region and hopefully allowing for more space for an interaction that was posited to be between the very proximal part of the C-terminus (near the membrane and away from the tag) and the untagged N-terminus. Third, we previously showed that Stomatin, a much larger protein than the NTD, could bind the distal C-terminus of rASIC3 with a large fluorescent protein connected by the same linker on the C-terminus. In the case of Stomatin, the interaction involved the residues at the distal portion of the C-terminus close to the bulky FP. Interestingly, while we did not publish this, without this flexible linker, Stomatin could not regulate the channel and likely did not bind.
Despite this, we agree that this is possible and have added a statement in our limitations section explicitly saying this.
Figure 2 supplement 1 shows apparent read-through of the N-terminal stop codons. Given that most of the paper uses N-terminal ANAP tags, this figure should be moved out of the supplement. Do Nterminally truncated subunits form functional channels? Do the authors expect N-terminally truncated subunits to co-assemble in trimers with full-length subunits? The authors should include a more explicit discussion regarding the effect of truncated channels on their FRET signal in the case of such co-assembly.
The positions that show readthrough (E6, L18, H515) were not used in the study. We eliminated them largely on the basis of these westerns. We elected to put the bulk of the blots in the supplement simply because of how many there were. We believe this is the best compromise. It allows us to show representative blots for all our positions without making an illegible figure with 7 blots.
The N-terminally truncated subunits would create very short peptides that are not able to create functional channels. A premature stop at say E8 would create a 7-mer. Our longest N-terminal truncation would only create a protein of 32 amino acids. These don’t contain the transmembrane segments and thus cannot make functional channels.
As the epitope used for the western blots in Figure 2 and supplements is part of the C-terminal tag, these blots do not provide an estimate of the fraction of C-terminally truncated channels (those that failed to incorporate ANAP at the stop codon). What effect would C-terminally truncated channels have on the FRET signal if incorporated into trimers with full-length subunits?
Alternatively, C-terminally truncated subunits would be able to form functional channels because they contain the full N-terminus, the transmembrane domains, the extracellular domain and a portion of the C-terminus. We don’t think this is a major contaminant to our experiments. The only two C-terminal ANAP positions we use are 464 and 505. In each of these cases, they are only used for memFRET. The ones that do not contain ANAP are essentially “invisible” to the experiment. Since we are measuring their proximity to the membrane, having some missing should not maVer. However, there is some chance that truncations in some subunits could allosterically affect the position of the CT in other subunits. We have added a discussion of this in the manuscript.
Some general discussion of these results in the context of trimeric channels would be helpful. Is the putative interaction of the termini within or between subunits? Are the distances between subunits large enough to preclude FRET between donors on one subunit and acceptor ions bound on multiple subunits?
Thank you for this comment. We did not directly test whether the distances are within or between subunits. We considered using a concatemer to do this, however, the concatemeric channels do not express particularly well. Then, UAA incorporation hurts the expression as well. It was unlikely we would be able to get sufficient expression for tmFRET.
However, the Maclean group has previously tested this using FRET between concatenated subunits and determined that FRET is stronger within than between subunits. We have updated the manuscript to reflect a more thorough discussion of our results in the context of their trimeric assembly.
The authors conclude that the relatively small amount of FRET between the cytoplasmic termini suggests that the interaction previously modeled in Rosetta is unlikely. Is it possible that the proposed structure is correct, but labile? For example, could it be that the FRET signal is the time average of a state in which the termini directly interact (as in the Rosetta model) and one in which they do not?
The proposed RoseVa model does not include the reentrant loop of the channel, so it is probable that this model would change if it were redone to include this new feature of the channel.
However, we do discuss the limitation of FRET as a method that measures a time average that is weighted towards closest approach in our discussion section. The termini are most certainly dynamic and it is possible that spend some time in close proximity. Given that FRET is biased towards closest approach, we actually think this strengthens our argument that the termini don’t spend a great deal of time in complex. In addition, our MST data suggests that the termini do not bind. We have added some commentary on this to the discussion section for clarity.
Reviewer #2 (Public Review):
Summary:
The authors use previously characterised FRET methods to measure distances between intracellular segments of ASIC and with the membrane. The distances are measured across different conditions and at multiple positions in a very complete study. The picture that emerges is that the N- and C-termini do not associate.
Strengths:
Good controls, good range of measurements, advanced, well-chosen and carefully performed FRET measurements. The paper is a technical triumph. Particularly, given the weak fluorescence of ANAP, the extent of measurements and the combination with TETAC is noteworthy.
The distance measurements are largely coherent and favour the interpretation that the N and C terminus are not close together as previously claimed.
Weaknesses:
One difficulty is that we do not have a positive control for what binding of something to either N- or Cterminus would look like (either in FRET or otherwise).
We acknowledge that this is a challenge for the approach. Having a positive control for binding would be great but we are not sure such a thing exists. You could certainly imagine a complex between two domains where each label (ANAP and TETAC) are pointed away from one other (giving comparatively modest quenching) or one where they are very close (giving comparatively large quenching), both of which could still be bound. This is essentially a less significant version of the problem with using FPs to measure proximity…they are not very good proxies for the position of the termini. These small labels are certainly beVer proxies but still not perfect. Our conclusion here is based more on the totality of the data. We tried many combinations and saw no sign of distances closer than ~ 20A at resting pH. We think the simplest explanation is that they are not close to one another but we tried to lay out the limitations in the discussion.
One limitation that is not mentioned is the unroofing. The concept of interaction with intracellular domains is being examined. But the authors use unroofing to measure the positions, fully disrupting the cytoplasm. Thus it is not excluded that the unroofing disrupts that interaction. This should be mentioned as a possible (if unlikely) limitation.
Thank you for your comment. We discuss unroofing as a potential limitation because it exposes both sides of the plasma membrane to changes in pH. We have updated this section to include acknowledgement of the possibility that unroofing disrupts the interaction via washout of other critical proteins.
Reviewer #3 (Public Review):
Summary: The manuscript by Cullinan et al., uses ANAP-tmFRET to test the hypothesis that the NTD and CTD form a complex at rest and to probe these domains for acid-induced conformational changes. They find convincing evidence that the NTD and CTD do not have a propensity to form a complex. They also report these domains are parallel to the membrane and that the NTD moves towards, and the CTD away, from the membrane upon acidification.
Strengths:
The major strength of the paper is the use of tmFRET, which excels at measuring short distances and is insensitive to orientation effects. The donor-acceptor pairs here are also great choices as they are minimally disruptive to the structure being studied.
Furthermore, they conduct these measurements over several positions with the N and C tails, both between the tails and to the membrane. Finally, to support their main point, MST is conducted to measure the association of recombinant N and C peptides, finding no evidence of association or complex formation.
Weaknesses:
While tmFRET is a strength, using ANAP as a donor requires the cells to be unroofed to eliminate background signal. This causes two problems. First, it removes any possible low affinity interacting proteins such as actinin (PMID 19028690). Second, the pH changes now occur to both 'extracellular' and 'intracellular' lipid planes. Thus, it is unclear if any conformational changes in the N and CTDs arise from desensitization of the receptor or protonation of specific amino acids in the N or CTDs or even protonation of certain phospholipid groups such as in phosphatidylserine. The authors do comment that prolonged extracellular acidification leads to intracellular acidification as well. But the concerns over disruption by unroofing/washing and relevance of the changes remain.
We acknowledge that unroofing is a limitation of our approach and noted it in the discussion. However, we have updated the section to include the possibility that the act of unroofing and washing could also disrupt the potential interaction between the intracellular domains as well as between these domains and other intracellular proteins. This was the best approach we could use to address our questions and it required that we unroof the cells. However, we look forward to future studies or new techniques that do not require the unroofing of the cells.
The distances calculated depend on the R0 between donor and acceptor. In turn, this depends on the donor's emission spectrum and quantum yield. The spectrum and yield of ANAP is very sensitive to local environment. It is a useful fluorophore for patch fluorometry for precisely this reason, and gating-induced conformational changes in the CTD have been reported just from changes in ANAP emission alone (PMID 29425514). Therefore, using a single R0 value for all positions (and both pHs at a single position) is inappropriate. The authors should either include this caveat and give some estimate of how big an impact changes spectrum and yield might have, or actually measure the emission spectra at all positions tested.
This is a reasonable concern and one we considered. Measuring the quantum yield would be quite difficult. However, we have measured spectra at a number of positions and see a relatively minimal shik in the peak. Most positions peak between 481 and 484nm. If you calculate the difference in R0 using theoretical spectra with a blue shik of 20nm, the difference in R0 is only ~1.5A. A shik of 20nm is on the higher side of anything we have seen in the literature (PMID 30038260) and since even with that large a shik, the difference is minimal we do not think measuring spectra for each position would impact the overall conclusions presented. As you noted, though, the quantum yield also changes. Assuming a change in yield from 0.22 to 0.47, the largest we found reported in the literature (PMID:29923827) , the R0 would increase by 2A. This same paper showed that the blue shiked position was the one with the higher extinction coefficient so these changes would be working in opposition to one another making the difference in R0 even smaller. It is important to note, that while tmFRET is a much more powerful measure of distance than standard FRET, these distances, as you point out, are quite challenging to measure precisely. Our conclusions are based less on the absolute distances and more on the observation that no positions show large quenching and that if there is any change upon acidification, it is in the wrong direction.
Overall, the writing and presentation of figures could be much improved with specific points mentioned in the recommendations for authors section.
See below.
The authors argue that the CTD is largely parallel to the plasma membrane, yet appear to base this conclusion on ANAP to membrane FRET of positions S464 and M505. Two positions is insufficient evidence to support such a claim. Some intermediate positions are needed.
We do not see in the paper where we suggest that the CTD is parallel. However, your point that we could try and determine if this was the case is correct. However, we aVempted to create several other CTD TAG mutants but struggled with readthrough and poor expression of these mutants so we opted to just include S464 and M505. Our point from these data is only that the distal CTD (505) must spend significant time near the membrane to explain our FRET data.
Upon acidification, NTD position Q14 moves towards the plasma membrane (Figure 8B). Q14 also gets closer to C515 or doesn't change relative to 505 (Figures 7C and B) upon acidification. Yet position 505 moves away from the membrane (Figure 8D). How can the NTD move closer to the membrane, and to the CTD but yet the CTD move further from the membrane? Some comment or clarification is needed.
This is a reasonable question and one that is hard to definitively answer. Our goal here was to test the hypothesis that the termini are bound at rest. Mapping the precise positions of the termini is difficult for reasons we will enumerate in the question that asks why we didn’t make a model. There are potentially multiple explanations but the easiest one would be that the CTD could move away from the membrane but closer to Q14, for instance, if the distal termini, say, rotated towards the NTD. This would move 505 closer and have no impact on whether or not the NTD and CTD moved away or toward the membrane.
Reviewer #1 (Recommendations For The Authors):
Minor concerns
The authors show the spectrum of ANAP attached to beads and use this spectrum to calculate R0 for their FRET measurements. Peak ANAP fluorescence is dependent on local environment and many reports show ANAP in protein blue-shiked relative to the values reported here. How would this affect the distance measurements reported?
This is an important point. See above for the answer.
Could the lack of interaction between the N- and C-terminal peptides in Figure 7 arise from the cysteine to serine mutations or lack of structure in the synthetic peptides. How were peptide concentrations measured/verified for the experiment?
It is possible that cysteine to serine mutations could prevent the interaction. It is also possible that these peptides are not capable of adopting their native fold without the presence of the plasma membrane or due to being synthetically created. However, the termini are thought to be largely unstructured. We received these peptides in lyophilized form at >95% purity and resuspended to our desired stock concentration (3 mM C-terminus, 1 mM N-terminus). Even if our concentration was off, we see no signs of interaction up to quite a high concentration.
How was photobleaching measured for correcting the data?
We executed several mock experiments at various TAG positions using either pH 8 and pH 6, where we performed the experiments as usual but with a mock solution exchange when we would normally add the metal. We normalized the L-ANAP fluorescence to the first image and averaged together these values for pH 8 and pH 6. We then corrected using Equation 2 in the manuscript..
We have updated the methods to include how we adjusted for bleaching.
The authors may wish to make it more explicit that their Zn2+ controls also preclude the possibility that a changing FRET signal between ANAP and citrine may affect their data.
Thank you for this comment. We agree, it would strengthen the manuscript to include this statement. We have now included this.
It might be useful to the reader if the authors could include (as a supplement) plots of their data (like in Figure 6), in which FRET efficiency has been converted to distance.
We considered this idea as well but felt like showing the actual data in the figures and the distances in a table would be best.
Figure 5D is mentioned in the text before any other figures. This is unconventional. Could this panel be moved to Figure 1 or the mention moved to later?
Changed
western blot is not capitalized.
Changed.
Figure 1, the ANAP structure shown is the methyl ester, which is presumably cleaved before ANAP is conjugated to the tRNA. The authors may wish to replace this with the free acid structure.
This is a fair point. We originally used the methyl ester structure to indicate the version of ANAP we chose to use. However, you are correct that the methyl ester is cleaved before conjugation to the tRNA. We replaced the methyl ester with the free acid structure to clarify this.
Figures 1 and 4 should have scale bars for the images.
Scale bars have been added to figures 1, 4, and 5.
In Figure 3, the letters in the structures (particularly TETAC) are way too small. Please increase the font size.
Changed
In Figure 3 and Figure 3 supplement 1, the axes are labeled "Absorbance (M-1cm-1)." Absorbance is dimensionless. The authors are likely reporting the extinction coefficient.
Thank you for catching this. We adjusted the axes to extinction coefficient.
In Figures 5 B and C, it might be clearer if the headers read "Initial, +Cu2+/TETAC, DTT" rather than "Initial, FRET, Recovery."
Changed
The panel labels for Figure 8 seem to be out of order.
Changed
The L for L-ANAP should be rendered, by convention, in small caps.
This is a good example of learning something new from the review process. This is the first I have ever heard of small caps. We can find no other papers that use small caps for L-ANAP so I am not 100% sure what convention this is referring to and don’t want to change the wrong thing in the paper. We are happy to change if the editorial staff at eLife agree but have lek this for now.
Reviewer #2 (Recommendations For The Authors):
With so many distances measured, why was not even a basic structural model attempted?
We certainly considered it, but a number of things lead us to conclude that it might imply more certainty about the structure of these termini than we hope to give. 1) Given that the FRET is a time average of positions, these distance constraints would not do much constraining. 2) Given that the termini are likely unstructured and flexible this makes the problem in 1 worse. 3) There is no structural information to use as a starting point for a model. 4) The flexibility of the linkers for each FRET pair also introduces uncertainty. This can, in theory, be modeled as they do in EPR but all of this together made us decide not to do this. What we hope readers take home, is the overall picture of the data is not consistent with the original RIPK1 hypothesis.
Maybe it would be good to draw a band on the graphs in Figure 6 for the FRET signal expected for interaction (and thus, disfavoured by these data). This would at least give context.
We agree this could be helpful, but it is not so easy to do. What distance would we choose? We could put a line at ~5Å (the model predicted distance). As we noted above, a number of distances could be compatible with an interaction. However, we think it’s unlikely that if a complex was formed that none of our measurements would show a distance closer than 20Å at rest and that an unbinding event would then lead to a decrease in distance. This, to us, is the take home message.
Minor points:
"Aker unroofing the cells, only fluorescence associated with the "footprint", or dorsal surface, of the cell membrane is lek behind."
The authors use dorsal and ventral in this section to describe parts of an adherent cell. But in the first instance, they remove the dorsal part of the cell, and then in this phrase, the dorsal part is lek behind....I am a bit confused.
Thank you for pointing out this mistake, we have fixed this. It is indeed the ventral surface lek behind.
"bind at rest an" - and?
Changed
"One previous study used a different approach to try and map the topography of the intracellular termini of ASIC1a comparable to our memFRET experiments." I think a citation is due.
Citation added
"great deal of precedent" even if this result is from my own lab, I would prefer that the authors note that it's one study from one lab! I think best just to delete "great deal of".
“Great deal of” deleted
I think the column "Significance" in the tables is unnecessary when the P value is given.
Thank you for this suggestion. We agree and have made the change.
Figure 7a Q14TAG has a clearly bimodal distribution at pH 8. What could be the meaning of this result? The authors do not mention it that I could find. Perhaps there is no meaning. The authors should state what they think is (or is not) going on.
This is a good question and we don’t have a good answer. It appears to be experimental variability. The data from the “low fret” in this experimental condition all came from the same days. So something was different that day. We considered that they might be outliers to exclude but thought showing all of our data was the beVer path. We reperformed the ANOVA here separating out the “outlier” day and nothing of substance changed. Both populations were still different with P value less than 0.001.
Typo: Lumencore
Changed
Maybe just a matter of taste but the panel created with Biorender in Figure 8 is not attractive and depicts the channel differently to in Figure 5D, which is again different from Figure 1A. Surely one advantage of using computer-generated artwork could be to have consistency.
We agree and have used the same cartoon for all of our images with the one exception being the schematics that are just meant to show the positions that are present in each bar graph.
Figure 4A was squashed to fit (text aspect ratio is wrong).
Fixed
Reviewer #3 (Recommendations For The Authors):
Citrine is used to report incorporation. Yet citrine has a strong tendency to dimerize (PMID 27240257). Did the authors use mCitrine or just Citrine? This is quite important in interpreting their data.
Thank you for pointing out this important distinction. We use mCitirine which we have added to the methods.
The manuscript has numerous instances of imprecise language. For example, page 10, last para, first line, "previous studies have looked at..." or page 7, final paragraph "tell a similar story". Related, the figures could be much better. For example, in Figure 1, where the authors depict the anap chemical in red, as opposed to the blue one might expect of a blue emiqng fluorophore. In figure 6, ANAP is also in red with the quenching group in green. This is opposite to how one typically thinks of FRET with the warmer color being the acceptor not the donor. Moreover, the pH 6 condition is also colored the same shade of red as the ANAP. Labels of Cys positions would again be useful here. In Figure 3, the heteroatoms of TETAC and C18-NTA are very small and difficult to see. It would also be good to label these structures, and the spectra below, so the reader can tell at a glance without looking at the caption, what the structures and spectra arise from. Also, how are the absorption spectra normalized? This is not discussed in the methods. The lack of attention to presentation mars an otherwise nice study.
Thank you for these points. We have made modifications to the manuscript to address these comments.
Abstract, second last line "Aker prolonged acidification, ...", 'prolonged' could be interpreted as 'it takes a while for the domain to move' or 'the movement only happens aker a while'. This not what the authors intend to convey. Consider modifying to just 'Aker acidification,'
We updated the main text to indicate that prolonged acidification is intended to describe acidification that occurs over the minutes timescale.
Pdf page 6, bottom para on Anap incorporation not altering channel function: What is meant by 'steady state pH dependence of activation'? This implies the authors applied a pH stimulus, then waited until equilibrium was achieved ie. until desensitization was complete and measured the current at that point. It seems more likely they simply applied different pH stimuli and measured the peak response and that the use of 'steady state' here is a typo.
We removed the phrase steady state.
Same section, controls of electrophysiology allude to 485, 505 and 515 ANAP-containing channels. In fact, the authors have no way of determining what fraction (if any) of the pH evoked currents arise from channels containing Anap in those positions versus from simply having a translation stop but still functioning. This should be mentioned.
This is correct. We cannot be sure the CTD TAG positions are not a mixture of ANAP-containing channels and truncations. See above for why we do not think this a big concern for the FRET experiments. Functionally, though, you are correct that we cannot tell. We now mention this in the paper.
Methods, the abbreviation for SBT should be defined somewhere.
Added.
Methods, unroofing section, middle paragraph, the authors use nM not nm to list wavelengths of light.
Changed.
Figure 3C-D: There's an unexpected blip in the Anap emission spectra at ~500 nm. Are the grating efficiency of the spectrograph and quantum efficiency of the camera accounted for in these spectra?
This is a good question. The data are not corrected for either camera efficiency or grating efficiency. We don’t have easy access to the actual data (although we can see a pdf version of each). There is a liVle blip in the grating efficiency graph that could partly explain the blip in our spectra.
Figure 5C, were recovery experiments routinely done? If so, would be good to show more than n = 1 in the plot to get an idea of reproducibility.
Recovery experiments were done in every experiment but are not shown for simplicity. We have included all FRET and recovery data for position Q14TAG-C469 at pH 6 in figure 5C to show reproducibility of our FRET and recovery data.
Table 1, considering adding a Δ distance column (pH 8 versus 6) so the magnitude of changes are more easily seen.
This is a reasonable suggestion but we decided not to include a Δ distance column. The data are whole numbers and people can easily determine the Δ distance. We felt that including that column would bring too much focus on what we think are preVy small changes. Our hope is that readers take away that the data are not consistent with complex formation between the determine and focus less on absolute distances.
Figure 7A, Q14tag pH 8 condition has a quite a bit of spread and, likely, two populations. These data, as well as G11, are unlikely to be parametric and hence ANOVA is inappropriate. A normality test, and likely Kruskal-Wallis test is called for.
Aker testing for normality, the data for Q14TAG C485 pH8 are non-normally distributed. However, a Kruskal Wallis is a non-parametric test for a one-way ANOVA and not applicable here. We separated the data out into population 1 and 2 and repeated the two-way ANOVA statistical test. When Q14TAG pH 8 is split into 2 populations, the statistics hardly change. When the data is not separated, Q14TAG pH 8 relative to pH 6 has a p-value <0.0001. When the 2 populations are separated, both populations relative to Q14TAG pH 6 still have a p-value of <0.0001.
-
Reviewer #1 (Public Review):
Cullinan et al. explore the hypothesis that the cytoplasmic N- and C-termini of ASIC1a, not resolved in x-ray or cryo-EM structures, form a dynamic complex that breaks apart at low pH, exposing a C-terminal binding site for RIPK1, a regulator of necrotic cell death. They expressed channels tagged at their N- and C-termini with the fluorescent, non-canonical amino acid ANAP in CHO cells using amber stop-codon suppression. Interaction between the termini was assessed by FRET between ANAP and colored transition metal ions bound either to a cysteine reactive chelator attached to the channel (TETAC) or metal-chelating lipids (C18-NTA). A key advantage to using metal ions is that they are very poor FRET acceptors, i.e. they must be very close to the donor for FRET to occur. This is ideal for measuring small distances/changes in distance on the scales expected from the initial hypothesis. In order to apply chelated metal ions, CHO cells were mechanically unroofed, providing access to the inner leaflet of the plasma membrane. At high pH, the N- and C- termini are close enough for FRET to be measured, but apparently too far apart to be explained by a direct binding interaction. At low pH, there was an apparent increase in FRET between the termini. FRET between ANAP on the N-and C-termini and metal ions bound to the plasma membrane suggests that both termini move away from the plasma membrane at low pH. The authors propose an alternative hypothesis whereby close association with the plasma membrane precludes RIPK1 biding to the C-terminus of ASIC1a.
The findings presented here are certainly valuable for the ion channel/signaling field and the technical approach only increases the significance of the work. The choice of techniques is appropriate for this study and the results are clear and high quality. Sufficient evidence is presented against the starting hypothesis. I have a few questions about certain controls and assumptions that I would like to see discussed more explicitly in the manuscript.
--As discussed by the authors, the C-terminal citrine could potentially disrupt the hypothesized interaction between the N- and C-termini.
--There is apparent read-through of some of the stop codons in the absence of ANAP, which could complicate interpretation of the experiments. The largest amount of read-through is for the E6TAG, L18TAG, and H515TAG constructs, which were not used for further experiments. However, some degree of read-through is evident from western blots for V10TAG, Q14TAG, L41TAG, and A44TAG as well.
Since the epitope used for western blots is on the C-terminus of the protein, the blots do not show the fraction of truncated protein. As discussed by the authors, N-terminally truncated constructs would be too small to assemble into channels. In constructs with the TAG codon towards the C-terminus, there is the potential for co-assembly of full-length and truncated subunits into trimers. Truncated subunits would not contribute directly to the fluorescence signal, but could potentially have allosteric effects on the position of the C-termini of full-length ANAP-tagged constructs in the context of a mixed channel.
-
-
www.reddit.com www.reddit.com
-
When does annotating books become a distraction? .t3_17pitv9._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #8c8c8c; --postTitleLink-VisitedLinkColor: #8c8c8c; --postBodyLink-VisitedLinkColor: #989898; }
reply to u/Low-Appointment-2906 at https://www.reddit.com/r/books/comments/17pitv9/when_does_annotating_books_become_a_distraction/
Through the middle ages, bookmakers would not only leave significant margins for readers to annotate, but they also illuminated books and included drolleries which readers in the know would use in conjunction with the arts of memory (from rhetoric) to memorize portions of texts more easily. I strongly suspect this isn't what booktokkers are doing; their practice is likely more like the sorts of decorative #ProductivityPorn one sees in the Bullet journal and journaling spaces. It's performative content creation.
Those interested in refining their practices of "reading with a pen in hand", continuing the "great conversation" or having "conversations with their texts" might profitably start with Mortimer J. Adler's essay: “How to Mark a Book” (Saturday Review of Literature, July 6, 1941). In his 1975 KCET series How to Read a Book, which was based on their book of the same name, Adler mentioned to Charles Van Doren that he would buy new copies of books so he could re-annotate them without being distracted by his older annotations.
Some have solved the problem of distracting annotations by interleaving their books so they've got lots of blank space to write their notes. It's a rarer practice now, but some publishers still print Bibles with blank pages every other page for this practice. Others put their annotations and notes into commonplace books or on index cards for their card index/zettelkasten.
As some have mentioned, friends and lovers through time have shared books with annotations as a way of sharing their thoughts. George Custer and his wife Elizabeth did this with Tennyson.
If you're interested in annotating digitally online, perhaps check out Hypothes.is where I've seen teachers and students using social annotation to read and make sense of books [example]. I've also seen groups of people use this tool for hosting online book groups/clubs.
If you're in it for fun, you might appreciate:
- https://archaeologyofreading.org/
- https://booktraces-public.lib.virginia.edu/
- My digital annotations on annotation
And those wishing to delve more deeply into the history and power of annotation might look at: Kalir, Remi H., and Antero Garcia. Annotation. The MIT Press Essential Knowledge Series. MIT Press, 2019. https://mitpressonpubpub.mitpress.mit.edu/annotation.
Good luck annotating! 📝
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the previous reviews
Reviewer #1 (Public Review):
Comments on the original submission:
Trypanosoma brucei undergoes antigenic variation to evade the mammalian host's immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) has shown that PIP5pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1300, aa301-560, and aa 561-855). These fragments' DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulate the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author's hypothesis that this regulation is through an "allosteric switch".
Comments on revised manuscript:
In this revised manuscript, Touray et al. have responded to reviewers' comments with some revisions satisfactorily. However, the authors still haven't addressed some key scientific rigor issues, which are listed below:
1) It is critical to clearly state whether the observations are made for the endogenous WT protein or the tagged protein. It is good that the authors currently clearly indicate the results observed in vivo are for the RAP1-HA protein. However, this is not as clearly stated for in vitro EMSA analyses. In addition, in discussion, the authors simply assumed that the c-terminally tagged RAP1 behaves the same as WT RAP1 and all conclusions were made about WT RAP1.
There are two choices here. The authors can validate that RAP1-HA still retains RAP1's essential function as a sole allele in T. brucei cells (as was recommended previously). Indeed, HA-tagged RAP1 has been studied before, but it is the N-terminally HA-tagged RAP1 that has been shown to retain its essential functions. Adding the HA tag to the C-terminus of RAP1 may well cause certain defects to RAP1. For example, N-terminally HA-tagged TERT does not complement the telomere shortening phenotype in TERT null T. brucei cells, while C-terminally GFP-tagged TERT does, indicating that HA-TERT is not fully functional while TERT-GFP likely has its essential functions (Dreesen, RU thesis). Although RAP1-HA behaves similar to WT RAP1 in many ways, it is still not fully validated that this protein retains essential functions of RAP1. By the way, it has been published that cells lacking one allele of RAP1 behave as WT cells for cell growth and VSG silencing (Yang et al. 2009, Cell; Afrin et al. 2020, mSphere). In addition, although RAP1 may interact with TRF weakly, the interaction is direct, as shown in yeast 2-hybrid analysis in (Yang et al. 2009, Cell).
Alternatively, if the authors do not wish to validate the functionality of RAP1-HA, they need to add one paragraph at the beginning of the discussion to clearly state that RAP1-HA may not behave exactly as WT RAP1. This is important for readers to better interpret the results. In addition, the authors need to tune down the current conclusions dramatically, as all described observations are made on RAP1-HA but not the WT RAP1.
The results with RAP1-HA are consistent with previous knowledge of RAP1 interactions with telomeric proteins and DNA. Hence, the C-terminal HA-tagged RAP1 seems, by all measures, functional. Nevertheless, to make it clear for the reader, we added a note in the discussion, lines 244-246: “Although we showed that C-terminal HA-tagged RAP1 protein has telomeric localization (Cestari et al. 2015, PNAS) and interactions with other telomeric proteins (Cestari et al. 2019 Mol Cell Biol); we cannot rule out potential differences between HA-tagged and non tagged RAP1.”
For a similar reason, the current EMSA results truly reflect how C-terminally His6-tagged RAP1 and RAP1 fragments behave. If the authors choose not to remove the His6 tag, it is essential that they use "RAP1-His6" to refer to these recombinant proteins. It is also essential for the authors to clearly state in the discussion that the tagged RAP1 fragments bind DNA, but the current data do not reveal whether WT RAP1 binds DNA. In addition, the authors incorrectly stated that "disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166). In ref 29, deletion of Myb domain did not abolish RAP1-telomere association. However, point mutations in MybL domain that abolish RAP1's DNA binding activities clearly disrupted RAP1's association with the telomere chromatin. Therefore, the current observation is not completely consistent with that published in ref 29.
We stated in line 149-150 “…we expressed and purified from E. coli recombinant 6xHistagged T. brucei RAP1 (rRAP1)”. To clarify to the authors, we replaced rRAP1 with rRAP1-His throughout the manuscript and figures. As for the statement that “disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166).”. We removed the statement from the manuscript.
2) There is no evidence, in vitro or in vivo, that binding PI(3,4,5)P3 to RAP1 causes conformational change in RAP1. The BRCT domain of RAP1 is known for its ability to homodimerize (Afrin et al. 2020, mSphere). It is therefore possible that binding of PI(3,4,5)P3 to RAP1 simply disrupts its homodimerization function. The authors clearly have extrapolated their conclusions based on available data. It is therefore important to revise the discussion and make appropriate statements.
We did not state that PI(3,4,5)P3 causes RAP1 conformational changes. We discussed the possibility. We stated in lines 199-201: “PI(3,4,5)P3 inhibition of RAP1-DNA binding might be due to its association with RAP1 N-terminus causing conformational changes that affect Myb and MybL domains association with DNA.” This is a reasonable discussion, given the data presented in the manuscript.
Reviewer #2 (Public Review):
In this manuscript, Touray et al investigate the mechanisms by which PIP5Pase and RAP1 control VSG expression in T. brucei and demonstrate an important role for this enzyme in a signalling pathway that likely plays a role in antigenic variation in T. brucei. While these data do not definitively show a role for this pathway in antigenic variation, the data are critical for establishing this pathway as a potential way the parasite could control antigenic variation and thus represent a fundamental discovery.
The methods used in the study are generally well-controlled. The authors provide evidence that RAP1 binds to PI(3,4,5)P3 through its N-terminus and that this binding regulates RAP1 binding to VSG expression sites, which in turn regulates VSG silencing. Overall their results support the conclusions made in the manuscript. Readers should take into consideration that the epitope tags on RAP1 could alter its function, however.
There are a few small caveats that are worth noting. First, the analysis of VSG derepression and switching in Figure 1 relies on a genome which does not contain minichromosomal (MC) VSG sequences. This means that MC VSGs could theoretically be mis-assigned as coming from another genomic location in the absence of an MC reference. As the origin of the VSGs in these clones isn't a major point in the paper, I do not think this is a major concern, but I would not over-interpret the particular details of switching outcomes in these experiments.
We agree with the reviewer and thus made no speculations on minichromosomes. The data analysis must rely on the available genome, and the reference genome used is well-assembled with PacBio sequences and Hi-C data (Muller et al. 2018, Nature).
Another aspect of this work that is perhaps important, but not discussed much by the authors, is the fact that signalling is extremely poorly understood in T. brucei. In Figure 1B, the RNA-seq data show many genes upregulated after expression of the Mut PIP5Pase (not just VSGs). The authors rightly avoid claiming that this pathway is exclusive to VSGs, but I wonder if these data could provide insight into the other biological processes that might be controlled by this signaling pathway in T. brucei.
We published that the inositol phosphate pathway also plays a role in T. brucei development (Cestari et al. 2018, Mol Biol Cell; reviewed by Cestari I 2020, PLOS Pathogens)
Overall, this is an excellent study which represents an important step forward in understanding how antigenic variation is controlled in T. brucei. The possibility that this process could be controlled via a signalling pathway has been speculated for a long time, and this study provides the first mechanistic evidence for that possibility.
Reviewer #1 (Recommendations For The Authors):
Please see the public review for recommendations.1. It is critical to clearly state whether the observations are made for the endogenous WT protein or the tagged protein. It is good that the authors currently clearly indicate the results observed in vivo are for the RAP1-HA protein. However, this is not as clearly stated for in vitro EMSA analyses. In addition, in discussion, the authors simply assumed that the c-terminally tagged RAP1 behaves the same as WT RAP1 and all conclusions were made about WT RAP1.
There are two choices here. The authors can validate that RAP1-HA still retains RAP1's essential function as a sole allele in T. brucei cells (as was recommended previously). Indeed, HA-tagged RAP1 has been studied before, but it is the N-terminally HA-tagged RAP1 that has been shown to retain its essential functions. Adding the HA tag to the C-terminus of RAP1 may well cause certain defects to RAP1. For example, N-terminally HA-tagged TERT does not complement the telomere shortening phenotype in TERT null T. brucei cells, while C-terminally GFP-tagged TERT does, indicating that HA-TERT is not fully functional while TERT-GFP likely has its essential functions (Dreesen, RU thesis). Although RAP1-HA behaves similar to WT RAP1 in many ways, it is still not fully validated that this protein retains essential functions of RAP1. By the way, it has been published that cells lacking one allele of RAP1 behaves as WT cells for cell growth and VSG silencing (Yang et al. 2009, Cell; Afrin et al. 2020, mSphere). In addition, although RAP1 may interact with TRF weakly, the interaction is direct, as shown in yeast 2-hybrid analysis in (Yang et al. 2009, Cell).
Alternatively, if the authors do not wish to validate the functionality of RAP1-HA, they need to add one paragraph at the beginning of the discussion to clearly state that RAP1-HA may not behave exactly as WT RAP1. This is important for readers to better interpret the results. In addition, the authors need to tune down the current conclusions dramatically, as all described observations are made on RAP1-HA but not the WT RAP1.
The results with RAP1-HA are consistent with previous knowledge of RAP1 interactions with telomeric proteins and DNA. Hence, the C-terminal HA-tagged RAP1 seems, by all measures, functional. Nevertheless, to make it clear for the reader, we added a note in the discussion, lines 244-246: “Although we showed that C-terminal HA-tagged RAP1 protein has telomeric localization (Cestari et al. 2015, PNAS) and interactions with other telomeric proteins (Cestari et al. 2019 Mol Cell Biol); we cannot rule out potential differences between HA-tagged and non tagged RAP1.”
For a similar reason, the current EMSA results truly reflect how C-terminally His6-tagged RAP1 and RAP1 fragments behave. If the authors choose not to remove the His6 tag, it is essential that they use "RAP1-His6" to refer to these recombinant proteins. It is also essential for the authors to clearly state in the discussion that the tagged RAP1 fragments bind DNA, but the current data do not reveal whether WT RAP1 binds DNA. In addition, the authors incorrectly stated that "disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166). In ref 29, deletion of Myb domain did not abolish RAP1-telomere association. However, point mutations in MybL domain that abolish RAP1's DNA binding activities clearly disrupted RAP1's association with the telomere chromatin. Therefore, the current observation is not completely consistent with that published in ref 29.
We stated in lines 149-150 “…we expressed and purified from E. coli recombinant 6xHistagged T. brucei RAP1 (rRAP1)”. To clarify to the authors, we replaced rRAP1 with rRAP1-His throughout the manuscript text. As for the statement that “disruption of the MybL domain sequence did not eliminate RAP1telomere binding in vivo" (lines 165-166).”. We removed the statement from the manuscript.
2) There is no evidence, in vitro or in vivo, that binding PI(3,4,5)P3 to RAP1 causes conformational change in RAP1. The BRCT domain of RAP1 is known for its ability to homodimerize (Afrin et al. 2020, mSphere). It is therefore possible that binding of PI(3,4,5)P3 to RAP1 simply disrupts its homodimerization function. The authors clearly have extrapolated their conclusions based on available data. It is therefore important to revise the discussion and make appropriate statements.
We did not state that PI(3,4,5)P3 causes RAP1 conformational changes. We discussed the possibility. We stated in lines 199-201: “PI(3,4,5)P3 inhibition of RAP1-DNA binding might be due to its association with RAP1 N-terminus causing conformational changes that affect Myb and MybL domains association with DNA.” This is a reasonable discussion, given the data presented in the manuscript.
-
-
es.wikipedia.org es.wikipedia.org
-
en idioma japonés de las palabras «Wa» (armonía o círculo) y «Komu» (computadora).
tag
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Casp11 is a cytosolic sensor for LPS in mice (orthologue of Casp4/5 in human). It is an important innate sensor of intracellular infection. Casp11 activity results in cleavage and activation of the pore-forming protein Gasdemin D (GSDMD) leading to lytic death (pyroptosis), of an infected cell. How exactly Casp11 signals upon LPS detection is beginning to be understood, but the picture is incomplete. Previous reports suggested that upon LPS detection, Casp11 dimerizes and undergoes auto-processing to form a pyroptosis-competent enzyme. The prediction from these studies was that the formation of a fully functional Casp11 signalling complex involves two steps: inducible dimerization and auto-processing.
In this study, authors used fluorescently tagged Casp11 reporter fusions, to report that detection of cytosolic LPS induces Casp11 assembly into a large perinuclear speck to form a signalling complex, where GSDMD can be processed. Such signalling complex resembles signalling specks formed upon the activation of other canonical inflammasomes.
Strengths:
Results are clean, experiments well controlled, and support the conclusions. Overall conclusions fit nicely in the general principle of innate signalling, whereby activation of many innate sensors results in their inducible assembly into higher-order oligomeric signalling complexes, called supra-molecular organizing centers (SMOCs).
A surprising finding from this work was that catalytically inactive Casp11 (C254A mutant) did not form signalling specks, despite being able to bind LPS and dimerise. This model is proposed where LPS binding to the CARD domain of Casp11 and Casp11 dimerization is necessary but not sufficient to mediate Casp11 speck formation within cells. The Casp11 catalytic activity is needed to facilitate the assembly of the higher-order, pyroptosis-competent Casp11 signalling platform. The model is further supported by experimental evidence that auto-processing of Casp11, by an exogenous protease TEV, (i.e. in the absence of LPS), is sufficient to mediate speck assembly in cells expressing wild type, but not catalytically inactive Casp11 mutant.
Possible technical improvements:
In general, the authors achieved their aims, and the results support the conclusions.
For technical robustness, it would be nice to consider a few controls:<br /> (a) Visualise Casp11 specks using constructs with smaller tags, and test whether tag placement on N or C terminus matters for speck formation; or<br /> (b) Biochemically crosslink and isolate endogenous, untagged Casp11 specks upon LPS transfection of primed macrophages (e.g. after priming through IFNs or TLRs). This would mimic the natural upregulation and activation of endogenous Casp11.<br /> (c) Test what happens after actual intracellular pathogen detection when the pathogen itself serves as a signalling platform? Are specks stills formed (or even needed)?
The broad impact of the work, implication, and questions for future work:
Results of this study would suggest that the enzymatic activity of Casp11 in macrophages may be highly restricted to the speck location, similar to what was described for Casp1. This may explain the very restricted substrate repertoire of Casp11 in cells, likely controlled by the substrate recruitment to the speck. This also opens avenues for follow-up work to answer several emerging questions:
1. After LPS binding and dimerization, why Casp11 must undergo intra-molecular processing to induce the formation of a pyroptosis-competent speck? Is there any substrate for LPS-bound, uncleaved Casp11 (beyond Casp11 itself), before Casp11 forms a full speck for GSDMD processing? The only currently known targets of Casp11 activity are itself, and GSDMD. Also, after intradomain linker cleavage of Casp11, what additional substrate must the cleaved Casp11 process to allow full speck formation?
2. Can activity probes be designed to detect the location of the active Casp11, and if so, would the activity of Casp11 be restricted to the speck? Is there a second cleavage event that would eventually dissociate Casp11 from the speck, to terminate its signalling? If not, how is speck activity terminated? If specks are released by lysis, are they capable of seeding new speck formation in neighbouring phagocytes, in prion-like behaviour previously described for canonical ASC speck?
3. What is the role of macrophage priming in speck formation, and what roles, if any GBPs play in speck formation?
4. Does this model apply to human orthologues, Casp4/5?
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
Several concerns are raised from the current study.
1) Previous studies showed that iTregs generated in vitro from culturing naïve T cells with TGF-b are intrinsically unstable and prone to losing Foxp3 expression due to lack of DNA demethylation in the enhancer region of the Foxp3 locus (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). It is known that removing TGF-b from the culture media leads to rapid loss of Foxp3 expression. In the current study, TGF-b was not added to the media during iTreg restimulation, therefore, the primary cause for iTreg instability should be the lack of the positive signal provided by TGF-b. NFAT signal is secondary at best in this culturing condition.
In restimulation, void of TGFb is necessary to cause iTreg instability. Otherwise, the setup is similar to the iTreg-inducing environment (Author response image 1). On the other hand, the ultimate goal of this study is to provide a scenario that bears some resemblance of clinical treatment, where TGFb may not be available. The reviewer is correct in stating that TGFb is essential for iTreg stability, we are studying the role played by NFAT in iTreg instability in vitro, and possibly in potential clinical use of iTreg .
Author response image 1.
Restimulation with TGFb will persist iTreg inducing environment, resulting in less pronounced instability. Sorted Foxp3-GFP+ iTregs were rested for 1d, and then rested or restimulated in the presence of TGF-β for 2 d. Percentages of Foxp3+ cells were analyzed by intracellular staining of Foxp3 after 2 d.
2) It is not clear whether the NFAT pathway is unique in accelerating the loss of Foxp3 expression upon iTreg restimulation. It is also possible that enhancing T cell activation in general could promote iTreg instability. The authors could explore blocking T cell activation by inhibiting other critical pathways, such as NF-kb and c-Jun/c-Fos, to see if a similar effect could be achieved compared to CsA treatment.
We thank the reviewer for this suggestion. We performed this experiment according to see extent of the role that NFAT plays, or whether other major pathways are involved. As Author response image 2 shows, solely inhibiting NFAT effectively rescued the instability of iTreg. The inhibition of NFkB (BAY 11-7082), c-Jun (SP600125), or a c-Jun/c-Fos complex (T5224) had no discernable effect, or in one case, possibly further reduction in stability. These results may indicate that NFAT plays a crucial and special role in TCR activation, which leads to iTreg instability. Other pathways, as far as how this experiment is designed, do not appear to be significantly involved.
Author response image 2.
Comparing effects of NFAT, NF-kB and c-Jun/c-Fos inhibitors on iTreg instability. Sorted Foxp3-GFP+ iTregs were rested for 1d, then restimulated by anti-CD3 and CD28 in the presence of listed inhibitors. Percentages of Foxp3+ cells were analyzed by intracellular staining after 2d restimulation.
3) The authors linked chromatin accessibility and increased expression of T helper cell genes to the loss of Foxp3 expression and iTreg instability. However, it is not clear how the former can lead to the latter. It is also not clear whether NFAT binds directly to the Foxp3 locus in the restimulated iTregs and inhibits Foxp3 expression.
T helper gene activation is likely to cause instability in iTregs by secreting more inflammatory cytokines, as shown in Figure Q9, for example, IL-21 secretion. Further investigation is needed to understand how these genes contribute to Foxp3 gene instability exactly. With our limited insight, there may be two possibilities. 1. IL-21 directly affects Foxp3 through its impact on certain inflammation-related transcription factors (TFs). 2. There could be an indirect relationship where NFAT has a greater tendency to bind to those inflammatory TFs when iTreg instability appears, promoting the upregulation of these Th genes like in activated T cells, while being less likely to bind to SMAD and Foxp3, representing a competitive behavior. We at the moment cannot comprehend the intricacies that lead to the differential effects on T helper genes and Treg related genes.
With that said, we have previously attempted to explore the direct effect of NFAT on Foxp3 gene locus. Foxp3 transcription in iTregs primarily relies on histone modifications such as H3K4me3 (Tone et al., 2008; Lu et al., 2011) rather than DNA demethylation (Ohkura et al., 2012; Hilbrands et al., 2016). Previous studies have reported that NFAT and SMAD3 can together promote the histone acetylation of Foxp3 genes (Tone et al., 2008). In our previous set of experiments, we simultaneously obtained information of NFAT binding sites and H3K4me3. In Foxp3 locus, we observed a decreasing trend in NFAT binding to the CNS3 region of Foxp3 in restimulated iTregs compared to resting iTregs (Author response image 3). Additionally, the H3K4me3 modification in the CNS3 region of Foxp3 decreased upon iTreg restimulation, but inhibiting NFAT nuclear translocation with CsA could maintain this modification at its original level (Author response image 3).
Author response image 3.
The NFAT binding and histone modification on Foxp3 gene locus. Genome track visualization of NFAT binding profiles and H3K4me3 profiles in Foxp3 CNS3 locus in two batches of dataset.
Based on these preliminary explorations, it is concluded that NFAT can directly bind to the Foxp3 locus, and it appears that NFAT decreases upon restimulation, resulting in a decrease in H3K4me3, ultimately leading to the close association of NFAT and Foxp3 instability. However, due to limited sample replicates, these data need to be verified for more solid conclusions. We speculate that during the induction of iTregs, NFAT may recruit histone-modifying enzymes to open the Foxp3 CNS3 region, and this effect is synergistic with SMAD. When instability occurs upon restimulation, NFAT binding to Foxp3 weakens due to the absence of SMAD's assistance, subsequently reducing the recruitment of histone modifications enzyme and ultimately inhibiting Foxp3 transcription.
Reviewer #2 (Public Review):
(1) Some concerns about data processing and statistic analysis.
The authors did not provide sufficient information on statistical data analysis; e.g. lack of detailed descriptions about
-the precise numbers of technical/biological replicates of each experiment
-the method of how the authors analyze data of multiple comparisons... Student t-test alone is generally insufficient to compare multiple groups; e.g. figure 1.
These inappropriate data handlings are ruining the evidence level of the precious findings.
We thank the reviewer for pointing out this important aspect. In the figure legend, numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n. Student’s t test was used for comparing statistical significance between two groups. In this manuscript, all calculations of significant differences were based on comparisons between two groups. There were no multiple conditions compared simultaneously within a single group, and thus, no other calculation methods were used.
(2) Untransparent data production; e.g. the method of Motif enrichment analysis was not provided. Thus, we should wait for the author's correction to fully evaluate the significance and reliability of the present study.
Per this reviewer’s request, we have provided detailed descriptions of the data analysis for Fig 5, including both the method section and the Figure legend, as presented below:
“The peaks annotations were performed with the “annotatePeak” function in the R package ChIPseeker (Yu et al, 2015).
The plot of Cut&Tag signals over a set of genomic regions were calculated by using “computeMatrix” function in deepTools and plotted by using “plotHeatmap” and “plotProfile” functions in deepTools. The motif enrichment analysis was performed by using the "findMotifsGenome.pl" command in HOMER with default parameters.
The motif occurrences in each peak were identified by using FIMO (MEME suite v5.0.4) with the following settings: a first-order Markov background model, a P value cutoff of 10-4, and PWMs from the mouse HOCOMOCO motif database (v11).”
Additionally, we have also supplemented the method section with further details on the analysis of RNA-seq and ATAC-seq data.
(3) Lack of evidence in human cells. I wonder whether human PBMC-derived iTreg cells are similarly regulated.
This is a rather complicated issue, human T cells express FoxP3 upon TCR stimulation (PNAS, 103(17): 6659–6664), whose function is likely to protect T cells from activation induced cell death, and does not offer Treg like properties. In contrast in mice, FoxP3 can be used as an indicator of Treg. Currently, this is not a definitive marker for Treg in human, our FoxP3 based readouts do not apply. Nevertheless, we have now investigated whether inhibiting calcium signaling or NFAT could enhance the stability of human iTreg. As shown in Author response image 4, we found that the proportion of Foxp3-expressing cells did not show significant changes across the different conditions, while the MFI analysis revealed that CsA-treated iTreg exhibited higher Foxp3 expression levels compared to both restimulated iTreg and rest iTreg. However, CM4620 had no significant effect on Foxp3 stability, consistent with the observation of its limited efficacy in suppressing human iTreg long term activation. In summary, our results suggest that inhibiting NFAT signaling through CsA treatment can help maintain higher levels of Foxp3 expression in human iTreg.
Author response image 4.
Effect of inhibiting NFAT and calcium on human iTreg stability. Human naïve CD4 cells from PBMC were subjected to a two-week induction process to generate human iTreg. Subsequently, human iTreg were restimulated for 2 days with dynabeads followed by 2 days of rest in the prescence of CsA and CM-4620. Four days later, percentages of Foxp3+ cells and Foxp3 mean fluorescence intensity (MFI) were analyzed by intracellular staining.
(4) NFAT regulation did not explain all of the differences between iTregs and nTregs, as the authors mentioned as a limitation. Also, it is still an open question whether NFAT can directly modulate the chromatin configuration on the effector-type gene loci, or whether NFAT exploits pre-existing open chromatin due to the incomplete conversion of Treg-type chromatin landscape in iTreg cells. The authors did not fully demonstrate that the distinct pattern of chromatin regional accessibility found in iTreg cells is the direct cause of an effector-type gene expression.
To our surprise, the inhibition of NFkB (BAY 11-7082), c-Jun (SP600125), and the c-Jun/c-Fos complex (T5224) resulted in minimal alterations, as shown in Fig Q1. This seems to argue that NFAT may play a more special role in events leading iTreg instability.
We hypothesize that NFAT takes advantage of pre-existing open chromatin state due to the incomplete conversion of chromatin landscape in iTreg cells. Because iTreg cells, after induction, already exhibit inherent chromatin instability, with highly-open inflammatory genes. Furthermore, when iTreg cells were restimulated, the subsequent change in chromatin accessibility was relatively limited and not rescued by NFAT inhibitor treatment (Author response image 5). Therefore, in the case of iTreg cells, we propose that NFAT exploits the easy access of those inflammatory genes, leading to rapid destabilization of iTreg cells in the short term.
In contrast, tTreg cells possess a relatively stable chromatin structure in the beginning, it would be interesting to investigate whether NFAT or calcium signaling could disrupt chromatin accessibility during the activation or expansion of tTreg cells. It is possible that NFAT might cause the loss of the originally established demethylation map and open up inflammatory loci, thereby inducing a shift in gene transcriptional profiles, equally leading to instability.
Author response image 5.
Chromatin accessibility of Rest, Retimulated, CsA/ORAIinh treated restimulated iTreg. PCA visualization of chromatin accessibility profiles of different cell types. Color indicates cell type.
To establish a direct relationship between gene locus accessibility and its overexpression, a controlled experimental approach can be employed. One such method involves precise manipulation of the accessibility of a specific genomic locus using CRISPR-mediated epigenetic modifications at targeted loci. Subsequently, the impact of this manipulation on the expression level of the target gene can be precisely examined. By conducting these experiments, it will be possible to determine whether the augmented gene accessibility directly causes the observed gene overexpression.
Reviewer #1 (Recommendations For The Authors):
1) It might be helpful to add TGF-b to the iTreg restimulation culture to remove the influence of the lack of TGF-b from the equation, and measure the influence of SOCE/NFAT on iTreg instability.
Please refer to Author response image 1.
2) Alternatively, authors can also culture iTreg cells with TGF-b for 2 weeks when they undergo epigenetic changes and become more stabilized (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). At this point, the stabilized iTregs can be used to measure the influence of SOCE/NFAT on iTreg instability.
In the study conducted by Polansky, it was observed in Figure 1 that prolonged exposure to TGF-β fails to induce stable Foxp3 expression and demethylation of the Treg-specific demethylated region (TSDR). Based on this finding, we could consider exploring alternative approaches to obtain a more stabilized iTreg population. One such approach could be isolating Foxp3+helios-Nrp1- iTreg cells directly from the peripheral in vivo, which are also known as pTregs. Generally, pTreg cells generated in vivo tend to be more stable compared to iTreg cells induced in vitro, and they already exhibit partial demethylation of the Treg signature, as shown in Fig 6C (Polansky JK et al, Eur J Immunol., 2008, PMID: 18493985). Investigating the role of NFAT and calcium signaling in pTreg cells would provide further insights into the additional roles of NFAT in Treg phenotypical transitions, particularly its role in chromatin accessibility.
3) In Figure 3, NFAT binding to the inflammatory genes in iTreg cells was even stronger than in activated T conventional cells. This is possibly due to Tconv cells being stimulated only once while iTregs were restimulated. A fair comparison should be conducted with restimulated activated conventional T cells.
Figure 3 demonstrates the accessibility of inflammatory gene loci, rather than NFAT binding. Comparing restimulated Tconvs with restimulated iTreg cells is indeed a valuable suggestion, as their activation state and polarization in iTreg directions could lead to distinct chromatin accessibility. Although one is activated long term regularly and the other is activated long term under iTreg polarization, it is highly likely that the chromatin state of both activated Tconvs and iTreg cells is highly open, especially in terms of the accessibility of inflammatory genes. This may provide us with a new perspective to understand iTreg cells, but will unlikely affect our central conclusion.
4) In the in vivo experiment in Figure 6, a control condition without OVA immunization should be included as a baseline.
We have performed this experiment in the absence of OVA, as depicted in Author response image 6. In the absence of OVA immunization, both WT-ORAI and DN-ORAI iTreg exhibited substantial stability, although DN-ORAI demonstrated a slightly less stable trend. Upon activation with 40ug and 100ug of OVA, DN-ORAI iTreg demonstrated enhanced stability than WT-ORAI iTreg, maintaining a higher proportion of Foxp3 expression.
Author response image 6.
Stability of DN-ORAI iTreg in vivo with or without OVA immunization. WT-ORAI/DN-ORAI-GFP+-transfected CD45.2+ Foxp3-RFP+ OT-II iTregs were transferred i.v. into CD45.1 mice. Recipients were left or immunized with OVA323-339 in Alum adjuvant. On day 5, mLN were harvested and analyzed for Foxp3 expression by intracellular staining.
Reviewer #2 (Recommendations For The Authors):
Major
Some concerns about the data processing and statistic analysis, as mentioned in the public review. In the figure legend, what does it mean e.g. n=3, N=3? Technical triplicate experiments? Three mice? Independently-performed three experiments? The authors should define it at least in the "Statistical analysis" in the method section otherwise the readers cannot determine the reason why they mainly use SEM for the data description.
Moreover, in some cases, the number of experiments was not sure; e.g., Fig.1B, Fig. 5.
How did the authors analyze data including multiple comparisons? Student t-test alone is generally insufficient to compare multiple groups; e.g. figure 1.
We thank the reviewer for pointing out this omission. Now, in the figure legend, numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n. For Fig. 1B, N=2, and for Fig 5, we have acquired NFAT Cut&Tag data for 2 times, N=2. Student’s t test was used for comparing statistical significance between two groups. In this manuscript, all calculations of significant differences were based on comparisons between two groups. There were no multiple conditions compared simultaneously within a single group, and thus, no other calculation methods were involved apart from the Student's t-test.
In Figure 1A, the difference in suppressiveness seemed subtle. Data collection of multiple doses of Tconv:Treg ratio will enhance the reliability of such kind of analysis.
We have now attempted the suppression assay with varying Treg:Tconv ratios and observed that the suppressive effect of iTreg was more obvious than that of tTreg when co-cultured at a 1:1 ratio with Tconv cells. However, as the cell number of tTreg and iTreg decreased, the inhibitory effects converged.
Author response image 7.
Compare multiple dose of Tconv:Treg ratio in suppression function CFSE-labelled OT-II T cells were stimulated with OVA-pulsed DC, then different number of Foxp3-GFP+ iTregs and tTregs were added to the culture to suppress the OT-II proliferation. After 4 days, CFSE dilution were analyzed. Left, Representative histograms of CFSE in divided Tconvs. Right, graph for the percentage of divided Tconvs.
In Figure 3F, to which group did the shaded peaks belong? In this context, the authors should focus on "Activation Region" peaks (open chromatin signature in both TcAct & iTreg defined in Fig. 4D) but I did not find the peak in the focusing DNA regions in TcAct (e.g. the shaded regions in IL-4 loci). The clear attribution of the peaks to the heatmap will enhance the visibility and understanding of readers.
We have selected some typical peaks that belong to Fig 3D. These genes encompass some T-cell activation-associated transcription factors, such as Irf4, Atf3, as well as multiple members of the Tnf family including Lta, Tnfsf4, Tnfsf8, and Tnfsf14. Additionally, genes related to inflammation such as Il12rb2, Il9, and Gzmc are included. These genes show elevated accessibility upon T-cell activation, partially open in activated nTreg cells, referred to as the "Activation Region." They collectively exhibit high accessibility in iTreg cells, which may contribute to their instability.
Author response image 8.
Chromatin accessibility of some “Activation Region”. Genomic track showing chromatin accessibility of Irf4, Atf3, Lta, Tnfsf8, Tnfsf4, Tnsfsf14, Il12rb2, Il9, Gzmc in activated Tconv and iTreg.
In Figure 4A/S4A, the information on cell death will help the understanding of readers because the sustained SOCE is associated with cell survival as shown in Fig. S2. The authors can discuss the relationships between cell death and Foxp3 retention, which potentially leads to a further interesting question; e.g. the selective/resistance to activation-induced cell death as the identity of Treg cells.
As shown in Author response image 9, activated iTreg cells indeed exhibit a certain degree of cell death compared to resting iTreg cells. The inhibition of NFAT by CsA enhances the survival rate of iTreg cells, but the inhibition of ORAI by CM-4620 leads to more severe cell death. The cell death induced by CsA and CM-4620 is not consistent, indicating that there may not be a direct proportional relationship between cell death and the expression of Foxp3 and Treg identity.
Author response image 9.
Relationship of cell death and Foxp3 stability in restimulated iTregs.<br /> Sorted Foxp3-GFP+ iTregs were rested for 1d, then restimulated by anti-CD3 and CD28 in the presence of CsA or CM-4620. After 2d restimulation, live cell percentage were analyzed by staining of Live/Dead fixable Aqua, and percentages of Foxp3+ cells were analyzed by intracellular staining of Foxp3. Upper, live cell percentage of iTregs. Lower, percentages of Foxp3 in iTregs.
In Figure 5, the information for the data interpretation was insufficient.
We have provided detailed descriptions of the data analysis for Fig 5, including both the method section and the Figure legend, as presented below:
“The peaks annotations were performed with the “annotatePeak” function in the R package ChIPseeker (Yu et al, 2015). The plot of Cut&Tag signals over a set of genomic regions were calculated by using “computeMatrix” function in deepTools and plotted by using “plotHeatmap” and “plotProfile” functions in deepTools. The motif enrichment analysis was performed by using the "findMotifsGenome.pl" command in HOMER with default parameters. The motif occurrences in each peak were identified by using FIMO (MEME suite v5.0.4) with the following settings: a first-order Markov background model, a P value cutoff of 10-4, and PWMs from the mouse HOCOMOCO motif database (v11).”
Additionally, we have also supplemented the method section with further details on the analysis of RNA-seq and ATAC-seq data.
The correlation between the open chromatin status of the gene loci described in Fig.5E and the expression at mRNA level? e.g.; Do iTreg-Act cells produce a higher level of IL-21 than nTreg-act? The analysis in Fig.5F-G should be performed in parallel with nTreg cells to emphasize the distinct NFAT-chromatin regulation in iTreg cells.
We have now compared the secretion levels of IL-21 in tTreg and iTreg upon activation and treated with CsA by ELISA. As shown in Author response image 10, tTreg did not secrete IL-21 regardless of activation status (undetectable), while iTreg did not secrete IL-21 at resting state but exhibited IL-21 secretion after 48 h of activation. Moreover, the secretion of IL-21 was inhibited by CsA and CM-4620 treatment. This observation aligns with our earlier findings where we observed nuclear binding of NFAT to gene loci of these cytokines, enhancing their expression and pushing iTreg unstable under inflammatory conditions. These findings further underscore the likelihood that the inhibition of calcium and NFAT signaling might contribute to the stabilization of iTreg by suppressing the secretion of inflammatory cytokines.
Author response image 10.
IL-21 secretion in tTreg and iTreg upon activation.<br /> iTregs and tTregs were sorted and restimulated with anti-CD3 and anti-CD28 antibodies, in the presence of CsA and CM-4620. Cell culture supernatant were harvested after 2 d restimulation and IL-21 secretion was analyzed by ELISA.
Performing a parallel comparison of NFAT activity between tTreg and iTreg cells was initially part of our experimental plan. However, it proved challenging in practice, as we encountered difficulties in efficiently infecting tTreg cells with NFAT-flag. Consequently, we could not obtain a sufficient number of tTreg cells for conducting Cut&Tag experiments.
Based on our observations, we speculate that there might be substantial differences in the accessibility of genes in tTreg cells, leading to considerable variations in the repertoire of genes available for NFAT to regulate. As a result, we expect significant differences in the nuclear localization and activity of NFAT between iTreg and tTreg cells.
In Figure 6C, what does the FCM plot between Foxp3-CFSE look like?
The authors can discuss the mechanism of ORAI-DN-mediated through such analysis; e.g. the possibility that selective proliferation defect by ORAI-DN in Foxp3- cells led to an increased percentage of Foxp3, not only just unstable transcription of Foxp3.
This is an in vitro experiment to assess the suppressive effect of iTreg on Tconv proliferation. Therefore, CFSE is used to stain Tconv cells, but not iTreg cells, so we did not detect proliferation feature of iTreg.
Minor
Confusing terminology of "tTreg" at line 47, etc. "natural Treg" contains both thymic-derived Treg and periphery-derived Treg cells. (A Abbas et al. Nat Immunol. 2013)
We have now changed the designation to tTreg at line 47. tTreg refers to thymus-derived regulatory T cells, while nTreg includes both tTreg and pTreg. However, it is important to note that the Treg cells used in our study were isolated from the spleen of 2-4-month-old Foxp3-GFP or Foxp3-RFP mice. The CD4+ T cells were first enriched using the CD4 Isolation kit, and the FACSAriaII was utilized to collect CD4+ Foxp3-GFP/RFP+ Treg cells. Subsequently, Helios and Nrp-1 staining revealed that the majority of these cells were nTreg, with only approximately 6% being pTreg. Overall, we consider the cells we used as tTreg.
In all FCM analyses, the authors should clarify how to detect Foxp3 expression; Foxp3-GFP/Foxp3-RFP/Intracellular staining like Figure S5A (but not specified in the other FCM plots)
All Foxp3 expressions in the article were assessed using intracellular staining, as described in the methods section, and we have added specific descriptions to each figure legend. The reason for employing intracellular staining is that we used Foxp3-IRES-GFP mice, where GFP and Foxp3 are not fused into a single protein, existing as separate proteins after expression. Therefore, during induction, the appearance of GFP protein might potentially represent the presence of Foxp3. However, in cases of Foxp3 instability, the degradation of GFP protein may not be entirely synchronized with that of Foxp3 protein, making GFP an unreliable indicator of Foxp3 expression levels. As a result, for the purification of pure iTreg cells, we used Foxp3-GFP/RFP fluorescence, while for observing instability, we employed intranuclear staining of Foxp3.
In Figure 6B, the captions were lacking in the two graphs on the right side
The two restimulation conditions, 0.125+0.25 and 0.25+0.5, have been added into Fig 6B right side.
In Figure S2, the annotation of the x-y axis was missing.
Added.
Lack of reference at line 292.
Reference 42-46 were added.
In the method section, the authors should note the further product information of antibodies and reagents to enhance reproducibility and transparency. Making a list that clarifies the suppliers, Ab clone, product IDs, etc. is encouraged. The authors did not specify the supplier of recombinant proteins and which type of TGF-beta (TGF-beta 1, 2, or 3?).
A detailed description of the mice, antibodies, Peptide recombinant protein, commercial kit, and software has been provided and incorporated into the methods section.
In the method section, the authors should clarify which Foxp3-reporter strain. There are many strains of Foxp3-reporter mice in the world. In line 373, is the "FoxP3-IRES-GFP transgenic mice" true? Knock-in strain or BAC-transgene?
This mouse is a gift from Hai Qi Lab in Tsinghua University. They acquired this mouse strain from Jackson Laboratory, and the strain name is B6.Cg-Foxp3tm2Tch/J, Strain #:006772. An IRES-EGFP-SV40 poly A sequence was inserted immediately downstream of the endogenous Foxp3 translational stop codon, but upstream of the endogenous polyA signal, generating a bicistronic locus encoding both Foxp3 and EGFP.
The age of mice used in the experiments should be specified, and confusing words such as "young" should not be used in any method descriptions; e.g. line 405.
The detailed mouse age has been added in the methods section. “To prepare Tconv, tTreg and iTreg for experiments, spleen was isolated from 2-4-month-old Foxp3-GFP mice for Tconv and tTreg sorting, and 6-week-old mice for iTreg induction.”
The method of how the original ATAC-seq/Cut & Tag data were generated was not described in the method section.
Added in method section.
The reference section was incomplete, and the style was not unified. e.g.; ref 7, 24, 25, 26 ... I gave up checking all.
The style of ref 7, 22, 24, 26, 28, 31, 33, 35 were modified.
Changes in manuscript:
Author Name: “Huiyun Lv” to “Huiyun Lyu”.
Fig 1A was updated according to Reviwer 2’s suggestion.
Fig S3E and associated description was added according to Reviwer 2’s suggestion.
Fig S4C and associated description was added according to Reviwer 1’s suggestion.
Fig 5H and associated description was added according to Reviwer 2’s suggestion.
Fig 6D were updated according to Reviwer 1’s suggestion.
Fig 2D was corrected, the labels for gapdh and actin in the iTreg panel were inadvertently switched. The mistake has been rectified, and the original gel image will be provided.
Fig 2A and Fig 4A was updated.
The style of Fig 6B and Fig S2A was modified.
Method:
Mice: FoxP3-IRES-GFP with more description.
Flow Cytometry sorting and FACS: the detailed mouse age has been added. RNA-seq analysis, ATAC-sequencing, ATAC-seq analysis, Cut&Tag assay, Cut&Tag data analysis: more description was added.
Statistical analysis: “Numbers of independently-performed experiment repeats are shown as N, biological replicates of each experiment as n.” were added.
Reference: Ref 42-46 and 49-52 were added. The style of ref 7, 22, 24, 26, 28, 31, 33, 35 were corrected.
A detailed description of the mice, antibodies, Peptide recombinant protein, commercial kit, and software has been provided.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:
Chew et al describe interaction of the flavivirus protein NS1 with HDL using primarily cryoEM and mass spec. The NS1 was secreted from dengue virus infected Vero cells, and the HDL were derived from the 3% FBS in the culture media. NS1 is a virulence factor/toxin and is a biomarker for dengue infection in patients. The mechanisms of its various activities in the host are incompletely understood. NS1 has been seen in dimer, tetramer and hexamer forms. It is well established to interact with membrane surfaces, presumably through a hydrophobic surface of the dimer form, and the recombinant protein has been shown to bind HDL. In this study, cryoEM and crosslinking-mass spec are used to examine NS1 secreted from virus-infected cells, with the conclusion that the sNS1 is predominantly/exclusively HDL-associated through specific contacts with the ApoA1 protein.
Strengths:
The experimental results are consistent with previously published data.
Weaknesses:
CryoEM:
Some of the neg-stain 2D class averages for sNS1 in Fig S1 clearly show 1 or 2 NS1 dimers on the surface of a spherical object, presumably HDL, and indicate the possibility of high-quality cryoEM results. However, the cryoEM results are disappointing. The cryo 2D class averages and refined EM map in Fig S4 are of poor quality, indicating sub-optimal grid preparation or some other sample problem. Some of the FSC curves (2 in Fig S7 and 1 in Fig S6) have extremely peculiar shapes, suggesting something amiss in the map refinement. The sharp drop in the "corrected" FSC curves in Figs S5c and S6c (upper) indicate severe problems. The stated resolutions (3.42 & 3.82 Å) for the sNS1ts-Fab56.2 are wildly incompatible with the images of the refined maps in Figs 3 & S7. At those resolutions, clear secondary structural elements should be visible throughout the map. From the 2D averages and 3D maps shown in the figures this does not seem to be the case. Local resolution maps should be shown for each structure.
The samples were clearly challenging for cryoEM, leading to poor quality maps that were difficult to interpret. None of the figures are convincing that NS1, Ab56.2 or Fab56.2 are correctly fit into EM maps. There is no indication of ApoA1 helices. Details of the fit of models to density for key regions of the higher-resolution EM maps should be shown and the models should be deposited in the PDB. An example of modeling difficulty is clear in the sNS1ts dimer with bound Fab56.2 (figs 3c & S7e). For this complex, the orientation of the Fab56.2 relative to the sNS1ts dimer in this submission (Fig 3c) is substantially different than in the bioRxiv preprint (Fig 3c). Regions of empty density in Fig 3c also illustrate the challenge of building a model into this map.
Mass spec:
Crosslinking-mass spec was used to detect contacts between NS1 and ApoA1, providing strong validation of the sNS1-HDL association. As the crosslinks were detected in a bulk sample, they show that NS1 is near ApoA1 in many/most HDL particles, but they do not indicate a specific protein-protein complex. Thus, the data do not support the model of an NS1-ApoA1 complex in Fig 4d. Further, a specific NS1-ApoA1 interaction should have evidence in the EM maps (helical density for ApoA1), but none is shown or mentioned. If such exists, it could perhaps be visualized after focused refinement of the map for sNS1ts-HDL with Fab56.2 (Fig S7d). The finding that sNS1-ApoA1 crosslinks involved residues on the hydrophobic surface of the NS1 dimer confirms previous data that this NS1 surface engages with membranes and lipids.
Sample quality:
The paper lacks any validation that the purified sNS1 retains established functions, for example the ability to enhance virus infectivity or to promote endothelial dysfunction. Peculiarities include the gel filtration profiles (Fig 2a), which indicate identical elution volumes (apparent MWs) for sNS1wt-HDL bound to Ab562 (~150 kDa) and to the ~3X smaller Fab56.2 (~50 kDa). There should also be some indication of sNS1wt-HDL pairs crosslinked by the full-length Ab, as can be seen in the raw cryoEM micrograph (Fig S5b).
Obtaining high quality structures is often more demanding of sample integrity than are activity assays. Given the low quality of the cryoEM maps, it's possible that the acidification step in immunoaffinity purification damaged the HDL complex. No validation of HDL integrity, for example with acid-treated HDL, is reported. Acid treatment is perhaps discounted by a statement (line 464) that another group also used immunoaffinity purification in a recent study (ref 20) reporting sNS1 bound to HDL. However the statement is incorrect; the cited study used affinity purification via a strep-tag on recombinant sNS1.
Discussion:
The Discussion reflects a view that the NS1 secreted from virus-infected cells is a 1:1 sNS1dimer:HDL complex with the specific NS1-ApoA1 contacts detected by crosslinking mass spec. This is inconsistent with both the neg-stain 2D class average with 2 sNS1 dimers on an HDL (Fig S1c) and with the recent study of Flamand & co-workers showing 1-3 NS1 dimers per HDL (ref 20). It is also ignores the propensity of NS1 to associate with membranes and lipids. It is far more likely that NS1 association with HDL is driven by these hydrophobic interactions than by specific protein-protein contacts. A lengthy Discussion section (lines 461-522) includes several chemically dubious or inconsistent statements, all based on the assumption that specific ApoA1 contacts are essential to NS1 association with HDL and that sNS1 oligomers higher than the dimer necessarily involve ApoA1 interaction, conclusions that are not established by the data in this paper.
-
-
www.reddit.com www.reddit.com
-
Analog zettelkasten for natural sciences .t3_17kui2u._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; }
Reply to u/Wooden-School-4091 at https://www.reddit.com/r/Zettelkasten/comments/17kui2u/analog_zettelkasten_for_natural_sciences/
Given that Carl Linnaeus "invented" the standardized 3x5 inch index card and used it heavily in his scientific work (read Isabelle Charmantier and Staffan Müller-Wille's works for more on his practice), and a variety of others including me, use it for mathematics, physics, chemistry, biology, etc., Zettelkasten can certainly be used for STEM, STEAM, and any of the natural sciences.
See also, notes and links at: https://hypothes.is/users/chrisaldrich?q=tag%3A%22zettelkasten+for+studying%22
If I were using it for classes/university/general studying via lectures, I'd base my practice primarily on Cornell Notes in combination with creating questions/cards for spaced repetition and/or a variation on Leitner's System.
Some of the best material on spaced repetition these days can be found via:
- Soren Bjornstad: https://controlaltbackspace.org/repeat/
- Piotr Wozniak: https://super-memory.com/articles/20rules.htm
and other material on their sites.
Beyond this, I'd focus my direct zettelkasten practice less on the learning portion and more on the developing or generating ideas portion of the work. Some of my practice with respect to mathematics can be found here: https://www.reddit.com/r/Zettelkasten/comments/17bqztm/applying_zettelkasten_for_math_heavy_subjects/
For those interested, it may bear mentioning that Bjornstad, an engineer at Remnote, has a TiddlyWiki-based zettelkasten at https://zettelkasten.sorenbjornstad.com/#PublicHomepage:PublicHomepage which he demonstrates with a walk through at https://www.youtube.com/watch?v=GjpjE5pMZMI
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
We are very grateful to the reviewers for their thoughtful comments on the manuscript and to the editors for their assessment.
We thank the reviewers for their positive feedback and appreciate that they consider our method a valid addition to previously established systems for generating recombinant RNA viruses.
To strengthen this point, we have now included additional validation by the rescue of recombinant Chikungunya and Dengue virus from viral RNA directly, using the CLEVER protocol. This strengthens the potential of this method as a reverse genetics platform for positive-stranded viruses in general.
The supportive data has been amended in the Results section, taken into account in Materials and Methods, and the corresponding supplementary figure (Figure S4) has been added.
One key point raised by one of the reviewers, a comparison with different systems, could not be addressed in this manuscript as our lab does not at all perform BAC cloning. We currently do not have the necessary expertise to conduct an unbiased side-by-side comparison.
All other comments were addressed in detail, either by including additional data or through specific clarification in the revised text. We are grateful for the careful review and constructive criticisms raised by the reviewers and feel that the corrections and additions have significantly improved the manuscript.
We have revised the latest version posted May 30, 2023 on bioRxiv (https://doi.org/10.1101/2023.05.11.540343).
Reviewer #1:
Public Review:
In this manuscript, Kipfer et al describe a method for a fast and accurate SARS-CoV2 rescue and mutagenesis. This work is based on a published method termed ISA (infectious subgenomic amplicons), in which partially overlapping DNA fragments covering the entire viral genome and additional 5' and 3' sequences are transfected into mammalian cell lines. These DNA fragments recombine in the cells, express the full length viral genomic RNA and launch replication and rescue of infectious virus.
CLEVER, the method described here significantly improves on the ISA method to generate infectious SARS-CoV2, making it widely useful to the virology community.
Specifically, the strengths of this method are:
1) The successful use of various cell lines and transfection methods.
2) Generation of a four-fragment system, which significantly improves the method efficiency due to lower number of required recombination events.
3) Flexibility in choice of overlapping sequences, making this system more versatile.
4) The authors demonstrated how this system can be used to introduce point mutations as well as insertion of a tag and deletion of a viral gene.
5) Fast-tracking generation of infectious virus directly from RNA of clinical isolates by RT-PCR, without the need for cloning the fragments or using synthetic sequences.
One weakness of the latter point, which is also pointed out by the authors, is that the direct rescue of clinical isolates was not tested for sequence fidelity.
The manuscript clearly presents the findings, and the proof-of-concept experiments are well designed.
Overall, this is a very useful method for SARS-CoV2 research. Importantly, it can be applicable to many other viruses, speeding up the response to newly emerging viruses than threaten the public health.
We thank the reviewer for this positive feedback and the summary of the main points. Nevertheless, we would like to comment on point 5): “the direct rescue of clinical isolates was not tested for sequence fidelity”
This impression by the reviewer suggests that the data was not sufficient on this point. However, the sequence fidelity after direct rescue from RNA was indeed tested in this study, even on a clonal level (please see: Table S2, or raw NGS data SRX20303605 - SRX20303607). For higher clarity, we added the following sentence to the manuscript:<br /> “Indeed, a slight increase of unintentional mutations was observed when sequencing clonal virus populations rescued from RNA directly”.
Recommendations for the authors:
Minor Points:
1) On page 8, the authors write: "levels correlated very well with the viral phenotype". This sentence is not clear. Please clarify what you mean by "viral phenotype". Do you mean CPE on Vero cells?
We corrected the sentence to: “(…) staining intensity and patterns correlated very well with the wild-type phenotype.”
2) Page 9 "sequences were analyzed with a cut-off of 10%. Cutoff of what? please clarify.
The sentence was rephrased to: “(…)mutations with a relative abundance of >10% in the entire virus population were analyzed”
3) Page 15: The authors refer to the time required for completion of each step of the process. It would be helpful and informative for the readers to include a panel in figure 4, visualizing the timelines.
We included a timeline in Figure 4, Panel A.
4) Materials and methods, first paragraph: Please specify which human samples were collected. Do the authors refer to clinical virus isolates?
We added the following information to the Materials and Methods section:<br /> “Human serum samples for neutralization assays were collected from SARS-CoV-2 vaccinated anonymous donors (…)”
Clinical virus isolates (Material and Methods; Virus) were used for control experiments, neutralization assays, or as templates for RT-PCR.
5) Supplementary figure 4A: The color scheme makes it hard to differentiate between the BA.1 and BA.5 fragments. Please choose colors that are not as similar to each other.
Colors were adapted for better distinction.
Reviewer #2:
Public Review:
The authors of the manuscript have developed and used cloning-free method. It is not entirely novel (rather it is based on previously described ISA method) but it is clearly efficient and useful complementation to the already existing methods. One of strong points of the approach use by authors is that it is very versatile, i.e. can be used in combination with already existing methods and tools. I find it important as many laboratories have already established their favorite methods to manipulate SARS-CoV-2 genome and are probably unwilling to change their approach entirely. Though authors highlight the benefits of their method these are probably not absolute - other methods may be as efficient or as fast. Still, I find myself thinking that for certain purposes I would like to complement my current approach with elements from authors CLEVER method.
The work does not contain much novel biological data - which is expected for a paper dedicated to development of new method (or for improving the existing one). It may be kind of shortcoming as it is commonly expected that authors who have developed new methods apply it for discovery of something novel. The work stops on step of rescue the viruses and confirming their biological properties. This part is done very well and represents a strength of the study. The properties of rescued viruses were also studied using NSG methods that revealed high accuracy of the used method, which is very important as the method relies on use of PCR that is known to generate random mistakes and therefore not always method of choice.
What I found missing is a real head-to-head comparison of the developed system with an existing alternatives, preferably some PCR-free standard methods such as use of BAC clones. There are a lot of comparisons but they are not direct, just data from different studies has been compared. Authors could also be more opened to discuss limitations of the method. One of these seems to be rather low rescue efficiency - 1 rescue event per 11,000 transfected cells. This is much lower compared to infectious plasmid (about 1 event per 100 cells or so) and infectious RNAs (often 1 event per 10 cells, for smaller genomes most of transfected cells become infected). This makes the CLEVER method poorly suitable for generation of large infectious virus libraries and excludes its usage for studies of mutant viruses that harbor strongly attenuating mutations. Many of such mutations may reduce virus genome infectivity by 3-4 orders of magnitude; with current efficiencies the use of CLEVER approach may result in false conclusions (mutant viruses will be classified as non-viable while in reality they are just strongly attenuated).
We thank reviewer 2 for the careful review of our work and the valuable feedback. We agree that a direct comparison with other (PCR-free) methods such as BAC cloning, could be useful for demonstrating the unique benefits of the CLEVER method. However, as our laboratory does not use any BAC or YAC cloning methods, we could not ensure an unbiased side-byside comparison using different techniques.
We would like to highlight the avoidance of any yeast/bacterial cloning steps that render the CLEVER protocol significantly faster and easier to handle. A visualization of the key steps that could be skipped using CLEVER in comparison to common reverse genetics methods is given in Figure 6.
Further, we firmly believe that the benefits of the CLEVER method become especially apparent for large viral genomes such as the one of SARS-CoV-2, where assembly, genome amplification and sequence verification of plasmid DNA are highly inefficient and more timeconsuming than for small viruses like DENV, CHIKV or HIV.
We agree with the reviewer that the overall transfection and recombination efficiencies observed with CLEVER seemed rather low. Although data on transfection/rescue efficiency is known for many techniques and viruses, we did not find any published data on the reconstitution of SARS-CoV-2 or viruses with similar genome sizes. Therefore, a useful comparator for our observations in relation to other techniques is currently simply missing. We therefore emphasize that the efficiencies of CLEVER were achieved with one of the largest plus-stranded RNA virus genomes, and our data can’t be directly compared to transfection efficiencies of short infectious RNAs.
On the contrary, it was rather interesting to observe the very high rescue efficiency of infectious virus progeny. During the two years of establishing and validating the CLEVER protocol, we reached success rates for the genome reconstitution after transfection of >95 %. This was even obtained with highly attenuated mutants including rCoV2∆ORF3678 (joint deletion of ORF3a, ORF6, ORF7a, and ORF8) (Liu et al., 2022)(see Author response image 1). We amended this data in response to the reviewers’ comment and as an example of the successful rescue of an attenuated virus from five overlapping genome fragments (fragments A, B, C, D1, and D2∆ORF3678).
The latter data were not added to the main manuscript since in this case the deletions were introduced using a different method: from the plasmid-based DNA fragment D2∆ORF3678 and not directly from PCR-based mutagenesis.
Further, CLEVER was used for related substantial manipulations, including the complete deletion of the Envelope gene (E) which led to the creation of a single-cycle virus that may serve as a live, replication-incompetent vaccine candidate (Lett et al., 2023).
Author response image 1.
rCoV2∆ORF3678. Detection of intracellular SARS-CoV-2 nucleocapsid protein (N, green) and nuclei (Hoechst, blue) in Vero E6TMPRSS2 cells infected with rCoV2∆ORF3678 by immunocytochemistry. Scalebar is 200 µm in overview and 50 µm in ROI images.
Recommendations for the authors:
The work is nicely presented and the method authors has developed is clearly valuable. As indicated in Public review section the work would benefit from direct comparison of CLEVER with that of infectious plasmid (or RNA) based methods; direct comparison of data would be more convincing that indirect one. Authors should also discuss possible limitations of the method - this is helpful for a reader.
We were not able to perform a direct comparison of CLEVER with other methods (see our statement above).
We added the following section to the discussion: “Along with the advantages of the CLEVER protocol, limitations must be considered: Interestingly, virus was never rescued after transfecting Vero E6 cells, as has been observed previously (Mélade et al., 2022). Whether this is due to low transfection efficiency or the cell’s inability to recombine remains to be elucidated. Other cell lines not tested within this study will have to be tested for efficient recombination and virus production first. Further, the high sequence integrity of rescued virus is highly dependent on the fidelity of the DNA polymerase used for amplification. The use of other enzymes might negatively influence the sequence integrity of recombinant virus, as it has been observed for the direct rescue from viral RNA using a commercially available onestep RT-PCR kit. Another limitation when performing direct mutagenesis is the synthesis of long oligos to create an overlapping region. Repetitive sequences, for example, can impair synthesis, and self-annealing and hairpin formation increase with prolonged oligos.”
Some technical corrections of the text would be beneficial. In all past of the text the use of terms applicable only for DNA or RNA is mixed and creates some confusion. For example, authors state that "the human cytomegalovirus promoter (CMV) was cloned upstream of 5' UTR and poly(A) tail, the hepatitis delta ribozyme (HDVr) and the simian virus 40 polyadenylation signal downstream of the 3' UTR". Strictly speaking it is impossible as such a construct would contain dsDNA sequence (CMV promoter) followed by ssRNA (5'UTR, polyA tail and HDV ribozyme) and then again dsDNA (SV40 terminator). So, better to be correct and add "sequences corresponding to", "dsDNA copies of" to the description of RNA elements
We thank the reviewer for the advice but would like to state that in scientific language it is common to assume that nucleic acid cloning is based on DNA.
We have corrected the description in the Methods section: “The human cytomegalovirus promoter (CMV) was cloned upstream of the DNA sequence of the viral 5’UTR; herein, the first five nucleotides (ATATT) correspond to the 5’UTR of SARS-CoV. Sequences corresponding to the poly(A) tail (n=35), the hepatitis delta virus ribozyme (HDVr), and the simian virus 40 polyadenylation signal (SV40pA) were cloned immediately downstream of the DNA sequence of the viral 3’UTR.”
For ease of reading and for consistent terminology, we kept the original spelling in the rest of the manuscript.
In description of neutralization assay authors have used temperature 34 C for incubation of virus with antibodies as well as for subsequent incubation of infected cells. Why this temperature was used?
The following sentence was added (Materials and Methods; Cells): “A lower incubation temperature was chosen based on previous studies (V’kovski et al., 2021).”
References
Lett MJ, Otte F, Hauser D, Schön J, Kipfer ET, Hoffmann D, Halwe NJ, Ulrich L, Zhang Y, Cmiljanovic V, Wylezich C, Urda L, Lang C, Beer M, Mittelholzer C, Klimkait T. 2023. Single-cycle SARS-CoV-2 vaccine elicits high protection and sterilizing immunity in hamsters. doi:10.1101/2023.05.17.541127
Liu Y, Zhang X, Liu J, Xia H, Zou J, Muruato AE, Periasamy S, Kurhade C, Plante JA, Bopp NE, Kalveram B, Bukreyev A, Ren P, Wang T, Menachery VD, Plante KS, Xie X, Weaver SC, Shi P-Y. 2022. A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions. Nat Commun 13:4337. doi:10.1038/s41467-022-31930-z
V’kovski P, Gultom M, Kelly JN, Steiner S, Russeil J, Mangeat B, Cora E, Pezoldt J, Holwerda M, Kratzel A, Laloli L, Wider M, Portmann J, Tran T, Ebert N, Stalder H, Hartmann R, Gardeux V, Alpern D, Deplancke B, Thiel V, Dijkman R. 2021. Disparate temperaturedependent virus–host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. PLoS Biol 19:e3001158. doi:10.1371/journal.pbio.3001158
-
Joint Public Review:
In this manuscript, Kipfer et al describe a method for a fast and accurate SARS-CoV2 rescue and mutagenesis. This work is based on a published method termed ISA (infectious subgenomic amplicons), in which partially overlapping DNA fragments covering the entire viral genome and additional 5' and 3' sequences are transfected into mammalian cell lines. These DNA fragments recombine in the cells, express the full length viral genomic RNA and launch replication and rescue of infectious virus.
CLEVER, the method described here significantly improves on the ISA method to generate infectious SARS-CoV2, making it widely useful to the virology community.
Specifically, the strengths of this method are:<br /> 1) The successful use of various cell lines and transfection methods.<br /> 2) Generation of a four-fragment system, which significantly improves the method efficiency due to lower number of required recombination events.<br /> 3) Flexibility in choice of overlapping sequences, making this system more versatile.<br /> 4) The authors demonstrated how this system can be used to introduce point mutations as well as insertion of a tag and deletion of a viral gene.<br /> 5) Fast-tracking generation of infectious virus directly from RNA of clinical isolates by RT-PCR, without the need for cloning the fragments or using synthetic sequences.<br /> 6) The authors further expanded this method to work on additional plus-strand RNA viruses beyond SARS-CoV-2 (CHIKV, DENV)
The manuscript clearly presents the findings, and the proof-of-concept experiments are well designed.
Overall, this is a very useful method for SARS-CoV2 research. Importantly, it can be applicable to many other viruses, speeding up the response to newly emerging viruses than threaten the public health.
-
- Oct 2023
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> In this manuscript, the authors have applied an asymmetric split mNeonGreen2 (mNG2) system to human iPSCs. Integrating a constitutively expressed long fragment of mNG2 at the AAVS1 locus, allows other proteins to be tagged through the use of available ssODN donors. This removes the need to generate long AAV donors for tagging, thus greatly facilitating high-throughput tagging efforts. The authors then demonstrate the feasibility of the method by successfully tagging 9 markers expressed in iPSC at various, and one expressed upon endoderm differentiation. Several additional differentiation markers were also successfully tagged but not subsequently tested for expression/visibility. As one might expect for high-throughput tagging, a few proteins, while successfully tagged at the genomic level, failed to be visible. Finally, to demonstrate the utility of the tagged cells, the authors isolated clones with genes relevant to cytokinesis tagged, and together with an AI to enhance signal-to-noise ratios, monitored their localization over cell division.
Strengths:<br /> Characterization of the mNG2 tagged parental iPSC line was well and carefully done including validation of a single integration, the presence of markers for continued pluripotency, selected off-target analysis, and G-banding-based structural rearrangement detection.
The ability to tag proteins with simple ssODNs in iPSC capable of multi-lineage differentiation will undoubtedly be useful for localization tracking and reporter line generation.
Validation of clone genotypes was carefully performed and highlights the continued need for caution with regard to editing outcomes.
Weaknesses:<br /> IF and flow cytometry figures lack quantification and information on replication. How consistent is the brightness and localization of the markers? How representative are the specific images? Stability is mentioned in the text but data on the stability of expression/brightness is not shown.
The localization of markers, while consistent with expectations, is not validated by a second technique such as antibody staining, and in many cases not even with Hoechst to show nuclear vs cytoplasmic.
For the multi-germ layer differentiation validation, NCAM is also expressed by ectoderm, so isn't a good solo marker for mesoderm as it was used. Indeed, the kit used for the differentiation suggests Brachyury combined with either NCAM or CXCR4, not NCAM alone.
Only a single female parental line has been generated and characterized. It would have been useful to have several lines and both male and female to allow sex differences to be explored.
The AI-based signal-to-noise enhancement needs more details and testing. Such models can introduce strong assumptions and thus artefacts into the resolved data. Was the model trained on all markers or were multiple models trained on a single marker each? For example, if trained to enhance a single marker (or co-localized group of markers), it could introduce artefacts where it forces signal localization to those areas even for others. What happens if you feed in images with scrambled pixel locations, does it still say the structures are where the training data says they should be? What about markers with different localization from the training set? If you feed those in, does it force them to the location expected by the training data or does it retain their differential true localization and simply enhance the signal?
-
Reviewer #3 (Public Review):
The authors report on the engineering of an induced Pluripotent Stem Cell (iPSC) line that harbours a single copy of a split mNeonGreen, mNG2(1-10). This cell line is subsequently used to take endogenous protein with a smaller part of mNeonGreen, mNG2(11), enabling the complementation of mNG into a fluorescent protein that is then used to visualize the protein. The parental cell is validated and used to construct several iPSC lines with endogenously tagged proteins. These are used to visualize and quantify endogenous protein localisation during mitosis.
I see the advantage of tagging endogenous loci with small fragments, but the complementation strategy has disadvantages that deserve some attention. One potential issue is the level of the mNG2(1-10). Is it clear that the current level is saturating? Based on the data in Figure S3, the expression levels and fluorescence intensity levels show a similar dose-dependency which is reassuring, but not definitive proof that all the mNG2(11)-tagged protein is detected.
Do the authors see a difference in fluorescence intensity for homo- and heterozygous cell lines that have the same protein tagged with mNG2(11)? One would expect two-fold differences, or not?
Related to this, would it be favourable to have a homozygous line for expressing mNG2(1-10)?
The complementation seems to work well for the proteins that are tested. Would this also work for secreted (or other organelle-resident) proteins, for which the mNG2(11) tag is localised in a membrane-enclosed compartment?
The authors present a technological advance and it would be great if others could benefit from this as well by having access to the cell lines.
-
-
www.researchsquare.com www.researchsquare.com
-
eLife assessment
This study describes a method to track MHC class II binding peptides on dendritic cell (DC) surfaces using a tetracystein tag and a thiol-reactive dye, which can then be investigated in vitro and in vivo. This is a valuable study for the impact on immunology and potentially other areas where the detection of cell-associated peptides is required. The methods are convincing based on the use of MHC class I/II deficient mice that have significantly reduced signal, but the non-zero background is detected, and it is not clear that this is lower than if the peptides were directly labelled with fluorophores.
-
Reviewer #1 (Public Review):
Summary:<br /> The authors develop a method to fluorescently tag peptides loaded onto dendritic cells using a two-step method with a tetracystein motif modified peptide and labelling step done on the surface of live DC using a dye with high affinity for the added motif. The results are convincing in demonstrating in vitro and in vivo T cell activation and efficient label transfer to specific T cells in vivo. The label transfer technique will be useful to identify T cells that have recognised a DC presenting a specific peptide antigen to allow the isolation of the T cell and cloning of its TCR subunits, for example. It may also be useful as a general assay for in vitro or in vivo T-DC communication that can allow the detection of genetic or chemical modulators.
Strengths:<br /> The study includes both in vitro and in vivo analysis including flow cytometry and two-photon laser scanning microscopy. The results are convincing and the level of T cell labelling with the fluorescent pMHC is surprisingly robust and suggests that the approach is potentially revealing something about fundamental mechanisms beyond the state of the art.
Weaknesses:<br /> The method is demonstrated only at high pMHC density and it is not clear if it can operate at at lower peptide doses where T cells normally operate. However, this doesn't limit the utility of the method for applications where the peptide of interest is known. It's not clear to me how it could be used to de-orphan known TCR and this should be explained if they want to claim this as an application. Previous methods based on biotin-streptavidin and phycoerythrin had single pMHC sensitivity, but there were limitations to the PE-based probe so the use of organic dyes could offer advantages.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
The study performed by Niphadkar et al. seeks to uncover the role of the phosphatase Ppg1 in regulating gluconeogenesis during post-diauxic shift in S. cerevisiae. Thea authors show that loss or inactivation of Ppg1p affects production of gluconeogenic products incl. trehaloase and glycogen. The authors show that assembly of the Far complex required the activity of Ppg1 and is required to maintain gluconeogenic outputs after glucose depletion.
The manuscript is clearly written and methods well considered, no omics-methods have been included. Especially phosphoproteomics would be relevant to include. Specifically, the tracing experiments are an interesting and appropriate approach to confirm effects on gluconeogeneisis etc. Yet, working with regulation of posttranslational modifications (phosporylations) it is surprising that the authors only to a limited extent examine phosphorylation events, and not all examine or discuss specific phosphorylation events of e.g. Far11.
The study is interesting and provides new insights into regulation of glucose metabolism in yeast, however, there are serious concerns that need to be addressed before it can be reconsidered for publication.
Major points:
The authors use electrophoretic mobility assays w/wo CIP to address the phosphorylation state of Far11. They show in figure 3E that the mobility of Far11 depends on Ppg1 activity and can be affected by CIP. Why is the mobility of Far11 not affected in e.g. figure 3D?
There are several sites in Far11 previously reported to be phosphorylated, see e.g. Bodenmiller et al 2010 (Science Signal.) Are there sites that are specifically regulated (dephosphorylated) by Ppg1? or by other phosphatases? kinases?
Here, it would be appropriate to apply phosphoproteomics to examine Far11 phosphorylation in Ppg1 knock out cells or in cells with inactivated Ppg1.
The authors show that the levels of Ppg1 remain constant during growth in YPD medium, while the levels of Far11 increased after 24hrs of growth in YPD medium, and thus argue that the amount of Far complex itself increases in post-diauxic phase. The authors need to show that the level of complex indeed increases.
The authors also apply fluorescence microscopy to address the localization of the Far11 complex etc. The quality of the shown images should be improved, also merged images should be shown. Only one single image containing one cell is shown, images should ideally show additional cells in the same image, alternatively, additional images should be shown.
Minor points:
Does the FLAG tag affect activity of Ppg1?
Significance
The study is interesting and provides new insights into regulation of glucose metabolism in yeast, however, there are serious concerns that need to be addressed before it can be reconsidered for publication.
The manuscript is of broad interests for an audience primarily interested glucose metabolism and signalling in yeast.
-
-
docs.google.com docs.google.com
-
cops n’ robbers
The name's that kids gave to their games back then were insane. Why was this such a fun game to play though? in Mexico tag was called* la roña * which was a name for chicken pox
-
-
-
39:28 - Note graph and tag discussion
Obsidian for Academic Publishing - A Walkthrough with Jason Yuh (6)
Jason menciona que su forma de investigación está hecha a partir de capítulos y no de ideas.
Anthony comenta sobre "serendipity": encontrar conexiones que no encontraría por sí mismo. No las encuentra buscando "serendipity connections", sino cuando está buscando otra cosa siguiendo links. Y de repente aparece, cuando está haciendo links con otras notas.
Jason usa tags como keywords. Pero eventualmente, cuando el concepto crece, hace una nota: ej. "Innovation".
Tiene secciones de:
- teoría y metodología -síntesis (con una lista de textos que ha leído, con sus respectivos links, así hace un poco un outline de su tesis) -To-Do (autores que necesita leer para el tema...).
Importante hacer esto, con mis notas de cada concepto. O quizás con una nota más extensa para trabajar en varios conceptos que se relacionan.
-
Jason Yuh is a Ph.D. student at the University of Toronto working on his dissertation entitled: "The Dialectics of Traditions and Innovations in the Didache through Canon and Ritual." In this session Jason shares how he uses Obsidian to organize and process notes for developing his thesis. 00:00 - Intro, Obsidian discovery, and Jason's thesis 16:08 - Jason screen sharing 17:55 - Folder structure 20:30 - Tracking scholar references 23:40 - Daily notes 29:05 - Taking notes on multi-author volumes 32:00 - Writing abstracts (and using transclusion) 38:16 - Reading vs. Writing discussion 39:28 - Note graph and tag discussion 47:32 - Deciding what to work on next 49:27 - Synthesizing notes for publication 1:01:16 - Wrap-up
Obsidian for Academic Publishing - A Walkthrough with Jason Yuh (0)
Anthony's Desk
1:02:33
-
-
twobithistory.org twobithistory.org
-
HTML had blown open document publishing on the internet
... which may have really happened, per se, but it didn't wholly incorporate (subsume/cannibalize) conventional desktop publishing, which is still in 2023 dominated by office suites (a la MS Word) or (perversely) browser-based facsimiles like Google Docs. Because the Web as it came to be used turned out to be as a sui generis medium, not exactly what TBL was aiming for, which was giving everything (everything—including every existing thing) its own URL.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
This manuscript presents the cis-regulatory analysis of the enhancers controlling prox1a gene in zebrafish. Authors used both evolutionary conservation and existing single-cell ATAC data to highlight the major role of two elements. I feel that the transgenesis work is quite solid and the main conclusions interesting. However, I feel the authors need to provide some extra validations for some of the analysis.
- the authors did not discuss the fact that euteleosts underwent an extra whole genome duplication and that prox1a might have a paralogue. They also perform genome alignment using non-duplicated outgroups (gar, xenopus) without discussing. I am a bit skeptical about the use of mVISTA on relatively short expert of sequence aroudn a gene, as it is not able to capture the global molecular evolution parameters. I think the authors should also examine some of the precomputed phastCons / phylocons data performed and available on UCSC to confirm their findings. probably they should also examien a few more fish genome. I don't find this evolutioanry analysis extremely convinced and careful - which doesn't mean that the conclusions are wrong.
- I find the presentation, fairly obscure, the writing is quite convoluted, and the figures are very dense and not super explanatory, I would urge to improve (this is not helped by the fact that figure are their leged and presented at distinct places of this manuscript). For instance, I think having. a figure summarising signal from evolutionary conservation, scATAC and chromatin marks altogether would be quite essential.
- I also find the reanalysis of the single-cell ATAC described too scarcely: which are the genes used to identify the different cell populations?
- I feel the one additional experiment that the authors could have done would have been to use their construct to isolate the different cells population of interest and perform some regulatory profiling scuh as ATAC-seq or cut-and-tag on this population, to have a direct, in situ evidence of the activity of these regulatory elements.?
I also feel that the evolutionary aspect could be discussed a bit more, what are the differences between the diffeerent vertebrate lineage, etc...
(p7) active enhancer in a tissue: while ATAC gives a good indicated of accessibility it is not an indicate of activity as for instance H3K27Ac would be.
Significance
I think this is an interesting piece of work, which elaborates on previous studies on prox1a involvment in the lymphatic system but it doesn not bring essentially new perspective on the question.
-
-
www.biorxiv.org www.biorxiv.org
-
RRID:SCR_022636
DOI: 10.1101/2023.10.16.562573
Resource: SCR_022636
Curator: @scibot
SciCrunch record: RRID:SCR_022636
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
[The “revision plan” should delineate the revisions that authors intend to carry out in response to the points raised by the referees. It also provides the authors with the opportunity to explain their view of the paper and of the referee reports.
1. General Statements [optional]
In this paper we describe the new finding that the epicardial deposits the extracellular matrix component laminin onto the apical ventricular surface during cardiac development. We identify a novel role for the apicobasal polarity protein Llgl1in timely emergence of the epicardium and deposition of this apical laminin, alongside a requirement for Llgl1 in maintaining integrity of the ventricular wall at the onset of trabeculation.
We thank the reviewers for their very positive appraisal of our manuscript, and for their helpful suggestions for useful revisions. In particular we would like to highlight the broad interest they feel this manuscript holds, not only contributing conceptual advances to our understanding of multiple aspects of cardiac development, but also to cell and developmental biologists working in epithelial polarity and extracellular matrix function. We also note their positive appraisal of the rigor of the study and quality of the manuscript.
2. Description of the planned revisions
Reviewer 1
1a) It is mentioned that llgl1 CRISPR/Cas9 mutants are viable as adults on pg. 3 of the Results section. Have the authors examined heart morphology in these mutants in juvenile or adult fish?
We have some historical data on adult llgl1 mutant survival that we plan to include in the study.
Reviewer 2
2a) The authors note an interesting observation with apical and basal laminin deposition dynamics surrounding cardiomyocytes, and that Llg1 has a role in apical Laminin deposition (however, highly variable at 80 hpf as Figure 3M shows). They carry out a very nice study in which they overexpress Llgl1 tagged with mCherry in the myocardium and show that there is no rescue of the extruding cardiomyocyte defect or Laminin deposition. However, there is still a possibility that the tagged Llgl1 in the transgene Tg(myl7:Llg1-mCherry)sh679 might not be functional due to improper protein folding or interference by the mCherry tag. The authors should supplement their approach with a transplantation experiment to generate mosaic llgl1 mutant animals and assess whether llgl1 mutant cardiomyocytes extrude at a higher rate than the control. This would provide definitive evidence that Llg1l acts in a cell non-autonomous manner.
We agree with the reviewer, and propose to perform transplant experiments, transplanting cells from llgl1 mutants into wild type siblings, and quantify cell extrusion to determine whether llgl1 mutant cells are extruded more frequently than wild type.
2b) The data in this manuscript appears to point that Llgl1 regulates Laminin deposition mainly in epicardial cells to regulate their dissemination/migration across the ventricular myocardial surface. It would be important to test this cell-autonomous function with the transplant experiment (above point) and examine whether llgl1 mutant epicardial cells fail to migrate and deposit Laminin. It might be possible to perform a rescue experiment through overexpression of Llgl1 in epicardial cells (if possible, there is a tcf21:Gal4 line available).
Similar to above, we propose to perform transplant experiments, transplanting cells from llgl1 mutants or wild type siblings into wild type siblings or llgl1 mutants, respectively, and in this instance quantify contribution of transplanted cells to epicardial coverage.
2c) In the Discussion, the authors propose that Llgl1 acts in two ways: Laminin deposition in epicardial cells that suppress cell extrusion and polarity regulation in cardiomyocytes to promote trabeculation. It would be important to test the second hypothesis on trabeculation and polarity regulation by using the myocardial-specific overexpression/rescue of Llgl1 in llgl1 mutants, and then quantifying the trabeculating cardiomyocytes and analyze Crb2a localization. This experiment can distinguish whether this trabeculation phenotype is rescued independently of the apical Laminin deposition that has been included in Figure S5.
To help address the second part of our hypothesis laid out in the discussion, we propose to quantify trabecular organisation and Crb2a localisation in llgl1 mutants either carrying the myl7:llgl1-mCherry construct, or mCherry-negative controls.
2d) The potential mis-localization of Crb2a in the llgl1 mutants is interesting, but this effect appears to be quite mild, and as the authors note, resolve by 80 hpf. Considering the role of Lgl in Drosophila in shifting Crb complex localization during early epithelial morphogenesis, it would be worth performing the analysis at earlier timepoints (between 55 and 72 hpf) to determine whether Llgl1 is indeed important for the progressive apical relocalization of Crb2a.
We will expand our description of this in the mutants by performing analysis of Crb2a at earlier timepoints in the llgl1 mutant (55hpf and 60hpf).
2e) OPTIONAL: It might be worth testing other antibodies that could mark the apical (particularly aPKC which is known to phosphorylate and regulate the Crb complex) and basolateral domains (Par1, Dlg) of the cardiomyocytes to definitively conclude that the epithelial integrity of the cells is affected. Although there are no reports of working antibodies marking the basal domain in zebrafish, there is at least a Tg(myl7:MARCK3A-RFP) line published (Jimenez-Amilburu et al. (2016)) - which the authors can inject to examine the localization in mosaic hearts.
We plan to assess localisation of aPKC (see section 4 for response to other suggested polarity protein analyses).
2f) Have the authors quantified the numbers of total cardiomyocytes in llgl1 mutants to correlate how many cells are lost as a consequence of extrusion? What is the physiological impact of this extrusion (ejection fraction, total cardiac volumes, sarcomere organization)?
We have some of this data already which we will include in the manuscript (cell number, myocardial volume). We agree that the analysis of cardiac function could be more extensive, and we will perform more detailed analysis of cardiac function, including e.g. ejection fraction. Sarcomere organisation has been previously described in llgl1 mutants by Flinn et al, 2020, so we do not plan to replicate this data.
2g) The lamb1a and lamc1 mutant phenotypes were nicely analyzed. However, there is basement membrane deposition on both the apical and basal sides of the cardiomyocytes. Therefore, it is unclear whether the cardiomyocyte extrusion is completely caused by loss of apical basement membrane, or whether the loss of basal basement membrane could compromise the myocardial tissue integrity. The authors should clarify this conclusion in the text.
We will address this further in the text, but will also include 55hpf Laminin staining data for llgl1 mutants to reinforce our message.
2h) The authors note that Llgl1-mCherry in the Tg(myl7:Llg1-mCherry)sh679 line localizes to the basolateral domain of the cardiomyocytes, which is valuable confirmation that Llgl1 protein is spatially restricted. However, only 1 timepoint (55 hpf) is noted. It would be important to perform Llgl1 localization across different developmental timepoints (at least until 80 hpf) to examine the dynamics of this protein during trabeculation and apical extrusion, and potentially correlate it with Crb2a localization for a better understanding of the apicobasal machinery in cardiomyocytes.
We already have some of this data and will include extra timepoints in a revised version of the manuscript
2i) The phenotypes of llgl1 mutants described here differ compared to the previous study by Flinn et al. (2020). In particular, whereas the mutants generated in this study have only mild pericardial edema and are adult viable, approximately one third of llgl1mw3 (Flinn et al. (2020)) died at 6 dpf. Is this caused by the different natures of the mutations in the llgl1 gene? Is there a possibility that the llgl1sh598 is a hypomorphic allele since the targeted deletion is in a more downstream sequence (in exon 2) compared to the llgl1mw3 (deletion in exon 1) allele?
We thank the reviewer for noticing these subtle differences between the two llgl1 mutants. Indeed, while we occasionally see llgl1sh598 mutants with the severe phenotype described by Flinn et al, this is a small minority which we did not quantify. Our mutation is indeed slightly further downstream than that described by Flinn et al, however we believe that this will have a neglible effect on Llgl1 function. Our llgl1sh589 mutation results in truncation shortly into the WD40 domain, and importantly completely lacks the Lgl-like domain, which is responsible for the specific function of Llgl1 likely through its ability to interact with SNAREs to regulate cargo delivery to membranes (Gangar et al, Current Biology 2005).
Interestingly, Flinn et al report no increased phenotypic severity in their maternal-zygotic llgl1 mutants when compared to zygotic mutants. Conversely, we often observed very severe phenotypes in MZ llgl1sh589 mutants, including failure of embryos during blastula stages, apparently through poor blastula integrity. We did not include this information in the manuscript due to space constraints. However, we argue that together these differences between the two alleles may not be due to hypomorphism of our llgl1sh589 allele, but rather differences in genetic background that may amplify specific phenotypes. We plan to include a short sentence summarising the above in combination with planned experiments described below to address the reviewer’s next comment.
2j) Suggested experiment: qPCR of regions downstream of the deletion to make sure that the transcript is absent/reduced in the llgl1sh598 mutants. Alternatively, immunostaining or Western blot would be an even better option to ensure there is no Llgl1 protein production - there is an anti-Llgl1 antibody available that works for Western blots in zebrafish (Clark et al. (2012)).
We plan to analyse llgl1 expression in llgl1 mutants using qPCR.
Reviewer 3
3a) Major - the authors describe that llgl1 mutants exhibit transient cardiac edema at 3 dpf, which is resolved by 5 dpf, and claim that the mutants are viable. This statement needs to be better supported - What is the proportion of mutants that survive to adulthood? The embryonic phenotypes are pretty variable - are the mutants that survive the ones with a less severe phenotype? Is there a gross defect in the adult heart of these animals?
In line with comments from Reviewers 1 and 2 above, we will include a description of the data we have from adult animals (historical data, not generation of new animals).
3b) Major - Many of the phenotypes described here -most importantly, the defects on epicardial development- could result from hemodynamic defects in llgl1 mutants. The authors claim that function is unaffected in these animals, but this has only been addressed by measuring heartbeat. The observation that the cardiac function in these animals is normal would conflict with a previous description (PMID: 32843528) that demonstrates that llgl1 mutant animals show significant hemodynamic defects, which would cause epicardial defects. Thus, this aspect of the work needs to be better addressed.
In line with our comments to point 2f) from Reviewer 2, we will perform a more in-depth functional analysis on llgl1 mutant larvae.
3c) The phenotypes related to forming multiple layers in the heart (Fig. 1) could be more convincing. In some figures, the authors use a reporter that labels the myocardial cell membrane, but in Figure 1 this is not used. Showing a myocardial membrane marker (for example, the antibody Alcama, Zn-8) would significantly strengthen this observation.
We will describe trabecular phenotypes in more detail using the suggested antibody to highlight membranes.
3d) The analysis of Crumbs redistribution (Fig. 2) is quite interesting. Still, given that the authors have a transgenic model to rescue llgl1 expression in cardiomyocytes, they could move from correlative evidence to experimental demonstration of the role of llgl1 in Crumbs localization.
Similar to our response to comment 2c) from Reviewer 2, we plan to address this
3. Description of the revisions that have already been incorporated in the transferred manuscript
Reviewer 1:
Although information is provided in the introduction and discussion on the role of the Llgl1 homolog in Drosophila and speculation on LLGL1 contributing to heart defects in SMS patients in the discussion, have Llgl1 homologs been examined in other vertebrate animal models during heart development or regeneration?
With the exception of the Flinn et al paper, we find no published studies assessing the role of Llgl1 in heart development or regeneration in other vertebrates, and have updated the introduction to highlight this fact:
‘Zebrafish have two Lgl homologues, llgl1 and llgl2, and llgl1 has previously been shown to be required for early stages of heart morphogenesis (Flinn et al. 2020). However, although Llgl1 expression has also been reported in the developing mouse heart and both adult mouse and human hearts (Uhlén et al. 2015; Klezovitch et al. 2004), whether llgl1 plays a role in ventricular wall development has not been examined.’
In Fig. 4J-M', there is no Cav1 signals after wt1a MO but still laminin signals. Where these laminins come from?
The residual laminin staining observed in wt1a morphants is located at the basal surface of cardiomyocytes (while the apical laminin signal is lost, in line with the epicardial deposition of laminin at the apical ventricle surface). This basal laminin is likely deposited earlier during heart tube development by either the myocardium, endocardium or both, and thus unaffected by later formation of the epicardium. We reason this since a) it is present at the basal cardiomyocyte surface at 55hpf (see Fig 2); b) we have previously identified both myocardial and endocardial expression of laminin subunits at 26hpf and 55hpf (Derrick et al, Development, 2021); c) sc-RNA-seq analysis of hearts at 48hpf demonstrates that laminin subunits, e.g. lamc1 are expressed in myocardial and endocardial cells (Nahia et al, bioRxiv, 2023), also in line with our previous ISH analysis. We have included a sentence to reflect this in the results section:
Conversely, *wt1a* morphants retain deposition of laminin at the basal CM surface, likely from earlier expression and deposition of laminin by either myocardial or endocardial cells (Derrick et al. 2021; Nahia et al. 2023), which is unaffected by later epicardial development.
On page 3 of the manuscript, Fig. 1A should be included with Fig. 1B in the first sentence of paragraph 2 of the Results subsection "Llgl1 regulates ventricular wall integrity and trabeculation".
Amended
It would be beneficial to readers to briefly describe what cell type the transgenic reporters label when mentioned in the Results section to help readers unfamiliar with zebrafish.
We have updated the text to read:
We further analysed heart morphology using live lightsheet microscopy of *Tg(myl7:LifeActGFP);Tg(fli1a:AC-TagRFP)* double transgenic wild-type and *llgl1* mutant embryos, allowing visualisation of myocardium (green) and endocardium (magenta) respectively. Comparative analysis of overall heart morphology between 55hpf and 120hpf when looping morphogenesis is complete, revealing that *llgl1* mutants continue to exhibit defects in heart morphogenesis (Fig S1S-X).
Reviewer 3
(Optional) There is laminin in the luminal side of the heart before there is any epicardial invasion. What is the source of this laminin? The techniques the authors have used (i.e., chromogenic ISH) are fine, but a more detailed analysis using fluorescent ISH (i.e., RNAScope) would be much more definitive.
This is related to our response to Reviewer 1 (above) – where we have included the following text included in manuscript:
Conversely, *wt1a* morphants retain deposition of laminin at the basal CM surface, likely from earlier expression and deposition of laminin by either myocardial or endocardial cells (Derrick et al. 2021; Nahia et al. 2023), which is unaffected by later epicardial development.
We hope this clarifies our proposed origins for the earlier laminin deposition.4. Description of analyses that authors prefer not to carry out
Reviewer 1:
As pan-epicardial transgenes like tcf21 reporters have been widely used, the authors should use such reporters to verify the expression of laminin gene expression in epicardial cells, and the efficacy and efficiency of depleting epicardial cells after wt1 MO injection.
Several studies have demonstrated that the epicardium is not a heterogeneous population – for example, tcf21 is not expressed in all epicardial cells and thus not a pan-epicardial reporter (Plavicki et al, BMC Dev Biol, 2014, Weinberger et al, Dev Cell, 2020) – the suggested analysis would not necessarily be conclusive, and more detailed study would require acquisition of three new transgenic lines. Furthermore, we believe the evidence we present in the paper supports our claim: 1) We show expression of two laminin subunits in a thin mesothelial layer directly adjacent to the myocardium, specifically in the location of the epicardium; 2) sc-RNA seq analyses have also identified laminin expression in epicardial cells at 72hpf (where lamc1a is identified as a marker of the epicardium); 3) We demonstrate 100% efficacy of our wt1a knockdown as assayed by Cav1 expression, an established epicardial marker (Grivas et al, 2020, Marques et al, 2022) which in sc-RNA seq data is expressed at high levels broadly in the epicardial cell population (Nahia et al, 2023), representing a good assay for presence of epicardium. However, we propose to perform ISH analysis of laminin subunit expression in wt1a MO to investigate whether the mesothelial laminin-expressing layer we observe adjacent to the myocardium is absent upon loss of wt1a.
Reviewer 2:
The data in this manuscript appears to point that Llgl1 regulates Laminin deposition mainly in epicardial cells to regulate their dissemination/migration across the ventricular myocardial surface. It would be important to test this cell-autonomous function with the transplant experiment (above point) and examine whether llgl1 mutant epicardial cells fail to migrate and deposit Laminin. It might be possible to perform a rescue experiment through overexpression of Llgl1 in epicardial cells (if possible, there is a tcf21:Gal4 line available).
We do not propose to perform this experiment using a tcf21:Gal4 line, as this would likely require at least 6 months to either import and quarantine, or generate the necessary stable lines. Furthermore, as mentioned above, tcf21 is not a pan-epicardial marker, and the extent and timing of the Gal4:UAS system may make this challenging to determine whether llgl1 has been expressed early or broadly enough. We will instead attempt transplantation experiments.
OPTIONAL: It might be worth testing other antibodies that could mark the apical (particularly aPKC which is known to phosphorylate and regulate the Crb complex) and basolateral domains (Par1, Dlg) of the cardiomyocytes to definitively conclude that the epithelial integrity of the cells is affected. Although there are no reports of working antibodies marking the basal domain in zebrafish, there is at least a Tg(myl7:MARCK3A-RFP) line published (Jimenez-Amilburu et al. (2016)) - which the authors can inject to examine the localization in mosaic hearts.
We will assess localisation of aPKC, but we do not plan to analyse the other components. Analysis of basolateral domains (Par1, Dlg, Mark3a-RGP), will not necessarily assess epithelial integrity, as suggested, but rather apicobasal polarity – which we already assess using Crb2a, and additionally plan to assess aPKC to accompany the Crb2a analysis. Since the reviewer suggests this as an optional experiment we prioritise their other suggested experiments that we think more directly address the main messages of the manuscript.
OPTIONAL: Gentile et al. (2021) found that reducing heartbeat led to decreased cardiomyocyte extrusion in snai1b mutants. The authors could look into the contribution of mechanical pressure through contraction in the apical cardiomyocyte extrusion, and test whether reducing contraction (tnnt2 morpholino, chemical treatments) partly rescues the llgl1 mutant phenotypes.
The relationship between cardiac function and myocardial wall integrity appears to be complex. The paper referred to by the reviewer indeed finds that reduction in heartbeat leads to decreased CM extrusion upon loss of the EMT-factor Snai1b. Previous studies have also found that endothelial flow-responsive genes klf2a/b are required to maintain myocardial ventricular wall integrity at later stages in a contractility-dependent manner (Rasouli et al, 2018). However, contractility is also required early for pro-epicardial emergence, but plays a lesser role in expansion of the epicardial layer on the myocardial surface (Peralta, 2013). Unpicking the relationship between the forces induced by mechanical contraction of the ventricular wall, contractility-based induction of e.g klf2 expression, and the impact of contractile forces on proepicardial development or epicardial expansion will be complex. We therefore think the proposed experiment will be difficult to interpret whatever the outcome, and argue that dissecting this relationship is beyond the scope of revisions for this paper.
Reviewer 3
How llgl1 relates to epicardial biology is left entirely unexplored in this work. Do proepicardial cells show any defect in cell polarization related to llgl1 absence?
We agree with the reviewer that we do not delve into the mechanisms underlying regulation of epicardial development by llgl1, and that this is an interesting question. Our scope for this manuscript was to understand the mechanisms by which llgl1 regulates integrity of the ventricular wall, and feel that uncovering the molecular mechanisms by which llgl1 regulates timely epicardial emergence is a larger question that would require substantial investigation (for example, if and when llgl1 PE cells do exhibit apicobasal defects, how this impacts timing of cluster release etc). We think these are important questions that would be better answered in detail in a separate manuscript.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary: The manuscript by Pollitt et al. explores the functions of llgl1, which encodes a critical component of the basolateral domain complex, during cardiac development in zebrafish. The authors observed that llgl1 mutants exhibited compromised myocardial tissue integrity with significantly higher numbers of apically extruding cardiomyocytes. Llgl1 appears to primarily function during epicardial cell spreading on the myocardial tissue, as myocardial-specific overexpression of llgl1 did not rescue llgl1 mutant phenotypes. llgl1 mutants exhibited impaired epicardial coverage and subsequently Laminin deposition on the apical side of the cardiomyocytes. Functional linkage between Laminin/the basement membrane was identified, as extruding cardiomyocytes were also observed in mutants of two core laminin genes, lamb1a and lamc1. The epicardial defects were transmitted to myocardial tissue defects, marked by mis-localization of the apical polarity protein Crumbs2a during early heart development. Overall, the authors provide a nice study that strengthens the role of apicobasal factors in myocardial tissue morphogenesis and that sheds light on the role of epicardial-derived basement membrane in maintaining myocardial tissue integrity.
Major comments
- The authors note an interesting observation with apical and basal laminin deposition dynamics surrounding cardiomyocytes, and that Llg1 has a role in apical Laminin deposition (however, highly variable at 80 hpf as Figure 3M shows). They carry out a very nice study in which they overexpress Llgl1 tagged with mCherry in the myocardium and show that there is no rescue of the extruding cardiomyocyte defect or Laminin deposition. However, there is still a possibility that the tagged Llgl1 in the transgene Tg(myl7:Llg1-mCherry)sh679 might not be functional due to improper protein folding or interference by the mCherry tag. The authors should supplement their approach with a transplantation experiment to generate mosaic llgl1 mutant animals and assess whether llgl1 mutant cardiomyocytes extrude at a higher rate than the control. This would provide definitive evidence that Llg1l acts in a cell non-autonomous manner.
- The data in this manuscript appears to point that Llgl1 regulates Laminin deposition mainly in epicardial cells to regulate their dissemination/migration across the ventricular myocardial surface. It would be important to test this cell-autonomous function with the transplant experiment (above point) and examine whether llgl1 mutant epicardial cells fail to migrate and deposit Laminin. It might be possible to perform a rescue experiment through overexpression of Llgl1 in epicardial cells (if possible, there is a tcf21:Gal4 line available).
- In the Discussion, the authors propose that Llgl1 acts in two ways: Laminin deposition in epicardial cells that suppress cell extrusion and polarity regulation in cardiomyocytes to promote trabeculation. It would be important to test the second hypothesis on trabeculation and polarity regulation by using the myocardial-specific overexpression/rescue of Llgl1 in llgl1 mutants, and then quantifying the trabeculating cardiomyocytes and analyze Crb2a localization. This experiment can distinguish whether this trabeculation phenotype is rescued independently of the apical Laminin deposition that has been included in Figure S5.
- The potential mis-localization of Crb2a in the llgl1 mutants is interesting, but this effect appears to be quite mild, and as the authors note, resolve by 80 hpf. Considering the role of Lgl in Drosophila in shifting Crb complex localization during early epithelial morphogenesis, it would be worth performing the analysis at earlier timepoints (between 55 and 72 hpf) to determine whether Llgl1 is indeed important for the progressive apical relocalization of Crb2a. OPTIONAL: It might be worth testing other antibodies that could mark the apical (particularly aPKC which is known to phosphorylate and regulate the Crb complex) and basolateral domains (Par1, Dlg) of the cardiomyocytes to definitively conclude that the epithelial integrity of the cells is affected. Although there are no reports of working antibodies marking the basal domain in zebrafish, there is at least a Tg(myl7:MARCK3A-RFP) line published (Jimenez-Amilburu et al. (2016)) - which the authors can inject to examine the localization in mosaic hearts.
- Have the authors quantified the numbers of total cardiomyocytes in llgl1 mutants to correlate how many cells are lost as a consequence of extrusion? What is the physiological impact of this extrusion (ejection fraction, total cardiac volumes, sarcomere organization)?
- The lamb1a and lamc1 mutant phenotypes were nicely analyzed. However, there is basement membrane deposition on both the apical and basal sides of the cardiomyocytes. Therefore, it is unclear whether the cardiomyocyte extrusion is completely caused by loss of apical basement membrane, or whether the loss of basal basement membrane could compromise the myocardial tissue integrity. The authors should clarify this conclusion in the text.
Minor comments
- The authors note that Llgl1-mCherry in the Tg(myl7:Llg1-mCherry)sh679 line localizes to the basolateral domain of the cardiomyocytes, which is valuable confirmation that Llgl1 protein is spatially restricted. However, only 1 timepoint (55 hpf) is noted. It would be important to perform Llgl1 localization across different developmental timepoints (at least until 80 hpf) to examine the dynamics of this protein during trabeculation and apical extrusion, and potentially correlate it with Crb2a localization for a better understanding of the apicobasal machinery in cardiomyocytes.
- The phenotypes of llgl1 mutants described here differ compared to the previous study by Flinn et al. (2020). In particular, whereas the mutants generated in this study have only mild pericardial edema and are adult viable, approximately one third of llgl1mw3 (Flinn et al. (2020)) died at 6 dpf. Is this caused by the different natures of the mutations in the llgl1 gene? Is there a possibility that the llgl1sh598 is a hypomorphic allele since the targeted deletion is in a more downstream sequence (in exon 2) compared to the llgl1mw3 (deletion in exon 1) allele? Suggested experiment: qPCR of regions downstream of the deletion to make sure that the transcript is absent/reduced in the llgl1sh598 mutants. Alternatively, immunostaining or Western blot would be an even better option to ensure there is no Llgl1 protein production - there is an anti-Llgl1 antibody available that works for Western blots in zebrafish (Clark et al. (2012)).
- Closeups needed for Figure 3I-L' - difficult to assess mis-localization or differences in Laminin staining. Contrary to the quantification or conclusion, the Laminin staining appears stronger in llgl1 mutants compared to wild types in Figure 3I' and J'.
- OPTIONAL: Gentile et al. (2021) found that reducing heartbeat led to decreased cardiomyocyte extrusion in snai1b mutants. The authors could look into the contribution of mechanical pressure through contraction in the apical cardiomyocyte extrusion, and test whether reducing contraction (tnnt2 morpholino, chemical treatments) partly rescues the llgl1 mutant phenotypes.
Significance
As someone with expertise in cardiac development and cellular behaviours, I find this study provides strong and convincing quantitative data on the role of Llgl1 in suppressing cardiomyocyte extrusion and promoting epicardial dissemination on the ventricular surface. The genetic experiments, including mutant analysis and myocardial-specific rescue, were carefully performed in a region-specific manner, which provides much insight into the non-uniformity of myocardial tissue integrity. The generation of Tg(myl7:llgl1-mCherry) line is also a valuable tool for researchers in the field interested in understanding apicobasal polarity and cardiomyocyte development and regeneration.
A limitation of the study is the unclear link between epithelial polarity and basement membrane deposition, and how they synchronize to regulate cardiomyocyte integrity. The llgl1 mutant phenotype in increasing cardiomyocyte apical extrusion and Crb2 localization is interesting; however, the authors note that this appears to be a phenotype induced by epicardial defects. Epicardial cells are not known to exhibit apicobasal polarity and are fibroblastic by nature. Thus, the cellular mechanisms by which Llg1 regulates epicardial cell morphology or behaviours, and how it functions to regulate polarity in cardiomyocytes are not clearly defined in this work. In addition, clarification of the cell autonomous functions of Llgl1 in epicardial cells and/or cardiomyocytes would strengthen the findings.
Overall, the findings of this study would be of interest to cell and developmental biologists in the fields of epithelial polarity, cardiac morphogenesis, and extracellular matrix function. It provides nice conceptual advance in further elucidating the mechanisms that underlie myocardial tissue integrity and epicardial-myocardial interactions.
-
-
www.youtube.com www.youtube.com
-
lustig. schon bald (diesen winter? nächsten winter?) wird die mehrheit verhungern und erfrieren,<br /> und die sogenannte "opposition" beschäftigt sich mit kleinscheiss.
wir brauchen viel mehr extremismus und viel mehr radikale lösungen (selbstversorgung...),<br /> und nicht diese schwule weichgespülte "wir sind was besseres" gelaber.
die AFD hat jeden tag angst vor parteiverbot,<br /> also werden so "radikale typen" wie ich von anfang an rausselektiert.
dabei sollten so "radikale typen" wie ich eine blutige revolution (einen militärputsch) führen,<br /> und die ganzen versager und verräter vom alten system an die wand stellen.
aber auf revolution habt ihr gar keine lust, ihr wollt auch nur reformen, und noch mehr gesetze,<br /> aber es gibt keine politische lösung, weil das system ist radikal falsch, also nicht reformierbar.
deswegen, für mich sind graue wölfe 1000 mal interessanter als die AFD.<br /> ich bin sowieso kein christ oder jude, aber auch kein moslem.<br /> einfach nur pragmatisch, ein echter "wissenschaftler", einer der wissen schafft.
"Their evil designs run against nature." -- Kevin Alfred Strom
(ich freu mich schon auf den prozess wegen "gefühlsverletzung", ich lach mich tot...)
-
-
www.nytimes.com www.nytimes.com
-
Der Sturm Otis, der die Küste bei Acapulco verwüstet hat, hat sich in nur einem Tag von einem tropischen Sturm zu einem Hurrikan der Kategorie 5 entwickelt. Es ist noch unklar worauf dieser enorme Gewinn an Intensität zurückgeht. https://www.nytimes.com/2023/10/25/world/americas/hurricane-otis-mexico-intensity-surprise.html
-
-
jakelazaroff.com jakelazaroff.com
-
That’s the honest-to-goodness HTML I have in the Markdown for this post. That’s it! There’s no special setup; I don’t have to remember to put specific elements on the page before calling a function or load a bunch of extra resources.1 Of course, I do need to keep the JS files around and link to them with a <script> tag.
There's nothing special about Web Components; the author could have just as easily put the script block itself there.
-
-
www.liberation.fr www.liberation.fr
-
Die Internationale Energieagentur IEA hält eine Begrenzung der globalen Erhitzung aufgrund des schnellen Wachstums bei den erneuerbaren Energien für sehr schwierig, aber noch möglich. In ihrem Jahresbericht kommt sie zu dem Ergebnis, dass der Höhepunkt der Nachfrage nach Kohle, Gas und Öl bis 2030 erreicht werden wird. Die Energiepolitik der wichtigen Staaten ist aber bei der Umstellung auf Erneuerbare bei weitem nicht so ehrgeizig, als es nötig ist. https://www.liberation.fr/environnement/grace-aux-energies-bas-carbone-limiter-le-rechauffement-climatique-reste-possible-affirme-lagence-internationale-de-lenergie-20231024_YF7ZJA7WBFACRFIVCBRONJPKAA/
World Energy Outlook 2023: https://origin.iea.org/reports/world-energy-outlook-2023
Mehr zum World Energy Outlook 2023: https://hypothes.is/search?q=tag%3A%22report%3A%20World%20Energy%20Outlook%202023%22
Tags
Annotators
URL
-
-
www.theguardian.com www.theguardian.com
-
Durch die Verschiebung des Verbots neuer Benzin- und Dieselautos bleibt Großbritannien hinter seinen Selbstverpflichtungrn bei der Dekarbonisierung zurück. Der Guardian berichtet anlässlich des neuen IEA-Beichts über wachsenden Druck auf Rishi Sunak und gibt dabei einen Überblick über die nötigen Investitionen in Erneuerbare. https://www.theguardian.com/business/2023/oct/24/sunak-faces-further-pressure-over-net-zero-u-turn-iea-warning-energy-watchdog
Mehr zum World Energy Outlook 2023: https://hypothes.is/search?q=tag%3A%22report%3A%20World%20Energy%20Outlook%202023%22
-
-
www.derstandard.de www.derstandard.de
-
Der Standardbericht zu dem neuen State of the climate-Report konzentriert sich auf die Forderung nach sofortigen Veränderungen in der Wirtschaft. Er enthält auch eine Übersicht zu den Temperaturanomalien in Österreich in diesem Jahr. https://www.derstandard.at/story/3000000192443/hoechsttemperaturen-wie-2023-gab-es-womoeglich-erstmals-seit-100000-jahren
Mehr zum State of the climate 2023-Report: https://hypothes.is/search?q=tag%3A%22report%3A%202023%20state%20of%20the%20climate%22;
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
eLife assessment
This study presents potentially valuable results on glutamine-rich motifs in relation to protein expression and alternative genetic codes. The author's interpretation of the results is so far only supported by incomplete evidence, due to a lack of acknowledgment of alternative explanations, missing controls and statistical analysis and writing unclear to non experts in the field. These shortcomings could be at least partially overcome by additional experiments, thorough rewriting, or both.
We thank both the Reviewing Editor and Senior Editor for handling this manuscript and will submit our revised manuscript after the reviewed preprint is published by eLife.
Reviewer #1 (Public Review):
Summary
This work contains 3 sections. The first section describes how protein domains with SQ motifs can increase the abundance of a lacZ reporter in yeast. The authors call this phenomenon autonomous protein expression-enhancing activity, and this finding is well supported. The authors show evidence that this increase in protein abundance and enzymatic activity is not due to changes in plasmid copy number or mRNA abundance, and that this phenomenon is not affected by mutants in translational quality control. It was not completely clear whether the increased protein abundance is due to increased translation or to increased protein stability.
In section 2, the authors performed mutagenesis of three N-terminal domains to study how protein sequence changes protein stability and enzymatic activity of the fusions. These data are very interesting, but this section needs more interpretation. It is not clear if the effect is due to the number of S/T/Q/N amino acids or due to the number of phosphorylation sites.
In section 3, the authors undertake an extensive computational analysis of amino acid runs in 27 species. Many aspects of this section are fascinating to an expert reader. They identify regions with poly-X tracks. These data were not normalized correctly: I think that a null expectation for how often poly-X track occur should be built for each species based on the underlying prevalence of amino acids in that species. As a result, I believe that the claim is not well supported by the data.
Strengths
This work is about an interesting topic and contains stimulating bioinformatics analysis. The first two sections, where the authors investigate how S/T/Q/N abundance modulates protein expression level, is well supported by the data. The bioinformatics analysis of Q abundance in ciliate proteomes is fascinating. There are some ciliates that have repurposed stop codons to code for Q. The authors find that in these proteomes, Q-runs are greatly expanded. They offer interesting speculations on how this expansion might impact protein function.
Weakness
At this time, the manuscript is disorganized and difficult to read. An expert in the field, who will not be distracted by the disorganization, will find some very interesting results included. In particular, the order of the introduction does not match the rest of the paper.
In the first and second sections, where the authors investigate how S/T/Q/N abundance modulates protein expression levels, it is unclear if the effect is due to the number of phosphorylation sites or the number of S/T/Q/N residues.
There are three reasons why the number of phosphorylation sites in the Q-rich motifs is not relevant to their autonomous protein expression-enhancing (PEE) activities:
First, we have reported previously that phosphorylation-defective Rad51-NTD (Rad51-3SA) and wild-type Rad51-NTD exhibit similar autonomous PEE activity. Mec1/Tel1-dependent phosphorylation of Rad51-NTD antagonizes the proteasomal degradation pathway, increasing the half-life of Rad51 from ∼30 min to ≥180 min (Ref 27; Woo, T. T. et al. 2020).
- T. T. Woo, C. N. Chuang, M. Higashide, A. Shinohara, T. F. Wang, Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res 48, 8474-8489 (2020).
Second, in our preprint manuscript, we have also shown that phosphorylation-defective Rad53-SCD1 (Rad51-SCD1-5STA) also exhibits autonomous PEE activity similar to that of wild-type Rad53-SCD (Figure 2D, Figure 4A and Figure 4C).
Third, as revealed by the results of our preprint manuscript (Figure 4), it is the percentages, and not the numbers, of S/T/Q/N residues that are correlated with the PEE activities of Q-rich motifs.
The authors also do not discuss if the N-end rule for protein stability applies to the lacZ reporter or the fusion proteins.
The autonomous PEE function of S/T/Q-rich NTDs is unlikely to be relevant to the N-end rule. The N-end rule links the in vivo half-life of a protein to the identity of its N-terminal residues. In S. cerevisiae, the N-end rule operates as part of the ubiquitin system and comprises two pathways. First, the Arg/N-end rule pathway, involving a single N-terminal amidohydrolase Nta1, mediates deamidation of N-terminal asparagine (N) and glutamine (Q) into aspartate (D) and glutamate (E), which in turn are arginylated by a single Ate1 R-transferase, generating the Arg/N degron. N-terminal R and other primary degrons are recognized by a single N-recognin Ubr1 in concert with ubiquitin-conjugating Ubc2/Rad6. Ubr1 can also recognize several other N-terminal residues, including lysine (K), histidine (H), phenylalanine (F), tryptophan (W), leucine (L) and isoleucine (I) (Bachmair, A. et al. 1986; Tasaki, T. et al. 2012; Varshavshy, A. et al. 2019). Second, the Ac/N-end rule pathway targets proteins containing N-terminally acetylated (Ac) residues. Prior to acetylation, the first amino acid methionine (M) is catalytically removed by Met-aminopeptides, unless a residue at position 2 is non-permissive (too large) for MetAPs. If a retained N-terminal M or otherwise a valine (V), cysteine (C), alanine (A), serine (S) or threonine (T) residue is followed by residues that allow N-terminal acetylation, the proteins containing these AcN degrons are targeted for ubiquitylation and proteasome-mediated degradation by the Doa10 E3 ligase (Hwang, C. S., 2019).
A. Bachmair, D. Finley, A. Varshavsky, In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179-186 (1986).
T. Tasaki, S. M. Sriram, K. S. Park, Y. T. Kwon, The N-end rule pathway. Annu Rev Biochem 81, 261-289 (2012).
A. Varshavsky, N-degron and C-degron pathways of protein degradation. Proc Natl Acad Sci 116, 358-366 (2019).
C. S. Hwang, A. Shemorry, D. Auerbach, A. Varshavsky, The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat Cell Biol 12, 1177-1185 (2010).
The PEE activities of these S/T/Q-rich domains are unlikely to arise from counteracting the N-end rule for two reasons. First, the first two amino acid residues of Rad51-NTD, Hop1-SCD, Rad53-SCD1, Sup35-PND, Rad51-ΔN, and LacZ-NVH are MS, ME, ME, MS, ME, and MI, respectively, where M is methionine, S is serine, E is glutamic acid and I is isoleucine. Second, Sml1-NTD behaves similarly to these N-terminal fusion tags, despite its methionine and glutamine (MQ) amino acid signature at the N-terminus.
The most interesting part of the paper is an exploration of S/T/Q/N-rich regions and other repetitive AA runs in 27 proteomes, particularly ciliates. However, this analysis is missing a critical control that makes it nearly impossible to evaluate the importance of the findings. The authors find the abundance of different amino acid runs in various proteomes. They also report the background abundance of each amino acid. They do not use this background abundance to normalize the runs of amino acids to create a null expectation from each proteome. For example, it has been clear for some time (Ruff, 2017; Ruff et al., 2016) that Drosophila contains a very high background of Q's in the proteome and it is necessary to control for this background abundance when finding runs of Q's.
We apologize for not explaining sufficiently well the topic eliciting this reviewer’s concern in our preprint manuscript. In the second paragraph of page 14, we cite six references to highlight that SCDs are overrepresented in yeast and human proteins involved in several biological processes (32, 74), and that polyX prevalence differs among species (43, 75-77).
-
Cheung HC, San Lucas FA, Hicks S, Chang K, Bertuch AA, Ribes-Zamora A. An S/T-Q cluster domain census unveils new putative targets under Tel1/Mec1 control. BMC Genomics. 2012;13:664.
-
Mier P, Elena-Real C, Urbanek A, Bernado P, Andrade-Navarro MA. The importance of definitions in the study of polyQ regions: A tale of thresholds, impurities and sequence context. Comput Struct Biotechnol J. 2020;18:306-13.
-
Cara L, Baitemirova M, Follis J, Larios-Sanz M, Ribes-Zamora A. The ATM- and ATR-related SCD domain is over-represented in proteins involved in nervous system development. Sci Rep. 2016;6:19050.
-
Kuspa A, Loomis WF. The genome of Dictyostelium discoideum. Methods Mol Biol. 2006;346:15-30.
-
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev. 2017;41(6):923-40.
-
Mier P, Alanis-Lobato G, Andrade-Navarro MA. Context characterization of amino acid homorepeats using evolution, position, and order. Proteins. 2017;85(4):709-19.
We will cite the two references by Kiersten M. Ruff in our revised manuscript.
K. M. Ruff and R. V. Pappu, (2015) Multiscale simulation provides mechanistic insights into the effects of sequence contexts of early-stage polyglutamine-mediated aggregation. Biophysical Journal 108, 495a.
K. M. Ruff, J. B. Warner, A. Posey and P. S. Tan (2017) Polyglutamine length dependent structural properties and phase behavior of huntingtin exon1. Biophysical Journal 112, 511a.
The authors could easily address this problem with the data and analysis they have already collected. However, at this time, without this normalization, I am hesitant to trust the lists of proteins with long runs of amino acid and the ensuing GO enrichment analysis.
Ruff KM. 2017. Washington University in St.
Ruff KM, Holehouse AS, Richardson MGO, Pappu RV. 2016. Proteomic and Biophysical Analysis of Polar Tracts. Biophys J 110:556a.
We thank Reviewer #1 for this helpful suggestion and now address this issue by means of a different approach described below.
Based on a previous study (43; Palo Mier et al. 2020), we applied seven different thresholds to seek both short and long, as well as pure and impure, polyX strings in 20 different representative near-complete proteomes, including 4X (4/4), 5X (4/5-5/5), 6X (4/6-6/6), 7X (4/7-7/7), 8-10X (≥50%X), 11-10X (≥50%X) and ≥21X (≥50%X).
To normalize the runs of amino acids and create a null expectation from each proteome, we determined the ratios of the overall number of X residues for each of the seven polyX motifs relative to those in the entire proteome of each species, respectively. The results of four different polyX motifs are shown below, i.e., polyQ (Author response image 1), polyN (Author response image 2), polyS (Author response image 3) and polyT (Author response image 4).
Author response image 1.
Q contents in 7 different types of polyQ motifs in 20 near-complete proteomes. The five ciliates with reassigned stops codon (TAAQ and TAGQ) are indicated in red. Stentor coeruleus, a ciliate with standard stop codons, is indicated in green.
Author response image 2.
N contents in 7 different types of polyN motifs in 20 near-complete proteomes. The five ciliates with reassigned stops codon (TAAQ and TAGQ) are indicated in red. Stentor coeruleus, a ciliate with standard stop codons, is indicated in green.
Author response image 3.
S contents in 7 different types of polyS motifs in 20 near-complete proteomes. The five ciliates with reassigned stops codon (TAAQ and TAGQ) are indicated in red. Stentor coeruleus, a ciliate with standard stop codons, is indicated in green.
Author response image 4.
T contents in 7 different types of polyT motifs in 20 near-complete proteomes. The five ciliates with reassigned stops codon (TAAQ and TAGQ) are indicated in red. Stentor coeruleus, a ciliate with standard stop codons, is indicated in green.
The results summarized in these four new figures support that polyX prevalence differs among species and that the overall X contents of polyX motifs often but not always correlate with the X usage frequency in entire proteomes (43; Palo Mier et al. 2020).
Most importantly, our results reveal that, compared to Stentor coeruleus or several non-ciliate eukaryotic organisms (e.g., Plasmodium falciparum, Caenorhabditis elegans, Danio rerio, Mus musculus and Homo sapiens), the five ciliates with reassigned TAAQ and TAGQ codons not only have higher Q usage frequencies, but also more polyQ motifs in their proteomes (Figure 1). In contrast, polyQ motifs prevail in Candida albicans, Candida tropicalis, Dictyostelium discoideum, Chlamydomonas reinhardtii, Drosophila melanogaster and Aedes aegypti, though the Q usage frequencies in their entire proteomes are not significantly higher than those of other eukaryotes (Figure 1). Due to their higher N usage frequencies, Dictyostelium discoideum, Plasmodium falciparum and Pseudocohnilembus persalinus have more polyN motifs than the other 23 eukaryotes we examined here (Figure 2). Generally speaking, all 26 eukaryotes we assessed have similar S usage frequencies and percentages of S contents in polyS motifs (Figure 3). Among these 26 eukaryotes, Dictyostelium discoideum possesses many more polyT motifs, though its T usage frequency is similar to that of the other 25 eukaryotes (Figure 4).
In conclusion, these new normalized results confirm that the reassignment of stop codons to Q indeed results in both higher Q usage frequencies and more polyQ motifs in ciliates.
Reviewer #2 (Public Review):
Summary:
This study seeks to understand the connection between protein sequence and function in disordered regions enriched in polar amino acids (specifically Q, N, S and T). While the authors suggest that specific motifs facilitate protein-enhancing activities, their findings are correlative, and the evidence is incomplete. Similarly, the authors propose that the re-assignment of stop codons to glutamine-encoding codons underlies the greater user of glutamine in a subset of ciliates, but again, the conclusions here are, at best, correlative. The authors perform extensive bioinformatic analysis, with detailed (albeit somewhat ad hoc) discussion on a number of proteins. Overall, the results presented here are interesting, but are unable to exclude competing hypotheses.
Strengths:
Following up on previous work, the authors wish to uncover a mechanism associated with poly-Q and SCD motifs explaining proposed protein expression-enhancing activities. They note that these motifs often occur IDRs and hypothesize that structural plasticity could be capitalized upon as a mechanism of diversification in evolution. To investigate this further, they employ bioinformatics to investigate the sequence features of proteomes of 27 eukaryotes. They deepen their sequence space exploration uncovering sub-phylum-specific features associated with species in which a stop-codon substitution has occurred. The authors propose this stop-codon substitution underlies an expansion of ploy-Q repeats and increased glutamine distribution.
Weaknesses:
The preprint provides extensive, detailed, and entirely unnecessary background information throughout, hampering reading and making it difficult to understand the ideas being proposed. The introduction provides a large amount of detailed background that appears entirely irrelevant for the paper. Many places detailed discussions on specific proteins that are likely of interest to the authors occur, yet without context, this does not enhance the paper for the reader.
The paper uses many unnecessary, new, or redefined acronyms which makes reading difficult. As examples:
(1) Prion forming domains (PFDs). Do the authors mean prion-like domains (PLDs), an established term with an empirical definition from the PLAAC algorithm? If yes, they should say this. If not, they must define what a prion-forming domain is formally.
The N-terminal domain (1-123 amino acids) of S. cerevisiae Sup35 was already referred to as a “prion forming domain (PFD)” in 2006 (Tuite, M. F. 2006). Since then, PFD has also been employed as an acronym in other yeast prion papers (Cox, B.S. et al. 2007; Toombs, T. et al. 2011).
M. F., Tuite, Yeast prions and their prion forming domain. Cell 27, 397-407 (2005).
B. S. Cox, L. Byrne, M. F., Tuite, Protein Stability. Prion 1, 170-178 (2007).
J. A. Toombs, N. M. Liss, K. R. Cobble, Z. Ben-Musa, E. D. Ross, [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS One 6, e21953 (2011).
(2) SCD is already an acronym in the IDP field (meaning sequence charge decoration) - the authors should avoid this as their chosen acronym for Serine(S) / threonine (T)-glutamine (Q) cluster domains. Moreover, do we really need another acronym here (we do not).
SCD was first used in 2005 as an acronym for the Serine (S)/threonine (T)-glutamine (Q) cluster domain in the DNA damage checkpoint field (Traven, A. and Heierhorst, J. 2005). Almost a decade later, SCD became an acronym for “sequence charge decoration” (Sawle, L. et al. 2015; Firman, T. et al. 2018).
A. Traven and J, Heierhorst, SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays. 27, 397-407 (2005).
L. Sawle and K, Ghosh, A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J. Chem Phys. 143, 085101(2015).
T. Firman and Ghosh, K. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins. J. Chem Phys. 148, 123305 (2018).
(3) Protein expression-enhancing (PEE) - just say expression-enhancing, there is no need for an acronym here.
Thank you. Since we have shown that addition of Q-rich motifs to LacZ affects protein expression rather than transcription, we think it is better to use the “PEE” acronym.
The results suggest autonomous protein expression-enhancing activities of regions of multiple proteins containing Q-rich and SCD motifs. Their definition of expression-enhancing activities is vague and the evidence they provide to support the claim is weak. While their previous work may support their claim with more evidence, it should be explained in more detail. The assay they choose is a fusion reporter measuring beta-galactosidase activity and tracking expression levels. Given the presented data they have shown that they can drive the expression of their reporters and that beta gal remains active, in addition to the increase in expression of fusion reporter during the stress response. They have not detailed what their control and mock treatment is, which makes complete understanding of their experimental approach difficult. Furthermore, their nuclear localization signal on the tag could be influencing the degradation kinetics or sequestering the reporter, leading to its accumulation and the appearance of enhanced expression. Their evidence refuting ubiquitin-mediated degradation does not have a convincing control.
Based on the experimental results, the authors then go on to perform bioinformatic analysis of SCD proteins and polyX proteins. Unfortunately, there is no clear hypothesis for what is being tested; there is a vague sense of investigating polyX/SCD regions, but I did not find the connection between the first and section compelling (especially given polar-rich regions have been shown to engage in many different functions). As such, this bioinformatic analysis largely presents as many lists of percentages without any meaningful interpretation. The bioinformatics analysis lacks any kind of rigorous statistical tests, making it difficult to evaluate the conclusions drawn. The methods section is severely lacking. Specifically, many of the methods require the reader to read many other papers. While referencing prior work is of course, important, the authors should ensure the methods in this paper provide the details needed to allow a reader to evaluate the work being presented. As it stands, this is not the case.
Thank you. As described in detail below, we have now performed rigorous statistical testing using the GofuncR package.
Overall, my major concern with this work is that the authors make two central claims in this paper (as per the Discussion). The authors claim that Q-rich motifs enhance protein expression. The implication here is that Q-rich motif IDRs are special, but this is not tested. As such, they cannot exclude the competing hypothesis ("N-terminal disordered regions enhance expression").
In fact, “N-terminal disordered regions enhance expression” exactly summarizes our hypothesis.
On pages 12-13 and Figure 4 of our preprint manuscript, we explained our hypothesis in the paragraph entitled “The relationship between PEE function, amino acid contents, and structural flexibility”.
The authors also do not explore the possibility that this effect is in part/entirely driven by mRNA-level effects (see Verma Na Comms 2019).
As pointed out by the first reviewer, we show evidence that the increase in protein abundance and enzymatic activity is not due to changes in plasmid copy number or mRNA abundance (Figure 2), and that this phenomenon is not affected by translational quality control mutants (Figure 3).
As such, while these observations are interesting, they feel preliminary and, in my opinion, cannot be used to draw hard conclusions on how N-terminal IDR sequence features influence protein expression. This does not mean the authors are necessarily wrong, but from the data presented here, I do not believe strong conclusions can be drawn. That re-assignment of stop codons to Q increases proteome-wide Q usage. I was unable to understand what result led the authors to this conclusion.
My reading of the results is that a subset of ciliates has re-assigned UAA and UAG from the stop codon to Q. Those ciliates have more polyQ-containing proteins. However, they also have more polyN-containing proteins and proteins enriched in S/T-Q clusters. Surely if this were a stop-codon-dependent effect, we'd ONLY see an enhancement in Q-richness, not a corresponding enhancement in all polar-rich IDR frequencies? It seems the better working hypothesis is that free-floating climate proteomes are enriched in polar amino acids compared to sessile ciliates.
Thank you. These comments are not supported by the results in Figure 1.
Regardless, the absence of any kind of statistical analysis makes it hard to draw strong conclusions here.
We apologize for not explaining more clearly the results of Tables 5-7 in our preprint manuscript.
To address the concerns about our GO enrichment analysis by both reviewers, we have now performed rigorous statistical testing for SCD and polyQ protein overrepresentation using the GOfuncR package (https://bioconductor.org/packages/release/bioc/html/GOfuncR.html). GOfuncR is an R package program that conducts standard candidate vs. background enrichment analysis by means of the hypergeometric test. We then adjusted the raw p-values according to the Family-wise error rate (FWER). The same method had been applied to GO enrichment analysis of human genomes (Huttenhower, C., et al. 2009).
Curtis Huttenhower, C., Haley, E. M., Hibbs, M., A., Dumeaux, V., Barrett, D. R., Hilary A. Coller, H. A., and Olga G. Troyanskaya, O., G. Exploring the human genome with functional maps, Genome Research 19, 1093-1106 (2009).
The results presented in Author response image 5 and Author response image 6 support our hypothesis that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition, Candida albicans filamentous growth, peptidyl-glutamic acid modification in ciliates with reassigned stop codons (TAAQ and TAGQ), Tetrahymena thermophila xylan catabolism, Dictyostelium discoideum sexual reproduction, Plasmodium falciparum infection, as well as the nervous systems of Drosophila melanogaster, Mus musculus, and Homo sapiens (74). In contrast, peptidyl-glutamic acid modification and microtubule-based movement are not overrepresented with Q-rich proteins in Stentor coeruleus, a ciliate with standard stop codons.
- Cara L, Baitemirova M, Follis J, Larios-Sanz M, Ribes-Zamora A. The ATM- and ATR-related SCD domain is over-represented in proteins involved in nervous system development. Sci Rep. 2016;6:19050.
Author response image 5.
Selection of biological processes with overrepresented SCD-containing proteins in different eukaryotes. The percentages and number of SCD-containing proteins in our search that belong to each indicated Gene Ontology (GO) group are shown. GOfuncR (Huttenhower, C., et al. 2009) was applied for GO enrichment and statistical analysis. The p values adjusted according to the Family-wise error rate (FWER) are shown. The five ciliates with reassigned stop codons (TAAQ and TAGQ) are indicated in red. Stentor coeruleus, a ciliate with standard stop codons, is indicated in green.
Author response image 6.
Selection of biological processes with overrepresented polyQ-containing proteins in different eukaryotes. The percentages and numbers of polyQ-containing proteins in our search that belong to each indicated Gene Ontology (GO) group are shown. GOfuncR (Huttenhower, C., et al. 2009) was applied for GO enrichment and statistical analysis. The p values adjusted according to the Family-wise error rate (FWER) are shown. The five ciliates with reassigned stops codons (TAAQ and TAGQ) are indicated in red. Stentor coeruleus, a ciliate with standard stop codons, is indicated in green.
-
Reviewer #2 (Public Review):
Summary:<br /> This study seeks to understand the connection between protein sequence and function in disordered regions enriched in polar amino acids (specifically Q, N, S and T). While the authors suggest that specific motifs facilitate protein-enhancing activities, their findings are correlative, and the evidence is incomplete. Similarly, the authors propose that the re-assignment of stop codons to glutamine-encoding codons underlies the greater user of glutamine in a subset of ciliates, but again, the conclusions here are, at best, correlative. The authors perform extensive bioinformatic analysis, with detailed (albeit somewhat ad hoc) discussion on a number of proteins. Overall, the results presented here are interesting, but are unable to exclude competing hypotheses.
Strengths:<br /> Following up on previous work, the authors wish to uncover a mechanism associated with poly-Q and SCD motifs explaining proposed protein expression-enhancing activities. They note that these motifs often occur IDRs and hypothesize that structural plasticity could be capitalized upon as a mechanism of diversification in evolution. To investigate this further, they employ bioinformatics to investigate the sequence features of proteomes of 27 eukaryotes. They deepen their sequence space exploration uncovering sub-phylum-specific features associated with species in which a stop-codon substitution has occurred. The authors propose this stop-codon substitution underlies an expansion of ploy-Q repeats and increased glutamine distribution.
Weaknesses:<br /> The preprint provides extensive, detailed, and entirely unnecessary background information throughout, hampering reading and making it difficult to understand the ideas being proposed.<br /> The introduction provides a large amount of detailed background that appears entirely irrelevant for the paper. Many places detailed discussions on specific proteins that are likely of interest to the authors occur, yet without context, this does not enhance the paper for the reader.
The paper uses many unnecessary, new, or redefined acronyms which makes reading difficult. As examples: (1) Prion forming domains (PFDs). Do the authors mean prion-like domains (PLDs), an established term with an empirical definition from the PLAAC algorithm? If yes, they should say this. If not, they must define what a prion-forming domain is formally. (2) SCD is already an acronym in the IDP field (meaning sequence charge decoration) - the authors should avoid this as their chosen acronym for Serine(S) / threonine (T)-glutamine (Q) cluster domains. Moreover, do we really need another acronym here (we do not). (3) Protein expression-enhancing (PEE) - just say expression-enhancing, there is no need for an acronym here.
The results suggest autonomous protein expression-enhancing activities of regions of multiple proteins containing Q-rich and SCD motifs. Their definition of expression-enhancing activities is vague and the evidence they provide to support the claim is weak. While their previous work may support their claim with more evidence, it should be explained in more detail. The assay they choose is a fusion reporter measuring beta-galactosidase activity and tracking expression levels. Given the presented data they have shown that they can drive the expression of their reporters and that beta gal remains active, in addition to the increase in expression of fusion reporter during the stress response. They have not detailed what their control and mock treatment is, which makes complete understanding of their experimental approach difficult. Furthermore, their nuclear localization signal on the tag could be influencing the degradation kinetics or sequestering the reporter, leading to its accumulation and the appearance of enhanced expression. Their evidence refuting ubiquitin-mediated degradation does not have a convincing control.
Based on the experimental results, the authors then go on to perform bioinformatic analysis of SCD proteins and polyX proteins. Unfortunately, there is no clear hypothesis for what is being tested; there is a vague sense of investigating polyX/SCD regions, but I did not find the connection between the first and section compelling (especially given polar-rich regions have been shown to engage in many different functions). As such, this bioinformatic analysis largely presents as many lists of percentages without any meaningful interpretation. The bioinformatics analysis lacks any kind of rigorous statistical tests, making it difficult to evaluate the conclusions drawn.
The methods section is severely lacking. Specifically, many of the methods require the reader to read many other papers. While referencing prior work is of course, important, the authors should ensure the methods in this paper provide the details needed to allow a reader to evaluate the work being presented. As it stands, this is not the case.
Overall, my major concern with this work is that the authors make two central claims in this paper (as per the Discussion).
The authors claim that Q-rich motifs enhance protein expression. The implication here is that Q-rich motif IDRs are special, but this is not tested. As such, they cannot exclude the competing hypothesis ("N-terminal disordered regions enhance expression"). The authors also do not explore the possibility that this effect is in part/entirely driven by mRNA-level effects (see Verma Na Comms 2019). As such, while these observations are interesting, they feel preliminary and, in my opinion, cannot be used to draw hard conclusions on how N-terminal IDR sequence features influence protein expression. This does not mean the authors are necessarily wrong, but from the data presented here, I do not believe strong conclusions can be drawn.
That re-assignment of stop codons to Q increases proteome-wide Q usage. I was unable to understand what result led the authors to this conclusion. My reading of the results is that a subset of ciliates has re-assigned UAA and UAG from the stop codon to Q. Those ciliates have more polyQ-containing proteins. However, they also have more polyN-containing proteins and proteins enriched in S/T-Q clusters. Surely if this were a stop-codon-dependent effect, we'd ONLY see an enhancement in Q-richness, not a corresponding enhancement in all polar-rich IDR frequencies? It seems the better working hypothesis is that free-floating climate proteomes are enriched in polar amino acids compared to sessile ciliates. Regardless, the absence of any kind of statistical analysis makes it hard to draw strong conclusions here.
-
-
templeu.instructure.com templeu.instructure.com
-
Almost all thirty informants immediately focused on outdoor activities—tag, hide-n-seek, jumping rope, picnics, hiking, swimming, bike riding, random adventures with friends, and so on. Regardless of whether our informants grew up in a rural or urban setting, they typically recalled their girlhood as a time when media and popular culture were peripheral or absent from their lives
This is a concept hard for many to imagine nowadays given how reliant and incorporated media is in various popular culture
-
-
www-jstor-org.prox.lib.ncsu.edu www-jstor-org.prox.lib.ncsu.edu
-
About 150,000transformed plants (T1 plants) expressing aT-DNA-located kanamycin-resistance gene(NPTID
Signature tagged mutagenesis, tag is kanamycin resistance; integrate into genome and then look for unusual phenotypes (kanamycin resistance), when found, this phenotype indicates that the gene relating to the usual phenotype was inactivated
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
Reviewer #1 (Public Review):
The work by Yijun Zhang and Zhimin He at al. analyzes the role of HDAC3 within DC subsets. Using an inducible ERT2-cre mouse model they observe the dependency of pDCs but not cDCs on HDAC3. The requirement of this histone modifier appears to be early during development around the CLP stage. Tamoxifen treated mice lack almost all pDCs besides lymphoid progenitors. Through bulk RNA seq experiment the authors identify multiple DC specific target gens within the remaining pDCs and further using Cut and Tag technology they validate some of the identified targets of HDAC3. Collectively the study is well executed and shows the requirement of HDAC3 on pDCs but not cDCs, in line with the recent findings of a lymphoid origin of pDC.
1) While the authors provide extensive data on the requirement of HDAC3 within progenitors, the high expression of HDAC3 in mature pDCs may underly a functional requirement. Have you tested INF production in CD11c cre pDCs? Are there transcriptional differences between pDCs from HDAC CD11c cre and WT mice?
We greatly appreciate the reviewer’s point. We have confirmed that Hdac3 can be efficiently deleted in pDCs of Hdac3fl/fl-CD11c Cre mice (Figure 5-figure supplement 1 in revised manuscript). Furthermore, in those Hdac3fl/fl-CD11c Cre mice, we have observed significantly decreased expression of key cytokines (Ifna, Ifnb, and Ifnl) by pDCs upon activation by CpG ODN (shown in Author response image 1). Therefore, HDAC3 is also required for proper pDC function. However, we have yet to conduct RNA-seq analysis comparing pDCs from HDAC CD11c cre and WT mice.
Author response image 1.
Cytokine expression in Hdac3 deficient pDCs upon activation
2) A more detailed characterization of the progenitor compartment that is compromised following depletion would be important, as also suggested in the specific points.
We thank the reviewer for this constructive suggestion. We have performed thorough analysis of the phenotype of hematopoietic stem cells and progenitor cells at various developmental stages in the bone marrow of Hdac3 deficient mice, based on the gating strategy from the recommended reference. Briefly, we analyzed the subpopulations of progenitors based on the description in the published report by "Pietras et al. 2015", namely MPP2, MPP3 and MPP4, using the same gating strategy for hematopoietic stem/progenitor cells. As shown in Author response image 2 and Author response image 3, we found that the number of LSK cells was increased in Hdac3 deficient mice, especially the subpopulations of MPP2 and MPP3, whereas no significant changes in MPP4. In contrast, the numbers of LT-HSC, ST-HSC and CLP were all dramatically decreased. This result has been optimized and added as Figure 3A in revised manuscript. The relevant description has been added and underlined in the revised manuscript Page 6 Line 164-168.
Author response image 2.
Gating strategy for hematopoietic stem/progenitor cells in bone marrow.
Author response image 3.
Hematopoietic stem/progenitor cells in Hdac3 deficient mice
Reviewer #2 (Public Review):
In this article Zhang et al. report that the Histone Deacetylase-3 (HDAC3) is highly expressed in mouse pDC and that pDC development is severely affected both in vivo and in vitro when using mice harbouring conditional deletion of HDAC3. However, pDC numbers are not affected in Hdac3fl/fl Itgax-Cre mice, indicating that HDCA3 is dispensable in CD11c+ late stages of pDC differentiation. Indeed, the authors provide wide experimental evidence for a role of HDAC3 in early precursors of pDC development, by combining adoptive transfer, gene expression profiling and in vitro differentiation experiments. Mechanistically, the authors have demonstrated that HDAC3 activity represses the expression of several transcription factors promoting cDC1 development, thus allowing the expression of genes involved in pDC development. In conclusion, these findings reveals HDAC3 as a key epigenetic regulator of the expression of the transcription factors required for pDC vs cDC1 developmental fate.
These results are novel and very promising. However, supplementary information and eventual further investigations are required to improve the clarity and the robustness of this article.
Major points
1) The gating strategy adopted to identify pDC in the BM and in the spleen should be entirely described and shown, at least as a Supplementary Figure. For the BM the authors indicate in the M & M section that they negatively selected cells for CD8a and B220, but both markers are actually expressed by differentiated pDC. However, in the Figures 1 and 2 pDC has been shown to be gated on CD19- CD11b- CD11c+. What is the precise protocol followed for pDC gating in the different organs and experiments?
We apologize for not clearly describing the protocols used in this study. Please see the detailed gating strategy for pDC in bone marrow, and for pDC and cDC in spleen (Figure 4 and Figure 5). These information are now added to Figure1−figure supplement 3, The relevant description has been underlined in Page 5 Line 113-116, in revised manuscript.
We would like to clarify that in our study, we used two different panels of antibody cocktails, one for bone marrow Lin- cells, including mAbs to CD2/CD3/TER-119/Ly6G/B220/CD11b/CD8/CD19; the other for DC enrichment, including mAbs to CD3/CD90/TER-119/Ly6G/CD19. We included B220 in the Lineage cocktails to deplete B cells and pDCs, in order to enrich for the progenitor cells from bone marrow. However, when enriching for the pDC and cDC, B220 or CD8a were not included in the cocktail to avoid depletion of pDC and cDC1 subsets . For the flow cytometry analysis of pDCs, we gated pDCs as the CD19−CD11b−CD11c+B220+SiglecH+ population in both bone marrow and spleen. The relevant description has been underlined in the revised manuscript Page 16 Line 431-434.
2) pDC identified in the BM as SiglecH+ B220+ can actually contain DC precursors, that can express these markers, too. This could explain why the impact of HDAC3 deletion appears stronger in the spleen than in the BM (Figures 1A and 2A). Along the same line, I think that it would important to show the phenotype of pDC in control vs HDAC3-deleted mice for the different pDC markers used (SiglecH, B220, Bst2) and I would suggest to include also Ly6D, taking also in account the results obtained in Figures 4 and 7. Finally, as HDCA3 deletion induces downregulation of CD8a in cDC1 and pDC express CD8a, it would important to analyse the expression of this marker on control vs HDAC3-deleted pDC.
We agree with the reviewer’s points. In the revised manuscript, we incorporated major surface markers, including Siglec H, B220, Ly6D, and PDCA-1, all of which consistently demonstrated a substantial decrease in the pDC population in Hdac3 deficient mice. Moreover, we did notice that Ly6D+ pDCs showed higher degree of decrease in Hdac3 deficient mice. Additionally, percentage and number of both CD8+ pDC and CD8- pDC were decreased in Hdac3 deficient mice (Author response image 4). These results are shown in Figure1−figure supplement 4 of the revised manuscript. The relevant description has been added and underlined in the revised manuscript Page 5 Line 121-125.
Author response image 4.
Bone marrow pDCs in Hdac3 deficient mice revealed by multiple surface markers
3) How do the authors explain that in the absence of HDAC3 cDC2 development increased in vivo in chimeric mice, but reduced in vitro (Figures 2B and 2E)?
As shown in the response to the Minor point 5 of Reviewer#1. Briefly, we suggested that the variabilities maybe explained by the timing of anaysis after HDAC3 deletion. In Figure 2C, we analyzed cells from the recipients one week after the final tamoxifen treatment and observed no significant change in the percentage of cDC2 when further pooled all the experiment data. In Figure 2E, where tamoxifen was administered at Day 0 in Flt3L-mediated DC differentiation in vitro, the DC subsets generated were then analyzed at different time points. We observed no significant changes in cDCs and cDC2 at Day 5, but decreases in the percentage of cDC2 were observed at Day 7 and Day 9. This suggested that the cDC subsets at Day 5 might have originated from progenitors at a later stage, while those at Day 7 and Day 9 might originate form the earlier progenitors. Therefore, based on these in vitro and in vivo experiments, we believe that the variation in the cDC2 phenotype might be attributed to the progenitors at different stages that generated these cDCs.
4) More generally, as reported also by authors (line 207), the reconstitution with HDAC3-deleted cells is poorly efficient. Although cDC seem not to be impacted, are other lymphoid or myeloid cells affected? This should be expected as HDAC3 regulates T and B development, as well as macrophage function. This should be important to know, although this does not call into question the results shown, as obtained in a competitive context.
In this study, we found no significant influence on T cells, mature B cells or NK cells, but immature B cells were significantly decreased, in Hdac3-ERT2-Cre mice after tamoxifen treatment (Figure 6). However, in the bone marrow chimera experiments, the numbers of major lymphoid cells were decreased due to the impaired reconstitution capacity of Hdac3 deficient progenitors. Consistent with our finding, it has been reported that HDAC3 was required for T cell and B cell generation, in HDAC3-VavCre mice (Summers et al., 2013), and was necessary for T cell maturation (Hsu et al., 2015). Moreover, HDAC3 is also required for the expression of inflammatory genes in macrophages upon activation (Chen et al., 2012; Nguyen et al., 2020).
5) What are the precise gating strategies used to identify the different hematopoietic precursors in the Figure 4 ? In particular, is there any lineage exclusion performed?
We apologize for not describing the experimental procedures clearly. In this study we enriched the lineage negative (Lin−) cells from the bone marrow using a Lineage-depleting antibody cocktail including mAbs to CD2/CD3/TER-119/Ly6G/B220/CD11b/CD8/CD19. We also provide the gating strategy implemented for sorting LSK and CDP populations from the Lin− cells in the bone marrow (Author response image 5), shown in the Figure 3A and Figure4−figure supplement 1 of revised manuscript.
Author response image 5.
Gating strategy for LSK, CD115+ CDP and CD115− CDP in bone marrow
6) Moreover, what is the SiglecH+ CD11c- population appearing in the spleen of mice reconstituted with HDAC3-deleted CDP, in Fig 4D?
We also noticed the appearance of a SiglecH+CD11c− cell population in the spleen of recipient mice reconstituted with HDAC3-deficient CD115−CDPs, while the presence of this population was not as significant in the HDAC3-Ctrl group, as shown in Figure 4D. We speculate that this SiglecH+CD11c− cell population might represent some cells at a differentiation stage earlier than pre-DCs. Alternatively, the relatively increased percentage of this population derived from HDAC3-deficient CD115−CDP might be due to the substantially decreased total numbers of DCs. This could be clarified by further analysis using additional cell surface markers.
7) Finally, in Fig 4H, how do the authors explain that Hdac3fl/fl express Il7r, while they are supposed to be sorted CD127- cells?
This is indeed an interesting question. In this study, we confirmed that CD115−CDPs were isolated from the surface CD127− cell population for RNA-seq analysis, and the purity of the sorted cells were checked (Author response image 6), as shown in Figure4−figure supplement 1 in revised manuscript.
The possible explanation for the expression of Il7r mRNA in some HDAC3fl/fl CD115−CDPs, as revealed in Figure 4H by RNA-seq analysis, could be due to a very low level of cell surface expression of CD127, these cells therefore could not be efficiently excluded by sorting for surface CD127- cells.
Author response image 6.
CD115−CDPs sorting from Hdac3-Ctrl and Hdac3-KO mice
8) What is known about the expression of HDAC3 in the different hematopoietic precursors analysed in this study? This information is available only for a few of them in Supplementary Figure 1. If not yet studied, they should be addressed.
We conducted additional analysis to address the expression of Hdac3 in various hematopoietic progenitor cells at different stages, based on the RNA-seq analyis. The data revealed a relatively consistent level of Hdac3 expression in progenitor populations, including HSC, MMP4, CLP, CDP and BM pDCs (Author response image 7). That suggests that HDAC3 may play an important role in the regulation of hematopoiesis at multiple stages. This information is now added in Figure1−figure supplement 1B of revised manuscript.
Author response image 7.
Hdac3 expression in hematopoietic progenitor cells
9) It would be highly informative to extend CUT and Tag studies to Irf8 and Tcf4, if this is technically feasible.
We totally agree with the reviewer. We have indeed attempted using CUT and Tag study to compare the binding sites of IRF8 and TCF4 in wild-type and Hdac3-deficient pDCs. However, it proved that this is technically unfeasible to get reliable results due to the limited number of cells we could obtain from the HDAC3 deficient mice. We are committed to explore alternative approaches or technologies in future studies to address this issue.
-
eLife assessment
This study examines the expression of HDAC3 within DC compartment. Taking advantage of tamoxifen inducible ERT2-cre mouse model they observe the dependency of pDCs but not cDCs on HDAC3. The requirement of this histone modifier appears to occur during development around the CLP stage. Tamoxifen treated mice lack almost all pDC besides lymphoid progenitors. RNA seq studies identify multiple DC specific target genes within the remaining pDC - using Cut and Tag technology they validate some of the identified targets of HDAC3. Taken together, this study shows the requirement of HDAC3 on pDC but not cDC, congruent with the recent findings of a lymphoid origin of pDC.
-
Reviewer #1 (Public Review):
The work by Yijun Zhang and Zhimin He at al. analyzes the role of HDAC3 within DC subsets. Using an inducible ERT2-cre mouse model they observe the dependency of pDCs but not cDCs on HDAC3. The requirement of this histone modifier appears to be early during development around the CLP stage. Tamoxifen treated mice lack almost all pDCs besides lymphoid progenitors. Through bulk RNA seq experiment the authors identify multiple DC specific target gens within the remaining pDCs and further using Cut and Tag technology they validate some of the identified targets of HDAC3.<br /> Collectively the study is well executed and shows the requirement of HDAC3 on pDCs but not cDCs, in line with the recent findings of a lymphoid origin of pDC.
While the authors provide extensive data on the requirement of HDAC3 within progenitors, the high expression of HDAC3 in mature pDCs may underly a functional requirement. Have you tested INF production in CD11c cre pDCs? Are there transcriptional differences between pDCs from HDAC CD11c cre and WT mice?
A more detailed characterization of the progenitor compartment that is compromised following depletion would be important, as also suggested in the specific points.
-
Reviewer #2 (Public Review):
In this article Zhang et al. report that the Histone Deacetylase-3 (HDAC3) is highly expressed in mouse pDC and that pDC development is severely affected both in vivo and in vitro when using mice harbouring conditional deletion of HDAC3. However, pDC numbers are not affected in Hdac3fl/fl Itgax-Cre mice, indicating that HDCA3 is dispensable in CD11c+ late stages of pDC differentiation. Indeed, the authors provide wide experimental evidence for a role of HDAC3 in early precursors of pDC development, by combining adoptive transfer, gene expression profiling and in vitro differentiation experiments. Mechanistically, the authors have demonstrated that HDAC3 activity represses the expression of several transcription factors promoting cDC1 development, thus allowing the expression of genes involved in pDC development. In conclusion, these findings reveals HDAC3 as a key epigenetic regulator of the expression of the transcription factors required for pDC vs cDC1 developmental fate.
These results are novel and very promising. However, supplementary information and eventual further investigations are required to improve the clarity and the robustness of this article.
Major points<br /> 1) The gating strategy adopted to identify pDC in the BM and in the spleen should be entirely described and shown, at least as a Supplementary Figure. For the BM the authors indicate in the M & M section that they negatively selected cells for CD8a and B220, but both markers are actually expressed by differentiated pDC. However, in the Figures 1 and 2 pDC has been shown to be gated on CD19- CD11b- CD11c+. What is the precise protocol followed for pDC gating in the different organs and experiments?
2) pDC identified in the BM as SiglecH+ B220+ can actually contain DC precursors, that can express these markers, too. This could explain why the impact of HDAC3 deletion appears stronger in the spleen than in the BM (Figures 1A and 2A). Along the same line, I think that it would important to show the phenotype of pDC in control vs HDAC3-deleted mice for the different pDC markers used (SiglecH, B220, Bst2) and I would suggest to include also Ly6D, taking also in account the results obtained in Figures 4 and 7. Finally, as HDCA3 deletion induces downregulation of CD8a in cDC1 and pDC express CD8a, it would important to analyse the expression of this marker on control vs HDAC3-deleted pDC.
3) How do the authors explain that in the absence of HDAC3 cDC2 development increased in vivo in chimeric mice, but reduced in vitro (Figures 2B and 2E)? More generally, as reported also by authors (line 207), the reconstitution with HDAC3-deleted cells is poorly efficient. Although cDC seem not to be impacted, are other lymphoid or myeloid cells affected? This should be expected as HDAC3 regulates T and B development, as well as macrophage function. This should be important to know, although this does not call into question the results shown, as obtained in a competitive context.
4) What are the precise gating strategies used to identify the different hematopoietic precursors in the Figure 4 ? In particular, is there any lineage exclusion performed? Moreover, what is the SiglecH+ CD11c- population appearing in the spleen of mice reconstituted with HDAC3-deleted CDP? Data shown in Figure 4F should be expressed as log2 and not10. Finally, how do the authors explain that Hdac3fl/fl express Il7r, while they are supposed to be sorted CD127- cells?
5) What is known about the expression of HDAC3 in the different hematopoietic precursors analysed in this study? This information is available only for a few of them in Supplementary Figure 1. If not yet studied, they should be addressed.
6) It would be highly informative to extend CUT and Tag studies to Irf8 and Tcf4, if this is technically feasible.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
Reviewer #1 (Public Review):
This is a very exciting manuscript from Meng Wang's lab on lysosomal proteomics. They used several different protein tags to identify the lysosomal proteome. The exciting findings include A) specific lysosomal proteins exist in a tissue-specific manner B) lipl-4 overexpression and daf-2 extend life span using different mechanisms C) identification of novel lysosomal proteins D) demonstration of the function of several lysosomal proteins in regulation lysosome abundance and function.
We thank the reviewer for finding our manuscript exciting.
Reviewer #2 (Public Review):
In this manuscript, Yu and colleagues profile the lysosome content in C. elegans. They implement lysosome immunoprecipitation (Lyso-IP) for C. elegans and they convincingly show that this method successfully isolates lysosomes from whole worms. The authors find that the lysosomes of worms overexpressing the lysosomal lipase lipl4 are enriched for AMPK subunits and nucleoporins and that these proteins are required for the longevity of lipl-4 overexpressing worms. The authors also show that this is specific to this longevity pathway given that another long-lived worm strain (daf2) does not exhibit enrichment for nucleoporins nor does it require them for longevity. The authors go on to express the Lyso-IP tag in different tissues of C. elegans (muscle, hypodermis, intestine, neurons) and identify the tissue-specific lysosome proteomes. Finally, the authors use this method to identify lysosome proteins in mature lysosomes and they find new proteins that regulate lysosomal acidification.
The authors present a powerful tool to unbiasedly identify lysosome-associated proteins in C. elegans, and they provide an in-depth assessment of how this method can be used to understand longevity pathways and identify novel proteins. Understanding lysosomal differences in specific tissues or in response to different longevity conditions are exciting as it provides new insight into how organelles could control specific homeostasis responses. This tool and proteomics datasets also represent a great resource for the C. elegans community and should pry open new studies on the regulation and role of the lysosome at the organismal level.
We truly appreciate that the reviewer’s positive comment on our work.
Addressing the following suggestions would help strengthen this already strong manuscript. First, it would be helpful to validate selected candidates from the tissuespecific Lyso-IP to verify that the protocol is still specific with lower sample amounts. Second, it would be helpful to provide more details on the methods, notably for sample preparation and analysis, so that it can serve as a guideline for the community. Third, the manuscript contains a lot of data and conditions, which is great, but they may also feel disconnected in some cases and it could be helpful to focus the study on the main key findings.
We thank the reviewer’s comments. As suggested by the reviewer, we have also generated a CRISPR knock-in line for one hypodermis-specific candidate Y58A7A.1 that encodes a copper transporter and validated its hypodermis-specific lysosomal localization (new Supplementary Figure 2E).
As suggested by the reviewer, we have extended the method section on Lyso-IP to include more details. We believe that the new version should be sufficient for any lab to follow this protocol and conduct their own analyses. We will also take advantage of the eLife “Request a Protocol” feature to share the detailed version of the Lyso-IP method with researchers who are interested.
We have thoroughly reorganized the manuscript to increase the textual clarity and improve the connection between different analyses and results.
Reviewer #3 (Public Review):
The manuscript by Ji et al dissects the important role of lysosomes in cellular metabolism and signaling and their regulation by various associated proteins. The authors utilized deep proteomic profiling in C.Elegans to identify lysosome-associated proteins involved in regulating longevity and discovered the recruitment of AMPK and nucleoporin proteins in response to increased lysosomal lipolysis. Additionally, the authors found lysosomal heterogeneity across different tissues and specific enrichment of the Ragulator complex on Cystinosin-positive lysosomes.
Strengths of this work include the utilization of deep proteomic profiling to identify novel lysosome-associated proteins involved in longevity regulation, as well as the discovery of lysosomal heterogeneity and specific protein enrichments across different worm tissues. These findings point to a complex interplay between lysosomal protein dynamics, signal transduction, organelle crosstalk, and organism longevity.
One weakness of this work may be the limited scope of the study, as it focuses primarily on the identification and characterization of lysosome-associated proteins involved in longevity regulation, with limited mechanistic follow-up and some unsubstantiated claims.
We thank the reviewer for her/his helpful comments and suggestions. The primary goal of this manuscript is to provide new methods and resource to the community. We did have several biological findings from the current study, and mechanistic follow-up with these findings will be interesting future topics but may beyond the scope of the current manuscript. In addition, we have provided new experimental results to further support several claims that the reviewer has commented on.
-
Reviewer #2 (Public Review):
In this manuscript, Yu and colleagues profile the lysosome content in C. elegans. They implement lysosome immunoprecipitation (Lyso-IP) for C. elegans and they convincingly show that this method successfully isolates lysosomes from whole worms. The authors find that the lysosomes of worms overexpressing the lysosomal lipase lipl-4 are enriched for AMPK subunits and nucleoporins and that these proteins are required for the longevity of lipl-4 overexpressing worms. The authors also show that this is specific to this longevity pathway given that another long-lived worm strain (daf-2) does not exhibit enrichment for nucleoporins nor does it require them for longevity. The authors go on to express the Lyso-IP tag in different tissues of C. elegans (muscle, hypodermis, intestine, neurons) and identify the tissue-specific lysosome proteomes. Finally, the authors use this method to identify lysosome proteins in mature lysosomes and they find new proteins that regulate lysosomal acidification.
The authors present a powerful tool to unbiasedly identify lysosome-associated proteins in C. elegans, and they provide an in-depth assessment of how this method can be used to understand longevity pathways and identify novel proteins. Understanding lysosomal differences in specific tissues or in response to different longevity conditions are exciting as it provides new insight into how organelles could control specific homeostasis responses. This tool and proteomics datasets also represent a great resource for the C. elegans community and should pry open new studies on the regulation and role of the lysosome at the organismal level.
Addressing the following suggestions would help strengthen this already strong manuscript. First, it would be helpful to validate selected candidates from the tissue-specific Lyso-IP to verify that the protocol is still specific with lower sample amounts. Second, it would be helpful to provide more details on the methods, notably for sample preparation and analysis, so that it can serve as a guideline for the community. Third, the manuscript contains a lot of data and conditions, which is great, but they may also feel disconnected in some cases and it could be helpful to focus the study on the main key findings.
-
-
-
Any recommendations on Analog way of doing it? Not the Antinet shit
reply to u/IamOkei at https://www.reddit.com/r/Zettelkasten/comments/17beucn/comment/k5s6aek/?utm_source=reddit&utm_medium=web2x&context=3
u/IamOkei, I know you've got a significant enough practice that not much of what I might suggest may be helpful beyond your own extension of what you've got and how it is or isn't working for you. Perhaps chatting with a zettelkasten therapist may be helpful? Does anyone have "Zettelkasten Whisperer" on a business card yet?! More seriously, I occasionally dump some of my problems and issues into a notebook, unpublished on my blog, or even into a section of my own zettelkasten, which I never index or reconsult, as a helpful practice. Others like Henry David Thoreau have done something like this and there's a common related practice of writing "Morning Pages" that you can explore. My own version is somewhat similar to the idea of rubber duck debugging but focuses on my own work. You might try doing something like this in one of Bob Doto's cohorts or by way of private consulting sessions. Another free version of this could be found by participating in Will's regular weekly posts/threads "Share with us what is happening in your ZK this week" at https://forum.zettelkasten.de/. It's always a welcoming and constructive space. There are also some public and private (I won't out them) Discords where some of the practiced hands chat and commiserate with each other. Even the Obsidian PKM/Zettelkasten Discord channels aren't very Obsidian/digital-focused that you couldn't participate as an analog practitioner. I've even found that participating in book clubs related to some of my interests can be quite helpful in talking out ideas before writing them down. There are certainly options for working out and extending your own practice.
Beyond this, and without knowing more of your specific issues, I can only offer some broad thoughts which expand on some of the earlier discussion above.
I recommend stripping away Scheper's religious fervor, some of which he seems to have thrown over lately along with the idea of a permanent note or "main card" (something I think is a grave mistake), and trying something closer to Luhmann's idea of ZKII.
An alternate method, especially if you like a nice notebook or a particular fountain pen, might be to take all of your basic literature/fleeting notes along with the bibliographic data in a notebook and then just use your analog index cards/slips to make your permanent notes and your index.
Ultimately it's all a lot of the same process, though it may come down to what you want to call it and your broad philosophy. If you're anti-antinet, definitely quit using the verbiage for the framing there and lean toward the words used by Ahrens, Dan Allosso, Gerald Weinberg, Mark Bernstein, Umberto Eco, Beatrice Webb, Jacques Barzun & Henry Graff, or any of the dozens of others or even make up your own. Goodness knows we need a lot more names and categories for types of notes—just like we all need another one page blog post about how the Zettelkasten method works by someone who's been at it for a week. Maybe someone will bring all these authors to terms one day?
Generally once you know what sorts of ideas you're most interested in, you take fewer big notes on administrivia and focus more of your note taking towards your own personal goals and desires. (Taking notes to learn a subject are certainly game, but often they serve little purpose after-the-fact.) You can also focus less on note taking within your entertainment reading (usually a waste) and focusing more heavily on richer material (books and journal articles) that is "above you" in Adler's framing. You might make hundreds of highlights and annotations in a particular book, but only get two or three serious ideas and notes out of it ultimately. Focus on this and leave the rest. If you're aware of the Pareto principle or the 80/20 rule, then spend the majority of your time on the grander permanent notes (10-20%), and a lot less time worrying about the all the rest (the 80-90%).
In the example above relating to Marx, you can breeze through some low level introductory material for context, but nothing is going to beat reading Marx himself a few times. The notes you make on his text will have tremendously more value than the ones you took on the low level context. A corollary to this is that you're highly unlikely to earn a Ph.D. or discover massive insight by reading and taking note posts on Twitter, Medium, or Substack (except possibly unless your work is on the cultural anthropology of those platforms).
A lot of the zettelkasten spaces focus heavily on the note taking part of the process and not enough on the quality of what you're reading and how you're reading it. This portion is possibly more valuable than the note taking piece, but the two should be hand-in-glove and work toward something.
I suspect that most people who have 1000 notes know which five or ten are the most important to where they're going and how they're growing. Focus on those and your "conversations with texts" relating to those. The rest is either low level context for where you're headed or either pure noise/digital exhaust.
If you think of ideas as incunables, which notes will be worth of putting on your tombstone? In other words: What are your "tombstone notes"? (See what I did there? I came up with another name for a type of note, a sin for which I'm certainly going to spend a lot of time in zettelkasten purgatory.)
-
-
github.com github.com
-
This is a test. I'm trying out syncing Hypothes.is with Obsidian
-
-
www.hagalil.com www.hagalil.com
-
Eines der Rituale, das Mohammed von den Juden übernimmt, ist das dreimalige Beten am Tag, das er durch zwei weitere ergänzt hat. Von der anfänglichen Gebetsrichtung nach Jerusalem war bereits weiter oben die Rede. Für die Muslime führte Mohammed den Freitag-Gottesdienst als zentrales rituelles Geschehen ein — damit wollte er sich von den Juden unterscheiden, für die der Samstag, der Schabbath, der heilige Tag der Woche ist. Und auch das „Fasten am Aschura-Tag“, dem zehnten Tag im hebräischen Monat Tischri, erweiterte Mohammed zum Ramadan-Fasten. Ebenso hat Mohammed die Beschneidung für alle männlichen Kinder übernommen, allerdings nicht am achten Tag nach der Geburt wie bei den Juden, sondern generell erst sehr viel später. Juden nehmen vor jeder rituellen Handlung und auch vor dem Thora-Studium das rituelle Händewaschen vor, Muslime waschen bekanntlich Gesicht, Hände und Füße, bevor sie die Moschee zum Gebet betreten. Auch dabei dürfte es sich vermutlich um mehr als bloße Ähnlichkeiten handeln.
Der Teufel ist ein Imitator, aber ein schlechter.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary: Sharma, et al. report the characterization of the polar tube (PT) from the microsporidian species, Vairimorpha necatrix, using a combination of optical microscopy, cryo-ET, and proteomics. The polar tube is a fascinating invasion apparatus which mediates the translocation of the parasite into the inside of a host cell to initiate infection. Similar to results obtained previously in other species, the authors show that PT firing in Vairimorpha necatrix is extremely fast, occurring on the order of 1 sec, and that the extruded PT is over 100 microns long in this species. Using cryo-ET to image the PT at a high resolution, they find that it exists in two major states: both an empty state and a state filled with cargo, and that the thickness of the tube wall changes when cargo is present. Strikingly, the authors observed that one of the cargo components, the ribosomes, are organized ordered array that may have helical symmetry. Finally, the authors took advantage of a naturally occurring "His tag" on PTP3 to affinity purify PTP3-containing protein complexes and analyze the composition using proteomics.
Major comments
ln 139-140: The absolute handedness of something can be very tricky to determine by cryo-ET (but certainly is possible). Variable hardware configurations between microscopes and differing conventions between software packages (e.g., for what direction is a positive tilt angle) can lead to inversion of the apparent handedness in the final tomogram. How certain are the authors that the absolute handedness is indeed right handed, as this seems to vary between the various display items in the manuscript? For example, in Fig 1c, my impression is that ribosome helices are left handed, as they are also in the supplemental movie. If this isn't known with certainty, perhaps it would be sufficient to describe the apparent helical symmetry but state that the handedness is ambiguous.
Minor comments
ln 39-40: Perhaps also cite the E. cuniculi genome paper?
ln 97-98: It is interesting that the PT shortens in V. necatrix as well, and while I can pick this out in some of the individual traces in Sup Fig. 1b, it seems to get washed out in the trend line and isn't super obvious. If it isn't to laborious, it could be nice to add a panel showing the quantification of this (e.g., plotting the final length of each PT as a percentage of the maximum length achieved).
ln 98-100: Strictly speaking, I don't think the referenced figure shows the sporoplasm being transformed into an extended conformation, only that it is spherical upon exit. Simply reword this to make clear that the deformations are inferred to occur but not directly observed.
Because PT firing is so fast, the probability of trapping a PT in the process of transporting cargo would be pretty low. So then why does the PT still contain cellular cargo like ribosomes inside in the tomograms? Should these not have emerged in the sporoplasm which would enter the host cell? Are these "defective" spores that have failed to complete sporoplasm transport? Perhaps this is worth discussing.
ln 118: The authors note an apparent correlation between the phase of germination and the thickness of the tube wall but don't specify what this correlation is. Is it thicker in the early phase and thinner in later phase, or vice versa? One could imagine "empty" tubes existing before or after sporoplasm transport, for example, so I'm not sure I follow how the phase is being inferred from the tomograms.
ln 119-120: What is the evidence that the outer layer is made of PTPs, or that it is even protein (for example, as opposed to cell wall-like carbohydrate polymers)? I think this seems like a very reasonable hypothesis, but I would suggest explaining the logic and ensuring the degree of uncertainty is conveyed clearly. In light of this, I would also suggest changing figure labels, etc, that refer to the PTP layer (e.g., Fig. 3, PTPc and PTPe labels).
ln 121, 123: "sheathed by a thin layer" and "enveloped by a thick outer layer": is this an additional layer being described? Or is this referring to the putative PTP layer, and that its thickness is variable?
ln 125-126: While I understand how some features, like ribosomes, proteasomes, and generic membrane compartments could be identified, it is unclear to me how one would recognize the nucleus when inside the PT, nor are any examples shown. If the data is clear, perhaps the authors could show it in a figure? Otherwise, I suggest removing the claim regarding the nucleus.
The arrangement of the ribosomes in a subset of tubes is really fascinating! While the number of observations is relatively small (n=5), it seems like it should be possible to comment preliminarily on whether there is much variability in their helical arrangement. Do the helical parameters vary much between observations? Does the til, pitch, etc vary much, are the 5 occurrences very similar? Is there any sign that they are associated with a membrane? Also, since the ribosomes form a lattice-like arrangement, it seems like it would be possible to trace ribosome helices in both the left and right handed directions. How did the authors decide between the two possibilities? This doesn't seem to be discussed.
Fig. 2e: Are the two different colors/orientations meant to represent the two protamers of the ribosome dimer? When refined subvolumes are mapped back onto the original tomogram do the authors observe a similar crystalline arrangement of particles as in their segmentation? Are the orientations of the ribosomes correlated, and do the provide any evidence for the dimeric arrangement mentioned? The PlaceObjects plugin for Chimera can be very helpful for visualizing this: https://www.biochem.mpg.de/7939908/Place-Object
Supp figure 4(b-d): Perhaps these models could be colored by pLDDT scores (with a key indicating the color scheme), so the reader can assess the quality of the predictions?
How were the measurements of the membrane thickness and putative PTP layer carried out? On the tomogram projections? STAs? How were the boundaries of the layers established (e.g., map threshholding if STA?)? This information appears to be missing from the methods.
Some tubes that are labeled as 'PTempty' actually contain cargo and look dense (example supp. Fig 2c, left and middle panels). Is it fair to classify these as empty tubes?
Fig. 3d: I am not entirely clear on what is being shown here. Are independent reconstructions of PTcargo and PTempty superposed (aligned on membrane)? The description in the figure legend doesn't clearly say what is being displayed. I think it might be more clear to show these side-by-side instead of superposed (i.e., 4 panels instead of 2).
Sup Fig 1: Define S and SP in legend or just spell out on figure? Missing x-axis label on panel b.
Fig. 4b and Sup Fig 2a: The depictions of the PT in the spore here are left-handed. In a few species, the coil of the PT was found to form a right-handed helix (Jaroenlak, et al.), and it seems plausible that this may be a general feature that would be conserved across microsporidia. I appreciate that it might not be actually known to be right-handed in V. necatrix, but if there is no strong data either way, perhaps it would make sense for these depictions of the PT to be right-handed.
I think all three of us are more or less in consensus about this manuscript, and I largely agree with the other reviewers comments. I think after addressing reviewer suggestions, this will be a pretty nice story.
Significance
Overall, this manuscript from Sharma, et al. presents interesting new findings about the structure and cargo transport function of the microsporidian PT. Microsporidia infect a wide range of hosts, including humans, and how the PT mediates parasite entry into cells is poorly understood. The approaches used in this study are appropriate for tackling the questions at hand, and appear to be generally well executed and interpreted. The observation that ribosomes assemble into an array within the PT is very unexpected and quite fascinating, and may be of broader interest to researchers working on ribosome structure and function, in addition to researchers studying microsporidia. The approach to investigating proteins interacting with PTP3 was quite elegant, and yielded a list of potential interactors that appears to be of very high quality and is highly plausible based on the literature field. We think this work is a substantial advance in the field and provides important new insights into the organization of the PT. - Please define your field of expertise with a few keywords to help the authors contextualize your point of view:
Structural biology, microsporidia - Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.
We are not experts in proteomics/mass spectrometry
-
-
www.reddit.com www.reddit.com
-
Should I use zettelkasten? .t3_172ujnk._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; } questionI am a student in college in the UK studying A levels (Advanced levels), this includes mathematics, biology, chemistry and physics. I dont really take notes for mathematics so I wont be using any type of note taking system for that but for the sciences IDK what to do.
reply to u/Wooden-School-4091 at https://www.reddit.com/r/Zettelkasten/comments/172ujnk/should_i_use_zettelkasten/
This comes up fairly frequently. See https://hypothes.is/users/chrisaldrich?q=tag%3A%27zettelkasten+for+studying%27 and related links for other variations and advice on this theme.
-
-
-
ja. fehler:
In Bayern hat sich eine konservative Mehrheit gebildet, die 67,4 Prozent der abgegebenen Stimmen erhalten hat: CSU (die Union wird hier mitgerechnet unter zumindest potentiell noch konservativ, die Red.), Freie Wähler und AfD.
die einzige "konservative" partei ist die AFD, alle anderen sind betrüger ("conservatives in name only").
aber die AFD war noch nie teil einer regierung, sonst würde man sehen: auch die AFD kann nichts ändern, weil alle entscheidungen kommen von oben, und politiker verkaufen diese entscheidungen nach unten, wie in einer dauerwerbesendung. deswegen, auch die AFD ist nur "controlled opposition".
wenn politiker wirklich mal rebellieren gegen "oben", dann wird die zentralbank einfach die geldzahlungen einstellen, und am nächsten tag ist die regierung pleite. schon heute sind alle regierungen pleite, und leben von kredit von der zentralbank.
Gebt mir die Kontrolle über die Währung einer Nation, und es ist mir gleichgültig, wer die Gesetze macht.
-- Amschel Mayer Rothschild
deswegen: politik ist zeitverschwendung. aktivismus heisst selbsthilfe, selbstorganisation, kleinstaaten.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:<br /> Cincotta et al set out to investigate the presence of glucocorticoid receptors in the male and female embryonic germline. They further investigate the impact of tissue-specific genetically induced receptor absence and/or systemic receptor activation on fertility and RNA regulation. They are motivated by several lines of research that report inter and transgenerational effects of stress and or glucocorticoid receptor activation and suggest that their findings provide an explanatory mechanism to mechanistically back parental stress hormone exposure-induced phenotypes in the offspring.
Strengths:<br /> - A chronological immunofluorescent assessment of GR in fetal and early life oocyte and sperm development.<br /> - RNA seq data that reveal novel cell type specific isoforms validated by q-RT PCR E15.5 in the oocyte.<br /> - 2 alternative approaches to knock out GR to study transcriptional outcomes. Oocytes: systemic GR KO (E17.5) with low input 3-tag seq and germline-specific GR KO (E15.5) on fetal oocyte expression via 10X single cell seq and 3-cap sequencing on sorted KO versus WT oocytes - both indicating little impact on polyadenylated RNAs<br /> - 2 alternative approaches to assess the effect of GR activation in vivo (systemic) and ex vivo (ovary culture): here the RNA seq did show again some changes in germ cells and many in the soma.<br /> - They exclude oocyte-specific GR signaling inhibition via beta isoforms.<br /> - Perinatal male germline shows differential splicing regulation in response to systemic Dex administration, results were backed up with q-PCR analysis of splicing factors.
Weaknesses:<br /> - The presence of a protein cannot be entirely excluded based on IF data (staining of spermatids is referred to but not shown).<br /> - The authors do not consider post-transcriptional level a) modifications also trigged by GR activation b) non-coding RNAs (not assessed by seq).<br /> - Sequencing techniques used are not total RNA but either are focused on all polyA transcripts (10x) or only assess the 3' prime end and hence are not ideal to study splicing, The number of replicates in the low input seq is very low and hence this might be underpowered. Since Dex treatment showed some (modest) changes in oocyte RNA - effects of GR depletion might only become apparent upon Dex treatment as an interaction.<br /> - Effects in oocytes following systemic Dex might be indirect due to GR activation in the soma.<br /> - Even though ex vivo culture of ovaries shows GR translocation to the nucleus it is not sure whether the in vivo systemic administration does the same.
The conclusion that fetal oocytes are "intrinsically buffered to GR signalling" is very strong, given that "only" poly A sequencing and few replicates of 3-prime sequencing have been analyzed and information is lacking on whether GR is activated in germ cells in the systemically dex-injected animals.
This work is a good reference point for researchers interested in glucocorticoid hormone signaling fertility and RNA splicing. It might spark further studies on germline-specific GR functions and the impact of GR activation on alternative splicing.
While the study provides a characterization of GR and some aspects of GR perturbation, and the negative findings in this study do help to rule out a range of specific roles of GR in the germline, there is still a range of other potential unexplored options. The introduction of the study eludes to implications for intergenerational effects via epigenetic modifications in the germline, however, it does not mention that the indirect effects of reproductive tissue GR signaling on the germline have indeed already been described in the context of intergenerational effects of stress. Also, the study does not assess epigenetic modifications.
The conclusion that the persistence of a phenotype for up to three generations suggests that stress can induce lasting epigenetic changes in the germline is misleading. For the reader who is unfamiliar with the field, it is important to define much more precisely what is referred to as "a phenotype". Furthermore, this statement evokes the impression that the very same epigenetic changes in the germline have been observed across multiple generations.
The evidence of the presence of GR in the germline is also somewhat limited - since other studies using sequencing have detected GR in the mature oocyte and sperm.
The discussion ends again on the implications of sex-specific differences of GR signaling in the context of stress-induced epigenetic inheritance. It states that the observed differences might relate to the fact that there is more evidence for paternal lineage findings, without considering that maternal lineage studies in epigenetic inheritance are generally less prevalent due to some practical factors - such as more laborious study design making use of cross-fostering or embryo transfer. Since the authors comment on RNA-mediated inheritance it seems inevitable to again consider indirect effects.
-
-
www.core-econ.org www.core-econ.org
-
Comparing the two points, you can see that E is Pareto inefficient because both the rich and poor are better off at R than at E. The income distribution at R is also the one at which the poor are as rich as they can possibly be in this economy, as indicated by the feasible frontier. This is the point that Rawls favoured (and why we called it point R).
The impact of free international financial markets on East Asia, as viewed through the lens of this section's framework, is complex. On one hand, these markets have stimulated economic growth in the region by facilitating investment and access to global capital, which has the potential to positively affect individuals' financial wealth and physical assets. However, the benefits have not been equally distributed, contributing to growing income disparities. According to SSRN, "growth-promoting economic freedoms hamper future progress by raising inequalities." The disparities are rooted in differences in education, gender, and social class, influenced by institutions and technology.
Therefore, while free international financial markets have brought economic opportunities to East Asia, they have also exacerbated income inequality, highlighting the need to address these disparities by considering the interplay between institutions, technology, and individual endowments to achieve a more balanced outcome in the region.
Works Cited: Ilkay Yılmaz , Mehmet Murat Balkan , Mehmet Nasih Tağ Income Inequality and Economic Freedom: The 2000s
-
-
www.agile-doctor.com www.agile-doctor.com
-
Total cost of ownership (TCO) addresses the total cost of software development from inception to sun setting. In 2011, the CRASH report stated the total cost of ownership for software code was $18/Line of Code (LOC). Of this, it is generally accepted that the majority of this cost is related to the maintenance of the software after its initial creation, with estimates ranging from 60-90%.
$18 /LOC
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
Reviewer #1 (Public Review):
The manuscript by Royall et al. builds on previous work in the mouse that indicates that neural progenitor cells (NPCs) undergo asymmetric inheritance of centrosomes and provides evidence that a similar process occurs in human NPCs, which was previously unknown.
The authors use hESC-derived forebrain organoids and develop a novel recombination tag-induced genetic tool to birthdate and track the segregation of centrosomes in NPCs over multiple divisions. The thoughtful experiments yield data that are concise and well-controlled, and the data support the asymmetric segregation of centrosomes in NPCs. These data indicate that at least apical NPCs in humans undergo asymmetric centrosome inheritance. The authors attempt to disrupt the process and present some data that there may be differences in cell fate, but this conclusion would be better supported by a better assessment of the fate of these different NPCs (e.g. NPCs versus new neurons) and would support the conclusion that younger centriole is inherited by new neurons.
We thank the reviewer for their supportive comments (“…thoughtful experiments yield data that are concise and well-controlled…”).
Reviewer #2 (Public Review):
Royall et al. examine the asymmetric inheritance of centrosomes during human brain development. In agreement with previous studies in mice, their data suggest that the older centrosome is inherited by the self-renewing daughter cell, whereas the younger centrosome is inherited by the differentiating daughter cell. The key importance of this study is to show that this phenomenon takes place during human brain development, which the authors achieved by utilizing forebrain organoids as a model system and applying the recombination-induced tag exchange (RITE) technology to birthdate and track the centrosomes.
Overall, the study is well executed and brings new insights of general interest for cell and developmental biology with particular relevance to developmental neurobiology. The Discussion is excellent, it brings this study into the context of previous work and proposes very appealing suggestions on the evolutionary relevance and underlying mechanisms of the asymmetric inheritance of centrosomes. The main weakness of the study is that it tackles asymmetric inheritance only using fixed organoid samples. Although the authors developed a reasonable mode to assign the clonal relationships in their images, this study would be much stronger if the authors could apply time-lapse microscopy to show the asymmetric inheritance of centrosomes.
We thank the reviewer for their constructive and supportive comments (“…the study is well executed and brings new insights of general interest for cell and developmental biology with particular relevance to developmental neurobiology….”). We understand the request for clonal data or dynamic analyses in organoids (e.g., using time-lapse microscopy). We also agree that such data would certainly strengthen our findings. However, as outlined above (please refer to point #1 of the editorial summary), this is unfortunately currently not feasible. However, we have explicitly discussed this shortcoming in our revised manuscript and why future experiments (with advanced methodology) will have to do these experiments.
Reviewer #3 (Public Review):
In this manuscript, the authors report that human cortical radial glia asymmetrically segregates newly produced or old centrosomes after mitosis, depending on the fate of the daughter cell, similar to what was previously demonstrated for mouse neocortical radial glia (Wang et al. 2009). To do this, the authors develop a novel centrosome labelling strategy in human ESCs that allows recombination-dependent switching of tagged fluorescent reporters from old to newly produced centrosome protein, centriolin. The authors then generate human cortical organoids from these hESCs to show that radial glia in the ventricular zone retains older centrosomes whereas differentiated cells, i.e. neurons, inherit the newly produced centrosome after mitosis. The authors then knock down a critical regulator of asymmetric centrosome inheritance called Ninein, which leads to a randomization of this process, similar to what was observed in mouse cortical radial glia.
A major strength of the study is the combined use of the centrosome labelling strategy with human cortical organoids to address an important biological question in human tissue. This study is similarly presented as the one performed in mice (Wang et al. 2009) and the existence of the asymmetric inheritance mechanism of centrosomes in another species grants strength to the main claim proposed by the authors. It is a well-written, concise article, and the experiments are well-designed. The authors achieve the aims they set out in the beginning, and this is one of the perfect examples of the right use of human cortical organoids to study an important phenomenon. However, there are some key controls that would elevate the main conclusions considerably.
We thank the reviewer for their overall support of our findings (“..authors achieve the aims they set out in the beginning, and this is one of the perfect examples of the right use of human cortical organoids to study an important phenomenon…”). We also understand the reviewer’s request for additional experiments/controls that “…would elevate the main conclusions considerably.”
1) The lack of clonal resolution or timelapse imaging makes it hard to assess whether the inheritance of centrosomes occurs as the authors claim. The authors show that there is an increase in newly made non-ventricular centrosomes at a population level but without labelling clones and demonstrating that a new or old centrosome is inherited asymmetrically in a dividing radial glia would grant additional credence to the central conclusion of the paper. These experiments will put away any doubt about the existence of this mechanism in human radial glia, especially if it is demonstrated using timelapse imaging. Additionally, knowing the proportions of symmetric vs asymmetrically dividing cells generating old/new centrosomes will provide important insights pertinent to the conclusions of the paper. Alternatively, the authors could soften their conclusions, especially for Fig 2.
We understand the reviewer’s request. As outlined above (please refer to point #1 of the editorial summary), we had tried previously to add data using single cell timelapse imaging. However, due to the size and therefore weakness of the fluorescent signal we had failed despite extensive efforts. According to the reviewer’s suggestion we have now explicitly discussed this shortcoming and softened our conclusions.
2) Some critical controls are missing. In Fig. 1B, there is a green dot that does not colocalize with Pericentrin. This is worrying and providing rigorous quantifications of the number of green and tdTom dots with Pericentrin would be very helpful to validate the labelling strategy. Quantifications would put these doubts to rest. Additionally, an example pericentrin staining with the GFP/TdTom signal in figure 4 would also give confidence to the reader. For figure 4, having a control for the retroviral infection is important. Although the authors show a convincing phenotype, the effect might be underestimated due to the incomplete infection of all the analyzed cells.
We have included more rigorous quantifications in our revised manuscript.
For Figure 1: There are indeed some green speckles that might be misinterpreted as a green centrosome. However, the speckles are usually smaller and by applying a strict size requirement we exclude speckles. To check whether the classifier might interpret any speckles as centrosomes, we manually checked 60 green “dots” that were annotated as centrosome. From these images all green spots detected as centrosome co-localized with Pericentrin signal (Images shown in Author response image 1).
For Figure 4: as we are comparing cells that were either infected with a retrovirus expressing scrambled or Ninein-targeting shRNA we compare cells that experienced a similar treatment. Besides that, only cells infected with the virus express Cre-ERT2 whereby only the centrosomes of targeted cells were analyzed. Accordingly, we only compare cells expressing scrambled or Ninein-targeting shRNA, all surrounding “wt” cells are not considered.
Author response image 1.
Pictures used to test the classifier. Each of the green “dots” recognized by the classifier as a Centriolin-NeonGreen-containing centrosome (green) co-localized with Pericentrin signal (white).
3) It would be helpful if the authors expand on the presence of old centrosomes in apical radial glia vs outer radial glia. Currently, in figure 3, the authors only focus on Sox2+ cells but this could be complemented with the inclusion of markers for outer radial glia and whether older centrosomes are also inherited by oRGCs. This would have important implications on whether symmetric/asymmetric division influences the segregation of new/old centrosomes.
That is an interesting question and we do agree that additional analyses, stratified by ventricular vs. oRGCs would be interesting. However, at the time points analysed there are only very few oRGCs present (if any) in human ESC-derived organoids (Qian et al., Cell, 2016). However, we have now added this point for future experiments to our discussion.
-
Reviewer #1 (Public Review):
The manuscript by Royall et al. builds on previous work in the mouse that indicates that neural progenitor cells (NPCs) undergo asymmetric inheritance of centrosomes and provides evidence that a similar process occurs in human NPCs, which was previously unknown.
The authors use hESC-derived forebrain organoids and develop a novel recombination tag-induced genetic tool to birthdate and track the segregation of centrosomes in NPCs over multiple divisions. The thoughtful experiments yield data that are concise and well-controlled, and the data support the asymmetric segregation of centrosomes in NPCs. These data indicate that at least apical NPCs in humans undergo asymmetric centrosome inheritance. The authors attempt to disrupt the process and present some data that there may be differences in cell fate, but this conclusion would be better supported by a better assessment of the fate of these different NPCs (e.g. NPCs versus new neurons) and would support the conclusion that younger centriole is inherited by new neurons.
-
Reviewer #2 (Public Review):
Royall et al. examine the asymmetric inheritance of centrosomes during human brain development. In agreement with previous studies in mice, their data suggest that the older centrosome is inherited by the self-renewing daughter cell, whereas the younger centrosome is inherited by the differentiating daughter cell. The key importance of this study is to show that this phenomenon takes place during human brain development, which the authors achieved by utilizing forebrain organoids as a model system and applying the recombination-induced tag exchange (RITE) technology to birthdate and track the centrosomes.
Overall, the study is well executed and brings new insights of general interest for cell and developmental biology with particular relevance to developmental neurobiology. The Discussion is excellent, it brings this study into the context of previous work and proposes very appealing suggestions on the evolutionary relevance and underlying mechanisms of the asymmetric inheritance of centrosomes. The main weakness of the study is that it tackles asymmetric inheritance only using fixed organoid samples. Although the authors developed a reasonable mode to assign the clonal relationships in their images, this study would be much stronger if the authors could apply time-lapse microscopy to show the asymmetric inheritance of centrosomes.
-
-
www.theguardian.com www.theguardian.com
-
Showers and shared kitchen facilities are in a warm, permanent building, rather than the canvas tents used sixty miles away in Seattle. Every tiny house has a porch and a bathroom. As an equal proportion of the development’s total price tag, each house costs $88,000; on an individual basis they are $19,000 per unit.
Homeless people are actually getting their basic necessities covered and it helps with better hygiene that other people living in those cabins and camps desperately needed.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
We thank the reviewers for their thoughtful assessment of our work and their valuable critiques which we will address in the “Recommendations for the authors” section below. In particular, we appreciate Reviewer #3 noting the value of the C. elegans model system and our efforts to bridge models with our study. We agree with the reviewer that there is a need to clarify the rationale, presentation and interpretation of our results. We have substantially revised the text in our manuscript and Figure legend to address this issue, and provided extensive new commentary and citations to lay out the logic behind our experiments. Indeed, it was our oversight not being more thorough about this initially. We have further adjusted our conclusions to be less unequivocal. Finally, we added an RPM-1 signaling diagram (Fig. 8A) to more clearly annotate the players in the RPM-1/MYCBP2 signaling network that were evaluated genetically in Fig. 8. Importantly, we provide clearer commentary on how genetic enhancer effects with known RPM-1 binding proteins and the absence of genetic suppression in vab-1/Eph receptor double mutants with components of the RPM-1/FSN-1 ubiquitin ligase complex are consistent with the biochemical finding that MYCBP2 stabilizes but does not degrade EphB2. Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.
Following extensive discussions between the three reviewers, all three agree that the C. elegans data, as presented, does not add to, and in fact might harm, your bottom line. Our combined suggestion is to take this data out unless you plan to improve it substantially. All reviewers are perplexed by Figure 2F and the presumed interactions of cytosolic proteins with the extracellular domain of EPHB2. At the very least, please provide some suggestions/model/interpretation.
We have adjusted our manuscript substantially to address this. Please see detailed comments in the individual Reviewer sections below.
We would like to thank the reviewers for their thorough examination of our manuscript, constructive criticisms, and helpful suggestions.
Reviewer #1 (Recommendations For The Authors):
The work is extensive in my view, and mostly of high quality. See minor comments on some of the figures below.
Thank you very much.
Two more major comments :
- I don't think the C. elegans work adds to - in fact I think it hurts - the statement that this regulatory mechanism is specific to EphB2. I would advise the authors to take it out.
We agree that C. elegans has a sole Eph receptor called VAB-1 and is therefore not a specific model for EPH2B. However, testing MYCBP2 specificity for EPHB2 was not the goal or our perceived value for the C. elegans experiments. We now clarify this in the text of the Results section.
Rather, we are providing evidence that the C. elegans ephrin receptor interacts genetically with known MYCBP2/RPM-1 binding proteins. Moreover, we now provide an extensive array of citations to note that genetic enhancer interactions between different RPM-1/MYCBP2 binding proteins is well established. The reviewer has nicely highlighted for us that we handled the C. elegans genetics in too cursory a fashion in our original manuscript. We appreciate this being noted and have now aimed to make this substantially clearer. We hope the reviewer agrees that our revised C. elegans section accomplishes this goal.
Furthermore, we extensively revised the text of the Results to emphasize a key point: our observation that axon termination defects are not suppressed in vab-1; fsn-1 and vab-1; rpm-1 double mutants excludes the possibility that the VAB-1 Eph receptor is a substrate that is inhibited or degraded by the RPM-1/FSN-1 ubiquitin ligase complex. If the VAB-1 Eph receptor were ubiquitinated and degraded by the RPM-1/FSN-1 complex, we would have observed a suppression of phenotype in vab-1; rpm-1 double mutants. The precedent for this genetic relationship between the RPM-1 ubiquitin ligase and its substrates that are degraded has been established by several prior studies (PMID: 15707898; PMID: 31676756; PMID: 35421092). We now more clearly note that the absence of genetic suppression in vab-1; rpm-1 double mutants and vab-1; fsn-1 double mutants is consistent with the non-canonical stabilizing role of MYCBP2 on EPHB2 that was observed in our biochemical experiments with mammalian cells.
We also adjusted the text of the manuscript to stress that we are testing genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This is a key point, as genetic enhancer interactions are consistent with the Eph receptor functioning in the RPM-1 signaling network. This concept has been well established for RPM-1 binding proteins as now noted in our revised text with an extensive number of additional citations to published work.
Based on the above arguments, we respectfully disagree with the reviewer that our C. elegans data should be removed from the paper. To re-iterate, we are not trying to evaluate specificity for MYCBP2 and EPHB2 in C. elegans. Rather, our goals are twofold: 1) To ask whether there is an evolutionarily conserved functional genetic link between Eph receptors and known RPM-1 binding proteins. 2) To provide further in vivo genetic evidence invalidating the hypothesis that Ephrin receptors could be ubiquitination substrates that are inhibited/degraded by MYCBP2.
Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.
- The cellular responses are not robust and the effects of MYCBP2 KO - although significant - are minor in most cases. But I don't think more experiments will help here.
We interpret the comment about the robustness to mean that the extent to which a given cellular response is affected by the loss of MYCBP2 is minor. First, the cellular responses themselves are typical of previous studies and depend on the cellular biology underlying them. For example, a growth collapse of ~50-60% over a background of 10% (Fig. 7) is typical for these sorts of assays (PMID: 37369692; PMID: 33972524; PMID: 17785182). A decrease of cell area by ~25% (Fig. 3) is quite substantial if one considers how much of a cell’s volume is taken up by the nucleus and organelles. Second, the phenotypes elicited by the loss of MYCBP2 are likely brought on by a decrease in EphB2 protein levels, but not its complete absence, as suggested by our biochemical experiment. Given that EphB2 complete loss only affects the cellular responses to a limited extent, the minor effects are not a surprise (e.g. for GC collapse: PMID: 23143520). Nevertheless, the subtle changes in cellular phenotypes, elicited by EPHB2 signaling are often sufficient to achieve proper cell positioning and cell response to guidance cues. For instance, regulation of the growth cone collapse of the outgrowing axons requires delicate changes that are dynamic and temporal.
Minor:
Fig 1C - EPHA3 and EPHB2 seem to run in different sizes, is this the case? In 2A they run at the same size.
We believe this size discrepancy is due to different percentages of SDS-PAGE gels used to resolve proteins. In Fig. 1C, we used a 6% gel for a Western blot analysis of both EPHA3/-B2-FLAG (~130 kDa) and MYCBP2 (~510 kDa). In Fig. 2A however, we performed Western blot analysis using 10% resolving gel to separate and detect EPHA3/-B2-FLAG along with MYC-FBXO45 (~30 kDa). We have reviewed the results obtained from additional biological replicates of this experiment, and observed a similar pattern in gel migration of EPHA3/-B2-FLAG across all replicates.
Fig1F - I can't trust the MYCBP2 blot.
Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the results replace the previous Fig. 1F panel as mentioned on line 158.
In Fig2b the authors claim that there is enhancement in the binding of MYCBP2 and EPHB2 upon FBXO45 expression. For this type of statement quantification is required.
The quantification is now included in Fig. 2C and its significance is mentioned on line 180. Our conclusion about the enhancement stands.
Fig2G - it remained unclear to me where the binding site to MYCBP2 is, how long is the cytoplasmic tail in the DeltaICD protein?
Based on our experimental observations from Fig. 2E-H, we concluded that the fragment encompassing the extracellular domain(s) and/or transmembrane (TM) domain of EPHB2 is necessary for the protein complex formation with MYCBP2. We would like to accentuate that the EPHB2-MYCBP2 interaction might not be direct, and might involve other transmembrane protein(s) acting as a scaffold for EPHB2 and MYCBP2 binding. We did not pursue experiments to determine the exact region of the extracellular-TM portion of EPHB2 that is required for the interaction with MYCBP2.
The cytoplasmic tail in ΔICD protein consists of 25 aa of the N-terminal fragment of EPHB2 juxtamembrane (JM) region, which is adjacent to the TM helix, and followed by the 8 aa FLAG tag (EPHB2 ΔICD domain composition: extracellular domains – TM domain – 25 aa fragment of JM region – FLAG). We have determined the TM and JM sequences based on Hedger et al. (PMID: 25779975) and included the N-terminal portion of the JM region to facilitate proper ΔICD protein localization within the plasma membrane (PMID: 35793621). We modified the schematic in Fig. 2G to better visualise the EPHB2 truncations and now provide information on their size in the figure legend.
Always good to have a model of how all these proteins work together.
While we acknowledge that this would be helpful, we do not have a clear answer on how the EPHB2-MYCBP2 complex formation occurs. This requires further elucidation of the putative proteins involved in this ternary complex or testing the possibility that a MYCBP2 fragment is extruded extracellularly. Without these experiments there are too many possibilities to summarise into a clear model figure. We thus did not make any edits regarding these possibilities in the section starting on line 195.
Reviewer #2 (Recommendations For The Authors):
Overall, the experiments are classical experiments of co-immunoprecipitations, swapping experiments, collapse assays, and stripe assays which all are well carried out and are convincing.
Thank you for your encouraging comments.
Controls for the stripe assay may include Fc / Fc stripe assays.
We have performed these control experiments and now include their quantifications in the results sectioning concerning Fig. 3, starting on line 249, and those concerning Fig. 6 on line 381.
It is not clear to me why SD and not SEM has been used here for presentations.
Standard deviation (SD) measures the dispersion of a dataset relative to its mean. The standard error of the mean (SEM) measures how much discrepancy is likely in a sample’s mean compared with the population mean. Thus, SEM includes a statistical inference about the sampling distribution while SD is a less “processed” measurement that by definition is larger than SEM. SEM might make the data look less dispersed and many journals encourage the use of SD in bar graphs (PMID: 16223828).
Fig 7A: it is rather difficult to see 'branches' in Fig. 7A, better pictures and close-ups should be provided. How are branches defined? This piece of work needs more attention.
To remedy this shortcoming, we now provide inverted images with GFP signal in dark pixels overlaid on Fc (white) / eB2 (pink) stripes next to the original images.
Reviewer #3 (Recommendations For The Authors):
1) My most important suggestion to the authors would be to more carefully describe the results and their interpretation of the results. Sometimes, the distinction is not clear.
We modified the text throughout the manuscript to address this.
2) There are several cases, when the authors report on trends that are not statistically significant (1D, for example), or report no change, when it is clear that the addition of one more sample could have dramatically made a difference (4M - see point 12).
We agree that some of the nonsignificant differences could become significant if we added more Ns. But we prefer not to move our experimental design towards N-chasing and p-hacking (PMID: 25768323). The number of biological replicates is normally pre-determined before the onset of the experiment. Of course, some replicates can be discarded if there is a valid reason, such as a technical issue with the experiment or a positive control not working but this is not relevant for the dataset we have provided.
3) Data in 1F is very difficult to interpret.
As in response to Reviewer #1: Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the improved results are in revised Fig. 1F.
4) Figure 2 puts Figure 1 in a strange perspective. If I understand correctly, fig 2 claims that EPHB2 interaction with MYCBP2 depends on FBXO45 - if that is the case then how does the binding in Figure 1 occur?
Indeed, we propose that the EPHB2-MYCBP2 interaction depends on FBXO45. In Fig. 2, we reveal that FBXO45 enhances the formation of the EPHB2-MYCBP2 complex. Thus, we suspect that the endogenous FBXO45 present in HeLa cells and neurons would mediate the interaction between EPHB2 and MYCBP2 in Fig. 1 experiments. We were unable to show this by Western blotting due to lack of reliable commercial antibodies against FBXO45, the complex containing endogenous FBXO45 and EPHB2 is also implied by our AP-MS data (Fig. 1B) and published databases.
5) I am still trying to wrap my mind around the results in 2G-H. So do MYCBP2 and FBXO45 bind the extracellular domain of EPHBP2? What does that mean?
(see also our response to Reviewer #1, end of their section) Based on our experimental observations from Fig. 2G-H, we conclude that the fragment encompassing the extracellular domain(s) and/or transmembrane domain of EPHB2 is necessary for the protein complex formation with MYCBP2 and FBXO45. Although there is a possibility that MYCBP2 directly binds the extracellular portion of EPHB2, we have not formally tested this hypothesis. MYCBP2 has been previously shown to interact with the extracellular portion of transmembrane N-cadherin (CDH2) via BioID proximity labeling and AP-MS proteomics approaches (PMID: 32341084).
Considering the results in Fig. 2A-B, we suspect that EPHB2-MYCBP2 interaction is indirect, as FBXO45 enhances this association. Secretion of FBXO45 and direct binding of FBXO45 to the extracellular cadherin (EC1-2) domains of N-cadherin has been documented (PMID: 25143387; PMID: 32341084). Although, not tested, this is also a possibility for EPHB2-FBXO45 mode of interaction. Nevertheless, we also cannot rule out the possibility that an unknown transmembrane protein binds EPHB2 extracellularly and the same unknown protein binds MYCBP2/FBXO45 intracellularly. Resolving this model is beyond the scope of this study and will require us to pursue extensive new lines of investigation.
6) I don't understand the stable Hela cell line CRISPR - is this a stable MYCBP2 deletion? In which case why is there only a reduction, not complete elimination of the protein? Or, is this a stable integration of a plasmid generating gRNA against MYCBP2? In which case, I would expect a homozygous null to emerge at some point. In any case, this is not well explained.
These lines are not derived from single cells infected with the CRISPR sgRNA-carrying viruses, therefore they are not clonal and probably contain some cells that express normal levels of MYCBP2, hence its detection on a Western. This is now clarified starting on line 221 and on line 608.
7) In 3C - is this the right statistical analysis?? I would say you want to claim the different effect of the control +/- eB2 compared to the effect in the mutant +/- eB2. Still should be significant but I think a more correct analysis.
We now include this comparison in Fig. 3C as well in the results section starting on line 234.
8) The robustness of the assay in Figure 3D is underwhelming – how was the area measured?
This is a live imaging experiment. Fig. 3D plots cell area at 60 minutes after ephrin-B2 addition as a fraction of the same cell’s area at 0 minutes (ephrin-B2 addition). For control cells that is a decrease of ~25%. If one considers that a cell’s nucleus and organelles like the Golgi Apparatus take up most of its volume, the magnitude is not that surprising.
9) Figure 3F – did you try to plot the relative area of overlap divided by the total cellular area? You might get a more striking phenotype. Also – claiming that this confirms that MYCBP2 is REQUIRED for EPHB2 function is a bit overstated, especially given that we don’t know (do you?) the EPHB2 mutant phenotype in this assay.
We preferred to stay with the original method of image quantification which we use for other assays. With respect to the requirement of MYCBP2 for EPHB2 function in the stripe assay, our logic is rooted in the observation that native HeLa cells do not respond to ephrin-B2 stripes (45.46 ± 7.62% of cells on eB2 stripes v. Fc; data not shown). When they are transfected with EPHB2 expression plasmids they do, therefore we assume that EPHB2 expression endows them with a sensitivity to eB2 stripes. A loss of MYCBP2 attenuates this sensitivity. We clarified this starting on line 246 and on line 251.
10) I didn't quite get the difference between 4A and 4B.
We apologize for the confusion. In Fig 4A, we used a stable HeLa cell line that has tetracycline-inducible expression of EPHB2-FLAG. Using these cells, we subsequently generated CTRLCRISPR or MYCBP2CRISPR cells. In these cells we then induced EPHB2 expression with tetracycline and observed that deletion of MYCBP2 resulted in the reduction of EPHB2 protein levels. To confirm this observation and to rule out the possibility that EPHB2 protein reduction is an effect of the CRISPR lines generation, we tested whereas MYCBP2 deletion reduces EPHB2, which has been transiently overexpressed (Fig. 4B). We hence conclude that loss of MYCBP2 decreases EPHB2 that was either expressed from a stable locus (Fig. 4A) or from transient transfection (Fig. 4B). We modified the Results section starting on line 262 to make this point clear.
11) The entire link to lysosomal degradation should be strengthened. Perhaps I am confused, but if the reduced EPHB2 levels in MYCBP2 mutant cells result from impaired lysosomal degradation then inhibiting the lys-deg should bring the protein levels back to normal (i.e. CRISPR control) - no? As currently presented, I do not understand nor do I think the claim is strongly supported by the data.
Before treatment with inhibitors, EPHB2 levels in MYCBP2CRISPR cells are already 40% lower than they are in CTRLCRISPR cells and in all our attempts, inhibitors can only rescue/restore EPHB2 in MYCBP2CRISPR cells to a level that is lower than in CTRLCRISPR cells. But this restoration is greater in MYCBP2CRISPR than in MYCBP2CTRL cells (BafA1: 19% increase in CTRL cells and 40% in MYCBP2CRISPR cells; CoQ: 10% comparing to 35%). This indicates that EPHB2 degradation through the lysosomal pathway in MYCBP2CRISPR cells is stronger, explaining why EPHB2 degradation is promoted in MYCBP2CRISPR cells, compatible with reduced EPHB2 levels and enhanced EPHB2 ubiquitination.
12) 4M, O - reporting ns based on these data seems a bit strange to me... Add one point and it will be strongly significant.
See our response to point (2), above. We prefer not to invoke potential p-hacking.
13) 7d - so what are you claiming? That the cellular response to eB1 but not eB2 is affected by the addition of FBD1? this is almost the opposite of what you wrote in the text...
We treated the cells with two different ephrin-B ligands to make a stronger conclusion. When using ephrin-B1, growth cone collapse in FBD1 WT is not significant comparing to Fc treatment. When using ephrin-B2, growth cone collapse in FBD1 WT is not as significant as it is in FBD1 mut group (* versus ). We interpret this as meaning that the EPHB2-mediated growth cone collapse to both ligands is dampened, when we disrupt the EPHB2-MYCBP2 association. The difference between these two ligands might be due to their different affinities for the receptor or signalling kinetics.
14) By far the weakest link in this paper is the worm part. I think it's a pity because strengthening this would affect the significance of the finding. First, the authors mention new genes without introducing their relationship to the signaling pathway tested. Second, the textual logics should be strengthened. Finally and most importantly, when the difference between the phenotypic severity is so strong (vab-1 and rpm-1) then I think it's impossible to say anything from the double mutant.
We appreciate the reviewer noting that they appreciate the value and importance of the C. elegans model. The goals of our C. elegans experiments were twofold:
1) To evaluate genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This was not clearly explained in the original manuscript nor was the published precedent for these types of genetic enhancer experiments provided. We have now rectified this by substantially revising the text of the Results C. elegans section starting on line 431 and by adding several citations.
2) Our C. elegans genetics confirmed that the VAB-1 Eph receptor is not inhibited/degraded by the RPM-1/MYCBP2 ubiquitin ligase complex. We have now revised the text to draw this point out more clearly.
To further address the reviewer’s concerns, we have added a new schematic (Fig. 8A) to show the relationship between the RPM-1 and the RPM-1 binding proteins (FSN-1/FBXO45 and GLO-4/SERGEF) we are testing. We chose FSN-1 because it is part of the RPM-1 ubiquitin ligase complex and we chose GLO-4 because it functions outside the context of RPM-1 ubiquitin ligase signaling via the GLO-1 Rab GTPase to influence late endosomal/lysosomal biogenesis.
Regarding the reviewer’s concern that different penetrance/frequency of defects between rpm-1 mutants and vab-1 mutants means outcomes with vab-1; rpm-1 double mutants cannot be interpreted. We respectfully disagree. An extensive number of published studies have demonstrated that RPM-1 binding proteins have milder phenotypes than rpm-1 mutants and display genetic enhancer effects as double mutants with one another (PMID:17698012, PMID: 22357847, PMID: 25010424, PMID: 24810406). We now make this point much more clearly. While the frequency of axon termination defects in rpm-1 mutants is high it is not completely saturated as the defect is not 100%. Moreover, a major point of the vab-1; rpm-1 double mutants is that they do not have a significant reduction in phenotypic penetrance/frequency. Thus, our system is fully capable of resolving genetic suppression, which did not occur. We now make this point much more carefully and clearly.
To further address the reviewer’s concern, we have softened language about the VAB-1/Eph receptor functioning in the same pathway as RPM-1 throughout the manuscript. While we think this is still the case, because the frequency of axon termination defects is not fully saturated in rpm-1 mutants and defects could potentially become more severe (i.e. the hook might occur closer to the head of the animal rather than in the midbody). Nonetheless, this is not a critical point and we think it is more important to be clear about the two major goals and objectives of our C. elegans experiments. We hope the reviewer agrees that our rationale, logic and conclusions are more clearly and accurately drawn in the revised paper.
-
-
docdrop.org docdrop.org
-
Beyond just audio recordings so for that reason two of our senior 00:15:02 researchers Benjamin Hoffman and Maddie cusumano have also developed a biologer benchmark data set and so a biologer is an animal born tag like the one in the image on the right here 00:15:14 and these produce very valuable data because they can inform us about animal ecophysiology and allow us to improve conservation by monitoring animal movements and behaviors with very high 00:15:27 resolution
- for: BEBE, biologger Ethogram Benchmark
-
-
coddingtonbear.github.io coddingtonbear.github.io
-
GET/active/Return the content of the active file open in Obsidian. Returns the content of the currently active file in Obsidian.返回Obsidian中当前活动文件的内容。 If you specify the header Accept: application/vnd.olrapi.note+json, will return a JSON representation of your note including parsed tag and frontmatter data as well as filesystem metadata. See "responses" below for details.如果您指定头部 Accept: application/vnd.olrapi.note+json ,将返回包括解析标签、前置数据以及文件系统元数据在内的笔记的JSON表示。有关详细信息,请参见下面的"responses"。
该接口返回当前活动文件内容
-
-
social-media-ethics-automation.github.io social-media-ethics-automation.github.io
-
How do you think about the relationship between social media and “real life”?
We have to admit that people nowadays cannot live without social media. Living in 2023, I believe that social media is no longer a tool to communicate, it is becoming more and more diverse and combines all kinds of functions such as a platform to show people "who they are". I know too many people who are social phobias but are a "stars" on social media. Back then, people like them would be judged as "people who don't live on the Internet", however, no one would tag them as "strange" anymore. Therefore, yes, social media has been included in real life and is making real life better and more diverse.
-
- Sep 2023
-
www.reddit.com www.reddit.com
-
Starting a blog .t3_16v8tfq._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; } Hey everyone- I’m still trying to wrap my head on how to organize this.I have my antinet growing and I want to start a blog with the use of one of my notes as a springboard.Do I9 votesWork on the blog and store the index cards after the note that I’m drawing inspiration fromCreate a new blog section in my antinet and place them thereStore them in wherever and create an hub note that points to them
reply to u/RobThomasBouchard at https://www.reddit.com/r/antinet/comments/16v8tfq/starting_a_blog/
The answer is:<br /> D: Start a "blog" where you post your notes as status updates and interlink them a bit. When you've got enough, you organize them into a mini thesis and write a longer article/blog post about it.
Examples: - https://hypothes.is/users/chrisaldrich?q=tag%3A%22thought%20spaces%22 and - https://indieweb.org/commonplace_book#The_IndieWeb_site_as_a_Commonplace_book
tl;dr: Use your website like a public, online zettelkasten. 🕸️🗃️
-
-
www.gov.uk www.gov.uk
-
We’d like to set additional cookies to understand how you use GOV.UK, remember your settings and improve government services.
test
-
-
www.wired.com www.wired.com
-
And the rise of deepfakes—wholly AI-generated content, as opposed to the Pelosi video’s edited clips from real (fact-checkable) speeches—will only make this problem more thorny and more urgent.
With the introduction of deepfakes into society it is very important that online users educate themselves on how to properly spot these videos. It would be nice if platforms could tag these videos with warnings but since most don't, it is crucial to fact check each piece of content that may seem suspicious.
-
-
localhost:3000 localhost:3000
-
o a URL or multiple URLs. Including a document’s DOI in the metadata of a web page will ensure that annotations appear on that document regardless of where it’s hosted.For example, an article published by Cell includes the tag<meta name="citation_doi" content="10.1016/j.
this I don't quite understand
-
-
www.jerrysbrain.com www.jerrysbrain.com
-
Jerry Michalski says that The Brain provides him with a "neighborhood perspective" of ideas when he reduces the external link number for his graph down to 1.
This is similar to Nicholas Luhmann's zettelkasten which provided neighborhoods of related notes based on distance from any particular note.
Also similar to oral cultures who relied on movement through their environment for encoding memories and later remembering them. [I'll use the tag "environmental memory" to track this until a better name comes along.]
-
-
www.reddit.com www.reddit.com
-
Hi, I just started to use Zettlr for my thoughts, in stead of just individual txt-files. I find it easy to add tags to notes. But if you read manuals how to use ZettelKasten, most seem to advice to link your notes in a meaningful way (and describe the link). Maybe it's because I just really started, but I don't find immediate links when I have a sudden thought. Sometimes I have 2 ideas in the same line, but they're more like siblings, so tagging with the same keyword is more evident. How do most people do this?
reply to u/JonasanOniem at https://www.reddit.com/r/Zettelkasten/comments/16ss0yu/linking_new_notes/
This sort of practice is harder when you start out in most digital apps because there is usually no sense of "closeness" of ideas in digital the way that is implied by physical proximity (or "neighborhood") found in physical cards sitting right next to or around each other. As a result, you have to create more explicit links or rely on using tags (or indexing) when you start. I've not gotten deep into the UI of Zettlr, but some applications allow the numbering (and the way numbered ideas are sorted in the user interface) to allow this affordance by creating a visual sense of proximity for you. As you accumulate more notes, it becomes easier and you can rely less on tags and more on direct links. Eventually you may come to dislike broad categories/tags and prefer direct links from one idea to another as the most explicit tag you could give a note . If you're following a more strict Luhmann-artig practice, you'll find yourself indexing a lot at the beginning, but as you link new ideas to old, you don't need to index (tag) things as heavily because the index points to a card which is directly linked to something in the neighborhood of where you're looking. Over time and through use, you'll come to recognize your neighborhoods and the individual "houses" where the ideas you're working with all live. As an example, Luhmann spent his life working in sociology, but you'll only find a few links from his keyword register/subject index to "sociology" (and this is a good thing, otherwise he'd have had 90,000+ listings there and the index entry for sociology would have been utterly useless.)
Still, given all this, perhaps as taurusnoises suggests, concrete examples may help more, particularly if you're having any issues with the terminology/concepts or how the specific application affordances are being presented.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1:
- If doable, image dynein and dynactin simultaneously in the Halo-DYNC1H1/DCTN4-SNAP iNeurons. Co-movement of dynein and dynactin towards the somatodendritic compartment and their separate movement in the anterograde direction along the axon would provide the most convincing evidence for the key claims of the manuscript.
Please see the planned revision section for our response
Reviewer #2:
Major comment (requires additional experimentation)
- While the data presented do certainly suggest that dynein and Lis1 are transported anterogradely on separate vesicular cargoes from dynactin and Ndel1, the study would be much stronger if supported by dual imaging of dynein and dynactin to prove that these proteins do indeed move in association with separate vesicular populations. I would like to see dual-color kymograph traces showing that the proteins move independently. The authors should be able to accomplish this using their dual Halo-DYNC1H1/DCTN4-SNAP hESC line. To acquire and analyze this data might take several months, but it would greatly strengthen this paper. If the authors do this experiment, they may also be able to address the mechanism of reversal of anterograde cargoes which they speculate about in the Discussion, which would add even more interest and insight.
Please see the planned revision section for our response
Minor comments (addressable without additional experimentation)
- The authors deduce that 1-4 Halo fluorochromes corresponds to 1-2 dynein molecules. This implies that the cells are homozygous for the Halo tag, but I do not see this addressed explicitly. The authors should state explicitly whether the lines generated for their study are heterozygous or homozygous for the tag. If the cells are heterozygous, which would seem most likely, then they may be underestimating the number of dyneins per spot and should take this into account.
We have added whether lines are homozygous or heterozygous to the manuscript. We also include a new Supplementary Figure panel (Fig S6) showing the genotyping data. In summary, all lines are homozygous except for PAFAH1B1-Halo (hESCs) which is heterozygous.
- Why are the moving spots lower in intensity than the NEM-treated static spots. It appears to suggest that they may be associated with different structures. This should be clarified and discussed.
Our data suggest that the fast-moving spots have fewer dyneins than NEM treated static spots. We suggest this is because the fast-moving cargos are smaller than the average cargo and therefore have fewer dyneins on them. This is also supported by the smaller number of dyneins reported previously on endosomes as compared to the large lysosomes. We have clarified this in the discussion (page 7-8).
- The authors state in the Results that most of the dynein spots were diffusing, often along microtubules, but they do not visualize microtubules so how do they know this? They may need to remove the phrase "often along microtubules".
This has been removed.
- At the end of the Introduction the authors state that their data "allow us to understand how the dynein machinery drives long-range transport in the axon". This is an overstatement. The "how" in this sentence is not addressed in this study.
We have softened the sentence by adding the phrase “better understand”.
- The conclusion that dynein binds to cargos stably throughout their transport along the axon is based on measurements of the fastest moving cargoes but the authors do not provide data on the distribution of velocities for the entire population of retrograde cargoes. It is not valid to extrapolate the behavior of a small number of cargoes to the entire population. The average may be much slower than the fastest cargoes. Moreover, even for the fastest organelles the authors cannot say that the dynein is stably bound because they did not track single cargoes and thus do not know that the cargoes moved continuously in one single bout of movement for 500 µm; it is possible that the cargoes moved in multiple consecutive bouts interrupted by brief pauses and dynein motors may have exchanged between bouts.
We have added a section to the discussion to highlight that other cargos may behave differently from the fastest ones (page 7). We have also clarified the assumptions that lead us to expect a slower arrival time of the first signal (page 5).
- The authors say that "it is clear that at least some dyneins remain on cargoes throughout their transport along the axon". As explained above, the data do not prove this so this statement should be removed.
We have softened this sentence from “it is clear” to “our results suggest” and explained in more detail why we make this conclusion
- The authors note that most of the dynein spots were not moving processively and state that this is consistent with prior studies showing that only a subset of dynein is actively involved in transport. However, as they note elsewhere, dynein is both motor and cargo and most axonal dynein is transported at slow average velocities so maybe they should be more explicit about what they mean by "involved in transport".
We have clarified we mean fast axonal transport and thank the reviewer for highlighting this point.
- When the authors note that most of the dynein in axons is transported in the slow component of axonal transport, they should also cite the work of Pfister and colleagues who were the first to show this (PMID 8824315 and 8552592).
This was an omission on our part. The references have now been added.
- The authors propose that dynein and Lis1 are transported together but there were significantly fewer anterogradely transported Lis1 particles than dynein particles. This should be discussed.
We have added more information to the discussion. Although we cannot rule out this effect being due to the heterozygous tagging of our LIS1 cell line, we do not witness the same decrease in events in the retrograde direction. Therefore, we believe there is a subset of anterogradely moving dynein lacking LIS1. As discussed in the manuscript, this subset may already be bound to dynactin and therefore not require LIS1.
- For the statistical analysis, the authors should provide p values in the legends for the comparisons that are judged to be "not significant". The authors should also be consistent in how they label differences that are not significant - they mark them as "ns" in Fig. 1, but in the other figures they do not, leaving some ambiguity about whether particular comparisons were not tested or were found to be not significant. For example, in Fig. 4C the average speed of the dynactin is about 0.5 µm/s greater than for the other proteins and the spread in the data suggest that this could be significant, but no significance is indicated on the plot, implying p>0.05. It is not clear how confident we can be that there is no difference.
We have now included all p values in the figure legends and have removed the “ns” in Fig 1D. In our revised manuscript, only significant differences are highlighted in the figures.
Reviewer #3:
- if I look at the kymographs, trajectories appear rather complex, pausing, standing still, moving and everything mixed. The explanation of how actual trajectories are extracted and on what basis is very short, too short for me. I think the authors should expand this. Furthermore, I think it would be good if the authors would present, in their kymographs examples of the tracked (and also the not included) tracks. Maybe in supplementary info.
The analysis of this data used the Trackmate Fiji plugin. This tracks spots frame to frame in a movie and then outputs the data of the tracks. No data was extracted from kymographs but they were used as a graphical illustration of the moving spots. To better explain our analysis pipeline, we have expanded our methods section and have added an example of a tracked movie (Video 15) as well as highlighted the tracked spots in one kymograph example (Figure 7S).
- I found 'velocity' ill defined. I get the impression, judging from the number of points (compared to the other parameters) that the authors determine the average velocity of each individual trajectory. That is an important parameter (but should indeed be called 'trajectory averaged' velocity), but might not be the only one useful to learn from the data, where trajectories do not always appear to have constant speeds (pausing, etc.). Why do the authors not determine point-to-point velocities and plot histograms of those for all the trajectories (simply plot histograms of all the displacements between subsequent data points in trajectories)? This might provide great insight into the actual maximum velocity and the fraction of pausing or moving in opposite direction etc., providing much more molecular detail than currently extracted from the data.
The reviewer is correct. We have measured the average velocity of the spots from the beginning of the track to the end. We have clarified this in the text. Furthermore, as stated above in the revision plan, we are currently doing the additional analysis and will include it in the final revision
- I was a bit surprised to read that the authors have gone to the effort to create a dual-color labeled cell line, but did not do actual correlative two-color measurements (or at least show them). It would be so insightful to see dynein and dynactin move separately in the anterograde direction.
Please see the planned revision section for our response.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary - The authors use a CRISPR knock-in gene editing strategy to label endogenous dynein, dynactin (p62 or Arp11) and dynein regulators (Ndel1 and Lis1) with Halo or SNAP tags. They do this in human iPSC and ESC cell lines engineered to express doxycycline-inducible NGN2 cloned into a "safe harbor" site of the genome. They induce the cells to differentiate into iNeurons using doxycycline and image the tagged proteins in axons with single molecule sensitivity using HILO illumination. The paper is clearly written, the description of the methods is thorough, and the data and figures (including the videos) are of good quality. The use of gene editing to knock the tags into the endogenous gene loci is a superior strategy to classic overexpression strategies. The authors also make effective use of microfluidic chambers to ensure the axons are uniformly orientated and coaligned over a distance of 500µm.
Major comment (requires additional experimentation)
- While the data presented do certainly suggest that dynein and Lis1 are transported anterogradely on separate vesicular cargoes from dynactin and Ndel1, the study would be much stronger if supported by dual imaging of dynein and dynactin to prove that these proteins do indeed move in association with separate vesicular populations. I would like to see dual-color kymograph traces showing that the proteins move independently. The authors should be able to accomplish this using their dual Halo-DYNC1H1/DCTN4-SNAP hESC line. To acquire and analyze this data might take several months, but it would greatly strengthen this paper. If the authors do this experiment, they may also be able to address the mechanism of reversal of anterograde cargoes which they speculate about in the Discussion, which would add even more interest and insight.
Minor comments (addressable without additional experimentation)
- The authors deduce that 1-4 Halo fluorochromes corresponds to 1-2 dynein molecules. This implies that the cells are homozygous for the Halo tag, but I do not see this addressed explicitly. The authors should state explicitly whether the lines generated for their study are heterozygous or homozygous for the tag. If the cells are heterozygous, which would seem most likely, then they may be underestimating the number of dyneins per spot and should take this into account.
- Why are the moving spots lower in intensity than the NEM-treated static spots. It appears to suggest that they may be associated with different structures. This should be clarified and discussed.
- The authors state in the Results that most of the dynein spots were diffusing, often along microtubules, but they do not visualize microtubules so how do they know this? They may need to remove the phrase "often along microtubules".
- At the end of the Introduction the authors state that their data "allow us to understand how the dynein machinery drives long-range transport in the axon". This is an overstatement. The "how" in this sentence is not addressed in this study.
- The conclusion that dynein binds to cargos stably throughout their transport along the axon is based on measurements of the fastest moving cargoes but the authors do not provide data on the distribution of velocities for the entire population of retrograde cargoes. It is not valid to extrapolate the behavior of a small number of cargoes to the entire population. The average may be much slower than the fastest cargoes. Moreover, even for the fastest organelles the authors cannot say that the dynein is stably bound because they did not track single cargoes and thus do not know that the cargoes moved continuously in one single bout of movement for 500 µm; it is possible that the cargoes moved in multiple consecutive bouts interrupted by brief pauses and dynein motors may have exchanged between bouts.
- The authors say that "it is clear that at least some dyneins remain on cargoes throughout their transport along the axon". As explained above, the data do not prove this so this statement should be removed.
- The authors note that most of the dynein spots were not moving processively and state that this is consistent with prior studies showing that only a subset of dynein is actively involved in transport. However, as they note elsewhere, dynein is both motor and cargo and most axonal dynein is transported at slow average velocities so maybe they should be more explicit about what they mean by "involved in transport".
- When the authors note that most of the dynein in axons is transported in the slow component of axonal transport, they should also cite the work of Pfister and colleagues who were the first to show this (PMID 8824315 and 8552592).
- The authors propose that dynein and Lis1 are transported together but there were significantly fewer anterogradely transported Lis1 particles than dynein particles. This should be discussed.
- For the statistical analysis, the authors should provide p values in the legends for the comparisons that are judged to be "not significant". The authors should also be consistent in how they label differences that are not significant - they mark them as "ns" in Fig. 1, but in the other figures they do not, leaving some ambiguity about whether particular comparisons were not tested or were found to be not significant. For example, in Fig. 4C the average speed of the dynactin is about 0.5 µm/s greater than for the other proteins and the spread in the data suggest that this could be significant, but no significance is indicated on the plot, implying p>0.05. It is not clear how confident we can be that there is no difference.
Referee Cross-Commenting
There seems to be agreement among all three reviewers that the authors should perform dual imaging of dynein and dynactin to prove that these proteins do indeed move together in the retrograde direction but separately in the anterograde direction. This would strengthen the study greatly.
Significance
General assessment - There are now multiple papers that have analyzed axonal transport of cargoes in iPSC-derived neurons, but this one appears to be the first to do it by tagging dynein motors and with single-molecule sensitivity. The principal conclusions are (1) that dynein is capable of long-range movement in axons and (2) that dynein moves dynein/Lis1 complexes are transported anterogradely in association with distinct cargoes from dynactin/Ndel1 complexes. The former is a modest conclusion and is entirely expected so not very impactful, but the latter is interesting and novel. The difference between the average velocities for the four proteins in the anterograde and retrograde directions is striking. All four move at similar velocities in the retrograde direction but in the anterograde direction, dynein and Lis1 move significantly faster than dynactin and Ndel1. Given these data, it is reasonable to infer that these proteins are being transported in two separate sets of cargoes. As the authors note in their Discussion, this is important because it could provide a mechanism for transporting dynein components anterogradely in a less active form that could then be activated when the components come together in the distal axon. However, I feel that one critical experiment is missing, which is to perform dual labeling of anterogradely transported dynein and dynactin in the same cells (see major comment). Without this experiment, the evidence is indirect.
Audience - If confirmed by the dual labeling experiment, the authors' conclusions would represent a conceptual and mechanistic insight into the mechanism of bidirectional transport in axons that would be of broad interest to neuronal cell biologists studying neuronal trafficking.
Expertise - This reviewer has expertise in the neuronal cytoskeleton, live imaging and axonal transport and has some experience working with iPSC-derived neurons.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
To image dynein in the axon at a single-molecule level, Fellows et al. used neuron-inducible human stem cell lines to Halo/SNAP tag endogenous dynein components by gene editing, and visualized fluorescently labeled protein molecules in differentiated neurons in microfluidic chambers by HILO microscopy-based live imaging. Using those cutting edge technologies, the authors demonstrate that in the axon, not only dynein and dynactin but also the dynein regulators LIS1 and NDEL1 can move long distance retrogradely towards the somatodendritic compartment. They also show that dynein /LIS1 move faster than dynactin/NDEL1 in the anterograde direction, suggesting that they are delivered separately to the distal end of the axon. The approach to study subcellular motility of endogenous dynein/dynactin is creative, the data are solid. I would like to suggest one experiment to support more strongly the authors' conclusions:<br /> If doable, image dynein and dynactin simultaneously in the Halo-DYNC1H1/DCTN4-SNAP iNeurons. Comovement of dynein and dynactin towards the somatodendritic compartment and their separate movement in the anterograde direction along the axon would provide the most convincing evidence for the key claims of the manuscript.
Referee Cross-Commenting
I agree with Reviewer 2 that the authors should clarify whether the knockin lines for dynein are homozygous. I also agree with both Reviewers 2 and 3 that the authors should do more analysis of the kymographs to obtain more information.
Significance
This is an elegant study on dynein motility and transport in vivo. The experimental approaches and findings presented in this manuscript are very valuable contributions to the field of dynein/dynactin and axonal transport. The results showing that dynein/dynactin can move long-range retrogradely in the axon are in good agreement with previous findings that dynein-driven cargo transport is highly processive, and the data suggesting that dynein and dynactin/NDEL1 are trafficked separately to the distal tip of the axon provide new insights into the regulatory mechanisms for the subcellular distribution and activity of molecular motors. Together these findings provide conceptual advances for understanding axonal transport. They will be of great interest to not only scientists in the field of intracellular transport but also those in cellular neurobiology.
-
-
github.com github.com
-
# Set the priority when loading # e.g., zsh-syntax-highlighting must be loaded # after executing compinit command and sourcing other plugins # (If the defer tag is given 2 or above, run after compinit command) zplug "zsh-users/zsh-syntax-highlighting", defer:2
[!NOTE]
zplug load
中,要设置加载优先级,可以使用?flashcard
defer
tag - If the defer tag is given 2 or above, run after compinit command
-
-
clinicabritannia.com clinicabritannia.com
-
blood pressure chart
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:<br /> The paper sought to determine the number of myosin 10 molecules per cell and localized to filopodia, where they are known to be involved in formation, transport within, and dynamics of these important actin-based protrusions. The authors used a novel method to determine the number of molecules per cell. First, they expressed HALO tagged Myo10 in U20S cells and generated cell lysates of a certain number of cells and detected Myo10 after SDS-PAGE, with fluorescence and a stained free method. They used a purified HALO tagged standard protein to generate a standard curve which allowed for determining Myo10 concentration in cell lysates and thus an estimate of the number of Myo10 molecules per cell. They also examined the fluorescence intensity in fixed cell images to determine the average fluorescence intensity per Myo10 molecule, which allowed the number of Myo10 molecules per region of the cell to be determined. They found a relatively small fraction of Myo10 (6%) localizes to filopodia. There are hundreds of Myo10 in each filopodia, which suggests some filopodia have more Myo10 than actin binding sites. Thus, there may be crowding of Myo10 at the tips, which could impact transport, the morphology at the tips, and dynamics of the protrusions themselves. Overall, the study forms the basis for a novel technique to estimate the number of molecules per cell and their localization to actin-based structures. The implications are broad also for being able to understand the role of myosins in actin protrusions, which is important for cancer metastasis and wound healing.
Strengths:<br /> The paper addresses an important fundamental biological question about how many molecular motors are localized to a specific cellular compartment and how that may relate to other aspects of the compartment such as the actin cytoskeleton and the membrane. The paper demonstrates a method of estimating the number of myosin molecules per cell using the fluorescently labeled HALO tag and SDS-PAGE analysis. There are several important conclusions from this work in that it estimates the number of Myo10 molecules localized to different regions of the filopodia and the minimum number required for filopodia formation. The authors also establish a correlation between number of Myo10 molecules filopodia localized and the number of filopodia in the cell. There is only a small % of Myo10 that tip localized relative to the total amount in the cell, suggesting Myo10 have to be activated to enter the filopodia compartment. The localization of Myo10 is log-normal, which suggest a clustering of Myo10 is a feature of this motor.
Weaknesses:<br /> One main critique of this work is that the Myo10 was overexpressed. Thus, the amount in the cell body compared to the filopodia is difficult to compare to physiological conditions. The amount in the filopodia was relatively small - 100s of molecules per filopodia so this result is still interesting regardless of the overexpression. However, the overexpression should be addressed in the limitations.<br /> The authors have not addressed the potential for variability in transfection efficiency. The authors could examine the average fluorescence intensity per cell and if similar this may address this concern.<br /> The SDS PAGE method of estimating the number of molecules is quite interesting. I really like this idea. However, I feel there are a few more things to consider. The fraction of HALO tag standard and Myo10 labeled with the HALO tagged ligand is not determined directly. It is suggested that since excess HALO tagged ligand was added we can assume nearly 100% labeling. If the HALO tag standard protein is purified it should be feasible to determine the fraction of HALO tagged standard that is labeled by examining the absorbance of the protein at 280 and fluorophore at its appropriate wavelength. The fraction of HALO tagged Myo10 labeled may be more challenging to determine, since it is in a cell lysate, but there may be some potential approaches (e.g. mass spec, HPLC).<br /> In Figure 1B, the stain free gel bands look relatively clean. The Myo10 is from cell lysates so it is surprising that there are not more bands. I am not surprised that the bands in the TMR fluorescence gel are clean, and I agree the fluorescence is the best way to quantitate.<br /> In Figure 3C, the number of Myo10 molecules needed to initiate a filopodium was estimated. I wonder if the authors could have looked at live cell movies to determine that these events started with a puncta of Myo10 at the edge of the cell, and then went on to form a filopodia that elongated from the cell. How was the number of Myo10 molecules that were involved in the initiation determined? Please clarify the assumptions in making this conclusion.<br /> It is stated in the discussion that the amount of Myo10 in the filopodia exceeds the number of actin binding sites. However, since Myo10 contains membrane binding motifs and has been shown to interact with the membrane it should be pointed that the excess Myo10 at the tips may be interacting with the membrane and not actin, which may prevent traffic jams.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Reviewer #1 (Recommendations For The Authors):
Some sentences need to be clarified and some additional data and references could be added.
1) Line 18
SRY is the sex-determining gene
SRY is the testis-determining gene is more accurate as described in line 44
Modification done
2) Line 50
Despite losing its function in early testis determination in mice, DMRT1 retained part of this function in adulthood when it is necessary to maintain Sertoli cell identity.
Losing its function is misleading. The authors describe firstly that Dmrt1 has no obvious function in embryonic testis development but is critical for the maintenance of Sertoli cells in adult mice. The wording "losing its function in early testis" is confusing. Do the authors mean that despite the expression of Dmrt1 in early testis development, the function of Dmrt1 seems to be restricted to adults in mice? A comparison between the testis and ovary should be more cautious since GarciaAlonso et al (2022) have shown that the transcriptomics of supporting cells between humans and mice is partly different.
That’s what we thought, and the sentence has been changed as follow: “Although DMRT1 is not required for testis determination in mice, it retained part of its function in adulthood when it is necessary to maintain Sertoli cell identity.” (line 51 to 53)
3) Line 78
XY DMRT1-/- rabbits showed early male-to-female sex reversal.
Sex reversal indicates that there is no transient Sertoli cell differentiation that transdifferentiate into granulosa cells. This brings us to an interesting point. In the case of reprogramming, the transient Sertoli cells can produce AMH leading to the regression of the Mullerian ducts. In humans, some 9pdeleted XY patients have Mullerian duct remnants and feminized external genitalia. This finding indicates early defects in testis development.
Is there also feminized external genitalia in XY Dmrt1−/− rabbits. Can the authors comment on the phenotype of the ducts?
We proposed to add “and complete female genitalia” at the end of the following sentence: “Secondly, thanks to our CRISPR/Cas9 genetically modified rabbit model, we demonstrated that DMRT1 was required for testis differentiation since XY DMRT1-/- rabbits showed early male-tofemale sex reversal with differentiating ovaries and complete female genitalia.” (line 77 to 80)
Indeed, since the first stage (16 dpc) where we can predict the sex of the individual by observing its gonads during dissection, we always predict a female sex for XY DMRT1 KO fetuses. It is only genotyping that reveals an XY genotype. At birth, our rabbits are sexed by technicians from the facility and again, but now based on the external genitalia, they always phenotype these rabbits as female ones. In these XY KO rabbits, the supporting cells never differentiate into Sertoli, and ovarian differentiation occurs as early as in XX animals. Thus, these animals are fully feminized with female internal and external genitalia. Most of 9p-deleted patients are not homozygous for the loss-offunction of DMRT1, and the remaining wild-type allele could explain the discrepancy between KO rabbits and humans.
4) Line 53
In the ovary, an equivalent to DMRT1 was observed since FOXL2 (Forkhead family box L2) is expressed in female supporting cells very early in development.
Can the authors clarify what is the equivalent of DMRT1, is it FOXL2? DMRT1 heterozygous mutations result in XY gonad dysgenesis suggesting haploinsufficiency of DMRT1. However, to my knowledge, there is no evidence of haploinsufficiency in XX babies. Thus can we compare testis and ovarian genetics?
We agree, the term “equivalent” is ambiguous, and we changed the sentence as follows: “In ovarian differentiation, FOXL2 (Forkhead family box L2) showed a similar function discrepancy between mice and goats as DMRT1 in the testis pathway. In the mouse, Foxl2 is expressed in female supporting cells early in development but does not appear necessary for fetal ovary differentiation. On the contrary, it is required in adult granulosa cells to maintain female-supporting cell identity.” (line 53 to 56)
Regarding reviewer 2's question on haploinsufficiency in humans: the patient described in Murphy et al., 2015 is an XY individual with complete gonadal dysgenesis. But, it has been shown that the mutation carried by this patient leads to a dominant-negative protein, equivalent to a homozygous state (Murphy et al., 2022).
For FOXL2 mutation in XX females, haploinsufficiency does not affect early ovarian differentiation (no sex reversal) but induces premature ovarian failure.
We agree with the reviewer, we cannot compare testis and ovarian genetics considering two different genes.
5) Line 55
In mice, Foxl2 does not appear necessary for fetal ovary differentiation (Uda et al., 2004), while it is required in adult granulosa cells to maintain female-supporting cell identity (Ottolenghi et al., 2005). The reference Uhlenhaut et al (2009) reporting the phenotype of the deletion of Foxl2 in adults should be added.
The reference has been added.
6) Line 64<br /> These observations in the goat suggested that DMRT1 could retain function in SOX9 activation and, thus, in testis determination in several mammals.
Lindeman et al (2021) have shown that DMRT1 can act as a pioneer factor to open chromatin upstream and Dmrt1 is expressed before Sry in mice (Raymond et al, 1999, Lei, Hornbaker et al, 2007). Whereas additional factors may compensate for the absence of Dmrt1, these results suggest that DMRT1 is also involved in Sox9 activation.
Dmrt1 is indeed expressed before Sry/Sox9 in the mouse gonad. However, no binding site for DMRT1 could be observed at Sox9 enhancer 13 in mice. This does not support a role for DMRT1 in the activation of Sox9 expression in this species. Furthermore, in Lindeman et al 2021, the authors clearly state that DMRT1 acts as a pioneering factor for SOX9 only after birth. It does not appear to have this role before. One of the explanations put forward is that the state of chromatin is different during fetal development in mice: chromatin is more permissive and does not require a factor to facilitate its opening. This hypothesis is based in particular on the description of a similar chromatin profile in the precursors of XX and XY fetal supporting cells, where many common regions display an open structure (Garcia-Moreno et al., 2019). Once sex determination and differentiation are established, a sex-specific epigenome is set up in gonadal cells. Chromatin remodeling agents are then needed to regulate gene expression. We hypothesize that in non-murine mammals such as rabbits, the state of gonadal cell chromatin would be different in the fetal period, more repressed, requiring the intervention of specific factors for its opening, such as DMRT1.
7) Figure 1
Most of the readers might not be familiar with the developmental stages of the gonad in rabbits. A diagram of the key stages in gonad development would facilitate the understanding of the results.
Thank you, it has been added in Figure 1.
8) Figure 2
Arrowheads are difficult to spot, could the authors use another color?
Done
9) Line 117: can the authors comment on the formation of the tunica albuginea? Do the epithelial cells acquire some specific characteristics?
The formation of the tunica albuginea begins with the formation of loose connective tissue beneath the surface epithelium of the male gonad. The appearance of this tissue is concomitant with the loss of expression of DMRT1 in the cell of the coelomic epithelium. Our interpretation is that the contribution of the cells from the coelomic epithelium and their proliferation stops when the tunica begins to form because the structure of the tissue beneath the epithelium change, and the cellular interactions between the epithelium and the tissue below remain disrupted. By contrast, these interactions persist in the ovary until around birth for ovigerous nest formation.
10) The first part of the results described DMRT1 expression in rabbits. With the new single-cell transcriptomic atlas of human gonads, it would be important to describe the pattern of expression in this species. This could be described in the introduction in order to know the DMRT1 expression pattern in the human gonad before that of the rabbit.
A comment on the expression pattern of DMRT1 in human fetal gonads has been added in the discussion section: “In the human fetal testis, DMRT1 expression is co-detected with SRY in early supporting gonadal cells (ESCGs), which become Sertoli cells following the activation of SOX9 expression (Garcia-Alonso et al., 2022) » (line 222 to 224)
11) Figure 3 supplement 3
Dotted line: delimitation of the ovarian surface epithelium. Could the authors check that there is a dotted line?
Done
12) Figure 5 and Line 186
Quantification is missing such as the % of germ cells, % of meiotic germ cells.
Quantification is not easy to realize in rabbits because of the size and the elongated shape of the gonad. Indeed, it’s difficult to be sure that both sections (one from WT, the other from KO) are strictly in a similar region of the gonad and that the section is perfectly longitudinal or not. See also our answer to reviewer 3 (point 7) on this aspect. Actually, we are trying to make a better characterization of this XX phenotype and to find a marker of the pre-leptotene/leptotene stage susceptible to work in rabbits (SYCP3 will be the best, but we encountered huge difficulties with different antibodies and even RNAscope probe!). So actually, the most convincing indirect evidence of this pre-meiotic blockage (in addition to HE staining at 18 dpp in the new Figure 6) is the persistence of POU5F1 (pluripotency), specifically in the germinal lineage of KO XX and XY gonads. In addition to the new figure supplement 5, we can show you in Author response image 1: (i) the gonadal section at a lower magnification, where it is evident that there is a big difference between WT and KO germ cell POU5F1-stainings; and (ii) POU5F1 expression from a bulk RNA-seq realized the day after birth at 1 dpp where the difference is also transcriptionally very clear.
Author response image 1.
13) Line 186,
E is missing at preleptoten
Added
14) Figure supplement 7.
A magnification of the histology of the gonads is missing.
This figure is only for showing the gonadal size, and there are the same gonads as in the new Figure 6. So, the magnification is represented in Figure 6.
15)Discussion
Line 201
SOX9, well known in vertebrates,
The references of the human DSD associated with SOX9 mutations are missing. Thank you, references have been added.
16) Line 286
One of the targets of WNT signaling is Bmp2 in the somatic cells and in turn, Zglp1, which is required for meiosis entry in the ovary as shown by Miyauchi et al (2017) and Nagaoka et al (2020). Does the level of BMP pathway vary in DMRT1 mutants?
At 20 dpc, the expression level of BMP2 in XY and XX DMRT1 mutants gonads is similar to the one of XX control which is lower than in XY control (see the TMP values from our RNA-seq in Author response image 2).
Author response image 2.
Reviewer #2 (Recommendations For The Authors):
Here are my minor comments:
1) Line 106- You mention that coelomic epithelial cells only express DMRT1. Please add an arrow to highlight where you refer to.
Done
2) Line 112: In mice, the SLCs also express Sox9 but not Sry apart from Pax8. You mention here that the SLCs are expressing SRY and DMRT1 in addition to PAX8. Could you perhaps explain the difference? Please refer to that in the results or discussion.
We add a new sentence at the end of this paragraph on SLCs: “As in mice, these cells will express SOX9 at the latter stages (few of them are already SOX9 positive at 15 dpc), but unlike mice, they express SRY.” (line 114 to 115)
We already have collaborations with different labs on these SLC cells, and we will certainly come back later on this aspect, remaining slightly off-topic here.
3) Could you please explain why did you chose to target Exon 3 of DMRT1 and not exons 1-2 which contain the DM domain? Was it to prevent damaging other DMRT proteins? Is there an important domain or function in Exon 2?
Our choice was mainly based on technical issues (rabbit genome annotation & sgRNA design), but also we want to avoid targeting the DM domain due to its strong conservation with other DMRT genes. Due to the poor quality of the rabbit genome, exons 1 and 2 are not well annotated in this species. We have amplified and sequenced the region encompassing exons 1 & 2 from our rabbit line, but the software used for sgRNA design does not predict good guides on this region. The two best sgRNAs were predicted on exon 3, and we used both to obtain more mutated alleles.
4) Your scheme in Supp Figure 4 is not so clear. It is not clear that the black box between the two guides is part of Exon 3 (labelled in blue).
The scheme has been improved.
5) Did you only have 1 good founder rabbit in your experiment? Why did you choose to work with a line that had duplication rather than deletion?
Very good point! In the first version of this paper, we’d try to explain the long (around 2 years) story of breeding to obtain the founder animal. Here it is:
During the genome editing process, we generate 6 mosaic founder animals (5 males and 1 female), then we cross them with wild-type animals to isolate each mutated allele in F1 offspring used afterward to establish and amplify knockout lines. Unexpectedly, we observe a very slow ratio of mutated allele transmission (5 on 129 F1 animals), and only one mutated allele has been conserved from the unique surviving adult F1 animal. It consists of an insertion of the deleted 47 bp DNA fragment, flanked by the cutting sites of the two RNA guides used with Cas9.<br /> The main hypothesis to explain this mutation event is that in the same embryonic cell, the deletion occurs on one allele then the deleted fragment remains inserted into the other allele. Under this scheme, the embryonic cell carries a homozygous DMRT1 knockout genotype, albeit heterogeneous, with a deleted allele (del47) and the present allele (insertion of a 47 bp fragment leading to an in sense duplication). This may explain the very low frequency of transmission since all germ cells carrying a homozygous DMRT1-/- genotype will probably not be able to enter the meiotic process as suggested by our results on XX and XY DMRT1-/- ovaries. Finally, and under this hypothesis, the way we obtained this unique founder animal remains a mystery!
6) Figure 4- real-time data- where does it say what is a,b,c,d of the significance? It should appear on the figure itself and not elsewhere.
Modification done.
7) If I understand correctly, you were able to get the rabbits born and kept to adulthood (you show in supp figure 7 their gonads). What was the external phenotype of these rabbits? Did the XY mutant gonads have the internal and external genitals of a female (oviduct, uterus, vagina etc.)?
See our answer to Reviewer 1 on this question (point 3).
8) Line 20: It is more correct to write 46, XY DSD rather than XY DSD
Modification done.
9) Line 21: you can remove the "the" after abolished
Modification done.
10) Line 31: consider replacing the first "and" by "as well as" since the sentence sounds strange with two "and".
Modification done.
11) Line 212- Please check with the eLife guidelines if they allow "data not shown" in the paper.
This is unspecified.
Reviewer #3 (Recommendations For The Authors):
The following points should be addressed.
1) The in situ's in Fig 1 and 2 are very clear. Fig 1 and Fig 2, In situ hybridisation in tissue sections, it looked like DMRT1 could be expressed in some cells where SRY mRNA is absent @ E13.5dpc and 14.5 dpc. Do you think this is real, or maybe Sry is turned off now in those cells?
Based on the results of in situ hybridizations, DMRT1 appears to be expressed by both coelomic epithelium and genital crest medullar cells in a pattern that is actually broader than that of SRY. Moreover, in rabbits, SRY expression seems to start in the medulla of the genital ridge rather than in the surface epithelium, as described in mice (see Figure 1 at 12 and 13 dpc). Nevertheless, more detailed analyses are needed to ensure the lineage of cells expressing SRY and/or DMRT1, such as single-cell RNAseq at these key stages of sexual determination in rabbits (from 12 to 16 dpc).
2) It is curious that SRY expression is elevated in the DMRT1 KO (Knockout) rabbit gonads. Does this suggest feedback inhibition by DMRt1, or maybe indirect via effect on Sox9 (as I believe Sox9 feeds back to down-regulate Sry in mouse, for example).
The maintenance of SRY expression in the DMRT1 -/- rabbit testis seems to be linked to the absence of SOX9 expression. We believe that, as in mice, SOX9 would down-regulate SRY (even if, in rabbits, SRY expression is never completely turned off).
3) I suggest the targeting strategy and proof of DMRT1 knockout by sequencing etc. be brought out of the suppl. Data and shown as a figure in the text.
See also our answer to reviewer 2 (point 5). It has needed huge efforts to obtain these DMRT1 mutated rabbit line, and of course, it constitutes the basis of the study. But regarding the title and the main message of the article, we are not convinced that the targeting strategy should be moved into the main text.
4) Unless there are limitations imposed by the journal, I also feel that Suppl Fig 5 (the immunostaining) deserves to be in the paper text too. The Fig showing loss of DMRt1 by immunostaining is important.
We include the figure supplement 5 in the main text. So, Figure 4E and figure supplement 5 have been combined into a new Figure 5.
5) The RT-qPCR data should have the statistics clarified on the graphs. (e.g., it is stated that, although Sox9 mRNA is clearly down, there is a slight increase compared to control on KO XX gonads. Is this statistically significant? Figure legend states that the Kruskal-Wallis test is used, and significance is shown by letters. This is unclear. It would be better to use the more usual asterisks and lines to show comparisons.
Modification done.
6) Reference is made to DMRT1+/- rabbits having aberrant germ cell development, pointing to a dosage effect. This is interesting. Does the somatic part of the gonad look completely normal in the het knockouts?
DMRT1 heterozygous male rabbits have a phenotype of secondary infertility with aging, and we are trying now to better characterize this phenotype. The problem is complex because, as we cannot carry out conditional KO, it remains difficult to decipher the consequence of DMRT1 haploinsufficiency in the Sertoli cells versus the germinal ones. Anyway, the somatic part is sufficiently normal to support spermatogenesis since heterozygous males are fertile at puberty and for some months thereafter.
7) Can the authors indicate why meiotic markers were not used to explore the germ cell phenotype? It would be advantageous to use a meiotic germ cell marker to definitely show that the germ cells do not enter meiosis after DMRT1 loss. (Not just H/E staining or maintenance of POU). Example SYCP3, or STRA8 (as pre-meiotic marker) by in situ or immunostaining. Even though no germ cells were detected in adult KO gonads.
The expression of pre-meiotic or meiotic markers is currently under study in DMRT1 -/- females. Transcriptomic data (RNA-seq) are also being analyzed. We are preparing a specific article on the role of DMRT1 in ovarian differentiation in rabbits. We felt it was important to reveal the phenotype observed in females in this first article, but we still need time to refine our description and understanding of the role of DMRT1 in the female.
8) What future studies could be conducted? In the Discussion section, it is suggested that DMRT1 could act as a pioneering factor to allow SRY action upon Sox9. How could this be further explored?
To explore the function of DMRT1 as a pioneering factor, it now seems necessary to characterize the epigenetic landscapes of rabbit fetal gonads expressing or not DMRT1 (comparison of control and DMRT1-/- gonads). Two complementary approaches could be privileged: the study of chromatin opening (ATAC-seq) and the analysis of the activation state of regulatory regions (CUT&Tag). The study of several histone marks, such as H3K4me3 (active promoters), H3K4me1 (primed enhancers), H3K27ac (enhancers and active promoters), and H3K27me3 (enhancers and repressed promoters), would be of great interest. However, these techniques are only relevant for gonads that can be separated from the adjacent mesonephros, which is only possible from the 16 dpc stage in rabbits. To perform a relevant analysis at earlier stages, a "single-nucleus" approach such as ATAC-seq singlenucleus or multi-omic single-nucleus combining ATAC-seq and RNA-seq could be used.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer 1 major comments:
The authors show one configuration of the E1-E2 heterodimer in Figure 4d. As shown, the E1 protein is exterior to the E2 protein and would suggest E1 is on the surface on the spike complex and virus surface. However, another configuration of the glycoproteins has E2 on the exterior of E1 and also on the exterior of the virus. The latter conformation is what has been observed in cryoEM studies of alphaviruses. The first configuration represents the E1-E2 between the three heterodimers which are important for spike assembly. The reason the orientation of the E2-E1 dimer is important is the authors speculate on the importance of the 6 CHIK residues not found in ONNV based on the structure, but the structural interpretation is, in my opinion, not correct.
We thank reviewer 1 for pointing out the correct E2-E1 heterodimer configuration. To address this, we corrected the position of E2 and E1 in Figure 4 based on previous cryoEM study1, keeping E2 always on the exterior in the E2-E1 heterodimer. We also replaced the Indian Ocean Lineage (IOL) E2-E1 structure1 in the original Figure 4 with the CHIKV 181/clone 25 structure which was recently analyzed by Katherine Basore et al.2. In a single E2-E1 heterodimer, all six unique CHIKV positive selection sites are located on the outside of the structure after correcting the configuration. In addition, we investigated two of the unique CHIKV positively selected sites that are important for virion production, E2-V135 (V460 in the original manuscript version) and E1-V220 (V1029 in the original manuscript version), in trimerized structure of E2-E1 heterodimers. We found that the E2-V135 and E1-V220 residues in one heterodimer are facing E2 of the neighboring heterodimer on either side. Interestingly, while V135 is embedded between the E2 proteins of two different heterodimers, E1-V220 is partially embedded by E1 and the neighboring E2 and partially exposed to the outside. This suggests that even though both E2-V135 and E1-V220 might be crucial for CHIKV E2-E1 trimerization, E1-V220 provides an additional docking site for host factor interactions. We thank review 1 again for this important comment leading to these new findings. We have updated Figure 4F-4G and the corresponding result section (lines 201-209) in this partially revised manuscript.
- Validation of E1 interaction with SPSC3 and eIF3k needs to be stronger. Some concerns/questions are listed below. A myc tag was inserted between E3 and E2. How efficiently does furin cleave E3 from E2 in this virus and how are viral titers of the myc-tagged virus compared to the non-tagged virus? I ask because is the IP looking at what is being pulled down by E2 or E3-myc-E2 that could be part of the spike polyprotein? The authors found E2 interacts with E3, E1 and a list of other host proteins. These results suggest several interactions including E2-host factor, E2-E1, E2-E3, E2-E1-host factor, E2-E3-E1, E2-E3-host factor. In figure 6d, and the subsequent conclusions, the authors suggest E1 is interacting with the host factor and do not see E2 alone and very low amounts of E3-E2-6K-E1. based on how the IP was performed I am not sure how an interaction between E1 and SPCS3 alone, without E2, would be detected. I would also like to see a reciprocal pull down using E1 and also E2 to see if these host factors are pulled down.
We thank the reviewer for these concerns. Given the low viral protein expression in macrophages (Figure 1A), we need an efficient system to enrich for large amounts of CHIKV glycoproteins for identifying host interactors through mass spectrometry. Adding tag/reporter proteins, such as mCherry, between E3 and E2 have been used to label alphavirus glycoproteins in previous study2, which is why we chose to use this myc tag labeling strategy coupled with myc Ab-conjugated agarose beads for AP-MS. However, like reviewer 1 speculated, inserting myc tag between E3 and E2 does attenuate CHIKV infectivity according to the reduced supernatant viral titers of 293T cells transfected with CHIKV/myc-E2 genomic RNA in comparison to those of cells transfected with unmodified CHIKV vaccine strain 181/clone 25 genomic RNA (shown in revision plan). Despite the attenuation, CHIKV/myc-E2 harvested from transfected 293T cells still reaches a titer over 108 pfu/ml, which allowed us to identify interactors by AP-MS.
We further analyzed the cleavage efficiency of glycoproteins by comparing the expression levels of E3-E2-6K -E1, E3-E2 (p62), E2, and E3 in 293T cells transfected with unmodified CHIKV or CHIKV/myc-E2 genomic RNA (result shown in revision plan). We didn’t detect any uncleaved forms of glycoproteins in cells transfected with either unmodified CHIKV or CHIKV/myc-E2 RNA when we probed with E2 antibody. However, probing with E3 antibody prior to longer exposure of the immunoblot showed higher E3-E2-6k-E1 and E3-E2 (p62) levels in cells transfected with CHIKV/myc-E2 RNA, suggesting that both mature E2 and E2-containing precursor polyproteins are available to be pulled down. Overall, the expression levels of mature E2 detected by E2 antibody are similar.
We thank reviewer 1 for providing a thorough dissection of all the possible interactions between the identified host factors and cleaved/uncleaved glycoproteins. This is a very interesting question. As reviewer 1 mentioned that E1 usually appears with E2 or E3-E2 in heterodimer forms, we were also surprised to find that E2 does not interact with either of the two host factors. To address this, we plan to conjugate E2 and E1 to protein A/G beads, respectively, for a reciprocal pulldown to validate CHIKV glycoprotein interactions with SPCS3 and eIF3k. Results from this experiment will be included in the fully revised manuscript.
- If CHIK E1 is interacting with the host factors and that is antagonizing the antiviral response of SPSC3 (as one example), then what do pull downs using ONNV structural proteins look like? One would expect reduced interactions because the different amino acid causes a different E2-E1 dimer or attenuates the E1-host factor binding site.
We thank Reviewer 1 for this insightful suggestion. We agree that it would be informative to examine the interactions between ONNV glycoproteins and identified host factors (SPCS3 and eIF3k). Unfortunately, there is no commercial ONNV glycoprotein antibody available making this experiment unfeasible. Interestingly, we did observe reduced interactions between the host factors SPCS3 and eIF3k and the CHIKV E1-V220I mutant (V1029I in original manuscript version) where the positively selected site in E1 was mutated to the homologous ONNV residue (please refer to our response to Reviewer 3’s major comment #1). This result suggests that the ONNV glycoproteins likely have an attenuated E1-host factor binding site as the reviewer speculated.We have included this as Figure 7A in partially revised manuscript.
- E1 and E2 are thought to interact during polyprotein translation and the initial dimer forms in the ER. If E1 is interacting with SPSC3 in the ER, is E2 also present? Or is a population of E1 not interacting with E2 in order to inhibit SPSC3? I would love a model of how the authors see all these factors coming together for this new role of E1.
We thank Reviewer 1 for proposing this interesting hypothesis. Given the unexpected absence of E2 in our validation of host factor-E1 pulldown, we speculate that a group of free E1 proteins with distinct function is interfering with host factors in the ER, which is a model worth further investigation and discussion. A great example of this is the alphavirus nonstructural protein 3 (nsP3) that plays essential roles in RNA replication, although depending on the alphavirus not all of the nsP3 in the cell colocalizes with dsRNA, suggesting there is a separate distinct pool of nsP3 outside of active viral replication complex that interacts with host factors in these observed larger cytoplasmic aggregates3. To address this, we plan to use laser confocal microscopy to observe the interactions between host factors (SPCS3, eIF3k), and CHIKV E2 and E1. We will include this result as well as our proposed model in the fully revised manuscript.
Reviewer 1 minor comments:
- In Figure 1c, (-) RNA is shown but in the rest of the figures (+) RNA is shown. Show both or select one. I do find it interesting the (-) RNA levels are similar over time, even at 4 hours post transfection (early time). Related to this, ONNV has higher levels of (-) RNA but what is known about structural protein levels in ONNV and CHIK in macrophages? Are there comparable levels of CP and GP being produced?
We thank Reviewer 1 for this comment. The (-) RNA is synthesized before the synthesis of subgenomic mRNA and therefore can reflect more accurately early viral replication and nonstructural protein functions. This is the reason why we consider the (-) RNA levels evaluated by specific nsP1 TaqMan probes to be more appropriate for determining early stage differences between ONNV and CHIKV replication in Figure 1 as the goal of that figure is to define the steps in CHIKV life cycle that are more efficient than those of ONNV in THP-1 derived macrophages. On the other hand, the (+) RNA evaluated by E1 primers that we used in the later figures monitors viral RNA synthesis over time in the reflection of genomic (+) RNA and subgenomic mRNA transcribed from (-) RNA templates. Similar levels of (+) RNA and contrasting virion titers really point the difference to the later stages of subgenomic mRNA translation, viral glycoprotein secretion, and assembly.
We have generated ONNV/myc-E2 reporter virus and assessed viral glycoprotein expression through flow cytometry using a FITC -conjugated anti-myc antibody in the THP-1 derived macrophages transfected with CHIKV/myc-E2 and ONNV/myc-E2 (shown in revision plan). The results show that the expression of ONNV glycoproteins is more inhibited than that of CHIKV glycoproteins, though both of their expression levels in macrophages seem to be suppressed. Since there is no commercial ONNV antibody available, we were unable to compare capsid expression levels between the two viruses. Overall, differences in the myc-tagged glycoprotein expression levels of the two viruses reveals ONNV defect in either structural protein translation or glycoprotein maturation .
- Figure 2e and figure 3 have ONNV has the first bar followed by CHIK. In figure 1 and 2b, CHIK is first and then ONNV. helps the reader to have the controls in the same order.
We thank Reviewer 1 for this suggestion. We have changed the order of ONNV and CHIKV bars in figure 2E and figure3 so the CHIKV bar consistently comes first in all the figures.
- Line 143-145 the authors discuss that when ONNV is the backbone and CHIK proteins are inserted the infection is more attenuated because of the E2 and E1 are from CHIK and ONNV, not the same virus (could also be E2-CP interactions are disrupted). However the chimeras made with the CHIK backbone (in Figure 2) have a mismatch between E2 and E1 as well.
We thank Reviewer 1 for this informative comment. We agree that the incompatible E2-E1 heterodimer formation may not be the only reason that causes attenuation of ONNV/CHIKV E1 and ONNV/CHIKV E2. There may be multiple factors contributing to the fitness of the chimeras, which requires more in-depth mechanistic investigations and is out of the scope of this study. We have now removed the explanation “potentially due to incompatible heterodimer formation between ONNV E2 and CHIKV E1” in line 144.
- When discussing the residues that were found in the FEL and MEME analysis, the authors start the amino acid numbering from CP and continue along the polyprotein. Usually when discussing amino acids in the structural proteins, each protein starts at amino acid 1. So V460 would be E2-V135. It would also be useful to know what the residues in ONNV were at these positions to see if amino acids changed in charge, size, bond forming potential, etc. Showing these residues in the E2-E1 conformation found in the virion would also allow one to find adjacent residues that could explain differences in spike assembly and potentially where/how E1 is binding to a host protein.
We thank Reviewer 1 for this comment. We revised the amino acid numbers in the manuscript to start from the beginning of each structural protein. To look more into these residues in ONNV, we aligned CHIKV and ONNV from different lineages and compared the 6 positively selected sites (refer to our response to Reviewer 1’s minor comment #5). We found that E2-135 and E1-220 which are essential for CHIKV production are valines in all the aligned CHIKV strains. For the aligned ONNV strains, E2-135 are all leucines and E1-220 are all isoleucines. While valine, leucine and isoleucine are all amino acids with hydrophobic side chains, valine has the shortest side chain. The length of the side chains may lead to different hydrophobic properties that affect protein folding, which warrants further structural analysis.
- How effective is a non-attenuated CHIK strain in infecting macrophages? Could you make a SINV-La Reunion chimeric virus (which is BSL2) to see if a higher percentage of macrophages are infected and is this potentially contributing to the increased pathogenesis of La Reunion? Also how different is 181/25 with a pathogenic strain in the E2 and E1 residues? and compared to ONNV?
We thank Reviewer 1 for this question, which is also raised by Reviewer 2. In order to address this question, we plan to use the virulent CHIKV La Reunion strain to study the infection of THP-1 derived macrophages with non-attenuated CHIKV in BSL-3. We are getting trained in the BSL-3 facility and will soon be certified.
We thank Reviewer 1 for this insightful suggestion on investigating the conservation of these positively selected sites in different strains. We have aligned the sequences of ONNV and CHIKV strains from different lineages, including CHIKV vaccine strain 181/clone 25 and Thai strain AF15561 (the parental strain of CHIKV 181/clone 25) (alignment shown in revision plan). We found that the two positively selected sites with negative effects on virion production, E2-135 and E1-220 (sites 460 and 1029 in original manuscript version), are very conserved in either CHIKV or ONNV strains. CHIKV E2-135 is always valine (V) regardless of the lineages, while ONNV E2-135 is always leucine (L). CHIKV E1-220 is always V, while ONNV E1-220 is always isoleucine (I).
We also analyzed the amino acid heterogeneity of E2-135 and E1-220 in 397 CHIKV patient sequences from NCBI Virus database. Most of the amino acids at these 2 sites are V. The counts of each amino acid at E2-135 and E1-220 is summarized in table below. This result suggests that valine residues at E2-135 and E1-220 are crucial for CHIKV fitness and strongly selected during viral evolution. The sequence alignment and table will be included and discussed in the fully revised manuscript .
E2-135
E1-220
Valine (V)
394
392
Alanine (A)
1
3
Methionine (M)
1
0
Glutamic acid (E)
0
1
Glycine (G)
1
0
Isoleucine (I)
0
1
- When describing the last results section, "CHIKV E1 binding proteins exhibit potent anit-CHIV activities" the authors use macrophages. In the rest of the text they consistently use THP-1 macrophages or human primary monocyte derived macrophages. The details of the cell type are extremely useful to the reader and having those in the last results section would be great.
We thank Reviewer 1 for pointing out the importance of cell type clarification in the last results section. We now consistently use “THP-1 derived macrophages” instead of “macrophages” in this section.
- The paper is well-written. There is a slight disconnect as the authors go from discussing results in Figure 4 to Figure 5.
We thank Reviewer 1 for the comment regarding the disconnection of the last two figures in this paper which is also shared by the other reviewers. We have taken 3 approaches to address this comment: 1) We performed a pulldown of the host factors (SPCS3, eIF3k) identified in Figure 5 with CHIKV positively selected mutants examined in Figure 4 with deficient virion production. The result is presented in our response to Reviewer 3’ s major comment #1, suggesting that the positively selected site in E1 is essential for CHIKV glycoprotein interaction with host factors. 2) To complement our first experiment, we will also determine structural protein expression and processing of parental and E1 mutant CHIKV in eIF3k CRISPR knockout 293T cells. 3) Finally, we plan to perform CORUM analysis to identify high confidence functional protein complexes using our 14 hits found in both mass spec experiments, which will provide mechanistic insights into how these identified cellular complexes and processes might modulate CHIKV infection.
Reviewer 2’s major comments
The authors elegantly demonstrate that CHIKV structural proteins confer an advantage over ONNV structural proteins in a step in the replication cycle downstream of virus RNA synthesis, possibly virion assembly. This point would be strengthened determining the particle-to-PFU ratio of the parental viruses and the chimeras . Presumably, the ratio would increase in the chimeras containing CHIKV structural proteins.
We thank Reviewer 2 for this comment. We agree that determining particle-to-PFU ratios of parental and chimeric viruses will strengthen this study. To obtain the particle-to-PFU ratio, we infected THP-1 derived macrophages with CHIKV, ONNV and chimeras containing CHIKV glycoproteins (Chimera I, and ONNV/CHIKV E2+E1) for 24 h. To quantify the secreted viral particles, we extracted viral RNA in the supernatant and detected (+) viral RNA through TaqMan assay with specific nsp1 probes. The released infectious virions were evaluated through plaque assay. The particle-to-PFU ratios are summarized in the table below. The results show that ONNV has the highest particle-to-PFU ratio (41398), suggesting defective ONNV genome encapsidated in particles leading to defective virion production. On the other hand, the particle-to-PFU ratio of CHIKV (747) is 55-fold lower than that of ONNV. Replacing E3-E2-6K-E1 of ONNV with CHIKV homologous proteins reduces the particle-to-PFU ratio by 8 fold to 4875. Replacing E2 and E1 of ONNV with the ones from CHIKV (ONNV/CHIKV E2+E1) reduces the particle-to-pfu ratio by 20 fold to 2017, suggesting that CHIKV glycoproteins enhance the infectivity of viral progenies produced by THP-1 derived macrophages. We have included the results in Figure 3D-3E in our partially revised manuscript and described in lines 149-158.
- Additionally, the authors should consider performing virion assembly blocking assays with a small molecule inhibitor to determine if this abrogates the virus production advantage of CHIKV structural proteins within the ONNV backbone.
We thank Reviewer 2 for this insightful comment. As the secretory pathway is commonly important for alphavirus glycoprotein maturation and assembly, it will be informative to interrogate CHIKV glycoprotein trafficking and assembly through this pathway using specific inhibitors, such as dihydropyridine FLI-06 and golgicide A . Golgicide A is a reversible inhibitor of the cis-Golgi GBF1, which leads to rapid disassembly of the Golgi and trans-Golgi network (TGN)4. FLI-06 is a new inhibitor that interferes with cargo recruitment to ER-exit sites and disrupts Golgi without depolymerizing microtubules or interfering GBF15. We pretreated THP-1 derived macrophages with 10 uM FLI-06 or golgicide A for 30 mins prior to infection with CHIKV, ONNV, Chimera I, or ONNV/ CHIKV E2+E1. After 1 hour of virus adsorption in PBS with 1% FBS in the absence of the inhibitors, the cells were treated with the inhibitors at the same concentration (10uM) in complete medium for 24 h. The plaque assay result shows that all the viruses are sensitive to secretory pathway inhibition, however, the production of viruses containing CHIKV glycoproteins is significantly more attenuated by FLI-06 and golgicide A. This suggests that CHIKV glycoproteins-mediated trafficking and assembly is more heavily dependent on the host secretory pathway . We will include this result in the fully revised manuscript.
- Finally, the authors should perform competition experiments with the chimeric viruses and ONNV in macrophages to determine if the chimeras can outcompete the parental ONNV strain. Based on their data, the chimeric viruses should outcompete.
We thank Reviewer 2 for this inspiring suggestion. The competition experiment is an innovative and informative way to evaluate whether CHIKV glycoproteins confer a selective advantage on virion production in THP-1 derived macrophages. We plan to infect THP-1 derived macrophages with ONNV and ONNV/CHIKV E2+E1 and detect the viral glycoproteins secreted in the supernatant by western blot, although there is a possibility that this experiment might not work due to superinfection exclusion. Given that there is no commercial antibody of ONNV available, we need to use tagged viruses for this competition experiment. We constructed ONNV/CHIKV myc-E2+E1 that has a myc tag at the N-terminus of CHIKV E2, and ONNV/HA-E2 that has a HA tag at the N-terminus of ONNV E2. Our first attempt at concentrating the viral progenies released by THP-1 derived macrophages infected with the two tagged viruses has not been successful. We performed sucrose gradient ultracentrifugation of the supernatant viral particles but the myc and HA tags were not detected in the expected sucrose layer. Next, we plan to use myc-Ab and HA-Ab conjugated beads to pull down the supernatant viral particles to detect the ratio of ONNV/CHIKV myc-E2+E1 and ONNV/HA-E2 secreted by THP-1 derived macrophages. This will determine whether ONNV containing CHIKV glycoproteins can outcompete ONNV in co-infected cells due to increased viral fitness.
- The authors use both primary macrophages and macrophage cell lines as their in vitro model system and make one of their major points (listed in the title) that the determinants they identified in the CHIKV structural proteins convert macrophages into dissemination vessels; however, they do not show: 1) an in vivo model that the CHIKV-ONNV chimeras disseminate more efficiently than the parental ONNV; and 2) that these chimeras generate virus more efficiently specifically in macrophages. It would be useful to show that ONNV and CHIKV have equivalent virion production in other cell lines and that the advantage conferred by CHIKV structural proteins in the ONNV backbone is specific to macrophages. The authors should also change their title to reflect that dissemination is not directly being addressed in their study; the implications of their in vitro experimentation in a mammalian host would be more appropriate for the discussion.
We acknowledge the limitations of the study, which include a lack of direct demonstration of in vivo dissemination. To address these concerns, we will include further discussion of our in vitro findings in the context of viral dissemination in mammalian hosts in the fully revised manuscript. We are also testing ONNV, CHIKV, Chimera I and ONNV/CHIKV E2+E1 infections in 293T cells to investigate whether the advantage conferred by CHIKV glycoproteins are macrophage specific.
We have also updated the title to accurately reflect the significance of this research: “Chikungunya virus glycoprotein targeting of host factors increases viral fitness in human macrophage”.
Reviewer 2’s optional comments
- The authors use CHIKV-ONNV chimeras but it would be interesting to test other chimeras to determine if CHIKV structural proteins confer the same advantage in the backbone of other arthritogenic alphaviruses. The study would also be strengthened by using a pathogenic strain of CHIKV instead of the vaccine strain, as this is significantly attenuated in vivo.
We thank Reviewer 2 for this suggestion which is also suggested by Reviewer 1 in their minor comment #5. We plan to use virulent CHIKV La reunion strain and carry out infection experiments in BSL-3 to strengthen this study. We are getting trained in the BSL-3 facility and will be certified soon.
- In Figure 4, the authors identify residues in the CHIKV structural proteins that appear to be under positive selection in human subjects and generate point mutants in these residues with the corresponding ONNV residues. They find that one mutation, V1029I located in E1, completely abolishes virion production in THP-1 macrophage cell lines. However, in their previous chimeric experiments, they find that neither CHIKV E1 or E2 was sufficient to increase virus production in the ONNV backbone. The authors should address this discrepancy, otherwise they should consider moving the data in their point mutation experiments to a supplementary figure. While worthy of reporting, especially given the patient data, these experiments do not buttress the points made in the previous figures.
We thank Reviewer 2 for this insightful comment. According to previous studies, E2 and E1 always interact with each other from the step of the formation of single heterodimer in the ER to heterodimer trimerization before viral particle assembly. Although the E1-V220 site (previously called V1029) on the exterior of a single E2-E1 heterodimer appears to not be engaged in the E2-E1 interaction E1-V220 is partially exposed and protruding into the groove formed by E1 and the E2 of neighboring heterodimer, accessible to host factors. As such, mutating CHIKV E1-V220 to the ONNV residue (E1-V220I) may not only disrupt E2-E1 trimerization but also interfere viral glycoprotein interaction with host factors(presented in our response to Reviewer 1’s major comment #1). Similarly, solely swapping E2 or E1 with CHIKV substitute in the ONNV backbone would also affect the interaction between neighboring E2 and E1 in trimerized spike, which may explain why neither ONNV/CHIKV E2 or ONNV/CHIKV E1 rescues virion production in THP-1 derived macrophages . We have included this in the partially revised discussion section lines __ __296-313.
- The authors conclude their manuscript with an assessment of several host proteins, namely SPCS3 and eIF3k, that were identified by mass spectrometry and whose knockdown results in increased virion production. The authors speculate about the role of these proteins but do not provide any mechanistic detail on how they might be playing a role. It is unclear that the putative antiviral role of these proteins involves steps downstream of virus replication, especially given that the authors speculate translation might be affected by eIF3k which, if the case, RNA synthesis should also be expected to be affected.
We thank Reviewer 2 for this comment. We acknowledge that we have yet a full mechanistic understanding of how SPCS3 and eIF3k impact virion production. We plan to investigate their antiviral roles in our follow-up studies. For our partial revision, we have constructed several single eIF3k knockout (KO) clones of 293T cells. The eIF3k sgRNA we designed targets exon 3 which would eliminate expression of all 3 splice isoforms of eIF3k (KO schematic and sequence verification of CRISPR KO shown in revision plan). Unfortunately, we failed to obtain single clones of 293T cells with SPCS3 complete KO, consistent with a previous study by Rong Zhang et al6 that were unable to recover SPCS3 KO clones likely due to the importance of SPCS3 in cell survival. We infected an eIF3k KO clone (clone 9) with CHIKV vaccine strain 181/clone 25, ONNV SG650, and SINV Toto1101. Interestingly, we found that the antiviral activity of eIF3k is specific to CHIKV as CRISPR KO of eIF3k increases CHIKV production by 2.5 fold but not ONNV or SINV production (shown in revision plan). We have included this in the partially revised manuscript in__ line 272-282 (Figure 7B-7D).__
We presume that Reviewer 2’s inference of eIF3k’s potential effects on viral RNA synthesis is based on our speculation of its antiviral role in viral translation, which may affect viral nonstructural gene expression. We would like to clarify that eIF3k is not an initiation factor traditionally needed for cap-dependent translation. It is also not clear what translation process (nonstructural polyprotein translation from viral genomic RNA or structural polyprotein translation from viral subgenomic mRNA) involves eIF3k if it indeed affects viral protein expression. Notably, previous SINV studies imply that alphavirus structural polyprotein translation may employ unique mechanisms without the requirement of several crucial initiation factors4,5. It will be interesting to see whether eIF3k participates in viral subgenomic mRNA translation as that would affect viral glycoprotein expression leading to reduced virion production. We have now included additional discussion on eIF3k antiviral mechanisms in the partially revised manuscript in lines 345-353.
- Overall, while the initial chimeric virus and domain swap approach is strong, the manuscript would benefit with a more thorough examination of virion assembly steps and a mechanistic link to virion production. Otherwise, the authors should revise the structure of their manuscript by de-emphasizing points about virion assembly and leave room for other mechanistic explanations of their chimeric data that more clearly link the host antiviral factor/E1 binding studies.
We thank the reviewer for these positive comments and suggestions. We have addressed this by further interrogating the production kinetics of CHIKV, ONNV, and the chimeras containing CHIKV glycoproteins through determining their particle-to-PFU ratios as well as treating infected cells with secretory pathway inhibitors (refer to our responses to Reviewer 2 major comments #1 and #2). We have also included additional discussion on eIF3k antiviral mechanisms specifically on how it may affect other steps of the viral life cycle in the partially revised manuscript in lines 345-353 (refer to our response to Reviewer 2 optional comment #3).
Reviewer 3’s critique comments
- Overall, the manuscript is well written but in its current state it is more like two different stories because the effects of envelope proteins and list of interactors are not brought together in one story. A possible fix to this problem would be inclusion of ONNV and CHIKV containing env mutations that do and do not restore viral release from macrophages into the pulldown/association experiments shown in Figure 6.
We thank Reviewer 3 for the insightful suggestions to better connect the first (CHIKV determinants) and second (CHIKV glycoprotein interactors) parts of the manuscript. In response to the Reviewer’s comment, we tested the binding of SPCS3 and eIF3k to CHIKV E1 with E1-V220I (V1029I in original manuscript version) mutation (shown in revision plan) which was shown to abrogate virion production in THP-1 derived macrophages in Figure 4E. We transfected plasmids expressing 3XFLAG-tagged SPCS3/eIF3k or empty vector for 24 h followed by transfection with plasmids expressing either the parental CHIKV vaccine strain 181/clone 25 poly-glycoproteins (E3-myc-E2-6K-E1) or poly-glycoproteins with the E1-V220I mutation. Interestingly, we found that mutating CHIKV E1-V220 to the homologous ONNV residue reduces the binding to either SPCS3 or eIF3k. This result strongly suggests that the positively selected E1-V220 is located in the interaction interface between E1 and SPCS3/eIF3k, confirming the genetic conflict between E1 and these host factors to be one of the major drivers of CHIKV evolution observed at site E1-V220. We have included this result in partially revised manuscript in Figure 7A and in lines 265-271.
- The other major issue is the lack of protein data for the viral mutants relative to WT ONNV and CHIKV and assessment of viral RNA in the supernatants to determine whether the block is release or an earlier event since viral RNA levels in the cell seems to be the same or at least normalized.
We thank Reviewer 3 for pointing out the insufficient clarification of the block leading to defective CHIKV mutant virion production. We previously detected E2 expression from 293T cells transfected with poly-glycoproteins (E3-myc-E2-6K-E1) containing E2-V135L (V460L in original manuscript version), E2-A164T (A489T in original manuscript version), E2-A246S (A571S in original manuscript version) and E1-V220I (V1029I in original manuscript version). We found that only E2-V135L mutation can lead to unexpected E2 cleavage (shown in revision plan) as we mentioned but not shown in the original manuscript. This explains why E2-V135L mutation attenuates infectious CHIKV production.
The E2 expression of E1-V220I appears to be not affected in 293T cells transfected with poly-glycoproteins with E1-V220I (shown in revision plan ). In addition, the E1-host factor binding result in our response to Reviewer 3’s major comment #1 showed that E1 with the positively selected site mutation V220I can also be successfully expressed in 293T cells after transfection with poly-glycoprotein. Based on these current data, E1-V220I mutation likely abrogates virion production without affecting glycoprotein expression.
Our previous result of the ONNV particle-to-PFU ratio reveals that ONNV RNA is released but encapsidated in defective particles causing its attenuation in infected macrophages. Thus, even though the glycoproteins of E1-V220I can be expressed, the diminished virion production of CHIKV E1-V220I can still be ascribed to 1) blocked viral particle release and 2) production of defective particles like ONNV. Given that it is not feasible to obtain particle-to-PFU ratio of E1-V220I mutant which fails to form plaques, Reviewer 3’s suggestion to assess the supernatant viral RNA will be a nice approach to address this question. To further address this concern, we plan to transfect THP-1 derived macrophages with CHIKV E1-V220I mutant RNA to detect the intracellular viral glycoprotein expression and supernatant viral RNA levels through western blot and TaqMan assay, respectively.
- Lastly, knockdown experiments indicate an effect of things like OAS3 or other innate immune modulators. There are no controls to demonstrate that these are specific to CHIKV infection or if knockdown would assist growth of ONNV as well.
We also thank Reviewer 3 for the suggestion to check whether the identified host factors specifically target CHIKV or inhibit the infection of ONNV as well. We previously tried but were facing some issues. Since only a small fraction of macrophages can be infected with CHIKV and even a smaller fraction can be infected with ONNV (Figure 1A), it is hard to elucidate the roles of these identified host factors in ONNV infection by siRNA knockdown. We decided to take a more rigorous approach to investigate the antiviral specificity of identified host factors, especially understudied SPCS3 and eIF3k, to different alphaviruses by generating complete knockout 293T single cell clones. Despite the fact that we did not successfully generate SPCS3 complete KO, we obtained an eIF3k KO single cell clone and infected it with CHIKV, ONNV and SINV (refer to our response to Reviewer 2 optional comment #3). We found that eIF3k only has antiviral activity against CHIKV with almost no effects on ONNV or SINV infection. We have included this in our partially revised manuscript in line 272-282 (Figure 7B-7D).
Reviewer 3's minor comments:
Other points to consider:
- The title does not fit the manuscript findings and should be modified.
We thank Reviewer 3 for this important comment, which was also brought up by Reviewer 2. We have now changed our title to “Chikungunya virus glycoprotein targeting of host factors increases viral fitness in human macrophage”, which more accurately reflects the significance of our research.
- It is unclear why the authors show results for SINV and RRV in Figure 1. Either these should be removed or the viruses should be carried throughout the experiments described in the Figure. Better yet would be to add additional alphaviruses to this analysis to determine if there are additional viruses that act similarly to CHIKV.
We apologize for the confusion caused by including SINV and RRV results in Figure 1. We intended to show the superiority of CHIKV in infecting primary monocyte derived macrophages among arthritogenic alphaviruses, which we speculate may provide the molecular basis for macrophage-mediated CHIKV dissemination and disease. We would like to keep the SINV and RRV infection results in Figure 1 to highlight the relative susceptibility of macrophages to CHIKV. To echo the additional alphaviruses tested in Figure 1 and bring the story full circle, we included the result of SINV infection of eIF3k CRISPR KO 293T cells in Figure 7B-7D. These results uncover inhibitory activities of eIF3k that are specific to CHIKV.
- Is the data presented in Figure 1A significant?
We thank Reviewer 3 for this question. We infected both THP-1 derived macrophages and primary monocyte derived macrophages with EGFP-expressing alphaviruses each in duplicates for two independent times. The general low expression of EGFP in all virus-infected groups refrains us from drawing conclusions based on statistically significant differences observed with MFI, hence we chose to show representative scatter plots in the original manuscript. To address Reviewers 3's question, we plotted the infected cell (EGFP+) based on the percentages of the experimental duplicates (shown in revision plan), and found CHIKV infection to be the most significantly different from that of the other alphaviruses in primary monocyte derived macrophage . The numbers above the bar charts are the mean percentages of EGFP+ cells.
- The justification for inclusion of Figure 4A is lacking. It is unclear what this panel is supposed to be demonstrating.
This is an excellent suggestion as the host factors identified by AP-MS not only contain interactors of CHIKV mature E2 but also those of uncleaved E2-containing precursor polyproteins. We modified Figure 4A to reflect all E2/E2-containing poly-glycoproteins present in CHIKV-infected cells (shown in revision plan).
- There is little justification for the candidates assessed in
We understand Reviewer 3’s concern. Due to the nature of mass spectrometry studies which predict protein-protein interactions rather than direct functional validation, we acknowledge that we may miss some host candidates that have anti- or pro-CHIKV activities. Although justification of hit selection from mass spectrometry datasets is more difficult than that from CRISPR KO screen datasets, we set up specific criteria to identify host protein candidates with the greatest potential to functionally interact with CHIKV glycoproteins. Most of the proteins we chose to validate (Figure 6a) were identified in both of our independent AP-MS experiments, which both pass through a P-value threshold of 0.05 and log2 fold change of 0.
- Extended data Figure 3 is very difficult to read due to the small font size.
We apologize for the small font in Extended data Figure 3. We plan to replace Figure EV3 ( Extended data 3 in unrevised version) with a CORUM protein-protein interaction network that centers on the significant hits identified by both AP-MS experiments, but includes hits from either one of the two experiments in these functional protein complexes. The figure will be more concise and centralized, and the font will be bigger.
- Just to be clear, the blots shown in Figure 6D are different from those depicted in Extended data Figure 4b, because some of them look very similar.
We thank Reviewer 3 for this question. In Figure 6D, we expressed CHIKV glycoproteins through transfecting CHIKV genomic RNA into 293T cells, while, in Figure 4B, we expressed CHIKV glycoproteins through transfecting poly-glycoprotein plasmid (pcDNA3.1-E3-myc-E2-6K-E1) into 293T cells, which are complementary approaches to express CHIKV glycoproteins to validate their interactions with identified host factors. We have now added schematics to illustrate the different experimental strategies above the figures in this partially revised manuscript (shown in revision plan).
References:
Voss, J. E. et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709–712 (2010). Jose, J., Tang, J., Taylor, A. B., Baker, T. S. & Kuhn, R. J. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells. Viruses 7, 6182–6199 (2015). Götte, B., Liu, L. & McInerney, G. M. The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last. Viruses 10, 105 (2018). Saenz, J. B. et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat. Chem. Biol. 5, 157–165 (2009). Krämer, A. et al. Small molecules intercept Notch signaling and the early secretory pathway. Nat. Chem. Biol.9, 731–738 (2013). Zhang, R. et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535, 164–168 (2016).
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Review: In this manuscript the authors generated macrophages derived from the THP-1 cell line or human peripheral blood mononuclear cells stimulated with MCSF and infected them with alphaviruses some containing GFP expression cassettes. In Figure 1, they demonstrate that CHIKV infected these cells more robustly than RRV, SINV or the related ONNV. The authors generated an extensive array of CHIKV/ONNV chimeras to identify the viral proteins that dictate release from infected macrophages and narrowed it down to the envelop proteins E1 and E2. Fine mapping identified a couple of single mutations that affected macrophage infection outcomes. The authors then shifted their approach to identifying env protein interactors using a myc-tag pulldown methods followed by mass spectrometry. The assay identified a number of proteins including those involved in vesicular transport and interferon pathways. siRNA knockdown experiments were performed to identify interactors and many of them were shown to improve virus output.
Critique: Overall, the manuscript is well written but in its current state it is more like two different stories because the effects of envelop proteins and list of interactors are not brought together in on one story. A possible fix to this problem would be inclusion of ONNV and CHIKV containing env mutations that do and do not restore viral release from macrophages into the pulldown/association experiments shown in Figure 6. The other major issue is the lack of protein data for the viral mutants relative to WT ONNV and CHIKV and assessment of viral RNA in the supernatants to determine whether the block is release or an earlier event since viral RNA levels in the cell seems to be the same or at least normalized. Lastly, knockdown experiments indicate an effect of things like OAS3 or other innate immune modulators. There are no controls to demonstrate that these are specific to CHIKV infection or if knockdown would assist growth of ONNV as well.
Other points to consider:
- The title does not fit the manuscript findings and should be modified.
- It is unclear why the authors show results for SINV and RRV in Figure 1. Either these should be removed or the viruses should be carried throughout the experiments described in the Figure. Better yet would be to add additional alphaviruses to this analysis to determine if there are additional viruses that act similarly to CHIKV.
- Is the data presented in Figure 1A significant?
- The justification for inclusion of Figure 4A is lacking. It is unclear what this panel is supposed to be demonstrating.
- There is little justification for the candiates assessed in
- Extended data Figure 3 is very difficult to read due to the small font size.
- Just to be clear, the blots shown in Figure 6D are different from those depicted in Extended data Figure 4b, because some of them look very similar.
Significance
The study provides a fresh look at Alphavirus replication in macrophages. There are a number of issues that should be worked out that would enhance impact and interpretation of this study.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
In this work Yao et al. show CHIK is able to infect macrophages in contrast to other arthritogenic alphaviruses RRV, ONNV, and SINV. They use a series to chimeric viruses made with ONNV, the closest species to CHIK, and determine the E2-E1 proteins are important viral determinants which allow CHIK to replicate in machophages compared to ONNV. By comparing 397 CHIK sequences from infected patients, they identified 14 residues under pervasive and positive selection. Of these, 3 residues in E2 and 3 residues in E1 (amino acids) were different between CHIK and ONNV suggesting these residues contributed to the difference in macrophage tropism of CHIK compared to ONNV. The authors go on to determine what host factors the CHIK E2 protein is interacting with to presumably connect the viral and host determinants for CHIK infection in macrophages.
Major concerns:
- The authors show one configuration of the E1-E2 heterodimer in Figure 4d. As shown, the E1 protein is exterior to the E2 protein and would suggest E1 is on the surface on the spike complex and virus surface. However, another configuration of the glycoproteins has E2 on the exterior of E1 and also on the exterior of the virus. The latter conformation is what has been observed in cryoEM studies of alphaviruses. The first configuation represents the E1-E2 between the three heterodimers which are important for spike assembly. The reason the orientation of the E2-E1 dimer is important is the authors speculate on the importance of the 6 CHIK residues not found in ONNV based on the structure, but the structural interpretation is, in my opinion, not correct.
- Validation of E1 interaction with SPSC3 and eIF3k needs to be stronger. Some concerns/questions are listed below. A myc tag was inserted between E3 and E2. How efficeintly does furin cleave E3 from E2 in this virus and how are viral titers of the myc-tagged virus compared to the non-tagged virus? I ask because is the IP looking at what is being pulled down by E2 or E3-myc-E2 that could be part of the spike polyprotein? The authors found E2 interacts with E3, E1 and a list of other host proteins. These results suggest several interactions including E2-host factor, E2-E1, E2-E3, E2-E1-host factor, E2-E3-E1, E2-E3-host factor. In figure 6d, and the subsequent conclusions, the authors suggest E1 is interacting with the host facor and do not see E2 alone and very low amounts of E3-E2-6K-E1. based on how the IP was performed I am not sure how an interaction between E1 and SPCS3 alone, without E2, would be detected. I would also like to see a reciprocal pull down using E1 and also E2 to see if these host factors are pulled down.
- If CHIK E1 is interacting with the host factors and that is antagonizing the antiviral response of SPSC3 (as one example), then what do pull downs using ONNV structural proteins look like? One would expect reduced interactions because the different amino acid causes a different E2-E1 dimer or attenuates the E1-host factor binding site.
- E1 and E2 are thought to interact during polyprotein translation and the initial dimer forms in the ER. If E1 is interacting wht SPSC3 in the ER, is E2 also present? Or is a population of E1 not interacting with E2 in order to inhibit SPSC3? I would love a model of how the authors see all these factors coming together for this new role of E1.
Minor concerns:
- In Figure 1c, (-) RNA is shown but in the rest of the figures (+) RNA is shown. Show both or select one. I do find it interesting the (-) RNA levels are similar over time, even at 4 hours post transfection (early time). Related to this, ONNV has higher levels of (-) RNA but what is known about structural protein levels in ONNV and CHIK in macrophages? Are there comparable levels of CP and GP being produced?
- Figure 2e and figure 3 have ONNV has the first bar followed by CHIK. In figure 1 and 2b, CHIK is first and then ONNV. helps the reader to have the controls in the same order.
- Line 143-145 the authors discuss that when ONNV is the backbone and CHIK proteins are inserted the infection is more attenuated because of the E2 and E1 are from CHIK and ONNV, not the same virus (could also be E2-CP interactions are disrupted). However the chimeras made witht he CHIK backbone (in Figure 2) have a mismatch between E2 and E1 as well.
- When discussing the residues that were found in the FEL and MEME analysis, the authors start the amino acid numbering from CP and continue along the polyprotein. Usually when discussing amino acids in the structural proteins, each protein starts at amino acid 1. So V460 would be E2-V135. It would also be useful to know what the residues in ONNV were at these positions to see if amino acids changed in charge, size, bond forming potential, etc. Showing these residues in the E2-E1 conformation found in the virion would also allow one to find adjeacent residues that could explain differences in spike assembly and potentially where/how E1 is binding to a host protein.
- How effective is a non-attenuated CHIK strain in infecting macrophages? Could you make a SINV-La Reunion chimeric virus (which is BSL2) to see if a higher percentage of macrophages are infected and is this potentially contributing to the increased pathogenesis of La Reunion? Also how different is 181/25 with a pathogenic strain in the E2 and E1 resdiues? and compared to ONNV?
- When describing the last results section, "CHIK E1 binding proteins exhibit potent anit-CHIV activities" the authors use macrophages. In the rest of the text they consistently use THP-1 macrophages or human primary monocyte derived macrophages. The details of the cell type are extremely useful to the reader and having those in the last results section would be great.
- The paper is well-written. There is a slight disconnect as the authors go from discussing results in Figure 4 to Figure 5.
Referees cross-commenting
I agree with R#2 that having some Particle:PFU data would add some data to determine why such differences in titers/infectivity.
I also see how this m/s could be split into two different m/s. One that focuses on the chimeric viruses and another that identifies the host factors important and goes in more depth with mechanism
Significance
Strengths:
The authors have tackeled an intriguing question: why do some alphaviruses infect macrophages and others do not. They have used a chimeric approached to very systematically identify the viral determinants E2 and E1 as being important in macrophage infection. Using AP-MS they identify host factors that interact with E2 (possibly E2 and E1, see comments above) but if their findings that E1 has a role in attenuating a host antiviral factor, this would be fantastic.
More and more examples of viral proteins having multiple roles during infection are in the literature. The idea that structural proteins also attenutate host antivirals is a developing field and vastly understudied. By fleshing out the results some more the authors might be onto something ery important in alphavirus virology.
Limitations:
The study has it is presented is limited in the validation of host factors and their interacting partners. I have many questions about the methodology, validation, and model from this last section.
-
-
bobdoto.computer bobdoto.computer
-
folgezettel pushes the note maker toward making at least one connection at the time of import.
There is a difference between the sorts of links one might make when placing an idea into an (analog) zettelkasten. A folgezettel link is more valuable than a simple tag/category link because it places an idea into a more specific neighborhood than any handful of tags. This is one of the benefits of a Luhmann-artig ZK system over a more traditional commonplace one, particularly when the work is done up front instead of being punted to a later time.
For those with a 1A2B3Z linking system (versus a pure decimal system), it may be more difficult to insert a card before other cards rather than after them because of the potential gymnastics of numbering and the natural tendency to put things into a continuing linear order.
See also: - https://hypothes.is/a/ToqCPq1bEe2Q0b88j4whwQ - https://hyp.is/WtB2AqmlEe2wvCsB5ZyL5A/docdrop.org/download_annotation_doc/Introduction-to-Luhmanns-Zette---Ludecke-Daniel-h4nh8.pdf
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank the reviewers for their careful reading of the document and feedback which will help us to improve our manuscript. We will go through their comments one by one.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
This study would be much convincing if additional line of eukaryotic cells can be used to demonstrate the GEF-GAP synergy tis important for cell physiology. In addition, it would be best to demonstrate the spatiotemporal interaction of GEF-GAP using high-resolution live cell imaging.
Response from the authors:
The reviewer requests additional in vivo data to support our in vitro findings:
(1) The reviewer requests in vivo data showing that GEF-GAP synergy is important for cell physiology. We believe that in order to show GEF-GAP synergy in vivo, Cdc42 cycling rates would need to be measured in vivo. For that single-molecule resolution is required – to track a single Cdc42 molecule and measure its GTPase cycling. We agree that such data would indeed be interesting, but are unaware of established techniques that would facilitate measurements of Cdc42 cycling rates in vivo.
(2) The reviewer requests in vivo data showing the spatiotemporal interaction of GEF-GAP. Cdc24 and Rga2 are shown to interact (direct or mediated by another protein) (McCusker et al. 2007, Breitkreutz et al. 2010, Chollet et al. 2020). Cdc24 and Rga2 share 11 binding partners (https://thebiogrid.org/31724/table/saccharomyces-cerevisiae-s288c/cdc24.html, https://thebiogrid.org/32438/table/saccharomyces-cerevisiae-s288c/rga2.html) and have been found at the polarity spot (Gao et al. 2011). Live cell imaging of fluorescently tagged Cdc24 and Rga2 will show that they exhibit some interaction, but not specify the role of the interaction nor if the interaction is direct or mediated by one of the shared binding partners. In order to show a direct interaction between Cdc24 and Rga2, one could consider (A) super-resolution imaging or (B) FRET experiments: For both fluorescently tagged Cdc24 and Rga2 cell lines would need to be constructed.
(A) Super-resolution imaging could show direct interaction between Cdc24 and Rga2, but even with the techniques available this would be on the limit. Further, it is usually done in fixed cells, and not in live cells (as requested from the reviewer).
(B) To show a direct interaction of Cdc24 and Rga2 using FRET, suitable protein constructs would need to be engineered. We believe that the main obstacle in showing direct binding of Cdc24 and Rga2 using FRET is to design the fluorophore linker. The linker would need to be designed in such a way that it is flexible enough to give a FRET signal even if the two large proteins bind on the opposite sites of the fluorophore, but also is stiff/short enough to not show binding if both proteins are in close proximity through binding to a common binding partner.
__We believe that an investigation of GEF GAP binding in vivo is beyond the scope of this study. Instead, we will further explore one possible mechanism underlying GEF GAP synergy - Cdc24 Rga2 binding - through conducting Size-Exclusion Chromatography Multi-Angle Light Scattering experiments with purified Cdc24 and Rga2 (alone and in combination). __
Reviewer #1 (Significance (Required)):
The revised study would provide first line evidence that GEF-GAP synergy to be general regulatory property in eukaryotic kingdom.
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
The study entitled, "The GEF Cdc24 and GAP Rga2 synergistically regulate Cdc42 GTPase cycling" by Tschirpke et al., uses an in vitro GTPase assay to examine the GTPase cycle of Cdc42 in combination with its GEF and GAP effectors. The authors find that the Cdc24 GEF activity scales non-linearly with its concentration and the GAP Rga2 has substantially weaker effect on stimulating Cdc42 GTPase activity. Not surprisingly, the combined addition of Cdc24 and Rga2 lead to a substantial increase in Cdc42 GTPase activity.
**Referees cross-commenting**
In Zheng, Y., Cerione, R., and Bender, A. (1994) J. Biol. Chem. 269: 2369-2372 (Fig. 3C), the authors show that Cdc24 combined with the GAP Bem3 lead to a large synergy in boosting Cdc42 GTPase activity.
Reviewer #2 (Significance (Required)):
There is very little new information in this manuscript. Previous studies (Rapali et al. 2017) have shown that the scaffold protein Bem1 enhances the GEF activity of Cdc24. It is expected that the reconstitution of a GEF and GAP protein promote the GTPase cycle and indeed Zheng et al. (1994) showed that that Cdc24 combined with the GAP Bem3 lead to a large synergy in boosting Cdc42 GTPase activity. Hence the only potentially interesting finding in this work is that, in solution Cdc24 activity scales non-linearly with its concentration. However as this GEF and Cdc42 are associated with the membrane, the relevance of solution studies are less clear and furthermore the mechanistic basis for the non-linearity is not explored in detail. Given the limited new information from this work, the findings are, in their current form, too preliminary.
Response from the authors:
__We appreciate the reviewer recognizing our work on the non-linear concentration-dependence of Cdc24’s activity. We disagree that this is the only new finding in our study: __
We explore the effect of Cdc24 and Rga2 on Cdc42’s entire GTPase cycle and show that Cdc24 and Rga2 synergistically upregulate Cdc42 cycling. So-far Cdc42 effectors were only characterized in isolation (with the exception of Cdc24-Bem1 (Rapali et al. 2017)) and through how they affect a specific GTPase cycle step. The regulation of single GTPase cycle steps through an effector yields mechanistic insight into this specific GTPase cycle step. However, it does not show how the effector affects overall GTPase cycling of Cdc42 – a process Cdc42 constantly undergoes in vivo. Our approach allows us to study synergistic effects between proteins affecting different GTPase cycle steps. Synergies are another regulatory layer of the polarity system, adding further complexity: Which polarity proteins exhibit synergy, to which extend? The assay employed here, which studies the entire GTPase cycle, enables studying the effect of any GTPase cycle regulator, alone and in combination with another regulator.
The reviewer states that the GEF GAP synergy is to be expected, as it was already shown in Zheng et al. 1994. In Fig. 3C Zheng et al. shows the time course of the GTPase activity of Cdc42 in presence of Cdc24, Bem3, and Cdc24 plus Bem3. Fig. 3C is the only data in which the combined effect of a GEF (Cdc24) and a GAP (Bem3) is investigated. The data indicates synergy, but is neither discussed as such in the text of the publication, nor analyzed quantitatively. Further, only one concentration of each effector (GEF/GAP) is used and the study uses a Bem3 peptide containing codons 751-1128 (30%) of the full-length BEM3 gene. Zheng et al. 1994 gives an early indication of GEF GAP synergy, but does not claim, discuss, or further investigate the synergy as such. In contrast, we use full-length Rga2 (not Bem3) as GAP, conduct several concentration-dependent assays, and analyze them quantitatively. We thank the reviewer for pointing out the pioneering character of Zheng et al.‘s study and will mention it more prominently in our report. However, we disagree that Zheng et al. sufficiently studied the GEF GAP interaction. To our awareness no theoretical studies include a GEF GAP synergy term, which we would expect if GEF GAP synergy is well-established in the field.
The reviewer criticizes the relevance of bulk in vitro studies (lacking membranes) of proteins that bind to membranes in vivo. We agree that the presence of a membrane can affect the protein’s property, and we can not exclude that membrane-binding could alter the magnitude of a GEF GAP synergy. However, we believe that membrane-binding does not impede the GEF GAP synergy altogether. If membrane binding would influence GTPase properties that strongly, other studies on Cdc42’s GTPase activity and GEF and GAP activity, that do not include a membrane, would be inconclusive as well (e.g. Zheng et al. 1993, Zheng et al. 1994, Zheng et al. 1995, Zhang et al. 1997, Zhang et al. 1998, Zhang et al. 1999, Zhang et al. 2000, Zhang et al. 2001, Smith et al. 2002, Rapali et al. 2017). Both studies mentioned by the reviewer (Zheng et al. 1994, Rapali et al. 2017) were also conducted without membranes present.
We believe that an inclusion of membrane-binding into reconstituted Cdc42 systems will enhance our understanding of Cdc42 and recognize it as a next step, which could be enabled by the assay used in our study.
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
This work reports a biochemical analysis of the effects of a recombinant yeast GEF (Cdc24) and GAP (Rga2) on Cdc42 GTPase cycling in vitro. The central conclusion is that the GEF and GAP act "synergistically", which occurs "due to proteins enhancing each other's effects". By this they appear to mean that the GEF enhances the GAP's activity and vice versa. I was not persuaded that this is correct, and was confused by many aspects of the approach and interpretation, as outlined below.
- GEF and GAP are expected to accelerate GTPase cycle synergistically even with no effect on each other's activity:
The Cdc42 GTPase cycle is understood to occur via distinct steps (GDP release, GTP binding, and GTP hydrolysis): GDP release and GTP hydrolysis are intrinsically slow steps that are accelerated by GEFs (GDP release) and GAPs (GTP hydrolysis). This fundamental biochemistry was established in the 1990s using biochemical assays that measure each step independently. Here instead the authors use an assay that measures [GTP] decline in a mix with 5 uM starting GTP, 1 uM Cdc42, plus or minus some amount of GEF or GAP. They assume exponential decline of [GTP] with time, yielding a cycling "rate". If that is so, then one would expect that added GEF would accelerate only the first step, leaving a slow GTP hydrolysis step that limits the overall cycling rate, while added GAP would accelerate only the last step, leaving a slow GDP release step that limits the overall cycling rate. Adding both together would speed up both steps, and should therefore "synergistically" accelerate cycling. This would be expected based on previous work and does not imply that GEF or GAP are affecting each other's action (except trivially by providing substrate for the next reaction). If the authors wish to demonstrate that something more complex is indeed happening, they need to use assays that directly measure the sub-reaction of interest, as done by prior investigators.
Response from the authors:
The reviewer raises the point that we do not consider a simpler, rate-limiting model and that this rate-limiting model could explain our synergy between GAP and GEF in accelerating the GTPase cycle.
We very much welcome this consideration of the reviewer! We will add a clarification to our manuscript to explain why a rate-limiting model/interpretation does not match our data.
Intuitively, the rate-limiting model is appealing, as it permits interpretation of cycle rate increases in terms of individual biochemical steps. So, a consideration of this model is indeed relevant. However, as also noted by the reviewer in the next points, data from e.g., figure 3e are not compatible with a simple rate-limiting model with two steps (hydrolysis and nucleotide exchange). We will explain how the acceleration of the total rate by both GAP and GEF individually does not match the rate-limiting model, even if we assume maximal effects of adding GAPs and GEF to the cycle. For this purpose, we consider the rate-limiting model scenario where the sensitivity of the GTPase cycle to adding GAP/GEF is maximized, so the best case-scenario for the rate limiting step-model.
In the rate-limiting step model, we assume that we have a GTPase cycle in which at least one of the three GTPase cycle steps is rate-limiting: (A) GTP binding, (B) GTP hydrolysis, and (C) GDP release.
We assume that the addition of a GEF and GAP only accelerates GDP release and GTP hydrolysis respectively. Biochemically, all three steps in the GTPase cycle are expected to be relevant. However, here we will consider only the final two steps, as sensitivity to rate limitation by GAP/GEF is maximized when time spent in the GAP/GEF-independent step in the cycle (step A: GTP) is negligible (i.e. never rate-limiting). The two-step model thus consists of (1) a nucleotide exchange step (step C+A) which is dominated by GDP release (step C) and assumed to be accelerated exclusively by the GEF, and (2) a GTP hydrolysis step (step B) exclusively enhanced by the GAP.
In the rate limiting step model GEF-GAP synergy can appear if one of the conditions applies:
- the addition of a GAP speeds up the GTP hydrolysis step so much that the hydrolysis step stops (or almost stops) being the rate-limiting step, or
- the addition of a GEF speeds up the GDP release step so much that the release step stops (or almost stops) being the rate-limiting step. In these conditions, the acceleration of the GTPase cycle, accomplished by adding only a GAP or adding only a GEF, is interdependent. Therefore, we consider the possible acceleration of the GTPase cycle by GAP and GEF individually, and compare these to our observations to determine whether the rate-limiting step model can explain our data.
The GTPase cycle time Tc is thus composed of hydrolysis Th and nucleotide exchange time Te, and the rates r are connected through:
1/rc=1/rh + 1/re
If we compare the ratio of the rates with protein (GAP/GEF) added in the assay (index 1) with the basal rate without protein added (index 0), we obtain the cycle acceleration factor alpha:
alpha=rc1/rc0=(1/rh0 + 1/re0)/(1/rh1 + 1/re1)=(re0 + rh0)/(re0*rh0/rh1 + rh0*re0/re1)
Here, rc1 and rc0 are the total GTPase cycle rate with and without effector respectively, rh1 and rh0 are the GTP hydrolysis rate with and without effector respectively, and re1 and re0 are the nucleotide exchange rate with and without effectors respectively.
There is indeed an interdependence created between how much the GAP and GEF can both accelerate the total cycle, if the GAP and GEF are assumed to only accelerate GTP hydrolysis and nucleotide exchange respectively. E.g., how much the total GTPase cycle rate rc is accelerated by an increase in GTP hydrolysis rate rh depends on and can be limited by the current nucleotide exchange rate re. However, this interdependence is too strict to match the data in Figure 3e, as we will explain in the next paragraphs:
When we only add a GAP and the GAP accelerates only the GTP hydrolysis rate (re1=re0), then the maximal total GTPase cycle rate acceleration alphaGAP that the GAP can accomplish is when rh1>>rh0,re0:
alphaGAP=rc1/rc0=(1/rh0 +1/re0)/(1/rh1+1/re0)=(re0+rh0)/(re0*rh0/rh1+rh0)
~(re0+rh0)/rh0=1+ re0/rh0
We thus assume the GAP accelerates the cycle so much that the hydrolysis step is much faster than the exchange step, at which point the effect of adding more GAP would saturate. We note that we do not consider the GAP concentration regime where we see saturation, thus in reality the acceleration by the GAP is more restricted than predicted here.
Analogously, if the GEF accelerates only the nucleotide exchange rate (rh1=rh0), then the maximum GTPase cycle rate ratio will be when re1>>re0,rh0 , yielding acceleration factor alphaGEF :
alphaGEF= rc1/rc0=1+ rh0/re0
Again, note we assume the GEF accelerates the cycle so much that the exchange step is much faster than the hydrolysis step, at which point the effect of adding more GEF would saturate. We note that we do not observe the GEF concentration regime where we see saturation, thus in reality the acceleration by the GEF is more restricted than predicted here.
We see that the maximum gain in rates for GAP-only and GEF-only assays is limited by the same basal GTP hydrolysis and nucleotide exchange rates (rh0 and re0), leading to the following interdependence:
alphaGAP=1+ 1/(alphaGEF -1)=alphaGEF/(AlphaGEF -1)
In our GAP-only and GEF-only assays (Fig. 3e, Tab. 2), we see both a 2-fold and 100-fold increase in the total rate respectively. A 100-fold acceleration factor of the GEF would maximize the GAP acceleration factor to 1.01 (or alternatively, the 2-fold GAP acceleration would maximize the GEF acceleration to 2), which are both significantly lower than what we observe. So even though we made favorable assumptions for the rate-limiting model to maximize rate sensitivity to GAP/GEF, namely neglecting nucleotide binding and assuming GAP/GEF concentrations that saturate in their effects, we still cannot reproduce the acceleration factors in our GAP-only and GEF-only assays.
Moreover, a rate-limiting step model would also imply saturation effects as stated in the next point of the reviewer. While we observe saturation in total rate acceleration for certain GAP concentrations, we use GEF and GAP concentrations in the combined protein assays for which no saturation effects were observed. Absence of saturation in both cycle steps simultaneously is also not reconcilable with the rate-limiting step model, as will be further discussed in the next point of the reviewer.
In summary, this means that the rate-limiting model is not sufficient to explain our results: the GAP/GEF synergy we observe is not simply resulting from GEF and GAP independently lifting two different rate-limiting steps.
Model-based interpretation of the GTPase assay is poorly supported:
The assay employed measures overall GTP concentration with time. It is assumed (but not well documented-see below) that [GTP] declines exponentially, and that the rate constant for a particular condition can be fit by the sum of a series of terms that are linear or quadratic in the concentrations of Cdc42, GEF, and GAP. There is no theoretical derivation of this model from the elementary reactions, and the assumptions involved are not well articulated.
As discussed in point 1 above, one would expect that a GEF or GAP alone could only accelerate the cycle to a certain point, where the other (slow) reaction becomes rate limiting. But that does not appear to be true for their phenomenological model, where slow steps (small terms in the sum) will always be overwhelmed by fast steps. This is not the traditional understanding of how GTPases operate.
Response from the authors:
The reviewer expresses the concern that because we do not derive our coarse-grained model from elementary reactions, we miss important effects that can occur when adding GAP and GEFs, particularly saturation.
We understand the concern of the reviewer that if a rate-limiting step model is considered, saturation effects of GAP/GEF will limit the amount with which these effectors can speed up the total cycle. Our coarse-grained model indeed does not account for this saturation. However, as discussed in the previous point of the reviewer, we do not opt for the rate-limiting model interpretation, as the GAP and GEF effects are not compatible with the rate-limiting step model.
Secondly, we agree that for high enough concentrations of GEF and GAPs, we would experience a saturation in the effect of adding the effectors. We are aware of this possibility, and we verify that we are not in saturation regimes with our added proteins by checking the plots of the individual protein titrations (see Figure 3a-d). If we enter the saturation regime, we expect a negative second derivative in the rate as function of protein concentration (the curve shallows off). We do not see this for any protein except for Rga2 at some point, as discussed in our main text of the manuscript. However, for this protein we only use the data in the linear regime for further analysis. In short, we understand the concern of the author but we empirically check that we are not in the saturation regime.
Data that do not conform to expectation are not explained: Strangely, the data (as interpreted by the model assumptions) also appear inconsistent with the expectation of rate-limiting steps. GEF addition (alone) is said to accelerate cycling 100-fold, while GAP addition (alone) accelerates it 2-fold. But that would seem to imply that GDP release takes up >99% of the basal cycle (so accelerating that step alone reduces cycling time 100-fold), while GTP hydrolysis takes up >50% of the basal cycle (so accelerating that step alone reduces cycling time 2-fold). In the conventional understanding of GTPase cycles, these cannot both be be true (as the steps would then add to >100% of the basal cycle). There is no attempt to reconcile these findings with previous work.
Response from the authors:
The reviewer raises the point that our findings do not match the expectations of the rate-limiting model perspective.
We fully agree with the reviewer that our data is not compatible with the rate-limiting step model. The 100-fold and 2-fold gain of the total cycle rates for GEF-only and GAP-only assays are one of our arguments against the rate-limiting model view, as described in the first point of the reviewer. Also, our lack of saturation as described in the previous point of the reviewer provides another argument against using expectations based on rate-limiting steps to interpret our findings.
Lack of detailed timecourse data:
The decline in [GTP] with time is stated to be exponential, allowing extraction of an overall cycling "rate". But this claim is supported only weakly (S3 Fig. 1 uses only 3 timepoints, is not plotted on semi-log axis, and does not report fit to exponential vs other models) and only for the Cdc42-alone scenario: no data at all are presented to support exponential decline in reactions with GEF or GAP. Most assays seem to measure only a single timepoint, so extraction of a "rate" is very heavily influenced by the unsupported assumption of exponential decline. And if the decline is not exponential, it becomes extremely difficult to interpret what a single timepoint means.
Response from the authors:
The reviewer requests additional timeseries data with GEF and GAP to support the assumption of an exponential decline of GTP in the assay and requests to plot it on a semi-log axis.
We will add data for Cdc42 + Cdc24 and for Cdc42 + Rga2 with two to three time points, and plot it as requested on a semi-log axis.
Other issues with interpretation of the data:
(i) It is unclear why the authors chose to employ an assay that is much harder to interpret than the biochemical assays used by others. In biochemical studies, assays that report an output of multiple reactions are always harder to interpret than assays targeting a single reaction. As well-established assays are available for each individual step in GTPase cycles, any conclusions must be supported using such assays.
Response from the authors:
The reviewer wonders why an assay that investigates several GTPase steps at once was chosen over assays that investigate sub-steps of the GTPase cycle, given that these give more mechanistic insights.
We agree that assays investigating GTPase cycle substeps can give more mechanistic insights into these specific steps. However, they do not allow to study how proteins affecting different steps act together. We were interested in investigating the overall GTPase cycle of Cdc42 and a possible interplay of GEFs and GAPs. Cdc42 GTPase cycling was found to be a requirement for polarity establishment (Wedlich-Soldner et al. 2004) and Cdc42 GTPase cycling is physiologically relevant. Ultimately, we hope that in vitro results provide stepping stones towards understanding the complex and less controlled in vivo environment. The in vivo environment often entails the output of many reactions combined, so there is every incentive to study aggregated effects of a full cycle which are not necessarily the sum of individual outputs.
__We believe that both assay types – assays that investigate sub-steps and yield mechanistic details, and assays that investigate the entire cycle – are important and disagree that one assay type is superior to the other. Instead, we believe they complement each other. __
(ii) The reported basal (and GEF/GAP-accelerated) rates are very slow, perhaps due to poor folding of recombinant proteins. This raises the possibility that much of the Cdc42 is inactive. If so, then accelerated GTP hydrolysis could come from increasing the active fraction of Cdc42, rather than catalyzing a specific step.
Response from the authors:
The reviewer wonders whether the reported rates are slow due to poor folding of recombinant Cdc42. We used S. cerevisae Cdc42, for which it has been shown that it has a significantly lower basal GTPase activity than Cdc42 of other organisms (see Zhang et al. 1999). Many other studies on Cdc42 were conducted with human Cdc42, which has a significantly higher basal GTPase activity (Zhang et al. 1999). We assessed the activity of several recombinantly expressed Cdc42 constructs previously (Tschirpke et al. 2023). We there observed that most constructs had a similar GTPase activity, only some purification batches and constructs had a significantly reduced GTPase activity (which might be linked to poor folding). The Cdc42 construct used here shows a similar activity as the active Cdc42 constructs in Tschirpke et al. 2023, and we therefore believe that it exhibits proper folding. If recombinant Cdc42 folds poorly, we would expect greater variations between Cdc42 constructs and purification batches (caused by different levels of folding/ a different fraction of active Cdc42) than what we observed previously (see Tschirpke et al. 2023).
Tschirpke et al. 2023:
Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)
(iii) The GEF and GAP preparations include multiple partial degradation products and it is unclear whether the measured activities come from full-length proteins or more active fragments.
Response from the authors:
We agree with the reviewer that the Cdc24 and Rga2 preparations contain degradation products.
It would be more ideal if the protein purifications were entirely pure, but this is experimentally very difficult to achieve for the used proteins (which are large and partially unstructured, making them prone to partial degradation). Further, it is not uncommon to use protein preparations where some degradation products were present (e.g. Zheng et al. 1993, Zheng et al. 1994). Other studies did not show their purified preparations.
The vast majority of the Cdc24 preparation is the full-length protein. We therefore expect that the degradation fragments only contribute in a small extend to the overall protein behavior.
The Rga2 preparation contains a higher amount of degradation product, but only larger size protein fragments (> 60kDa), suggesting that the fragments contain at least and more than 1/3 of the full-length protein (the protein fragments are thus the size or larger than of the GAP peptides used previously). The fragments could in principle have a higher or lower activity. We account for fragments of no/lower activity by comparing our cycling rates to those of BSA/Casein, which has no specific effect on Cdc42. The cycling rate Rga2 is almost an order of magnitude greater than that of BSA/Casein, suggesting that the effect of the full-length protein dominates. We could only imagine that a Rga2 fragment has a higher GAP activity if the fragment consists mainly of the GAP domain and if in Rga2 the activity of the GAP domain is downregulated. Nevertheless, we will do an additional experiment using a purified GAP domain peptide to assess that if a GAP domain by itself has a higher GAP activity than our Rga2 preparation. Using that data, we will discuss possible implication of the GAP fragments in our manuscript.
(iv) Cdc42 cycling is also accelerated by BSA and casein, suggesting that there are poorly understood aspects of the assay and that GEF and GAP actions may (like BSA and casein) involve non-canonical effects on Cdc42. As GEF and GAP are expected to interact better with Cdc42 than BSA or casein, these effects could dominate the observed changes in GTP levels.
Response from the authors:
The reviewer raises the concern that the effects of the added effector proteins on the rates could be caused by non-canonical effects. We do not believe non-canonical effects play a relevant role in our assays. While BSA and casein accelerate the GTPase cycle in our assays, the GAP effect and GEF effect are orders of magnitude stronger.
(v) Cdc42-alone cycling assays are said to be reproducible. However, assays with added GEF/GAP/BSA/Casein yield rates that vary almost an order of magnitude between replicates. This poor reproducibility further reduces confidence in the findings.
Response from the authors:
The reviewer is concerned about the variations in Cdc42 effector rates.
__We disagree that the variations are concerning and believe to have accounted for them in our analysis: __The Cdc42 (Cdc42 alone) data is very reproducible (see Tschirpke et al. 2023). The GTPase assay is generally sensitive to small concentration changes and errors introduced through pipetting small volumes (as required for the assay). We believe that the small variation observed for Cdc42 alone is because Cdc42 has such a low basal rate and therefore the small concentration changes due to pipetting have a smaller effect. Once other effectors are added, especially highly GTPase stimulating ones as Cdc24, small concentration changes due to pipetting can lead to larger variations between assays (small variations in Cdc24 concentration lead to larger changes in remaining GTP due to Cdc24’s strong and non-linear effect on Cdc42). We conduct the assays multiple times to account for these variations. In our analysis we do not compare single rate numbers but the orders of magnitude of the rate, and report the variations present. Even given the present variations, the differences in effect sizes are still significant. We map and discuss assay variation in (Tschirpke et al. 2023), to which we refer to several times throughout the manuscript.
Tschirpke et al. 2023:
Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)
(vi) It is unclear what timepoint was used for the different assays. 1.5 h at 30 degrees seems to be the standard here for the Cdc42-alone assays, but I assume that cannot be what was measured to assess GTP decline for GEF-containing assays as there would be very little GTP left at 1.5 h.
Response from the authors:
We used 60-100 min as incubation times for all assays. The assay data will be published on a data server, where all these numbers can be checked. We further added a clarification to the materials and methods section. In order to still have remaining GTP for the Cdc42 GEF mixtures after 60-100 min, we lowered the used protein concentrations.
(vii) The graph reporting GEF activity is plotted only for [GEF]Response from the authors:
The graphs show the full range of protein concentrations used.
In order to calculate K1, K2, K3,Cdc24, K3,Rga2, K3,Cdc24,Rga2 from k1, k2, k3,Cdc24, k3,Rga2, k3,Cdc24,Rga2, …, a protein concentration has to be included in the term (as K1 = k1 [Cdc42], ….). In order to make K comparable, we chose to use 1uM for all protein concentrations. This was done to compare the cycling rate values of different proteins. 1uM was a choice, in the same fashion 0.2uM could have been chosen.
__We will further discuss in the manuscript how the choices in protein concentration affect the effector strength on Cdc42. __
(viii) S8 Data with casein seems very noisy and it is no longer at all clear that the quadratic fit for [Cdc24] is justified. Also, the symbol colors are very similar so it is hard to tell what data corresponds to what condition. The synergy between Cdc24 and Rga2 is also very noisy and the fits seem arbitrary.
Response from the authors:
The reviewer is concerned with (1) the noise in the S8 data, and (2) the Cdc42-Cdc24-Rga2 fits.
(1) We acknowledge in the manuscript that the S8 data is noisy and should be viewed with caution. We do not put much emphasis on these data sets and their interpretation and show them only in the supplement.
(2) We disagree that the Cdc42-Cdc24-Rga2 fits are arbitrary. The fits contain several data points per protein, and reproduce the rate values from Cdc42-Cdc24 and Cdc42-Rga2 assays well.
The reviewer is concerned with the color scheme choice in the fits.
__We will adapt the color scheme of the fits to make the colors more distinguishable. __
(ix) It is disturbing that different Cdc42 constructs behave quite differently (S4). This suggests that protein behavior is influenced by the various added epitope tags and protease cleavage sites (they also leave the C-terminal CAAX box rather than removing the AAX as would happen in vivo). These features raise the concern that these findings may not be directly relevant to the situation with endogenous yeast Cdc42. Of course, it is also the case that relevant Cdc42 biochemistry occurs with prenylated Cdc42 on membranes.
Response from the authors:
The reviewer is concerned that the behavior of the Cdc42 constructs is influenced by their tags. In a previous manuscript (Tschirpke et al. 2023) we explored the effect of various N- and C-terminal tags on Cdc42, by comparing it to Cdc42 that is not tagged in that position. We found that most tags, including the tags present in the Cdc42 construct used here, do not affect Cdc42’s properties.
Instead, we found a general, tag independent, heterogeneity in Cdc42 behavior (which can occur between purification batches and between constructs (but not between different assays)): in some batches GTPase activity depended quadratically on its concentration, others showed a linear relationship. Most batches exhibited a mixed behavior. The differences between the batches are generally small, and only visible in the activity to concentration plots and because of the assay’s high accuracy. We use a two-parameter fit (k1 [Cdc42] + k2 [Cdc42]2) to phenomenologically account for this heterogeneity, and to estimate the basal Cdc42 GTPase activity. We do not interpret this heterogeneity, as more research is needed. We believe that Cdc42 still has unexplored properties, of which this heterogeneous behavior can be one. We speculate in Tschirpke et al. 2023 that it is linked to Cdc42 dimerization mediated by its polybasic region, a relationship that is far from being fully understood yet. __We believe that it is of scientific interest to point out heterogeneous behaviors to encourage more research. __
Tschirpke et al. 2023:
Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)
The reviewer is concerned that our findings are biologically not relevant, as our experiments (1) included Cdc42 that was not prenylated and (2) did not include membranes.
(1) We here used recombinantly purified proteins, which do not contain posttranslational modifications, such as prenylations. So-far Cdc42’s prenyl group, which is responsible for binding it to membranes, has not been linked to its GTPase properties. We therefore believe that unprenylated Cdc42 is an equal choice to prenylated Cdc42 when studying Cdc42’s GTPase cycle. Further, the use of recombinantly purified proteins can be of advantage: when proteins are purified from their native host, the post-translationally modified protein is purified. However, many proteins contain a multitude of post-translational modifications (PTMs). Thus, the purified protein is a mixture of protein with different PTMs. For example, S. cerevisae Cdc42 undergoes ubiquitinylation (Swaney et al. 2013, Back, Gorman, Vogel, & Silva 2019), phosphorylation (Lanz et al. 2021), farnesylation and geranyl-geranylation (Caplin, Hettich, & Marshall 1994). We here used protein preparations that do not contain PTMs, and show how they behave. Natively purified proteins would be mixtures of various PTMs, and the observed protein behavior would be that of the mixture. If Cdc42’s PTMs affect it’s GTPase behavior, the observed behavior of natively purified Cdc42 would represent the average behavior of the mixture. It then would require additional work to disentangle which PTMs affect the GTPase cycling in which way. The use of recombinantly expressed Cdc42 does not require this work, and can set the baseline for how Cdc42 without PTMs behaves. If in the future a link between Cdc42’s GTPase behavior and PTMs are found, the work here could be used as a baseline for Cdc42’s behavior when it is without PTMs.
(2) The concern about missing membranes was also raised by reviewer 2 (significance), and we like to refer to our response there.
Reviewer #3 (Significance (Required)):
The basic biochemistry of Cdc42 cycles was figured out about 30 years ago. However, those studies did not examine how combinations of Cdc42 regulators (as opposed to individual regulators) might interact to produce effects not expected from combining their individual actions. Recently, this combination approach did lead to interesting findings by Rapali et al. This approach is worthwhile and addresses a major question of interest to the broader field of GTPase biochemistry.
One main limitation of this study is technical: the main assay is less informative (though perhaps easier) than traditional assays, and it is unclear whether the recombinant proteins employed retain their normal activities. Another limitation is the model-based interpretation of the assay that does not include the potential for rate-limiting steps.
Response from the authors:
We thank the reviewer for the detailed comments.
One important point of confusion originated from our lack of discussion concerning a rate-limiting step model, which is an obvious starting point for modelling the GTPase cycle. We thank the reviewer for pointing this out, and we will include an explanation in our manuscript why we reject this model and instead opt for a coarse-grained model.
Firstly, a rate-limiting model would generate saturation effects that we would observe when adding GEF and/or GAPs. In assays exploring GEF GAP synergy we use GEF and GAP concentrations for which no saturation effects were observed.
Secondly, in our data we observed a two-fold increase of the total GTPase cycling rate when adding a GAP and a 100-fold rate increase when a GEF is added. These increases are not compatible with a model where either hydrolysis or nucleotide exchange limits the GTPase cycle. While a synergy could arise from the rate-limiting model perspective, the incompatibility of the rate-limiting model with the GAP-only and GEF-only assay data excludes this synergy explanation. Finally, through coarse-graining our model we avoid using single step parameters from literature which are incompatible in terms of proteins/buffers used. (For example; the mayor studies that kinetically characterized the individual GTPase steps of Cdc42 used human Cdc42 (Zhang et al. 1997, Zhang et al. 2000). Because human Cdc42 exhibits a higher basal GTPase activity (Zhang et al. 1999) we are skeptical how useful it is to transfer these parameters to S. cerevisae Cdc42.)
At the same time, coarse-graining our model permits absorbing unidentified molecular details which is essential when we wish to incorporate BSA and casein rate contributions.
The reviewer finds our assay, which investigates the GTPase cycle as a whole, less informative. Assays investigating single GTPase cycle sub-steps give more mechanistic insights into these steps. We opted for an assay that studies GTPase cycling as a whole instead, as we were interested in studying how proteins effecting different steps act together. We believe that both assay types are important as they complement each other.
The reviewer is concerned about our use of recombinant proteins, and whether they retain their normal activities. We assessed Cdc42’s GTPase activity and the influence of added purification tags extensively (Tschirpke et al. 2023), and found that added tags do not affect Cdc42’s GTPase properties. We checked Cdc24’s GEF activity using the GTPase assay and found that it bound strongly to Bem1, as expected (Tschirpke et al. 2023). The Cdc24 concentrations needed to affect Cdc42’s GTPase activity were similar to those used previously (Rapali et al. 2017), suggesting that it is fully active. A similar comparison for Rga2 was not possible, as so-far only domains of Rga2 were used (Smith et al. 2002). We here used recombinantly purified proteins, which do not contain posttranslational modifications (PTMs). To our knowledge the PTMs of the herein used proteins are not linked to their GTPase/GEF/GAP properties. Thus, a lack of PTMs does not diminish our findings. Further, when proteins are purified from their native host, the post-translationally modified protein is purified. However, many proteins contain a multitude of post-translational modifications in vivo. Natively purified proteins would be mixtures of various PTMs, and the observed protein behavior would be that of the mixture. We here used protein preparations that do not contain PTMs, and show how they behave, setting the baseline for proteins without PTMs behaves. If in the future a link between GTPase behavior and PTMs are found, the work here could be used as a baseline for the proteins behavior when it is without PTMs.
Reviewer #4 (Evidence, reproducibility and clarity (Required)):
Summary
The GTPase cdc42 is a key determinant of yeast polarization. Its activity is amplified at the site of polarization through a poorly defined positive feedback mechanism, and depends on numerous GAPs regulating GTP hydrolysis and the GEF cdc24 that regulates GDP release. These components have previously been evaluated for their quantitative effects on the individual steps in the GTPase cycle that they modulate, but potential interactions between the cdc24 GEF and any GAP could not be examined based on these assays. The authors validate and employ a bulk assay of the total GTPase cycle based on GTP consumption to study the activities of and potential interactions between cdc24 and the GAP Rga2. Fitting their data to a mathematical model, they come to three central conclusions: (1) the activating activity of cdc24 to activate cdc42 GTPase activity is nonlinear, showing a quadratic relationship, (2) Rga2 shows a much lower activating activity that is linear at low levels before saturating, and (3) there is a strongly synergistic interaction between the activating activities of cdc24 and Rga2. Some hypotheses for the mechanistic bases of these findings are hypothesized, but not further investigated. Their conclusions are well supported by the data which appears to be of sufficient rigor.
Major comments
The three main conclusions of the manuscript are well supported by the data and associated modeling.
One unresolved issue is the discrepancy between the authors' conclusion that the non-linear activation by cdc24 is likely a result of oligomerization, whereas Mionnet et al 2008 reach the opposite conclusion. It seems that the authors wish to discount the Mionnet results because they used truncated constructs to test deficient oligomerization and an engineered construct to test induced oligomerization. If the authors are correct, then a relatively easy test would be to introduce the oligomerization deficient mutants defined by Mionnet into their fuill length construct and compare to wild type protein. While the authors' measured results don't depend on the offered mechanism and this experiment is therefore optional, their explanation is quite unsatisfying, especially since an experiment to resolve the difference is entirely feasible and not very strenuous.
Response from the authors:
__The reviewer suggests to conduct experiments with oligomerization deficient Cdc24 mutants to test our hypothesis that the non-linear concentration dependence of Cdc24’s activity is due to Cdc24 oligomerization. __
We agree that this is an insightful experiment, and will conduct it. In order to observe the effect in our GTPase assays, we require a mutant that is oligomerizes substantially less than wild-type protein. Mionnet et al. constructed several Cdc24 mutants, but none were entirely oligomerization deficient. However, the DH5 (L339A/E340A) mutant showed a 10-fold reduction in oligomerization and the DH3 (F322A) mutant exhibited 2.5-fold reduction in oligomerization. We will therefore use the DH5 and DH3 mutant for two additional experiments.
Minor comments
The results in Fig S4 serve as assay validation, and this should be pointed out early in the Results section. I was initially concerned when the assay was described as based on consumption of GTP that a significantly diminished pool would alter the rate and thereby distort results, and being made aware of the S4 result would have alleviated that concern as I read further.
Response from the authors:
We believe that the reviewer refers to S3 (not S4). We appreciate this suggestion and now mention it earlier.
On page 4 and Fig S4 the authors mention several cdc42 constructs, some of which show linear activity curves and others slightly non-linear curves. I was unable to find where these constructs or their differences are discussed. The authors should also tell us if the construct used for the remaining experiments was one of the two shown in S4, or a different one.
Response from the authors:
We added the requested information and explanations to the manuscript.
It seems that in Fig 4 and Fig S8, some points are missing from the graphs. Were all concentrations for each condition not always assayed, or is some data omitted for some reason? For example, for the 0.125 microM Rga2 condition, only two points are shown vs 4 for some other conditions, and the two missing ones are expected to not be excluded by the >5% GTP remaining criterion.
Response from the authors:
The reviewer wonders whether Fig.4 and Fig. S8 miss data points. This is not the case, and __we added clarifying information to the manuscript. __
In detail: Not all assays contain the same amount of data points/ concentrations for each protein. We first assessed Cdc42 alone using several Cdc42 concentration. We then examined the individual Cdc42 – effector mixtures, using a larger number of effector concentrations. We included a reduced number of effector concentrations in the assays containing two effectors and Cdc42. It would be ideal to include more concentrations, but this is not always feasible: The assay involves a multitude of pipetting steps and is sensitive to any pipetting errors. Further, assays can vary slights from each other, therefore all samples that ought to be compared need to be included in each assay.
Each three-protein assay contains samples shown (Cdc42, Cdc42 + effector 1, Cdc42 + effector 2, Cdc42 + effector 1 + effector 2) and additional ‘buffer’ wells used for normalization. Each data point shown corresponds to the average of 3-4 replica samples per assay. We therefore did not include all concentrations in all conditions. As pointed out, Fig. 4a only shows two data points for the 0.125uM Rga2 axis (Rga2 + Cdc42 and Rga2 + Cdc24 + Cdc42). The rational was the following: We included three Cdc24 concentrations (for proper fitting for K3,Cdc24), three Rga2 concentrations (for proper fitting for K3,Rga2), and 5 mixtures of the used Cdc24 and Rga2 concentrations (for proper fitting for K3,Cdc24,Rga2).
The Cdc42-Rga2-BSA and Cdc42-Rga2-Casein data is rather sparse and would benefit from additional data points. However, we only use those as control experiments and are cautious in their interpretation.
In these graphs, a diamond symbol of slightly varying color is used for the different conditions. The different colors are hard to distinguish. Please use different shape symbols for the different conditions, and choose colors that are more distinct.
Response from the authors:
We will adapt the color scheme of the fits to make the colors more distinguishable.
There are a few sentences that are of unclear meaning, for example on page 10, "It was suggested that each GAP plays a distinct role in Cdc42 regulation, of which the level of GAP activity could be a part of [Smith et al., 2002]." There are also typos and grammatical errors that should be fixed.
Response from the authors:
__We will further check the document for potentially unclear sentences and will try to clarify them, as well as further check for grammatical and spelling errors. __
Reviewer #4 (Significance (Required)):
Significance
The most novel and important finding is the strong synergy observed between cdc24 and Rga2 in activating cdc42 GTPase activity. This is undoubtedly an important mechanism underlying positive feedback in polarization. The measured non-linear activity of cdc24 alone is also quite important given that availability of cdc24 is thought to be a critical in vivo stimulus for polarization. However, the unexplained discrepancy between this result and that of Mionnet leaves one to wonder which result is more reliable. Only Mionnet attempts to directly test whether oligomerization is important in cdc24 activity.
The conclusions are of importance to a broad audience of cell biologists, though the lack of any mechanism for the synergy or the non-linearity of cdc24 activity somewhat diminishes significance.
Note that my expertise and that of my co-reviewer is in the biology, and while we are able to follow the contributions of the modeling, we do not have the expertise to critically evaluate for potential errors or weaknesses in the modeling itself.
The reviewer wonders whether our data or the data of Mionnet et al. on the link between Cdc24 oligomerization and its GEF activity is more reliable and suggests to conduct experiments with oligomerization deficient Cdc24 mutants.
We thank the reviewer for this recommendation and we will do the suggested experiments to resolve the seemingly contradicting observations by us and Mionnet et al..
The reviewer would find mechanistic insights into (2) the non-linear concentration dependence of Cdc24’s activity and (2) the Cdc24-Rga2 synergy useful.
(1) We will conduct experiments with partially oligomerization deficient Cdc24 mutants, as suggested by the reviewer.
(2) We speculate that Cdc24-Rga2 binding could lead to the synergy. ____We will add data on Cdc24 – Rga2 binding (in vitro: Size-Exclusion Chromatography Multi-Angle Light Scattering) to this study.
-
-
stackoverflow.com stackoverflow.com
-
Reset Background color CSS Ask Question Asked 7 years, 11 months ago Modified 7 years, 11 months ago Viewed 5k times Report this ad This question shows research effort; it is useful and clear 2 This question does not show any research effort; it is unclear or not useful Save this question. Show activity on this post. I am developing a project where I am supposed to make a particular part of div flash, (or blink only once) The HTML : <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink" >Current Price</p> and the CSS <style> #divtoBlink{ background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; } @keyframes blink { from { opacity: 1; } to { opacity: 0; } } </style> It blinks, and changes colour to green. But the color stays green. I want to reset the background: #008800; to white or transparent again. Is there a property or tweak that I can use? Any help is appreciated. htmlcsscss-animations ShareShare a link to this question Copy linkCC BY-SA 3.0 Follow Follow this question to receive notifications edited Oct 5, 2015 at 12:08 Harry 87.6k2525 gold badges203203 silver badges215215 bronze badges asked Oct 5, 2015 at 11:58 ShahsaysShahsays 42111 gold badge77 silver badges2525 bronze badges 3 why not use jquery ? – Farrukh Faizy Oct 5, 2015 at 12:00 6 @MuhammadFarrukhFaizy: Because these sort of things can be handled without using jQuery. – Harry Oct 5, 2015 at 12:01 @MuhammadFarrukhFaizy Why not use Assembler? Yes right, because it is much to complicated to get such a task done using Asembler. Or a scripting language incl. a complete application framework (like jQuery)… – feeela Oct 5, 2015 at 12:19 Add a comment | 2 Answers 2 Sorted by: Reset to default Highest score (default) Trending (recent votes count more) Date modified (newest first) Date created (oldest first) This answer is useful 5 This answer is not useful Save this answer. Show activity on this post. I think what you need is only for the background to become transparent after blink and for the text to remain visible. If that is the case, use the below snippet. When opacity is animated from 1 to 0, the whole element along with its content would become invisible. Instead, animating just the background should be enough. #divtoBlink { background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; animation-fill-mode: forwards; } @keyframes blink { from { background: #008800; } to { background: transparent; } } <script src="https://cdnjs.cloudflare.com/ajax/libs/prefixfree/1.0.7/prefixfree.min.js"></script> <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink">Current Price</p> Run code snippetHide resultsExpand snippet Original Answer: All that is needed is to add animation-fill-mode: forwards so that the element holds the state as at its final keyframe (which is opacity: 0 or transparent). Currently the animated element reverts back to its original state (background: #008800) once the animation is complete. #divtoBlink { background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; animation-fill-mode: forwards; } @keyframes blink { from { opacity: 1; } to { opacity: 0; } } <script src="https://cdnjs.cloudflare.com/ajax/libs/prefixfree/1.0.7/prefixfree.min.js"></script> <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink">Current Price</p> Run code snippetHide resultsExpand snippet ShareShare a link to this answer Copy linkCC BY-SA 3.0 Follow Follow this answer to receive notifications edited Oct 5, 2015 at 12:15 answered Oct 5, 2015 at 12:04 HarryHarry 87.6k2525 gold badges203203 silver badges215215 bronze badges 4 Well,after blinking it faded out everything inside the div tag. – Shahsays Oct 5, 2015 at 12:10 1 @FaizanShah: Yes, isn't that what you wanted? If not, can you please clarify more. (Edit: I think you are maybe looking for only the background to become transparent but content to be visible. If yes, please refer the first snippet in my answer now.) – Harry Oct 5, 2015 at 12:11 You see this is a label which is supposed to say Current Price. applying css, the color changes to green, but stays green. applying your method, it removes the green AND the current price. – Shahsays Oct 5, 2015 at 12:14 @FaizanShah: Glad to be of help. Please don't forget to accept the answer (click on the hollow tick mark below the voting icon). – Harry Oct 5, 2015 at 12:19 Add a comment | Report this ad This answer is useful 1 This answer is not useful Save this answer. Show activity on this post. I think in your situation it is easier to change the pattern. the initial color is white, then let it blink to green and reset again to your wished color (white or transparent). easy solution via custom defined keyframes. (look at the fiddle) #divtoBlink{ background: #fff; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; } @keyframes blink { 0% { background: #008800;} 50% { background: #fff;} // optional sugar any color between.. 100% { background: #fff; } } http://jsfiddle.net/a2pg246h/ ShareShare a link to this answer Copy linkCC BY-SA 3.0 Follow Follow this answer to receive notifications answered Oct 5, 2015 at 12:14 MarcMarc 2,66933 gold badges3434 silver badges4141 bronze badges 0 Add a comment | Your Answer StackExchange.ifUsing("editor", function () { StackExchange.using("externalEditor", function () { StackExchange.using("snippets", function () { StackExchange.snippets.init(); }); }); }, "code-snippets"); StackExchange.ready(function() { var channelOptions = { tags: "".split(" "), id: "1" }; initTagRenderer("".split(" "), "".split(" "), channelOptions); StackExchange.using("externalEditor", function() { // Have to fire editor after snippets, if snippets enabled if (StackExchange.settings.snippets.snippetsEnabled) { StackExchange.using("snippets", function() { createEditor(); }); } else { createEditor(); } }); function createEditor() { StackExchange.prepareEditor({ useStacksEditor: false, heartbeatType: 'answer', autoActivateHeartbeat: false, convertImagesToLinks: true, noModals: true, showLowRepImageUploadWarning: true, reputationToPostImages: 10, bindNavPrevention: true, postfix: "", imageUploader: { brandingHtml: "Powered by \u003ca href=\"https://imgur.com/\"\u003e\u003csvg class=\"svg-icon\" width=\"50\" height=\"18\" viewBox=\"0 0 50 18\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\u003ctitle\u003eImgur Logo\u003c/title\u003e\u003cpath d=\"M46.1709 9.17788C46.1709 8.26454 46.2665 7.94324 47.1084 7.58816C47.4091 7.46349 47.7169 7.36433 48.0099 7.26993C48.9099 6.97997 49.672 6.73443 49.672 5.93063C49.672 5.22043 48.9832 4.61182 48.1414 4.61182C47.4335 4.61182 46.7256 4.91628 46.0943 5.50789C45.7307 4.9328 45.2525 4.66231 44.6595 4.66231C43.6264 4.66231 43.1481 5.28821 43.1481 6.59048V11.9512C43.1481 13.2535 43.6264 13.8962 44.6595 13.8962C45.6924 13.8962 46.1709 13.2535 46.1709 11.9512V9.17788Z\"/\u003e\u003cpath d=\"M32.492 10.1419C32.492 12.6954 34.1182 14.0484 37.0451 14.0484C39.9723 14.0484 41.5985 12.6954 41.5985 10.1419V6.59049C41.5985 5.28821 41.1394 4.66232 40.1061 4.66232C39.0732 4.66232 38.5948 5.28821 38.5948 6.59049V9.60062C38.5948 10.8521 38.2696 11.5455 37.0451 11.5455C35.8209 11.5455 35.4954 10.8521 35.4954 9.60062V6.59049C35.4954 5.28821 35.0173 4.66232 34.0034 4.66232C32.9703 4.66232 32.492 5.28821 32.492 6.59049V10.1419Z\" /\u003e\u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M25.6622 17.6335C27.8049 17.6335 29.3739 16.9402 30.2537 15.6379C30.8468 14.7755 30.9615 13.5579 30.9615 11.9512V6.59049C30.9615 5.28821 30.4833 4.66231 29.4502 4.66231C28.9913 4.66231 28.4555 4.94978 28.1109 5.50789C27.499 4.86533 26.7335 4.56087 25.7005 4.56087C23.1369 4.56087 21.0134 6.57349 21.0134 9.27932C21.0134 11.9852 23.003 13.913 25.3754 13.913C26.5612 13.913 27.4607 13.4902 28.1109 12.6616C28.1109 12.7229 28.1161 12.7799 28.121 12.8346C28.1256 12.8854 28.1301 12.9342 28.1301 12.983C28.1301 14.4373 27.2502 15.2321 25.777 15.2321C24.8349 15.2321 24.1352 14.9821 23.5661 14.7787C23.176 14.6393 22.8472 14.5218 22.5437 14.5218C21.7977 14.5218 21.2429 15.0123 21.2429 15.6887C21.2429 16.7375 22.9072 17.6335 25.6622 17.6335ZM24.1317 9.27932C24.1317 7.94324 24.9928 7.09766 26.1024 7.09766C27.2119 7.09766 28.0918 7.94324 28.0918 9.27932C28.0918 10.6321 27.2311 11.5116 26.1024 11.5116C24.9737 11.5116 24.1317 10.6491 24.1317 9.27932Z\"/\u003e\u003cpath d=\"M16.8045 11.9512C16.8045 13.2535 17.2637 13.8962 18.2965 13.8962C19.3298 13.8962 19.8079 13.2535 19.8079 11.9512V8.12928C19.8079 5.82936 18.4879 4.62866 16.4027 4.62866C15.1594 4.62866 14.279 4.98375 13.3609 5.88013C12.653 5.05154 11.6581 4.62866 10.3573 4.62866C9.34336 4.62866 8.57809 4.89931 7.9466 5.5079C7.58314 4.9328 7.10506 4.66232 6.51203 4.66232C5.47873 4.66232 5.00066 5.28821 5.00066 6.59049V11.9512C5.00066 13.2535 5.47873 13.8962 6.51203 13.8962C7.54479 13.8962 8.0232 13.2535 8.0232 11.9512V8.90741C8.0232 7.58817 8.44431 6.91179 9.53458 6.91179C10.5104 6.91179 10.893 7.58817 10.893 8.94108V11.9512C10.893 13.2535 11.3711 13.8962 12.4044 13.8962C13.4375 13.8962 13.9157 13.2535 13.9157 11.9512V8.90741C13.9157 7.58817 14.3365 6.91179 15.4269 6.91179C16.4027 6.91179 16.8045 7.58817 16.8045 8.94108V11.9512Z\"/\u003e\u003cpath d=\"M3.31675 6.59049C3.31675 5.28821 2.83866 4.66232 1.82471 4.66232C0.791758 4.66232 0.313354 5.28821 0.313354 6.59049V11.9512C0.313354 13.2535 0.791758 13.8962 1.82471 13.8962C2.85798 13.8962 3.31675 13.2535 3.31675 11.9512V6.59049Z\" /\u003e\u003cpath d=\"M1.87209 0.400291C0.843612 0.400291 0 1.1159 0 1.98861C0 2.87869 0.822846 3.57676 1.87209 3.57676C2.90056 3.57676 3.7234 2.87869 3.7234 1.98861C3.7234 1.1159 2.90056 0.400291 1.87209 0.400291Z\" fill=\"#1BB76E\"/\u003e\u003c/svg\u003e\u003c/a\u003e", contentPolicyHtml: "User contributions licensed under \u003ca href=\"https://stackoverflow.com/help/licensing\"\u003eCC BY-SA\u003c/a\u003e \u003ca href=\"https://stackoverflow.com/legal/content-policy\"\u003e(content policy)\u003c/a\u003e", allowUrls: true }, onDemand: true, discardSelector: ".discard-answer", enableTables: true, isStacksEditorPreviewEnabled: false ,immediatelyShowMarkdownHelp:true,enableTables:true,enableSnippets:true }); } }); Thanks for contributing an answer to Stack Overflow!Please be sure to answer the question. Provide details and share your research!But avoid …Asking for help, clarification, or responding to other answers.Making statements based on opinion; back them up with references or personal experience.To learn more, see our tips on writing great answers. Draft saved Draft discarded Sign up or log in StackExchange.ready(function () { StackExchange.helpers.onClickDraftSave('#login-link'); }); Sign up using Google Sign up using Facebook Sign up using Email and Password Submit Post as a guest Name Email Required, but never shown StackExchange.ready( function () { StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f32948073%2freset-background-color-css%23new-answer', 'question_page'); } ); <h3 class="flex--item fs-title">Post as a guest</h3> <div class="flex--item"> <div class="d-flex gs4 gsy fd-column"> <label class="s-label" for="display-name">Name</label> <div class="d-flex ps-relative"> <input class="s-input" id="display-name" name="display-name" maxlength="30" type="text" value="" tabindex="105" placeholder="" /> </div> </div> </div> <div class="flex--item"> <div class="d-flex gs4 gsy fd-column"> <div class="flex--item"> <div class="d-flex gs2 gsy fd-column"> <label class="flex--item s-label" for="m-address">Email</label> <p class="flex--item s-description">Required, but never shown</p> </div> </div> <div class="d-flex ps-relative"> <input class="s-input js-post-email-field" id="m-address" name="m-address" type="text" value="" size="40" tabindex="106" placeholder="" /> </div> </div> </div> Post Your Answer Discard By clicking “Post Your Answer”, you agree to our terms of service and acknowledge that you have read and understand our privacy policy and code of conduct. Not the answer you're looking for? Browse other questions tagged htmlcsscss-animations or ask your own question.
how are you doing this
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this study, the authors aim to understand why decision formation during behavioural tasks is distributed across multiple brain areas. They hypothesize that multiple areas are used in order to implement an information bottleneck (IB). Using neural activity recorded from monkey DLPFC and PMd performing a 2-AFC task, they show that DLPFC represents various task variables (decision, color, target configuration), while downstream PMd primarily represents decision information. Since decision information is the only information needed to make a decision, the authors point out that PMd has a minimal sufficient representation (as expected from an IB). They then train 3-area RNNs on the same task and show that activity in the first and third areas resemble the neural representations of DLPFC and PMd, respectively. In order to propose a mechanism, they analyse the RNN and find that area 3 ends up with primarily decision information because feedforward connections between areas primarily propagate decision information.
The paper addresses a deep, normative question, namely why task information is distributed across several areas.
Overall, it reads well and the analysis is well done and mostly correct (see below for some comments). My major problem with the paper is that I do not see that it actually provides an answer to the question posed (why is information distributed across areas?). I find that the core problem is that the information bottleneck method, which is evoked throughout the paper, is simply a generic compression method. Being a generic compressor, the IB does not make any statements about how a particular compression should be distributed across brain areas - see major points (1) and (2).
If I ignore the reference to the information bottleneck and the question of why pieces of information are distributed, I still see a more mechanistic study that proposes a neural mechanism of how decisions are formed, in the tradition of RNN-modelling of neural activity as in Mante et al 2013. Seen through this more limited sense, the present study succeeds at pointing out a good model-data match. I point out some suggestions for improvement below.
Major points<br /> (1) It seems to me that the author's use of the IB is based on the reasoning that deep neural networks form decisions by passing task information through a series of transformations/layers/areas and that these deep nets have been shown to implement an IB. Furthermore, these transformations are also loosely motivated by the data processing inequality.
However, assuming as a given that deep neural networks implement an IB does not mean that an IB can only be implemented through a deep neural network. In fact, IBs could be performed with a single transformation just as well. More formally, a task associates stimuli (X) with required responses (Y), and the IB principle states that X should be mapped to a representation Z, such that I(X;Z) is minimal and I(Y,Z) is maximal. Importantly, the form of the map Z=f(X) is not constrained by the IB. In other words, the IB does not impose that there needs to be a series of transformations. I therefore do not see how the IB by itself makes any statement about the distribution of information across various brain areas.
A related problem is that the authors really only evoke the IB to explain the representation in PMd: Fig 2 shows that PMd is almost only showing decision information, and thus one can call this a minimal sufficient representation of the decision (although ignoring substantial condition independent activity). However, there is no IB prediction about what the representation of DLPFC should look like. Consequently, there is no IB prediction about how information should be distributed across DLPFC and PMd.
(2) Now the authors could change their argument and state that what is really needed is an IB with the additional assumption that transformations go through a feedforward network. However, even in this case, I am not sure I understand the need for distributing information in this task. In fact, in both the data and the network model, there is a nice linear readout of the decision information in dPFC (data) or area 1 (network model). Accordingly, the decision readout could occur at this stage already, and there is absolutely no need to tag on another area (PMd, area 2+3).
Similarly, I noticed that the authors consider 2,3, and 4-area models, but they do not consider a 1-area model. It is not clear why the 1-area model is not considered. Given that e.g. Mante et al, 2013, manage to fit a 1-area model to a task of similar complexity, I would a priori assume that a 1-area RNN would do just as well in solving this task.
I think there are two more general problems with the author's approach. First, transformations or hierarchical representations are usually evoked to get information into the right format in a pure feedforward network. An RNN can be seen as an infinitely deep feedforward network, so even a single RNN has, at least in theory, and in contrast to feedforward layers, the power to do arbitrarily complex transformations. Second, the information coming into the network here (color + target) is a classical xor-task. While this task cannot be solved by a perceptron (=single neuron), it also is not that complex either, at least compared to, e.g., the task of distinguishing cats from dogs based on an incoming image in pixel format.
(3) I am convinced of the author's argument that the RNN reproduces key features of the neural data. However, there are some points where the analysis should be improved.
(a) It seems that dPCA was applied without regularization. Since dPCA can overfit the data, proper regularization is important, so that one can judge, e.g., whether the components of Fig.2g,h are significant, or whether the differences between DLPFC and PMd are significant.
(b) I would have assumed that the analyses performed on the neural data were identical to the ones performed on the RNN data. However, it looked to me like that was not the case. For instance, dPCA of the neural data is done by restretching randomly timed trials to a median trial. It seemed that this restretching was not performed on the RNN. Maybe that is just an oversight, but it should be clarified. Moreover, the decoding analyses used SVC for the neural data, but a neural-net-based approach for the RNN data. Why the differences?
(4) The RNN seems to fit the data quite nicely, so that is interesting. At the same time, the fit seems somewhat serendipitous, or at least, I did not get a good sense of what was needed to make the RNN fit the data. The authors did go to great lengths to fit various network models and turn several knobs on the fit. However, at least to me, there are a few (obvious) knobs that were not tested.
First, as already mentioned above, why not try to fit a single-area model? I would expect that a single area model could also learn the task - after all, that is what Mante et al did in their 2013 paper and the author's task does not seem any more complex than the task by Mante and colleagues.
Second, I noticed that the networks fitted are always feedforward-dominated. What happens when feedforward and feedback connections are on an equal footing? Do we still find that only the decision information propagates to the next area? Quite generally, when it comes to attenuating information that is fed into the network (e.g. color), then that is much easier done through feedforward connections (where it can be done in a single pass, through proper alignment or misalignment of the feedforward synapses) than through recurrent connections (where you need to actively cancel the incoming information). So it seems to me that the reason the attenuation occurs in the inter-area connections could simply be because the odds are a priori stacked against recurrent connections. In the real brain, of course, there is no clear evidence that feedforward connections dominate over feedback connections anatomically.
More generally, it would be useful to clarify what exactly is sufficient:
(a) the information distribution occurs in any RNN, i.e., also in one-area RNNs<br /> (b) the information distribution occurs when there are several, sparsely connected areas<br /> (c) the information distribution occurs when there are feedforward-dominated connections between areas
-
-
tagteam.harvard.edu tagteam.harvard.edu
-
hypothes.is hypothes.is
-
www.theguardian.com www.theguardian.com
-
Die Intensität des Sturms Daniel, der in Libyen Tausende Opfer forderte, geht mit hoher Wahrschilichkeit auf die hohe Temperatur an der Oberfläche des Mittelmeers zurück. Ähnliche Extremereignisse jenseits des bisher Erwartbaren werden folgen. Für die katastrophale Wirkung sind auch schlechte Infrastruktur, ungenügende Vorhersage-Möglichkeiten, mangelhafte Alarmsysteme und falsche Planung verantwortlich. https://www.theguardian.com/world/2023/sep/12/questions-raised-over-deadly-impact-of-storm-daniel-in-libya
Mehr zum Sturm Daniel: https://hypothes.is/search?q=tag%3A%22event%3A%20storm%20Daniel%22
-
-
www.liberation.fr www.liberation.fr
-
Der Sturm Daniel hat sich, nachdem er Verwüstungen in Griechenland, Bulgarien und der Türkei angerichtet hat, auf dem Weg über das Mittelmeer nach Libyen in einen Medikan, einen „Mittelmeer-Hurrican“ verwandelt. Dort wurden in Al Baida 414,4 mm Niederschläge an einen Tag gemessen.
Mehr zum Sturm Daniel: https://hypothes.is/search?q=tag%3A%22event%3A%20storm%20Daniel%22
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary
The VAP proteins are well established as tail anchored proteins of the ER membrane. VAPs mediates co-operation between the ER and other organelles by creating a transient molecular tether with binding partners on opposing organelles to form a membrane contact site over which lipids and metabolites are exchanged. Proteins which bind VAPs generally contain a short FFAT motif, of varying sequence which binds the MSP domain of VAP. More recently the FFAT motif has been more extensively analysed in multiple different proteins and differential phosphorylation of the FFAT motif has been shown to either enhance or block VAP binding depending on the position of the phosphosite.
Recent work conducted by the authors demonstrated that a small population of VAPB is not exclusively localised to the ER and can also reach the inner nuclear membrane. They also identified ELYS as a potential interaction partner of VAPB in a screening approach. ELYS is a nucleoporin that can be found at the nuclear side of the nuclear envelope where it forms part of nuclear pore complexes. During mitosis, ELYS serves as an assembly platform that bridges an interaction between decondensing chromosomes and recruited nucleoporin subcomplexes to generate new nuclear pore complexes for post-mitotic daughter cells. In this manuscript, James et al seek to explore this enigmatic potential interaction between ELYS and VAPB to address why VAPB may be found at the inner nuclear membrane.
Peptide binding assays and some co-immunoprecipitation experiments are used to demonstrate that interactions occur via the MSP-domain of VAPB and FFAT-like motifs within ELYS. In addition, it is demonstrated that, for the ELYS FFAT peptides, the interaction is dependent on the phosphorylation status of serine residues of a particular FFAT-motif that can either promote or reduce its affinity to VAPB. Of most relevance is a serine in the acidic tract (1314) which, when phosphorylated increases VAPB binding. This is completely in line with what is already known about the FFAT motif and so is not surprising, in particular when using a peptide in an in vitro assay.
The authors then utilise cell synchronisation techniques to provide evidence that both phosphorylation of ELYS and its binding to VAPB are heightened during mitosis. Immunofluorescence and proximity ligation assays are used to demonstrate that the proteins co-localise specifically during anaphase and at the non-core regions of segregating chromosomes.
The manuscript is concluded by investigating the effect of VAPB depletion on mitosis with some evidence to suggest that transition from meta-anaphase is delayed and defects such as lagging chromosomes are observed.
Major comments
Overall, this manuscript is well written and the data presented in Figures 1-3 convincingly show the nature of the interaction between ELYS and VAPB. Clearly the proteins interact via FFAT motifs and this interaction appears to be enhanced during mitosis. However, the work as is, relies heavily on peptide binding assays and would benefit from additional experiments to further support the results. The authors need to more clearly show that this specific phosphorylation happens during mitosis, they may have this data but it is not clearly explained. In addition, the data that VAPB-ELYS interaction contributes to temporal progression of mitosis (as per the title) is not sufficiently clear. VAPB silencing appears to have some impact on mitosis but this is not the same thing. So this section needs to be strengthened before this statement can be made.
The authors claim that the study "suggests an active role of VAPB in recruiting membrane fragments to chromatin and in the biogenesis of a novel nuclear envelope during mitosis". Given the data presented in Figures 4 and 5, this appears to be rather speculative with little evidence to support it, so data should be provided or this statement toned down. Currently, without additional supporting data the authors may wish to revise the overarching conclusions of the study and change the title.
Specific points.
Peptide pull down assays clearly show which FFAT-like motifs are important in facilitating binding. The co-immunoprecipitation systems used in Figure 2 also provide useful information on the interaction in a cell context. The authors should combine these findings by introducing full length ELYS mutants with altered FFAT-like motifs into their stably expressing GFP-VAPB HeLa cell line and then performing Co-IPs to help identify which FFAT motif/s drive the mitotic interaction. Other mutants of ELYS harbouring either phosphomimetic or phospho-resistant residues may also be introduced to further investigate mechanisms of the molecular switch in a cellular environment to support the work currently done with peptides alone. This is an obvious gap in the work which, based on the other data the authors have shown, should presumably be straightforward and would also lead directly into the next major point.
- Whilst silencing VAPB does appear to delay mitosis, no reference is made to ELYS throughout Figure 5 nor as part of its associated discussion. Given that VAPB has more than 250 proposed binding partners, the observed aberration of mitotic progression could result from a huge number of indirect processes. Further work is needed to link the experiment specifically to the VAPB-ELYS interaction and not just loss of VAPB. We would suggest generating a complementation system where ELYS is either knocked out or silenced and then wild-type ELYS and an ELYS FFAT mutant (which cannot interact with VAPB),and/or a phospho mutant (whose interaction cannot be regulated during mitosis) are introduced. Then the observed effects can be better attributed to the VAPB-ELYS interaction and not just loss of VAPB.
- The immunofluorescence and PLA results in Figure 4 could be strengthened by including other ER markers. This would show that co-localisation of ELYS at the non-core region is specific to VAPB protein, not any ER protein or rather than an artefact of the ER being pushed out of the organelle exclusion zone during mitosis and therefore 'bunching' at the periphery of the nuclear envelope. It would be worthwhile repeating these experiments with candidates such as VAPA, other ER membrane proteins or at least GFP-KDEL, to make this phenomenon more convincing. As part of this the authors should ideally generate a complemented ELYS KO (see point above) to avoid the residual activity attributed to endogenous background in the PLA Figure 4E.
- Authors should clarify if the phosphorylation events (in particular S1314) only occur or are increased during mitosis. This may be data they have from the MS experiment in Figure 3 or it could also be shown using a phospho-antibody (although this can be challenging if a suitable antibody cannot be made).
- The authors should clarify why they need to do these semi in-vitro assays with purified GST-VAPB-MSP on beads and then lysates added and not just a standard co-IP. If this is simply signal intensity due to a very small proportion of VAPB binding to ELYS then this is fine but this should be stated and it should be made clear that ELYS is not a major binding partner - most of VAPB is on the ER. Otherwise, this is misleading.
I estimate that the suggested alterations above would incur approximately 3-6 months of additional experimental work, depending on if KO cell lines were required.
Minor comments
- To show that the observed interactions and potential role of VAPB-ELYS interaction is universal it would be useful to have at least a subset of experiments also shown in another cell line or system - this is now also a requirement for some journals.
- Consider re-wording the title of the manuscript to better reflect the data presented within the study. Alternatively, provide further evidence that VAPB-ELYS interactions directly affect temporal progression of mitosis to validate this claim, as discussed above.
- Quantification of blots in Figure 2A could allow measurement of relative binding affinities between VAPB-ELYS throughout the cell cycle. The same could be applied to the effect of phosphorylation on binding affinity in Figure 2D.
- The cells used are never clearly mentioned in the text - I assume this is always in HeLa but this should be added in all cases for clarity
- Page 8: "As shown in Fig. 2A,a large proportion of GFP-VAPB was precipitated under our experimental conditions." - I don't understand how this is shown in this figure as the non-bound fraction is not shown?
- Please provide some controls to demonstrate the extent to which the samples used are asyn, G1/M or M.
- Page 9 - why are Phos-tag gels not shown as this would make this result more convincing?
- Figure 3A - I find the SDS-PAGE gel confusing. Why not show the whole gel and why is the band size apparently reduced in the mitotic fraction when previously it was increased (by phosphorylation)? It would also be useful to see if there were any other band shifts.
- "FFAT-2 of ELYS is regulated by phosphorylation" The way you have setup the experiment leads the reader to think you are going to show which sites are differentially phosphorylated in mitosis, but then this is not the case - so there seems no purpose to doing the experiment this way. If you used TMT MS approach you would be able to potentially quantify the change in phosphorylation at the FFAT motif sites in mitosis. Otherwise what is the purpose of using these 2 samples, mitotic and AS?
- For all of the antibodies used, in particular for the PLA, please provide evidence of validation of the antibodies.
- Just a minor point to consider - In the methods for your lysis buffer you use 400mM NaCl - might this slightly reduce the VAPB-FFAT interaction? Worth considering reducing this?
- "The rather small difference observed between the wild-type and the mutant protein observed in this experiment probably results from the presence of endogenous VAPB in the stable cell lines, which could form dimers with the exogeneous HA-tagged versions." If this is the case then please demonstrate that this is happening, or use the KO approach in the major points above.
- "we now show that the proteins can indeed interact with each other, without the need for additional bridging factors (Figs. 1 and 3)." You show that the peptides can bind - but this is not the same thing as the peptide in the full context of the protein - so this should be toned down or removed.
- "Remarkably, this region is highly conserved between species, suggesting that it is important for protein functions (data not shown)". Please show the alignments so the reader can judge for themselves. It is conserved in ALL species and the phosphosites are also conserved??
- "In our experiments, knockdown of VAPA alone did not lead to a delay in mitosis (data not shown). " Why not show this data - as this is a very interesting and potentially important observation? Also add the validation of knockdown of VAPA.
- I find the end to the discussion to the paper rather abrupt. It would be interesting to discuss further how VAPB, but not apparently VAPA reaches the INM and if so why this function is required of an ER adaptor and not another more obvious adaptor protein. In short - why would VAPB be performing this role?
Referees cross-commenting
I agree with the comments of the other reviewers, and they are very much in line with my own review. We all seem convinced that VAPB binds ELYS via a pFFAT, and that this interaction is enhanced during mitosois. However the role of this interaction in mitotic progression remains unclear and based on this data should not be claimed in the title or discussion of the paper.
Significance
Overall, if the manuscript could be improved with the suggested changes, then this could be a considerable conceptual advance in how we understand the VAP proteins, showing functions beyond those as an ER adaptor. This would be significant for the field.
In the context of the existing literature the work does not advance our knowledge of FFAT-VAP interactions, this has already been shown, but it would give a nice example of how this can be regulated during mitosis and how VAP can contribute beyond just as an ER adaptor at membrane contact sites.
There would be a wide audience in the cell biology field and more widely as mutations in VAPB cause a form of ALS, and many people are working in this area.
My field of expertise is in organelle cell biology and membrane contact sites.
-
-
www.youtube.com www.youtube.com
-
(1:20.00-1:40.00) What he describes is the following: Most of his notes originate from the digital using hypothes.is, where he reads material online and can annotate, highlight, and tag to help future him find the material by tag or bulk digital search. He calls his hypothes.is a commonplace book that is somewhat pre-organized.
Aldrich continues by explaining that in his commonplace hypothes.is his notes are not interlinked in a Luhmannian Zettelkasten sense, but he "sucks the data" right into Obsidian where he plays around with the content and does some of that interlinking and massage it.
Then, the best of the best material, or that which he is most interested in working with, writing about, etc., converted into a more Luhmannesque type Zettelkasten where it is much more densely interlinked. He emphasizes that his Luhmann zettelkasten is mostly consisting of his own thoughts and is very well-developed, to the point where he can "take a string of 20 cards and ostensibly it's its own essay and then publish it as a blog post or article."
-
-
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We would like to thank all reviewers for taking the time to evaluate our manuscript. Many helpful suggestions and discussion points were raised. These comments were instrumental to provide more data that strengthen our conclusion about the relevance of centrin condensation in vivo, expand our findings to other organisms, and improve the manuscript in general. Details are given in the following individual replies.
Reviewer #1 (Evidence, reproducibility and clarity):
Voss and colleagues show calcium-dependent assembly of Plasmodium falciparum centrins in vitro and in parasites. This assembly is dependent on the EF-hands of centrin and an N-terminal disordered region.
Major concerns:
- The very definitive title is not wholly supported by the data. This should be qualified by specifying the conditions under which the centrins can accumulate in this way.
We understand this comment by the reviewer. There are multiple dimensions to the potential of centrins to condensate, such as the specific centrin family member, in vivo vs in vitro situation, and media conditions. Naturally it is difficult to represent these various conditions in a concise and compelling title but in line with the suggestion by Reviewer 2 we are changing the title to “Malaria parasite centrins can assemble by Ca2+-inducible condensation” to reflect the conditionality of this process.
- A major concern is whether this behaviour of centrins represents a biologically relevant mechanism in centriolar plaque formation. Is this limited to high overexpression conditions or in vitro high concentrations? Or is it a result of the tagging of the P. falciparum centrins?...
Centrin accumulation at the centriolar plaque and assembly of the centriolar plaque itself must be differentiated. Although compelling we are already very careful in the text about extrapolating our findings about centrin accumulation in cells to centriolar plaque or centrosomal assembly in general. We, however, thank the reviewer for this important comment and now have carried out hexanediol treatment of wild type parasites to test the effect on centrin in a native context. After IFA staining we failed to detect any centrin foci at the centriolar plaques, suggesting that they can be resolved by inhibiting weak hydrophobic interactions that are typical for phase separation (now Fig. 6, lines 283ff).
Concerning the effect of tagging we have generated new data of cells overexpressing an untagged version of PfCen1 in parasites, which still shows formation of ECCAs as revealed by IFA (now Fig. 4H-K, lines 243ff). This significantly alleviates the concern that the observed phenomenon is only a consequence of GFP-tagging. Our in vitro data already showed that native and tagged PfCentrin1 & 3 can undergo condensation.
Concerning the critical concentration of our in vitro assay we find it to be around 10-15 µM without the addition of crowding agents such as PEG (now Fig. S3C, lines 120ff). To our understanding it is challenging to select an in vitro concentration that is adequate to define a threshold for “biological relevance” due to so many additional factors playing a role in vivo. Those factors can also favor a phase separation locally when total saturation concentration is not reached as we now discuss in more detail (lines 440ff). For reference the critical concentration of FUS, which is one of the most studied phase separating proteins in model system, is around 2 µM, but concentrations below 15 µM are well within the range of what is observed for in vitro LLPS. Additionally, it is important to consider that we find Cen1/3 and HsCen2 LLPS is inducible and reversible and that very homologous proteins i.e. Cen2 and 4 serve as an adequate internal control.
… A convincing approach to addressing this issue would be to knock-in a fluorescent tag to the centrin loci. Roques et al. (ref. 12 in this submission) report the GFP tagging of centrin-4 in P. berghei, although they note that centrins-1 to -3 were refractory to tagging in this organism. It is unclear whether Voss et al. attempted this tagging in P. falciparum. This should be clarified and relevant data presented.
We indeed attempted several unsuccessful iterations of tagging Cen1/3 with HA and GFP tag and now explain this in the text more clearly (lines 81ff). We did not attempt tagging Cen2 and 4 as they do not display phase separation in vitro or carry IDRs.
If the tagged molecules used in the biochemical parts of this study are functional, it is challenging to understand why the centrins cannot be tagged in P. falciparum. If the tags render the P. falciparum centrins dysfunctional, the study becomes significantly less useful.
Our data shows that in vitro Cen1-GFP can undergo Ca2+-inducible and reversible LLPS and that GFP-tagged centrins can still localize to the centriolar plaque. Centrin function, however, certainly goes beyond its ability to condensate and localize. It is easily conceivable that interaction with critical binding partners at the centriolar plaque is inhibited by tagging a protein as small as centrin, which prohibits tagging the endogenous version, while its ability to phase separate remains unaltered. To dynamically study a protein in cells tagging is, however, unavoidable. Even though tagging affects any proteins function to highly variable degree we are still convinced that studying those proteins still provides useful information. Our mutant versions of PfCen1 in vivo shows that non-condensating version display different localization. Importantly, as mentioned above, we now provide images of cells overexpressing an untagged Cen1 version, which still causes ECCA formation (Fig. 5H-K). Ultimately, even though tagged versions might not be fully functional, our observations are compatible with the ability of centrins to condensate in vivo.
- If a knock-in cannot be achieved, it must be shown that the transgenic expression of tagged Plasmodium centrins does not confound the analysis of centrin behaviour. It is known that these proteins can behave anomalously when overexpressed (Yang et al. 2010, PMID: 20980622; Prosser et al. 2009, PMID: 19139275), at least in other species.
Thank you for this comment. Transgenic expression of proteins can in principle influence their behavior. In the context of this study the overexpression is, however, used intentionally since protein concentration correlates with the phase separation. Here, transgenic overexpression is used as a tool, rather than being a confounding factor, and ECCA formation can be used as quantifiable phenotype. The observation that ECCAs appear significantly earlier the higher they are expressed is in our opinion one of the stronger points of evidence that this result from phase separation in vivo. Yet centrins maintain their centriolar plaque localization and no significant impact on growth is observed. To definitely answer whether phase separation of endogenous centrin is occurring during centriolar plaque accumulation is challenging. These challenges and limitations are now addressed in the significantly extended discussion. As explained above untagged Cen1 also forms ECCAs.
A previous description of centriolar plaque from the authors' lab (Simon et al. 2021, PMID: 34535568) shows an organized structure of an established size. It should be demonstrated whether the structures formed with the GFP tagged centrins show the same dimensions and dynamics as those in wild-type parasites. The extent of the overexpression of the GFP-tagged centrins should also be demonstrated.
We thank the reviewer for this suggestion. We have now added spatial measurements of the centrin signal dimensions at the centriolar plaque of mitotic spindle containing nuclei in PfCen1-GFP overexpressing vs non-induced cell lines. We found that the width of the centrin-signal at the centriolar plaque was unaltered while the height only increased by 11% (Fig. S9). Further, we found no significant growth phenotype in overexpressing parasites, which indicates that the centriolar plaque is functional.
Due to several confounding factors, we were, unfortunately, unable to clearly quantify the extent of overexpression. Most notably the induction of overexpression only works in about 50% of the cells (Fig. S6). The mean intensity after induction further displays quite some variability. Furthermore, the expression kinetics along the IDC of endogenous centrin and our overexpression system that we use as a tool differ. Lastly, our centrin antibodies display crossreactivity (see also Fig. S12) making it impossible to identify how much of the endogenous pool we are labeling in comparison to the GFP- tagged Cen1 protein.
- It would also be useful to remove the His tag from the recombinantly expressed and purified centrins for the in vitro analyses, particularly if concern remains about the impact of tags on Plasmodium centrin behaviour.
Based on the published in vitro studies on other centrins, we did not anticipate the His-tag to change LLPS properties. Also, Cen1 and 3 and Cen2 and 4 would need to be differentially affected by the tag. We further have experimented with N-terminally tagged 6His-Cen3 protein and found no significant differences in our turbidity assays. Nevertheless, we expressed new versions of the recombinant PfCen1-4 proteins with a TEV cleavage site inserted after the His-tag to purify untagged proteins and found no fundamental differences in our LLPS assay aside some slight variation in the kinetics (Fig. S3E).
- The discussion is very short and does not consider the findings presented here in the context of the literature, with respect to centrins, Plasmodium MTOC assembly mechanisms, or to general considerations around biological condensates. Andrea Musacchio's recent commentary (ref. 44 in the current submission) advocates caution in ascribing phase separation as an assembly mechanism for organelles in vivo, particularly on the basis of in vitro experiments with high concentrations of homogeneous protein. It is not clear that the concentration dependence of extracentrosomal centrin accumulations (ECCAs) at the onset of schizogony provides sufficient justification of a phase separation model in vivo. The authors' recent description of the involvement of an SFI1-like protein, SIp (Wenz et al. 2023 PMID: 37130129), in the centriolar plaque makes a case for non-homotypic interactions also driving assembly and alternative models for ECCA are not convincingly excluded. The absence of a robust discussion of such considerations is unhelpful to the reader.
We very much thank the reviewer for this suggestion, which helped to significantly improve the manuscript. We have purposefully included the commentary by Andrea Musacchio to highlight a different (possibly the most antipodal) point of view on the role of biomolecular condensation in membraneless organelle formation for the unfamiliar readers that might be just getting to know the field of phase separation. In the absence of word limitations, the reviewer is right to point out the lack of more extensive discussion. We now have significantly extended this section and address the suggested points including the potential role of the novel centriolar plaque protein Slp, which was not published upon submission of our previous version (lines 450ff.)
- It is also unclear whether the analysis of human centrin is suggested to indicate a phase separation mechanism for centrins in human cells. As this is readily testable, this notion could be considered further. Although its experimental examination may lie outside the theme of this study, one would expect some discussion of the significance of the data presented in the study.
Since it is the first description of phase separation of centrin, it would indeed be interesting to explore the functional relevance in other organisms such as humans. We are considering approaching this in the future. We have, as requested above, significantly extended the discussion and now also include this aspect. Earlier reports have e.g. shown centriole overduplication in human cells upon centrin overexpression.
Minor points
- There are only three centrins in humans. Centrin 4 is a pseudogene (Gene ID: 729338 on NCBI).
Thank you for detecting this error, which we now corrected (line 60). Centrin 4 seems only to be an expressed gene in mice.
- Line 175 should say 'temporally', rather than 'temporarily. The Abstract should say 'evolutionarily conserved', rather than 'evolutionary conserved'. 'To condensate' is not ideal as a phrase- 'to form a condensate' would be clearer.
Thank you for those suggestions. The text has been modified accordingly.
Referees cross-commenting
I think the other 2 reviewers have made fair, cogent and constructive points. There is good convergence between the reviewers on the significant issues around the study. These concern in vivo and in vitro effects of tagging and of high concentrations.
Reviewer #1 (Significance):
The biology of the Plasmodium centriolar plaque is of great interest as an alternative MTOC structure, with obvious additional interest deriving from the role of this organism in malaria. Much remains to be learned about this structure, so the topic of this paper is likely to attract a broad readership. Furthermore, the centrins are a widely-expressed and evolutionarily conserved family of eukaryotic proteins, with multiple roles; a new model for their behaviour, such as is suggested here, would be of interest to many cell biologists.
With that in mind, significant additional data should be provided to substantiate the model proposed by the authors.
We appreciate that the reviewer considers our manuscript of interest for a broad audience. We feel that our modifications of the text including a more thorough contextualization and addition of some new experimental data now sufficiently supports our claims.
Reviewer #2 (Evidence, reproducibility and clarity):
The authors analyzed the properties of the four Centrin proteins of the malaria parasite using a combination of in vitro and in vivo approaches. Their findings indicate that two of the four Plasmodium Centrin proteins, PfCen1 and PfCen3, as well as the human Centrin protein HsCen2, exhibit features of biomolecular condensates. Moreover, analysis of cells overexpressing PfCen1 indicates that such biomolecular condensates become more numerous as cells approach mitosis and are dissolved thereafter.
Major comments
A) A critical point that requires clarification is how the protein concentrations used in the in vitro and in vivo assays (20-200 microM in vitro, and not estimated in vivo) compare to that of the endogenous components. This is important because it may well be that 6His-tagged PfCen1, PfCen3 and HsCen2 can form biomolecular condensates when present in vast excess, but not when present in physiological concentrations. The authors should report the estimated cellular concentration of PfCen1-4, as well as that achieved upon PfCen1-GFP overexpression (on top of endogenous PfCen1), for instance using semi-quantitative immunoblotting analysis. Given this limitation, the authors may also want to temper their title by introducing the word "can" after "centrins".
In the context of phase separation, protein concentration is of course a critical metric. However, in vitro and in vivo concentrations cannot be directly compared as the composition of the surrounding solute has a significant impact on the effective saturation concentration. In vitro we find a saturation concentration for Cen1 of 10-15 µM (Fig. S3C), which is within a range that is frequently found other in vitro studies as listed in the in vitro LLPS data base (PMID: 35025997). We now more explicitly discuss this in the text (lines 422ff). At this point, unfortunately, we have no means of investigating the absolute concentrations of centrin in vivo and to our knowledge no such data is available for apicomplexan. Additionally, one has to keep in mind the presence of other centrin family members in the cell which can interact and co-condensate as well as other centriolar plaque proteins, like PfSlp, but are difficult to separate through analysis. Further we now discuss several contexts that modify the saturation concentration in vivo (lines 440ff).
As explained above in a response to Reviewer 1, we were not able to produce a satisfactory quantification of the overexpression levels. We are repasting the previous response here:
“Due to several confounding factors we were, unfortunately, unable to clearly quantify the extent of overexpression. Most notably the induction of overexpression only works in about 50% of the cells (Fig. S6). The mean intensity after induction further displays quite some variability. Lastly the expression kinetics along the IDC of endogenous centrin and our overexpression system that we use as a tool differ. Lastly, our centrin antibodies display crossreactivity (see also Fig. S12) making it impossible to identify how much of the endogenous pool we are labeling in comparison to the GFP- tagged Cen1 protein. “
Concerning the title, as explained above, we followed the suggestion and added the word “can”.
B) Movies S1 and S2 (and the related Fig. 1D and 1E) are not the most convincing to support the notion that the observed assemblies are biomolecular condensates, as not much activity is going on during the recordings. Likewise, Movies S3, and even more so Movie S4, as out of focus for a large fraction of the time, making it difficult to assess what happens at the beginning of the process. Moreover, it appears that fusion events, while occurring, are rather rare. The movies should be exchanged for ones that are in focus, and ideally a rough quantification of fusion events as a function of biomolecular condensate size provided.
We thank the reviewer for requesting clarification. Movies S1 and S2 are by no means direct evidence for biomolecular condensation and we do not claim them to be but rather say that they are “…reminiscent of biomolecular condensates…”. We think that this is an appropriate entry into the subsequent analyses. For Movie S1 it is noteworthy that the shape of the accumulation, which can only be resolved by super-resolution microscopy in live cells, is round as would be expected for a liquid condensate in the absence of forces and on these short time scales. Nevertheless, the centriolar plaque must be duplicated which might be the process partly depicted in Movie S2. The observation that centrin can be still change its shape at least suggests that it is not a solid aggregate. In the context of centriolar plaque biology and the technological advance of applying live cell STED in P. falciparum, we think these data are still worth reporting.
Concerning Movies S3 and S4 we have carefully selected the focal plane to highlight all the hallmarks of LLPS. Since the protein droplets freely move in 3D throughout the entire imaged liquid volume there is no z-plane that is in focus. Our positioning of the focal plane presents the best compromise between showing round droplet shape, droplet fusion events, and surface wetting. All those observations demonstrate the liquid nature of the condensates. Fusion events are indeed relatively rare, and we do not go beyond this qualitative statement that it can be seen.
C) An important control is missing from Fig. 2, namely assaying PfCen1-4 without the 6His tag, to ensure that the tag does not contribute to the observed behavior (although it can of course not be sufficient as evidenced by the lack of biomolecular condensates for PfCen2 and PfCen4).
Thank you for this suggestion. Since reviewer 1 made a similar comment, I’m reiterating our previous reply here: Generally speaking, and based on the published in vitro studies on other centrins, we didn’t anticipate the very small His-tag to change LLPS properties. Also, Cen1 and 3 and Cen2 and 4 would need to be differentially affected by the tag. We further have experimented with N-terminally tagged 6xHis-Cen3 protein and found no significant differences in our turbidity assays. However, we expressed new versions of the recombinant PfCen1-4 proteins with a TEV cleavage site inserted after the His-tag to purify untagged proteins and found no significant differences in our LLPS assay (Fig. S3E).
D) The authors should test whether the assemblies formed by PfCen1 and PfCen3 are sensitive to 1,6-hexanediol treatment, as expected for biomolecular condensates.
This is an interesting and helpful suggestion. We now tested 1,6-hexanediol addition to recombinant PfCen1 and wildtype parasites (now Fig. 6). Interestingly the dissolving effect of hexanediol on PfCen1 in vitro was moderate, which we attribute to the polar component in centrin assembly, which has been documented earlier (Tourbez et al. 2004). In vivo, however, only 5 min of treatment caused a striking dissolution of most centrin foci in wild type parasites, which is compatible with the interpretation that centrin or centriolar plaque assembly could be driven by biomolecular condensation.
E) The fact that HsCen2 also forms biomolecular condensates is very intriguing, but further investigation would be needed to assess the generality of these findings. For instance, the authors could test in vitro also S. cerevisiae Cdc31, the founding member of the Centrin family of proteins to further enhance the impact of their study.
We thank the reviewer for this suggestion. It would of course be exciting to investigate in more detail how widely this biochemical property of some centrins is conserved. To take a first step in that direction, we have recombinantly expressed centrins containing some N-terminal IDRs from C. reinhardtii, T. brucei and S. cerevisiae to represent organism of significant evolutionary distance. Using our in vitro phase separation assays, we found a very similar behavior to PfCen1 for two centrins while yeast Cdc31, although forming droplets, had a much higher saturation concentration, which could be explained by the significantly lower intrinsic disorder in its sequence (now new Fig. 3).
Minor comments
1) For the experiments reported in Fig. 3D, the same concentrations as those used in Fig. 3A-C (namely 10 microM, and not 30 microM as in Fig. 3D) should be used. Moreover, it would be informative to test whether PfCen2 and PfCen4 as PfCen3 when added to PfCen1.
Unfortunately, this experiment is not feasible since Cen3 does not produce droplets at 10 µM. Hence, in Fig. 3D we aimed to test if Cen1 is incorporated into preformed droplets i.e. whether there is still some interaction between them. We have, however, tested the addition of Cen2 to Cen1 and Cen3 and as expected from the inability PfCen2 to condensate we did not find the same synergistic effect as for Cen1 and 3 together (now Fig. S6). The combination of Cen1/2/3 still enabled co-condensation while addition of Cen4 did not further improve droplet formation. Taken together this strongly suggests that only Cen1 and 3 contribute to the phase separation in vitro (lines 184ff).
2) The authors mention that the effect of Calcium in inducing biomolecular condensates is specific, as Magnesium was not effective (lines 94-95). However, an examination of Fig. S3B indicates that the Magnesium also exhibits some activity, albeit less potent than Calcium. The authors should discuss this point and rectify the wording in the main text.
Thank you for pointing this out. While PfCen1 is not reactive to Magnesium, PfCen3 and HsCen2 do display a small reaction, which we now more clearly mention in the text (lines 118ff). Of note Mg2+ and other divalent cation are known to generally promote phase separation.
3) Do the authors think that PfCen2 and PfCent4 localize to the centriolar plaque in vivo using another mechanism that deployed by PfCen1 and PfCent3? It would be good to discuss this point.
This is indeed a point worth discussing. Centrins can of course still interact in the absence of biomolecular condensation and their localization to the centriolar plaque is not dependent on their ability to phase-separate as seen for PfCen2 and 4. We have recently described a novel centriolar plaque protein PfSlp that interacts with centrins and might assist recruitment (Wenz et al. 2023). Cellular condensates are, however, often separated into scaffold proteins, which actually phase separate and client protein which get recruited into those condensates. It is easily conceivable that Cen1 and 3 participate in formation of the biomolecular condensate into which Cen2 and 4 as well as other centriolar plaque proteins might be recruited. Unfortunately, we were not yet able to establish a recruitment hierarchy by e.g. dual-labeling of centrins to test whether PfCen1 and 3 might appear prior to PfCen2 and 4. We now include those aspects in the extended discussion.
4) Given that the EFh-dead mutant exhibits no activity in vitro and fails to localize in vivo, one potential concern is that the protein is misfolded. The authors should conduct a CD spectrum to investigate this.
Thank you for suggesting this relevant control experiment. We have carried out CD spectroscopy of wild type and EFh-dead PfCen1 and find no difference in secondary structure distribution. We now added these data to the supplemental information (now Fig. S14).
5) It is not entirely clear from the main text in lines 103-104, as well as from the legend, what Fig. S3B shows. When was EDTA added in this case?
Thank you for requesting clarification. We will assume the reviewer is referring to Fig S4B. We wanted to show that contrary to PfCen3 that PfCen1 droplets can still be resolved after an elongated period of incubation with calcium but forgot to mark the timepoint of EDTA addition at 180 min in the graph. We have now corrected this and further reworded the sentence for more clarity (lines 132ff).
6) Fig. S7: the correlation between PfCen1-GFP expression levels and ECCA appearance is modest at best. What statistical test was applied? This should be spelled out. Moreover, the authors should combine the two data sets, as this will provide further statistical power to assess whether a correlation is truly present.
Indeed, the correlation is modest but statistically significant, which is why we decided to place this data in the supplemental information. The used statistical test was an F-test provided by Prism, which compares two competing regression models, which we now mention in the legend. Combining the two data sets is unfortunately not possible since they arise from two independent sets of measurements where different imaging settings had to be used to adjust for the very different fluorescent protein levels in both lines after induction.
7) The authors may want to discuss how their findings can be reconciled with the notion that Centrin assemble into a helical polymer on the inside of the centriole (doi: 10.1126/sciadv.aaz4137).
This is an interesting point. Although centrin does localize to the inside of the centriole (https://doi.org/10.15252/embj.2022112107), more precisely one pool at the distal part and one pool at the core, there is no evidence that it is itself part of the helical inner scaffold described by the authors even though it might localize in close proximity to it. Further, there are several examples where polymers such as microtubules act as seeding point for biomolecular condensates or the other way around, and our work suggest this could be a potential working model for centrins. We have discussed our results extensively with the two corresponding authors of the aforementioned study (i.e. Virginie Hamel and Paul Guichard) and agreed that our data are not conflicting. Nevertheless, we include the inner centriole localization and potential association with polymer structures of centrin in our extended discussion.
9) Likewise, the authors may want to speculate regarding what their findings signify for the role of Centrin proteins in detection of nucleotide excision repair (doi: 10.1083/jcb.201012093).
We appreciate the comment by the reviewer. Centrins seem to have many different potential roles that remain to be clarified. While we are excited about this, we think it is too early to speculate about the impact of centrin condensation on less well studied aspects of centrins such as nucleotide excision repair. We, however, now cite this study in the discussion to highlight the functional diversity of centrins.
Small things
- Fig. 1A: change color for microtubules as red on red is difficult to discern.
Throughout our publications we use this shade of magenta to label microtubules in schematics and have therefore opted to use a slightly brighter shade of red for the RBCs instead to improve visibility.
- Fig. 1C: the indicated boxes in the top row do not seem to correspond exactly to the insets shown in the bottom row.
We have verified the position of the boxes and found them to be accurate. Possibly the different imaging modality used for both panels (confocal vs STED) creates this impression.
- line 266: typo, promotor > promoter.
Has been corrected.
- line 360: a reference should be provided for the GFP-booster, including the concentration at which it was used.
Has been added.
- line 363: "an" missing before "HC".
Has been corrected.
- line 428: it would be best to deposit the macros on Github or an analogous repository.
Macros have been deposited on https://github.com/SeverinaKlaus/ImageJ-Macros (line 737)
- line 461: "to the" is duplicated.
Has been corrected.
- Fig. S5A: maybe draw the lines in red (as red in Fig. S5B correspond to the proteins that do not have IDRs).
Since we cannot easily change the line colors of the IDR graphs, we have inverted the font color for Fig. S5B instead.
- Movie S7, legend: left frames shows PfCen1-GFP, not microtubules as currently stated.
Has been corrected.
Reviewer #2 (Significance):
This is a provocative study that extends initial observations regarding self-assembly properties of Centrin proteins, and posits that some members of this evolutionarily conserved family can form biomolecular condensates. After the above outstanding issues have been properly addressed, these data could have important implications for understanding Centrin function in centriole biology and DNA repair. Therefore, these findings will be of interest to a cell biology audience.
Field of expertise: cell biology.
Reviewer #3 (Evidence, reproducibility and clarity):
Summary:
The authors have provided a comprehensive characterisation of centrin proteins in Plasmodium falciparum. Through expression of episomal GFP-tagged centrin for in vitro, they were able to observe co-localisation of centrin with centriolar plaques during the replicative stage of the parasite. They also utilised live cell STED microscopy to track dynamic changes in centrin morphology. They have also demonstrated calcium-dependent phase separation dynamics in bacterially-expressed P. falciparum centrin and human centrin 2. The formation of liquid-liquid phase separation in PfCen1, 3 and HsCen2 tied well with IUPred3 predictions of intrinsically disordered regions in these proteins. Using an inducible DiCre overexpression system with two promoters of varying strengths, the authors have shown accumulation of centrin1 outside of centrosomes and premature appearance of centriolar plaques. Finally, changes on the centrin1 protein, i.e., N-terminal deletion, and mutations in calcium binding sites in the EFh domains, have shown a reduction in the formation of ECCAs during overexpression and inability to form LLPS in vitro, respectively.
Major comments:
- Given that parasites cannot tolerate endogenous C-terminal tagging of some centrins (but not all, as PbCen4 was successfully tagged), has N-terminal tagging been attempted either by the authors or in previous publications? Note that this is not a request for further experimentation; rather, maybe this can be noted in the manuscript; and line 62 can be rephrased for transparency.
We have not attempted N-terminal tagging ourselves but through personal communication with Rita Tewari we were informed that neither N- nor C-terminal tagging for PbCen1-3 was successful in the context of the study published by Roques et al 2018. We have only unsuccessfully attempted C-terminal tagging in several iterations. Due to importance of N-terminus for interaction and function in other organisms it is plausible that N-terminal tagging is even more unlikely to work. Since we have not exhaustively attempted every tagging strategy on every centrin we, as suggested, rephrased the text accordingly (lines 81ff).
- Is there a possibility that by adding a C-terminal tag, centrin may lose a specific function or cause change in the physicochemical properties of the protein (thus making C-terminal tagging lethal)? Was His tag removal attempted so the native protein can be used in the LLPS experiments? IUPred3 analysis showed potential IDR at the C-terminal end of PfCen4. Could the C-terminal tag have caused the protein to not form droplets in the presence of Ca2+?
As we could show for PfCen1-GFP, the tag did not impair its ability to undergo LLPS which is at least partly mediated by the N-terminus, and that it could still properly localizes to the centriolar plaque. The fact that some endogenous centrins cannot be tagged suggest that there is a functional relevance to the C-terminus that could e.g. be an interaction with other essential centriolar plaque components. As suggested in a reply to Reviewer 1, we consider a substantial and centrin-specific effect of the small His-tag on phase separation unlikely. To be sure, we have repeated our turbidity assays with tag-free versions of PfCen1-4 and found no change in phase separation properties (now Fig. S3E).
- It has been shown by the authors that different tagged centrins co-condense which may support the localisation data (Figure 1C). However, is there a way to show that the episomally- and endogenously-expressed centrin co-localise with each other (e.g., confocal microscopy with anti-centrin vs anti-gfp in PfCen-GFP lines, that is if the authors have access to anti-centrin antibodies)? Has endogenous centrin been demonstrated to form ECCAs (in previous publications or by the authors)?
These are important questions by the reviewer. Due to the high sequence homology centrin antibodies, even if raised against a specific centrin (such as PfCen3 in this study), will likely cross-react with other centrins. So far, we have not been able to produce a staining were the anti-GFP-positive foci are devoid of anti-centrin3 staining, which limits the interpretation of these data. The outer centriolar plaque compartment containing centrin is, however, well defined by now and the localization pattern of endogenous centrin and Centrin1 and 4-GFP seems identical. In a more recent study from our lab Cen1-GFP IP has identified other endogenous centrins as interaction partners (Wenz et al 2023), like the Roques et al. 2018 study did for PbCen4-GFP indicating that the tag does not abolish interaction between centrins. So far, we have never detected any ECCAs, nor have we identified any similar structure in the literature. This suggest that this is indeed a consequence of excessive centrin concentration. Importantly we now have added data from a new parasite line overexpressing untagged PfCen1 using the T2A skip peptide (pFIO+_GFP-T2A-Cen1) which displays ECCAs upon induction, showing that this effect is not a mere consequence of tagging (now Fig. 5H-K).
Minor comments:
- How were the times (post addition of Ca2+) presented in Figure 2A determined?
We noted down the time of calcium addition and cross-referenced it with the timestamps available in the metadata of the movie files (e.g. file creation timepoint marks the start of the movie). We now mention this in the legend.
-
Line 126: Figure 1B should be Figure 1C
-
Line 145: Figure 1C-D should be Figure 1D-E
-
Line 151: Figure 3A should be Figure 4A
Thank you for spotting these mistakes, which now have been corrected.
- Line 152: Suggest rephrasing "placing the gene of interest in front of the promoter" to "placing the gene of interest immediately downstream of the promoter" or something similar
Thank you for this good suggestion.
- Any growth phenotype changes observed in the overexpressors?
The parasite lines seem to silence the Cen1-4-GFP expression plasmids readily, which suggest that there might be a growth disadvantage. However, repeated attempts to quantify a growth phenotype were unsuccessful due to high variability in the data, which might be partly connected to the fact that the fraction of GFP positive cells after induction can vary between lines and replicas.
- How often are ECCAs observed in pARL strains, or are they not observed at all? This might be good to mention.
ECCAs in the pArl strains have been observed on very limited instances but are too rare to be quantified. We now mention this in the text (lines 217ff).
- Line 192 and Figure S8: n {less than or equal to} 33 (either a typographical error and should have been {greater than or equal to}, otherwise, it may be expressed as a range)
It was indeed a typographical error that was now corrected.
- Line 258: Methods on the generation of FIO/FIO+ was a bit difficult to understand. Maybe a simple plasmid schematic with the restriction sites (at least for the original plasmid) in the supplementary may help clarify this.
Cloning strategy has been expanded with additional information for clarity.
- Line 295: include abbreviation of cRPMI here rather than in Line 303
Has been corrected.
- Line 322: typographical error on WR99210 working concentration?
Has been corrected.
- Line 372: Last sentence on area and raw integrated density measurement is unclear.
We have reformulated the sentence for more clarity.
- Line 461: typographical error in last sentence
Has been corrected.
- Line 532: Figure 4E should be Figure 4F
Has been corrected.
Reviewer #3 (Significance):
DNA replication is vital to the survival of malaria parasites. A deeper understanding on their unusual form of replication may be exploited to find drug targets uniquely directed to the parasite. Biological insights from this work can also provide a jump-off point for unravelling unusual replication in other organisms. Data on the physicochemical analysis of centrin is not just of great interest for those in the field of parasitology, but also for those in the much wider fields of biology, physics and chemistry. Techniques presented in this work (e.g., DiCre overexpression with different promoters) can definitely be utilised for the elucidation of protein function within and outside the field of parasitology.
My field of expertise is in Plasmodium spp., particularly in parasite replication, molecular and cellular biology, and epigenetics.
We thank the reviewer for the appreciation of our work in terms of insight and technology development.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
The authors have provided a comprehensive characterisation of centrin proteins in Plasmodium falciparum. Through expression of episomal GFP-tagged centrin for in vitro, they were able to observe co-localisation of centrin with centriolar plaques during the replicative stage of the parasite. They also utilised live cell STED microscopy to track dynamic changes in centrin morphology. They have also demonstrated calcium-dependent phase separation dynamics in bacterially-expressed P. falciparum centrin and human centrin 2. The formation of liquid-liquid phase separation in PfCen1, 3 and HsCen2 tied well with IUPred3 predictions of intrinsically disordered regions in these proteins. Using an inducible DiCre overexpression system with two promoters of varying strengths, the authors have shown accumulation of centrin1 outside of centrosomes and premature appearance of centriolar plaques. Finally, changes on the centrin1 protein, i.e., N-terminal deletion, and mutations in calcium binding sites in the EFh domains, have shown a reduction in the formation of ECCAs during overexpression and inability to form LLPS in vitro, respectively.
Major comments:
- Given that parasites cannot tolerate endogenous C-terminal tagging of some centrins (but not all, as PbCen4 was successfully tagged), has N-terminal tagging been attempted either by the authors or in previous publications? Note that this is not a request for further experimentation; rather, maybe this can be noted in the manuscript; and line 62 can be rephrased for transparency.
- Is there a possibility that by adding a C-terminal tag, centrin may lose a specific function or cause change in the physicochemical properties of the protein (thus making C-terminal tagging lethal)? Was His tag removal attempted so the native protein can be used in the LLPS experiments? IUPred3 analysis showed potential IDR at the C-terminal end of PfCen4. Could the C-terminal tag have caused the protein to not form droplets in the presence of Ca2+?
- It has been shown by the authors that different tagged centrins co-condense which may support the localisation data (Figure 1C). However, is there a way to show that the episomally- and endogenously-expressed centrin co-localise with each other (e.g., confocal microscopy with anti-centrin vs anti-gfp in PfCen-GFP lines, that is if the authors have access to anti-centrin antibodies)? Has endogenous centrin been demonstrated to form ECCAs (in previous publications or by the authors)?
Minor comments:
- How were the times (post addition of Ca2+) presented in Figure 2A determined?
- Line 126: Figure 1B should be Figure 1C
- Line 145: Figure 1C-D should be Figure 1D-E
- Line 151: Figure 3A should be Figure 4A
- Line 152: Suggest rephrasing "placing the gene of interest in front of the promoter" to "placing the gene of interest immediately downstream of the promoter" or something similar
- Any growth phenotype changes observed in the overexpressors?
- How often are ECCAs observed in pARL strains, or are they not observed at all? This might be good to mention.
- Line 192 and Figure S8: n {less than or equal to} 33 (either a typographical error and should have been {greater than or equal to}, otherwise, it may be expressed as a range)
- Line 258: Methods on the generation of FIO/FIO+ was a bit difficult to understand. Maybe a simple plasmid schematic with the restriction sites (at least for the original plasmid) in the supplementary may help clarify this.
- Line 295: include abbreviation of cRPMI here rather than in Line 303
- Line 322: typographical error on WR99210 working concentration?
- Line 372: Last sentence on area and raw integrated density measurement is unclear.
- Line 461: typographical error in last sentence
- Line 532: Figure 4E should be Figure 4F
Significance
DNA replication is vital to the survival of malaria parasites. A deeper understanding on their unusual form of replication may be exploited to find drug targets uniquely directed to the parasite. Biological insights from this work can also provide a jump-off point for unravelling unusual replication in other organisms. Data on the physicochemical analysis of centrin is not just of great interest for those in the field of parasitology, but also for those in the much wider fields of biology, physics and chemistry. Techniques presented in this work (e.g., DiCre overexpression with different promoters) can definitely be utilised for the elucidation of protein function within and outside the field of parasitology.
My field of expertise is in Plasmodium spp., particularly in parasite replication, molecular and cellular biology, and epigenetics.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
The authors analyzed the properties of the four Centrin proteins of the malaria parasite using a combination of in vitro and in vivo approaches. Their findings indicate that two of the four Plasmodium Centrin proteins, PfCen1 and PfCen3, as well as the human Centrin protein HsCen2, exhibit features of biomolecular condensates. Moreover, analysis of cells overexpressing PfCen1 indicates that such biomolecular condensates become more numerous as cells approach mitosis and are dissolved thereafter.
Major comments
- A) A critical point that requires clarification is how the protein concentrations used in the in vitro and in vivo assays (20-200 microM in vitro, and not estimated in vivo) compare to that of the endogenous components. This is important because it may well be that 6His-tagged PfCen1, PfCen3 and HsCen2 can form biomolecular condensates when present in vast excess, but not when present in physiological concentrations. The authors should report the estimated cellular concentration of PfCen1-4, as well as that achieved upon PfCen1-GFP overexpression (on top of endogenous PfCen1), for instance using semi-quantitative immunoblotting analysis. Given this limitation, the authors may also want to temper their title by introducing the word "can" after "centrins".
- B) Movies S1 and S2 (and the related Fig. 1D and 1E) are not the most convincing to support the notion that the observed assemblies are biomolecular condensates, as not much activity is going on during the recordings. Likewise, Movies S3, and even more so Movie S4, as out of focus for a large fraction of the time, making it difficult to assess what happens at the beginning of the process. Moreover, it appears that fusion events, while occurring, are rather rare. The movies should be exchanged for ones that are in focus, and ideally a rough quantification of fusion events as a function of biomolecular condensate size provided.
- C) An important control is missing from Fig. 2, namely assaying PfCen1-4 without the 6His tag, to ensure that the tag does not contribute to the observed behavior (although it can of course not be sufficient as evidenced by the lack of biomolecular condensates for PfCen2 and PfCen4).
- D) The authors should test whether the assemblies formed by PfCen1 and PfCen3 are sensitive to 1,6-hexanediol treatment, as expected for biomolecular condensates.
- E) The fact that HsCen2 also forms biomolecular condensates is very intriguing, but further investigation would be needed to assess the generality of these findings. For instance, the authors could test in vitro also S. cerevisiae Cdc31, the founding member of the Centrin family of proteins to further enhance the impact of their study.
Minor comments
- For the experiments reported in Fig. 3D, the same concentrations as those used in Fig. 3A-C (namely 10 microM, and not 30 microM as in Fig. 3D) should be used. Moreover, it would be informative to test whether PfCen2 and PfCen4 as PfCen3 when added to PfCen1.
- The authors mention that the effect of Calcium in inducing biomolecular condensates is specific, as Magnesium was not effective (lines 94-95). However, an examination of Fig. S3B indicates that the Magnesium also exhibits some activity, albeit less potent than Calcium. The authors should discuss this point and rectify the wording in the main text.
- Do the authors think that PfCen2 and PfCent4 localize to the centriole plaque in vivo using another mechanism that deployed by PfCen1 and PfCent3? It would be good to discuss this point.
- Given that the EFh-dead mutant exhibits no activity in vitro and fails to localize in vivo, one potential concern is that the protein is misfolded. The authors should conduct a CD spectrum to investigate this.
- It is not entirely clear from the main text in lines 103-104, as well as from the legend, what Fig. S3B shows. When was EDTA added in this case?
- Fig. S7: the correlation between PfCen1-GFP expression levels and ECCA appearance is modest at best. What statistical test was applied? This should be spelled out. Moreover, the authors should combine the two data sets, as this will provide further statistical power to assess whether a correlation is truly present.
- The authors may want to discuss how their findings can be reconciled with the notion that Centrin assemble into a helical polymer on the inside of the centriole (doi: 10.1126/sciadv.aaz4137).
- Likewise, the authors may want to speculate regarding what their findings signify for the role of Centrin proteins in detection of nucleotide excision repair (doi: 10.1083/jcb.201012093).
Small things
- Fig. 1A: change color for microtubules as red on red is difficult to discernn.
- Fig. 1C: the indicated boxes in the top row do not seem to correspond exactly to the insets shown in the bottom row.
- line 266: typo, promotor > promoter.
- line 360: a reference should be provided for the GFP-booster, including the concentration at which it was used.
- line 363: "an" missing before "HC".
- line 428: it would be best to deposit the macros on Github or an analogous repository.
- line 461: "to the" is duplicated.
- Fig. S5A: maybe draw the lines in red (as red in Fig. S5B correspond to the proteins that do not have IDRs).
- Movie S7, legend: left frames shows PfCen1-GFP, not microtubules as currently stated.
Significance
This is a provocative study that extends initial observations regarding self-assembly properties of Centrin proteins, and posits that some members of this evolutionarily conserved family can form biomolecular condensates. After the above outstanding issues have been properly addressed, these data could have important implications for understanding Centrin function in centriole biology and DNA repair. Therefore, these findings will be of interest to a cell biology audience.
Field of expertise: cell biology.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Voss, Reinert and colleagues show calcium-dependent assembly of Plasmodium falciparum centrins in vitro and in parasites. This assembly is dependent on the EF-hands of centrin and an N-terminal disordered region.
Major concerns:
- The very definitive title is not wholly supported by the data. This should be qualified by specifying the conditions under which the centrins can accumulate in this way.
- A major concern is whether this behaviour of centrins represents a biologically relevant mechanism in centriolar plaque formation. Is this limited to high overexpression conditions or in vitro high concentrations? Or is it a result of the tagging of the P. falciparum centrins? A convincing approach to addressing this issue would be to knock-in a fluorescent tag to the centrin loci. Roques et al. (ref. 12 in this submission) report the GFP tagging of centrin-4 in P. berghei, although they note that centrins-1 to -3 were refractory to tagging in this organism. It is unclear whether Voss et al. attempted this tagging in P. falciparum. This should be clarified and relevant data presented.
If the tagged molecules used in the biochemical parts of this study are functional, It is challenging to understand why the centrins cannot be tagged in P. falciparum. If the tags render the P. falciparum centrins dysfunctional, the study becomes significantly less useful.<br /> 3. If a knock-in cannot be achieved, it must be shown that the transgenic expression of tagged Plasmodium centrins does not confound the analysis of centrin behaviour. It is known that these proteins can behave anomalously when overexpressed (Yang et al. 2010, PMID: 20980622; Prosser et al. 2009, PMID: 19139275), at least in other species.
A previous description of centriolar plaque from the authors' lab (Simon et al. 2021, PMID: 34535568) shows an organized structure of an established size. It should be demonstrated whether the structures formed with the GFP tagged centrins show the same dimensions and dynamics as those in wild-type parasites. The extent of the overexpression of the GFP-tagged centrins should also be demonstrated.<br /> 4. It would also be useful to remove the His tag from the recombinantly expressed and purified centrins for the in vitro analyses, particularly if concern remains about the impact of tags on Plasmodium centrin behaviour.<br /> 5. The discussion is very short and does not consider the findings presented here in the context of the literature, with respect to centrins, Plasmodium MTOC assembly mechanisms, or to general considerations around biological condensates. Andrea Musacchio's recent commentary (ref. 44 in the current submission) advocates caution in ascribing phase separation as an assembly mechanism for organelles in vivo, particularly on the basis of in vitro experiments with high concentrations of homogeneous protein. It is not clear that the concentration dependence of extracentrosomal centrin accumulations (ECCAs) at the onset of schizogony provides sufficient justification of a phase separation model in vivo. The authors' recent description of the involvement of an SFI1-like protein, SIp (Wenz et al. 2023 PMID: 37130129), in the centriolar plaque makes a case for non-homotypic interactions also driving assembly and alternative models for ECCA are not convincingly excluded. The absence of a robust discussion of such considerations is unhelpful to the reader.<br /> 6. It is also unclear whether the analysis of human centrin is suggested to indicate a phase separation mechanism for centrins in human cells. As this is readily testable, this notion could be considered further. Although its experimental examination may lie outside the theme of this study, one would expect some discussion of the significance of the data presented in the study.
Minor points
- There are only three centrins in humans. Centrin 4 is a pseudogene (Gene ID: 729338 on NCBI).
- Line 175 should say 'temporally', rather than 'temporarily. The Abstract should say 'evolutionarily conserved', rather than 'evolutionary conserved'. 'To condensate' is not ideal as a phrase- 'to form a condensate' would be clearer.
Referees cross-commenting
I think the other 2 reviewers have made fair, cogent and constructive points. There is good convergence between the reviewers on the significant issues around the study. These concern in vivo and in vitro effects of tagging and of of high concentrations.
Significance
The biology of the Plasmodium centriolar plaque is of great interest as an alternative MTOC structure, with obvious additional interest deriving from the role of this organism in malaria. Much remains to be learned about this structure, so the topic of this paper is likely to attract a broad readership. Furthermore, the centrins are a widely-expressed and evolutionarily conserved family of eukaryotic proteins, with multiple roles; a new model for their behaviour, such as is suggested here, would be of interest to many cell biologists.
With that in mind, significant additional data should be provided to substantiate the model proposed by the authors.
-
-
www.derstandard.de www.derstandard.de
-
Dan
In Griechenland, Bulgarien und der Türkei hat der Sturm Daniel zu verheerenden Überschwemmungen mit Todesopfern geführt. Das thessalische Flachland wurde vollständig überflutet. https://www.derstandard.de/story/3000000185931/anhaltender-starkregen-legt-infrastruktur-in-teilen-griechenlands-lahm
Mehr zum Sturm Daniel: https://hypothes.is/search?q=tag%3A%22event%3A%20storm%20Daniel%22
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
Summary:<br /> Radial spokes are evolutionarily conserved protein complexes that are important for cilia motility. So far, the composition of certain radial spokes was investigated in the algae Chlamydomonas, mice, and humans. This work by Bicka et al. investigated the composition of radial spokes in the ciliate Tetrahymena by analyzing knockouts and strains that express tagged radial spoke proteins, using mass spectrometry and cryo-electron tomography. While three specific types of radial spokes have been reported thus far, this study suggests that in Tetrahymena, there is another layer to the variability in radial spokes. Additionally, many proteins with predicted enzymatic folds have now been assigned to radial spokes. The comparison of ciliary complexes between species is important to define the basic principles that govern cilia motility, as well as to reveal the differences that enable cilia of various organisms to beat in diverse environments.
Strengths:<br /> The manuscript includes a thorough bioinformatic analysis of radial spoke proteins in Tetrahymena and reveals the presence of multiple orthologs to certain algae and mammalian radial spoke proteins. The mass spectrometry analysis and cryo-electron tomography experiments are solid and informative. This work provides a lot of important data and thus, opens the door to resolve the exact composition and structures of radial spokes in Tetrahymena and perhaps other species.
Weaknesses:<br /> The assignment of the three RSP3 orthologs to RS1, RS2, and RS3 is based only on missing structures in the knockouts. Although this method is informative, it is not sufficient to draw conclusions regarding the positions of the missing proteins. There are numerous examples where a structure was missing, but the absent protein was localized elsewhere (i.e., absence of central pair protrusions in patients with mutations in radial spoke proteins). To directly demonstrate the position of an RSP3 ortholog in a certain radial spoke, the protein can be labeled with a tag that is visualized in subtomogram averages (as was done in Oda et al., 2014 and other studies). Relying on the data from knockouts alone, the model for radial spoke composition in Tetrahymena (Fig. 6) may be incomplete.
The control for the bio-ID experiment was WT cells. Since there are many hits in the experiment, a better control would have been a strain with free BirA, or BirA fused to a protein that is distant from the radial spokes, such as one of the outer-dynein arm proteins, or a ciliary membrane protein.
-
Author Response
We thank Editors and Reviewers for their positive evaluation of our work and appreciation of new findings and applied interdisciplinary approaches. We also thank for pointing out manuscript weaknesses as well as for all suggestions and advices that can strengthen this manuscript. We apologise for mistakes, overstatements or discrepancies in citing figures as well as omitted references.
The first part of the manuscript focuses on the Tetrahymena RSP3 genes mutants. Tetrahymena genome encodes three RSP3 paralogs that are the components of different radial spokes and likely form homo- and heterodimers. Thus, the proteomic analyses of Tetrahymena radial spokes are more complicated compared to the similar analyses in organisms having a single RSP3 protein.
Next, we attempted to identify proteins specific for each RS type. Conducting this research, we took advantage of six different radial spoke knockout mutants (RSP3A-KO, RSP3B-KO, RSP3C-KO, CFAP206-KO, CFAP61-KO, and CFAP91-KO) and compared wild-type and mutants’ ciliomes using two methods, LFQ and TMT (for each mutant the experiment was repeated three times). Comparative analyses of the wild-type and mutants ciliomes allowed us to identify Tetrahymena radial spoke proteins, in the case of RS1 (WT versus RSP3A-KO), RS2 (WT versus RSP3B-KO, RSP3C-KO, and CFAP206-KO), and RS3 (wild-type versus CFAP61-KO and CFAP91-KO). The extensive proteomic analyses were combined with detailed bioinformatics studies and co-immunoprecipitation and BioID assays to verify the presence of identified proteins in RS complexes.
Importantly, in the case of RS1 and RS2 spokes, our findings are in agreement with data obtained for Chlamydomonas and mammalian radial spokes. Thus, it is very likely, that newly discovered RS1 and RS2 proteins as well as identified Tetrahymena RS3 proteins are also true RS subunits.
As an outcome of this part, we propose a model of the RS protein composition in a ciliate Tetrahymena. We agree that this model requires further experimental verification (for example by pull-down experiments). However, considering the number of identified proteins, this is a considerable amount of additional work that we would like to publish as separate papers. We would like to add that our current analyses of additional RS3 mutant (that will be published separately) support findings regarding RS3 proteomic composition.
Reviewer 2:
The control for the bio-ID experiment was WT cells. Since there are many hits in the experiment, a better control would have been a strain with free BirA, or BirA fused to a protein that is distant from the radial spokes, such as one of the outer-dynein arm proteins, or a ciliary membrane protein.
The BirA* tag is approximately 30 kDa protein and thus it can be transported to cilia by diffusion. BirA* ligase present throughout the cilia could randomly biotinylate proteins including radial spoke proteins. Thus, expression of the BirA* alone is not the best control. We have performed numerous BioID experiments in which BirA* tag was fused with T/TH subunits (CFAP43, CFAP44, Urbanska et al., 2018), subunits of the small complex positioned parallel to N-DRC (CCDC113, CCDC96, Bazan et al., 2021), CFAP69, SPEF2A (C1b central apparatus complex, Joachimiak et al., 2021), N-DRC proteins (Ghanaeian et al., Biorxiv, 2023) and subunits of other ciliary complexes (our unpublished data). The comparison of the earlier obtained BioID data with RSP BioID data, prove that identified proteins are specifically associated with radial spokes. Therefore, in our model, wild-type cells are a good control for BioID experiments.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response:
The following is the authors’ response to the original reviews.
We thank the reviewers for their thoughtful and positive evaluation of our work. Below, we have addressed all of the essential revisions and provide point-by-point responses to all of the reviewer comments. Additionally, we include with this resubmission quantification microneme localization, determined by expansion microscopy, which further validates the central role of HOOK in microneme trafficking.
Suggested revisions:
1. Please confirm the interaction between CDPK1 and ROM4 by reciprocal IP.
Prompted by the reviewers suggestions we examined more closely the pulldowns of WT and myristoylation-deficient CDPK1 (cMut). ROM4 had been identified as differentially enriched in the cMut pulldown; however, upon closer examination we realized that the abundance of ROM4 is actually even greater in the untagged control and therefore likely a variable contaminant in the pulldowns. We have re-analyzed the results of those pulldowns to focus on proteins significantly enriched in association with either WT or cMut CDPK1, relative to untagged controls. Among this set of 16 enriched proteins, only three proteins appeared differentially enriched between WT and cMut. None of the proteins associated with CDPK1 inform pathways related to parasite motility and were therefore not pursued further in this study.
2. Please compare the expression of the tagged and complemented (cWT and cMut) CDPK1 with the endogenous expression of the non-tagged and non-complemented gene.
We compared expression levels of CDPK1 using immunoblot with an anti-CDPK1 antibody comparing TIR1, CDPK1-AID, cWT and cMut parasites, which we have included in panel G of Figure 2–figure supplement 1. Endogenous AID tagging of CDPK1 resulted in a decrease in the abundance of CDPK1. cWT and cMut complementation result in similar expression levels to the AID-tagged iKD CDPK1, albeit the cMut complement has marginally higher expression. Since CDPK1 is essential for the lytic cycle, insufficient levels of the cWT expression would have displayed defects in our plaque assays. We have updated our results to reflect this new data:
“Additionally, we compared endogenous CDPK1 expression to mAID-tagged, cWT, and cMut strain (Figure 2–figure supplement 1). Introduction of a mAID tag to CDPK1 led to a reduction in CDPK1 levels, but these levels were equivalent to complementation products in cWT and cMut parasites.”
3. Please attempt to confirm that aerolysin treatment does not impact myristoylation-dependent subcellular partitioning of CDPK1.
The kinase activity in aerolysin-treated parasites was unaffected by the 1B7 inhibitory nanobody, demonstrating that parasites remain impermeable to proteins as small as 15 kDa. Furthermore, we localize CDPK1 by immunofluorescence in aerolysin-treated parasites to show that the localization of CDPK1 is indistinguishable from that of vehicle-treated parasites, suggesting that overall CDPK1 localization is unaffected by aerolysin treatment. We include this data in panel B in Figure 3–figure supplement 1. Nevertheless, in the manuscript we discuss the limitations of the thiophosphorylation experiment:
“While our approach largely maintains kinases in their subcellular context, aerolysin treatment disrupts native ion concentrations and detaches the plasma membrane from the inner membrane complex (IMC) (Wichroski et al., 2002).”
Because of these limitations we rely on the overlap of CDPK1-dependent targets between our thiophosphorylation and time course experiments.
4. Please confirm the interaction of TGGT1_306920 and TGGT1_316650 with the HOOK and FTS proteins.
In response to this suggestion, we tagged the C termini of TGGT1_306920 and TGGT1_316650 with 3xHA epitopes. Although immunoprecipitation of TGGT1_316650 was unsuccessful, immunoprecipitation of TGGT1_306920 identified HOOK and FTS as significantly enriched proteins. We include this new data in panel C of Figure 5 and have updated our results:
“To further confirm the interaction, we fused a 3xHA tag to the C terminus of TGGT1_306920, performed IP-MS and compared protein enrichment to the HOOK-3xHA IP (Figure 5C). HOOK, FTS, and TGGT1_306920 were significantly enriched across both IP-MS experiments, whereas TGGT1_316650 is only significantly enriched in HOOK and FTS pulldowns. This suggests the presence of multiple HOOK complexes composed of the core HOOK and FTS proteins that bind with either TGGT1_316650 or TGGT1_306920.”
While further interactions with other members of the complex still need to be validated it is not the standard of the field to validate every member of a protein complex by reciprocal IP. Our HOOK and FTS IP-MS results each identified HOOK, FTS, TGGT1_306920, and TGGT1_316650 and our TGGT1_306920 IP-MS identified all members except TGGT1_316650. These interaction partners were found significantly enriched compared to parental controls, which make the observation of the complex robust.
Reviewer #1 (Recommendations For The Authors):
I have only a few minor comments:
1. In the supplemental data section I would include a document of code ( R script) used for the analysis. If this is too cumbersome then I would instead suggest that like done with proteomic data, the code should be deposited in a database that provides a DOI for access, instead of only being provided on request. This can be done by use of an electronic laboratory notebook or via Github.com or a similar service.
Zip files containing R code and CSVs have been included for the sub-minute resolution phosphoproteomics (Supplementary File 11) and thiophosphorylation (Supplementary File 12).
2. It would be useful to expand the discussion of the other 2 proteins identified in the HOOK complex TGGT1_316650 and 306920. Do these have homologs to proteins in other organisms? Based on HOOK in other eukaryotes can you provide a model of the 4 proteins in the complex that you identified? Was any work done on 316650 and 306920 with regards to genetic KO or auxin regulation to see if they also provided a similar phenotype to what was described with HOOK and FTS?
We have included the following information in our discussion:
“It also remains unknown how the HOOK complex binds to micronemes. In H. sapiens and D. melanogaster, RAB5 on vesicles interacts with FHIP in the HOOK complex(Bielska et al., 2014; Gillingham et al., 2014; Guo et al., 2016; Xu et al., 2008; Yao et al., 2014). We speculate that TGGT1_306920 may serve the role of FHIP within the HOOK complex as it is fitness conferring whereas TGGT1_316650 appears dispensable but the complex's binding partner on micronemes remains unknown. RAB5A and RAB5C have been implicated in the biogenesis of micronemes, but their roles during exocytosis have not been explored(Kremer et al., 2013). Understanding how micronemes are recognized may elucidate how cargo specificity is achieved and regulated.”
TGGT1_306920 is conserved amongst coccidians and shares similar localization to HOOK and FTS. TGGT1_316650 is conserved amongst apicomplexans and more broadly in subsets of other eukaryotic phyla. Given our IP-MS data, HOOK and FTS form a core complex that is either bound to TGGT1_316650 or TGGT1_306920. Given that TGGT1_306920 appears to be important for parasite fitness, based on genome-wide screening data (Sidik, Huet, et al. 2016), we speculate this could function to mediate the linkage to microneme organelles. At this time, we have no additional data to present on 316650 and 306920. Additional biochemical studies will be needed to characterize the stoichiometry of complexes and their function; however, we propose that HOOK and FTS are interacting as previously described in opisthokonts (Bielska et al., 2014, Guo et al., 2016 and Zhang et al., 2014).
3. The myristoylation data section ended with "additional studies will be required to understand how myristoylation influences CDPK1 activity". What studies are required to further this understanding? I assume these studies are difficult and that is why they were not part of this outstanding paper.
The effect of myristoylation is modest during acute phenotypes like egress (see Figure 2H). Moreover there were no significant differences between cWT and cMut that could explain the impact of CDPK1 on microneme secretion, which was the purpose of this study. Further studies would require a phosphoproteomic workup of the cWT and cMut, which is beyond the scope of the present study.
4. In the key resource table, in the first column reagent type I suggest you indicate this as T. gondii RH strain to make it clear the background strain (I know it is encoded in additional information but the first column should also be clear).
We have updated the key resources table to indicate the T. gondii strains used are of RH background.
Reviewer #2 (Recommendations For The Authors):
I have a few minor comments that could be addressed by modification of the current version of the manuscript.
Line 290, where authors classify proteins phosphorylated in CDPK1 dependent manner into five groups, it would be helpful to list at least class 1 (five proteins) and class 2 (four proteins) in the text of the results section. Further since in the same paragraph, the authors are also describing figure 3G, it would be helpful if the groups are identified with roman numerals or as class A, B, C, D, and E. Currently, in fig 3G, the three columns (CDPK1 dependent, CDPK1 independent and fitness scores) are also identified as 1, 2 and 3 and these nomenclatures could be confused with the five different classes of putative substrates.
We thank the reviewer for their helpful suggestion. We have renamed the classes of CDPK1 targets using roman numerals I, II, III, IV, and V. We have also listed out the proteins in Class I and Class II in the results section as follows:
“Class I contains five proteins for which the same phosphorylated site was identified in both the time course and thiophosphorylation experiments and include: TGGT1_227610, TGGT1_221470, TGGT1_235160, TGGT1_273560 (KinesinB), and TGGT1_310060. Class II contains four proteins for which phosphorylated sites identified across both approaches were within 50 amino acid residues of one another and include: TGGT1_289100 (MIC18), TGGT1_309190 (AIP), TGGT1_254870, and TGGT1_259630.”
Line 398, the expansions of the abbreviations FTS and FHIP should be included.
We have included the expansions of the abbreviations for FTS and FHIP:
“In D. melanogaster and mammals, HOOK proteins have been shown to form dimers and bind Fused Toes (FTS) and FTS and HOOK-interacting protein (FHIP) via a C-terminal region that interacts with vesicular cargo (Christensen et al., 2021; Krämer and Phistry, 1996; Lee et al., 2018; Xu et al., 2008).”
The HOOK protein shows CDPK1-dependent phosphorylation at multiple sites S167, S177, and S189-191. In the discussion section, it would be helpful if the authors can speculate about the importance of these phosphorylated residues on the functioning of HOOK.
Prior to engaging parasite motility, micronemes are positioned at the apical third of the parasite, but after an increase in intracellular Ca_2+_, micronemes rapidly traffic to the apical tip of the parasite. Our results indicate that both CDPK1 kinase activity and HOOK are required for microneme trafficking. Given the association of micronemes with tubulin-based structures such as the cortical microtubules and conoid, activation of trafficking along such structures must be rapid, on the time scale of seconds. Cell-free reconstitution assays generated from opisthokonts indicate that activating adaptors like HOOK are necessary to activate processive dynein trafficking along microtubules in addition to conferring cargo selectivity. In intracellular non-motile parasites, HOOK is expressed and localized to the apical end and cytosol prior to the activation of rapid microneme trafficking, consistent with regulation of HOOK activity. We have included reference to this type of regulation and our expectation that CDPK1 activates the HOOK complex as part of the Discussion:
“Phosphorylation has been reported to regulate the function of activating adaptors. In HeLa cells, phosphorylation of BICD2 facilitates recruitment of dynein and dynactin (Gallisà-Suñé et al. 2023). Analogously, phosphorylation of JIP1 mediates the switch between kinesin and dynein motility of autophagosomes in murine neurons (Fu et al. 2014). We therefore speculate that phosphorylation of HOOK by CDPK1 may activate the adaptor by promoting its interaction with dynein and dynactin to initiate trafficking of micronemes.”
Reviewer #3 (Recommendations For The Authors):
1. CDPK1 myristoylation. The loss of myristoylation of CDPK1 appears to increase its interaction with ROM4 which also becomes cytosolic instead of localizing to the plasma membrane. As ROM4 is necessary for microneme discharge after proteolysis it would be interesting to investigate the specific relation between CDPK1 and ROM4 and to confirm the interaction by reciprocal IP.
Please see our response to Suggested Revision #1.
2. CDPK1 myristoylation, Figure 2D. It would be useful to compare the expression of the tagged and complemented (cWT and cMut) CDPK1 with the endogenous expression of the non-tagged and non-complemented gene.
Please see our response to Suggested Revision #2.
3. Thiophosphorylation. The authors used the bacterial toxin aerolysin to semi-permeabilize parasite membranes by forming 3-nm pores. Aerolysin affects the membrane integrity, however, the authors demonstrated that CDPK1 is possibly associated with membrane structures (Figure 2E/F). Could it be possible to transiently destabilize the membrane before to treat with KTPγS or ATP? If not, it would be necessary to confirm that aerolysin treatment does not impact myristoylation-dependent subcellular partitioning of CDPK1 before identifying proteins specifically labelled by CDPK1G and not by CDPK1M (Figure 3C).
Please see our response to Essential Revision #3.
4. IP-MS on HOOK-3xHA parasites. The authors' results suggest that HOOK and FTS form a functional complex implicated in microneme exocytosis. It would be interesting to know if HOOK knockdown can have an effect on FTS expression or localization and reciprocally.
While we agree with the reviewer that this is an interesting question, we focused this paper on the discovery of the complex in relation to CDPK1. Understanding the regulation and interaction of the complex components is the focus of ongoing work and will require generation of new strains and additional mass spectrometry. For those reasons we find these experiments fall beyond the scope of the present study.
5. FTS-Turbo-ID. (Line 443-444) Authors should confirm the interaction of TGGT1_306920 and TGGT1_316650 with the HOOK and FTS proteins, it will give strength to their conclusion. In fact, without confirmation, everything is based on suggestions that were also formulated but not confirmed in humans. The physical existence of this putative complex should be demonstrated by co-IP experiments. In addition, the missing player is a dynein candidate itself, which leaves the model vulnerable. Short of pursuing this experimentally, it should at least be commented on in the Discussion.
Please see our response to Sugegsted Revision #4. Our IP-MS experiments of HOOK-3xHA and FTS-3xHA indicate interactions with HOOK, FTS, TGGT1_316650, and TGGT1_306920. Our FTS-TurboID experiments also suggest an interaction between FTS, HOOK, TGGT1_316650 and TGGT1_306920. Furthermore, our TGGT1_306920 IP-MS data identifies HOOK and FTS, but not TGGT1_316650, suggesting distinct complexes with HOOK and FTS as core components.
6. MIC2 secretion (Fig 5J). The rep represented by the grey dot with a white outline seems like an outlier result compared to the other 2 reps. Basically, without this rep there at least is a strong trend that there is a difference in secretion without EtOH stimulation. That is what actually would be expected, for constitutive secretion! Please carefully reconsider these data - e.g. check for outlier statistics and/or add reps.
We present three independent biological replicates, showing a significant difference in microneme secretion following depletion of CDPK1, HOOK, or FTS. It is expected, based on our prior experience, that microneme secretion will vary day to day. However, the expected trend can be observed in all replicates. We are unclear what the reviewer means by constitutive secretion since some low-level of calcium-dependent microneme discharge is expected even in the absence of stimulation, barring BAPTA-AM treatment. Even in the absence of EtOH stimulation (left graph in Fig. 5J), the trend of diminished basal MIC2 release holds when CDPK1, HOOK, or FTS is knocked down.
7. Apical accumulation of micronemes. A similar observation was made upon manipulation of Ferlin1, which is a manuscript on BioRXivs. Since other BioRXiv manuscripts are cited in the presented work, this is an omission.
We apologize for this omission and have updated the manuscript accordingly:
“It therefore appears that the initial round of microneme discharge during egress depends on CDPK1, and only subsequent rounds require the HOOK complex. Indeed, a fraction of micronemes are already found docked at the apical complex prior to the transition from the replicative to the motile stages, and may constitute the first round of microneme exocytosis (Mageswaran et al., 2021; Sun et al., 2022). Ferlin 1 (FER1) was recently shown to be involved in microneme positioning and overexpression of FER1 was sufficient to initiate an initial round of microneme exocytosis and induce egress (Tagoe et al. 2020).”
Minor comments:
1. Concerning the expression of the HOOK protein in Figures 4B, and C, could the author indicate why they performed the IFA after 24h of auxin treatment and the WB after 40h of treatment?
The difference in timing was for technical reasons. Our immunoblots and additional assays such as microneme secretion require more parasites, such that we harvest at the end of the lytic cycle to increase yields. For the IFAs, we perform these at 24 hrs, which allows for depletion and replication, but captures parasites in small vacuoles that show clear localization patterns. Furthermore, our microneme relocalization studies in Figure 6 were also performed after 24 hrs of auxin treatment, yet exhibit a trafficking defect following 24 hr HOOK depletion.
2. Fig 4H. The color of CDPK1-AID on the left and the HA on the top (HOOK) do correspond but indicate different proteins. Please label HOOK text in teal, not CDPK1.
We have changed the text color of the strain names on 4H to black to avoid confusion with the IFA channel labels.
3. I would like to suggest adding the "Key resources tables" in the supplementary data because it makes the materials & methods harder to read.
The key resources table was included at the beginning of the Materials and Methods section as indicated in eLife’s instructions to the authors.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
eLife assessment
This important study expands on current knowledge of allosteric diversity in the human kinome by C-terminal splicing variants using as a paradigm DCLK1. The authors provide solid evolutionary and some mechanistic evidence how C-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as protein-protein interactions. The data will be of interest to researchers in the kinase and signal transduction field.
We thank the editor for coordinating the review of our manuscript and the reviewers for their valuable feedback. We have significantly revised the manuscript in response to the reviewer’s comments. Our point-by-point response to each comment is present below. We have uploaded both a clean draft of our revised manuscript as well as a version with the revisions highlighted in yellow. We hope the revised manuscript is now acceptable for publication in eLife. We have additionally updated the preprint on bioRxiv and have included the link: We thank the editor for coordinating the review of our manuscript and the reviewers for their valuable feedback. We have significantly revised the manuscript in response to the reviewer’s comments. Our point-by-point response to each comment is present below. We have uploaded both a clean draft of our revised manuscript as well as a version with the revisions highlighted in yellow. We hope the revised manuscript is now acceptable for publication in eLife. We have additionally updated the preprint on biorxiv and have included the link here: https://www.biorxiv.org/content/10.1101/2023.03.29.534689v2.
Reviewer #1
Summary
In the study by Venkat et al. the authors expand the current knowledge of allosteric diversity in the human kinome by c-terminal splicing variants using as a paradigm DCLK1. In this work, the authors provide evolutionary and some mechanistic evidence about how c-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as interfering with protein-protein interacting interfaces that altogether provides evidence of c-terminal isoform specific regulation of the catalytic activity in protein kinases.
The paper is overall well written, the rationale and the fundamental questions are clear and well explained, the evolutionary and MD analyses are very detailed and well explained. The methodology applied in terms of the biochemical and biophysical tools falls a bit short in some places and some comments and suggestions are given in this respect. If the authors could monitor somehow protein auto-phosphorylation as a functional readout would be very useful by means of using phospho-specific antibodies to monitor activity. Overall I think this is a study that brings some new aspects and concepts that are important for the protein kinase field, in particular the allosteric regulation of the catalytic core by c-terminal segments, and how evolutionary cues generate more sophisticated mechanisms of allosteric control in protein kinases. However a revision would be recommended.
Major Comments
The authors explain in the introduction the role of T688 autophosphorylation site in the function of DCLK1.2. This site when phosphorylated have a detrimental impact on catalytic activity and inhibits phosphorylation of the DCX domain. allowing the interaction with microtubules. In the paper they show how this site is generated by alternative splicing and intron skipping in DCLK1.2. However there is no further functional evidence along the functional experiments presented in this study.
1) What is the effect of a non-phosphorylable T688 mutant in terms of stability and enzymatic activity? What would be the impact of this mutant in the overall auto-phosphorylation reaction?
The role of T688 phosphorylation on DCLK1 functions has been explored in previous studies (Agulto et al, 2020: PMID: 34310279), although only relevant to DCLK1.2 splice variants, since this site is lacking in DCLK1.1. These studies showed that mutation of T688 to an alanine increases total kinase autophosphorylation (ie autoactivity) and the subsequent phosphorylation of DCX domains, which in turn decreases microtubule binding. Given this information, our goal was to use an evolutionary perspective to investigate this, alongside less-well characterized aspects of DCLK autoregulation, including co-conserved residues in the catalytic domain and C-terminal tail. However, to address the reviewers question of a non-phosphorylatable T688 mutant, we performed MD simulations of T688A and T688E (a phosphomimic) mutant and include a new supplementary figure (Figure 5-supplement 3) which show the two mutants slightly destabilize the C-tail relative to wt (1 and 2 angstrom increase in RMSF for T688E and T688A respectively), but by themselves cannot dislodge the C-tail from the ATP binding pocket. Thus, other co-conserved interactions as revealed by our analysis, are likely to contribute to the autoregulation of the kinase domain by the C-terminal tail. We have incorporated these observations into the revised results section.
Furthermore, to address the reviewer’s question in terms of site-specific autophosphorylation as a marker of DCLK1.2 activity, we have now performed a much-more detailed phosphoproteomic analysis of a panel of purified DCLK1.2 proteins after purification from E.coli (Figure 8-figure supplement 2). This showed that we are only able to detect Thr 688 phosphorylated in our ‘activated’ DCLK1.2 mutants, and not in the autoinhibited WT DCLK1.2 version of the protein. This apparent contradiction does not necessary discount Thr 688 as an important regulatory hotspot, but, together with the MD simulations, may imply a decreased contribution of pThr 688 in facilitating/maintaining DCLK1.2 auto-inhibition than previously anticipated, especially in the context of the numerous other stabilizing amino acid contacts that we describe between the C-tail and the ATP-binding pocket. We do, however, propose a mechanism for pThr688 as a potential ATP mimic based on MD analysis. However, we only found MS-based evidence for phosphorylation at this (and other sites in the same peptide) in highly active DCLK1.2 mutants, in which the C-tail remains uncoupled from the ATP-binding site, even in the presence of this regulatory PTM. We acknowledge that better understanding of DCLK biology will require a detailed appraisal of how the DCLK auto-inhibited states are subsequently physiologically regulated (PTMs, protein-protein interaction etc.), but this is beyond the scope of our current evolutionary investigation, and the absence of phosphospecific antibodies makes this challenging currently. We intend to expand upon our current work by assessing the relative contribution of multiple DCLK phosphorylation sites (including, but not limited to, Thr 688) with regard to cellular DCLK auto-regulation in future studies, in part by generating such site-specific phospho-antibodies.
2) Have the authors made an equivalent T687/688 tanden in DCLK1.1 instead of the two prolines?
This is a good point. We have not considered introducing a T687/688 tandem mutation into DCLK1.1 (at the equivalent position to that of DCLK1.2), primarily because the amino acid composition of their respective C-tail domains are so highly divergent across the tail (due to alternative splicing, as discussed in our paper). As discussed in our present study, there are numerous contacts made between specific amino acids in the regulatory C-tail and the kinase domain of DCLK1.2, which functionally occlude ATP binding, and thus change catalytic output. It is these contacts, which are determined by the specific amino acid sequence identity, and not the extended length of the DCLK1.2 C-tail per se, that drives autoinhibition. The alternate amino acid sequence identity of the C-tail of DCLK1.1 does not enable such contacts to form, which we believe explains the different activities of the two isoforms.
Furthermore, our mutational analysis reveals clearly that Thr688 and several other sites are more highly autophosphorylated in the artificially activated DCLK1.2 constructs than WT DCLK1.2, and as such it remains our hypothesis that introduction of the tandem phosphorylation sites into DCLK1.1 is unlikely to be sufficient to impose an auto-inhibitory conformation of the enzyme.
3) Could T688 autophosphorylation be used as a functional readout to evaluate DCLK1.2 activity?
We agree with the reviewer’s suggestion about using autophosphorylation (including potentially Thr688 for DCLK1.2) as a functional read out for DCLK1 activity. In our present study, we identify phosphorylated peptides containing pThr688 only in the mutationally activated DCLK1.2 variants. We have now taken this analytical approach further and performed a detailed comparative phosphoproteomic characterisation of all of our DCLK1 constructs, where we observe marked differences in the overall phosphorylation profiles of the mutant DCLK1.2 (and DCLK1.1) proteins relative to the less phosphorylated WT DCLK1.2 kinase. This manifests as a depletion in the total number of confidently assigned phosphorylation sites within the kinase domain and C-tail of WT DCLK1.2, and also as a depletion in the abundance of phosphorylated peptides for a given site. To help visualise this, individual phosphorylation sites have been schematically mapped onto DCLK1, which has been included as a new extended supplementary figure (Figure 8-figure supplement 2). For comparative analysis of phosphosite abundance, we could only select peptides that could be directly compared between all mutants (identical amino acid sequences) and those found to be phosphorylated in all proteins (these are Ser660 and Thr438); these are now shown in figure supplement 2 as a table. These site occupancies follow what we see with respect to the increased catalytic activity between DCLK1.1 and DCLK1.2 mutants versus DCLK1.2. We also detect increased phosphorylation of DCLK1.1 and activated DCLK1.2 mutants in comparison to (autoinhibited) DCLK1.2, supporting the hypothesis that these mutants are relieving the autoinhibited conformation.
4) What are the evidences of the here described c-terminal specific interactions to be intra-molecular rather than inter-molecular? Have the authors looked at the monodispersion and molecular mass in solution of the different protein evaluated in this study? Basically, are the proteins in solutions monomers or dimers/oligomers?
Analysis of symmetry mates in the crystal structure of DCLK1.2 (PDB ID: 6KYQ) provide no evidence for inter-molecular interactions. Furthermore, to evaluate oligomerization status in solution, we conducted an analytical size exclusion chromatography (SEC) and our analysis reveals that both DCLK1.1 and DCLK1.2 predominantly exist as monomers in solution (Figure 3-Supplements 1-3). These results suggest that the C-terminal tail interactions are primarily intra-molecular.
5) (Figure 3) Did the authors look at the mono-dispersion of the protein preparation? The sec profile did result in one single peak or multiple peaks? Could the authors show the chromatogram? how many species do you have in solution? Was the tag removed from the recombinant proteins or not?
Yes, as mentioned above, the SEC profile resulted in a single peak for both DCLK1.1 and DCLK1.2, which was confirmed as DCLK1 by subsequent SDS-PAGE. We have included the chromatogram and gels in supporting data (Figure 3-supplements 1-3) in the revised manuscript and updated the Methods section. ‘The short N-terminal 6-His affinity tag present on all other DCLK1 proteins described in this paper was left in situ on recombinant proteins, since it does not appear to interfere with DSF, biochemical interactions or catalysis.’
6) Authors should do Michaelis-Menten saturation kinetics as shown in Figure 3C with the WT when comparing all the functional variant analysed in the study. So we can compared the catalytic rates and enzymatic constants (depicted in a table also) kcat, Km and catalytic efficiency constants (kcat/Km)
Thank you for your suggestion. We have performed the requested comparative kinetics analyses for selected functional DCLK1 variants at the same concentration as suggested, using our real-time assay to determine Vmax for peptide phosphorylation as a function of ATP, but at a fixed substrate concentration (we are unable to assess Vmax above 5 µM peptide for technical reasons). The results of these analyses have been included in the revised version of Figure 8-Supplement 1, where they support differences in both Vmax and Km[ATP]; the ratio of these values very clearly points to differences in activities falling into ‘low’ or ‘high’. This kinetic analysis fully supports our initial activity assays, where mutations predicted to uncouple the auto-inhibitory C-tail rescue DCLK1.2 activity to levels similar to DCLK1.1 towards a common substrate.
Minor Comments
It is very interesting how the IBS together with the pT688 mimics ATP in the case of DCLK1.2 to reach full occupancy of the active site. On Figure 8 you evaluate residues of the GRL and IBS interface to probe such interactions.
1) Did the authors look at the T688 non-phosphorylable mutant?
See our response to Major Comment 1 above. In addition, due to the absence of T688 in DCLK1.1, we did not look at the T688A mutant of DCLK1.2 biochemically, partially because it has been characterized in previous studies, but partially because this site is preceeded by another Thr residue. The lack of a selective antibody towards this site makes it difficult to evaluate the role of T688 phosphorylation specifically with respect to DCLK cellular functions and interactions. Therefore, we focused our in vitro efforts to understand how mutations in the IBS impact the catalytic activity of DCLK1.2 by comparing different variants to DCLK1.1.
2) Classification of DCLK C-terminal regulatory elements.
It would be useful to connect the different regulatory elements described in this study to a specific functional and biological setting where these different switches play a role e.g. microtubule interactions and dynamics, cell cycle, cancer, etc..
While the primary focus of our paper is on the mechanism of allosteric regulation of DCLK1, we have indeed touched upon the potential implications of the various regulatory elements of the tail on functions such as microtubule binding and phenotypic effects like cancer progression. However, we acknowledge that a comprehensive understanding of these effects would necessitate a more detailed investigation. This could potentially involve the integration of RNA-seq data with extensive cell assays to evaluate phenotypic effects. We believe that such a future study would be a valuable extension of our current work and could provide further insights into the functional roles of DCLK1.
3) (Figure 3) Could the authors explain the differences in yield between the WT and the D531A mutant. Apparently, it [the yield] does not appear to be caused by a lower stability as indicated by the Tm. Could the authors comment on this? It is important to compare different samples in parallel, in the same experiment and side by side. This applies to the thermal shift data comparing WT and a D531A mutant on panel D and also on panel C a comparison between WT and D531A as negative control should be shown.
WT and D533A (kinase-dead) were indeed analysed in parallel, but have been split in two panels to make the data easier to interpret. The modest differences in yield is likely explained by experimental prep-to-prep variations. Our experience shows that many protein kinase yields vary between kinase and kinase-dead variants, likely due to bacterial toxicity related to enzyme activity. In regards to thermal stability, we would like to emphasize that Differential Scanning Fluorimetry (DSF) is to our mind a more informative and quantitative measure of protein stability than yield from bacteria, because both assess purified proteins at the same concentration. We believe that the DSF data provide a more accurate representation of the real stability differences between the WT and D533A mutant.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We thank all three Reviewers for their thorough assessment of our manuscript and their constructive comments and suggestions.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
In this study, the authors generate several variants of actin that are internally tagged with short peptide tags. They identify one particular position that is able to tolerate various tags of 5-10 amino acids and still shows largely unaltered behavior in cells. They study incorporation of their tagged actins into filaments, characterize the interactions of G-actin variants with different associated proteins and show that retrograde actin flow in lamellipodia and the wound healing response of epithelial cells is not affected by the tagged variants. They then apply the tagged actin to study subcellular distribution of different actin isoforms in mammalian and yeast cells.
The identification of a specific site in the actin protein that tolerates variable peptide insertions is very exciting and of fundamental interest for all research fields that deal with cytoskeletal rearrangements and cellular morphogenesis. The result demonstrating the functionality of actin variants with peptides inserted between aa 229 and 230 are generally convincing and well done. In particular, the generation of CRISPR/Cas9 genome edited versions of beta- and gamma actin are impressive. I therefore generally support publication of this study. There are however several technical and conceptual issues that should be addressed to improve quality and scope of the study. I listed some specific comments below:
We thank the Reviewer for their constructive comments and general support for publication of our study.
Major points
- The biggest issue I have is the last section on the application of tagged actins to study isoform functions. In principle the application is very clear as there are simply no alternative ways to study isoform distribution in live cells. However, the experimental data are simply not convincing. What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers. I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers. It seems to me that the beta-actin staining has as higher cytosolic background and is generally weaker (gamma nicely labels transverse arcs), which reduces signal/noise and therefore yields a relatively increased level in areas with less-bundled actin. My suggestion is to select more clearly defined actin structures and to use micro-patterned cells to normalize the otherwise obstructing variability in actin organization. Possible structures would be cortical arcs in bow-shaped cells, lamellipodial edges (HT1080 seem to make very nice and large lamellipodia) or cell-cell contacts (confluent monolayer, provided cells don´t grow on top of each other). Stress fibers are possible but need to be segmented very precisely and I did not see any details on this in the methods section. For Fig. 5D: I assume cells were used where only one isoform was tagged? This is technical weak and the double-normalization is probably blurring any difference that might be occurring. Why not use a double-tagging strategy with ALFA/FLAG or ALFA/AU5 tags to exploit the constructs introduced in the previous figures? Also, the unique selling point of the strategy is the possibility of actual live imaging of specific isoforms. Cells that have stably integrated double tags and then transiently express nanobodies for ALFA and either AU5 or FLAG (or other if those don't exist) would make this possible. Considering the work already done in this manuscript, such an approach should actually be possible - did the authors attempt this or is there are reason it is not discussed? If double tagged cells are not possible for some reason it should at the very least be possible to combine ALFA-detection with the specific antibody against the other isoform and get rid of the double normalization.
We thank the Reviewer for the various suggestions regarding the comparison between the localization of the tagged and native isoforms. In our reply below, we will separately discuss the possibilities and our considerations for fixed samples and live cell imaging. We apologize for the lengthy response but for transparency reasons, we would like to give a thorough overview of our efforts for isoform-specific localization in cells, something for which we have limited space in the manuscript.
Fixed samples:
It was a significant experimental challenge to comparing the labeling of the β- and γ-actin specific antibodies with our internally tagged actin system (Fig. 5A-D). The reason for this is that the labeling of the samples with the β- and γ-actin specific antibodies requires treatment with methanol (Dugina et al., J Cell Sci, 2009), most likely to disturb the interaction of actin with actin-binding proteins that prevent the binding of the antibodies due to steric hindrance. Methanol treatment, however, precludes the co-labeling with phalloidin, likely due to changes in the tertiary/quaternary protein structure of F-actin. Initially, we have put a lot of effort in trying to simultaneously label phalloidin with the actin specific antibodies but even very brief methanol treatment (seconds), before or after phalloidin labeling, completely prevents/reverses the binding of phalloidin. Importantly, also the ALFA tag labeling was suboptimal after methanol treatment.
The fact that we could not perform these double labelings led us to perform different ratio calculations for the β- and γ-actin antibody and the ALFA tag labeling. In the case of the antibody immunofluorescence labeling, we simply divided the signal of the β-actin and γ-actin since we could simultaneously label the isoforms in the same cell. In the case of the ALFA tag labeling, we used phalloidin for independent signal normalization and then performed a second normalization. Although this complicates the normalization procedure (ALFA tag signal of β- and γ-actin is first normalized to total F-actin and then a ratio is calculated) and understandably leads to some confusion, this was the only way forward to obtain the results presented in the manuscript.
The Reviewer points out that “What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers.”. In our images, we observe very little cytosolic background from both antibody stainings. More importantly, for the quantitative analysis, the fluorescence intensity values were corrected for the background values observed in cytosolic areas so even if the signal is present, it should not affect our analysis. We do admit though that we could have been more careful with the term “cortex” since the observed signal could indeed be a mix of radial fibers and the actin cortex. The reviewer further states that “I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers.” Although the differences are small, we consistently observe a differential fluorescence intensity of β- and γ-actin in actin-based structures with a relatively stronger signal of γ-actin in stress fibers (Fig. 5C). Since we always normalize the fluorescent signal intensity per cell, this strongly indicates a genuine accumulation of one isoform over the other in specific actin-based structures. This observation is very consistent in our experiments and also aligns with many published studies where differences in the localization of β- and γ-actin are reported in various cell types (Pasquier et al., Vasc Cell, 2015; van den Dries et al., Nat Comms, 2019; Malek et al., Int J Mol Sci, 2020). As for the segmentation, we mentioned in the Methods section that we selected small regions (0.5x0.5mm) that exclusively contain stress fiber or “cortex” regions. The regions shown in Fig. 5B are therefore larger than the analyzed regions, something which we will better indicate in the revised manuscript.
Planned revision: We will provide a more detailed explanation of our quantitative analysis in the Methods section such that it is more clear how our normalization procedure was performed. Furthermore, we will adapt Fig. 5A-B such that it better visualizes how we defined the regions for quantification. As per the Reviewer’s suggestion, we will also apply a different experimental method to show that the tagged isoforms properly localize to actin-based structures. For this, we will attempt to use micropatterned cells to induce clearly define actin-bases structures (the crossbows as suggested by the Reviewer) and also explore the possibilities of investigating the differential localization in double-tagged cells. We will also reconsider the use of the term “cortex” for the region that is pointed out in Fig. 5A-B.
Live cell imaging:
We agree with the Reviewer that it would be very valuable to attempt simultaneous live cell imaging of two isoforms. Yet, for this, we would need two tag/fluorophore systems that allow the visualization of internally tagged isoforms in living cells. As presented in our original manuscript, we have successfully inserted many different epitope tags (FLAG/AU1/AU5/ALFA) in the T229/A230 position to demonstrate the versatility of our tagging approach. Yet, despite significant efforts to identify a second tag/fluorophore system that would allow isoform-specific live cell imaging, we only succeeded in designing one strategy to perform live cell imaging, i.e. with the ALFA tag (Götzke, Nat Comms, 2019). Part of the reason for this is that so far, no high affinity nanobodies have been generated against the classical epitope tags (FLAG, AU5 etc.). This is an established challenge since classical epitope tags are typically linear/unstructured while nanobodies require folded secondary structures for epitope recognition such as alpha helices (the ALFA tag was specifically designed as such).
Besides the successful ALFA tag approach we have tried the following additional approaches for live cell imaging: 1) __full-length GFP, 2) full-length GFP with linker, 3) GFP11 (to complement with GFP1-10 (Cabantous et al., Nat Biotech, 2005) 4) GFP11 with linker 5) FLAG Frankenbodies (Zhao et al., Nat Comms, 2019; Liu et al., Genes Cells, 2021) in FLAG IntAct cells and 6) __Tetracysteine/FlAsH labeling. Importantly, each of these additional internally tagged actins, except for those that contained full-length GFP, showed a high colocalization with the cytoskeleton, again demonstrating the versatility of the T229/A230 position to tag actin. Unfortunately, none of these approaches satisfactorily visualized the actin isoforms in living cells. We will therefore briefly summarize our findings here.
(1-2, integration of full-length GFP and GFP with linker) Probably not surprisingly, but integrating the entire coding sequence of GFP or GFP flanked by linkers (each 5AA in length) within the T229/A230 position did not results in a proper localization of actin.
(3-4, integration of GFP11 and GFP11 with linker) Next, we assessed the localization of the GFP11 tagged actin versions (GFP11: 16AA, GFP11+linker: 26AA). Because GFP11 is not visible without GFP1-10 complementation, we also tagged actin at the N-terminus simply for proof of concept where the internally tagged actins would end up. Interestingly, both GFP11-actin and GFP11+linker-actin properly integrated within the cytoskeleton as demonstrated by the FLAG staining. This again demonstrates the versatility of the T229/A230 position and strongly suggests that even the integration of 26AA within this position does only minimally affect the polymerization of actin into the cytoskeleton.
(3-4) After confirmation of the proper integration of GP11-actin and GFP+linker-actin we continue to express the GFP1-10 in these cells. Unfortunately, this resulted in no or only very minimal localization of the actin to the cytoskeleton, demonstrating that GFP-complementation hampers the integration into the cytoskeleton.
(5, use of FLAG Frankenbodies) We also expressed FLAG Frankenbodies into our FLAG IntAct cells in an attempt to visualize the isoforms in living cells. FLAG Frankenbodies are single chain antibodies fused to GFP and can be expressed in cells to visualize FLAG-tagged proteins (Liu et al., Genes Cells, 2021). Although a cytoskeletal labeling was indeed discernable in some cells, the FLAG Frankenbody signal overlapped much less with the total actin signal as compared to the FLAG immunofluorescence labeling, indicating that the incorporation of the FLAG-tagged actin was much less in the presence of the FLAG Frankenbody. Also, a significant fraction of the cells demonstrated a homogenous cytosolic signal.
(6, Use of tetracysteine/FlAsH) Although the tetracysteine tag/FlAsH system is widely known to induce artefacts, we still aimed to evaluate if for live cell imaging of IntAct actins. Similar to GFP11, we first determined the integration of tetracysteine-actin into the cytoskeleton with the use of an additional N-terminal FLAG tag and demonstrate that it was properly integrated into the actin cytoskeleton. Unfortunately, after brief incubation with FlAsH-EDT2, we noted 1) a significant amount of background fluorescence, preventing proper actin visualization and 2) that the cell became static indicating toxicity of the FlAsH-EDT2 compound. Titrating down the amount of FlAsH-EDT2 did not alleviate these drawbacks and only resulted in less fluorescence.
Overall, based on these experiments, we concluded that the T229/A230 position itself is very versatile, as demonstrated by the proper localization of the GFP11-actin variants and the TetraCys-actin. At the same time, none of these tag/fluorophore systems properly visualized actin in living cells. Although we are unsure what the reason is for this, it is easily imaginable that the on/off kinetics of the split GFP system and the FLAG Frankenbodies are suboptimal to allow for the rapid and continuous integration of actin monomers into the F-actin cytoskeleton. We therefore also concluded that currently, the ALFA tag/nanobody system is apparently unique in its ability to visualize epitope tagged actin in living cells (as shown in the manuscript). For simultaneous visualization of multiple isoforms, we rely on progress on the development of novel nanobody-based tags, something we hope the Reviewer will agree is outside the scope of the current work.
*- The authors make a point of comparing the internally tagged actin to N-terminal tags that are mostly functional but have been shown to affect translational efficiency. I would strongly suggest to include N-terminally tagged actin as control for all assays in this study. Also for the physiological assays (retrograde flow, wound healing), a positive control is missing that shows some effect. Previous studies showed defects with transiently expressed actin with an N-terminal GFP. As retrograde flow measurements are very sensitive to the exact position of the kymographs and wound healing assays is a very crude and indirect readout, such a positive control is essential. *
We acknowledge that N-terminally tagged actin has been used extensively for actin research (especially before the introduction of Lifeact). For our studies, however, we were specifically interested in whether the internally tagged actins show similar characteristics as compared to wildtype actin. We have not included N-terminally tagged actin in all of our experiments, since this would not affect our conclusions with respect to the functionality of our internally tagged actins. We expect that for future investigations to for example further establish the importance of actin N-terminal modifications in the differential regulation of actin isoforms, the comparison between internally and N-terminally tagged actins could be very instrumental. Yet, we consider this comparison outside the scope of the current manuscript. For now, the results in the manuscript provide evidence that our approach is unique with respect to the fact that it allows isoform-specific tagging without manipulating the N-terminus. As such, our internal tagging system complements the already existing repertoire of actin reporting methods (N-terminal fusion, Lifeact, F-Tractin, actin nanobodies) and allows researchers to study so far unknown properties of actin variants.
*- Expression of tagged actins in yeast is a very nice idea but it would be far more informative to express the tagged forms as the only copy of actin. This can either be done by directly replacing endogenous actin gene in S. cerevisiae, or (if the tagged versions are not viable) - using the established plasmid shuffle system (express actin on counter-selectable plasmid, then knock out endogenous copy and introduce additional plasmid with tagged actin, then force original plasmid out). In the presence of endogenous S. cerevisiae actin the shown effects are very hard to interpret as nothing is known about relative protein levels (endogenous vs. introduced). Also, if constitutive expression of the ALFA nanobody is harmful for integration into cables, why not perform inducible expression of the nanobody and observe labeling after induction. For the live imaging a robust cable marker is needed, like Abp140-GFP. Finally, indicate the sequence differences between the used actin forms in yeast (supplementary figure with sequence alignment and clear indication of all variations) *
We thank the reviewer for their positive comments and feedback regarding expression of IntAct variants in yeast. Currently, we have expressed IntAct as an extra copy in the presence of native Act1 of S. cerevisiae. All the IntAct variants have been expressed under a commonly used constitutive TEF1 promoter. We agree with the Reviewer that it would be valuable to attempt to express the tagged forms as the only copy of actin.
Planned revisions:
1) As per the Reviewer’s suggestion, we will attempt to make yeast strains with IntAct as the sole expressing actin copy by using the well-established 5-FOA-based plasmid shuffle system in yeast. We will use a ∆act1 strain containing wildtype act1 in a centromeric ura-plasmid described in Harrer et. al, 2007 (generously shared by Prof. Jessica and Prof. Amberg at Upstate Medical University of New York, USA) and express IntAct exogenously via additional plasmids. Shuffling of these strains on 5-FOA will cause the loss of ura-plasmid containing the wildtype act1 copy and will determine whether yeast cells will be able to survive with IntAct as the sole source of actin. If the cells do survive with IntAct as a sole copy, we will perform subsequent analysis for assessing actin cytoskeleton organization under these conditions.
2) As the reviewer has mentioned, expression of NbALFA during live-cell imaging experiments hindered incorporation of IntAct into linear actin cables in yeast (Suppl. Fig. S13). As per the reviewer’s suggestion, we will now try to create an inducible-expression system for the NbALFA-mNG and observe its effects on incorporation into formin-made actin cables after induction. We have already created NbALFA-mNG constructs under galactose-inducible GALS and GAL1 promoters and are currently constructing yeast strains for these experiments.
__3) __We will add an extra supplementary Figure to indicate the sequence differences of the various actin variants that we have expressed in yeast.
- As the authors clearly show good integration of several tagged actins into filaments I would expand the structural characterization: perform alpha fold predictions of actin monomer structures including the various tags to show the expected orientation. It is striking that the only integration site that seems to work well is at the last position of a short helix, indicating that the orientation of the integrated peptide might be fixed in space and be optimal to minimize interference. Also, a docking of the tag onto the recently published cryoEM structures of the actin filament should be shown to indicate where it resides compared to tropomyosin or the major groove where most side binding proteins seem to bind.
We already performed AlphaFold predictions of the tagged actin monomers, but we have decided to not include these predictions in the manuscript because of two reasons. First and foremost, while the prediction confidence of the non-tagged region is very high (pLDDT > 90), the prediction confidence of the tagged region is very low (pLDDT https://alphafold.ebi.ac.uk/faq), pLDDT values below 70 should be treated with caution and values below 50 should not be interpreted. Intriguingly, the low confidence aligns with the fact that for both tags, the prediction does not match with known features of the tag. The FLAG tag should be a linear/unstructured region in order to be recognized by the antibody and the ALFA tag should organize into an alpha helix (Götzke et al., Nat Comms, 2019). Yet, in the prediction, the FLAG tag partially continues as an alpha helix and the ALFA tag is only a small helix with part of the tag being unstructured. Second, more minor, reason for not including the predictions is that AlphaFold does not predict to what extend the tag is flexible, which means that even if the tagged region is predicted correctly, it is difficult to say whether the regions will interfere with binding of proteins.
Despite the low prediction confidence, we used the published actin-tropomyosin cryoEM structure (von der Ecken et al., Nature, 2015) to replace WT actin with ALFA tag actin and the results are shown below. Again, although results should be interpreted with caution, the tag does not seem to obstruct monomer-monomer interactions within an F-actin filament and also the tropomyosin binding surface is relatively distant from the tag region, suggesting that these interactions are likely not disturbed by introducing the tag.
- For any claims regarding usability of tagged variants for isoform research it would be very important to characterize the known posttranslational modifications of tagged actin variants - are the differences between beta and gamma maintained on this level as well?
Planned revision: Following the Reviewer’s suggestion, we will perform a western blot analysis to compare posttranslational modification (arginylation) of tagged and wildtype actins.
Technical issues
- There is no scale for the color coding in Fig. 5A, B
We deliberately did not add a numerical scale because the images are normalized which means that presenting the actual numbers might be misleading. The numbers could be interpreted as if they actually present the amount of β-actin relative to γ-actin which is not the case due to staining differences and the normalization procedure.
- The y-scales for Fig. 5C and D need to be identical to allow direct comparison
Planned revision: We will adapt the scale of Fig. 5D to make it identical to Fig. 5C. Following the other suggestions of the reviewer, we will also critically evaluate our normalization procedure and present those numbers in Fig. 5C-D if the values turn out to be different.
- Pearson coefficient should not be normalized to a control value as its already a dimensionless parameter. Always report actual R-value - also remove R2 values for Pearson as this makes no sense in this context (not sure if it was a typo or intended).
We normalized the Pearson coefficient values for visual representation of the results. The majority of the raw coefficient values (more than 80%) are between 0.20 and 0.75 (see raw values in the associated excel file). Theoretically, Pearson coefficient values are possible between 1 (or-1 for negative correlations) and 0. The much smaller window in our values as compared to the theoretical window (0.55 vs 1) led us to normalize the values such that they can be presented on a scale from “maximum expected colocalization” to “minimum expected colocalization”. In this way, the differences between the various tagged actins are much better appreciated in the Figure. As to reporting the R2, the Reviewer is correct. Reporting the R2 is an inadvertent mistake from our side and we will correct it.
Planned revision: We will change the R2 in the text to PCC or Pearson Correlation Coefficient.
*- All values on subcellular regions (like stress fiber or cortex) dependet critically on the way thesese regions were thresholded or identified. Provide all details on how this was done in the methods section and ensure that adequate background subtraction and normalization is applied. Optimally, an unbiased (AI or automated) approach based on simple image statistics is used for this to avoid personal bias. *
Planned revision: As also indicated above, we will add new experiments to better compare the localization of the isoforms in tagged and parental cells. These new experiments will also be accompanied by a more detailed explanation of how the regions were selected and quantified.
- In Fig. 2A only heterozygous FLAG-actin cells are used. Why not use a homozygous line (for both beta and gamma actin)? The nice band shift of the FLAG version would allow the precise quantification of the fraction of total actin covered by beta and gamma actin, which then could provide some additional info for the apparently weaker beta staining in Fig. 5 (if beta expression is simply weaker). This would be a very simple and useful advantage of the internal tags that could be widely applied.
In Fig. 2A, we used the heterozygous FLAG-actin cells to directly compare the production of β-actin from the knock-in allele and the wildtype allele in the same cells. The fact that the two bands observed in this western blot analysis (upper and lower) are almost the same (with the FLAG band being a bit more intense) provides the strongest indication that the tag does not interfere with the expression of actin. In Suppl. Fig. 5D, we show that the expression of β-actin is also unaffected in the hemizygous FLAG actin cells, which exclusively express tagged actin.
Planned revision: As per the Reviewer’s suggestion, we will also add a western blot analysis on the expression of both actin isoforms and total actin in hemizygous cells.
*- Fig. 3: control with N-terminal tag is missing. Also, why is it not possible to assay filament binding factors like Myosin, Filamin or alpha actinin - instead of co-IP a simple co-sedimentation assay with cell extracts in F-buffer should pick up any major difference in decoration of filaments containing the ALFA tag. Using two speeds for centrifugation it might even be possible to observe effects on filament bundling. The best approach for this would of course be to purify tagged actins and perform in vitro assays but this is clearly beyond the scope of what the authors intended here. I personally think that a broad acceptance of the marker will only come once the biochemistry has been sufficiently characterized so this is a future direction I would strongly encourage. *
We kindly refer to our response on Page 5/6 for why we have not included the N-terminal control.
Planned revision: The co-sedimentation assay is an excellent suggestion by the reviewer. Following the Reviewer’s suggestion, we will perform F/G-actin fractionation and assess the presence of several F-actin associated proteins in the F-actin fraction.
- Fig. 2A has no loading control
We show this western blot to indicate that the WT actin and tagged actin are expressed at similar levels in the heterozygous knock-in cells. For this, no loading control is needed because we only compare the intensity of the upper band (tagged actin) with the lower band (WT actin).
- The RPE-1 data are confusing as several constructs show very different localization (completely cytosolic) to HT1080 cells and there is no possible explanation given for this. Maybe simply remove this data set?
We agree with the reviewer that the differences in the localization between some of the internally tagged actins between the HT1080 and RPE1 cells might be confusing, especially for the A230-A231 variant for example. Yet, the fact that also in these cells, the T229-A230 variant performs equally well as compared to N-terminally tagged actin is an important confirmation that this variant is properly integrated into actin-based structures, independent of cell type. This makes the support for choosing this variant to continue with our studies stronger. A possible explanation for the differences is that RPE1 cells in general tend to form more stress fibers as compared to the HT1080. Since the localization to stress fibers is different between the internally tagged actins, this may explain the differences observed in colocalization.
__Planned revision: __We will add a short text, in the Results or the Discussion, on the differences between the colocalization values between HT1080 and RPE1 cells.
*- The angel measurements for lamellipodial actin is not very meaningful: the angel is determined for the radial bundles, which do not correspond to the Arp2/3 angel of single filaments and is likely the results of different nucleation factors, I would suggest to remove this. If angel measurement are really intended, cryoEM needs to be performed. *
We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.
Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.
- Replace all SEM with SD values - use at least 3 biological replicates (4D SEM of n=2)
Planned revision: We will carefully check our statistics and revise where appropriate.
Minor points
- Intro: after listing all the details already understood on actin isoforms it is not very convincing to simply state the molecular principles remain largely unclear (l 34) - maybe better "there is no way to study actin dynamics due to current limitations of specific antibodies to fixed samples. Interesting option would be actually to develop nanobodies that are isoform specific.
We will rephrase the text in the introduction. Regarding the development isoform-specific nanobodies. Although this sounds like a promising way forward, this would likely not result in isoform-specific targeting in living cells. Similar to the antibodies, isoform-specific nanobodies would have to be generated against the N-terminus which, under native conditions, is likely not available due to the occupation with actin-binding protein. Also, since the N-terminus is not structured, it may be extremely challenging to generate nanobodies against these epitopes.
*- L 71: "involved" in the kinetics is not a good term - maybe affects or regulates.... *
We will rephrase the text.
- L148: "suspect" instead of "expect" - this clonal variation is actually a big danger of the employed approach as possible defects in actin organization could be masked by compensatory changes - it would generally be good to show critical data for at least 3 independent clones to rule out dominant selection effects.
We will rephrase. We agree that clonal variation could be a danger if actin levels are to be investigated. For future follow-up studies, we plan to make additional cell lines to avoid clone-specific conclusions.
***Referees cross-commenting** *
*I completely agree with the comments by reviewer 2 on the various missing controls - adding several or all of those will make the results much more convincing. The key for the adaptation of any new actin probe will be the level of confidence researchers have on the doumented effects. Even some negative effects on actin behavior (I am sure there will be some) should not prevent usage of the strategy as long as there is robust and convincing documentation of those effects. I also agree that including some basic in vitro characterization will go a long way to convince people dierectly working on actin (there is a very high level of biochemical understanding in that field). *
Planned revision: We will perform the essential controls as suggested by Reviewer 2. Furthermore, for future experiments, we do envisage the production and purification of internally tagged actins and investigate their binding properties in in vitro reconstitution assays. We have already started with optimizing these approaches through our ongoing collaboration (KD, SP).
Reviewer #1 (Significance (Required)):
*Significance: Very useful finding that can be applied to any question related to actin-dependent cellular processes (morphogenesis, cell division, cell polarization, cell migration etc.) *
*Strength: main finding convincing, strong genome edited cell lines *
*Limitations: application to study of isoforms very limited and data not convincing, statistics and image quantifications need improvement *
*Advance: identify new location for integral tagging of actin, which was not really possible before. The main relevance is for fundamental cell biology but the approach can also be applied to the study of disease variants in actin. *
Audience: general cell biology - very broad interest
__Reviewer #2 (Evidence, reproducibility and clarity (Required)): __
Actin is highly sensitive to modifications, and tagging it with fluorescent proteins or even smaller motifs can affect its function. The most well-known example of this is that fission yeast where actin has been replaced with GFP-actin are inviable (Wu and Pollard, Science 2005) because the labeled actin cannot incorporate into the formin-dependent filaments that make up the cytokinetic ring. Subsequent experiments revealed that formins filter out GFP-actin monomers, as well as monomers that are labeled with smaller fluorescent motifs (Chen et al, J. Structural Biology 2012). Further, attempts to make mammalian cells lines where GFP-beta-actin was knocked into one allele resulted in extreme down-regulation of the GFP-labeled actin, indicating that there is some implicit toxicity with the labeled version. To my knowledge, all attempts at making homozygous GFP-actin knock-ins have been unsuccessful. Therefore, while GFP-actin or other labeled variants can be over-expressed in many different cell types with some success, there is always the question of how faithful the labeled actin represents bona fide actin localization and dynamics.
To address this van Zwam et al. have developed a clever strategy of screening actin for internal motifs that can tolerate incorporation of a tag without affecting its function. They appear to have found a good candidate, named IntAct, and provide evidence that this tagging position allows the actin to be functional in both human and yeast cells. The work is very promising, and many of the assays performed satisfy the criteria of rigor and reproducibility. Importantly, the authors have created knock-in human cell lines where the tagged actin is expressed at normal levels, including a double allele knock-in that is viable and has normal proliferation and motility. Additionally, the authors show that labeled S. cerevisiae actin can incorporate into actin cables, which are formin dependent. IntAct constructs were shown to interact with several well-known actin binding proteins and localized well to many different actin structures. There was also interesting data obtained from tagging both beta and gamma actin in human cells. However, as an actin scientist eager for new probes to visualize actin in cells, there are still questions about the functionality of these probes. Addressing these issues, listed below, would alleviate the concerns I still have about IntActs after going through the manuscript. IntActs have the potential to have a large impact on cytoskeletal research if it can be rigorously documented that they are functionally as close to unlabeled actin as possible.
We thank the Reviewer for their constructive comments and general positive evaluation of our study.
*Reviewer #2 (Significance (Required)): *
Concerns:
1. There are no negative controls performed for either the fixed or live-cell imaging of IntAct. Since the fixed cell data is heavily reliant on the presence of flag-labeled puncta at actin filaments, it is important to show that the immunocytochemistry protocol doesn't produce anything that would mimic the localization of actin. For the live cell data, there has been no effort made to show that the binding of the nanobody to the ALFA tag on InAct is specific.
Planned revision: __We will add the following controls to exclude that any of the labeling procedures produces anything that would mimic the localization of actin: 1) Immunofluorescence staining of the used tags (FLAG/ALFA) in cells that do not have tagged actins 2) Expression of ALFA-Nb-GFP and ALFA-Nb-mScarlet in cells that do not have tagged actins 3)__ Expression of free GFP in cells that have tagged actins. We will co-stain these cells with phalloidin to visualize F-actin and determine if any signal is specifically localized to the actin cytoskeleton.
2. The homozygous ALFA-tagged IntAct cells have a 50% reduction in the amount of actin expression (Fig. 2D). What is the F:G ratio in these cells? The F:G measurement is only shown for the FLAG-tagged heterozygous IntAct cells, which have the worst co-localization with phalloidin (Fig. 2F) and were not used for subsequent figures. I appreciate that motility and proliferation were measured and shown to not be affected (Fig. 4D,E) , but in our lab reducing the amount of polymerized actin by 50% (which may be more in ALFA-tagged IntAct cells if the F:G changes) has catastrophic effects on other cytoskeletal and organelle systems. Since the homozygous ALFA IntAct cells are the main ones used in the manuscript, they should be the ones that are fully characterized.
We would like to point out that the reduction is only 20-25 percent depending on the specific western blot analysis and the loading control. Still, the Reviewer is correct about the necessity of the F:G actin measurements of the ALFA-tagged IntAct cells and we therefore included those as Suppl. Fig. 9 in the original manuscript (text on page 9). The quantification of these assays clearly demonstrated that the F-G actin ratio in the ALFA-tagged IntAct cells is the same as in parental cells.
3. It is not addressed if expressing the ALFA-Nb-GFP construct in ALFA-IntAct cells alter actin properties? This is essential information for live cell imaging experiments.
Planned revision: We have already performed proliferation and migration experiments in cells that stably express the ALFA-Nb-GFP. These data indicated that proliferation and migration are not affected by the presence of the nanobody and these data will be included in the revised manuscript. To note, in the original manuscript, we already showed that treadmilling of actin at the lamellipodia is not affected by the presence of the ALFA-Nb-GFP.
4. It is not addressed how much of the ALFA-IntAct gets labeled with ALFA-Nb-GFP and how uniform the labelling.
We do not understand this specific request of the Reviewer. To our knowledge, it is not possible to assess how much of a probe (in this case the ALFA-Nb-GFP) binds the target (in this case the ALFA-IntAct actins) in living cells. This is not only the case for the ALFA-Nb-GFP but also for any other probe. As an example, when expressing Lifeact, we also do not know how much of the actin molecules within F-actin get labeled with Lifeact and how uniform the labeling is. From the results of the live-cell imaging we can only conclude that the binding is at least so effective that we can readily observe and discern all the actin-based structures that are also observed by Lifeact (see Suppl. Fig. 8 for Lifeact-GFP/ALFA-Nb-mScarlet cotransfection). Whether the regions that do not have F-actin only contain ALFA-Nb-GFP that is bound to actin monomers or also contains a significant fraction of free ALFA-Nb-GFP seems an issue that cannot be addressed.
5. To assess lamellapodia architecture, "branched actin angle" is measured using AiryScan imaging of actin filaments. This type of microscopy does not offer the ability to image individual actin filaments; what is actually being measured is the orientation of actin bundles to each other. It should be impossible to image the orientation of actin filaments in Arp2/3 dendritic networks and it is surprising that the measurements average to 70 degrees. A suitable substitute for this would be to measure the size and amount of F-actin in phalloidin-stained lamellipodia using kymograph analysis.
We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.
Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.
6. Was it possible to make an IntAct gene substitution in yeast?
Planned revision: We thank the reviewer for this interesting question and as also suggested by Reviewer 1, we are now constructing yeast strains with IntAct as the sole expressing actin copy by using the well-established plasmid shuffle system in yeast. The results of these experiments will determine the ability of IntAct to completely substitute actin function in yeast.
Also, while this is not necessary for this manuscript, making a fission yeast strain where actin has been substituted with IntAct and demonstrating that IntAct gets incorporated into the cytoplasmic ring and into Cdc12p-polymerized filaments would alleviate MANY potential concerns people would have about these probes by directly assessing situations were other labeled actins have been documented to fail. Along the same lines, it would have been nice to see a comparison in some of the assays of ALFA-IntAct and GFP-actin or another labeled actin variant.
We appreciate the reviewer for their constructive feedback and completely agree that it is important to document how IntAct behaves in scenarios where other labelled actins have failed. As a proof of principle, IntAct incorporates into both formin- and Arp2/3- made linear and branched actin filaments in yeast (Fig.5E, Suppl. Fig. 14) and this data shows that IntAct labelling strategy is the first to achieve good integration into both these structures as previous efforts with labelled actin such as GFP-Actin fail to incorporate into formin-made actin filaments (Doyle et al., PNAS, 1996). Thus, we believe that IntAct does perform better than other labelled actins in yeast, although, further optimizations are required to overcome limitations regarding incorporation into actin cables in the presence of the ALFA nanobody.
Planned revision: We have already extended applicability of IntAct to another well-known fungal model system, the fission yeast Schizosaccharomyces pombe (S. pombe). We expressed IntAct variants of human β- and γ- actin, budding yeast actin (Sc-IntAct) and fission yeast actin (Sp-IntAct) from an exogenous plasmid under the native S. pombe actin promoter in an S. pombe strain that constitutively expresses the Nb-ALFA-mNG. Live-cell microscopy of S. pombe cells expressing these proteins revealed that all IntAct variants localize to actin patch-like structures located at the cell poles and cell division site (during cytokinesis). These structures show similar dynamics as reported for actin patches of S. pombe previously (Pelham et al., Nat Cell Biol, 2001). These preliminary results suggest that IntAct proteins show a similar localization pattern to only branched actin networks found in the actin patches of S. pombe like we had previously observed for the budding yeast, S. cerevisiae (Fig. S13 in manuscript). The underlying mechanism for this exclusion from linear actin cable network from both budding and fission yeast remain unknown and may represent an inherent specificity and sensitivity of yeast formins. Our current and future experiments will express IntAct variants in absence of the ALFA nanobody and determine the level of incorporation into actin cables, patches, and actomyosin ring.
Planned revision: We have also already performed a quantitative analysis to ascertain the effect of Sc-IntAct expression of cortical actin patch dynamics which represent sites of endocytosis in yeast (Young et al., J Cell Biol, 2004; Winter et al., Curr Biol, 1997). We compared actin cortical patch lifetimes between wildtype cells and cells expressing Sc-Act1 or Sc-IntAct as an extra copy. We used Abp1-3xmcherry as a marker for actin patches and quantified the time window between the appearance and disappearance of a patch (actin patch lifetime) from time-lapse microscopy experiments. Our preliminary results indicate that actin patch lifetimes are unaffected by exogenous expression of both Sc-Act1 or Sc-IntAct suggesting that IntAct does not negatively influence or alter actin patch dynamics. These observations suggest its applicability as a direct visualization strategy for actin at the cortical patches in budding yeast alongside existing surrogate markers like Abp1, Arc15, etc (Goode et al., Genetics, 2015; Wirshing et al., J Cell Biol, 2023).
__Reviewer #3 (Evidence, reproducibility and clarity (Required)): __
*Summary: *
This paper tackles a new strategy to tag actin in cells, by identifying that incorporation of a tag of moderate size in subdomain 4 of actin minimally affects actin dynamics in cells, and does not perturb its interaction with known partners, as observed in pull-down assays.
*Major comments: *
The paper is interesting and experiments are convincing.
*My main concerns are the following : *
- Varland et al, is reporting a phosphorylation on Thr229 : I think the authors should mention and discuss this potential PTM that could be affected in IntAct.
We thank the Reviewer for pointing this out. We are aware of this review that includes phosphorylation on Thr229 as a possible PTM. Yet, this PTM is only reported in one of the Tables of the Review and not further discussed in the text. It is also unclear how the authors determined that Thr229 is a possible phosphorylation site except for the notion that this residue is a threonine and exposed at the surface of the actin molecule. Together with the fact that there is no evidence from primary studies that Thr229 is phosphorylated, we therefore decided to not include it in our discussion.
- The sequence in subdomain 4 (the alpha helix containing T229A230) is extremely conserved in animals, as well as in between the 6 human actin isoforms. This usually indicates a strong selection pressure on the residues. I think the authors should discuss how surprising it is that the T229A230 position can accomodate various tags while it is probably the place of interaction with other proteins and is playing an important role in the mechanical structural integrity of the actin itself.
We thank the Reviewer for bringing up this important point. To a certain extent, the conservation argument is true for all of the residues/domains in actin. Any manipulation will change a conserved part of the actin molecule in one way or another and thereby potentially modify its function. This is also evident from the fact that for most of the internally tagged actins, we observed a very poor colocalization with the actin cytoskeleton (Fig. 1). While for the T229/A230, we have not observed any major effects yet, this certainly does not mean that no further changes or defects will be uncovered in future experiments. Nonetheless, since our approach is unique with respect to the fact that it allows isoform-specific tagging without manipulating the N-terminus, our internal tagging system complements the already existing repertoire of actin reporting methods (N-terminal fusion, Lifeact, F-Tractin, actin nanobodies) and allows researchers to study so far unknown properties of actin variants. We have already included in the discussion that, at this point, we can only speculate as to why this variant performs much better than the others (Page 16 of the manuscript) and that possible explanations are the location at the inner domain and the higher structural plasticity of this region as compared to the rest of the molecule, as found during an alanine mutagenesis screen (Rommelaere et al., Structure, 2003).
- It is now well established that actin plays active and important roles in the nucleus : is ALFA-actin correctly translocated to the nucleus ?
Planned revision: This is an interesting suggestion. We will perform nuclear-cytosol fractionation experiments and determine whether ALFA-actin is still correctly translocated to the nucleus.
*- OPTIONAL: one may regret that there is no classical in vitro assays, such as pyrene assays to assess some kinetcis parameters on epitope-tagged actins. I guess this would make the paper a bit too large. Although, it will prove useful to better understand how much formin activity is affected (see below) *
For further biochemical characterization and a detailed investigation of the precise assembly kinetics of the tagged actins, we (KD, SP) are already working together to set up in vitro reconstitution experiments. Yet, as also indicated by the Reviewer, we consider these experiments outside of the scope of the current work.
*Minor comments: *
Below are points that could be addressed by the authors to improve the manuscript readability and highlight some important points that are sometimes missing or are not properly discussed:
-line 40 "...but the distinct N-terminal epitope is not available under native conditions preventing" is a bit too obscure. Can the authors say clearly what is meant by 'native conditions'?
In our understanding, the term ‘native’ is generally used when referring to conditions in which proteins are in their natural state, without alterations due to heat or denaturants, and possibly also still interacting with their binding partners. We will rephrase to better indicate that in this specific case, we mean that the region that harbors the N-terminus is usually occupied by actin-binding proteins, preventing the binding of the antibody due to steric hindrance.
- figure 1A : make a clearer correspondance between the number shown in panel A and the amino acid numbers displayed in panel C and G.
Planned revision: This is a good point, we will add extra annotation in the graph to better link the panels with each other. We will also add additional annotation in Fig. 1D-F for the same purpose.
- figure 1A : it could be informative to indicate subdomains in this panel.
Planned revision: We will add the numbers for the subdomains in Fig. 1A.
- figure 1C : normalized correlation cell : I am not sure I understand how the normalization of the Pearson coefficient is done. It is therefore not clear how can it >1 or >-1 ? This should be clearly explained in the method section of the paper.
__Planned revision: __We will better explain the normalization procedure in the Methods section.
- figure S4 : comes a bit too early when ALFA-actin has not been yet introduced in the main text. Please, reposition this part or provide data with the FLAG-tag version.
Planned revision: This is a good point and completely overlooked by us. We will introduce this Figure later such that the ALFA tag is already introduced.
- section starting line 121 : this section should be better motivated = Why are different tags being tested ? This comes later in the discussion, but the reader fails at following the reasoning/motivation here.
Planned revision: We will add extra motivation for why we added multiple tags.
- figure 2D, line 145 "We also evaluated actin protein expression in the homozygous ALFA-β-actin cells and this showed that the total amount of β-actin was slightly lower in the ALFA-β-actin cells compared to parental HT1080 cells (Fig. 2C-D)." 'Slightly' is not a very quantitative nor accurate term. please rephrase. Besides, a statistical test for the paired data would also be informative. Besides, data in figure S6B-D indeed show a correlated increase in the expression of Gamma-actin that compensate for the decrease in the Beta-actin level in ALFA-Beta-actin. Can the authors explain why they conclude otherwise?
Planned revision: This indeed is an important point and we will change the phrasing of this section to provide a more quantitative and accurate description of the western blot quantifications.
- figure S7B: I am not ure anyone has ever reported measurement of angle of branched actin filament using epifluorescence microscopy. I would remove this panel, or the authors should explain how this measurement can be done objectively.
We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.
Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.
*- Figure 2F : can the authors comment on the (significant ?) lower value for FLAG-tag actin ? *
The lower value for FLAG-tag actin has likely to do with the properties of the antibody and suitability for immunofluorescence. For reason that we do not know, we usually detect more background for the FLAG tag antibody as compared to the other antibodies/ALFA tag nanobody. Since the Pearson correlation coefficient quickly decreases with suboptimal labeling, this is likely the reason that the values for FLAG-actin are lower as compared to the other tagged actins. Importantly, in our biochemistry experiments (F/G-actin), we detect no difference between FLAG-actin and ALFA-actin indicating that it is rather the immunofluorescence and sensitive Pearson correlation analysis than the integration of actin that causes this difference.
- line 205 "The results from these experiments show that both DIAPH1 and FMNL2 associate with ALFA-β-actin (Fig. 3D),". It is not so obvious that these formins directly interact with monomeric actin via their FH2 domains in co-immunoprecipitation assays. It might very well be mediated by the interaction with profilin, that in turn bind to the FH1 domain of formins. For me, this assay does not make a correct proof that epitope-labelled actin do not interfere with formin activity.
Planned revision: The point that the co-immunoprecipitation does not demonstrate direct interactions between formins and actin is well taken. We, however, do not claim that this assay proofs that formin activity, or formin-based integration of actin monomers, is similar with tagged actin as compared to wildtype actin. Nonetheless, we will critically re-evaluate the relevant passages and rephrase the text to avoid any confusion.
- figure 5C&D : both graph should use the same scale for the y-axis for easier comparison.
Planned revision: We will adapt the scale of Fig. 5D to make it identical to Fig. 5C. Following the other suggestions of the Reviewer (and of Reviewer #1), we will also critically evaluate our normalization procedure and present those numbers in the Figures if the values turn out to be different.
- figure 5D: I think the way the ratio is performed is misleading. Why not look at the Beta/Gamma ratio using the isoform specific antibodies used in parental cells, and show the results for ALFA-Beta-actin and for ALFA-Gamma-actin separately ?
We kindly refer to our answer to Reviewer #1 on Page 2 for a detailed explanation on the experimental challenge of comparing the localization of wildtype and tagged actin isoforms.
Planned revision: We will critically evaluate our normalization procedure and present those numbers in the Figures if the values turn out to be different. Furthermore, we will add a different experimental method to show that the tagged isoforms properly localize to actin-based structures. For this, we will attempt to use micropatterned cells to induce clearly define actin-bases structures and also explore the possibilities of investigating the differential localization in double-tagged cells.
*- The limitation observed for unbranched cables in yeast that nanobody-tagged ALFA-actin does not incorporate correctly should be discussed and stressed further in the discussion, as it might prove to be a strong limitation for live-cell imaging to reliably study any type of actin networks. *
We acknowledge the reviewer’s concern regarding the inability of ALFA-tagged actin to incorporate into yeast actin cables when NbALFA is co-expressed and will discuss this point further in the revised manuscript. We have now observed the same limitation for fission yeast actin cables as well and combined, these observations may represent a tighter control and sensitivity of yeast formins towards any perturbations in actin size (since NbALFA binds to ALFA tag with picomolar affinity). To address this issue and as also suggested by Reviewer 1, we are now creating yeast strains with inducible control of NbALFA expression under GALS/GAL1 promoters and observe the labelling of actin structures after this approach. Additionally, expression of variants of NbALFA with high dissociation rates may also allow labelling of actin cables and would be certainly worth a try in the future. A structural comparison between mammalian and yeast formins may be required to shed some light on the molecular basis of this fundamental difference.
However, since in the absence of the nanobody, this limitation is overcome (Fig. 5E, Suppl. Fig. 14), we believe that with additional modifications and fast developments in imaging technologies, this limitation can be overcome in the future. Thus, IntAct as a labeling strategy represents an advancement over existing labelled actins with the most important aspect being the identification of the T229/A230 residue pair to be permissive for integration of various tags even as large as GFP11 fragment including a linker (26AA) (Reviewer Fig. 2). Importantly, the T229/A230 site is conserved across many organisms (such as Chlamydomonas reinhardatii, Cryptococcus neoformans, etc) and may act as a framework to study the actin cytoskeleton especially in organisms where known surrogate markers like phalloidin and Lifeact may not work or work only sub optimally.
*Reviewer #3 (Significance (Required)): *
*General assessment: *
*This paper provides a new tagging strategy to monitor actin activity in cells, by specifically inserting the tag along the amino acid sequence. *
*Advance: *
*This is a very useful tool, as most existing available probes bind to actin in regions that are common to many other actin binding proteins. The authors provide extensive experiments to validate that tagged-actin are functional and do not perturb the actin expression level, actin network architecture nor dynamics. *
*Audience: *
*This research paper will be of interest to a rather broad audience (many cell biologists) that are either sutyding actin dynamics or know that actin is involved in the cell functions they study. *
*Expertise: *
*My expertise is in vitro actin biochemistry. *
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Summary:
This paper tackles a new strategy to tag actin in cells, by identifying that incorporation of a tag of moderate size in subdomain 4 of actin minimally affects actin dynamics in cells, and does not perturb its interaction with known partners, as observed in pull-down assays.
Major comments:
The paper is interesting and experiments are convincing.
My main concerns are the following :
- Varland et al, is reporting a phosphorylation on Thr229 : I think the authors should mention and discuss this potential PTM that could be affected in IntAct.
- The sequence in subdomain 4 (the alpha helix containing T229A230) is extremely conserved in animals, as well as in between the 6 human actin isoforms. This usually indicates a strong selection pressure on the residues. I think the authors should discuss how surprising it is that the T229A230 position can accomodate various tags while it is probably the place of interaction with other proteins and is playing an important role in the mechanical structural integrity of the actin itself.
- It is now well established that actin plays active and important roles in the nucleus : is ALFA-actin correctly translocated to the nucleus ?
- OPTIONAL: one may regret that there is no classical in vitro assays, such as pyrene assays to assess some kinetcis parameters on epitope-tagged actins. I guess this would make the paper a bit too large. Although, it will prove useful to better understand how much formin activity is affected (see below)
Minor comments:
Below are points that could be addressed by the authors to improve the manuscript readability and highlight some important points that are sometimes missing or are not properly discussed :
- line 40 "...but the distinct N-terminal epitope is not available under native conditions preventing" is a bit too obscure. Can the authors say clearly what is meant by 'native conditions' ?
- figure 1A : make a clearer correspondance between the number shown in panel A and the amino acid numbers displayed in panel C and G.
- figure 1A : it could be informative to indicate subdomains in this panel.
- figure 1C : normalized correlation cell : I am not sure I understand how the normalization of the Pearson coefficient is done. It is therefore not clear how can it >1 or >-1 ? This should be clearly explained in the method section of the paper.
- figure S4 : comes a bit too early when ALFA-actin has not been yet introduced in the main text. Please, reposition this part or provide data with the FLAG-tag version.
- section starting line 121 : this section should be better motivated = Why are different tags being tested ? This comes later in the discussion, but the reader fails at following the reasoning/motivation here.
- figure 2D, line 145 "We also evaluated actin protein expression in the homozygous ALFA-β-actin cells and this showed that the total amount of β-actin was slightly lower in the ALFA-β-actin cells compared to parental HT1080 cells (Fig. 2C-D)." 'Slightly' is not a very quantitative nor accurate term. please rephrase. Besides, a statistical test for the paired data would also be informative. Besides, data in figure S6B-D indeed show a correlated increase in the expression of Gamma-actin that compensate for the decrease in the Beta-actin level in ALFA-Beta-actin. Can the authors explain why they conclude otherwise ?
- figure S7B: I am not ure anyone has ever reported measurement of angle of branched actin filament using epifluorescence microscopy. I would remove this panel, or the authors should explain how this measurement can be done objectively.
- Figure 2F : can the authors comment on the (significant ?) lower value for FLAG-tag actin ?
- line 205 "The results from these experimentsshow that both DIAPH1 and FMNL2 associate with ALFA-β-actin (Fig. 3D),". It is not so obvious that these formins directly interact with monomeric actin via their FH2 domains in co-immunoprecipitation assays. It might very well be mediated by the interaction with profilin, that in turn bind to the FH1 domain of formins. For me, this assay does not make a correct proof that epitope-labelled actin do not interfere with formin activity.
- figure 5C&D : both graph should use the same scale for the y-axis for easier comparison.
- figure 5D: I think the way the ratio is performed is misleading. Why not look at the Beta/Gamma ratio using the isoform specific antibodies used in parental cells, and show the results for ALFA-Beta-actin and for ALFA-Gamma-actin separately ?
- The limitation observed for unbranched cables in yeast that nanobody-tagged ALFA-actin does not incorporate correctly should be discussed and stressed further in the discussion, as it might prove to be a strong limitation for live-cell imaging to reliably study any type of actin networks.
Significance
General assessment:
This paper provides a new tagging strategy to monitor actin activity in cells, by specifically inserting the tag along the amino acid sequence.
Advance:
This is a very useful tool, as most existing available probes bind to actin in regions that are common to many other actin binding proteins. The authors provide extensive experiments to validate that tagged-actin are functional and do not perturb the actin expression level, actin network architecture nor dynamics.
Audience:
This research paper will be of interest to a rather broad audience (many cell biologists) that are either sutyding actin dynamics or know that actin is involved in the cell functions they study.
Expertise:
My expertise is in vitro actin biochemistry.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Actin is highly sensitive to modifications, and tagging it with fluorescent proteins or even smaller motifs can affect its function. The most well-known example of this is that fission yeast where actin has been replaced with GFP-actin are inviable (Wu and Pollard, Science 2005) because the labeled actin cannot incorporate into the formin-dependent filaments that make up the cytokinetic ring. Subsequent experiments revealed that formins filter out GFP-actin monomers, as well as monomers that are labeled with smaller fluorescent motifs (Chen et al, J. Structural Biology 2012). Further, attempts to make mammalian cells lines where GFP-beta-actin was knocked into one allele resulted in extreme down-regulation of the GFP-labeled actin, indicating that there is some implicit toxicity with the labeled version. To my knowledge, all attempts at making homozygous GFP-actin knock-ins have been unsuccessful. Therefore, while GFP-actin or other labeled variants can be over-expressed in many different cell types with some success, there is always the question of how faithful the labeled actin represents bona fide actin localization and dynamics.
To address this van Zwam et al. have developed a clever strategy of screening actin for internal motifs that can tolerate incorporation of a tag without affecting its function. They appear to have found a good candidate, named IntAct, and provide evidence that this tagging position allows the actin to be functional in both human and yeast cells. The work is very promising, and many of the assays performed satisfy the criteria of rigor and reproducibility. Importantly, the authors have created knock-in human cell lines where the tagged actin is expressed at normal levels, including a double allele knock-in that is viable and has normal proliferation and motility. Additionally, the authors show that labeled S. cerevisiae actin can incorporate into actin cables, which are formin dependent. IntAct constructs were shown to interact with several well-known actin binding proteins and localized well to many different actin structures. There was also interesting data obtained from tagging both beta and gamma actin in human cells. However, as an actin scientist eager for new probes to visualize actin in cells, there are still questions about the functionality of these probes. Addressing these issues, listed below, would alleviate the concerns I still have about IntActs after going through the manuscript. IntActs have the potential to have a large impact on cytoskeletal research if it can be rigorously documented that they are functionally as close to unlabeled actin as possible.
Significance
Concerns:
- There are no negative controls performed for either the fixed or live-cell imaging of IntAct. Since the fixed cell data is heavily reliant on the presence of flag-labeled puncta at actin filaments, it is important to show that the immunocytochemistry protocol doesn't produce anything that would mimic the localization of actin. For the live cell data, there has been no effort made to show that the binding of the nanobody to the ALFA tag on InAct is specific.
- The homozygous ALFA-tagged IntAct cells have a 50% reduction in the amount of actin expression (Fig. 2D). What is the F:G ratio in these cells? The F:G measurement is only shown for the FLAG-tagged heterozygous IntAct cells, which have the worst co-localization with phalloidin (Fig. 2F) and were not used for subsequent figures. I appreciate that motility and proliferation were measured and shown to not be affected (Fig. 4D,E) , but in our lab reducing the amount of polymerized actin by 50% (which may be more in ALFA-tagged IntAct cells if the F:G changes) has catastrophic effects on other cytoskeletal and organelle systems. Since the homozygous ALFA IntAct cells are the main ones used in the manuscript, they should be the ones that are fully characterized.
- It is not addressed if expressing the ALFA-Nb-GFP construct in ALFA-IntAct cells alter actin properties? This is essential information for live cell imaging experiments.
- It is not addressed how much of the ALFA-IntAct gets labeled with ALFA-Nb-GFP and how uniform the labelling.
- To assess lamellapodia architecture, "branched actin angle" is measured using AiryScan imaging of actin filaments. This type of microscopy does not offer the ability to image individual actin filaments; what is actually being measured is the orientation of actin bundles to each other. It should be impossible to image the orientation of actin filaments in Arp2/3 dendritic networks and it is surprising that the measurements average to 70 degrees. A suitable substitute for this would be to measure the size and amount of F-actin in phalloidin-stained lamellipodia using kymograph analysis.
- Was it possible to make an IntAct gene substitution in yeast?
Also, while this is not necessary for this manuscript, making a fission yeast strain where actin has been substituted with IntAct and demonstrating that IntAct gets incorporated into the cytoplasmic ring and into Cdc12p-polymerized filaments would alleviate MANY potential concerns people would have about these probes by directly assessing situations were other labeled actins have been documented to fail. Along the same lines, it would have been nice to see a comparison in some of the assays of ALFA-IntAct and GFP-actin or another labeled actin variant.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this study, the authors generate several variants of actin that are internally tagged with short peptide tags. They identify one particular position that is able to tolerate various tags of 5-10 amino acids and still shows largely unaltered behavior in cells. They study incorporation of their tagged actins into filaments, characterize the interactions of G-actin variants with different associated proteins and show that retrograde actin flow in lamellipodia and the wound healing response of epithelial cells is not affected by the tagged variants. They then apply the tagged actin to study subcellular distribution of different actin isoforms in mammalian and yeast cells.
The identification of a specific site in the actin protein that tolerates variable peptide insertions is very exciting and of fundamental interest for all research fields that deal with cytoskeletal rearrangements and cellular morphogenesis. The result demonstrating the functionality of actin variants with peptides inserted between aa 229 and 230 are generally convincing and well done. In particular, the generation of CRISPR/Cas9 genome edited versions of beta- and gamma actin are impressive. I therefore generally support publication of this study. There are however several technical and conceptual issues that should be addressed to improve quality and scope of the study. I listed some specific comments below:
Major points
- The biggest issue I have is the last section on the application of tagged actins to study isoform functions. In principle the application is very clear as there are simply no alternative ways to study isoform distribution in live cells. However, the experimental data are simply not convincing. What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers. I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers. It seems to me that the beta-actin staining has as higher cytosolic background and is generally weaker (gamma nicely labels transverse arcs), which reduces signal/noise and therefore yields a relatively increased level in areas with less-bundled actin. My suggestion is to select more clearly defined actin structures and to use micro-patterned cells to normalize the otherwise obstructing variability in actin organization. Possible structures would be cortical arcs in bow-shaped cells, lamellipodial edges (HT1080 seem to make very nice and large lamellipodia) or cell-cell contacts (confluent monolayer, provided cells don´t grow on top of each other). Stress fibers are possible but need to be segmented very precisely and I did not see any details on this in the methods section. For Fig. 5D: I assume cells were used where only one isoform was tagged? This is technical weak and the double-normalization is probably blurring any difference that might be occurring. Why not use a double-tagging strategy with ALFA/FLAG or ALFA/AU5 tags to exploit the constructs introduced in the previous figures? Also, the unique selling point of the strategy is the possibility of actual live imaging of specific isoforms. Cells that have stably integrated double tags and then transiently express nanobodies for ALFA and either AU5 or FLAG (or other if those don't exist) would make this possible. Considering the work already done in this manuscript, such an approach should actually be possible - did the authors attempt this or is there are reason it is not discussed? If double tagged cells are not possible for some reason it should at the very least be possible to combine ALFA-detection with the specific antibody against the other isoform and get rid of the double normalization.
- The authors make a point of comparing the internally tagged actin to N-terminal tags that are mostly functional but have been shown to affect translational efficiency. I would strongly suggest to include N-terminally tagged actin as control for all assays in this study. Also for the physiological assays (retrograde flow, wound healing), a positive control is missing that shows some effect. Previous studies showed defects with transiently expressed actin with an N-terminal GFP. As retrograde flow measurements are very sensitive to the exact position of the kymographs and wound healing assays is a very crude and indirect readout, such a positive control is essential.
- Expression of tagged actins in yeast is a very nice idea but it would be far more informative to express the tagged forms as the only copy of actin. This can either be done by directly replacing endogenous actin gene in S. cerevisiae, or (if the tagged versions are not viable) - using the established plasmid shuffle system (express actin on counter-selectable plasmid, then knock out endogenous copy and introduce additional plasmid with tagged actin, then force original plasmid out). In the presence of endogenous S. cerevisiae actin the shown effects are very hard to interpret as nothing is known about relative protein levels (endogenous vs. introduced). Also, if constitutive expression of the ALFA nanobody is harmful for integration into cables, why not perform inducible expression of the nanobody and observe labeling after induction. For the live imaging a robust cable marker is needed, like Abp140-GFP. Finally, indicate the sequence differences between the used actin forms in yeast (supplementary figure with sequence alignment and clear indication of all variations)
- As the authors clearly show good integration of several tagged actins into filaments I would expand the structural characterization: perform alpha fold predictions of actin monomer structures including the various tags to show the expected orientation. It is striking that the only integration site that seems to work well is at the last position of a short helix, indicating that the orientation of the integrated peptide might be fixed in space and be optimal to minimize interference. Also, a docking of the tag onto the recently published cryoEM structures of the actin filament should be shown to indicate where it resides compared to tropomyosin or the major groove where most side binding proteins seem to bind.
- For any claims regarding usability of tagged variants for isoform research it would be very important to characterize the known posttranslational modifications of tagged actin variants - are the differences between beta and gamma maintained on this level as well?
Technical issues
- There is no scale for the color coding in Fig. 5A, B
- The y-scales for Fig. 5C and D need to be identical to allow direct comparison
- Pearson coefficient should not be normalized to a control value as its already a dimensionless parameter. Always report actual R-value - also remove R2 values for Pearson as this makes no sense in this context (not sure if it was a typo or intended).
- All values on subcellular regions (like stress fiber or cortex) dependet critically on the way thesese regions were thresholded or identified. Provide all details on how this was done in the methods section and ensure that adequate background subtraction and normalization is applied. Optimally, an unbiased (AI or automated) approach based on simple image statistics is used for this to avoid personal bias.
- In Fig. 2A only heterozygous FLAG-actin cells are used. Why not use a homozygous line (for both beta and gamma actin)? The nice band shift of the FLAG version would allow the precise quantification of the fraction of total actin covered by beta and gamma actin, which then could provide some additional info for the apparently weaker beta staining in Fig. 5 (if beta expression is simply weaker). This would be a very simple and useful advantage of the internal tags that could be widely applied.
- Fig. 3: control with N-terminal tag is missing. Also, why is it not possible to assay filament binding factors like Myosin, Filamin or alpha actinin - instead of co-IP a simple co-sedimentation assay with cell extracts in F-buffer should pick up any major difference in decoration of filaments containing the ALFA tag. Using two speeds for centrifugation it might even be possible to observe effects on filament bundling. The best approach for this would of course be to purify tagged actins and perform in vitro assays but this is clearly beyond the scope of what the authors intended here. I personally think that a broad acceptance of the marker will only come once the biochemistry has been sufficiently characterized so this is a future direction I would strongly encourage.
- Fig. 2A has no loading control -
- The RPE-1 data are confusing as several constructs show very different localization (completely cytosolic) to HT1080 cells and there is no possible explanation given for this. Maybe simply remove this data set?
- The angel measurements for lamellipodial actin is not very meaningful: the angel is determined for the radial bundles, which do not correspond to the Arp2/3 angel of single filaments and is likely the results of different nucleation factors, I would suggest to remove this. If angel measurement are really intended, cryoEM needs to be performed.
- Replace all SEM with SD values - use at least 3 biological replicates (4D SEM of n=2)
Minor points
- Intro: after listing all the details already understood on actin isoforms it is not very convincing to simply state the molecular principles remain largely unclear (l 34) - maybe better "there is no way to study actin dynamics due to current limitations of specific antibodies to fixed samples. Interesting option would be actually to develop nanobodies that are isoform specific
- L 71: "involved" in the kinetics is not a good term - maybe affects or regulates....
- L148: "suspect" instead of "expect" - this clonal variation is actually a big danger of the employed approach as possible defects in actin organization could be masked by compensatory changes - it would generally be good to show critical data for at least 3 independent clones to rule out dominant selection effects.
Referees cross-commenting
I completely agree with the comments by reviewer 2 on the various missing controls - adding several or all of those will make the results much more convincing. The key for the adaptation of any new actin probe will be the level of confidence researchers have on the doumented effects. Even some negative effects on actin behavior (I am sure there will be some) should not prevent usage of the strategy as long as there is robust and convincing documentation of those effects. I also agree that including some basic in vitro characterization will go a long way to convince people dierectly working on actin (there is a very high level of biochemical understanding in that field).
Significance
Significance: Very useful finding that can be applied to any question related to actin-dependent cellular processes (morphogenesis, cell division, cell polarization, cell migration etc.)
Strength: main finding convincing, strong genome edited cell lines
Limitations: application to study of isoforms very limited and data not convincing, statistics and image quantifications need improvement
Advance: identify new location for integral tagging of actin, which was not really possible before. The main relevance is for fundamental cell biology but the approach can also be applied to the study of disease variants in actin.
Audience: general cell biology - very broad interest
-
- Aug 2023
-
www.theguardian.com www.theguardian.com
-
Der indische Konzern Adani, der von der gleichnamigen Familie kontrolliert wird, hat offenbar über Jahre in seine eigenen Aktien investiert, um die Kurse hochzutreiben. Adani gehört zu den Firmen, die durch Investitionen in Kohle und Flughäfen maßgeblich zum Wachstum der Emissionen beitragen. Sie hat enge Beziehungen zum indischen Präsidenten Modi, dessen Regierung Schutz der Interessen von Adani vorgeworfen wird. https://www.theguardian.com/world/2023/aug/31/modi-linked-adani-family-secretly-invested-in-own-shares-documents-suggest-india
Mehr zu Adani: https://hypothes.is/search?q=tag%3A%22actor%3A%20Adani%22
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary: Cullinan et al. explore the hypothesis that the cytoplasmic N- and C-termini of ASIC1a, not resolved in x-ray or cryo-EM structures, form a dynamic complex that breaks apart at low pH, exposing a C-terminal binding site for RIPK1, a regulator of necrotic cell death. They expressed channels tagged at their N- and C-termini with the fluorescent, non-canonical amino acid ANAP in CHO cells using amber stop-codon suppression. Interaction between the termini was assessed by FRET between ANAP and colored transition metal ions bound either to a cysteine reactive chelator attached to the channel (TETAC) or metal-chelating lipids (C18-NTA). A key advantage to using metal ions is that they are very poor FRET acceptors, i.e. they must be very close to the donor for FRET to occur. This is ideal for measuring small distances/changes in distance on the scales expected from the initial hypothesis. In order to apply chelated metal ions, CHO cells were mechanically unroofed, providing access to the inner leaflet of the plasma membrane. At high pH, the N- and C- termini are close enough for FRET to be measured, but apparently too far apart to be explained by a direct binding interaction. At low pH, there was an apparent increase in FRET between the termini. FRET between ANAP on the N-and C-termini and metal ions bound to the plasma membrane suggests that both termini move away from the plasma membrane at low pH. The authors propose an alternative hypothesis whereby close association with the plasma membrane precludes RIPK1 binding to the C-terminus of ASIC1a.
Strengths: The findings presented here are certainly valuable for the ion channel/signaling field and the technical approach only increases the significance of the work. The choice of techniques is appropriate for this study and the results are clear and high quality. Sufficient evidence is presented against the starting hypothesis.
Weaknesses: I have a few questions about certain controls and assumptions that I would like to see discussed more explicitly in the manuscript.
--My biggest concern is with the C-terminal citrine tag. Might this prevent the hypothesized interaction between the N- and C-termini? What about the serine to cysteine mutations? The authors might consider a control experiment in channels lacking the C-terminal FP tag.
--Figure 2 supplement 1 shows apparent read-through of the N-terminal stop codons. Given that most of the paper uses N-terminal ANAP tags, this figure should be moved out of the supplement. Do N-terminally truncated subunits form functional channels? Do the authors expect N-terminally truncated subunits to co-assemble in trimers with full-length subunits? The authors should include a more explicit discussion regarding the effect of truncated channels on their FRET signal in the case of such co-assembly.
--As the epitope used for the western blots in Figure 2 and supplements is part of the C-terminal tag, these blots do not provide an estimate of the fraction of C-terminally truncated channels (those that failed to incorporate ANAP at the stop codon). What effect would C-terminally truncated channels have on the FRET signal if incorporated into trimers with full-length subunits?
--Some general discussion of these results in the context of trimeric channels would be helpful. Is the putative interaction of the termini within or between subunits? Are the distances between subunits large enough to preclude FRET between donors on one subunit and acceptor ions bound on multiple subunits?
--The authors conclude that the relatively small amount of FRET between the cytoplasmic termini suggests that the interaction previously modeled in Rosetta is unlikely. Is it possible that the proposed structure is correct, but labile? For example, could it be that the FRET signal is the time average of a state in which the termini directly interact (as in the Rosetta model) and one in which they do not?
-
-
Local file Local file
-
Thus far, we see 125 comments tagged ChatGPTedu(https://hypothes.is/search?q=tag%3AChatGPTedu), thoughthere are likely many more not tagged.
-
-
zenodo.org zenodo.org
-
FAIRsFAIR project
Potential RDA Tag: Project
-
-
www.reddit.com www.reddit.com
-
For context, I don't use a traditional Zettelkasten system. It's more of a commonplace book/notecard system similar to Ryan HolidayI recently transitioned to a digital system and have been using Logseq, which I enjoy. It's made organizing my notes and ideas much easier, but I've noticed that I spend a lot of time on organizing my notesSince most of my reading is on Kindle, my process involves reading and highlighting as I read, then exporting those highlights to Markdown and making a page in Logseq. Then I tag every individual highlightThis usually isn't too bad if a book/research article has 20-30 highlights, but, for example, I recently had a book with over 150 highlights, and I spent about half an hour tagging each oneI started wondering if it's overkill to tag each highlight since it can be so time consuming. The advantage is that if I'm looking for passages about a certain idea/topic, I can find it specifically rather than having to go through the whole bookI was also thinking I could just have a set of tags for each book/article that capture what contexts I'd want to find the information in. This would save time, but I'd spend a little more time digging through each document looking for specificsCurious to hear your thoughts, appreciate any suggestions
reply to m_t_rv_s__n/ at https://www.reddit.com/r/Zettelkasten/comments/164n6qg/is_this_overkill/
First, your system is historically far more traditional than Luhmann's more specific practice. See: https://boffosocko.com/2022/10/22/the-two-definitions-of-zettelkasten/
If you're taking all the notes/highlights from a particular book and keeping them in a single file, then it may be far quicker and more productive to do some high level tagging on the entire book/file itself and then relying on and using basic text search to find particular passages you might use at a later date.
Spending time reviewing over all of your notes and tagging/indexing them individually may be beneficial for some basic review work. But this should be balanced out with your long term needs. If your area is "sociology", for example, and you tag every single idea related to the topic of sociology with #sociology, then it will cease to have any value you to you when you search for it and find thousands of disconnected notes you will need to sift through. Compare this with Luhmann's ZK which only had a few index entries under "sociology". A better long term productive practice, and one which Luhmann used, is indexing one or two key words when he started in a new area and then "tagging" each new idea in that branch or train of though with links to other neighboring ideas. If you forget a particular note, you can search your index for a keyword and know you'll find that idea you need somewhere nearby. Scanning through the neighborhood of notes you find will provide a useful reminder of what you'd been working on and allow you to continue your work in that space or link new things as appropriate.
If it helps to reframe the long term scaling problem of over-tagging, think of a link from one idea to another as the most specific tag you can put on an idea. To put this important idea into context, if you do a Google search for "tagging" you'll find 240,000,000 results! If you do a search for the entirety of the first sentence in this paragraph, you'll likely only find one very good and very specific result, and the things which are linked to it are going to have tremendous specific value to you by comparison.
Perhaps the better portions of your time while reviewing notes would be taking the 150 highlights and finding the three to five most important, useful, and (importantly) reusable ones to write out in your own words and begin expanding upon and linking? These are the excerpts you'll want to spend more time on and tag/index for future use rather than the other hundreds. Over time, you may eventually realize that the hundreds are far less useful than the handful (in management spaces this philosophy is known as the Pareto principle), so spending a lot of make work time on them is less beneficial for whatever end goals you may have. (The make work portions are often the number one reason I see people abandoning these practices because they feel overwhelmed working on raw administrivia instead of building something useful and interesting to themselves.) Naturally though, you'll still have those hundreds sitting around in a file if you need to search, review, or use them. You won't have lost them by not working on them, but more importantly you'll have gained loads of extra time to work on the more important pieces. You should notice that the time you save and the value you create will compound over time.
And as ever, play around with these to see if they work for you and your specific needs. Some may be good and others bad—it will depend on your needs and your goals. Practice, experiment, have fun.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #3
Evidence, reproducibility and clarity
Review of: "An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans"<br /> Authors: Cristina Tocchini and Susan Mango
The MS2-MCP imaging platform is an essential imaging system that enables dynamic quantification of mRNA transcription, abundance, location, and turnover in living biological systems. In the last ten or so years, this approach has been used in extremely successful ways in Drosophila embryos to dissect both the regulatory logic underpinning early transcriptional organization and activation with unprecedented resolution and, furthermore, how active mRNA localization outside of the nucleus impacts pattern formation. The authors correctly point out that full implementation of this tool has been suspiciously lacking in the C. elegans community for some time (aside from a few noted implementations).
In this manuscript, Tocchini and Mango directly approach this deficit in a thoughtful study where many of the salient features of MS2 epitope tagging are systematically measured. Specifically, the authors use CRISPR genomic engineering to tag two separate dosage-sensitive, developmental genes and study the expression and function of these genes within the context of the MS2/MCP-GFP system. The authors demonstrate that the location of the MS2 epitope insertion within the endogenous 3'UTR is an important design consideration for functional, downstream implementation of the imaging system. In both cases, insertion of the MS2 hairpins near the end of the open reading frame of either gene results in overt and specific developmental phenotypes that phenocopy previously characterized loss of function alleles of each gene. The design of these experiments is high in quality in that they measure both the levels of cytoplasmic abundance of the various epitope-tagged mRNAs as well as the protein expression levels for these transgenes (by monitoring the levels of GFP expression (each MS2-tagged gene encodes a functional GFP-tagged allele). In two clear transgene examples, they demonstrate that the loss of function phenotypes of the proximally-tagged (closest to the ORF) transgenes disrupt mRNA levels and expression and reduce the proper localization of these mRNAs. This may be why previous attempts at implementing this important imaging system have failed.
The authors then characterize the cellular systems that cause the differential expression of MS2-tagged transgenes. The authors note that previous studies on simpler systems and in C. elegans have suggested that the nonsense-mediated mRNA decay (NMD) pathway limits the expression of mRNAs with exceptionally long 3'UTRs. Tocchini and Mango then use C. elegans NMD mutants to demonstrate that ablation of this natural RNA degradation system corrects the developmental and gene expression defects associated with the reduction of function MS2 insertion alleles. These experiments are complete and compelling as they are validated at all levels (GFP expression (via quantification of GFP expression) and mRNA expression, and mRNA localization levels (via in situ hybridization).
The authors then make the case that the type and expression levels of the MCP-GFP fusion protein are also essential features that need to be optimized for an effective imaging system. The authors suggest that optimal visualization of endogenous genes requires the surprisingly low-level expression of the MCP-GFP fusion protein. The authors use a novel transgene that differs from the conventional system. Specifically, the Tocchini system employs a 2xMCP ORF fused to 2xmCherry ORFs fusion. This transgene lacks the NLS typically used to localize exported mRNAs in the cytoplasm and also encodes two MCPs that may or may not facilitate dimerization on the MS2 hairpins. They demonstrate that endogenous, epitope-tagged transgenes can be visualized in developing embryos and that tethering this 2xMCP fusion to the reporter transcript does not alter RNA expression levels. While the authors demonstrate that visualization is possible with this system, it is hard to tell if this fusion protein dramatically improves over other available systems without a direct comparison. For instance, measuring the signal-to-noise (S/N) ratio of localized 2xMCP-2xmCherry would be a good addition and support the author's claims. If it were an exceptional system, these calculations should exceed the well-characterized and quantified MCP-GFP system described in Lee et al. 2019 ((Lee et al., 2019). It is just too hard to know if this is a dramatic element that should now be included in future RNA localization experiments.
Minor critiques:
- The authors should provide more details in the experimental description of the MS2-tagged alleles (or in the figure images). It needs to be clarified in the main text how many MS2 hairpins there are, though this can be found in the materials and methods. In addition, it would be nice to know if these were any of the variations of MS2 hairpins that have already been optimized in some other way to increase or decrease structure or RNA metabolism defects in other systems. Specifically, are these hairpins the newest versions, V6 or V7, described in manuscripts from the Singer laboratory (e.g., (Tutucci et al., 2018))? For aficionados of this imaging system, it would be important to qualify each of the potential new features that make the results in this manuscript so clear and important.
- For people that are colorblind (or have reduced ability to distinguish some colors from others (like me, a reviewer)), it would be nice to have the MS2 illustrations in Figures 1A and B not have that color within the black, normal UTR. It's picky, but I had to ask someone what color that was.
References:
Lee, C., Shin, H., and Kimble, J. (2019). Dynamics of Notch-Dependent Transcriptional Bursting in Its Native Context. Dev Cell 50, 426-435 e424.
Tutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., and Singer, R.H. (2018). An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15, 81-89.
Significance
In summary, this is a well-written and critical addition to the literature that will hopefully increase the implementation of this system in C. elegans research. The systematic approach to getting a new experimental platform up and running certainly has a place in the canon. Aside from the missing elements regarding the putative improvements and/or direct comparisons between different MCP fusion proteins, the manuscript is solid, important, and nearly ready to go.
It is an advance and will, as noted above, likely serve to help implement this system by other C. elegans reserachers.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Reviewer #1 (Recommendations For The Authors):
1) The authors need to validate that RAP1-HA still retains its essential function. As indicated above, if RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. These cells should also have the WT VSG expression pattern, and RAP1-HA should still interact with TRF.
We demonstrated that C-terminally HA-tagged RAP1 co-localizes with telomeres by a combination of immunofluorescence and fluorescence in situ hybridization (Cestari and Stuart, 2015, PNAS), and co-immunoprecipitate telomeric and 70 bp repeats (Cestari et al. 2019 Mol Cell Biol). We also showed by immunoprecipitation and mass spectrometry that HA-tagged RAP1 interacts with nuclear and telomeric proteins, including PIP5Pase (Cestari et al. 2019). Others have also tagged T. brucei RAP1 with HA without disrupting its nuclear localization (Yang et al. 2009, Cell), all of which indicate that the HA-tag does not affect protein function. As for the suggested experiment, there is no guarantee that cells lacking one allele of RAP1 will behave as wildtype, i.e., normal growth and repression of VSGs genes. Also, less than 90% of T. brucei TRF was reported to interact with RAP1 (Yang et al. 2009, Cell), which might be indirect via their binding to telomeric repeats rather than direct protein-protein interactions.
2) The authors need to remove the His6 tag from the recombinant RAP1 fragments before the EMSA analysis. This is essential to avoid any artifacts generated by the His6-tagged proteins.
Our controls show that the His-tag is not interfering with RAP1-DNA binding. We show in Fig 3CG by EMSA and in Fig S5 by EMSA and microscale thermophoresis that His-tagged full-length rRAP1 does not bind to scrambled telomeric dsDNA sequences, which demonstrates that His-tagged rRAP1 does not bind unspecifically to DNA. Moreover, in Fig 3G and Fig S5, we show that His-tagged rRAP11-300 also does not bind to 70 bp or telomeric repeats. In contrast, the full-length His-tagged rRAP1, rRAP1301-560, or rRAP1561-855 bind to 70 bp or telomeric repeats (Fig 3C-G). Since all proteins were His-tagged, the His tag cannot be responsible for the DNA binding. We have worked with many different His-tagged proteins for nucleic acid binding and enzymatic assays without any interference from the tag (Cestari and Stuart, 2013; JBC; Cestari et al; 2013, Mol Cell Biol; Cestari and Stuart, 2015, PNAS; Cestari et al. 2016; Cell Chem Biol; Cestari et al. 2019 Mol Biol Cell).
3) More details need to be provided for ChIPseq and RNAseq analysis regarding the read numbers per sample, mapping quality, etc.
Table S3 includes information on sequencing throughput and read length. Mapping quality was included in the Methods section “Computational analysis of RNA-seq and ChIP-seq”, starting at line 499. In summary, we filtered reads to keep primary alignment (eliminate supplementary and secondary alignments). We also analyzed ChIP-seq with MAPQ ≥20 (99% probability of correct alignment) to distinguish RAP1 binding to specific ESs, including silent vs active ES (ChIP-seq). We included Fig S4 to show the effect of filtering alignments on the active vs silent ESs. We used MAPQ ≥30 to analyze RNA-seq mapping to VSG genes, including those in subtelomeric regions. Our scripts are available at https://github.com/cestari-lab/lab_scripts. We also included in the Methods, lines 522-524: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestarilab/VSG-Bar-seq.”
4) The authors should revise the Discussion section to clearly state the authors' speculations and their working models (the latter of which need solid supporting evidence). Specifically, statements in lines 218 - 219 and lines 224-226 need to be revised.
The statement “likely due to RAP1 conformational changes” in line 228 discusses how binding of PI(3,4,5)3 could affect RAP1 Myb and MybL domains binding to DNA. We did not make a strong statement but discussed a possibility. We believe that it is beneficial to the reader to have the data discussed, and we do not feel this point is overly speculative. For lines 224-226 (now 234-235), the statement refers to the finding of RAP1 binding to centromeric regions by ChIP-seq, which is a new finding but not the focus of this work. To make it clear that it does not refer to telomeric ESs, we edited: “The finding of RAP1 binding to subtelomeric regions other than ESs, including centromeres, requires further validation.” Since RAP1 binding to centromeres is not the focus of the work, future studies are necessary to follow up, and we believe it is appropriate in the Discussion to be upfront and highlight this point to the readers.
Our model is based on the data presented here but also on scientific literature. We have reviewed the Discussion to prevent broad speculations. When discussing a model, we stated (line 245): “The scenario suggests a model in which …”, to state that this is a working model. Similarly, in Results (line 201) we included: “Our data suggest a model in which…”.
5) The authors should revise the title to reflect a more reasonable conclusion of the study.
We agree that the title should be changed to imply a direct role of PI(3,4,5)P3 regulation of RAP1, which is not captured in the original title. This will provide more specific information to the readers, especially those broadly interested in telomeric gene regulation and RAP1. The new title is: PI(3,4,5)P3 allosteric regulation of repressor activator protein 1 controls antigenic variation in trypanosomes
6) The authors are recommended to provide an estimation of the expression level of the V5-tagged PIP5pase from the tubulin array in reference to the endogenous protein level.
The relative mRNA levels of the exclusive expression of PIP5Pase mutant compared to the wildtype is available in the Data S1, RNA-seq. The Mut PIP5Pase allele’s relative expression level is 0.85fold to the WT allele (both from tubulin loci). We also showed by Western blot the WT and Mut PIP5Pase protein expression (Cestari et al. 2019, Mol Cell Biol). Concerning PIP5Pase endogenous alleles, we compared normalized RNA-seq counts per million from the conditional null PIP5Pase cells exclusively expressing WT or the Mut PIP5Pase alleles (Data S1, this work) to our previous RNA-seq of single-marker 427 strain (Cestari et al. 2019, Mol Cell Biol). We used the single-maker 427 because the conditional null cells were generated in this strain background. The PIP5Pase WT and Mut mRNAs expressed from tubulin loci are 1.6 and 1.3-fold the endogenous PIP5Pase levels in single-marker 427, respectively. We included a statement in the Methods, lines 275-278: “The WT or Mut PIP5Pase mRNAs exclusively expressed from tubulin loci are 1.6 and 1.3-fold the WT PIP5Pase mRNA levels expressed from endogenous alleles in the single marker 427 strain. The fold-changes were calculated from RNA-seq counts per million from this work (WT and Mut PIP5Pase, Data S1) and our previous RNA-seq from single marker 427 strain (24).”
7) The authors are recommended to provide more detailed EMSA conditions such as protein and substrate concentrations. Better quality EMSA gels are preferred.
All concentrations were already provided in the Methods section. See line 356, in topic Electrophoretic mobility shift assays: “100 nM of annealed DNA were mixed with 1 μg of recombinant protein…”. For microscale thermophoresis, also see lines 375-376 in topic Microscale thermophoresis binding kinetics: “1 μM rRAP1 was diluted in 16 two-fold serial dilutions in 250 mM HEPES pH 7.4, 25 mM MgCl2, 500 mM NaCl, and 0.25% (v/v) N P-40 and incubated with 20 nM telomeric or 70 bp repeats…”. Note that two different biochemical approaches, EMSA and microscale thermophoresis, were used to assess rRAP1-His binding to DNA. Both show agreeable results (Fig 3 and 5, and Fig S5. Microscale thermophoresis shows the binding kinetics, data available in Table 1). The EMSA images clearly show the binding of RAP1 to 70 bp or telomeric repeats but not to scramble telomeric repeat DNA.
Reviewer #2 (Recommendations For The Authors):
Major comments:
Figures
All figures should have their axes properly labeled and units should be indicated. For many of the ChIPseq datasets it is not clear whether the authors show a fold enrichment or RPM and whether they used all reads or only uniquely mapping reads. Especially the latter is a very important piece of information when analyzing expression sites and should always be reported. The authors write, that all RNA-seq and ChIP-seq experiments were performed in triplicate. What is shown in the figures, one of the replicates? Or the average?
ChIP-seq is shown as fold enrichment; we clarified this in the figures by including in the y-axis RAP1-HA ChIP/Input (log 2). We included in figure legends, see line 710: “Data show fold-change comparing ChIP vs Input.”. For quantitative graphs (Fig 2B, D, and E, and Fig 5F and G), data are shown as the mean of biological replicates. Graphs generated in the integrated genome viewer (IGV, qualitative graphs) is a representative data (Fig 2A, C, and F, and Fig 5D-E). All statistical analyses were calculated from the three biological replicates. Uniquely mapped reads were used. We also included ChIP-seq analysis with MAPQ ≥10 and 20 (90% and 99% probability of correct alignment, respectively) to distinguish RAP1 binding to ESs. Fig S4 shows the various mapping stringency and demonstrates the enrichment of RAP1-HA to silent vs active ES.
Figure 1 is very important for the main argument of the manuscript, but very difficult (impossible for me) to fully understand. It would be great if the author could make an effort to clarify the figure and improve the labels. Panel Fig 1E. Here it is impossible to read the names of the genes that are activated and therefore it is impossible to verify the statements made about the activation of VSGs and the switching.
We have edited Fig 1E to include the most abundant VSGs, which decreased the amount of information in the graph and increased the label font. We also re-labeled each VSG with chromosome or ES name and common VSG name when known (e.g., VSG2). We included Table S1 in the supplementary information with the data used to generate Fig 1E. In Table S1, the reader will be able to check the VSG gene IDs and evaluate the data in detail. We included in the legend, line 700: “See Table S1 for data and gene IDs of VSGs.”
Figure 1F: This panel is important and should be shown in more detail as it distinguishes VSG switching from a general VSG de-repression phenotype. VSG-seq is performed in a clonal manner here after PIP5Pase KD and re-expression. To show that proper switching has occurred place in the different clones, instead of a persistent VSG de-repression, the expression level of more VSGs should be shown (e.g. as in panel E) to show that there is really only one VSG detected per clone. For example, it is not clear what the authors 'called' the dominant VSG gene.
We showed in supplementary information Fig S1 B-C examples of reads mapping to the VSGs. Now we included a graph (Fig S1 D) that quantifies reads mapped to the VSG selected as expressed compared to other VSG genes considered not expressed). The data show an average of several clones analyzed. Other VSGs (not selected) are at the noise level (about 4 normalized counts) compared to >250 normalized counts to the selected as expressed VSGs.
As mentioned in the public comments, I don't see how the data from Fig 1E and 1F fit together. Based on Fig 1E VSG2 is the dominant VSG, based on Fig 1F VSG2 is almost never the dominant VSG, but the VSG from BES 12.
In Fig 1E, the VSG2 predominates in cells expressing WT PIP5Pase, however, in cells expressing Mut PIP5Pase, this is not the case anymore. Many other VSGs are detected, and other VSG mRNAs are more abundant than VSG2 (see color intensity in the heat map). The Mut cells may also have remaining VSG2 mRNAs (from before switching) rather than continuous VSG2 expression. This is the reason we performed the clonal analysis shown in Fig 1F, to be certain about the switching. While Fig 1F shows potential switchers in the population, Fig 1E confirms VSG switching in clones.
Many potential switchers were detected in the VSG-seq (Fig 1F, the whole cell population is over 107 parasites), but not all potential switchers were detected in the clonal analysis because we analyzed 212 clones total, a fraction of the over 107 cells analyzed by VSG-seq (Fig 1E). Also, it is possible that not all potential switchers are viable. A preference for switching to specific ESs has been observed in T. brucei (Morrison et al. 2005, Int J Parasitol; Cestari and Stuart, 2015, PNAS), which may explain several clones switching to BES12.
Note that in Fig 1F, tet + cells did not switch VSGs at all; all 118 clones expressed VSG2. We relabeled Fig 1F for clarity and included the VSG names. We added gene IDs in the Figure legends, see line 702 “ BES1_VSG2 (Tb427_000016000), BES12_VSG (Tb427_000008000)…”
Statements in Introduction / Discussion
The statement in lines 82/83 is very strong and gives the impression that the PIP5Pase-Rap1 circuit has been proven to regulate antigenic variation in the host. However, I don't think this is the case. The paper shows that the pathway can indeed turn expression sites on and off, but there is no evidence (yet) that this is what happens in the host and regulates antigenic variation during infection. The same goes for lines 214/215 in the discussion.
We agree with the reviewer, and we edited these statements. The statement lines 82-83: “The data provide a molecular mechanism…” to “The data indicates a molecular mechanism…” For lines 224225: “and provides a mechanism to control…” to “and indicates a mechanism to control…”. We also included in lines 261-262: “It is unknown if a signaling system regulates antigenic variation in vivo.” Also edited lines 262-263: “…the data indicate that trypanosomes may have evolved a sophisticated mechanism to regulate antigenic variation...”.
New vs old data
In general, for Figures 1 - 4, it was a bit difficult to understand which panels showed new findings, and which panels confirmed previous findings (see below for specific examples). In the text and in the figure design, the new results should be clearly highlighted. Authors: All data presented is new, detailed below.
Figure 1: A similar RNA-seq after PIP5Pase deletion was performed in citation 24. Perhaps the focus of this figure should be more on the (clone-specific) VSG-seq experiment after PIP5Pase re-introduction.
This is the first time we show RNA-seq of T. brucei expressing catalytic inactive PIP5Pase, which establishes that the regulation of VSG expression and switching, and repression of subtelomeric regions, is dependent on PIP5Pase enzyme catalysis, i.e., PI(3,4,5)P3 dephosphorylation. Hence, the relevance and difference of the RNA-seq here vs the previous RNA-seq of PIP5Pase knockdown.
Figure 2: A similar ChIP-seq of RAP1 was performed in citation 24, with and without PIP5Pase deletion. Could new findings be highlighted more clearly?
Our and others’ previous work showed ChIP-qPCR, which analyses specific loci. Here we performed ChIP-seq, which shows genome-wide binding sites of RAP1, and new findings are shown here, including binding sites in the BES, MESs, and other genome loci such as centromeres. We also identified DNA sequence bias defining RAP1 binding sites (Fig 2A). We also show by ChIP-seq how RAP1-binding to these loci changes upon expression of catalytic inactive PIP5Pase. To improve clarity in the manuscript, we edited lines 129-130: “We showed that RAP1 binds telomeric or 70 bp repeats (24), but it is unknown if it binds to other ES sequences or genomic loci.”
Figure 4: Binding of Rap1 to PI(3,4,5)P3, but not to other similar molecules, was previously shown in citation 24. Could new findings be highlighted more clearly?
We published in reference 24 (Cestari et al. Mol Cell Biol) that RAP1-HA can bind agarose beadsconjugated synthetic PI(3,4,5)P3. Here, we were able to measure T. brucei endogenous PI(3,4,5)P3 associated with RAP1-HA (Fig 4F). Moreover, we showed that the endogenous RAP1-HA and PI(3,4,5)P3 binding is about 100-fold higher when PIP5Pase is catalytic inactive than WT PIP5Pase. The data establish that in vivo endogenous PI(3,4,5)P3 binds to RAP1-HA and how the binding changes in cells expressing mutant PIP5Pase; this data is new and relevant to our conclusions. To clarify, we edited the manuscript in lines 180-182: “To determine if RAP1 binds to PI(3,4,5)P3 in vivo, we in-situ HA-tagged RAP1 in cells that express the WT or Mut PIP5Pase and analyzed endogenous PI(3,4,5)P3 levels associated with immunoprecipitated RAP1-HA”.
Sequencing.<br /> I really appreciate the amount of detail the authors provide in the methods section. The authors do an excellent job of describing how different experiments were performed. However, it would be important that the authors also provide the basic statistics on the sequencing data. How many sequencing reads were generated per run (each replicate of the ChIP-seq and RNA-seq assays)? How long were the reads? How many reads could be aligned?
The sequencing metrics for RNA-seq and ChIP-seq for all biological replicates were included in Table S3 (supplementary information). The details of the analysis and sequencing quality were described in the Methods section “Computational analysis of RNA-seq and ChIP-seq”. To be clearer about the analysis, we also included in Methods, lines 522-524: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestari-lab/VSG-Bar-seq.”.
Minor comments:
Figure 1B: I would recommend highlighting the non-ES VSGs and housekeeping genes with two more colors in the volcano plot, to show that it is mostly the antigen repertoire that is deregulated, and not the Pol ll transcribed housekeeping genes. This is not entirely clear from the panel as it is right now.
The suggestion was incorporated in Fig 1B. We color-coded the figure to include BES VSGs, MES VSGs, ESAGs, subtelomeric genes, core genes (typically Pol II and Pol III transcribed genes), and Unitig genes, those genes not assembled in the 427-2018 reference genome.
Were the reads in Figure 2a filtered in the same way as those in Figure 2C? To support the statements, only unique reads should be used.
Yes, we also added Fig S4 to make more clear the comparison between read mapping to silent vs active ES.
It would be good if the authors could add a supplementary figure showing the RAP1 ChIP-seq (WT and cells lacking a functional PIP5Pase) for all silent expression sites.
We had RAP1 ChIP-seq from cells expressing WT PIP5Pase already. We have it modified to include data from the Mutant PIP5Pase. See Fig S3 and S5.
In Figure 5D, after depletion of PIP5Pase, RAP1 binding appears to decrease across ESAGs, but ESAG expression appears to increase. How can this be explained with the model of RAP1 repressing transcription?
We included in the Results, lines 208-212: “The increased level of VSG and ESAG mRNAs detected in cells expressing Mut PIP5Pase (Fig 5D) may reflect increased Pol I transcription. It is possible that the low levels of RAP1-HA at the 50 bp repeats affect Pol I accessibility to the BES promoter; alternatively, RAP1 association to telomeric or 70 bp repeats may affect chromatin compaction or folding impairing VSG and ESAG genes transcription.”.
Reviewer #3 (Recommendations For The Authors):
Line 114 - typo? Procyclic instead of procyclics:
Fixed, thanks.
Line 233 - the phrasing here is confusing, may want to replace "whose" with "which" (if I am interpreting correctly):
Thanks, no changes were needed. I have had the sentence reviewed by a Ph.D.-level scientific writer.
Methods - there is no description of VSG-seq analysis in the methods. Is it done the same way as the RNA-seq analysis? Is the code for analysis/generating figures available online?
The procedure is similar. We included an explanation in Methods, lines 503-504: “RNA-seq and VSG-seq (including clonal VSG-seq) mapped reads were quantified…”. Also, in lines 522-54: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestarilab/VSG-Bar-seq.”.
Fig 1H - Is this from RNA-seq or VSG-seq analysis of procyclics?
The procyclic forms VSG expression analysis was done by real-time PCR. To clarify it, we included it in the legend “Expression analysis of ES VSG genes after knockdown of PIP5Pase in procyclic forms by real-time PCR”. We also amended the Methods, under the topic RNA-seq and real-time PCR, line 402-407: “For procyclic forms, total RNAs were extracted from 5.0x108 T. brucei CN PIP5Pase growing in Tet + (0.5 µg/mL, no knockdown) or Tet – (knockdown) at 5h, 11h, 24h, 48h, and 72h using TRIzol (Thermo Fisher Scientific) according to manufacturer's instructions. The isolated mRNA samples were used to synthesize cDNA using ProtoScript II Reverse Transcriptase (New England Biolabs) according to the manufacturer's instructions. Real-time PCRs were performed using VSG primers as previously described (23).”
Fig 2 A - Where it says "downstream VSG genes" I assume "downstream of VSG genes" is meant? the regions described in this figure might be more clearly laid out in the text or the legend
Fixed, thanks. We included in the text in Results, line 140: “… and Ts and G/Ts rich sequences downstream of VSG genes”.
Fig 2E - what does "Flanking VSGs" mean in this context?
We added to line 705, figure legends: “Flanking VSGs, DNA sequences upstream or downstream of VSG genes in MESs. “
Fig 2H - Why is the PIP5Pase Mutant excluded from the Chr_1 core visualization?
We did not notice it. We included it now; thanks.
-
Reviewer #1 (Public Review):
Comments on the original submission:
Trypanosoma brucei undergoes antigenic variation to evade the mammalian host's immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) has shown that PIP5pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1-300, aa301-560, and aa 561-855). These fragments' DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulate the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author's hypothesis that this regulation is through an "allosteric switch".
Comments on revised manuscript:
In this revised manuscript, Touray et al. have responded to reviewers' comments with some revisions satisfactorily. However, the authors still haven't addressed some key scientific rigor issues, which are listed below:
1. It is critical to clearly state whether the observations are made for the endogenous WT protein or the tagged protein. It is good that the authors currently clearly indicate the results observed in vivo are for the RAP1-HA protein. However, this is not as clearly stated for in vitro EMSA analyses. In addition, in discussion, the authors simply assumed that the c-terminally tagged RAP1 behaves the same as WT RAP1 and all conclusions were made about WT RAP1.
There are two choices here. The authors can validate that RAP1-HA still retains RAP1's essential function as a sole allele in T. brucei cells (as was recommended previously). Indeed, HA-tagged RAP1 has been studied before, but it is the N-terminally HA-tagged RAP1 that has been shown to retain its essential functions. Adding the HA tag to the C-terminus of RAP1 may well cause certain defects to RAP1. For example, N-terminally HA-tagged TERT does not complement the telomere shortening phenotype in TERT null T. brucei cells, while C-terminally GFP-tagged TERT does, indicating that HA-TERT is not fully functional while TERT-GFP likely has its essential functions (Dreesen, RU thesis). Although RAP1-HA behaves similar to WT RAP1 in many ways, it is still not fully validated that this protein retains essential functions of RAP1. By the way, it has been published that cells lacking one allele of RAP1 behave as WT cells for cell growth and VSG silencing (Yang et al. 2009, Cell; Afrin et al. 2020, mSphere). In addition, although RAP1 may interact with TRF weakly, the interaction is direct, as shown in yeast 2-hybrid analysis in (Yang et al. 2009, Cell).
Alternatively, if the authors do not wish to validate the functionality of RAP1-HA, they need to add one paragraph at the beginning of the discussion to clearly state that RAP1-HA may not behave exactly as WT RAP1. This is important for readers to better interpret the results. In addition, the authors need to tune down the current conclusions dramatically, as all described observations are made on RAP1-HA but not the WT RAP1.
For a similar reason, the current EMSA results truly reflect how C-terminally His6-tagged RAP1 and RAP1 fragments behave. If the authors choose not to remove the His6 tag, it is essential that they use "RAP1-His6" to refer to these recombinant proteins. It is also essential for the authors to clearly state in the discussion that the tagged RAP1 fragments bind DNA, but the current data do not reveal whether WT RAP1 binds DNA. In addition, the authors incorrectly stated that "disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166). In ref 29, deletion of Myb domain did not abolish RAP1-telomere association. However, point mutations in MybL domain that abolish RAP1's DNA binding activities clearly disrupted RAP1's association with the telomere chromatin. Therefore, the current observation is not completely consistent with that published in ref 29.
2. There is no evidence, in vitro or in vivo, that binding PI(3,4,5)P3 to RAP1 causes conformational change in RAP1. The BRCT domain of RAP1 is known for its ability to homodimerize (Afrin et al. 2020, mSphere). It is therefore possible that binding of PI(3,4,5)P3 to RAP1 simply disrupts its homodimerization function. The authors clearly have extrapolated their conclusions based on available data. It is therefore important to revise the discussion and make appropriate statements.
-
-
cybermental.github.io cybermental.github.ioPages1
-
Only tags present on the page are shown; to interact with tags from elsewhere, use Tag Lookup
This works as the info or trend button. It is configured on in the Page editor and shows only specific tags for that page. But it not restricted to tags in the page itself but configured in the page editor.
-
-
www.alignmentforum.org www.alignmentforum.org
-
Outer alignment asks the question - "What should we aim our model at?" In other words, is the model optimizing for the correct reward such that there are no exploitable loopholes? It is also known as the reward misspecification problem.
[!NOTE] Outer Alignment / Reward Misspecification Promblem 是指什么?
flashcard
模型是否在向人类真正的目标优化
-
-
www.alignmentforum.org www.alignmentforum.org
-
Inner alignment asks the question - “Is the model trying to do what humans want it to do?”, or in other words can we robustly aim our AI optimizers at any objective function at all?
[!NOTE] Inner Alignment 的基本思想是?
flashcard
确保模型确实在向特定目标优化
-
-
www.alignmentforum.org www.alignmentforum.org
-
AI Boxing is attempts, experiments, or proposals to isolate ("box") a powerful AI (~AGI) where it can't interact with the world at large, save for limited communication with its human liaison. It is often proposed that so long as the AI is physically isolated and restricted, or "boxed", it will be harmless even if it is an unfriendly artificial intelligence (UAI).
[!NOTE] 将 AI 隔绝在“容器”中的做法在英语中可以称为?
flashcard
AI Boxing/Containment
-
-
namakala.github.io namakala.github.io
-
block a text with the cursor
This is how an annotated text looks like. You can use
markdown
to comment as well. Even an equation such as $$e = m \cdot c^2$$ will render nicely.
-
-
jasonwmoore.wordpress.com jasonwmoore.wordpress.com
-
The Capitalocene challenges the Popular Anthropocene’s Two Century model of modernity – a model that has been the lodestar of Green Thought since the 1970s (Moore 2017a).
It thus sees modernity as a longer phenomenon, that goes well beyond the IR
-
-
docs.google.com docs.google.com
-
musicbrainz.org musicbrainz.org
-
Morgen ist auch noch kein Tag
Schall 28 – S. 112
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Anderson, Henikoff, Ahmad et al. performed a series of genomics assays to study Drosophila spermatogenesis. Their main approaches include (1) Using two different genetic mutants that arrest male germ cell differentiation at distinct stages, bam and aly mutant, they performed CUT&TAG using H3K4me2, a histone modification for active promoters and enhancers; (2) Using FACS sorted pure spermatocytes, they performed CUT&TAG using antibodies against RNA PolII phosphorylated Ser 2, H4K16ac, H3K9me2, H3K27me3, and ubH2AK118. They also compare these chromatin profiling results with the published single-cell and single-nucleus RNA-seq data. Their analyses are across the genome but the major conclusions are about the chromatin features of the sex chromosomes. For example, the X chromosome is lack of dosage compensation as well as inactivation in spermatocytes, while Y chromosome is activated but enriched with ubH2A in spermatocytes. Overall, this work provides high-quality epigenome data in testes and in purified germ cells. The analyses are very informative to understand and appreciate the dramatic chromatin structure change during spermatogenesis in Drosophila. Some new analyses and a few new experiments are suggested here, which hopefully further take advantage of these data sets and make some results more conclusive.
Major comments:
1). The step-wise accumulation of H3K4me2 in bam, aly and wt testes are interesting. Is it possible to analyse the cis-acting sequences of different groups of genes with distinct H3K4me2 features, in order to examine whether there is any shared motif(s), suggesting common trans-factors that potentially set up the chromatin state for activating gene expression in a sequential manner?
2). Pg. 4, line 141-142: "we cannot measure H3K4me2 modification at the bam promoter in bam mutant testes or at the aly promoter in aly mutant testes", what are the allelic features of the bam mutant and aly mutant? Are the molecular features of these mutations preventing the detection of H3K4me2 at the endogenous genes' promoters? Also, the references cited (Chen et al., 2011) and (Laktionov et al., 2018) are not the original research papers where these two mutants were characterized.
3). The original paper that reported the Pc-GFP line and its localization is: Chromosoma 108, 83 (1999). The Pc-GFP is ubiquitously expressed and almost present in all cell types. In Figure 6B, there is no Pc-GFP signals in bam and aly mutant cells. According to the Method "one testis was dissected", does it mean that only one testis was prepared for immunostaining and imaging? If so, definitely more samples should be used for a more confident conclusion. Also, why use 3rd instar larval testes instead of adult testes? Finally, it is better to compare fixed tissue and live tissue, as the Pc-GFP signal could be lost during fixation and washing steps. Please refer to the above paper [Chromosoma 108, 83 (1999)] for Pc-GFP in spermatogonial cells and Development 138, 2441-2450 (2011) for Pc-GFP localization in aly mutant.
4). Ubiquitinylation of histone H2A is typically associated with gene silencing, here it has been hypothesized that ubH2A contributes to the activation of Y chromosome. This conclusion is strenuous, as it entirely depends on correlative results. For example, the lack of co-localization of ubH2A immunostaining and Pc-GFP are not convincing evidence that ubH2A is not resulting from PRC1 dRing activity. It would be a lot stronger conclusion by using genetic tools to show this. For example, if dRing is knocked down (using RNAi driven by a late-stage germline driver such as bam-Gal4) or mutated in spermatocytes (using mitotic clonal analysis), would they detect changes of ubH2A levels?
5). Regarding "X chromosome of males is thought to be upregulated in early germline cells", it has been shown that male-biased genes are deprived on the X chromosome [Science 299:697-700 (2003); Genome Biol 5:R40 (2004); Nature 450:238-241 (2007)], so are the differentiation genes of spermatogenesis [Cell Research 20:763-783 (2010)]. It would be informative to discuss the X chromatin features identified in this work with these previous findings. For example, the lack of RNAPII on X chromosome in spermatocytes could be due to a few differentiation genes expressed in spermatocytes located on the X chromosome.
-
-
www.technologyreview.com www.technologyreview.com
-
The value of provenance information Adding provenance information to media to combat misinformation is not a new idea, and early research seems to show that it could be promising: one project from a master’s student at the University of Oxford, for example, found evidence that users were less susceptible to misinformation when they had access to provenance information about content.
How computationally expensive is this to tag content in this way?
-
-
-
```js // Create a portal with the wikipedia page, and embed it // (like an iframe). You can also use the <portal> tag instead. portal = document.createElement('portal'); portal.src = 'https://en.wikipedia.org/wiki/World_Wide_Web'; portal.style = '...'; document.body.appendChild(portal);
// When the user touches the preview (embedded portal): // do fancy animation, e.g. expand … // and finish by doing the actual transition. // For the sake of simplicity, this snippet will navigate // on the
onload
event of the Portals element. portal.addEventListener('load', (evt) => { portal.activate(); });// Adding some styles with transitions const style = document.createElement('style'); style.innerHTML =
portal { position:fixed; width: 100%; height: 100%; opacity: 0; box-shadow: 0 0 20px 10px #999; transform: scale(0.4); transform-origin: bottom left; bottom: 20px; left: 20px; animation-name: fade-in; animation-duration: 1s; animation-delay: 2s; animation-fill-mode: forwards; } .portal-transition { transition: transform 0.4s; } @media (prefers-reduced-motion: reduce) { .portal-transition { transition: transform 0.001s; } } .portal-reveal { transform: scale(1.0) translateX(-20px) translateY(20px); } @keyframes fade-in { 0% { opacity: 0; } 100% { opacity: 1; } }
; const portal = document.createElement('portal'); // Let's navigate into the WICG Portals spec page portal.src = 'https://wicg.github.io/portals/'; // Add a class that defines the transition. Consider using //prefers-reduced-motion
media query to control the animation. // https://developers.google.com/web/updates/2019/03/prefers-reduced-motion portal.classList.add('portal-transition'); portal.addEventListener('click', (evt) => { // Animate the portal once user interacts portal.classList.add('portal-reveal'); }); portal.addEventListener('transitionend', (evt) => { if (evt.propertyName == 'transform') { // Activate the portal once the transition has completed portal.activate(); } }); document.body.append(style, portal); ``````js // Feature detection
if ('HTMLPortalElement' in window) { // If this is a platform that have Portals... const portal = document.createElement('portal'); ... } ```
js // Detect whether this page is hosted in a portal if (window.portalHost) { // Customize the UI when being embedded as a portal }
```js // Send message to the portal element const portal = document.querySelector('portal'); portal.postMessage({someKey: someValue}, ORIGIN);
// Receive message via window.portalHost window.portalHost.addEventListener('message', (evt) => { const data = evt.data.someKey; // handle the event }); ```
Tags
Annotators
URL
-
-
Tags
Annotators
URL
-
-
en.wikipedia.org en.wikipedia.org
-
edge representation</span></h3>\n<p>Kn
cool feature
-
traditional goals of AI research
Testing one
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
Reviewer #1 (Public Review):
The Authors of this study have investigated the consequence of knocking out protein 4.1B on hippocampal interneurons. They observed that in 4.1B KO mice, the myelinization of axons of PV and SST interneurons was altered. In addition, the molecular organization of the nodal, heminodal, and juxtaparanodal parts of the interneuron axons was disrupted in 4.1B KO mice. Further, the authors found some changes in spiking features of SST, but not PV interneurons as well as synaptic inhibition recorded in CA1 pyramidal cells. Lastly, 4.1B KO mice showed some impairment in spatial memory.
Strengths
One of the strengths of this MS is the multilevel approach to the question of how myelinization of interneuron axons can contribute to hippocampal functions. Further, the cell biological results support the claim of the reorganization of channel distributions at axonal nodes.
Weaknesses
1) Although the authors acknowledge that SST is expressed in different GABAergic cell types in the hippocampus, they claim that OLM cells, which express SST are subject to changes in 4.1B KO mice. However, this claim is not supported by data. Both OLM cells and GABAergic projection cells expressing SST have many long-running axons in the stratum radiatum, where the investigations have been conducted (e.g. Gulyas et al., 2003; Jinno et al., 2007). Thus, the SST axons can originate from any of these cell types. In addition, both these GABAergic cells have a sag in their voltage responses upon negative current injections (e.g. Zemankovics et al., 2010), making it hard to separate these two SST inhibitory cell types based on the single-cell features. In summary, it would be more appropriate to name the sampled interneurons as SST interneurons. Alternatively, the authors may want to label intracellularly individual interneurons to visualize their dendrites and axons, which would allow them to verify that the de-myelinization occurs along the axons of OLM cells, but not SST GABAergic projection neurons.
We agree and named the sampled interneurons as SST interneurons throughout the text. We acknowledge that SST GABAergic projection cells have long-running axons in the stratum radiatum (Gulyas et al., 2003; Jinno et al., 2007) that may be also dysmyelinated. See Results lanes 200 and 350.
2) Although both the cellular part and the behavioral part are interesting, there is no link between them at present. The changes observed in spatial memory tests may not be caused by the changes in the axonal de-myelinization of hippocampal interneurons. Such a claim can be made only using rescue experiments, since changes in 4.1B KO mice leading to behavioral alterations may occur i) in other cell types and ii) in other regions, which have not been investigated.
Alteration of spatial memory has not been previously reported in the 4.1B KO mice. Our results leave open the possibility that dysmyelination of inhibitory interneurons in the hippocampus may induce impaired cognitive ability (see preprint). We agree that future studies investigating a putative rescue of spatial memory by means of virus-mediated expression of 4.1B in hippocampal Lhx6 interneurons would be very informative.
Reviewer #2 (Public Review):
In this study, Pinatel et al. address the role of interneuron myelination in the hippocampus using a 4.1B protein mouse knockout model. They show that deficiency in 4.1B significantly reduces myelin in CA1 stratum radiatum, specifically myelin along axons of parvalbumin and somatostatin hippocampal interneurons. In addition, there are striking defects in the distribution of ion channels along myelinated axons, with misplacement of Na channel clusters along the nodes of Ranvier and the heminodes, and a pronounced decrease in potassium channels (Kv1) at juxtaparanodes. The axon initial segments of SST are also shorter. Because the majority of myelinated axons in the stratum radiatum of the hippocampus belong to PV and SST interneurons such profound changes in myelination are expected to affect interneuronal function. Interestingly, the authors show that PV basket cells' properties appear largely unaffected, while there are substantial changes in stratum oriens O-LM cells. Inhibitory inputs to pyramidal neurons are also changed. Behaviorally, the 4.1B KO mice exhibit deficits in spatial working memory, supporting the role of interneuronal myelination in hippocampal function. This study provides important insights into the role of myelination for the function of inhibitory interneurons, as well as in the mechanisms of axonal node development and ion channel clustering, and thus will be of interest to a broad audience of circuit and cellular neuroscientists. However, the claims of the specificity of the reported changes in myelination need to be better supported by evidence.
Strengths:
The authors combine a wide array of genetic, immunolabeling, optical, electrophysiological, and behavioral tools to address a still unresolved complex problem of the role of myelination of locally projecting inhibitory interneurons in the hippocampus. They convincingly show that changing myelination and ion channel distribution along nodes and heminodes significantly impairs the function of at least some interneuron types in the hippocampus and that this is accompanied by behavioral deficits in spatial memory.
Regarding the organization of myelinated axons, the lack of 4.1B causes striking changes at the nodes of Ranvier that are convincingly and beautifully presented in the Figures. While the reduction in Kv1 in 4.1B KO mice has been previously reported, the mislocalization of sodium channels at the nodes and heminodes had only been observed in developing but not adult spinal cords. This difference in the dependence of the sodium channel distribution on 4.1B in adult hippocampus vs spinal cord may hold important clues for the varying role of myelin along axons of different neuronal types.
The manuscript is very well written, the discussion is comprehensive, and provides detailed background and analysis of the current findings and their implications.
Weaknesses:
Because of the wide diversity of interneuron types in the hippocampus, and also the presence of myelinated axons from other neuron types as well, including pyramidal neurons, it is very difficult to disentangle the effects of the observed changes in the 4.1 B KO mouse model. While the authors have been careful to explore different possibilities, some of the claims of the specificity of the reported changes in myelination are not completely founded. For example, there is no compelling evidence that the myelination of axons other than the local interneurons is unchanged. The evidence strongly supports the claims of changes in interneuronal myelination, but it leaves open the question of whether 4.1B lack affects the myelination of hippocampal pyramidal neurons or of long-range projections.
This is an important question also raised by Reviewer 1. We have now quantified the density of paranodes in the alveus as shown in Figure 1I. Paranode density was not affected in the alveus nor in the stratum lacunosum-moleculare suggesting that myelinated axons connecting extra-hippocampal areas may be preserved. In particular, this is an indication that the axons of pyramidal neurons that run into the alveus should be properly myelinated.
To be able to better interpret the changes in the 4.1B KO mice, knowledge of the distribution of 4.1B in the hippocampus of control mice will be very helpful. The authors state that 4.1B is observed in PV neurons but not in pyramidal neurons, however, the evidence is not convincing. Thus, the lack of immunolabeling at the pyramidal neuron cell bodies does not indicate that 4.1B is missing at the axonal level. The analysis also leaves out the question of whether 4.1 B is seen in the axons of somatostatin neurons.
We agree and do not exclude that 4.1B may be expressed along the axons of pyramidal neurons. We performed double-staining for SST and 4.1B to show that 4.1B is localized along the internode and enriched at the paranodes of SST axons as observed for PV axons (Figure 4F). The enrichment of 4.1B in GABAergic neurons was previously observed in premyelinated hippocampal cell culture (Bonetto et al. 2019).
Reviewer #3 (Public Review):
Pinatel and colleagues addressed a currently understudied topic in neurobiology, namely, the architecture and function of myelination in subsets of Parvalbumin (PV)- and Somatostatin (SST)-positive GABAergic hippocampal interneurons and its dependence on juxtaparanodal organizer proteins. In order to elucidate the structural and functional implications of interneuron myelination, the authors visualized inhibitory neurons by utilizing a Lhx2-Lhx6 tdTomato reporter line in combination with mutants for crucial membrane and cytoskeletal linker proteins such as Contactin2/TAG-1, Caspr2, and Protein 4.1B. They then applied a comprehensive set of histological, electrophysiological, and behavioral experiments to dissect the role these proteins play in proper myelination and function of PV- and SST-interneurons.
The bulk of the study's data is based on immunofluorescence, which is presented in a number of figures comprised of high-quality images. As much as this is a strength of the study, the underlying image analysis as described in the methods falls short. All structural data rely on the measurements of physical parameters such as length of internodes, the distance between (juxta)paranode and node, the distance between node and myelin sheath, length of the axon initial segment (AIS), etc. In light of this, and considering the small physical dimensions of the nodal region in general, the methods remain unclear about the depth of 3D reconstruction/deconvolution applied to the samples. Measurements presented in the results show significant differences in sub-micrometer dimension, which at least according to the stated methods, are unlikely to be precise given that the confocal imaging parameters do not seem to reach Nyquist conditions. For a study in which a third of all data is aimed at elucidating (sub)micrometer changes, this is crucial and the study would benefit from a more rigorous method description by the authors.
Another methodological weakness is the somewhat small n, and its incoherence across the experiments and therefore, the statistics performed in some of the experiments. Statistics are based on either n for animals, or n for individual data points from several animals. Why is not all data represented as mean/animal? Also, the sampling in general with n = 3 animals is borderline acceptable; in some cases, it seems that only 2 animals were used, and in others, no number is given at all (please refer to author comments for details). This needs to be addressed, either by explaining why so few animals were used, or by adding more data from individual animals.<br /> Assigning structures (AIS, nodes) as n results in overstating effects, since especially for AIS, there is significant heterogeneity in the length across neurons from the same type, and this is masked when 100 AIS are considered as individual n instead 100 AIS per animal, and the animal is (correctly) the n.
Since the study seems to switch back and forth between these assignments, it would be helpful to level these data across all experiments unless there are specific reasons not to do so, which then need to be explained. As outlined in the methods, all values are given as means {plus minus} SEM; this needs to be corrected for those cases where the standard deviation is the appropriate choice (e.g. all graphs showing n = individual structure, and not the mean of an animal).
As far as the analysis of geometrical AIS changes is concerned, the method section should be extended to address how, if at all, AIS length and position were analyzed in 3D, also considering the somewhat "spotty" immunosignal outlined in Fig. 8D.
We agree with all these comments. We improved Fig.1 I and J by adding more data (n=4 mice). We would like to point out that the phenotype of the 4.1B KO mice is highly penetrant. The selective loss of myelin in the hippocampus was observed in the two different genetic background (4.1B-/- and 4.1B-/-;Lhx6;tdTomato mice) and at all the ages examined (P25P180).
For the quantitative morphological analysis: We considered “n=number of animals” in Figure 1 to describe the massive and selective alteration of myelin in the hippocampus of 4.1B KO mice. In the following Figures, we considered n=ROIs (Figure 2, Figure 3, Figure 6) for the density of SST and PV interneurons or oligodendroglial cells and n=individual structures (Figure 4, Figure 5, Figure 8) for a more precise sampling of the structure heterogeneity (internode, node, AIS). Means ± SEM are indicated in the text corresponding to plot boxes and distribution plots in the Figures.
Concerning AIS measurements, we considered “n” as individual AIS in a coherent manner with the electrophysiological recordings in which “n” is the individual cells. We hope that we have now better illustrated the AIS of SST cells in the stratum oriens in the new Figure 8 with single channel images. In contrast to the AIS of pyramidal neurons that display sinuous feature, the AIS of SST neurons (and especially O-LM cells which axons run straight across the stratum radiatum) show a rather straight organization.
We improved our measurements of the AIS structural parameters (onset, length) of SST neurons of the stratum oriens using confocal imaging with a 20x objective, 0.54 µm steps, Nyquist conditions. Indeed, these new measurements confirmed that the AIS of SST neurons was significantly shorter in the 4.1B KO mice.
The observed AIS length change is then discussed in the context of a study conducted in a pharmacological model of myelin loss, however, that particular study (Hamada & Kole, 2015) found not only a length change but a position change after cuprizone-induced AIS plasticity. The authors should therefore discuss this finding in a bit more detail than simply stating "Adaptation of the AIS has been reported in the cuprizone chemical model of demyelination" (p. 14, ll. 512).
We added these sentences in the Discussion:
Lane 527: Supporting this notion, previous studies have reported an adaptive response of the AIS of cortical pyramidal neurons in the cuprizone chemical model of demyelination. Specifically, it was observed that the length of the AIS is reduced together with a more proximal site of the onset. These changes reduce the AIS excitability suggesting a compensatory mechanism to ectopic action potentials generated in demyelinated axons (Hamada and Kole, 2015).
Lane 556: Interestingly, in cortical pyramidal neurons, demyelination induced by cuprizone causes the restructuring of AIS and reduces excitability at this site. “Acute demyelination leads to a more proximal onset of AIS without a change in the length of ßIV spectrin expression. However, the AIS of these acutely demyelinated axons display a reduced length of Nav1.6 channel expression and extended Kv7.3 channel expression at the distal site (Hamada and Kole, 2015).”
Similarly to the points made about structural data above, the data from electrophysiological recordings should be presented in such a way that e.g. the number of cells and/or animals is readily accessible from the graph or legend. In its current form, this information - while available - needs to be pieced together from in-text information supplemented by figure legends. Sometimes, the authors do not include the number of animals behind individual cell data (for details please see author comments). Please carefully review all figures and edit accordingly.
The behavioral data presented in the study is interesting, but the conclusions drawn are not supported by the data presented, as many unknown factors remain in place that could contribute to the observed phenotype.
-
Reviewer #3 (Public Review):
Pinatel and colleagues addressed a currently understudied topic in neurobiology, namely, the architecture and function of myelination in subsets of Parvalbumin (PV)- and Somatostatin (SST)-positive GABAergic hippocampal interneurons and its dependence on juxtaparanodal organizer proteins. In order to elucidate the structural and functional implications of interneuron myelination, the authors visualized inhibitory neurons by utilizing a Lhx2-tdTomato reporter line in combination with crucial cytoskeletal linker proteins such as Contactin2/TAG-1, Caspr2, and Protein 4.1B. They then applied a comprehensive set of histological, electrophysiological, and behavioral experiments to dissect the role these proteins play in proper myelination and function of PV- and SST-interneurons.
The bulk of the study's data is based on immunofluorescence, which is presented in a number of figures comprised of high-quality images. As much as this is a strength of the study, the underlying image analysis as described in the methods falls short. All structural data rely on the measurements of physical parameters such as length of internodes, the distance between (juxta)paranode and node, the distance between node and myelin sheath, length of the axon initial segment (AIS), etc. In light of this, and considering the small physical dimensions of the nodal region in general, the methods remain unclear about the depth of 3D reconstruction/deconvolution applied to the samples. Measurements presented in the results show significant differences in sub-micrometer dimension, which at least according to the stated methods, are unlikely to be precise given that the confocal imaging parameters do not seem to reach Nyquist conditions. For a study in which a third of all data is aimed at elucidating (sub)micrometer changes, this is crucial and the study would benefit from a more rigorous method description by the authors.
Another methodological weakness is the somewhat small n, and its incoherence across the experiments and therefore, the statistics performed in some of the experiments. Statistics are based on either n for animals, or n for individual data points from several animals. Why is not all data represented as mean/animal? Also, the sampling in general with n = 3 animals is borderline acceptable; in some cases, it seems that only 2 animals were used, and in others, no number is given at all (please refer to author comments for details). This needs to be addressed, either by explaining why so few animals were used, or by adding more data from individual animals. Assigning structures (AIS, nodes) as n results in overstating effects, since especially for AIS, there is significant heterogeneity in the length across neurons from the same type, and this is masked when 100 AIS are considered as individual n instead 100 AIS per animal, and the animal is (correctly) the n. Since the study seems to switch back and forth between these assignments, it would be helpful to level these data across all experiments unless there are specific reasons not to do so, which then need to be explained. As outlined in the methods, all values are given as means {plus minus} SEM; this needs to be corrected for those cases where the standard deviation is the appropriate choice (e.g. all graphs showing n = individual structure, and not the mean of an animal).
As far as the analysis of geometrical AIS changes is concerned, the method section should be extended to address how, if at all, AIS length and position were analyzed in 3D, also considering the somewhat "spotty" immunosignal outlined in Fig. 8D. The observed AIS length change is then discussed in the context of a study conducted in a pharmacological model of myelin loss, however, that particular study (Hamada & Kole, 2015) found not only a length change but a position change after cuprizone-induced AIS plasticity. The authors should therefore discuss this finding in a bit more detail than simply stating "Adaptation of the AIS has been reported in the cuprizone chemical model of demyelination" (p. 14, ll. 512).
Similarly to the points made about structural data above, the data from electrophysiological recordings should be presented in such a way that e.g. the number of cells and/or animals is readily accessible from the graph or legend. In its current form, this information - while available - needs to be pieced together from in-text information supplemented by figure legends. Sometimes, the authors do not include the number of animals behind individual cell data (for details please see author comments). Please carefully review all figures and edit accordingly.
The behavioral data presented in the study is interesting, but the conclusions drawn are not supported by the data presented, as many unknown factors remain in place that could contribute to the observed phenotype.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, Kipfer et al describe a method for a fast and accurate SARS-CoV2 rescue and mutagenesis. This work is based on a published method termed ISA (infectious subgenomic amplicons), in which partially overlapping DNA fragments covering the entire viral genome and additional 5' and 3' sequences are transfected into mammalian cell lines. These DNA fragments recombine in the cells, express the full length viral genomic RNA and launch replication and rescue of infectious virus.
CLEVER, the method described here significantly improves on the ISA method to generate infectious SARS-CoV2, making it widely useful to the virology community.
Specifically, the strengths of this method are:<br /> 1) The successful use of various cell lines and transfection methods.<br /> 2) Generation of a four-fragment system, which significantly improves the method efficiency due to lower number of required recombination events.<br /> 3) Flexibility in choice of overlapping sequences, making this system more versatile.<br /> 4) The authors demonstrated how this system can be used to introduce point mutations as well as insertion of a tag and deletion of a viral gene.<br /> 5) Fast-tracking generation of infectious virus directly from RNA of clinical isolates by RT-PCR, without the need for cloning the fragments or using synthetic sequences.<br /> One weakness of the latter point, which is also pointed out by the authors, is that the direct rescue of clinical isolates was not tested for sequence fidelity.
The manuscript clearly presents the findings, and the proof-of-concept experiments are well designed.
Overall, this is a very useful method for SARS-CoV2 research. Importantly, it can be applicable to many other viruses, speeding up the response to newly emerging viruses than threaten the public health.
-
-
www.dreamsongs.com www.dreamsongs.comOUP Book1
-
Because this PDF does not include outline metadata, I have inserted jump points by highlighting the names of the chapter on the page where that chapter begins for each chapter in the book. These can be filtered by the "chapter heading" tag.
-
-
www.reddit.com www.reddit.com
-
Why is the index card half full?
reply to u/ManuelRodriguez331 at https://www.reddit.com/r/Zettelkasten/comments/15ehcy5/why_is_the_index_card_half_full/
There has been debate about the length of notes on slips since the invention of slips and it shows no signs of coming to broad consensus other than everyone will have their personal opinion.
If you feel that A6 is is too big then go down a step in size to A7. One of the benefits of the DIN A standard is that you can take the next larger card size and fold it exactly in half to have the next size smaller. This makes it easier to scale up the size of your cards if you prefer most of them to be smaller to save space, just take care not to allow larger folded cards to "taco" smaller cards in a way they're likely to get lost. If you really needed more space, you could easily use an A1 or A2 and fold it down to fit inside of your collection! (Sadly 4x6 and 3x5 cards don't have this affordance.)
Fortunately there are a variety of available sizes, so you can choose what works best for yourself. Historically some chose large 5x8", 6x9", or even larger "slips". Some have also used different sizes for different functions. For example some use 3x5 for bibliographic cards and 4x6 for day-to-day ideas. I've seen stacked wooden card catalog furniture that had space for 3x5, 4x6, and 8.5x11 in separate drawers within the same cabinet. Some manufacturers even made their furniture modular to make this sort of mixed use even easier.
One of the broadly used pieces of advice that does go back centuries is to use "cards of the same size" (within a particular use case). This consensus is arrived at to help users from losing smaller cards between larger/taller cards. Cards of varying sizes, even small ones, are also much more difficult to sort through. Slight of hand magicians will be aware of the fact that shaving small fractions of length off of playing cards is an easy way of not only marking them, but of executing a variety of clever shuffling illusions as well as finding some of them very quickly by feel behind the back. Analog zettelkasten users will only discover that smaller, shorter cards are nearly guaranteed to become lost among the taller cards. It's for this reason that I would never recommend one to mix 4x6, A6, or even the very closely cut Exacompta Bristol cards, which are neither 4x6 nor A6!
I once took digital notes and printed them on paper and then cut them up to fit the size of the individual notes to save on space and paper. I can report that doing this was a painfully miserable experience and positively would NOT recommend doing this for smaller projects much less lifelong ones. Perhaps this could be the sort of chaos someone out there might actually manage to thrive within, but I suspect it would be a very rare individual.
As for digital spacing, you may win out a bit here for "saving" paper space, but you're also still spending on storage costs in electronic formatting which historically doesn't have the longevity of physical formats. Digital also doesn't offer the ease of use of laying cards out on a desktop and very quickly reordering them for subsequent uses.
There are always tradeoffs, one just need be aware of them to guide choices for either how they want to work or how they might work best.
Personally, I use 4x6" cards because I often write longer paragraphs on them. Through experimentation I found that I would end up using two or more 3x5 cards more often than I would have had mostly blank 4x6 cards and used that to help drive my choice. I also find myself revisiting old cards and adding to them (short follow ups, links to other cards, or other metadata) and 3x5 wouldn't allow that as easily.
As ever, YMMV...
See also: [[note lengths]] and/or [[note size]].
-
- Jul 2023
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The aim of this paper is to describe a novel method for genetic labelling of animals or cell populations, using a system of DNA/RNA barcodes.
Strengths:<br /> • The author's attempt at providing a straightforward method for multiplexing Drosophila samples prior to scRNA-seq is commendable. The perspective of being able to load multiple samples on a 10X Chromium without antibody labelling is appealing.<br /> • The authors are generally honest about potential issues in their method, and areas that would benefit from future improvement.<br /> • The article reads well. Graphs and figures are clear and easy to understand.
Weaknesses:<br /> • The usefulness of TaG-EM for phototaxis, egg laying or fecundity experiments is questionable. The behaviours presented here are all easily quantifiable, either manually or using automated image-based quantification, even when they include a relatively large number of groups and replicates. Despite their claims (e.g., L311-313), the authors do not present any real evidence about the cost- or time-effectiveness of their method in comparison to existing quantification methods.<br /> • Behavioural assays presented in this article have clear outcomes, with large effect sizes, and therefore do not really challenge the efficiency of TaG-EM. By showing a T-maze in Fig 1B, the authors suggest that their method could be used to quantify more complex behaviours. Not exploring this possibility in this manuscript seems like a missed opportunity.<br /> • Experiments in Figs S3 and S6 suggest that some tags have a detrimental effect on certain behaviours or on GFP expression. Whereas the authors rightly acknowledge these issues, they do not investigate their causes. Unfortunately, this question the overall suitability of TaG-EM, as other barcodes may also affect certain aspects of the animal's physiology or behaviour. Revising barcode design will be crucial to make sure that sequences with potential regulatory function are excluded.<br /> • For their single-cell experiments, the authors have used the 10X Genomics method, which relies on sequencing just a short segment of each transcript (usually 50-250bp - unknown for this study as read length information was not provided) to enable its identification, with the matching paired-end read providing cell barcode and UMI information (Macosko et al., 2015). With average fragment length after tagmentation usually ranging from 300-700bp, a large number of GFP reads will likely not include the 14bp TaG-EM barcode. When a given cell barcode is not associated with any TaG-EM barcode, then demultiplexing is impossible. This is a major problem, which is particularly visible in Figs 5 and S13. In 5F, BC4 is only detected in a couple of dozen cells, even though the Jon99Ciii marker of enterocytes is present in a much larger population (Fig 5C). Therefore, in this particular case, TaG-EM fails to detect most of the GFP-expressing cells. Similarly, in S13, most cells should express one of the four barcodes, however many of them (maybe up to half - this should be quantified) do not. Therefore, the claim (L277-278) that "the pan-midgut driver were broadly distributed across the cell clusters" is misleading. Moreover, the hypothesis that "low expressing driver lines may result in particularly sparse labelling" (L331-333) is at least partially wrong, as Fig S13 shows that the same Gal4 driver can lead to very different levels of barcode coverage.<br /> • Comparisons between TaG-EM and other, simpler methods for labelling individual cell populations are missing. For example, how would TaG-EM compare with expression of different fluorescent reporters, or a strategy based on the brainbow/flybow principle?<br /> • FACS data is missing throughout the paper. The authors should include data from their comparative flow cytometry experiment of TaG-EM cells with or without additional hexameric GFP, as well as FSC/SSC and fluorescence scatter plots for the FACS steps that they performed prior to scRNA-seq, at least in supplementary figures.<br /> • The authors should show the whole data described in L229, including the cluster that they chose to delete. At least, they should provide more information about how many cells were removed. In any case, the fact that their data still contains a large number of debris and dead cells despite sorting out PI negative cells with FACS and filtering low abundance barcodes with Cellranger is concerning.
Overall, although a method for genetic tagging cell populations prior to multiplexing in single-cell experiments would be extremely useful, the method presented here is inadequate. However, despite all the weaknesses listed above, the idea of barcodes expressed specifically in cells of interest deserves more consideration. If the authors manage to improve their design to resolve the major issues and demonstrate the benefits of their method more clearly, then TaG-EM could become an interesting option for certain applications.
-
Reviewer #2 (Public Review):
In this manuscript, Mendana et al developed a multiplexing method - Targeted Genetically-Encoded Multiplexing or TaG-EM - by inserting a DNA barcode upstream of the polyadenylation site in a Gal4-inducible UAS-GFP construct. This Multiplexing method can be used for population-scale behavioral measurements or can potentially be used in single-cell sequencing experiments to pool flies from different populations. The authors created 20 distinctly barcoded fly lines. First, TaG-EM was used to measure phototaxis and oviposition behaviors. Then, TaG-EM was applied to the fly gut cell types to demonstrate its applications in single-cell RNA-seq for cell type annotation and cell origin retrieving.
This TaG-EM system can be useful for multiplexed behavioral studies from next-generation sequencing (NGS) of pooled samples and for Transcriptomic Studies. I don't have major concerns for the first application, but I think the scRNA-seq part has several major issues and needs to be further optimized.
Major concerns:<br /> 1. It seems the barcode detection rate is low according to Fig S9 and Fig 5F, J and N. Could the authors evaluate the detection rate? If the detection rate is too low, it can cause problems when it is used to decode cell types.<br /> 2. Unsuccessful amplification of TaG-EM barcodes: The authors attempted to amplify the TaG-EM barcodes in parallel to the gene expression library preparation but encountered difficulties, as the resulting sequencing reads were predominantly off-target. This unsuccessful amplification raises concerns about the reliability and feasibility of this amplification approach, which could affect the detection and analysis of the TaG-EM barcodes in future experiments.<br /> 3. For Fig 5, the singe-cell clusters are not annotated. It is not clear what cell types are corresponding to which clusters. So, it is difficult to evaluate the accuracy of the assignment of barcodes.<br /> 4. The scRNA-seq UMAP in Fig 5 is a bit strange to me. The fly gut epithelium contains only a few major cell types, including ISC, EB, EC, and EE. However, the authors showed 38 clusters in fig 5B. It is true that some cell types, like EE (Guo et al., 2019, Cell Reports), have sub-populations, but I don't expect they will form these many sub-types. There are many peripheral small clusters that are not shown in other gut scRNA-seq studies (Hung et al., 2020; Li et al., 2022 Fly Cell Atlas; Lu et al., 2023 Aging Fly Cell Atlas). I suggest the authors try different data-processing methods to validate their clustering result.<br /> 5. Different gut drivers, PMC-, PC-, EB-, EC-, and EE-GAL4, were used. The authors should carefully characterize these GAL4 expression in larval guts and validate sequencing data. For example, does the ratio of each cell type in Fig 5B reflect the in vivo cell type ratio? The authors used cell-type markers mostly based on the knowledge from adult guts, but there are significant morphological and cell ratio differences between larval and adult guts (e.g., Mathur...Ohlstein, 2010 Science).<br /> 6. Doublets are removed based on the co-expression of two barcodes in Fig 5A. However, there are also other possible doublets, for example, from the same barcode cells or when one cell doesn't have detectable barcode. Did the authors try other computational approaches to remove doublets, like DoubleFinder (McGinnis et al., 2019) and Scrublet (Wolock et al., 2019)?<br /> 7. Did the authors remove ambient RNA which is a common issue for scRNA-seq experiments?<br /> 8. Why does TaG-EM barcode #4, driven by EC-GAL4, not label other classes of enterocyte cells such as betaTry+ positive ECs (Figures 5D-E)? similarly, why does TaG-EM barcode #9, driven by EE-GAL4, not label all EEs? Again, it is difficult to evaluate this part without proper data processing and accurate cell type annotation.<br /> 9. For Figure 2, when the authors tested different combinations of groups with various numbers of barcodes. They found remarkable consistency for the even groups. Once the numbers start to increase to 64, barcode abundance becomes highly variable (range of 12-18% for both male and female). I think this would be problematic because the differences seen in two groups for example may be due to the barcode selection rather than an actual biologically meaningful difference.<br /> 10. Barcode #14 cannot be reliably detected in oviposition experiment. This suggests that the BC 14 fly line might have additional mutations in the attp2 chromosome arm that affects this behavior. Perhaps other barcode lines also have unknown mutations and would cause issues for other untested behaviors. One possible solution is to back-cross all 20 lines with the same genetic background wild-type flies for >7 generations to make all these lines to have the same (or very similar) genetic background. This strategy is common for aging and behavior assays.
-
Reviewer #3 (Public Review):
The work addresses challenges in linking anatomical information to transcriptomic data in single-cell sequencing. It proposes a method called Targeted Genetically-Encoded Multiplexing (TaG-EM), which uses genetic barcoding in Drosophila to label specific cell populations in vivo. By inserting a DNA barcode near the polyadenylation site in a UAS-GFP construct, cells of interest can be identified during single-cell sequencing. TaG-EM enables various applications, including cell type identification, multiplet droplet detection, and barcoding experimental parameters. The study demonstrates that TaG-EM barcodes can be decoded using next-generation sequencing for large-scale behavioral measurements. Overall, the results are solid in supporting the claims and will be useful for a broader fly community. I have only a few comments below:
Specific comments:
1. The authors mentioned that the results of structure pool tests in Fig. 2 showed a high level of quantitative accuracy in detecting the TaG-EM barcode abundance. Although the data were generally consistent with the input values in most cases, there were some obvious exceptions such as barcode 1 (under-represented) and barcodes 15, 20 (over-represented). It would be great if the authors could comment on these and provide a guideline for choosing the appropriate barcode lines when implementing this TaG-EM method.
2. In Supplemental Figure 6, the authors showed GFP antibody staining data with 20 different TaG-EM barcode lines. The variability in GFP antibody staining results among these different TaG-EM barcode lines concerns the use of these TaG-EM barcode lines for sequencing followed by FACS sorting of native GFP. I expected the native GFP expression would be weaker and much more variable than the GFP antibody staining results shown in Supplemental Figure 6. If this is the case, variation of tissue-specific expression of TaG-EM barcode lines will likely be a confounding factor.
3. As the authors mentioned in the manuscript, multiple barcodes for one experimental condition would be a better experimental design. Could the authors suggest a recommended number of barcodes for each experiential condition? 3? 4? Or more? Also, it would be great if the authors could provide a short discussion on the cost of such TaG-EM method. For example, for the phototaxis assay, if it is much more expensive to perform TaG-EM as compared to manually scoring the preference index by videotaping, what would be the practical considerations or benefits of doing TaG-EM over manual scoring?
-
-
-
Isn’t it too much time and energy consuming? I’m not provoking, I’m genuine.
reply to IvanCyb at https://www.reddit.com/r/antinet/comments/1587onp/comment/jt8zbu4/?utm_source=reddit&utm_medium=web2x&context=3 Asking broadly about indexing methods in zettelkasten
When you begin you'll find yourself creating lots of index entries to start, in part because you have none, but you'll find with time that you need to do less and less because index entries already exist for most of what you would add. More importantly most of the entries you might consider duplicating are likely to be very near cards that already have those index entries.
As an example if you have twenty cards on cultural anthropology, the first one will be indexed with "cultural anthropology" to give you a pointer of where to start. Then when you need to add a new card to that section, you'll look up "cultural anthropology" and skim through what you've got to find the closest related card and place it. You likely won't need to create a new index entry for it at all.
But for argument's sake, let's say you intend to do some work at the intersection of "cultural anthropology" and "writing" and this card is also about "writing". Then you might want to add an index entry for "writing" from which you'll branch off in the future. This will tend to keep your index very sparse. As an example you can look at Niklas Luhmann's digitized collection to notice that he spent his career in the area of "sociology" but there are only just a few pointers from his index into his collection under that keyword. If he had tagged every single card related to "sociology" as "sociology" in his index, the index entry for it would have been wholly unusable in just a few months. Broadly speaking his entire zettelkasten is about sociology, so you need to delve a few layers in and see which subtopics, sub-subtopics, sub-sub-subtopics, etc. exist. As you go deeper into specific topics you'll notice that you branch down and out into more specific subareas as you begin to cover all the bases within that topic. If you like, for fun, you can see this happening in my digital zettelkasten on the topic of "zettelkasten" at https://hypothes.is/users/chrisaldrich?q=tag%3A%22zettelkasten%22. The tool only shows the top 50 tags for that subject in the side bar, but you can slowly dig down into subtopics to see what they look like and a bit of how they begin to overlap.
Incidentally, this is one of the problems with those who tag everything with top level topic headings in digital contexts—you do a search for something important and find so much that it becomes a useless task to try to sift through it all. As a result, users need better tools to give them the ability to do more fine-grained searching, filtering, and methods of discovery.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Please find our point-to-point response to the reviewer’s comments below, where we marked all changes implemented in the manuscript in italics.
Reviewer #1 (Evidence, reproducibility and clarity (Required)):
With the emergence and spread of resistance to Artemisinin (ART), a key component of current frontline malaria combination therapies, there is a growing effort to understand the mechanisms that lead to ART resistance. Previous work has shown that ART resistant parasites harbour mutations in the Kelch13 protein, which in turn leads to reduced endocytosis of host haemoglobin. The digestion of haemoglobin is thought to be critical for the activation of the artemisinin endoperoxide bridge, leading to the production of free radicals and parasite death. However, the mechanisms by which the parasites endocytose host cell haemoglobin remain poorly understood.
Previous work by the authors identified several proteins in the proximity of K13 using proximity-based labelling (BioID) (Birnbaum et al. 2020). The authors then went on to characterise several of these proteins, showing that when proteins including EPS15, AP2mu, UBP1 and KIC7 are disrupted, this leads to ART resistance and defects in endocytosis leading to the hypothesis that these two processes are inextricably linked.
In this manuscript, Schmidt et al. set themselves the task of characterising more K13 component candidates identified in their previous work (Birnbaum et al. 2020) that were not previously validated or characterised. They chose 10 candidates and investigated their localisations, and colocalisation with K13, and their involvement in endocytosis and in vitro ART resistance, 2 processes mediated by K13 and some members of the K13 compartments
The authors show that of their 10 candidates, only 4 can be co-localised with K13. Then, using a combination of targeted gene disruption (TGD) as well as knock sideways (KS), they characterised these 4 proteins found in the K13 compartment. They show that MyoF and KIC12 are involved in endocytosis and are important for parasite growth, however their disruption does not lead to a change in ART sensitivity. The authors also confirm the findings of their previous publication (Birnbaum et al. 2020), using a slightly different TGD
(note from the authors: we apologise if this has not properly transpired from the manuscript but the difference between the TGDs is substantial and relevant: one has less than 3% of the protein left and hence can be considered to fully inactivate MCA2 and has a growth defect whereas the other contains about two thirds of the protein (1344 amino acids/~66% are left), has no growth defect, although it lacks the MCA2 domain (hence that domain can not be critical for the growth defect)),
that MCA2 is involved in ART resistance, however they did not check whether its disruption impacts haemoglobin uptake. They also show that KIC11 is not involved in mediating haemoglobin uptake or ART resistance. To finish, the authors used AlphaFold to identify new domains in the proteins of the K13 compartment. This led them to the conclusion that vesicle trafficking domains are enriched in proteins of the K13 compartment involved in endocytosis and in vitro ART resistance.
The majority of the experiments conducted by the authors are performed to a good standard in biological and technical replicates, with the correct controls. Their findings provide confirmation that their 4 candidate genes seem to be important for parasite growth, and show that some of their candidates are involved in endocytosis. While the KD and KS approaches employed by the authors to study their candidate genes each have their own advantages and can be excellent tools for studying a large sets or genes, this manuscript highlights the many limitations of these approaches. For example, the large tag used for the KS approach can mislocalise proteins or disrupt their function (as is the case for MyoF), resulting in spurious results, or indeed the inability to generate the tagged line (as is the case for MCA2). The KS approach also makes the results of a protein with a dual localisation, like KIC12, extremely difficult to interpret.
We thank the reviewer for this thorough and insightful review.
The limitations mentioned above were addressed in the response to the main points and a general detailed response in regards to the systems used for this research are added at the end of this rebuttal. Briefly summarised here: while we agree that there are limitations of the system used, we are convinced that
-
the advantages of using a large tag in most cases outweighs the drawbacks as it permits to track the inactivation of the target, if need be on the individual cell level
-
while not optimal for MyoF, the partial inactivation actually helps in its functional study as detailed in major point 23&28 or reviewer#3 major point 11: it shows a consistent correlation of the phenotype with different causes and degrees of inactivation (this is now better illustrated in Figure 1L1M). Further, regarding the concern of the large tag: the effect of the tag based on localisation was overestimated in the review by what seems to have been a mix up comparing numbers from MyoF with a number from MCA2 (there is a difference, but it is only small) (see reviewer#1 major point #23).
-
KS is the optimal method for most of the assays in this work (e.g. bloated food vacuole assays and RSAs); these assays would be impossible or difficult to use with other inactivation systems currently used in P. falciparum research (see details in the response to the specific points and after the rebuttal)
In regards to the difficulty to interpret KIC12 data: this is only true for measuring absolute essentiality, everything else we believe we actually have the optimal method. If not KS, which method targets a specific pool of a protein with a dual localisastion? Again, our assays targeting the K13 pool and revealing the specific function would have been difficult or impossible with any other system.
Ultimately the question is whether any other system would have resulted in a different conclusion on the function of the proteins studied. At present we are confident this would not be the case and other systems probably would not have delivered the specific functional data shown in this work. Clearly, more in depth work will provide more nuanced and detailed insights into the proteins analysed in this work and this likely will also include the use of other systems for specific aspects they are most suitable for. However, this (e.g. different complementations in a diCre cKO) is complex and therefore beyond what fits into this work which had the goal to assess which proteins are true positives for the K13 compartment and to place them into functional groups in regards to endocytosis.
Moreover, the manuscript is disjointed at times, with the authors choosing to conduct certain experiments for only a subset of genes, but not for others. For example, considering that the aim of this paper was to identify more proteins involved in ART resistance and endocytosis, it is confusing why the authors do not perform the endocytosis assays for all their selected proteins, and why they do not do this for the proteins they identify in their domain search. There is significant room for improvement for this manuscript, and a generally interesting question.
The reviewer remarks that not every experiment was done for every target. Based on the rebuttal we tried to amend this but also note that there was some sentiment by the reviewers to better stick to the point and not make the manuscript more disjointed. We attempted to balance that as much as possible and hope we were able to honour both aspects (amendments were done as detailed in the point by point response below).
In regards to endocytosis and choice of targets: We did do endocytosis assays for all proteins that showed a growth phenotype upon inactivation in this work. We therefore assume the reviewer here refers to major point #40 asking for endocytosis assays with KIC4 and KIC5 (which were not studied in this manuscript) as well as MCA2 (point 17). We fully agree with the reviewer that this would fill a gap in the work on K13 compartment proteins but such assays are difficult with TGDs (there are issues with non-comparable samples and compensatory effects) and proteins that are not essential (and hence likely have a smaller impact on endocytosis when truncated). We nevertheless now carried them out, but due to the limitations to do this with these lines would be hesitant to draw definite conclusions (see major point 17 and 40 for details and outcomes).
But in it's current format, other than confirming that MCA2 is involved in ART resistance (which was already known from the Birnbaum paper), the authors do not further expand our understanding of the link between ART resistance and endocytosis in this manuscript.
We would like to point out that the importance of the K13 compartment and endocytosis goes beyond ART resistance (see e.g. also newly published papers on the K13 compartment in Toxoplasma, (Wan et al., 2023; Koreny et al., 2023)). Endocytosis is an essential and prominent process in blood stages. However, in contrast to processes such as invasion, our understanding about endocytosis is only rudimentary. Hence, this manuscript provides important insights on an emerging topic that in our opinion deserves more attention:
-
it identifies novel proteins at the K13 compartment and provides 2 new proteins in endocytosis (MyoF and KIC12); getting an as complete as possible list of proteins involved in the process will be critical to study and understand it
-
it leads to the realisation that not all growth-relevant proteins detected at the K13 compartment are needed for endocytosis
-
it provides domains and stage specificity of function for several K13 compartment proteins, overall bolstering the model of endocytosis in ART resistance and providing a framework critical to direct future studies on endocytosis and their detailed mechanistic function at the cytostome
-
the identified vesicle trafficking domains (for instance now also found in UBP1) are expected to strengthen the support for the role of endocytosis of the K13 compartment; this and also the above points are important as (based on the current literature) there still seems to be prominent sentiment in the field that (in part due to the involvement of UBP1 and K13) the cause of ART resistance is due to various unclearly defined stress response pathways
-
with MyoF it also shows the first protein in connection with the K13 compartment that acts downstream of the generation of hemoglobin-filled containers in the parasite and provides the first protein that explains the suspected involvement of actin in endocytosis (so far this was only based on CytD studies)
Overall we therefore believe this manuscript contains critical information and a framework for future studies on endocytosis and the K13 compartment. We hope the relevance of endocytosis as one of the most prominent and essential processes in the parasites and the connection to various aspects linked with many commercial drugs (in addition to the role of endocytosis in ART resistance), is adequately explained in the introduction. We also would like to mention that the main focus of the work is reflected in the title of the manuscript which does not mention ART susceptibility.
Major Comments
1) line 31: please change defined to characterised - defined suggests that novel proteins were identified in this study, which is not the case.
We apologise, but we do not fully understand this comment. We did identify novel proteins not before known to be at the K13 compartment (MCA2 (admittedly this one was likely but had not previously been verified), MyoF, KIC11 and KIC12). In our view "further defining the composition of the K13 compartment" therefore is an accurate statement. Additionally, the identification of previously not-discovered domains, the stage-specificity and function of these proteins helped to further define the K13 compartment.
If the reviewer is referring to the fact that the proteins analysed in this study were taken from a previously generated list of hits, we would like to stress that the presence in such a list (obtained from a BioID, but also if from an IP etc) can not be equalled for them to be true positives, they are merely candidates that still need to be experimentally validated. This is what we did in this work to find out which further proteins from the list can be classified as K13 compartment proteins (for hits with lower FDRs this is even more relevant as illustrated by the fact that 6 of the here analysed hits were not at the K13 compartment). In an attempt to address this comment in the manuscript, we changed the wording of this sentence to (line 31): "Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site."
2) line 37: please change 'second' to "another". As explained further below, the authors identified 3 classes of proteins (confer ART resistance + involved in HCCU, involved in HCCU only, or involved in neither).
We realized that the groups description wasn’t clear in the abstract. Please see response to major comment #41 for a detailed answer to this (endocytosis is an overarching criterion, ART resistance is a subgroup and applies only to those proteins with a function in endocytosis in ring stages). To clarify this (see also major point #8) we added an explanation on the influence of stage-specificity of endocytosis on ART susceptibility to the introduction (line 76): “In contrast to K13 which is only needed for endocytosis in ring stages (the stage relevant for in vitro ART resistance), some of these proteins (AP2µ and UBP1) are also needed for endocytosis in later stage parasites (Birnbaum et al., 2020). At least in the case of UBP1, this is associated with a higher fitness cost but lower resistance compared to K13 mutations (Behrens et al., 2021; Behrens et al., 2023). Hence, the stage-specificity of endocytosis functions is relevant for in vitro ART resistance: proteins influencing endocytosis in trophozoites are expected to have a high fitness cost whereas proteins not needed for endocytosis in rings would not be expected to influence resistance.” The abstract was changed in response to this and other comments and hope it is now clearer in regards to the groups.
3) Line 40: You define KIC11 as essential but according to your data some parasites are still alive and replicating 2 cycles after induction of the knock sideways. Please consider changing "essential" to "important for asexual parasite growth".
We fully agree with the reviewer, we reworded the sentence as suggested.
4) Line 40: please change 'second group' to 'this group'
We reworded this part of the abstract and it know reads: (line 38): “While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process.”
5) line 41: state here that despite it being essential, it is unknown what it is involved in.
With the newly added data we show that this protein either has a function in invasion or very early ring development although we did not see any evidence for the latter. We therefore changed the sentence to (line 43): “We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion*..” *
6) Line 50: the authors should state here that there is actually a reversal in this trend over the last few years.
Done as suggested.
7) Line 54: please separate out the references for each of the two statements made in this line (a: that ART resistance is widespread in SEA, and b: that ART resistance is now in Africa) Reference 14 also seems to reference ART resistance in Amazonia - which is not covered by the statement made by the authors (in which case the authors should state ART is now present in Africa and South America). The authors should also reference PMID: 34279219 for their statement that ART resistance is now found in Africa (albeit a different mutation to the one found in SEA).
Done as suggested.
8) Line 65: it is also worth mentioning here that there are other mutations in proteins other than K13, such as AP2mu and UBP1 (PMID: 24994911;24270944) that can lead to ART resistance.
As suggested by the reviewer, we included a sentence about non-K13 mutations linked with reduced ART susceptibility in the introduction (line 74): “Beside K13 mutations in other genes, such as Coronin (Demas et al., 2018) UBP1 (Borrmann et al., 2013; Henrici et al., 2020b; Birnbaum et al., 2020; Simwela et al., 2020) or AP2µ (Henriques et al., 2014; Henrici et al., 2020b)* have also been linked with reduced ART susceptibility." *
We here also added data on fitness cost that is related to this and is also relevant for the issue of proteins with a stage-specific function in endocytosis, making a transition for this statement which might help clarifying the grouping of K13 compartment proteins (see also major point #2).
9) Line 80, 86: ref 43 is misused. Reference 43 refers to Maurer's clefts trafficking which takes place in the erythrocyte cytosol and is not involved in haemoglobin uptake as far as I know. Please replace ref 43 with one showing the role of actin in haemoglobin uptake.
We thank the reviewer for pointing this out, Ref 43 was removed from the manuscript.
10) Line 98: the authors state here that they 'identified' further candidates from the K13 proxiome. This suggests that they identified new proteins in this paper, when in fact the list was already generated in ref 26. All they did was characterise proteins from that list that were not previously characterised. The authors should therefore remove identified from this statement.
We agree with the reviewer that we did not identify further candidates, we identified new K13 compartment proteins from the list of potential K13 compartment proteins. We therefore changed “identified further candidates” into “identified further K13 compartment proteins” (line 116). Please see also response to major comment #1.
11) Line 107-108: it is not clear from this sentence why these proteins were left out of the initial analysis in Ref 26. A sentence here explaining this would be valuable for the reader.
This is a good point. One reason why we did not analyse more in our previous publication was that we had to stop somewhere and adding more would have been very difficult to fit into what was already a packed paper. However, as shown in this work, the list does contain further interesting candidates (e.g. K13 compartment proteins that are involved in endocytosis).
We altered the relevant part of the introduction to highlight that we previously analysed the top hits, clarifying that the 'remaining' hits analysed in this work were further down in the list. This now reads: (line 113)“We reasoned that due to the high number of proteins that turned out to belong to the K13 compartment when validating the top hits of the K13 BioID (Birnbaum et al., 2020), the remaining hits of these experiments might contain further proteins belonging to the K13 compartment.” We hope this clarifies that we simply moved further down in the candidate list.
12) Line 117-123: The authors say that PF3D7_0204300, PF3D7_1117900 and PF3D7_1016200 were not studied because they were not in the top 10 hits. However, the current organisation of Supplementary Table 1 shows all 3 proteins among the top 10 hits (MyoF, KIC12, UIS14 and 0907200 being after them). I think the authors should reorganise their table. It is also unclear according to what the proteins in the table are ranked. Could the authors indicate the metric used for the ranking?
We thank the reviewer for alerting us to this. The issue here is that the 3 non-analysed proteins belong to a 'lower stringency' group comprising hits significant with FDRThe information about ranking is now also included as “Table legend” in the revised manuscript and the Table heading has been changed to: “List of putative K13 compartment proteins, proteins selected for further characterization in this manuscript are highlighted.”
13) Line 129-141: Can the authors be clearer with their explanations of the identification of mutation Y1344Stop? One dataset (ref 61) shows that 52% of African parasites have a mutation in MCA2 in position 1344 leading to a STOP codon. But another dataset (ref 62) shows that the next base is also mutated, reverting the stop codon. That should have been seen in the first dataset as well. Could the authors please clarify.
This mutation was first spotted in the MalariaGEN database (https://www.malariagen.net) (MalariaGEN et al., 2021), which allows online accessing of the data by using the “variant catalogue” tool, which is in a table format of frequency rather than in a sequence context. Hence, only after further research later on it became evident to us, that this mutation does not occur alone when looking at individual MCA2 sequences from patient samples in (Wichers et al., 2021b). We hope this is accurately reflected in our results section.
14) Line 147: the authors say that MCA2 is expressed throughout the intraerythrocytic cycle as shown by live cell imaging. In Birnbaum et al 2020 fig 4I, the authors show that MCA2 is mainly expressed between 4 and 16hpi. But in Figure 1B of this manuscript there is a clear multiplication of MCA2 signal between trophozoite and schizont. How do the authors explain this discrepancy? Could expression of the truncated MCA2 be different than the full length? This cannot be assessed as expression and localisation of the full-length HA tag MCA2 is not shown in Schizonts.
The key difference lies in transcription vs protein expression (usually protein levels peak after mRNA levels peak and - depending on turnover - protein levels can stay high even after mRNA levels have declined). Figure 4 of the Birnbaum et al paper presents transcriptomic data, but with a peak in trophozoites (The axis label in Fig. 4l of that publication is a bit confusing, as hour 0 is at the top, 48 h at the bottom; it is clearer in Fig. S13 of that paper) which would fit very well with the multiplication of the signal between trophozoites and schizonts mentioned by the reviewer. So, overall, the temporal peaks of transcripts and protein of that protein fit well.
For the signal in rings: Likely the protein has a turnover rate that is sufficiently low for some protein to be taken into the new cycle after re-invasion. Also different transcriptomic datasets e.g. (Otto et al., 2010; Wichers et al., 2019; Subudhi et al., 2020) available on plasmoDB show some mRNA present across the complete asexual development cycle, with each dataset showing maximum peak at a slightly different stage.
Even when located in foci and hence aiding detection of small amounts of protein (as is the case for MCA2-Y1344-GFP), the MCA2 signal in rings is not strong. For MCA2-TGD, the GFP signal is dispersed and therefore likely below our detection limit, while the same amount of protein concentrated at the K13 compartment is visible as foci in the MCA2-Y1344 cell line. Please note that MCA2-TGD has only 2.8% of the protein left whereas MCA2-Y1344 has 66.5% left and based on our manuscript is almost fully functional, hence fitting the different locations between the two versions.
Overall we believe this shows that there are actually no significant discrepancies of the expression of the different MCA2 versions.
15) Line 158: would it not have been more useful for the authors to have episomally expressed MCA2-3xHA in their MCA2Y1344STOP-GFPENDO line to make sure that the truncated protein is indeed going to the correct compartment? The experiments done by the authors suggests that the MCA2Y1344STOP goes to the right location but does not really confirm it.
We appreciate the reviewers caution here. However, considering that MCA2Y1344STOP-GFPendo co-locates with mCherryK13 and endogenously HA-tagged full length MCA2 does the same to a similar extent, there is in our opinion little doubt that MCA2 is found at the K13 compartment and that this is similar with both constructs. If there are minor differences, these might as well occur if MCA2 is episomally (as suggested in the comment) instead of endogenously expressed. Given the limited insight, we therefore decided against the episomal overexpression (which due to its size of > 6000bp may also be somewhat less straight forward than it may sound).
16) Line 191: it is stated that MCA2 confers resistance independently of the MCA domain, however in both the MCA2-TGD and MCA2Y1344STOP-GFPENDO parasites, the MCA domain is deleted, and for both parasites, there is resistance (albeit to a lower level in the MCA2Y1344STOP-GFPENDO line). Therefore, how can the authors state that the ART resistance is independent of the MCA domain? This statement should be that resistance is dependent on the loss of the MCA domain.
We agree that this can’t be categorically excluded. However, a ~5 fold difference in ART sensitivity was observed between the parasites with MCA2 truncated at amino acid 57 compared to those with MCA at amino acid 1344 even though both do not contain the MCA2 domain. Hence, at least this difference is not dependent on the MCA2 domain. The larger construct missing the MCA domain shows only a very moderate reduction in RSA survival, again suggesting the MCA domain is not the main factor. We amended our statement in an attempt to more accurately reflect the data (line 487): “This considerable reduction in ART susceptibility in the parasites with the truncation at MCA2 position 57 compared to the parasites still expressing 1344 amino acids of MCA2, despite both versions of the protein lacking the MCA domain, indicates that the influence on ART resistance is not, or only partially due to the MCA domain.” We would be hesitant to state the reviewer's conclusion that “resistance is dependent on the loss of the MCA domain”, as the larger construct missing the MCA2 domain has a milder RSA effect compared to MCA2-TGD, which suggests the reduction in ART susceptibility is independent of the MCA domain. These considerations also agree with the fact that the parasites with the longer MCA2 version (in contrast to the MCA2-TGD) do not have any detectable growth defect which indicates that the protein can fulfil its function without the MCA2 domain.
17) Line 192: Why did the authors not check if MCA2 is involved in endocytosis? They state later on in the manuscript that they did not do endocytosis assays with TGD lines, however if the authors include the correct controls, this could be easily done. It would also be really interesting to see whether endocytosis gets progressively worse going from WT to MCA2Y1344STOP to MAC2TGD. This experiment (as well as doing endocytosis assays for KIC4 and KIC5 TGD lines) would drastically increase the impact of this study. These experiments would not take more than 3 weeks to perform, and would not require the generation of new lines.
So far were very hesitant to do bloated FV assays with TGDs (even though TGDs were available for the genes encoding MCA2 and KIC4 and KIC5). The reason for this was:
- the fact that these proteins could be disrupted indicated either redundancy or only a partial effect on endocytosis which might lead to only small effects that likely are difficult to pick up in an assay scoring for the rather absolute phenotype of bloated vs non-bloated. Using the refined assay measuring FV size could partly amend this but we note that also FV without hemoglobin have a certain size, reducing the relative effect if there are smaller differences.
- a TGD line does not permit tightly controlled inactivation of the target which makes comparing the outcome of bloated food vacuole assays difficult if there are smaller growth and stage differences to the 3D7 control.
- in contrast to conditional inactivation parasites, the TGD lines had ample times to adapt to loss of the target protein (compensatory mechanisms are well known for endocytosis, for instance in clathrin mediated endocytosis loss of individual components can be compensated (Chen and Schmid, 2020)). We nevertheless see the reviewer's point that this should at least be attempted and now conducted these assays (see also major point 40). For MCA2 (as requested in this point), the data is shown in Figure S5C-E. This assay showed that in MCA2-TGD, MCA2Y1344STOP-GFPendo (similar to the 3D7 control) >95% of parasites developed bloated food vacuoles. Additionally, we also measured the parasite and food vacuole size of individual cells in an attempt to solve some of the problems with TGDs with such assays. In order to specifically solve problem 2 mentioned above, we analysed the food vacuoles of similarly sized parasites, however, they were non-distinguishable between the three lines. Of note, in agreement with the reduced parasite proliferation rate (Birnbaum et al., 2020) a general effect on parasite and food vacuole size was observed for MCA2-TGD parasites, indicating reduced development speed in these parasites. Hence, it is possible that a potential endocytosis reduction was accompanied by a slowed growth, and the comparison of similarly sized parasites may have obscured the effect. It is therefore not sure if there indeed is no endocytosis phenotype, although we can exclude a strong effect in trophozoites.
Based on the RSA results at least rings can be expected to have a reduced endocytosis in the MCA2-TGD. Apart from options 1-3 mentioned above, it is therefore possible there is an effect restricted to rings, although in that case the reduced growth in trophozoites would be due to other functions of MCA2. Overall, we can conclude that the MCA2-TGD parasites do not have a strongly reduced endocytosis, but given the fact that the parasites are viable, this is not surprising. Whether the MCA2-TGD has no effect at all on endocytosis we would be very hesitant to postulate based on these results.
18) The authors should consider re-organising the MCA2 section, first showing that the 3xHA tagged line colocalises with K13, then performing the new truncation.
We attempted to re-organise as suggested but because we now included additional fluorescence microscopy images of schizont and merozoites (in response to reviewer 2 major comment 3) the main figure would become even larger. To prevent this, we kept the 3xHA data in the supplement.
19) Line 197: Once again ref 43 is not correct to illustrate that actin/myosin is involved in endocytosis
We thank the reviewer for pointing this out – we removed Ref 43.
20) Line 202: the authors state that MyoF localises near the food vacuole from ring stage/trophs onwards. However, how can this statement be made in schizonts based on these images (Fig. 2A), where it doesn't look like MyoF is anywhere near the FV? This statement can only be made for schizonts if co-localised with a FV marker (which is done in Fig. 2B), however, based on the number of MyoF foci, it appears that this was not done for schizonts. Please either remove the statement that MyoF is near the food vacuole from trophs onwards (because it is only seen near the FV up until trophs) or show the data in Fig. 2B of schizonts to substantiate these claims.
This is a valid point. We originally did not focus on schizonts because most markers end up in some focal area in the forming merozoite but other proteins (such as e.g. K13) also have one or more additional foci at the FV, making interpretation unclear, particularly if the schizont is still organizing to become fully segmented. This is why we generally focused the K13 co-localisations on the trophozoite stage to obtain the clearest information on endocytosis. However, given the fact that this manuscript gives the first localization of MyoF in P. falciparum parasites, we now provide a comprehensive time course (Figure 1C, S1A) including schizonts, which show quite a complex pattern: while the MyoF-GFP localization in trophozoites appeared as multiple foci close to K13 and also the FV, the MyoF-GFP pattern changes in late schizonts (fully segmented) and merozoites, appearing as elongated foci no longer close to K13 or the FV. Of note, this pattern has been previously reported for MyoE in P. berghei (Wall et al., 2019).
We therefore revised the statement about MyoF localization in schizont to better reflect the observed localization: (line 175): “In late schizonts and merozoite the MyoF-GFP signal was not associated with K13, but showed elongated GFP foci (Figure 1C, S2A) reminiscent of the MyoE signal previously reported in P. berghei schizonts (Wall et al., 2019).”
21) Line 204-206: what does this statement bring to the paper? Is it to show that it is the real localisation of MyoF because 2 tag cell line show the same localisation? I don't think this is needed, especially as later in the manuscript an HA-tag MyoF line is used and show similar localisation.
We see the reviewers point, but prefer to keep this data included in the supplement, particularly because potential differences in the location of tagged MyoF were a major concern.
Related to the tag issue: in order to get a better understanding of the effect of C-terminally tagging with different sized tags we now performed a more detailed analysis of the MyoF-3xHA cell line (Figure S2F-G), showing that this cell line shows a growth rate similar to the 3D7 wild type parasites, and has less vesicles than the 2x-FKBP-GFP-2xFKBP cell line, but still slightly, but significantly more than 3D7 parasites. Overall, this indicates that the smaller 3xHA tag has less effect on the parasite, than the larger 2x-FKBP-GFP-2xFKBP tag (see also new Figure 1L, showing a correlation of level of inactivation and the endocytosis phenotype for MyoF).
22) Line 212: The overlap of K13 with MyoF in Figure 2C 3rd panel (1st trophozoite panel) is not obvious, especially as the MyoF signal seems inexistant. I would advise the authors to replace with a better image. Also, why are there no images of schizonts shown in Figure 2C?
As suggested we exchanged the trophozoite image of panel Figure 2 C (now Figure 1C) and expanded this panel with images covering the complete asexual development cycle including schizonts in response to this and the previous points. As indicated above (point 20), schizont stages are complex to interpret. While late schizonts likely are not very relevant for endocytosis this is the first description of the location of the protein in this parasite and we therefore now provide a more thorough representation of the MyoF location across asexual stages in Figure1C and S2A.
23) Line 217: the spatial association of MyoF with K13 is very different when it is tagged with GFP and when it is tagged with 3xHA. The way the authors word it here, it seems that there is agreement with the two datasets, when this is not in fact the case (59% overlap for MyoF-GFP and only 16% overlap with MyoF-3xHA). These data suggest that the GFP and the multiple FKBP tags are doing something to the protein and therefore maybe the ensuing results using this line should not be trusted or be taken with a pinch of salt.
We agree with the reviewer that the location of this MyoF-GFP in the cell might differ due to the partial inactivation but in contrast to this comment, the data does not indicate any large differences. It seems the reviewer mixed something up (the 59% mentioned might come from the MCA2 figure?). The data with the two lines with differently tagged MyoF co-localised with K13 are actually quite comparable: GFP-tagged vs HA-tagged MyoF overlapping with K13 was 8% vs 16% full overlap, 12% vs 19% partially overlapping foci, 36% vs 63% foci that were touching but not overlapping (compare what now is Figure 1D and Figure S2C). Only in the 'no overlap' there is a much smaller proportion in the HA-tagged line. However, given that these are IFAs which on the one hand are more sensitive to see small protein pools but on the other hand also have pitfalls due to fixing of the cells (e.g. tiny increase in focus size due to fixing could increase the number of touching foci that in live cells might be close but did not touch), some variation can be expected to the live cells. We agree though that the partly reduced functionality of MyoF might be the reason for the consistent tendency of a lower overlap even though the difference is much less than indicated in the comment. We added "with a tendency for higher overlap with K13 which might be due to the partial inactivation of the GFP-tagged MyoF" to the sentence "IFA confirmed the focal localisation of MyoF and its spatial association with mCherry-K13 foci"
While we expect the fact that the difference between these parasites is only small somewhat reduces the "pinch of salt" with the MyoF line, we do agree that the partial functional inactivation of the GFP-tagged MyoF line may have some impact. However, we do not think that this means the results with the MyoF-GFP line are untrustworthy. On the contrary, it provides insights into its function that in some ways is equivalent to a knock down or TGD. Overall all the MyoF lines show: few vesicles occur in the MyoF-HA-line, more in the MyoF-GFP line and even more after knock sideways of MyoF-GFP. Importantly the severity of this phenotype correlates with the growth rates in these lines. Hence, together with the bloated food vacuole assays, this provides consistent data indicating that MyoF has a role in the transport of HCC to the FV and its level of activity correlates with the number of vesicles and growth. To better highlight this, it is now summarised in Figure 1M.
24) Line 219: the authors state here that they could not detect MyoF-GFP in rings, when in Figure 2C they show MyoF-GFP in rings, and also show that they could detect MyoF in Sup Fig. 3B with the 3xHA tagged line. Is this a labelling mistake in Figure 2C? If the authors could indeed not see MoyF-GFP in rings, this statement should have been made when Figure 2A was presented, and not so late in the manuscript, which causes confusion.
We thank the reviewer for pointing this out. We now provide a detailed time course (see also previous points) which shows that there is no detectable MyoF-GFP signal during ring stage development until the stage where the parasites starts the transition to trophozoites (i.e. MyoF-GFP signal could only be observed in parasites already containing hemozoin). In addition to the extended time course in Figure 1C (previously 2C) we included a panel of example ring stage images below to further highlight this. We also changed the labelling of the parasite with MyoF-GFP signal the reviewer mentions in Figure 1C to “late ring stage” (it already contains hemozoin) to clarify this.
The description of Figure 1A is now changed to: (line 153) *“The tagged MyoF was detectable as foci close to the food vacuole from the stage parasites turned from late rings to young trophozoite stage onwards, while in schizonts multiple MyoF foci were visible (Figure 1A, S2A).” *
Please see our answer to major comment #45 where we provide an explanation for the difference between MyoF-3xHA and MyoF-GFP signal in ring stage parasites.
[Figure MyoF]
25) Line 237: Showing a DNA marker (DAPI, Hoecht) for Figure 2E, and subsequent figures using mislocalisation to the nucleus, would help the reader assess efficiency of the mislocalisation.
Please see response to major comment #64 for a detailed answer on why we did not include DNA staining in the imaging used to assess mislocalization upon knock-sideways.
26) Line 254-256: authors should show the results of the bloating assay for parental 3D7 parasites (+ and - rapalog) to see whether the MyoF line - rapalog has increased baseline bloating. This applies to all subsequent FV bloating assays.
We did do several controls for bloated assays (including +/- rapalog of an irrelevant knock sideways line as well as using a chemical insult for which the control was 3D7 without treatment) in previous work (Birnbaum et al., 2020), which indicated that there is no effect of rapalog to reduce bloating. Although these controls are more stringent, we nevertheless did a 3D7 +/- rapalog control and added this to the manuscript (Figure S2I). As it is not possible to do this side by side with the assays that are already in the manuscript and the +/- rapalog 3D7 cells consistently showed no or very low numbers of cells without bloating (and stringent controls in the past equally did not show an effect), we believe adding this control once suffices.
27) Line 254-257: The authors say that because fewer parasites show a bloated food vacuole upon inactivation of MyoF it means that less hemoglobin reached the food vacuole. I understand the authors statement, however, shouldn't they look at the size of the food vacuole, instead of the number of parasites with bloated FV, to make such a statement? This has been done for KIC12 so why not doing it for MyoF?
This was now done and is provided as Figure 1J-K, S2J. The results confirm the assessment scoring bloated vs non-boated food vacuoles.
28) Line 259-261: these results would be difficult to interpret namely because the authors have dying parasites, which is exacerbated with the protein being knocked sideways. The authors should mention the pitfalls their knock sideways and tagging design here. Line 260-261: RSA is an assay relying on measuring parasite growth 1 cycle after a challenge with ART for 6 hours.
Fortunately, this concern is unfounded, as the survival (measured by parasitemia after one cycle) of the same sample + and - DHA is assessed, isolating the DHA effect independent of potential growth defects which are cancelled out. Hence, if there were parasites dying in the MyoF line (please note that they might not actually die, but simply grow more slowly), this factor applies for both the + and - ART condition. As we are testing for a decreased susceptibility to ART which would manifest as an increased survival in RSA surfacing above 1%, antagonistic effects of reduced MyoF function and ART treatment would not result in detectable differences as without effect, the RSA survival is always close to zero.
The same applies for the knock sideways where we assess the survival of +rapalog between +ART and -ART. If the reduced MyoF activity of the knock sideways leads to a decreased survival, this applies to both +ART and -ART. Please also note that rapalog was lifted after the DHA pulse (see e.g. Figure S2K).
That effects on growth are cancelled out is nicely illustrated for proteins where there is a stronger and more rapid effect on growth upon their conditional inactivation. For instance when KIC7 is knocked aside, there is a considerable increased of RSA survival, even though continued inactivation of KIC7 would have a severe growth defect (Birnbaum et al., 2020). Vice versa, a growth defect alone does not result in reduced RSA susceptibility as evident from knock sideways of an unrelated protein or using a chemical insult (Figure 4H in (Birnbaum et al., 2020) or simply slowing the ring stage by e.g. reducing EXP1 levels (Mesén-Ramírez et al., 2019). Hence, a growth reduction is not expected to alter the RSA outcome. And even if it did, it would only lead to an underestimation of the readout if growth is too severely affected (which would be obvious in the + rapalog without DHA sample, which was not the case).
In that respect it is valuable to have the rapid kinetics of knock sideways which permit inactivation of a protein before severe growth defects occur (although the only partial responsiveness of MyoF clearly is not the most optimal). In contrast, the absolute loss of a gene (as is the case if diCre is used) prevents (or at least makes it extremely difficult as the timing would need to exactly hit sufficient protein reduction without killing the parasite until the end of the RSA) using this system in these experiments (again see (Mesén-Ramírez et al., 2021) where in a EXP1 diCre based knock out RSA was only possible because we complemented with a lowly, episomally expressed EXP1 copy to have parasites with only a partial phenotype to do this assay).
29) Line 261-263: the authors sate that MyoF has a function in endocytosis but at a different step compared to K13 compartment proteins. I am not sure what they mean here. Can this be clarified?
The different steps in endocytosis are explained in the introduction and we now tried to further clarify this (line 98). “So far VPS45 (Jonscher et al., 2019), Rbsn5 (Sabitzki et al., 2023), Rab5b (Sabitzki et al., 2023), the phosphoinositide-binding protein PX1 (Mukherjee et al., 2022), the host enzyme peroxiredoxin 6 (Wagner et al., 2022) and K13 and some of its compartment proteins (Eps15, AP2µ, KIC7, UBP1) (Birnbaum et al., 2020) have been reported to act at different steps in the endocytic uptake pathway of hemoglobin. While inactivation of VPS45, Rbsn5, Rab5b, PX1 or actin resulted in an accumulation of hemoglobin filled vesicles (Lazarus et al., 2008; Jonscher et al., 2019; Mukherjee et al., 2022; Sabitzki et al., 2023), indicative of a block during endosomal transport (late steps in endocytosis), no such vesicles were observed upon inactivation of K13 and its compartment proteins (Birnbaum et al., 2020), suggesting a role of these proteins during initiation of endocytosis (early steps in endocytosis).“
VPS45 has not apparent spatial connection to the K13 compartment but the fact that MyoF does - and its inactivation also results in vesicle accumulation - indicates that it is downstream of vesicle initiation, providing the first connection from the initiation phase to the transport phase. More evidence for these different steps of endocytosis has been published in a recent preprint from our lab, where we simultaneously inactivated a protein of both “endocytosis steps” (Sabitzki et al., 2023).
To clarify this in the results as requested, we changed the statement to: (line 256) “Overall, our results indicate a close association of MyoF foci with the K13 compartment and a role of MyoF in endocytosis albeit not in rings and at a step in the endocytosis pathway when hemoglobin-filled vesicles had already formed and hence is subsequent to the function of the other so far known K13 compartment proteins.”
30) Do the authors mean that it is involved in endocytosis but not in ART resistance? If so, this is a very difficult statement to make since the parasites are dying. Is there any evidence of point mutations in MyoF in the field?
We split this point to address all issues raised here. Please see response to point 29 which clarifies that this was meant in a different way and our response to point 28 which explains why the dying parasite issue is not expected to affect the RSA (please also note that we do not have evidence of actually dying parasites in the MyoF-2xFKBP-GFP-2xFKBP line, most likely the growth is slowed).
The mutation issue is interesting. In fact evidence exists that MyoF mutations may be associated with resistance (Cerqueira et al., 2017) (please note that there it is still called MyoC) but in a recent preprint from our lab we did not find any evidence for a significantly changed RSA survival in 12 tested mutations in the corresponding gene (Behrens et al., 2023).
To clarify this we added the following statement to the discussion (line 709): "Of note, mutations in myoF have previously been found to be associated with reduced ART susceptibility (Cerqueira et al., 2017), but 12 mutations tested in the laboratory strain 3D7 did not result in increased RSA survival (Behrens et al., 2023)*. *
31) Line 298: the authors state that there is no growth defect in the first cycle when rapalog is added to the KIC11 line, however based on Figure 3D, there is evidently a 25% reduction in growth compared to - rapalog at day 1 post treatment, and a 60% reduction by day 2, which is still within the 1st growth cycle. The authors should either revise their statement or provide an explanation for these findings. The authors should also explain why their Giemsa data in Fig. 3E is not in accordance with their FACS data.
We think there is a misunderstanding here, as our figure legend was not detailed enough and we apologise if this had been misleading. The growth effect is restricted to invasion or possibly the first hours of ring stage development (see point 4&5, reviewer 2), which in asynchronous cultures more rapidly takes effect as the culture also contains schizonts that immediately generate cells that re-invade but can't due to inactivation of KIC11 (due to the rapid action of the knock sideways, KIC11 is already inactivated). In contrast, in highly synchronous cultures, this effect can only be evident once the parasites reached the schizont stage (starting with rings this takes close to 2 days). We now clarify that Figure 2E (previously Figure 3D) shows growth data obtained with an asynchronous parasite culture, while in Figure 2F the growth assay is performed with tightly synchronized (4h window) parasites as stated in the Figure legend.
We now explicitly state in each Figure legend and for each growth experiment throughout the manuscript whether we used asynchronous or synchronized parasites for growth assays.
Related to this, the incorrect y-axis label of what is now Figure 2E mentioned in major comment #58 is now corrected.
32) Line 301: KIC11 could also be important very early for establishment of the ring stage for example for establishment of the PV. Also, was mislocalisation assessed in rapalog-treated parasites at 72 hours or in cycle 3?
This is a valid point and this has now been addressed. We performed an invasion/egress assay revealing similar schizont rupture rates, but significantly reduced numbers of newly formed ring stage parasites (Figure 2H, S3G), indicating an effect of KIC11 inactivation either on invasion or possibly the first hours of ring stage development. A very similar point was raised by Reviewer 2, please see reviewer 2; major comment #4. This is now also reflected in line 302, which now reads: ”… indicating an invasion defect or an effect on parasite viability in merozoites or early rings but no effect on other parasite stages (Figure 2F-H, Figure S3F-G).”
We further included an assessment of mislocalization 80 hours after the induction of knock-sideways by addition of rapalog in Figure S3E which showed mislocalization of KIC11 to the nucleus.
33) Line 311: the authors should change the sentence from 'not related to endocytosis' to 'not related to endocytosis or ART resistance'.
Done as suggested.
34) Line 323-325: Authors say that a nuclear GFP signal can be observed in early schizonts for KIC12. According to the pictures provided in Figure 4A and Figure S5A it is not very obvious. Also faint cytoplasmic GFP signal could only be background as we can see that exposure is higher for schizont pictures
We changed the sentence (line 339) to: “…nuclear signal and a faint uniform cytoplasmic GFP signal was detected in late trophozoites and early schizonts and these signals were absent in later schizonts and merozoites (Figure 3A, Figure S4A,B).” in order to emphasize that the nuclear signal disappears early during schizont development.
35) Line 326-328: The authors say that kic12 transcriptional profile indicate mRNA levels peak (no s at peak) in merozoites. Should they show live cell imaging of merozoites then? Because from the Figure 4A schizont pictures where schizonts are almost fully segmented no signal can be observed.
The observation that mRNA levels of early ring stage expressed proteins tend to increase already in mature schizonts and merozoites is well established (e.g. (Bozdech et al., 2003)). A very good example for this are exported proteins of which most show a transcription peak in schizonts but the proteins are only detected in rings see e.g. (Marti et al., 2004). Hence, our observation for KIC12 is quite typical.
We originally did not include merozoites, as in the last row of Figure 3B fully developed merozoites within a schizont with already ruptured PVM are shown and no GFP signal can be detected in these parasites. We now provide images of free merozoites in Figure S4A-B showing again no detectable GFP signal.
We thank the reviewer for pointing out the typo, "peak" has been corrected.
36) Line 347: The authors state that using the Lyn mislocaliser the nuclear pool of KIC12 is inactivated by mislocalisation to the PPM. This tends to suggest that only the nuclear pool of KIC12 is mislocalised. How is it possible that only the nuclear pool is mislocalised?
The Lyn mislocaliser is at the PPM which is continuous with the cytostomal neck where the K13 compartment likely is found. The effect of the Lyn mislocalizer on the KIC12 protein pool localizing at the K13 compartment is therefore somewhat unclear. For this reason we already had the following statement in the original submission (line 400): “Foci were still detected in the parasite periphery and it is unclear whether these remained with the K13 compartment or were also in some way affected by the Lyn-mislocaliser.” We would like to stress here that the same does not apply to the nuclear mislocaliser, which is only a trafficking signal delivering KIC12 to the nucleus and hence likely does not affect the nuclear pool of KIC12, only the K13 compartment pool (the main interest of this manuscript).
We realised that the statement towards the end of this paragraph was unnecessarily ambiguous in regards to the K13 compartment pool of KIC12 which might have caused some confusion about the function of this pool of KIC12 and therefore modified it to (line 374): "Due to the possible influence on the K13 compartment located foci of KIC12 with the Lyn mislocaliser, a clear interpretation in regard to the functional importance of the nuclear pool of KIC12 other than that it confirms the importance of this protein for asexual blood stages is not possible. In contrast, the results with the nuclear mislocaliser indicate that the K13 located pool of KIC12 is important for efficient parasite growth.". It is also important to note that this limitation does not apply to the NLS knock sideways in regard to the K13 compartment and that the endocytosis function of this pool of KIC12 seems solid which with this statement is enforced.
37) Line 368-369: Effect was also only partial for MyoF. Why didn't you measure the same metrics for MyoF?
This was now done and is provided as Figure 1J-K, S2J, confirming our previous interpretation, see also point #27 which raises the same point.
38) Line 379: you don't know if all proteins acting later in endocytosis will have an increased number of vesicles as a phenotype
This is based on our current definition as stated in the introduction. It assumes a directional vesicular transport of hemoglobin to the food vacuole where inhibition of early stages will prevent transport before HCC-filled autonomous vesicular containers have formed and entered the cell. In contrast later inhibition stops such containers from further transport, leading to their accumulation. Such an accumulation is visible after VPS45-inactivation and other proteins (Jonscher et al., 2019; Mukherjee et al., 2022; Sabitzki et al., 2023) or treatment with cytochalasin D (Lazarus et al., 2008). While it is possible that there may be smaller intermediates formed at the K13 compartment that later on unite or fuse with the compartment evident after VPS45 inactivation and these might be missed due to small size (i.e. inhibition of a step between K13 compartment and an early endosome or equivalent), this would still be upstream of the VPS45 induced containers and hence would be earlier. We therefore believe that based on the framework given in the introduction (see also (Spielmann et al., 2020)) to assume that a phenotype manifesting as reduced food vacuole bloating without formation of detectable vesicles likely signifies inhibition of the process early whereas reduced bloating but with vesicles signifies inhibition later in the process.
39) Line 413-414: The authors state that no growth defect was observed upon KS of 1365800. Is growth alone enough to say that there is no impact on endocytosis?
This is an interesting point. The endocytosis proteins we studied so far indicate that efficient impairment of endocytosis manifests as a severe growth defect. Hence, lack of a growth defect can be assumed to be an indicator for absence of an important role for endocytosis (or any other growth relevant process). Clearly there is a gradual response, such as seen in the different MyoF versions resulting in proportional growth and vesicle appearance phenotypes. Hence, a protein with a minor role might have slipped our attention but then it probably is also not a very important protein in endocytosis.
To further strengthen our assessment of PF3D7_1365800 importance for asexual blood stage development, we now also generated a cell line expressing the PPM Mislocalizer, enabling knock sideways to the PPM. This was done because this protein consistently has a focus at the nucleus that may be within the nucleus. Again this revealed no growth defect upon inactivation (Figure S7D).
40) Line 432: in this section, the authors state that KIC4 and KIC5 seem to have domains that may suggest these proteins are involved in endocytosis, based on the alpha fold data that is publicly available. Considering the authors have TGD-SLI versions of these lines (Birnbaum et al. 2020) and have already confirmed in this previous publication that they confer resistance to ART; it would make sense to look at endocytosis for these genes. This would be a relatively simple and straightforward experiment, taking no longer than two to three weeks, and would require no additional reagents or line generation. Doing these experiments would add a lot more weight to this final section. The authors later state that KIC4 and 5 are TGD lines, so not the best for endocytosis assays. It is unclear why this would be difficult to do if an adequate control is contained in the experiment (such as parental 3D7). It explains why they did not perform the MCA2 endocytosis assays further up, but in my opinion, an attempt at doing these assays is important and would significantly increase the impact of this paper. Identical as major comment #17.
As stated in the manuscript and above, we were originally hesitant to do these assays due to the fact that we can't induce inactivation which is less ideal than comparing the identical parasite population split into plus and minus and is further complicated by the likely smaller effect as the TGDs still permitted growth. However, we see the point of the reviewer and now performed these assays using 3D7 as controls and taking extra care to account for stage differences between the TGD lines and 3D7. However, there was no significant difference in the bloated food vacuole assays with these cell lines. Due to the reasons mentioned in major point 17, we are not sure this indeed means these proteins have no role in endocytosis. One possible reason why we were able to obtain these TGDs may have been because the effect on endocytosis is less than in the essential proteins (or is ring stage specific) and in a TGD an endocytosis defect may therefore not be detectable with our assays (see details and further possible explanations in response to point 17).
In an attempt to address the TGD issue, we generated knock sideways cell lines for KIC4 and KIC5. Unfortunately, the mislocalization of KIC5 to the nucleus was inefficient (see figure below). As this did not result in a growth defect (in contrast to the clear KIC5-TGD growth defect (Birnbaum et al., 2020)), this line is not suitable to study a potential role of this protein in endocytosis. Therefore, we performed the bloated food vacuole assay only with KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites. However, this revealed no effect on HHC uptake, which is in line with the normal growth of KIC4-TGD parasites (Birnbaum et al., 2020) and suggests that this protein could only have a minor or redundant role in endocytosis (it is the line that shows the smallest effect in RSA). As the KIC4 and KIC5 knock sideway lines did not permit any conclusions, we did not include them into the revised manuscript but they can be found here:
[Figure KIC4 knock sideways & KIC5 knocksideways]
Figure legend: (A) Live-cell microscopy of knock sideways (+ rapalog) and control (without rapalog) KIC4-2xFKBP-GFP-2xFKBPendo+ 1xNLS mislocaliser parasites 4 and 20 hours after the induction of knock-sideways by addition of rapalog. Scale bar, 5 µm. Relative growth of asynchronous KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser plus rapalog compared with control parasites over five days. Three independent experiments were performed. Growth of knock sideways (+ rapalog) compared to control (without rapalog) KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser (blue) or KIC5-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser (red) parasites over five days. Mean relative parasitemia ± SD is shown. (B) Live-cell microscopy of knock sideways (+ rapalog) and control (without rapalog) KIC5-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites 4 and 20 hours after the induction of knock-sideways by addition of rapalog. Scale bar, 5 µm. Growth of asynchronous KIC5-2xFKBP-GFP-2xFKBPendo+ 1xNLSmislocaliser plus rapalog compared with control parasites over five days. Four independent experiments were performed. __(C) __Bloated food vacuole assay with KIC4-2xFKBP-GFP-2xFKBPendo+1xNLSmislocaliser parasites 8 hours after inactivation of KIC4 (+rapalog). Cells were categorized as with ‘bloated FV’ or ‘non-bloated FV’ and percentage of cells with bloated FV is displayed; n = 3 independent experiments with each n=19-30 (mean 21.4) parasites analysed per condition. Representative DIC are displayed. Area of the FV, area of the parasite and area of FV divided by area of the corresponding parasites were determined. Mean of each independent experiment indicated by coloured symbols, individual datapoints by grey dots. Data presented according to SuperPlot guidelines (Lord et al., 2020); Error bars represent mean ± SD. P-value determined by paired t-test. Area of FV of individual cells plotted versus the area of the corresponding parasite. Line represents linear regression with error indicated by dashed line.
41) Line 490-493: the authors state that the K13 compartment proteins fall in two groups, some that are involved in ART resistance AND endocytosis, and some that have different functions. However, in this manuscript the authors have demonstrated 3 flavours that K13 compartment proteins can come in: • Some that confer ART resistance and are involved in HCCU (MCA2) • Some that are involved in HCCU but not ART resistance (MyoF & KIC12) • Some that are involved in neither (KIC11) The authors should therefore revise this statement.
We agree that this was not well phrased. To account for the fact that not all endocytosis proteins confer increased RSA survival to the parasites when inactivated we changed this statement (line 604): "This analysis suggests that proteins detected at the K13 compartment can be classified into at least two groups of which one comprises proteins involved in endocytosis or in vitro ART resistance whereas the other group might have different functions yet to be discovered.“
Generally, we believe that endocytosis is the overarching criterion and we therefore would like to keep the definitions of the main groups (endocytosis or not). As indicated by the title, the focus of the manuscript is on the K13 compartment for which so far endocytosis is the only experimentally associated function. That this group contains proteins that do not confer reduced ART susceptibility when conditionally inactivated (KIC12 and MyoF) is explained by their stage-specificity, making this a subgroup of the overarching endocytosis group.
We realise that with the endocytosis data on the KIC4, KIC5 and MCA2 TGD there is now also a subgroup we were unable to demonstrate an endocytosis effect in trophozoites although they show changes in RSA survival. However, as indicated above, we would be hesitant to fully exclude some role of these proteins in endocytosis in rings. Particularly as a comparably small reduction in endocytosis protein activity or abundance is sufficient to increase RSA survival (Behrens et al., 2023). A principal classification of "endocytosis or ART resistance" or "neither endocytosis nor ART resistance" still accounts for this and therefore seems to us to be the most useful, particularly also in light of our domain identification that then can be linked with one or the other group.
42) Line 508: the authors state that they expanded the repertoire of K13 compartments, when in fact they functionally analysed them - they did not do another BioID to identify more candidates.
We respectfully disagree with the reviewer in this point, we did expand the repertoire of known K13 compartment proteins. Only independently experimentally validated proteins from proximity biotinylation experiments can be considered part of the K13 compartment (or any other cellular site or complex). Without validation of the location, the identified proteins can only be considered candidates. This is highlighted in this manuscript by the finding that several proteins of the list did not localize at the K13 compartment.
43) Line 570-572: has anyone ever tested whether CytoD or JAS treatment in rings, is sufficient to mediate ART resistance? Something similar to what was done in PMID 21709259 with protease inhibitors. If not this would be a pretty interesting experiment for the authors to do that could shed more light on the MyoF data. It would take maybe 2 weeks to do and not require the generation of any new lines. This would clarify whether other Myosins other than MyoF are involved in endocytosis, as is suggested by previous publications (PMID: 17944961).
We now included this experiment. In agreement with a lacking need of MyoF in rings and no effect on RSA survival, there was no increased survival of the parasites in RSA (neither on 3D7 nor on K13 C580Y parasites) after cytD treatment (new part in Figure 1M). We thank the reviewer for pointing out that this experiment might also inform on whether other myosins influence endocytosis in ring stages. We added (line 250): “Similarly, also incubation with the actin destabilising agent Cytochalasin D (Casella et al., 1981), had no effect on RSA survival in 3D7 or K13C580Y (Birnbaum et al., 2020) parasites, indicating an actin/myosin independent endocytosis pathway in ring stage parasites (Figure 1M) and speaking against other myosins taking over the MyoF endocytosis function in rings.”
44) Line 608: inhibitors targeting the metacaspase domain of MCA2 may inadvertently inactivate other essential parts of the protein. They authors should acknowledge this possibility in the text.
The inhibitors used in the cited studies (Kumari et al., 2018) are validated metacaspase inhibitors, such as Z-FA-FMK (Lopez-Hernandez et al., 2003). Activity against the other parts of PfMCA2 - which apart from the MCA domain shows no homology to other proteins - is therefore unlikely.
45) Line 624-625: the authors state that MyoF is 'lowly expressed in rings' - indeed this is the case in their MyoF-2xFKBP-GFP-2xFKBP line which the authors established has defects due to the tag, but it appears from their MyoF-3xHA tagged line that it is expressed in rings. The authors should therefore revise their statement, and be careful of making claims based on their defective line and using fluorescence imaging as their only metric. If they do want to make the statement that it is not there in rings, they should also do a western blot, which is much more sensitive since it amplifies the signal compared to an image of one parasite.
This comment is related to major point #24. We also would like to stress that while the MyoF-GFP line already shows a phenotype, the impression of defectiveness based on its location is due to a mix up (see major point #23).
We now provide a comprehensive time course of the MyoF-GFP signal (Figure 1C, S2A) showing that there is no detectable MyoF-GFP signal until the transition from ring to trophozoite stage. As this is all under the endogenous promoter, we do not think the partial functional inactivation of the tagging is the reason for the absence of the signal. If anything, we would have expected adding a stably folded structure such as GFP to increase the stability of the protein. The main reason for the discrepancy of MyoF signal in rings between the GFP-tagged line (of note there is also no detectable MyoF-GFP signal in MyoF-2xFKBP-GFP ring stage parasites (Figure S2B)) and the HA-tagged line likely is that IFA is much more sensitive than live GFP detection (similar to the high sensitivity the reviewer mentions in regards to WB). This discrepancy therefore is likely due to the fact that the lowly expressed MyoF only become apparent with the HA-tagged line due to the IFA. We therefore believe that MyoF is 'lowly expressed in rings' is an appropriate description of our results obtained with three different cell lines (MyoF-2xFKBP-GFP-2xFKBP, MyoF-2xFKBP-GFP and MyoF-3xHA). We hope this is sufficiently well reflected in the manuscript where we write ‘a low level of expression of MyoF in ring stage parasites.’ not that it is ‘not there in rings’ (line 174).
46) Line 635: arguably this is the 3rd variety and not the 2nd (the authors already mentioned 2 types - ones that are involved in HCCU AND ART and those involved in HCCU only). See comment for line 490-493 above.
See response for major comment #41, we now consistently used "or" instead of "and". See line 490-493 how this was resolved for what previously was line 635.
47) Line 785: Bloated food vacuole assay/E64 hemoglobin uptake assay method specify that a concentration of 33mM E64protease inhibitor was used. However, in reference 44, cited in the manuscript, a concentration of 33µM E64 was used. Please confirmed if this is just a typo or if 1000x E64 concentration was used which renders the experiment invalid.
We thank the reviewer for pointing this out, we corrected this typo and will look out for symbol font conversion errors for the resubmission.
48) Line 788: it is unclear from this section what is considered a bloated food vacuole - is there an area above which the FV is considered bloated? Do the authors do these measurements manually or use an addon in FIJI/ImageJ? What is the cutoff for if a FV is bloated? Please clarify. Additionally, for the representative images + rapalog for Figures 2H and 4H, it would be useful to see where the authors delineate the FV (add a white circle showing what is actually measured).
The bloated FV assay is well established (Jonscher et al., 2019; Birnbaum et al., 2020; Sabitzki et al., 2023). Although the bloating of the FV is a human judgment call, it is actually quite obvious: bloating appears as an easily spotted bulging of the FV in DIC. As also minor bloating is scored as 'bloated', it is a very conservative assay. Using an-add on to measure this is not straight forward. It is unclear how this bulging effect of the FV in DIC could be spotted by a software and due to the obviousness to human operators, potentially lengthy and complicated efforts to design appropriate machine learning options were not undertaken. The situation faced by the scorer of the assay is evident from Figure S4F-G which contains close to 50 "on rapalog" cells and close to 50 control cells, giving representative cells from all replicas of bloated FV assays with KIC12. Please note that these images shows the most complicated situation as far as bloated assays go, because the phenotype is not 100% (see Figure 3F) compared to e.g. KIC7 inactivation which leads to lack of bloating in almost all cells (see (Birnbaum et al., 2020) Figure 3E) but nevertheless the difference is still obvious. We are aware that in such situations (less than absolute inhibition) this assay scoring of "yes" or "no" is a surrogate for the actual level of inhibition and may be more subjective. This is why in this case we also did the FV size measurements (which are less dependent on human judgment) to further support this and give a better quantifiable measure. Of note, the bloated food vacuole judgments are done "blinded", i.e. the examiner does not know which sample they are looking at.
In response to this reviewer's point we now also added the FV size refinement of the assay for MyoF inactivation which is one of the cases where inhibition of bloating is not in 100% of the cells (see major comment #27). Please also note here the advantage of the rapidly acting knock sideways technique for these assays which shows the sum of effect 8 h after initiating inactivation and for which we carefully control size of the cells which shows that there is no significant growth reduction over the assay time, excluding secondary effects due to a generally reduced viability. Compared to slower acting systems suggested to have been used instead (see introductory part and significance of this review), the rapid speed of knock sideways reduces the risk of potential pleiotropic or compensatory effects due to the time needed for proteins to be depleted if the gene or mRNA is targeted instead.
The suggestion to include a ‘white circle’ (raised also as minor comment#27) is useful as an aid to see the food vacuole. However, in contrast to the Figures in (Birnbaum et al., 2020) (where we did add such a circle), we here included the DHE staining images in the figure, labelling the parasite cytosol which readily shows the FV (the FV corresponds to the region where there is no DHE staining). As this shows the position of the FV we would prefer to not obscure the DIC images with additional features to permit the reader to see the difference between bloated or non-bloated food vacuoles and keeping the image as natural as possible.
49) Line 863-864: this sentence seems to be out of place.
We thank the reviewer for pointing this out, the details of nucleus staining were moved to the correct part.
50) Line 875: the authors state that there is a light blue wedge, when the circle consists of grey and black wedges. Please revise this.
This has been corrected.
51) Line 1059-1061: it is unclear whether the individual growth curves are different clones or whether they are just the same experiment repeated? If it is the latter, then why are they not combined, as is traditionally done?
These are the individual replicates of the growth curves shown in Figure 1G of the same cell lines done on a different occasion. We always try to show as much of the primary data as possible and believe that showing individual data points from the different experiments is better than only the combined values which obscure the actual course of each experiment.
52) Line 919-924: the authors mention a blue and red line, but there is only a black line in figure 3D. Moreover, the experiment of using the LYN mislocaliser was only done for KIC12 according to the manuscript. Additionally, the y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis there are several days. In the text it says there is no growth defect until the second cycle, but from this graph it appears the growth defect is evident as early as 1 day post rapalog treatment. Can the authors please clarify and correct the issues pointed out.
We thank the reviewer for pointing this out, this was due to a copy & paste error in the figure legend that was now amended. We also fixed the incorrect axis label. For the last part (growth defect) please see detailed answer to Major comment#31 raising the same concern for KIC11 (in synchronous parasites the defect only takes effect once the cells reached the relevant stage whereas in asynchronous cultures there are always cells in the relevant stage that due to the rapid effect of the knock sideways already have a growth phenotype).
53) Figure 1 panel B & C: the label of the figure where the signal from MCA2Y1344STOP-GFP is shown with the DAPI signal overlayed is deceptive since it suggests that this is the signal of full length MCA2. Please change the label of this panel from MAC2/DAPI to MCA2Y1344STOP/DAPI. The same is true for Panel C for the image labeled MCA2/K13 - please change this to MCA2Y1344STOP/K13.
Done as requested.
54) Figure 2B: what stages are these parasites? Please state this in the figure. Based on the MyoF pattern, it looks like rings in the upper panel and trophs in the bottom pannel. Why were schizonts not shown?
Both are trophozoites (early trophozoite in top panel and late trophozoite in bottom panel). This is now labelled in what now is figure 1B. As stated above, schizont stages are less relevant for the topic of this manuscript and in order to prevent the manuscript from getting more disjointed and keeping it more focussed on the main topic, we decided to not include a schizont in the manuscript. Nevertheless, we included an example image below.
[Figure MyoF_p40px schizont]
55) Figure 2D&F: it is not very meaningful when growth assays are shown as a final bar after 4 days of growth. It is much more useful and informative to see a growth curve instead (as is shown in the supplementary), since it shows if the defect is apparent in the first growth cycle or later. With the way the data is currently shown, this is not apparent. I would advise the authors to switch the graph in 2F out of a combined graph of all the biological replicates growth curves for S3D - showing error bars.
While we in principle fully agree with the reviewer in showing the course of the full experiment (which is available in Figure S2E), the key here is to show the overall difference. Hence, we would like to keep this comparison of the overall effect on growth in what now is Figure 1E and G. It is part of the argument to the doubts this reviewer raises to the function of MyoF (mainly in the overall assessment and the significance statement) to show that the phenotype is actually very consistent (partial inactivation through tagging or further inactivation using knock sideways increases endocytosis phenotypes, correlating with parasite viability).
Please also note, that the growth curves upon knock sideways shown in Figure 1G, S2E are performed with asynchronous parasite cultures, which doesn’t allow us to draw direct conclusions about growth cycle effects.
Nevertheless, we now also included the suggested combined data representation in Figure S2E.
56) Figure 3: why were the calculation of FV area, parasite area and FV/parasite area only done for KIC12 and not done for MyoF? It would be interesting to see if any of these values are different for MyoF - whether the parasites are smaller in area and therefore FV smaller. Please present them Figure 2. Images should be already available and would not require further experiments to be done, only the analysis.
This now has been done (confirming our results) and is included as Figure 1J-K, S2J. This point was also raised as major comment #37, please also see detailed answer there.
57) Figure 3B: why is there no spatial association assessment for KIC11 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins.
This is now included in Figure 2C.
58) Figure 3D: The y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis the experiment takes place over several days. Is this a typo in the y axis? Additionally, the authors state in line 287-290 that the growth defect upon addition of rapalog is only seen in the second cycle, but from this graph it appears the growth defect is already evident 1 day post rapalog addition. The figure legend also does not make sense for this figure since it mentions a blue and a red line, when there is only a black line present. The legend also mentions the LYN mislocaliser which was used for KIC12 not KIC 11 (see above).
We apologise for the inadequate legend and colour issues, this was amended. This point was also raised in major comment #31 and #52, please find detailed answer there.
59) Figure 3E: the colour for Control and Rapalog 4 hpi are very similar and very hard to discern. Please choose an alternative colour or add a pattern to one of the samples. The y axis is also missing a label. Is this supposed to be parasitemia (%)?
We thank the reviewer for pointing this out, the missing label is now included and the colour has been adapted to make them better distinguishable.
60) Figure 4A: the ring shown in this figure does not appear to be a ring (it is far too large and appears to have multiple nuclei?). Do the authors have any other representative images to show instead?
This is in fact a ring, but we realize that we accidentally included an incorrect size bar in the ring image of Figure 4A (now Figure 3A) (size bar for 63x objective instead of the correct one for the 100x objective), we apologise for this oversight. We don’t think this parasite has multiple nuclei, instead the Hoechst signal shows the often elongated nucleus seen in rings that can appear as two foci in Giemsa stained smears which leads to the typical diagnostic feature of P. falciparum rings in diagnostics. In order to exclude any doubts about the nuclear localization of KIC12 in rings, we here attached a panel with more examples of KIC12-2xFKBP-GFP-2xFKBP ring stage parasites.
[Figure KIC12]
61) Figure 4B: why is there no spatial association assessment for KIC12 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins. This should be done for the different life cycle stages considering the changing localisation of KIC12.
This is now provided in Figure S4A. As suggested by the reviewer, we independently quantified the association for ring stage, early trophozoite and late trophozoites stage. As there is no KI12 signal in schizonts, we did not include a quantification for this stage.
62) Figures 4C&E: it is extremely important to show the DNA stain in both these samples considering that a portion of KIC12 is in the nucleus! Please add the DAPI signal for these figures (as for all other figures!).
Please see major comment #64 for a detailed answer why we did not include DNA staining in the imaging used to assess mislocalization upon knock-sideways.
63) Figure 4E: this figure should be presented before 4D (considering the line being presented in 4E is used in an experiment in 4D). The authors should switch the order of these two.
We see the point the reviewer is raising here, Figure 4D (now Figure 3D) also contains the data with the Lyn mislocaliser while we first talk about the NLS mislocaliser. This permits a better comparison between the two mislocaliser lines. However, first explaining the Lyn-mislocaliser and then going back to the NLS would make it rather complicated for the reader to follow the storyline and therefore we would like to keep the order as it is. We realise that this means the reader has to go back one figure part for seeing the Lyn growth data, but believe this is worth the benefit that the data is there compared to the NLS result.
64) It is unclear why in many of the fluorescence images the authors do not show the DAPI signal - particularly when colocalising with K13 and when doing the knock sideways experiments. Please add these images to the figures - I would assume they have already been taken, so would simply involved adding the images to the panel.
We did not include DNA staining (DAPI or Hoechst) for any of the images used to assess the efficacy of mislocalization, as we would prefer to keep the parasites as representative of a viable parasites in culture as possible. Hence they were imaged without DNA stain (these stains are toxic). We would like to point out that a DNA stain is not necessary, as the mislocaliser already marks the nucleus (in the case of the NLS mislocaliser), actually even somewhat more accurately, as it fills the entire nuclear space rather than only the DNA which is marked by DAPI or Hoechst.
For LYN this admittedly is not the case, there the mislocaliser marks the plasma membrane. However, we think the proper control for efficient mislocalisation is the comparison between the GFP-tagged protein of interest and the mCherry mislocaliser to show mislocalisation, as previously done in our lab (e.g. (Birnbaum et al., 2017; Jonscher et al., 2019; Birnbaum et al., 2020)).
Due to their toxicity, we also avoided nuclear staining in some other parts of the manuscript when we were of the opinion that a nucleus signal was not necessary.
65) Throughout the manuscript, there is no western blot confirming the correct size of their modified proteins. This should be provided.
We did perform Western blot analysis for both MCA2 cell lines. MCA2 is the only gene-product for which we generated a disruption for this work, and together with the severe truncation from previous work, we provided a Western blot-based confirmation of the correct size.
The MCA2 disruptions are at least partially dispensable for in vitro parasite growth, hence if degradation occurred, this might not have been noticed. In that case we considered it relevant to show that the truncations were of the expected size. The other proteins in the main figures are essential for growth. Hence, if the tagging approach would lead to unexpected changes in protein integrity (which we assume is what was intended by this concern to be assessed with a Western blot), the parasites expressing the tagged MyoF, KIC11 and KIC12 would - due to their importance for asexual blood stage development - not have been obtained. Hence, we can assume the integrity of the tagged protein is very unlikely to have been affected in a functionally relevant way.
66) None of the figures are appropriate for individuals with colour blindness, limiting their accessibility to the paper. Please change the colour schemes for all fluorescent images using magenta/green or an alternative colour combination appropriate for colourblind individuals.
We thank the reviewer for this comment. This has now been amended, individual channels of fluorescence microscopy images are now shown in greyscale, while the overlay was changed to green/magenta.
Minor Comments
1) line 29: remove 'are'.
Done.
2) Line 29: the text says "HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins are among the few proteins so far functionally linked to this process." The sentence should be: 'HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process."
Done.
3) line 44: remove 'the'
Done.
4) Line 48: consider mentioning here that malaria is caused by the parasite Plasmodium - otherwise the first mention of parasite in line 52 is confusing for the non-specialist reader.
Done.
5) Line 49: estimated malaria-related death and case numbers are from the 2021 WHO World malaria report. You cite the 2020 WHO World malaria report.
We now cite the newest WHO report.
6) Line 53: please insert the word 'have' between now and also.
Done.
7) Line 54: please change 'was linked' to is linked
Done
8) Line 72: I would specify that free heme is toxic to the parasite. Especially as you mention that hemozoin is nontoxic.
Sentence would be "where digestion results in the generation of free heme, toxic to the parasite, which is further converted into nontoxic hemozoin"
Done.
9) Line 90: authors should either say "in previous works" or "in a previous work"
The text has been altered to say: “ in a previous work”.
10) Line 91: "We designated these proteins as K13 interaction candidates (KICs)"
Done.
11) Line 95: please change 'rate' to number
Done.
12) Line 109: Please include a coma before (ii).
Done.
13) Line 112: as shown by Rudlaff et al in the paper you are citing, PPP8 is actually associated with the basal complex. You can say that "(ii) were either linked or had been shown to localise to the inner membrane complex (IMC) or the basal complex (PF3D7...).
Done.
14) Line 114: Protein PF3D7_1141300 is called APR1 in the manuscript but ARP1 in Supplementary Table 1. Please correct.
Done.
15) Line 131: please define SNP - this is the first use of the acronym.
Done.
16) Line 133-134: South-East Asia instead of "South Asia"
Done.
17) Line 135: please explain what TGD is - it is referred to over and over again in the manuscript without ever being explained.
We apologise for this oversight. We now explain what is meant with TGD at the suggested point of the manuscript.
18) Line 145: change 'Western blot' to western blot - only Southern blot is capitalised since it is named after an individual, while the other techniques are not.
To the best of our knowledge this issue has not been resolved, some Journals capitalize the “W” (e.g. Science), while others don’t (e.g. Nature). We would prefer to continue to capitalize the “W”, as this is consistent with the original publication from (Burnette, 1981), but if there are strong objections, we would be happy to change this____.
19) Line 152: add "the" between 'and spatial'
Done.
20) Line 158: please define SLI as selected linked integration, since it is the first use of the acronym.
Done.
21) Line 178: introduce a coma after protein. Sentence should be "Proliferation assays with the MCAY1344STOP-GFPendo parasites which express a larger portion of this protein, yet still lacking the MCA domain (Figure 1), indicated no growth ...
Done.
22) Line 195: the authors could mention that MyoF was previously called MyoC in the Birnbaum 2020 paper. I wanted to check back in the Birnbaum 2020 paper and could not find MyoF
Good point, this was done.
23) Line 200: "Expression and localisation of the fusion protein was analysed by fluorescent microscopy". Why expression was not analysed also by western Blot same as for MCA2?
Please see major comment #64 for a detailed answer.
24) Line 204: I could not find any mention of MyoF (Pf3D7_1329100) in reference 65. Please remove reference 65 if not correct. Also reference 66 looks at Plasmodium chabaudii transcriptomes so I would specify that "This expression pattern is in agreement with the transcriptional profile of its Plasmodium chabaudii orthologue"
Reference 65 (Wichers et al., 2019) provides an RNAseq transcriptome dataset for asexual blood stage development of 3D7 (originating from the same source as the 3D7 used in this study). While Ref 66 (Subudhi et al., 2020) indeed contain transcriptomic data from P. chabaudi, the authors also provide a nice 2h window RNAseq transcriptome dataset for asexual blood stage development of Plasmodium falciparum. Both datasets are therefore suitable as reference for the statement about myoF transcription pattern. Both datasets are also easily accessible and show the pattern in a graph in PlasmoDB.
25) Line 208: Please indicate a reference for P40 being a marker of the food vacuole
Done.
26) Line 220-224: The authors should consider changing to " Taken together these results show that MyoF is in foci that are mainly close to K13 and, at times, overlapping, indicating that MyoF is found in a regular close spatial association with the K13 compartment."
The suggested wording introduces "mainly" for "frequently" and likely was in part motivated by the discrepancy in location between cell lines that we hope we now could clarify to be only minor (see major point #23). We therefore think the original wording appropriately summarises the findings (line 178): “*Taken together these results show that MyoF is in foci that are frequently close or overlapping with K13, indicating that MyoF is found in a regular close spatial association with the K13 compartment and at times overlaps with that compartment.” *
27) Line 255: In Figure 2H, and subsequent figures showing bloated FV assay, I would delineate the food vacuole with dashed line as in Birnbaum et al. 2020 to help the reader understanding where the food vacuole is.
In contrast to the Figures in Birnbaum et al. 2020, we here included the DHE staining (parasite cytosol) in images of bloated FV assays which visualizes the FV. We therefore decided to avoid any further marking, to keep the image as unprocessed as possible (see also major point 48).
28) Line 265-266: Here the title says that KIC11 is a K13 compartment associated protein, but the title of Figure 3 says KIC11 is a K13 compartment protein. I noticed that you make the difference between K13 compartment protein et K13 compartment associated protein for MyoF for example which is not clearly associated with the K13 compartment. Which one is it for KIC11?
The interpretation of the reviewer is correct, we indeed graded this subconsciously based on level of overlap. Based on the newly added quantification shown in Figure 2C, we describe KIC11 now as K13 compartment protein.
29) Line 309-310: indicate a reference for your statement "which is in contrast to previously characterised essential K13 compartment proteins".
Done, we now included Birnbaum et al. 2020 as reference for this.
30) Line 377: Figure 4I, please correct 1st panel Y axis legend
Done.
31) Line 404: replace "dispensability" with dispensable
Done.
32) Line 416: can the authors provide any speculation as to why they observed these proteins as hits in the BioID experiments?
As some of these proteins were less well or less consistently enriched, they could be background of the experiment. Alternatively, some could be proteins that only transiently interact with the K13 compartment.
33) Line 451: Where the "97% of proteins containing these domains also contain an Adaptin_N domain and function in vesicle adaptor complexes as subunit a" come from. Do you have a reference?
The statement now includes references and reads (with small changes to original submission): "More than 97% of proteins containing these domains also contain an Adaptin_N (IPR002553) domain (Blum et al., 2021) and in this combination typically function in vesicle adaptor complexes as subunit α (Hirst and Robinson, 1998; Traub et al., 1999) (Figure 5D) but no such domain was detectable in KIC5."
34) Line 465-467: the same could be said for KIC4 as it also has a VHS domain.
The critical issue is the combination of domains and their position within the protein. While KIC4 also contains a VHS domain, the VHS domain in KIC4 is N-terminal, not in a central position and it is also not the first structural domain to be identified in KIC4. The similarity to adaptin domains was already described ((Birnbaum et al., 2020) and annotated in PlasmoDB) and these domains are also involved in vesicle formation and trafficking. These aspects of the statement can therefore not be extended to KIC4. With regards to VHS domains being involved in vesicle trafficking, this is already stated in line 538: «KIC4 contained an N-terminal VHS domain (IPR002014), followed by a GAT domain (IPR004152) and an Ig-like clathrin adaptor α/β/γ adaptin appendage domain (IPR008152) (Figure 5A-C, Figure S8). This is an arrangement typical for GGAs (Golgi-localised gamma ear-containing Arf-binding proteins) which are vesicle adaptors first found to function at the trans-Golgi (Dell’Angelica et al., 2000; Hirst et al., 2000).»
35) Line 477-479: Can be rephrased to "However, we found this protein as being likely dispensable for intra-erythrocytic parasite development and no colocalisation with K13 could be demonstrated, suggesting a limited role for PF3D7_1365800 in endocytosis. Or something like that. Makes it clearer.
We rephrased this sentence and it now reads (line 592): “However, we found this protein as being likely dispensable for intra-erythrocytic parasite development and no colocalisation with K13 was observed, suggesting PF3D7_1365800 is not needed for endocytosis“.
36) Line 535: Have AP-2a or AP-2b been shown to be at the K13 compartment?
AP2m is at the K13 compartment (Birnbaum et al., 2020). Adaptor complexes are heterotetramers and their subunits do not typically function on their own and this is conserved across evolutionarily distant organisms. In agreement that this is also the case in P. falciparum, Henrici et al. (Henrici et al., 2020a) showed that both, AP-2a and AP-2b, were present in an AP2µ Co-IP, indicating that the AP2 complex consist of the ‘classical’ subunits in P. falciparum. Therefore, the presence of all subunits at the K13 compartment is very likely, although this has only been experimentally confirmed for AP2µ. Of note, for Toxoplasma gondii the presence of AP-2a and AP-2b at the micropore has been experimentally confirmed (Wan et al., 2023; Koreny et al., 2023) and interaction suggested by presence in the same IP as DRPC (Heredero-Bermejo et al., 2019).
37) Line 569: reference 43 is wrong
We thanks the reviewer for pointing this out – we removed Ref 43.
38) Line 746: typo "ot" instead of or.
Changed.
39) Line 801: method for Domain Identification using AlphaFold specify that RMSDs of under 5Å over more than 60 amino acids are listed in the results. However, there is a typo in Figure 5B for KIC5 where it says "RMSD 4.0 Å over 8 aa". Please correct.
Done. In addition, we have now applied a more stringent cut-off of 4Å over more than 60 amino acids to ensure a higher reliability of our hits. This decision was based on results from our preprint (Behrens and Spielmann, 2023). Because of this the phosphatase domain in KIC12 is no longer included in this manuscript and accordingly the following sentence has been deleted. “In KIC12 we identified a potential purple acid phosphatase (PAP) domain. However, with the high RMSD of 4.9 Å, the domain might also be a divergent similar fold, such as a C2 domain, which targets proteins to membranes.”
40) Line 856: In Figure 1E, please use the same Y axis legend as in Figure 2D "relative growth at day 4 [%] compared with 3D7"
Done.
41) Figure S1: Some PCR gels check for integration are presented as 5', 3' and ori whereas other gels are presented as ori, 5' and 3'. This is confusing.
We agree that ideally the order of sample loading should be consistent and we apologise for this. The explanation for this is that these gels were run by different people at different times before we were able to better standardize the loading scheme. However, in the interest of not unnecessarily using resources for something that has a similar meaning, we would prefer not to repeat these PCRs and re-run them only for consistency reasons (as the conclusion is not affected by the different loading schemes).
42) Figure S1: Why was the expression of only MCA2 was verified by Western blot? What about the other proteins?
See response to major comment 56.
43) Line 493: Considering KIC11 was not involved in HCCU or ART resistance it might be worth mentioning in this section that it is of note that there are no domains detected that would be involved in endocytosis.
We agree that this is the case, however it is also the case for all other proteins that either are not involved in endocytosis and/or lowered susceptibility to ART. We therefore now added a summary statement addressing this in line 602: “In contrast, the K13 compartment proteins where no role in ART resistance (based on RSA) or endocytosis was detected, KIC1, KIC2, KIC6, KIC8, KIC9 and KIC11, do not contain such domains (Figure 5E).” We did not add this at the suggested part of the manuscript as at that point the domain search results are not yet introduced and doing this each time for all the individual proteins would disconnect the flow of the manuscript.
44) Line 503-506: is it wise to generate more drugs that target a pathway that is already highly susceptible to mutations? The authors should add a statement explaining how this might be avoided.
The only protein for which mutations do not have a large fitness cost is K13 (see also our preprint on fitness cost of ubp1 mutation (Behrens et al., 2023) and even with K13 the level of resistance seems to be limited by amino acid deprivation when endocytosis is reduced (Mesén-Ramírez et al., 2021). We therefore do not think that this pathway is particularly prone for mutations. Further, the number of commercial drugs targeting the "endproduct" of endocytosis (hemoglobin digestion and detoxification of heme) highlight it as the most prominent vulnerability for drug-based intervention if we go by number of commercially available drugs acting on things associated with a single process.
45) Throughout, scale bars are stated in the figure legends at the end of the legend. This is a slightly confusing format. The authors should consider stating the scale bar for each sub-legend where a fluorescence image is taken.
Done.
** Referees cross-commenting**
After reading reviewer 2 and 3's comments, I think there are significant overlaps in the key points raised in terms of questions about fusion proteins and their potential partial mis-localisation, better descripton of results and target selection. Overall I think we agree that the work has potential, but in its current form does not represent a major advance. It would be immensely helpful if the manuscript would be carefully edited for a better flow and linear description of results.
We now rearranged the manuscript for better flow but would like to highlight that the many requests for smaller experimental issues (and "better description of results") worked somewhat in the opposite way of a more linear description. We hope the rearranged version acceptably balances these two issues. The issues raised in regards to target selection and potential partial mis-localisation are addressed in our responses mainly to this reviewer. Please also see comments on systems used at the end of the rebuttal.
Reviewer #1 (Significance (Required)):
The authors set out to test whether other proteins that are in the vicinity of K13 are involved in mediating ART resistance and endocytosis. This is an interesting question. However, other than MCA2 which was already known to be involved in mediating ART resistance (and was not tested for its involvement in endocytosis), none of their candidate proteins seem to be involved in mediating both these functions. The authors show that the other proteins tested appear important for parasite growth, with KIC12 and MyoF involved in mediating endocytosis. While these findings are novel, the KS approach used by the authors casts some doubt over the findings, and would mean that these findings would have to be re-tested with a more reliable approach, such as the GlmS system or generating a conditional knockout using the DiCre system. Despite not advancing our understanding of ART resistance, or identifying further players involved in this process, this manuscripts provides two candidates that are involved in mediating endocytosis and a further candidate that appears to be important for parasite growth. Further work on these proteins will be required to understand their exact roles. As stated above, there is currently limited interest for these results (limited to researchers working on endocytosis in apicomplexan parasites and possibly the wider endocytosis field from an evolutionary perspective), however with further work, this could increase the impact and interest of this work substantially.
The authors do not describe any novel methods/approaches within this work.
In the significance statement the reviewer indicates that other systems would have been more reliable for the work here. This is addressed in our response above and in a detailed considerations on the properties of conditional inactivation systems at the end of the rebuttal. The systems used in this work were not only chosen because they permit rapid targeting of many different proteins, but because they have merits that are beneficial for our assays. In fact many of the functional assays in this manuscript are difficult or impossible to carry with the suggested conditional inactivation systems (please note that we have extensive experience with the systems considered preferable:
-
DiCre (Birnbaum et al., 2017; Mesén-Ramírez et al., 2019; Mesén-Ramírez et al., 2021; Wichers et al., 2022; Kimmel et al., 2023)
-
glmS (Wichers et al., 2021c; Wichers et al., 2021a; Wichers et al., 2022; Wichers-Misterek et al., 2023)).
Reviewer #2 (Evidence, reproducibility and clarity (Required)):
In a previous publication the Spielmann lab identified the molecular mechanism of ART resistance in P. falciparum by connecting reduced levels of the protein K13 to decreased endocytosis (uptake of hemoglobin from the RBC cytosol), which results in reduced ART susceptibility. Using quantitative BioID the authors further identified proteins belonging to a K13 compartment, highlighting an unusual endocytosis mechanism.
In the present manuscript the authors follow up on this work and closely examine ten more proteins of the K13/Eps15-related "proxiome". They successfully link MCA2 to ART resistance in vitro, while the proteins MyoF and KIC12 are involved in endocytosis but do not confer in vitro ART resistance when impaired. They further characterize one candidate (KIC11) that partially colocalizes with K13 in trophozoites but to a lesser degree in schizonts. Growth assays suggest an important function for KIC11 in late stages of the intraerythrocytic developmental cycle. Five analyzed proteins however do not colocalize with the K13 compartment, while a sixth was refractory to endogenous tagging.
Using AlphaFold predictions of the KIC protein structures the author identify domains in most constituents of the K13 compartment, highlighting vesicle trafficking-related features that were not identified on primary sequence level before.
The combination of functional data together with structure predictions leads them to propose a refinement of the K13 compartment as being divided into proteins participating in endocytosis and proteins that have an unknown function.
We thank the reviewer for the assessment of the manuscript and the constructive comments.
Major comments:
1) -Table 1 is missing
We apologise for this mistake; Table 1 is now included.
2) -Lines 117-123: Given the total list of uncharacterized candidates encompasses 13 proteins, can the author gives the reason why only the top 10 and not all 13 were characterized in this study?
A similar point has been raised by Reviewer 1 in major comment #12, please see our response there for an explanation why we chose which targets.
3) -Line 174: 20% of observed MCA2 foci show no overlap with K13 and 21% only partially overlap, can the author confirm that the observed MCA2 foci in schizonts are the ones that co-localize with K13. (Addition of a schizont stage image in Fig 1C would be sufficient).
We now extended Figure 4C with images of MCA2-Y1344STOP-GFP+mCherryK13 parasites covering the schizont and merozoite stage, showing that the majority of the MCA2 foci in schizonts are also mCherry-K13 positive.
4) -The localization and observed phenotype of KIC11 is interesting but unfortunately the authors do not explore it further. Does KIC11 localize with markers of e.g. the secretory organelles (micronemes or rhoptries) in schizonts and could therefore be involved in RBC invasion?
While we intended to focus mainly on the endocytosis aspect of these proteins, we see the reviewer's point and now generated new cell lines enabling assessment of spatial association of KIC11 with markers for rhoptry (ARO), micronemes (AMA1), and inner membrane complex (IMC1c). This revealed that the KIC11-GFP signal in schizonts does not overlap with apical organelle markers and the signal does not resemble a typical apical localization. In addition, we assessed all three organelle markers after inactivating KIC11 by knock sideways which showed that KIC11 inactivation has no apparent effect on the appearance of these markers, suggesting no major alterations in schizont morphology in respect to apical markers. These results are now presented as Figure S3A and in line 304 of the results.
5) Can the author distinguish if KIC11 is involved in RBC invasion or in establishment of the ring-stage parasite?
In order to look into this, we performed egress/invasion assays, quantifying schizont and ring stage parasites in tightly synchronized parasites at two different time points (pre-egress: 38-42 hpi & post-egress: 46-50 hpi). This revealed a significant decrease in newly formed ring stage parasite per ruptured schizont in parasites with inactivated KIC11, while the egress efficacy remained unaffected. This indicated an invasion or very early ring stage development defect (new Figure 2H, Figure S3G). To further determine at which point exactly the phenotype occurs (ie during invasion or early after invasion) would require extensive experimentation that goes beyond the scope of this study (e.g. invasion assays using video microscopy with a representative number of parasites or sophisticated flow based quantification assays). We hope by excluding egress and gross changes of apical organelles as well as no indication for similar number of early rings (indicating it is invasion or a very early ring-establishment phenotype) will sufficiently narrow down the phenotype for labs interested in invasion to more definitely answer this question.
Minor comments:
1) Table S1: Please add the criterion for the order of proteins (abundance in "proxiome"?) in the table as a separate column. I would also suggest adding a new column that highlights the 10 proteins investigated in this study as I found the color-coding slightly confusing.
Done as suggested: we now include the “average log2 Ratio normalized Kelch13” values from the four DiQ-BioID experiments performed with K13 in (Birnbaum et al., 2020), as well as the suggested column to highlight the investigated proteins. Please also see reviewer 1 major point # 12 for additional information on the selection criteria and how this was added to the manuscript.
2) -154-155: There is a discrepancy between the text and Fig1C regarding the % of partial overlapping and non-overlapping foci.
We thank the reviewer for pointing this out, this was corrected.
3) -The y-axis label is missing in Fig 3E
Done.
4) -Fig 4I left graph, the superscript 2 is missing in μm2
We thank the reviewer for pointing this out, this is now changed.
5) -Did the author colocalize KIC11 in schizonts with other proteins found in the K13 compartment group of proteins not involved in endocytosis/ART resistance? This may help to further subgroup these proteins.
This is an interesting point but would actually be technically challenging to do. For this we would need to generate a KIC11endo parasite line for each of these KICs and then do co-localisation in schizonts. However, the outcome of this likely would not be very clear. The reason for this is as follows. There are foci of KIC11 that do overlap with K13 in schizonts. One can expect that these foci show KIC11 at the K13 compartment and that the other KICs would overlap with KIC11 in these K13 foci in schizonts. Hence, we would also need to see K13 to find the non-K13 compartment KIC11 foci and see if these contained the KIC of interest. This is technically challenging because it would mean we would need a third fluorescent protein which is not that trivial to do. Due to the difficulty to do this and the large amount of work involved and the already considerable amount of data in this manuscript, we believe this will be better suited for a different study.
6) -As a general comment: to make the beautiful IFAs more accessible to a broader readership, I would encourage the authors to switch the color-coding to green/magenta/blue or an equivalent color system or add grayscale images.
This was done as suggested, all fluorescence images are now provided as greyscale images and the overlays are shown in magenta/green.
Reviewer #2 (Significance (Required)):
Characterizing the molecular components involved in Plasmodium endocytosis will not only reveal interesting biology in these highly adapted parasites, but will more importantly lead to a better understanding and potentially open new avenues for intervention of ART resistance. The here presented manuscript is a carefully executed follow-up on previous work done in Dr. Spielmann's lab focusing on the K13 compartment. The authors use established assays to characterize novel components and reveal three new players in endocytosis with one mediating ART resistance in vitro. The proposition that parts of the K13 compartment have a function other than endocytosis is interesting, but will have to await more data from future studies. Taken together this manuscript adds significantly to our understanding of endocytosis in P. falciparum.
This work is of interest for cell and molecular biologists working on Apicomplexa, but especially for the Plasmodium community.
We thank the reviewer for this positive assessment.
I am a cell and molecular biologist working on Toxoplasma gondii
Reviewer #3 (Evidence, reproducibility and clarity (Required)):
Summary: The authors characterized 4 proteins from P. falciparum via cellular (co-)localization, endocytosis, parasite growth, and artemisinin resistance assays. These proteins have been identified as candidates for Kelch13 compartment and a possible role in endocytosis in their previously work with quantitative BioID for potential proximity to K13 and Eps15 (Birnbaum et al. 2020). In the current work, additional 6 proteins were not confirmed as being associated to the K13 compartment. This experimental work was complemented by an in-silico analysis of protein domains based on AlphaFold algorithm. For this protein structure evaluation all proteins were chosen, which were experimentally confirmed to be linked to the K13 compartment in the current publication and previous work. With the work 3 novel proteins linked to artemisinin resistance or endocytosis could be functionally described (KIC12, MCA2, and MyoF) and a number of hypotheses were generated.
We thank the reviewer for the assessment of the manuscript and the constructive comments.
Major comments:
The quality of the presented work is solid, the experimental design is adequate, and methods are presented clearly. The publication contains a lot of results both presented in text and in the figures and it is not always straight forward for the reader to follow the descriptions due to many details presented and a lack of context for some of these experiments.
We thank the reviewer for this overall positive assessment.
We now reordered the results section in an attempt to increase the flow of the manuscript. We also made changes to improve the context for the results. Given the further (very valid) requests for data on schizonts and invasion, there was an increased danger for a less linear manuscript that we hope to have acceptably managed with the re-arrange.
Specific suggestions for consideration by the authors to improve the manuscript. Abstract: 1) R 31: Mention how the 4 proteins were identified as candidates, you need to refer to previous work to clarify this
To clarify this the sentence was changed to (line 31): "Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site."
2) R38: "Second group of proteins" is confusing - different from the 4 mentioned above? Significance to endocytosis unclear. Please unify terminology in the manuscript, see also comment below on proxiome.
We changed the wording to clarify the group issue in the abstract as follows line 34: "Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that canonical vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins, While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion.”
3) Abstract can only be understood after reading the full publication
We attempted to amend this by expanding the abstract, particularly the changes highlighted in the previous two points.
Results: 4) Table 1 is missing from the submitted materials
We apologise for this mistake. Table 1 is now included.
5) Consider to shorten and stratify the result section to focus on the significant data
We rearranged the results in an attempt to streamline this section and are now starting with MyoF in the revised manuscript. However, as highlighted by the requests from reviewer 1, many details need to be available to support our conclusions. For instance the fact that GFP-tagging partially inactivated MyoF asked for further data to support our conclusion (HA-tagged version, showing that the location of the GFP-tagged version was consistent with the HA-tagged version, showing to what extent the different constructs affected growth and correlated with number of vesicles and bloating, see new figure 1M) or that KIC12 has two locations. Overall, we are therefore hesitant to remove data or description from the result part.
6) Unclear how the localization and functionalization assays might be impaired by the fusion proteins Significance of ART resistance assay is not clear, in presence of strong growth effects due to inactivation or truncation of genes/proteins
As indicated also in the example given in the previous point (this reviewer #5), the use of different cell lines (GFP-tagged live cells and small epitope tag in IFA) for targets with an indication for an effect of the tagging confirm that the location we assigned is reasonable. In the case of MyoF, the HA-tagged line, the partial inactivation due to GFP and the further inactivation in the GFP-tagged line by knock sideways show plausible increase of phenotypes (vesicle accumulation and bloated FV assays). Thereby the GFP-tagged line can be seen as a partial inactivation line that further supports our conclusions and overall this paints a consistent picture of the function of this protein in endocytosis (see new Figure 1M better illustrating this). Please note that the difference in location shown by this line compared to the HA-tagged proteins is only small (see also reviewer 1 major point 23ff). See also general discussion on tags at the end of this rebuttal.
Significance of ART resistance assay: The ‘ART resistance assay’ is done comparing +/- ART (DHA) in identical parasites (originating from the same culture and the same condition). Hence, any growth effects are cancelled out and effects in reducing ART susceptibility would - if at all - be underestimated (see more detailed response to point 28, reviewer 1 and controls in Birnbaum et al., 2020 where we tested an unrelated essential protein, unrelated chemical insult and rapalog on 3D7 and did not detect any effect on RSA survival).
MCA 7) Stratify results, order by significance of findings, it appears to be described in chronological order, improve readability/flow, eg ART resistance if mentioned in r138, but only reported in r183ff
We attempted to stratify, but then the reason for generating the partial MCA2 disruption parasite line becomes very arbitrary and would leave the reader wondering why we at all truncated the protein at two thirds of the protein. Hence, we do not see a way around this chronological reporting. However, this part is now not at the start of the experimental results section anymore, possibly making it overall a bit more palatable.
MyoF 8) R195 to 197 - consider moving to discussion as it is distracting here
This was shortened and additional information (asked for by reviewer 1, major point 22) to clarify that MyoF was previously called MyoC, was added (line 147): “The presence of MyosinF (MyoF; PF3D7_1329100 previously also MyoC), in the K13 proxiome could indicate an involvement of actin/myosin in endocytosis in malaria parasites. "
9) Term proxiome is introduced above, but not used in result section - suggest to unify language, eg r195 uses "K13 compartment DiQ-BioIDs" instead, which is not very convenient for the reader
We carefully reviewed this and made this more consistent.
10) What is the enrichment factor? Please provide for this and the following proteins, eg in Table 1
The enrichment factor is log2 enrichment over control and this is now provided in table S1 (see also detailed answer for Reviewer 1 major point 12).
11) R225 to 243 - overall significance of the growth experiments with mislocaliser is not clear, consider removing from manuscript or explain relevance more clearly
See also point 28, reviewer 1: This experiment is actually quite important. It shows that if we conditionally inactivate the GFP-tagged MyoF, the growth is further reduced, as stated in line 208. It might have been confusing that the mislocalisation is only partial, but this is equivalent to a partial knock down and hence is useful. This becomes even more relevant with the specific assays following in the next paragraph: while the tagging of MyoF already resulted in vesicles, conditional inactivation with KS generated even more vesicles, showing that the same phenotype was rapidly increased when MyoF was further inactivated by a different means and this also correlated with growth. Hence, this is actually a very consistent phenotype that despite some shortcomings of the tools available to analyse this protein (due to the partial inactivation by the GFP tag) in our eyes looks very convincing. We now added a graph showing the correlation of growth and phenotypes to illustrate this (Figure 1L).
We also tried to make this clearer by changing line 200 to: “Hence, conditional inactivation of MyoF further reduced growth despite the fact that the tag on MyoF already led to a substantial growth defect, indicating an important role for MyoF during asexual blood stage development.” And line 208 to:“ This was even more pronounced upon conditional inactivation of MyoF by KS (Figure 1H), suggesting this is due to a reduced function of MyoF.”
12) KIC11/KIC12 Enrichment factor?
The enrichment (’average log2 Ratio normalized Kelch13 from Birnbaum et al. 2020’) is 1.65 for KIC11 and 1.32 for KIC12, which is now also explicitly shown in column D of Table S1.
** Referees cross-commenting**
I would like to applaud reviewer #1 for a great, very thorough review and lots of detailed suggestions. I agree with the conclusions mentioned in the significance evaluation from reviewer #1 and #2: the work presented does not contain novel methods and the scope is rather narrow with the current results. (I am working on clinical studies with novel antimalarial agents)
Reviewer #3 (Significance (Required)):
On the one hand side, the authors have wrapped up some of the remaining protein candidates of the K13 compartment and could verify 4 of 10 proteins. The work is of interest for the scientific community working on endocytosis and malaria drug resistance mechanisms. Overall, the conclusions and findings from the previous work, Birnbaum et al. 2020, could be confirmed and extended mainly using the methods previously described. On the other hand, the authors made use of progress in protein structure predictions and identified domains linking the K13 compartment proteins to putative functions. The overlaid protein folds of the newly identified domains in figure 5 look convincing, but I can't comment on the technical details or cut-off used for this in-silico analysis.
Extended general remarks on the systems used for this work:
Mainly reviewer 1 suggest (in the general comments and the significance statement) that other systems would have been better suited to use for this work, namely glmS and diCre and also has concerns about the large tag which is seconded by a comment of reviewer 3. In light of this we here provide some extended considerations on the properties for conditional systems and tagging in regards to the goals of this work.
We would like to point out that we do have experience with the systems considered better-suited by the reviewer (one of the first authors has extensively used glmS (Wichers et al., 2021c; Wichers et al., 2021a; Wichers et al., 2022; Wichers-Misterek et al., 2023) and our lab was one of the first to adopt the diCre system in P. falciparum parasites and we regularly us it (Birnbaum et al., 2017; Mesén-Ramírez et al., 2019; Kimmel et al., 2023)). Clearly, these methods have a lot of strengths but there are a number of issues to be considered for the assays we use in this work (see the next section on conditional inactivation systems). In a nutshell, we believe diCre would give a more reliable readout of the absolute level of "essentiality" (i.e. importance for growth) but is unsuitable or at least difficult to use for the assays that reveal the function of our interest in this work. GlmS basically combines the drawbacks of diCre and knock sideways and hence for most targets is not expected to give a better readout of level of "essentiality" but is similarly difficult to use for our specific assays. The fact that both of these systems are possible to use without adding a tag to the target may be an advantage but without tag one loses some very important features that can be critical to understand the outcome with a given system (see considerations on the tag further below).
Conditional inactivation systems:
- __ speed of inactivation:__ glms acts on mRNA and diCre on the gene level, which makes them slower than techniques acting directly on the protein such as DD or KS. With diCre, mRNA and protein is still left, even if the gene is very rapidly excised. For instance for Kelch13 it takes 3-4 days after excising the gene until protein levels have waned enough that this manifests in a reduced growth (Birnbaum et al., 2017). While in some instances diCre permits same cycle analyses if the protein has a very rapid turn-over (e.g. Rab5a, (Birnbaum et al., 2017)), control in a few hours is still difficult. For vesicle accumulation and bloated food vacuole assays, which are done over comparably short time frames and with specific stages, it is rather challenging to hit the correct time of induction to have all the cells at the correct stage with suitably (and uniformly, ie all cells) sufficiently reduced target protein levels during the assay time. Slow acting systems are also more prone to secondary effects. The more immediate the inactivation, the closer it is to the core of the affected function. With vesicle trafficking processes this is particularly relevant as all vesicle trafficking in a cell is interconnected and there are always recycling pathways that maintain the membrane and protein homeostasis of individual compartments. Particularly for endocytosis there seem to be compensatory capacities at least in other organisms (see e.g. (Chen and Schmid, 2020)). One reason why knock sideways was developed is that it permitted to avoid compensatory changes when vesicle adaptors are inactivated (Robinson et al., 2010).
The comparably short time frame for malaria parasites to go through different stages during blood stage development also is an issue relevant for inactivation speed. The advantage of speed and the danger of obscured phenotypes is highlighted by our work on VPS45 which showed that in trophozoites this protein is involved in the transport of hemoglobin to the FV whereas in late stages it also has a role in secretory processes. Both of these functions we were able to specifically assess in the same growth cycle using KS to rapidly inactivate the protein (Bisio et al., 2020) but with a slower system would have been more complicated to dissect.
Speed of effect with glmS: unless the KS does not work well, glmS is slower acting than KS (it does not target the already synthesised protein which can remain in the cell) and also often suffers from only partial inactivation, hence the benefit of using it here is unclear. The option to have an untagged protein is a plus, however it also is a minus, as assessing efficiency (particularly in live cells e.g. for bloated assays etc a fluorescent tag is the only direct option to assess inactivation of target) is critical to ensure the phenotype manifests at the stage of interest.
lethality/absolute phenotypic effects are detrimental to some assays to study the functions we are interested in for this work: no RSA can be conducted, if the gene is lost and the parasites die. Again, with diCre, one could attempt to hit the point when the parasites have lost sufficient amounts of the target protein when they are placed under ART but then the parasites need to continue growing for ~3 days, which is not possible if the cKO is lethal except for very slowly turning over proteins. However, in that latter case, the parasites likely still had full functionality of the target protein at the beginning of the RSA, when the drug pulse happens and there would be no effect. Knock sideways solves these problems by permitting knock sideways inactivation only under ART (or with a few hours pre-incubation depending on the inactivation speed) to not yet affect growth in a severe manner but inhibiting the process the protein is involved in. It may be possible to use glmS for RSAs, but the slow speed would complicate it (it would not permit control of target protein levels in a matter of a few hours to inactivate the target protein and then re-install it).
None-absolute inactivation is also a strength for some functional assays. While we really like using diCre, in the case of EXP1 it made it necessary to complement the exp1 cKO parasites with low levels of EXP1 to be able to do functional assays without killing the parasites (Mesén-Ramírez et al., 2019; Mesén-Ramírez et al., 2021). While the lethality issue does not apply to glmS (like knock sideways, it also can be tuned), it is unclear what would be gained over knock sideways. Knockdown levels with glmS vary from gene to gene and cannot be predicted, it is in most cases considerably slower than KS, it requires glucosamine which becomes toxic at higher concentrations and might introduce off target effects and tracking protein levels during the assay would equally need GFP tagging.
Integration of properties of conditional systems
Given the above discussed properties, several factors have to be considered to be able to use a system for a given assay. Stage-specific transcription is one example. For diCre a protein not expressed in e.g. rings permits to remove the gene and the protein is never made in that parasite development cycle. We exploited this for instance for two proteins only expressed from the trophozoite stage onwards (Kimmel et al., 2023). However, if lethal (absolute effect problem), this also means one can also only see the phenotype on onset of expression of the target (e.g. if in mitosis, the first nuclear division in case the protein is absolutely essential for the process). This is just one example of such issues. Expression timing, turnover of the protein and homogeneity of stage-specific loss of protein will all influence how clearly the phenotype can be determined. All this will decide the exact time of loss/inactivation of the target protein to levels generating a phenotype and ideally therefore can be monitored during an assay (see considerations on tagging).
For these reasons vesicle accumulation or bloated food vacuole assays are difficult with slow systems as ideally the target should rapidly be inactivated at the trophozoite stage and the result monitored before the cells have moved to the schizont stage. For this a well responding knock sideways is ideal as the protein can be rapidly taken away (sometimes within seconds) to visualise the immediate, direct effect in the cell.
As shown for KIC11, there is also no disadvantage of using KS for proteins with other assays or proteins that result in different phenotypes. It permits stage-specific same cycle inactivation without having to worry about the turnover of mRNA and protein (Fig. 2F,G). Thus, besides the advantages of knock sideways for endocytosis related assays and RSAs, we also see no disadvantage of using knock sideways for the functional study of KIC11 which has a role other than endocytosis. KS also permits to specifically target the K13 pool of KIC12, something impossible or very difficult to do with other systems. Hence, we are of the opinion that the system for inactivation was adequate for most of the proteins analysed in this manuscript.
Large tag: we agree that GFP-tagging can be a disadvantage but in our opinion its benefits often outweigh the drawbacks because it permits easy and immediate (on individual cell level, if need be) monitoring of the presence/location of the target protein (e.g. after KS, but given the discrepancy of the timing between gene excision and protein loss, it might be even more important for techniques such as diCre). No fixing/permeabilisation (prone to artifacts, prevents immediate view of cells) to detect a target with specific antibodies or via a small tag is needed with GFP. Similarly, the use of Western blots to do this is time consuming and impractical if monitoring of left-over protein in the course of an assay such as a bloated food vacuole assay is needed.
In many cases, adding GFP has no negative effect. In addition, if the bulky folded structure of GFP is tolerated, it usually also tolerates the 2 to 4 12kDa FKBP domains in our standard tag. We also typically add a linker. This approach has worked for a large number of different proteins, including many essential ones for which we would not otherwise have obtained the integration cell lines (Birnbaum et al., 2017; Jonscher et al., 2019; Hoeijmakers et al., 2019; Birnbaum et al., 2020; Kimmel et al., 2023; Sabitzki et al., 2023). Hence, whenever a cell line is obtained with it, this tag in most cases is not a disadvantage. Admittedly an exception in this is MyoF and to some extent maybe MCA2 (we would like to stress that in the case of MCA2 the reason for not being able to obtain the full length tagged cell line is unclear: the protein can be severely truncated to less than 3% of its amino acid sequence and a GFP-tag is tolerated on the version with 2/3s of the protein left, which gives no good reason why the full length was not obtained; a potential reason could be a dominant negative effect). However, we obtained the full length with a small tag detected by IFA for both, MyoF and MCA2 and the location of these agreed well with the GFP tagged versions, indicating that the GFP-tagged versions are useful to show the location of these proteins in live cells.
There are also tricks to attempt monitoring the effect of e.g. diCre without tagging the target. For instance, if a fluorescent protein is connected to excision without actually being fused to the target (ie excision of the gene leads to its expression of e.g. GFP), which would avoid adding a tag to the target itself. However, the problem with this is that expression of GFP does only show excision, but mRNA producing the target protein and left over target protein may still be there in the cell. All in all, the GFP-tag on the target, while with some drawbacks, is still our preferred method to control to monitor the target protein in the cell (in principle permitting quantification of ablation efficiency on the individual cell level).
Conclusion on these considerations for this manuscript
Based on these considerations we do not see the immediate benefit of changing the system for the conclusions drawn from this study and are unsure if they are indeed better suited for this work as suggested. While a more exact readout of "essentiality" might be possible with the diCre system we are of the opinion this is less important than learning the function of a protein which - as outlined above - we believe to be considerably more difficult with diCre and even more so with glmS considering our target functions. The same applies to target specific cellular pools of a protein as done here for KIC12. Clearly MyoF is one example where the employed systems shows limitations, but with the new Figure part showing consistency in phenotype with degree of inactivation (importantly with two different forms of inactivation) and the clarification that the location of the GFP-tagged and HA-tagged versions are actually quite similar in location, we do not think employing an extra system is warranted for the conclusions of this work. Admittedly, the apparent lack of need in ring stags might give an opening to attack MyoF using diCre (by excision before its major expression peak), but depending on lethality this might preclude extended analyses (possibly vesicle assays, for sure not RSAs).
In the end the question is, if our approach provides the function of target analysed in this work and based on the data in our manuscript and the arguments in the rebuttal, we are reasonably confident that this is the case. It is not very likely the other mentioned techniques would result in a different conclusion on the function of the here studied proteins. In fact, we expect other commonly used techniques to be less suitable for the key assays in this work.
References used in our responses to the reviewers’ comments:
Behrens, H.M., Schmidt, S., Peigney, D., Sabitzki, R., Henshall, I., May, J., et al. (2023) Impact of different mutations on Kelch13 protein levels, ART resistance and fitness cost in Plasmodium falciparum parasites. bioRxiv 2022.05.13.491767.
Behrens, H.M., Schmidt, S., and Spielmann, T. (2021) The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev med.21848.
Behrens, H.M., and Spielmann, T. (2023) Identification of domains in Plasmodium falciparum proteins of unknown function using DALI search on Alphafold predictions. bioRxiv 2023.06.05.543710.
Birnbaum, J., Flemming, S., Reichard, N., Soares, A.B., Mesén-Ramírez, P., Jonscher, E., et al. (2017) A genetic system to study Plasmodium falciparum protein function. Nat Methods 14: 450–456.
Birnbaum, J., Scharf, S., Schmidt, S., Jonscher, E., Hoeijmakers, W.A.M., Flemming, S., et al. (2020) A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science (80- ) 367: 51–59.
Bisio, H., Chaabene, R. Ben, Sabitzki, R., Maco, B., Baptiste Marq, J., Gilberger, T.W., et al. (2020) The zip code of vesicle trafficking in apicomplexa: Sec1/munc18 and snare proteins. MBio 11: 1–21.
Blum, M., Chang, H.Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., et al. (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49: D344–D354.
Borrmann, S., Straimer, J., Mwai, L., Abdi, A., Rippert, A., Okombo, J., et al. (2013) Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep 3.
Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E.D., Zhu, J., and DeRisi, J.L. (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1: e5.
Burnette, W.N. (1981) “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195–203.
Casella, J.F., Flanagan, M.D., and Lin, S. (1981) Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293: 302–305.
Cerqueira, G.C., Cheeseman, I.H., Schaffner, S.F., Nair, S., McDew-White, M., Phyo, A.P., et al. (2017) Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 18: 78.
Chen, Z., and Schmid, S.L. (2020) Evolving models for assembling and shaping clathrin-coated pits. J Cell Biol 219.
Dell’Angelica, E.C., Puertollano, R., Mullins, C., Aguilar, R.C., Vargas, J.D., Hartnell, L.M., and Bonifacino, J.S. (2000) GGAs: A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149: 81–93.
Demas, A.R., Sharma, A.I., Wong, W., Early, A.M., Redmond, S., Bopp, S., et al. (2018) Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc Natl Acad Sci 201812317.
Henrici, R.C., Edwards, R.L., Zoltner, M., Schalkwyk, D.A. van, Hart, M.N., Mohring, F., et al. (2020a) The plasmodium falciparum artemisinin susceptibility-associated ap-2 adaptin μ subunit is clathrin independent and essential for schizont maturation. MBio 11.
Henrici, R.C., Schalkwyk, D.A. van, and Sutherland, C.J. (2020b) Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin in Vitro. Antimicrob Agents Chemother 64.
Henriques, G., Hallett, R.L., Beshir, K.B., Gadalla, N.B., Johnson, R.E., Burrow, R., et al. (2014) Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT. J Infect Dis 210: 2001–2008.
Heredero-Bermejo, I., Varberg, J.M., Charvat, R., Jacobs, K., Garbuz, T., Sullivan, W.J., and Arrizabalaga, G. (2019) TgDrpC, an atypical dynamin-related protein in Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Mol Microbiol 111: 46–64.
Hirst, J., Lui, W.W.Y., Bright, N.A., Totty, N., Seaman, M.N.J., and Robinson, M.S. (2000) A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-golgi network and the vacuole/lysosome. J Cell Biol 149: 67–79.
Hirst, J., and Robinson, M.S. (1998) Clathrin and adaptors. Biochim Biophys Acta - Mol Cell Res 1404: 173–193.
Hoeijmakers, W.A.M., Miao, J., Schmidt, S., Toenhake, C.G., Shrestha, S., Venhuizen, J., et al. (2019) Epigenetic reader complexes of the human malaria parasite, Plasmodium falciparum. Nucleic Acids Res 47: 11574–11588.
Jonscher, E., Flemming, S., Schmitt, M., Sabitzki, R., Reichard, N., Birnbaum, J., et al. (2019) PfVPS45 Is Required for Host Cell Cytosol Uptake by Malaria Blood Stage Parasites. Cell Host Microbe 25: 166-173.e5.
Kimmel, J., Schmitt, M., Sinner, A., Jansen, P.W.T.C., Mainye, S., Ramón-Zamorano, G., et al. (2023) Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3. Cell Syst 14: 9-23.e7.
Koreny, L., Mercado-Saavedra, B.N., Klinger, C.M., Barylyuk, K., Butterworth, S., Hirst, J., et al. (2023) Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat Commun 14: 2167.
Kumari, V., Singh, A.P., Singh, J., Sharma, R., Akhter, M., Mishra, P.K., et al. (2018) Biochemical characterization of unusual cysteine protease of P. falciparum, metacaspase-2 (MCA-2). Mol Biochem Parasitol 220: 28–41.
Lazarus, M.D., Schneider, T.G., and Taraschi, T.F. (2008) A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci 121: 1937–1949.
Lopez-Hernandez, F.J., Ortiz, M.A., Bayon, Y., and Piedrafita, F.J. (2003) Z-FA-fmk inhibits effector caspases but not initiator caspases 8 and 10, and demonstrates that novel anticancer retinoid-related molecules induce apoptosis via the intrinsic pathway. Mol Cancer Ther 2: 255–263.
Lord, S.J., Velle, K.B., Mullins, R.D., and Fritz-Laylin, L.K. (2020) SuperPlots: Communicating reproducibility and variability in cell biology. J Cell Biol 219.
MalariaGEN, Ahouidi, A., Ali, M., Almagro-Garcia, J., Amambua-Ngwa, A., Amaratunga, C., et al. (2021) An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome open Res 6: 42.
Marti, M., Good, R.T., Rug, M., Knuepfer, E., and Cowman, A.F. (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306: 1930–3.
Mesén-Ramírez, P., Bergmann, B., Elhabiri, M., Zhu, L., Thien, H. von, Castro-Peña, C., et al. (2021) The parasitophorous vacuole nutrient pore is critical for drug access in malaria parasites and modulates the fitness cost of artemisinin resistance. Cell Host Microbe 0: 283.
Mesén-Ramírez, P., Bergmann, B., Tran, T.T., Garten, M., Stäcker, J., Naranjo-Prado, I., et al. (2019) EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biol 17: e3000473.
Mukherjee, A., Crochetière, M.-È., Sergerie, A., Amiar, S., Thompson, L.A., Ebrahimzadeh, Z., et al. (2022) A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum. MBio 13.
Otto, T.D., Wilinski, D., Assefa, S., Keane, T.M., Sarry, L.R., Böhme, U., et al. (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76: 12–24.
Robinson, M.S., Sahlender, D.A., and Foster, S.D. (2010) Rapid Inactivation of Proteins by Rapamycin-Induced Rerouting to Mitochondria. Dev Cell 18: 324–331.
Sabitzki, R., Schmitt, M., Flemming, S., Jonscher, E., Hoehn, K., Froehlke, U., and Spielmann, T. (2023) Identification of a Rabenosyn-5 like protein and Rab5b in host cell cytosol uptake reveals conservation of endosomal transport in malaria parasites. bioRxiv 2023.04.05.535711.
Simwela, N. V., Hughes, K.R., Roberts, A.B., Rennie, M.T., Barrett, M.P., and Waters, A.P. (2020) Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in plasmodium berghei. Antimicrob Agents Chemother 64.
Spielmann, T., Gras, S., Sabitzki, R., and Meissner, M. (2020) Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol 36: 520–532.
Subudhi, A.K., O’Donnell, A.J., Ramaprasad, A., Abkallo, H.M., Kaushik, A., Ansari, H.R., et al. (2020) Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nat Commun 11.
Traub, L.M., Downs, M.A., Westrich, J.L., and Fremont, D.H. (1999) Crystal structure of the α appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc Natl Acad Sci U S A 96: 8907–8912.
Wagner, M.P., Formaglio, P., Gorgette, O., Dziekan, J.M., Huon, C., Berneburg, I., et al. (2022) Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. Cell Rep 39: 110923.
Wall, R.J., Zeeshan, M., Katris, N.J., Limenitakis, R., Rea, E., Stock, J., et al. (2019) Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell Microbiol 21.
Wan, W., Dong, H., Lai, D.-H., Yang, J., He, K., Tang, X., et al. (2023) The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments. Nat Commun 14: 977.
Wichers-Misterek, J.S., Binder, A.M., Mesén-Ramírez, P., Dorner, L.P., Safavi, S., Fuchs, G., et al. (2023) A Microtubule-Associated Protein Is Essential for Malaria Parasite Transmission. MBio .
Wichers, J.S., Gelder, C. van, Fuchs, G., Ruge, J.M., Pietsch, E., Ferreira, J.L., et al. (2021a) Characterization of Apicomplexan Amino Acid Transporters (ApiATs) in the Malaria Parasite Plasmodium falciparum. mSphere 6.
Wichers, J.S., Mesén-Ramírez, P., Fuchs, G., Yu-Strzelczyk, J., Stäcker, J., Thien, H. von, et al. (2022) PMRT1, a Plasmodium -Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. MBio 13.
Wichers, J.S., Scholz, J.A.M., Strauss, J., Witt, S., Lill, A., Ehnold, L.-I., et al. (2019) Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. MBio 10: e01500-19.
Wichers, J.S., Tonkin-Hill, G., Thye, T., Krumkamp, R., Kreuels, B., Strauss, J., et al. (2021b) Common virulence gene expression in adult first-time infected malaria patients and severe cases. Elife 10.
Wichers, J.S., Wunderlich, J., Heincke, D., Pazicky, S., Strauss, J., Schmitt, M., et al. (2021c) Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 23: e13341.
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
With the emergence and spread of resistance to Artemisinin (ART), a key component of current frontline malaria combination therapies, there is a growing effort to understand the mechanisms that lead to ART resistance. Previous work has shown that ART resistant parasites harbour mutations in the Kelch13 protein, which in turn leads to reduced endocytosis of host haemoglobin. The digestion of haemoglobin is thought to be critical for the activation of the artemisinin endoperoxide bridge, leading to the production of free radicals and parasite death. However, the mechanisms by which the parasites endocytose host cell haemoglobin remain poorly understood.
Previous work by the authors identified several proteins in the proximity of K13 using proximity-based labelling (BioID) (Birnbaum et al. 2020). The authors then went on to characterise several of these proteins, showing that when proteins including EPS15, AP2mu, UBP1 and KIC7 are disrupted, this leads to ART resistance and defects in endocytosis leading to the hypothesis that these two processes are inextricably linked.
In this manuscript, Schmidt et al. set themselves the task of characterising more K13 component candidates identified in their previous work (Birnbaum et al. 2020) that were not previously validated or characterised. They chose 10 candidates and investigated their localisations, and colocalisation with K13, and their involvement in endocytosis and in vitro ART resistance, 2 processes mediated by K13 and some members of the K13 compartments
The authors show that of their 10 candidates, only 4 can be co-localised with K13. Then, using a combination of targeted gene disruption (TGD) as well as knock sideways (KS), they characterised these 4 proteins found in the K13 compartment. They show that MyoF and KIC12 are involved in endocytosis and are important for parasite growth, however their disruption does not lead to a change in ART sensitivity. The authors also confirm the findings of their previous publication (Birnbaum et al. 2020), using a slightly different TGD, that MCA2 is involved in ART resistance, however they did not check whether its disruption impacts haemoglobin uptake. They also show that KIC11 is not involved in mediating haemoglobin uptake or ART resistance. To finish, the authors used AlphaFold to identify new domains in the proteins of the K13 compartment. This led them to the conclusion that vesicle trafficking domains are enriched in proteins of the K13 compartment involved in endocytosis and in vitro ART resistance.
The majority of the experiments conducted by the authors are performed to a good standard in biological and technical replicates, with the correct controls. Their findings provide confirmation that their 4 candidate genes seem to be important for parasite growth, and show that some of their candidates are involved in endocytosis. While the KD and KS approaches employed by the authors to study their candidate genes each have their own advantages and can be excellent tools for studying a large sets or genes, this manuscript highlights the many limitations of these approaches. For example, the large tag used for the KS approach can mislocalise proteins or disrupt their function (as is the case for MyoF), resulting in spurious results, or indeed the inability to generate the tagged line (as is the case for MCA2). The KS approach also makes the results of a protein with a dual localisation, like KIC12, extremely difficult to interpret.
Moreover, the manuscript is disjointed at times, with the authors choosing to conduct certain experiments for only a subset of genes, but not for others. For example, considering that the aim of this paper was to identify more proteins involved in ART resistance and endocytosis, it is confusing why the authors do not perform the endocytosis assays for all their selected proteins, and why they do not do this for the proteins they identify in their domain search. There is significant room for improvement for this manuscript, and a generally interesting question. But in it's current format, other than confirming that MCA2 is involved in ART resistance (which was already known from the Birnbaum paper), the authors do not further expand our understanding of the link between ART resistance and endocytosis in this manuscript.
Major Comments
line 31: please change defined to characterised - defined suggests that novel proteins were identified in this study, which is not the case.
line 37: please change 'second' to "another". As explained further below, the authors identified 3 classes of proteins (confer ART resistance + involved in HCCU, involved in HCCU only, or involved in neither).
Line 40: You define KIC11 as essential but according to your data some parasites are still alive and replicating 2 cycles after induction of the knock sideways. Please consider changing "essential" to "important for asexual parasite growth"
Line 40: please change 'second group' to 'this group'
line 41: state here that despite it being essential, it is unknown what it is involved in.
Line 50: the authors should state here that there is actually a reversal in this trend over the last few years.
Line 54: please separate out the references for each of the two statements made in this line (a: that ART resistance is widespread in SEA, and b: that ART resistance is now in Africa) Reference 14 also seems to reference ART resistance in Amazonia - which is not covered by the statement made by the authors (in which case the authors should state ART is now present in Africa and South America). The authors should also reference PMID: 34279219 for their statement that ART resistance is now found in Africa (albeit a different mutation to the one found in SEA).
Line 65: it is also worth mentioning here that there are other mutations in proteins other than K13, such as AP2mu and UBP1 (PMID: 24994911;24270944) that can lead to ART resistance.
Line 80, 86: ref 43 is misused. Reference 43 refers to Maurer's clefts trafficking which takes place in the erythrocyte cytosol and is not involved in haemoglobin uptake as far as I know. Please replace ref 43 with one showing the role of actin in haemoglobin uptake.
Line 98: the authors state here that they 'identified' further candidates from the K13 proxiome. This suggests that they identified new proteins in this paper, when in fact the list was already generated in ref 26. All they did was characterise proteins from that list that were not previously characterised. The authors should therefore remove identified from this statement.
Line 107-108: it is not clear from this sentence why these proteins were left out of the initial analysis in Ref 26. A sentence here explaining this would be valuable for the reader.
Line 117-123: The authors say that PF3D7_0204300, PF3D7_1117900 and PF3D7_1016200 were not studied because they were not in the top 10 hits. However, the current organisation of Supplementary Table 1 shows all 3 proteins among the top 10 hits (MyoF, KIC12, UIS14 and 0907200 being after them). I think the authors should reorganise their table. It is also unclear according to what the proteins in the table are ranked. Could the authors indicate the metric used for the ranking?
Line 129-141: Can the authors be clearer with their explanations of the identification of mutation Y1344Stop? One dataset (ref 61) shows that 52% of African parasites have a mutation in MCA2 in position 1344 leading to a STOP codon. But another dataset (ref 62) shows that the next base is also mutated, reverting the stop codon. That should have been seen in the first dataset as well. Could the authors please clarify.
Line 147: the authors say that MCA2 is expressed throughout the intraerythrocytic cycle as shown by live cell imaging. In Birnbaum et al 2020 fig 4I, the authors show that MCA2 is mainly expressed between 4 and 16hpi. But in Figure 1B of this manuscript there is a clear multiplication of MCA2 signal between trophozoite and schizont. How do the authors explain this discrepancy? Could expression of the truncated MCA2 be different than the full length? This cannot be assessed as expression and localisation of the full-length HA tag MCA2 is not shown in Schizonts. MCA2 expression seems also different for the MCA2TGD-GFP with no expression in rings.
Line 158: would it not have been more useful for the authors to have episomally expressed MCA2-3xHA in their MCA2Y1344STOP-GFPENDO line to make sure that the truncated protein is indeed going to the correct compartment? The experiments done by the authors suggests that the MCA2Y1344STOP goes to the right location but does not really confirm it.
Line 191: it is stated that MCA2 confers resistance independently of the MCA domain, however in both the MCA2-TGD and MCA2Y1344STOP-GFPENDO parasites, the MCA domain is deleted, and for both parasites, there is resistance (albeit to a lower level in the MCA2Y1344STOP-GFPENDO line). Therefore, how can the authors state that the ART resistance is independent of the MCA domain? This statement should be that resistance is dependent on the loss of the MCA domain.
Line 192: Why did the authors not check if MCA2 is involved in endocytosis? They state later on in the manuscript that they did not do endocytosis assays with TGD lines, however if the authors include the correct controls, this could be easily done. It would also be really interesting to see whether endocytosis gets progressively worse going from WT to MCA2Y1344STOP to MAC2TGD. This experiment (as well as doing endocytosis assays for KIC4 and KIC5 TGD lines) would drastically increase the impact of this study. These experiments would not take more than 3 weeks to perform, and would not require the generation of new lines.
The authors should consider re-organising the MCA2 section, first showing that the 3xHA tagged line colocalises with K13, then performing the new truncation.
Line 197: Once again ref 43 is not correct to illustrate that actin/myosin is involved in endocytosis
Line 202: the authors state that MyoF localises near the food vacuole from ring stage/trophs onwards. However, how can this statement be made in schizonts based on these images (Fig. 2A), where it doesn't look like MyoF is anywhere near the FV? This statement can only be made for schizonts if co-localised with a FV marker (which is done in Fig. 2B), however, based on the number of MyoF foci, it appears that this was not done for schizonts. Please either remove the statement that MyoF is near the food vacuole from trophs onwards (because it is only seen near the FV up until trophs) or show the data in Fig. 2B of schizonts to substantiate these claims.
Line 204-206: what does this statement bring to the paper? Is it to show that it is the real localisation of MyoF because 2 tag cell line show the same localisation? I don't think this is needed, especially as later in the manuscript an HA-tag MyoF line is used and show similar localisation.
Line 212: The overlap of K13 with MyoF in Fig 2C 3rd panel (1st trophozoite panel) is not obvious, especially as the MyoF signal seems inexistant. I would advise the authors to replace with a better image. Also, why are there no images of schizonts shown in Figure 2C?
Line 217: the spatial association of MyoF with K13 is very different when it is tagged with GFP and when it is tagged with 3xHA. The way the authors word it here, it seems that there is agreement with the two datasets, when this is not in fact the case (59% overlap for MyoF-GFP and only 16% overlap with MyoF-3xHA). These data suggest that the GFP and the multiple FKBP tags are doing something to the protein and therefore maybe the ensuing results using this line should not be trusted or be taken with a pinch of salt.
Line 219: the authors state here that they could not detect MyoF-GFP in rings, when in Figure 2C they show MyoF-GFP in rings, and also show that they could detect MyoF in Sup Fig. 3B with the 3xHA tagged line. Is this a labelling mistake in Figure 2C? If the authors could indeed not see MoyF-GFP in rings, this statement should have been made when Figure 2A was presented, and not so late in the manuscript, which causes confusion. Line 237: Showing a DNA marker (DAPI, Hoescht) for Figure 2E, and subsequent figures using mislocalisation to the nucleus, would help the reader assess efficiency of the mislocalisation.
Line 254-256: authors should show the results of the bloating assay for parental 3D7 parasites (+ and - rapalog) to see whether the MyoF line - rapalog has increased baseline bloating. This applies to all subsequent FV bloating assays.
Line 254-257: The authors say that because fewer parasites show a bloated food vacuole upon inactivation of MyoF it means that less hemoglobin reached the food vacuole. I understand the authors statement, however, shouldn't they look at the size of the food vacuole, instead of the number of parasites with bloated FV, to make such a statement? This has been done for KIC12 so why not doing it for MyoF?
Line 259-261: these results would be difficult to interpret namely because the authors have dying parasites, which is exacerbated with the protein being knocked sideways. The authors should mention the pitfalls their knock sideways and tagging design here.<br /> Line 260-261: RSA is an assay relying on measuring parasite growth 1 cycle after a challenge with ART for 6 hours.
Line 261-263: the authors sate that MyoF has a function in endocytosis but at a different step compared to K13 compartment proteins. I am not sure what they mean here. Can this be clarified? Do the authors mean that it is involved in endocytosis but not in ART resistance? If so, this is a very difficult statement to make since the parasites are dying. Is there any evidence of point mutations in MyoF in the field?
Line 298: the authors state that there is no growth defect in the first cycle when rapalog is added to the KIC11 line, however based on Figure 3D, there is evidently a 25% reduction in growth compared to - rapalog at day 1 post treatment, and a 60% reduction by day 2, which is still within the 1st growth cycle. The authors should either revise their statement or provide an explanation for these findings. The authors should also explain why their Giemsa data in Fig. 3E is not in accordance with their FACS data.
Line 301: KIC11 could also be important very early for establishment of the ring stage for example for establishment of the PV. Also, was mislocalisation assessed in rapalog-treated parasites at 72 hours or in cycle 3?
Line 311: the authors should change the sentence from 'not related to endocytosis' to 'not related to endocytosis or ART resistance'.
Line 323-325: Authors say that a nuclear GFP signal can be observed in early schizonts for KIC12. According to the pictures provided in Figure 4A and Figure S5A it is not very obvious. Also faint cytoplasmic GFP signal could only be background as we can see that exposure is higher for schizont pictures
Line 326-328: The authors say that kic12 transcriptional profile indicate mRNA levels peak (no s at peak) in merozoites. Should they show live cell imaging of merozoites then? Because from the Figure 4A schizont pictures where schizonts are almost fully segmented no signal can be observed. Line 347: The authors state that using the Lyn mislocaliser the nuclear pool of KIC12 is inactivated by mislocalisation to the PPM. This tends to suggest that only the nuclear pool of KIC12 is mislocalised. How is it possible that only the nuclear pool is mislocalised? Line 368-369: Effect was also only partial for MyoF. Why didn't you measure the same metrics for MyoF? Line 379: you don't know if all proteins acting later in endocytosis will have an increased number of vesicles as a phenotype
Line 413-414: The authors state that no growth defect was observed upon KS of 1365800. Is growth alone enough to say that there is no impact on endocytosis?
Line 432: in this section, the authors state that KIC4 and KIC5 seem to have domains that may suggest these proteins are involved in endocytosis, based on the alpha fold data that is publicly available. Considering the authors have TGD-SLI versions of these lines (Birnbaum et al. 2020) and have already confirmed in this previous publication that they confer resistance to ART; it would make sense to look at endocytosis for these genes. This would be a relatively simple and straightforward experiment, taking no longer than two to three weeks, and would require no additional reagents or line generation. Doing these experiments would add a lot more weight to this final section. The authors later state that KIC4 and 5 are TGD lines, so not the best for endocytosis assays. It is unclear why this would be difficult to do if an adequate control is contained in the experiment (such as parental 3D7). It explains why they did not perform the MCA2 endocytosis assays further up, but in my opinion, an attempt at doing these assays is important and would significantly increase the impact of this paper.
Line 490-493: the authors state that the K13 compartment proteins fall in two groups, some that are involved in ART resistance AND endocytosis, and some that have different functions. However, in this manuscript the authors have demonstrated 3 flavours that K13 compartment proteins can come in: • Some that confer ART resistance and are involved in HCCU (MCA2) • Some that are involved in HCCU but not ART resistance (MyoF & KIC12) • Some that are involved in neither (KIC11) The authors should therefore revise this statement.
Line 508: the authors state that they expanded the repertoire of K13 compartments, when in fact they functionally analysed them - they did not do another BioID to identify more candidates.
Line 570-572: has anyone ever tested whether CytoD or JAS treatment in rings, is sufficient to mediate ART resistance? Something similar to what was done in PMID 21709259 with protease inhibitors. If not this would be a pretty interesting experiment for the authors to do that could shed more light on the MyoF data. It would take maybe 2 weeks to do and not require the generation of any new lines. This would clarify whether other Myosins other than MyoF are involved in endocytosis, as is suggested by previous publications (PMID: 17944961).
Line 608: inhibitors targeting the metacaspase domain of MCA2 may inadvertently inactivate other essential parts of the protein. They authors should acknowledge this possibility in the text.
Line 624-625: the authors state that MyoF is 'lowly expressed in rings' - indeed this is the case in their MyoF-2xFKBP-GFP-2xFKBP line which the authors established has defects due to the tag, but it appears from their MyoF-3xHA tagged line that it is expressed in rings. The authors should therefore revise their statement, and be careful of making claims based on their defective line and using fluorescence imaging as their only metric. If they do want to make the statement that it is not there in rings, they should also do a western blot, which is much more sensitive since it amplifies the signal compared to an image of one parasite.
Line 635: arguably this is the 3rd variety and not the 2nd (the authors already mentioned 2 types - ones that are involved in HCCU AND ART and those involved in HCCU only). See comment for line 490-493 above.
Line 785: Bloated food vacuole assay/E64 hemoglobin uptake assay method specify that a concentration of 33mM E64protease inhibitor was used. However, in reference 44, cited in the manuscript, a concentration of 33µM E64 was used. Please confirmed if this is just a typo or if 1000x E64 concentration was used which renders the experiment invalid.
Line 788: it is unclear from this section what is considered a bloated food vacuole - is there an area above which the FV is considered bloated? Do the authors do these measurements manually or use an addon in FIJI/ImageJ? What is the cutoff for if a FV is bloated? Please clarify. Additionally, for the representative images + rapalog for Figures 2H and 4H, it would be useful to see where the authors delineate the FV (add a white circle showing what is actually measured).
Line 863-864: this sentence seems to be out of place.
Line 875: the authors state that there is a light blue wedge, when the circle consists of grey and black wedges. Please revise this.
Line 1059-1061: it is unclear whether the individual growth curves are different clones or whether they are just the same experiment repeated? If it is the latter, then why are they not combined, as is traditionally done?
Line 919-924: the authors mention a blue and red line, but there is only a black line in figure 3D. Moreover, the experiment of using the LYN mislocaliser was only done for KIC12 according to the manuscript. Additionally, the y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis there are several days. In the text it says there is no growth defect until the second cycle, but from this graph it appears the growth defect is evident as early as 1 day post rapalog treatment. Can the authors please clarify and correct the issues pointed out.
Figure 1 panel B & C: the label of the figure where the signal from MCA2Y1344STOP-GFP is shown with the DAPI signal overlayed is deceptive since it suggests that this is the signal of full length MCA2. Please change the label of this panel from MAC2/DAPI to MCA2Y1344STOP/DAPI. The same is true for Panel C for the image labeled MCA2/K13 - please change this to MCA2Y1344STOP/K13.
Figure 2B: what stages are these parasites? Please state this in the figure. Based on the MyoF pattern, it looks like rings in the upper panel and trophs in the bottom pannel. Why were schizonts not shown?
Figure 2D&F: it is not very meaningful when growth assays are shown as a final bar after 4 days of growth. It is much more useful and informative to see a growth curve instead (as is shown in the supplementary), since it shows if the defect is apparent in the first growth cycle or later. With the way the data is currently shown, this is not apparent. I would advise the authors to switch the graph in 2F out of a combined graph of all the biological replicates growth curves for S3D - showing error bars.
Figure 3: why were the calculation of FV area, parasite area and FV/parasite area only done for KIC12 and not done for MyoF? It would be interesting to see if any of these values are different for MyoF - whether the parasites are smaller in area and therefore FV smaller. Please present them Figure 2. Images should be already available and would not require further experiments to be done, only the analysis.
Figure 3B: why is there no spatial association assessment for KIC11 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins.
Figure 3D: The y axis of the figure states relative growth day 4[%] compared to rapalog, but then on the x axis the experiment takes place over several days. Is this a typo in the y axis? Additionally, the authors state in line 287-290 that the growth defect upon addition of rapalog is only seen in the second cycle, but from this graph it appears the growth defect is already evident 1 day post rapalog addition. The figure legend also does not make sense for this figure since it mentions a blue and a red line, when there is only a black line present. The legend also mentions the LYN mislocaliser which was used for KIC12 not KIC 11 (see above).
Figure 3E: the colour for Control and Rapalog 4 hpi are very similar and very hard to discern. Please choose an alternative colour or add a pattern to one of the samples. The y axis is also missing a label. Is this supposed to be parasitemia (%)?
Figure 4A: the ring shown in this figure does not appear to be a ring (it is far too large and appears to have multiple nuclei?). Do the authors have any other representative images to show instead?
Figure 4B: why is there no spatial association assessment for KIC12 and K13 as was done for the MCA2 and MyoF? The authors should show a pie chart showing the degree of association here as was done for the other proteins. This should be done for the different life cycle stages considering the changing localisation of KIC12.
Figures 4C&E: it is extremely important to show the DNA stain in both these samples considering that a portion of KIC12 is in the nucleus! Please add the DAPI signal for these figures (as for all other figures!).
Figure 4E: this figure should be presented before 4D (considering the line being presented in 4E is used in an experiment in 4D). The authors should switch the order of these two.
It is unclear why in many of the fluorescence images the authors do not show the DAPI signal - particularly when colocalising with K13 and when doing the knock sideways experiments. Please add these images to the figures - I would assume they have already been taken, so would simply involved adding the images to the panel.
Throughout the manuscript, there is no western blot confirming the correct size of their modified proteins. This should be provided.
None of the figures are appropriate for individuals with colour blindness, limiting their accessibility to the paper. Please change the colour schemes for all fluorescent images using magenta/green or an alternative colour combination appropriate for colourblind individuals.
Minor Comments
line 29: remove 'are'.
Line 29: the text says "HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins are among the few proteins so far functionally linked to this process." The sentence should be: 'HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process."
line 44: remove 'the'
Line 48: consider mentioning here that malaria is caused by the parasite Plasmodium - otherwise the first mention of parasite in line 52 is confusing for the non-specialist reader.
Line 49: estimated malaria-related death and case numbers are from the 2021 WHO World malaria report. You cite the 2020 WHO World malaria report.
Line 53: please insert the word 'have' between now and also.
Line 54: please change 'was linked' to is linked
Line 72: I would specify that free heme is toxic to the parasite. Especially as you mention that hemozoin is nontoxic. Sentence would be "where digestion results in the generation of free heme, toxic to the parasite, which is further converted into nontoxic hemozoin"
Line 90: authors should either say "in previous works" or "in a previous work"
Line 91: "We designated these proteins as K13 interaction candidates (KICs)"
Line 95: please change 'rate' to number
Line 109: Please include a coma before (ii).
Line 112: as shown by Rudlaff et al in the paper you are citing, PPP8 is actually associated with the basal complex. You can say that "(ii) were either linked or had been shown to localise to the inner membrane complex (IMC) or the basal complex (PF3D7...).
Line 114: Protein PF3D7_1141300 is called APR1 in the manuscript but ARP1 in Supplementary Table 1. Please correct.
Line 131: please define SNP - this is the first use of the acronym.
Line 133-134: South-East Asia instead of "South Asia"
Line 135: please explain what TGD is - it is referred to over and over again in the manuscript without ever being explained.
Line 145: change 'Western blot' to western blot - only Southern blot is capitalised since it is named after an individual, while the other techniques are not.
Line 152: add "the" between 'and spatial'
Line 158: please define SLI as selected linked integration, since it is the first use of the acronym.
Line 178: introduce a coma after protein. Sentence should be "Proliferation assays with the MCAY1344STOP-GFPendo parasites which express a larger portion of this protein, yet still lacking the MCA domain (Figure 1), indicated no growth ...
Line 195: the authors could mention that MyoF was previously called MyoC in the Birnbaum 2020 paper. I wanted to check back in the Birnbaum 2020 paper and could not find MyoF
Line 200: "Expression and localisation of the fusion protein was analysed by fluorescent microscopy". Why expression was not analysed also by western Blot same as for MCA2?
Line 204: I could not find any mention of MyoF (Pf3D7_1329100) in reference 65. Please remove reference 65 if not correct. Also reference 66 looks at Plasmodium chabaudii transcriptomes so I would specify that "This expression pattern is in agreement with the transcriptional profile of its Plasmodium chabaudii orthologue"
Line 208: Please indicate a reference for P40 being a marker of the food vacuole
Line 220-224: The authors should consider changing to " Taken together these results show that MyoF is in foci that are mainly close to K13 and, at times, overlapping, indicating that MyoF is found in a regular close spatial association with the K13 compartment."
Line 255: In Figure 2H, and subsequent figures showing bloated FV assay, I would delineate the food vacuole with dashed line as in Birnbaum et al. 2020 to help the reader understanding where the food vacuole is.
Line 265-266: Here the title says that KIC11 is a K13 compartment associated protein, but the title of Figure 3 says KIC11 is a K13 compartment protein. I noticed that you make the difference between K13 compartment protein et K13 compartment associated protein for MyoF for example which is not clearly associated with the K13 compartment. Which one is it for KIC11?
Line 309-310: indicate a reference for your statement "which is in contrast to previously characterised essential K13 compartment proteins".
Line 377: Figure 4I, please correct 1st panel Y axis legend
Line 404: replace "dispensability" with dispensable
Line 416: can the authors provide any speculation as to why they observed these proteins as hits in the BioID experiments?
Line 451: Where the "97% of proteins containing these domains also contain an Adaptin_N domain and function in vesicle adaptor complexes as subunit " come from. Do you have a reference?
Line 465-467: the same could be said for KIC4 as it also has a VHS domain.
Line 477-479: Can be rephrased to "However, we found this protein as being likely dispensable for intra-erythrocytic parasite development and no colocalisation with K13 could be demonstrated, suggesting a limited role for PF3D7_1365800 in endocytosis. Or something like that. Makes it clearer.
Line 535: Have AP-2 or AP-2 been shown to be at the K13 compartment?
Line 569: reference 43 is wrong
Line 746: typo "ot" instead of or.
Line 801: method for Domain Identification using AlphaFold specify that RMSDs of under 5Å over more than 60 amino acids are listed in the results. However, there is a typo in Figure 5B for KIC5 where it says "RMSD 4.0 Å over 8 aa". Please correct.
Line 856: In Figure 1E, please use the same Y axis legend as in Figure 2D "relative growth at day 4 [%] compared with 3D7"
Figure S1: Some PCR gels check for integration are presented as 5', 3' and ori whereas other gels are presented as ori, 5' and 3'. This is confusing. Figure S1: Why was the expression of only MCA2 was verified by Western blot? What about the other proteins?
Line 493: Considering KIC11 was not involved in HCCU or ART resistance it might be worth mentioning in this section that it is of note that there are no domains detected that would be involved in endocytosis.
Line 503-506: is it wise to generate more drugs that target a pathway that is already highly susceptible to mutations? The authors should add a statement explaining how this might be avoided.
Throughout, scale bars are stated in the figure legends at the end of the legend. This is a slightly confusing format. The authors should consider stating the scale bar for each sub-legend where a fluorescence image is taken.
Referees cross-commenting
After reading reviewer 2 and 3's comments, I think there are significant overlaps in the key points raised in terms of questions about fusion proteins and their potential partial mis-localisation, better descripton of results and target selection. Overall I think we agree that the work has potential, but in its current form does not represent a major advance. It would be immensely helpful if the manuscript would be carefully edited for a better flow and linear description of results.
Significance
The authors set out to test whether other proteins that are in the vicinity of K13 are involved in mediating ART resistance and endocytosis. This is an interesting question. However, other than MCA2 which was already known to be involved in mediating ART resistance (and was not tested for its involvement in endocytosis), none of their candidate proteins seem to be involved in mediating both these functions. The authors show that the other proteins tested appear important for parasite growth, with KIC12 and MyoF involved in mediating endocytosis. While these findings are novel, the KS approach used by the authors casts some doubt over the findings, and would mean that these findings would have to be re-tested with a more reliable approach, such as the GlmS system or generating a conditional knockout using the DiCre system. Despite not advancing our understanding of ART resistance, or identifying further players involved in this process, this manuscripts provides two candidates that are involved in mediating endocytosis and a further candidate that appears to be important for parasite growth. Further work on these proteins will be required to understand their exact roles. As stated above, there is currently limited interest for these results (limited to researchers working on endocytosis in apicomplexan parasites and possibly the wider endocytosis field from an evolutionary perspective), however with further work, this could increase the impact and interest of this work substantially.
The authors do not describe any novel methods/approaches within this work.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. General Statements
We thank all four reviewers for their helpful and constructive comments. We have gone through each and every comment and proposed how we would address each point raised by the reviewers. We are confident our proposed revisions are feasible within a reasonable and expected time frame. Some of the comments regarding minor typo/aesthetics and extra references have already been addressed in the transferred manuscript. The changes are highlighted in yellow in the transferred manuscript.
2. Description of the planned revisions
Reviewer #1
Major points:
- The presented work itself (Figures 1-4) does not need significant adjustments prior to publication, in my view, with only a few points to address. However, the work in Figure 5- doesn't really support the claims the authors make on its own, and would require some additional experiments or at the very least discussion of the caveats to its current form.
We thank the reviewer for these comments and will follow the reviewer’s suggestion by discussing the caveats regarding the interpretation of Figure 5. We will also add to the discussion to suggest future research approaches beyond the scope of this manuscript that would address the functional importance of localised mRNA translation. We will briefly mention in the discussion methods such as the quantification of the mRNA foci and the disruption of the mRNA localisation signals to disrupt localised translation and the use of techniques such as Sun-Tag (Tanenbaum et al, 2014) and FLARIM (Richer et al, 2021) to visualise local translation directly.
Tanenbaum et al, 2014 DOI: 10.1016/j.cell.2014.09.039
Richer et al, 2021 DOI: 10.1101/2021.08.13.456301
- Localized glia transcripts, are they "glial/CNS/PNS" significant or are they similar to other known datasets of protrusion transcriptomes? The authors compared their 4801 "total" localized to a local transcriptome dataset from the Chekulaeva lab finding that a significant fraction are localized in both. As the authors note, this is in good agreement with a recent paper from the Talifarro lab showing conservation of localization of mRNAs across different cell types. What the authors haven't done here, is further test this by looking at other non-neuronal projection transcriptomic datasets (for example Mardakheh Developmental Cell 2015, among others). If the predicted glia-localized processes are similar to non-neuronal processes transcriptomes, this would further strengthen this claim and rule out some level of CNS/PNS derived linage driving the similarities between glia and neuronal localized transcripts.
This is a good point and we thank the review for pointing out this interesting cancer data set. We will do as the reviewer suggests and intersect our data with Mardakheh Dev Cell 2015 to test the further generality of localisation in neurons and glia, in other cell types. Specifically, we plan to intersect both glial (this study) and neuronal (von Kuegelgen & Chekulaeva, 2020) dataset with protrusive breast cancer cells (Mardakeh et al, 2015).
von Kuegelgen & Chekulaeva, 2020 DOI: 10.1002/wrna.1590
Mardakeh et al, 2015 DOI: 10.1016/j.devcel.2015.10.005
- The presentation/discussion around Figure 3 is a bit weaker than other parts of the manuscript, and it doesn't really contribute to the story in its current form. Notably there is no discussion about the significance of glia in neurological disorders until the very end of the manuscript (page 21), meaning when its first brought up.. it just sits there as a one off side point. The authors might consider strengthening/tightening up the discussion here, if they really want to keep it as a solo main figure rather than integrating it somewhere else/putting it into supplemental. In my view, Figures 2 & 3 should be merged into something a bit more streamlined.
This is a good point. We plan to strengthen the presentation of Figure 3 and discussion of the significance of glia in neurological disorders by adding a description of the Figure in the Results section and highlighting the significance of glia in nervous system disorders in the Discussion section.
- Why aren't there more examples of different mRNAs in Figure 4? Seems a waste to kick them all to supplemental.
We agree that it could be helpful to show different expression patterns in the main figure. To address this point we will add Pdi (Fig. S4D), which shows mRNA expression in both the glia and the surrounding muscle cell. This pattern is in contrast to Gs2, which is highly specific to glial cells. We will also note that although pdi mRNA is present in both the glia and muscle, Pdi protein is only abundant in the glia, suggesting that translation of pdi mRNA to protein is regulated in a cell-specific manner.
- The plasticity experiments, while creative, I think need to be approached far more cautiously in their interpretation. Given that the siRNAs will completely deplete these mRNAs- it really needs to be stressed any/all of the effects seen could just be the result of "defective" or "altered" states in this glial population- which has spill over effects on plasticity in at the NMJ. Without directly visualizing if these mRNAs are locally translated in these processes and assessing if their translation is modulated by their plasticity paradigm, all these experiments can say is that these RNAs are needed in glia to modulate ghost bouton formation in axons. This represents the weakest part of this manuscript, and the part that I feel does not actually backup the claims currently being made. Without any experiments to A. quantify how much of these transcripts are localized vs in the cell body of these glia, B. visualize/quantify the translation of these mRNAs during baseline and during plasticity; the authors cannot use these data to claim that localized mRNAs are required for synaptic plasticity.
We are grateful to the reviewer for pointing out that we were not precise enough in defining our interpretation of the structural plasticity assay. We did not intend to claim that our results show that local translation of these transcripts is necessary for plasticity, only that these transcripts are localized and are required in the glia for plasticity in the adjacent neuron (in which the transcript levels are not disrupted in the experiment). Definitively proving that these transcripts are required locally and translated in response to synaptic activity would require genetic/chemical perturbations and imaging assays that would require a year or more to complete, so are beyond the scope of this manuscript. To address this point, we will clarify that the results do not show that localized transcripts are required, only that the transcripts are required somewhere specifically in the glial cell (without affecting the neuron level), and we can indeed show in an independent experiment that there are localized transcripts.
Reviewer #2
Major points:
- The authors analyse the 1700 shortlisted genes for Gene Ontology and associations with austism spectrum disorder, leading to interesting results. However, it is not clear to what extent the enrichments they observe are driven by their presumptive localization or if the associations are driven to a significant extent by the presence of these genes in the selected cell types in the Fly Cell Atlas. One way to address this would be to perform the GO and SFARI analysis on genes that are expressed in the same cells in the Fly Cell Atlas but were not shortlisted from the mammalian cell datasets - the results could then be compared to those obtained with the 1700 localized transcripts.
This is a fair point raised by the reviewer as genes involved in neurological disease such as Autism Spectrum Disorder may be enriched in CNS/PNS cell types. We will follow the reviewer’s suggestion to perform GO and SFARI gene enrichment analysis in genes that were not shortlisted for presumptive glial localisation.
- Although the authors attempt to justify its inclusion, I'm not convinced why it was important to use the whole cell transcriptome of perisynaptic Schwann cells as part of the selection process for localizing transcripts. Including this dataset may reduce the power of the pipeline by including mRNAs that are not localized to protrusions. How many of the shortlisted 1700 genes, and how many of the 11 glial localized mRNAs in Table 5, would be lost if the whole cell transcriptome were excluded. More generally, what is the distribution of the 11 validated localizing transcripts in each dataset in Table 4? This information might be valuable for determining which dataset(s), if any, has the best predictive power in this context.
We thank the reviewer for raising this point, which we will address with further analysis and adding to the discussion. We propose to address the criticism by running our analysis pipeline without the inclusion of the dataset using Perisynaptic Schwann Cells (PSCs) and then intersect with the PSCs-expressed genes, since their functional similarity with polarised Drosophila glial cells is highly relevant. We also agree with the reviewer that it would be a useful control for us to assess the ‘predictive power’ of each glial dataset by calculating their contribution to the shortlisted 1,700 glial localised transcripts and to the 11 experimentally validated transcripts via in situ hybridisation. To address this point, we plan to add this information in the revised manuscript.
- Did the authors check if any of the RNAi constructs are reducing levels of the target mRNA or protein? Doing so would strengthen the confidence in these important results significantly. In any case, the authors should also mention the caveat of potential off-target effects of RNAi.
We thank the reviewer for their useful comment and agree that the extent to which the RNAi expression reduces the levels of mRNA is not specifically known. We will add a FISH experiment on lac, pdi and gs2 RNAi showing very strong reduction in mRNA levels. We will also add an explanation of the caveats of the use of the RNAi system to the discussion.
- Methods: what is the justification for assuming that if the RNAi cross caused embryonic or larval lethality then the 'next most suitable' RNAi line is reporting on a phenotype specific to the gene. If the authors want to claim the effect is associated with different degrees of knockdown they should show this experimentally. An alternative explanation is that the line used for phenotypic analysis in glia is associated with an off-target effect.
We thank the reviewer for this comment. We agree that off target effects cannot in principle be completely ruled out without considerable additional experimental analysis beyond the scope of this manuscript. To address the criticism we will remove the expression data of the lines that cause lethality and revise the discussion to explain that the level of knockdown in each line is unknown, and would require further experimental exploration.
Minor points:
- It would be helpful to have in the Introduction (rather than the Results, as is currently the case) an operational definition of mRNA localization in the context of the study. And is it known whether or not localization in protrusions is the norm in mammalian glia or the Drosophila larval glia? I ask because it may be that almost all mRNAs diffuse into the protrusion, so this is not a selective process. One interesting approach to test this idea might be to test if the 1700 shortlisted transcripts have a significant underrepresentation of 'housekeeping' functions.
We thank the reviewer for this excellent suggestion. To address the comment, we will move our explanation of the operational definition of mRNA localization to the Introduction. We will also perform enrichment analysis of housekeeping genes within 1,700 shortlisted transcripts compared to the transcriptome background, as the reviewer suggested.
Reviewer #3
Major points:
- The authors have pooled data from different studies across different type of glial cells performed from in vitro to in vivo. While pooling datasets may reveal common transcripts enriched in processes, this may not be the best approach considering these are completely different types of glial cells with distinct function in neuronal physiology.
We thank the reviewer for highlighting the need for us to further justify why we pooled datasets. We will revise the manuscript to better emphasise that the overarching goal of our study was to try to discern a common set of localised transcripts shared between the cells. The problem with analysing and comparing individual data sets is that much of the variation may be due to differences in the methods used and amount of material, rather than differences in the type of cells used. We will revise the discussion to make this point and plan to explain that our approach corresponds well with a previous publication pooling localised mRNA datasets in neurons (von Kugelgen & Chekulaeva 2021).
von Kuegelgen & Chekulaeva, 2020 DOI: 10.1002/wrna.1590
- It is important to note the limitations of the study. For example, DeSeq2 is biased for highly expressed transcripts. How robust was the prediction for low abundance transcripts?
The presented 1,700 transcripts were shortlisted based on their presence and expression level (TPM) in glial protrusions rather than their relative enrichment. Nevertheless, the reviewer makes a valid criticism of our use of DESeq2, where we compared enriched transcripts in glial and neuronal protrusions in Figure 1D. To address this point we will discuss this caveat in the relevant section.
The issue raised regarding low abundance transcript prediction raises an important question: does the likelihood of localisation to cell extremities correlate with mRNA abundance? We have already partially addressed this point, since our analysis of the fraction of localised transcripts per expression level quantiles shows only limited correlation. To address this comment, we will add these results in the revised manuscript as a supplementary figure.
- The authors identify 1,700 transcripts that they classify as "predicted to be present" in the projections of the Drosophila PNS glia. This was based on the comparison to all the mammalian glial transcripts. Since the authors have access to a transcriptomic study from Perisynaptic Schwann cells (PSCs), the nonmyelinating glia associated with the NMJ isolated from mice; it would be more convincing to then validate the extent of overlap between Drosophila peripheral glial with the mammalian PSCs. This may reveal conserved features of localized transcripts in the PNS, particularly associated with the NMJ function.
Thank you for the valuable suggestion. A similar point was also raised by [Reviewer #2 - Major point 2] to re-run our pipeline excluding the PSCs dataset and intersect with the PSC transcriptome post-hoc. Please see the above section for our detailed response.
- Fig 2: What is the extent of overlap between the translating fractions versus the localized fraction? It will be informative to perform the functional annotation of the translating glial transcripts as identified from Fig 1D.
This is an interesting question. To address this point, we plan to: (i) compare transcripts that are translated vs. localised in glial protrusions, and (ii) perform functional annotation enrichment analysis on the translated fraction of genes.
- "We conclude predicted group of 1,700 are highly likely to be peripherally localized in Drosophila cytoplasmic glial projections". To validate their predictions, the authors test some of these candidates in only one glial cell type. It might be worthy to extend this for other differentially expressed genes localized in another glial type as well.
The presented in vivo analyses made use of the repo-GAL4 driver, which is active in all glial subtypes, including subperineurial, perineurial and wrapping glia that make distal projection to the larval neuromuscular junction. We agree that subtype-specific analysis would be highly informative, but we believe this is outside the scope of the current work where we aimed to identify conserved localised transcriptomes across all glial subtypes. Nevertheless, to address the comment, we plan to further clarify our use of pan-glial repo-GAL4 driver in the Results and Method section of the revised manuscript.
- Figure 5: The authors perform KD of candidate transcripts to test the effect on synapse formation. However, these are KD with RNAi that spans across the entire cell. To make the claim about the importance of "target" RNA localization in glia stronger, ideally, they should disrupt the enrichment specifically in the glial protusions and test the impact on bouton formation. Do these three RNAs have any putative localization elements?
We agree with the review, that we would ideally test the effect of disruption of mRNA localization (and therefore localised translation). However, we feel these experiments are beyond the scope of this current study, as they will require a long road of defining localisation signals that are small enough to disrupt without affecting other functions. To address this comment we will revise the Discussion section to mention those difficulties explicitly, and clarify the limitations of the approach used in our study for greater transparency.
Reviewer #4
Major points:
- The authors use FISH to validate the glial expression of their target genes, though these experiments are not quantified, and no controls are shown. The authors should provide a supplemental figure with "no probe" controls, and/or validate the specificity of the probe via glial knockdown of the target gene (see point 2). Furthermore, these data should be quantified (e.g. number of puncta colocalized with NMJ glia membrans).
Thank you for requesting further information regarding the YFP smFISH probes. We have validated the specificity and sensitivity of the YFP probe in our recent publication (Titlow et al, 2023, Figure 1 and S1). Specifically, we demonstrated the lack of YFP probe signal from wild-type untagged biosamples and showed colocalization of YFP spots with additional probes targeting the endogenous exon of the transcript. Nevertheless, we will address this comment by adding control image panels of smFISH in wild-type (OrR) neuromuscular junction preparations.
Titlow et al, 2023 DOI: 10.1083/jcb.202205129
- For the most part, the authors only use one RNAi line for their functional studies, and they only show data for one line, even if multiple were used. To rule out potential false negatives, the authors should leverage their FISH probes to show the efficacy of their knockdowns in glia. This would serve the dual purpose of validating the new probes (see point 1).
Thank you for the suggestion. This point was also raised by [Reviewer #2 - Major point 3]. Please see above for our detailed response.
- In Figure 5 E, given the severe reduction in size in the stimulated Pdi KD animals, the authors should show images of the unstimulated nerve as well. Do the nerve terminals actually shrink in size in these animals following stimulation, rather than expand? The NMJ looks substantially smaller than a normal L3 NMJ, though their quantification of neurite size in F suggests they're normal until stimulation.
We share the same interpretation of the data with the reviewer that the neurite area is reduced post-potassium stimulation in pdi knockdown animals. We will follow the reviewer’s suggestion and add an image showing unstimulated neuromuscular junctions.
Minor points:
- The authors claim that there is an enrichment of ASD-related genes in their final list of ~1400 genes that are enriched in glial processes. It is well-appreciated that synaptically-localized mRNAs are generally linked to ASDs. Can the authors comment on whether the transcripts localized to glial processes are even more linked to ASDs and neurological disorders than transcripts known to be localized to neuronal processes?
This is an interesting point. To address the comment, we will add a comparison of the degree of enrichment of ASD-related genes in neurite vs. glial protrusions in the revised manuscript.
3. Description of the revisions that have already been incorporated in the transferred manuscript
Reviewer #1
- The use of blue/green or blue/green/magenta is difficult to resolve in some places. Swapping blue for cyan would greatly aid in visualizing their data.
This comment is much appreciated. We have swapped blue for cyan in Figures 4 and S4. We have also changed Figure S1 to increase contrast and visibility as per reviewer’s comment.
- Make the colouring/formatting of the tables more consistent, its distracting when its constantly changing (also there is no need for a blue background.. just use a basic white table).
This comment is much appreciated. We have applied a consistent colour palette to the Tables without background colourings and made the formatting uniform.
Reviewer #2
- Introduction: 'Asymmetric mRNA localization is likely to be as important in glia, as it is in neurons,...'. Remove commas
Thank you for pointing this mistake out. We have made the corresponding edits.
Reviewer #3
- RNA localization in oligodendrocytes has been well studied and characterized. The authors should cite and discuss those papers (PMID: 18442491; PMID: 9281585).
We thank the reviewer for this useful suggestion. We have added these references to the paper.
Reviewer #4
- In Figure 5D, the authors should include a label to indicate that these images are from an unstimulated condition.
We thank the reviewer for pointing this out. We have added the label as requested.
- The authors are missing a number of key citations for studies that have explored the functional significance of mRNA trafficking in glia, and those that have validated activity-dependent translation:
- https://pubmed.ncbi.nlm.nih.gov/18490510/
-https://pubmed.ncbi.nlm.nih.gov/7691830/
-https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001053
-https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450274/
-https://pubmed.ncbi.nlm.nih.gov/36261025**_/
_**
We thank the reviewer for the comment. We have added these references to the text.
-
-
ir.lib.uwo.ca ir.lib.uwo.ca
-
Finding the engramSheena A. Josselyn1–4, Stefan Köhler5,6 and Paul W. Frankland1–4Abstract | Many attempts have been made to localize the physical trace of a memory, orengram, in the brain. However, until recently, engrams have remained largely elusive. In thisReview, we develop four defining criteria that enable us to critically assess the recentprogress that has been made towards finding the engram. Recent ‘capture’ studies use novelapproaches to tag populations of neurons that are active during memory encoding, therebyallowing these engram-associated neurons to be manipulated at later times. We proposethat findings from these capture studies represent considerable progress in allowing us toobserve, erase and express the engram
A 2015 neuroscience paper that gives 4 criteria for what an [[engram]] is, and argues that recent (at the time) developments in certain laboratory mice experiments suggested that engrams do exist.
Tags
Annotators
URL
-
-
-
XMI describes solutions to the above issues by specifying EBNF production rules to create XML documents and Schemas that share objects consistently.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In this study, the investigators describe an unbiased phosphoproteomic analysis of cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) mice that was then integrated with transcriptomic and proteomic data. The phosphoproteomic analysis was performed using tandem mass tag-labeling mass spectrometry of left ventricular (LV) tissue in TGAC8 and wild-type mice. The initial principal component analysis showed differences between the TGAC8 and WT groups. The integrated analysis demonstrated that many stress-response, immune, and metabolic signaling pathways were activated at transcriptional, translational, and/or post-translational levels.
The authors are to be commended for a well-conducted study with quality control steps described for the various analyses. The rationale for following up on prior transcriptomic and proteomic analyses is described. The analysis appears thorough and well-integrated with the group's prior work. Confirmational data using Western blot is provided to support their conclusions. Their findings have the potential of identifying novel pathways involved in cardiac performance and cardioprotection.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
Reviewer #2 (Public Review):
This paper addresses the topic of how T cells migrate in different tissues. The authors provide experimental evidence that T cell migration in the lung is more confined than in lymph nodes and gut villi. While prior studies have started to define the way T cells migrate during normal and pathological conditions, there is still a lot to learn about the factors that control this process. Thus, the topic is significant and timely. The authors use previously acquired data with two-photon microscopy from murine tissues. They compare multiple motility parameters of T cells in lymph nodes, gut villi, and inflamed lungs. Experiments demonstrate that T cells in the lung have a particular mode of migration characterized by low speeds, back-and-forth motions, and confinement.
Strengths:
Overall, this is a very well-performed study. The data presented is of excellent quality and, for the most part, supports the authors' conclusions. The imaging techniques used to track T cells in various organs and the mouse models implemented are very relevant and robust. The functional analysis of the different migration features of T cells is compelling and should be of use to the community. The conclusion that T cells use different migration modes depending on the organ appears novel. This is considered of major significance.
We appreciate these comments by the reviewer that the study is relevant, robust, and timely.
Weaknesses:
The main weakness of the manuscript is that the study remains descriptive and comparative. It is important to analyze and describe different migration modes depending on the organ. Still, it would have been desirable for the authors to provide information on the reason for such differences. One of the striking observations is the back-and-forth motion of T cells in the lung. Searching for mechanisms underlying this unique mode of displacement would strengthen the quality of the study.
We agree that the next step is to determine the underlying cells, signals, and structures that determine motility differences between tissues. However, we believe that a detailed study is beyond the scope of this manuscript, which is the first to directly compare the types of motility that should be studied in individual tissues that distinguish T cell motility in individual tissues such as villi and lung.
Reviewer #3 (Public Review):
The ability of T cells to move through a variety of complex and disparate tissue environments is fundamental to their success in surveying and responding to infectious challenges. A better understanding of the molecular cues that regulate T cell motility in tissues is needed in order to inform therapeutic targeting of T cell migration. Contributions that are intrinsic and extrinsic to the T cells themselves have been shown to shape the pattern of T cell movement. This study uses advanced quantitative image analysis tools to dissect differences in T cell motility in different tissue locations, to better define how the tissue environment shapes the pattern of motility and scope of tissue explored. The combination of different quantitative measures of motion enables the extensive characterization of CD8 T cell motility in the lymph node, lung, and villi of the small intestine. However, there are too many variables with respect to the CD8 T cell populations used for analysis to be able to gain new insight into the impact of the tissue microenvironment itself.
The use of these advanced quantitative imaging analysis tools has the potential to significantly expand our analysis capabilities of T cell movement within and across tissues. The strength of the paper is the comprehensive analysis of multiple motility parameters designed with T cell function in mind. Specifically, with respect to the need for T cells to search a tissue area to identify antigen-bearing cells for T cell activation and identify cellular targets for the delivery of anti-microbial effector functions. The inclusion of an analysis of the "patrolled volume per time" is seen as a particularly useful advance to compare T cell behaviors across tissues.
However, with the current data sets, it is difficult to draw definitive conclusions on the impact of the tissue environment on how T cell move, given the considerable variability in the CD8 T cells themselves. Extended experimentation would be needed to fully support their key claims. In particular:
1) The authors have separated out naïve and activated CD8 T cells for their analysis, but this is a marked over-simplification. There are too many variables within these groups to be able to distinguish between differences in the T cell populations versus differences in the tissue environment. Variables include:
a) T cells pre-activated in vitro before in vivo transfer (LPS-lung) versus transfer of naïve T cells for activation in vivo (Flu-lung, LCMV-villi)
b) Polyclonal CD8 T cells (naïve, LPS-lung, Flu-lung) versus monoclonal (P14) CD8 T cells (LCMV-villi)
c) Presence of cognate-antigen (Flu-lung, LCMV-villi) versus absence of antigen (LPS-lung)
d) Cell numbers, 104 polyclonal naïve for Flu-lung versus 5 x 104 monoclonal (P14 T cells) for LCMV-villi)
e) Intravital imaging (LCMV-villi) versus tissue explants (Flu-lung)
The reviewer is absolutely correct that many factors differ, and we have added details about these potential differences. However, we can conclude that there are similarities in motility despite tissue and T cell activation differences, particularly between naive T cells in LN and d8 activated CD8 T cells in the gut villi. We report that the most significant differences between T cell motility parameters are in activated CD8 T cells in the lung compared to those in other tissues, regardless of antigen specificity. These lead us to suggest that the specific motility differences we see in T cells in the lung are likely to be the result of a combination of factors which we hypothesize are likely to be due to molecular changes in both the T cells (chemokine receptors) and the tissue (cell types, chemokines, and structural components). Future work will include defining specific differences that lead to changes in motility.
The authors do present data that suggest similarities of motility patterns within the same tissue occur despite variabilities in the CD8 T cell source, for example, the MSD is not significantly different in the two lung groups despite differences in the way the CD8 T cells were activated. However, these similarities are lost when other parameters are analyzed suggesting additional variability independent of the tissue itself.
In addition to the MSD (Fig 3), we also include parameters commonly analyzed including cell- based speed (Fig 2A). Regardless of the type of T cell, the median cell-based speeds range from 4.3 um/min to 6.5 um/min. Meandering ratio is also commonly used to analyze motility dynamics and naive T cells (0.70) and activated T cells in villi (0.63) also show similar meandering ratios (Fig 5).
2) Controlled experiments are needed, where the input CD8 T cell population is kept constant and the target tissue differs, to substantiate any of the current conclusions. This could be done by using a single source and/or specificity of CD8 T cells (e.g., P14 or OT-I TCR transgenics, or polyclonal in vitro activated CD8 T cells) transferred into mice where the tissue providing the antigen or inflammation source is varied (lung with pOVA-flu versus small intestine with pOVA-LCMV for example).
Alternatively, activated polyclonal CD8 T cells could be analyzed in the LPS-lung draining LN as well as in the LPS-lung to make a direct comparison between the tissues (LN versus lung) using CD8 T cells of the same activation status.
The experimental systems cannot be directly compared except in some circumstances. For example, we included LPS-induced lung injury because we wanted to directly compare non-antigen specific with antigen specific activated T cells in the lung. We have compared motility of OTI Tg T cells responses in the lung with non-OTI Tg T cells and found similar motility and effector characteristics [15]. We have not repeated the additional controls requested here as OVA is a model antigen and commonly used as a tag to simply track CD8 T cell effector responses. There is vast literature showing similar responses between OVA-specific versus antigen specific CD8 T cell responses in multiple tissues, with OTI Tg T cells analyzed as “normal CD8 T cells”. Thus, while it is possible that imaging OTIs in multiple tissues could confirm that the type of T cells is “more similar” in each tissue, we do not believe adding this analysis would add to the overall conclusions of the manuscript as there is no data to suggest that OTIs would behave differently in different tissues. Adding in vitro activated CD8 T cells imaged in activated lymph nodes would add more variables (activated lymph node versus naive lymph node) which we do not believe would shed new light on our primary finding which is that the lung appears to induce specific types of T cell behavior compared to the naive lymph node and the gut.
3) Differences in the micro-anatomical regions of the tissues studied may also contribute to tissue differences in movement patterns between the lung and the small intestine. The region of the small intestine imaged was specifically focused on the villi, close to the gut epithelium. Details of the location within the lung where images were taken are missing, therefore the motility differences between the lung and small intestine could reflect differences in the micro-anatomical position of the CD8 T cells within the tissue (proximal to epithelium versus parenchymal), rather than differences between the tissues themselves.
The reviewer is absolutely correct and we have added greater discussion of this in both the Introduction and Discussion.
Overall, the authors have developed a quantitative multi-parameter approach to the study of T-cell motility in different tissues. Application of these analytical tools to the study of T-cell behavior in different tissue locations has the potential to reveal tissue and/or T-cell-specific patterns of movement that may help to identify molecular requirements for context-specific dynamic T-cell behavior. Their quantitative approach reveals small but statistically significant differences in particular motility parameters, the functional significance of which will require further study. The careful design of experiments to reduce as many variables as possible will be needed to increase the impact of the work and ensure new insights into this important aspect of T-cell function.
-
-
www.youtube.com www.youtube.com
-
immer diese hirntoten pseudoprobleme... wir sind mitten drin im "krieg von reich gegen arm" (warren buffett), und wir verschwenden unsere hirne auf einen sogenannten "infokrieg", der aber nur provokation und ablenkung ist, während vater staat im hintergrund weiter unsere kinder fickt (sklavenmoral, staatsreligion, deutungshoheit). stell dir vor, deine herrscher verbannen dich aus der spitze der pyramide, und deine schwächliche antwort ist "okay, dann schau ich den ganzen tag die pyramide von unten an"...
-
-
phukiencongtrinh.com phukiencongtrinh.com
-
Nẹp bán nguyệt nhôm là một nẹp bán nguyệt được làm từ chất liệu nhôm thích hợp lắp đặt những nơi cần sự hài hòa với nội thất mà những loại bán nguyệt nhựa hay nẹp bán nguyệt vân gỗ không đáp ứng được.
-
-
www.t-online.de www.t-online.de
-
Der "Demokratische Widerstand" taucht inzwischen auch im Verfassungsschutzbericht auf. Darin steht, dass die dahinterstehende "Kommunikationsstelle Demokratischer Widerstand" (KDW) eine Vielzahl an öffentlichen Veranstaltungen durchführe und im Internet Verschwörungserzählungen und demokratiefeindliche Propaganda verbreite. Sie habe sich zum maßgeblichen Akteur des Spektrums der "verfassungsschutzrelevanten Staatsdelegitimierung" in Berlin entwickelt.
nein.
"demokratiefeindlich" ist unsere regierung, die das volk belügt und dem volk wahlfreiheiten wegnimmt. um diese sklaverei als "demokratie" zu bezeichnen, muss man dumm oder böse sein.
"delegitimierend" ist unsere regierung. wer jeden tag A sagt und B macht, der verdient keine legitimität, und muss sich umso mehr auf eine "legalität" berufen, die er sich selbst ausgestellt hat. fuck the system!
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
First, the authors would like to thank the reviewers and editors for their thoughtful comments. The comments were used to guide our revision, which is substantially improved over our initial submission. We have addressed all comments in our responses below, through a combination of clarification, new analyses and new experimental data.
Reviewer #1 (Public Review):
In this manuscript, the authors identified and characterized the five C-terminus repeats and a 14aa acidic tail of the mouse Dux protein. They found that repeat 3&5, but not other repeats, contribute to transcriptional activation when combined with the 14aa tail. Importantly, they were able to narrow done to a 6 aa region that can distinguish "active" repeats from "inactive" repeats. Using proximal labeling proteomics, the authors identified candidate proteins that are implicated in Dux-mediated gene activation. They were able to showcase that the C-terminal repeat 3 binds to some proteins, including Smarcc1, a component of SWI/SNF (BAF) complex. In addition, by overexpressing different Dux variants, the authors characterized how repeats in different combinations, with or without the 14aa tail, contribute to Dux binding, H3K9ac, chromatin accessibility, and transcription. In general, the data is of high quality and convincing. The identification of the functionally important two C-terminal repeats and the 6 aa tail is enlightening. The work shined light on the mechanism of DUX function.
A few major comments that the authors may want to address to further improve the work:
We thank the reviewer for their efforts and constructive comments, which have guided our revisions.
1) The summary table for the Dux domain construct characteristics in Fig. 6a could be more accurate. For example, C3+14 clearly showed moderate weaker Dux binding and H3K9ac enrichment in Fig 3c and 3e. However, this is not illustrated in Fig. 6a. The authors may consider applying statistical tests to more precisely determine how the different Dux constructs contribute to DNA binding (Fig. 3c), H3K9ac enrichment (Fig. 3e), Smarcc1 binding (Fig. 5e), and ATAC-seq signal (Fig. 5f).
We thank the reviewer for this comment, and agree that there were some modest differences in construct characteristics that were not captured in the Summary Table (6a). To better reflect the differences between constructs, we added additional dynamic range to our depiction/scoring, and believe that the new scoring system provides sufficient qualitative range to capture the difference without imposing a statistical approach.
2) Another concern is that exogenous overexpressed Dux was used throughout the experiments. The authors may consider validating some of the protein-protein interactions using spontaneous or induced 2CLCs (where Dux is expressed).
We agree that it would be helpful to determine endogenous DUX interaction with our BioID candidates. Here, we attempted co-IPs for endogenous DUX protein with the DUX antibody and were unsuccessful, which indicated that the DUX antibody is useful for detection but not efficient in the primary IP. This is why we utilized the mCherry tag for DUX IP experiments, which worked exceptionally well.
3) It could be technically challenging, but the authors may consider to validate Dux and Smarcc1 interaction in a biologically more relevant context such as mouse 2-cell embryos where both proteins are expressed. Whether Smarcc1 binding will be dramatically reduced at 4-cell embryos due to loss of Dux expression?
While we agree that it would be interesting to validate the in vivo interaction of DUX and SMARCC1 in the early embryo, it is not technically feasible for us to conduct the experiment, as the IP would require thousands of two-cell embryos, and we have the issue of poor co-IP quality with the DUX antibody.
Reviewer #2 (Public Review):
In this manuscript, Smith et al. delineated novel mechanistic insights into the structure-function relationships of the C-terminal repeat domains within the mouse DUX protein. Specifically, they identified and characterised the transcriptionally active repeat domains, and narrowed down to a critical 6aa region that is required for interacting with key transcription and chromatin regulators. The authors further showed how the DUX active repeats collaborate with the C-terminal acidic tail to facilitate chromatin opening and transcriptional activation at DUX genomic targets.
Although this study attempts to provide mechanistic insights into how DUX4 works, the authors will need to perform a number of additional experiments and controls to bolster their claims, as well as provide detailed analyses and clarifications.
We thank this reviewer for their constructive comments, and have conducted several new analyses, additional experiments and clarifications – which have strengthened the manuscript in several locations. Highlights include a statistical approach to the similarity of mouse repeats to themselves and to orthologs (Figure S1d) and clarified interpretations, a wider dynamic range to better reflect changes in DUX construct behaviors (Figure 6a), and additional data on construct behavior, including ‘inactive’ constructs (e.g C1+14aa in Figure 1a,d, new ATAC-seq in Figure S1g), and active constructs such as C3+C5+14aa and C3+C514aa (in Figure S1b).
Reviewer #3 (Public Review):
Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.
By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.
The experiments are of high quality, with appropriate controls, thus providing a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).
A critical question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function on activation (and thus may have been selected for under an "adaptationist" paradigm), it is also possible that they are simply the result of Jacobian evolutionary bricolage (tinkering) that happens to work in mice. The finding that Dux itself is not essential, in fact appears to be redundant (or cooperates with) the OBOX4 factor, in addition to the absence of these repeats in the DUX protein of all other mammals (as pointed out by the authors), might indeed argue for the second, perhaps less attractive possibility.
In summary, while the present work provides a valuable resource for future study of Dux and its interactors, it fails, however, to tell a compelling story that could link the obtained data together.
We appreciated the reviewer’s views regarding the high quality of the work and our generation of an important dataset of DUX interactors. We also appreciate the comments provided to improve the work, and have performed and included in the revised version a set of clarifications, additional analyses and additional experiments that have served to reinforce our main points and provide additional mechanistic links. We also agree that more remains to be done to understand the function and evolution of repeats C1, C2 and C4.
Reviewer #1 (Recommendations For The Authors):
1) For immuno-blots, authors may indicate the expected bands to help readers better understand the results.
Agreed, and we have included the predicted molecular weight of proteins in the Figure Legends. We note that our work shows that the C-terminal domains confer anomalous migration in SDS-PAGE.
2) Fig. 5b, a blot missing for the mCherry group?
Figure 5b is a volcano blot, so we believe the reviewer is referring to Figure 5d, which is a coimmunoprecipitation experiment between SMARCC1 and mCherry-tagged DUX constructs. However, we are unsure of the comment as an anti mCherry sample is present in that panel.
3) Line 99-100, Fig. S1d, it seems that repeat2, but not repeat3, is more similar to human DUX4 C-terminal region.
This comment and one by another reviewer have prompted us to re-examine the similarities of the DUX repeats, and we have new analyses (Figure S1d) and an alternative framing in the manuscript as a result. We have expanded on this in our response to Reviewer #2, point #1 – and direct the reviewer there for our expanded treatment.
4) There are a few references are misplaced. For example, line 48, the studies that reported the role of Dux in inducing 2CLCs should be from Hendrickson et al., 2017, De Iaco et al., 2017, and Whiddon et al., 2017. The authors may want to double check all references.
Thanks for pointing these out. These issues have been corrected in the manuscript.
5) In the materials & methods section, a few potential errors are noticed. For example, concentrations of PD0325901 and CHIR99021 in mESC medium appear ~1000-fold higher than standards.
Thanks – corrected.
Reviewer #2 (Recommendations For The Authors):
Major Points
1) Line 99 - The authors claimed that the "human DUX4 C-terminal region is most similar to the 3rd repeat of mouse DUX", but based on Supp. Fig. 1d, the human DUX4 C-term should be most similar to the 2nd repeat of mouse DUX. If this is indeed the case, it will undermine the rest of this study, since the authors claim that the 3rd repeat is transcriptionally active, whereas the 2nd repeat is transcriptionally inactive, and the bulk of this study largely focused on how the active repeats, not the inactive repeats, are critical in recruiting key transcriptional and chromatin regulators to induce the embryonic gene expression program.
We thank the reviewer for their comments here. Since submission,and as mentioned above for reviewer #1 we have revisited the issue of similarity of the DUX4 C-terminal region to the mouse C-terminal repeats, with a BLAST-based approach that is more rigorous and informed by statistics – which is in Author response table 1 and now in the manuscript as Figure S1d, and has affected our interpretation. Our prior work involved a simple % identity comparison table and we now appreciate that some of the similarity analyses did not meet statistical significance, and therefore we are unable to draw certain conclusions. We make the appropriate modifications in the text. For example, we no longer state that the DUX4 C-terminus appears to be most similar to mouse repeats 3 and 5. This does not affect the main conclusions of the paper regarding interactions of the C-terminus with chromatin-related proteins, only our speculation on which repeat might have represented the original single repeat in the mouse – an issue we think of some interest, but did not rise to the level of mentioning in the original or current abstract.
Author response table 1.
Parameters: PAM250 matrix. Gap costs of existence: 15 and extension: 3. Numbers represent e-value of each pairwise comparison
*No significant similarities found (>0.05).
2) In Supp Fig 1d, it seems that the rat DUX4 C-terminal region is most similar to the 4th repeat of mouse DUX, which according to the author is supposedly transcriptionally inactive. This weakens the authors justification that the 3rd or 5th repeat is likely the "parental repeat for the other four", and further echoes my concern in point 1 where the human DUX4 C-term is most similar to the 2nd (inactive) repeat of mouse DUX.
The reviewer’s point is well taken and is addressed in point #1 above.
3) In Fig. 1d, the authors showed that DUX4-containing C3 and C5, but lacking acidic tail, can promote MERVL::GFP expression, albeit to a slightly lower extent compared to FL. However, in Fig. 2b, C3 or C5 alone (lacking acidic tail) completely failed to promote MERVL::GFP expression. However, in the presence of the acidic tail, both versions were able to promote MERVL::GFP expression, similar to that of FL. The latter would suggest that it is the acidic tail that is crucial for MERVL::GFP expression, and this does not quite agree with Fig 1b, where C12345 (lacking acidic tail) was able to promote MERVL::GFP expression. Although C12345 did not activate MERVL to a similar level as FL, it is clearly proficient, compared to C3 or C5 alone (lacking acidic tail) where there is no increase in MERVL at all. Additional constructs will be helpful to clarify these points. For example, 'C3+C5 minus acidic tail' and 'HD1+HD2+acidic tail only' constructs.
We agree that constructs such as those mentioned would add to the work. First, we have done the additional construct HD1+HD2+14aa tail, which is presented as ΔC12345+14aa in Figure 2a and in S2a. Additionally, we performed experiments on the requested C3+C5+14aa and C3+C5Δ14aa (see samples 6 and 7 in Author response image 1, which are now included in Supplemental Figure 2b). The results reinforce our hypothesis of an additive effect toward DUX target gene activation by increasing C-terminal repeats and including the 14aa tail.
Author response image1.
4) Related to the above, the flow cytometry data for the MERVL::GFP reporter as presented in Figures 1 and 2, as well as in Supp. Fig. 2, show a considerably large difference in the %GFP|mCherry for the FL construct, ranging from ~6-26%. This makes it difficult to convince the reader which of the different DUX domain constructs cannot or can partially induce GFP|mCherry signal when compared to FL, and hence it is tough to definitively ascertain the exact contribution of each of the 5 C-terminal repeats with high confidence, as it appears that there exists a significant amount of variability in this MERVL::GFP reporter system. The authors need to address this issue since this is their primary method to elucidate the transcriptional activity of each of the mouse DUX repeat domains.
We note that with the Dux-/- cell lines we used throughout the timeline of the study, the percent of %GFP|mCherry expression progressively and slowly decreased – possibly due to slow/modest epigenetic silencing of the reporter. However, we always used the full-length DUX construct to establish the dynamic range. We emphasize that the relative differences between constructs over multiple cell line replicates remained relatively consistent. However, we elected to show absolute values in each experiment, rather than simply normalizing the full-length to 100% and showing relative.
5) Lines 140-142 - The authors claimed that the functional difference between the transcriptionally active and inactive repeats could be narrowed down to a "6aa region which is conserved between repeats C3 and C5, but not conserved in C1, C2 and C4". Assuming the 6aa sequence is DPLELF, why does C1C3a elicit almost twice the intensity of GFP|mCherry signal compared to C3C1c, despite both constructs having the exact same 6aa sequence?
Indeed, C1C3a and C3C1c both containing the ‘active’ DPL sequence but having different relative levels of %GFP|mCherry. This is consistent with these sequences having a positive role in DUX target gene regulation – but likely in combination with other other regions which potentiate its affect, possibly through interacting proteins or post-translational modifications.
Why does DPLEPL (the intermediate C3C1b construct) induce a similar extent of GFP|mCherry signal as the FL construct, even though the former includes 3aa from a transcriptionally inactive repeat? In contrast, GSLELF (the other intermediate C1C3b construct) that also includes 3aa from a transcriptionally inactive repeat is almost completely deficient in inducing any GFP|mCherry signal. Why is that so? Is DPL the most crucial sequence? It will be important to mutate these 3 (or the above 6) residues on FL DUX4 to examine if its transcriptional activity is abolished.
These are interesting points. DPL does appear to be the most important region in the mouse DUX repeats. However, DPL is not shared in the C-terminus of human DUX4. Notably, the DUX4 C-terminus is sufficient to activate the mouse MERVL::GFP reporter when cloned to mouse homeodomains (see Author response image 2, second sample) and other DUX target genes (initially published in Whiddon et al. 2017). One clear possibility is that the DPL region is helping to coordinate the additive effects of multiple DUX repeats, which only exist in the mouse protein.
Author response image 2.
6) Line 154 - The intermediate DUX domain construct C1C3b occupied a different position on the PCA plot from the C1C3c construct that does not contain any of the critical 6aa sequence, as shown in Fig. 2e. However, both these constructs appear to be similarly deficient in inducing any GFP|mCherry signal, as seen in Fig. 2c. Why is that so?
The PCA plot assesses the impact on the whole transcriptome and not just the MERVL::GFP reporter, suggesting the 3aa region has transcriptional effects on the genome beyond what is detected in the MERVL::GFP reporter.
7) To strengthen the claim that "Chromatin alterations at DUX bindings sites require a transcriptionally active DUX repeat", the authors should also perform CUT&Tag for constructs containing transcriptionally inactive DUX repeats (e.g. C1+14aa), and show that such constructs fail to occupy DUX binding sites, as well as are deficient in H3K9ac accumulation.
This is a good comment. We elected to control this with constructs containing or lacking an active repeat. Although we have not pursued this by CUT&TAG, we have examined the impact of DUX constructs with inactive repeats (including the requested C1+14aa, new Figure S1g) by ATAC-seq (see #12, ATAC-seq section, below), and observe no chromatin opening, suggesting that the lack of transcriptional activity is rooted in the inability to open chromatin.
8) It would be good if the authors could also include CUT&Tag data for some of the C1C3 chimeric constructs that were used in Fig. 2, since the authors argued that the minimal 6aa region is sufficient to activate many of the DUX target genes. This would also strengthen the authors’ case that the transcriptionally active, not inactive, repeats are critical for binding at DUX binding sites and ensuring H3K9ac occupancy.
We agree that these would be helpful, and have examined the inactive repeats in transcription and ATAC-seq formats during revision (new data in Figures 1d and S1g), but not yet the CUT&TAG format.
9) Line 213 - "SMARCA4" should have been "SMARCA5"? Based on Fig. 4d, SMARCA5 is picked up in the BirA*-DUX interactome, not SMARCA4.
Thanks – corrected.
10) Lines 250-252 - The authors compared the active BirA-C3 against the inactive BirA-C1 to elucidate the interactome of the transcriptionally active C3 repeat, as illustrated in Fig. 5c. They found 12 proteins more enriched in C1 and 154 proteins in C3. This information should be presented clearly as a separate tab in Supp Table 2. What are the proteins common to both constructs, i.e. enriched to a similar extent? Do they include chromatin remodellers too? Although the authors sought to identify differential interactors between the 2 constructs, it is also meaningful to perform 2 separate comparisons - active BirA-C3 against BirA alone control, and inactive BirA-C1 against BirA alone control - like in Fig. 4d, so as to more accurately define whether the active C3 repeat, and not the inactive C1 repeat, interacts with proteins involved in chromatin remodeling.
We thank the reviewer for this comment, and we have modified the manuscript by adding a second sheet in Supplementary Table 2 including the results for enriched proteins in BirA-C1 vs. C3. Additionally, due to limitations of annotation between BirA alone and BirA*-C3 being sequenced in different mass spectrometry experiments, it is difficult to quantitatively compare the two datasets with pairwise comparisons.
11) Fig 5d: The authors mentioned in the legend that endogenous IP was performed for SMARCC1. However, in line 266, they stated Flag-tagged SMARCC1. Is SMARCC1 overexpressed? The reciprocal IP should also be presented. More importantly, C1 constructs (e.g. C1+14aa and C1Δ14aa) should also be included.
To clarify, Figure 4e used exogenously overexpressed FLAG-SMARCC1 in HEK-293T cells to confirm the results of the full-length DUX BioID experiment. Figure 5d was performed with overexpressed DUX construct, but involved endogenous SMARCC1 in mESCs. This has now been made clearer in the revised manuscript.
12) For both the SMARCC1 CUT&Tag and ATAC-seq experiments shown in Figures 5e and 5f respectively, the authors need to include DUX derivatives that contain transcriptionally inactive repeats with and without the 14aa acidic tail, i.e. C1+14aa and C1Δ14aa, and show that these constructs prevent the binding/recruitment of SMARCC1 to DUX genomic targets, and correspondingly display a decrease in chromatin accessibility. Only then can they assert the requirement of the transcriptionally active repeat domains for proper DUX protein interaction, occupancy and target activation.
We agree that examination of an inactive repeat in certain approaches would improve the manuscript. Importantly, we have now included C1+14 in our ATAC-seq experiments, and in Author response image 3 two individual replicates, which constitute a new Figure S1g. Compared to the transcriptionally active DUX constructs, which see opening at DUX binding sites, we do not see chromatin opening at DUX binding sites with transcriptionally inactive C1+14.
Author response image 3.
13) To prove that DUX-interactors are important for embryonic gene expression, it will be important to perform loss of function studies. For instance, will the knockdown/knockout of SMARCC1 in cells expressing the active DUX repeat(s) lead to a loss of DUX target gene occupancy and activation?
We agree that it would be interesting to better understand SMARCC1 cooperation with DUX function in the embryo, but we believe this is beyond the scope of this paper.
Minor Points
1) Lines 124-126 - What is the reason/rationale for why the authors used one linker (GGGGS2) for constructs with a single internal deletion, but 2 different linkers (GGGGS2 and GAGAS2) for constructs with 2 internal deletions?
With Gibson cloning, there are homology overhang arms for each PCR amplicon that are required to be specific for each overlap. Additionally, each PCR amplicon needs to be specific enough from one another so that all inserts (up to 5 in this manuscript) are included and oriented in the right order. The linker sequences were included in the homology arm overlaps, so the nucleotide sequences for each linker needed to be specific enough to include all inserts. This is a general rule to Gibson cloning. Additionally, both GGGGS2 and GAGAS2 are common linker sequences used in molecular biology and the amino acids structures are similar to one another, suggesting there is no functional difference between linkers.
2) Line 704 - 705: In the figure legend, the authors stated that 'Constructs with a single black line have the linker GGGGS2 and constructs with two black lines have linkers with GGGGS2 and GAGAS2, respectively.'. This was not obvious in the figures.
Constructs used for flow and genomics experiments that are depicted in Figure 2, Supplementary Figure 2, Figure 3, Figure 4, and Figure 5 have depicted black lines where deletions are present. Where these deletions are present, there are linkers in order to preserve spacing and mobility for the protein.
3) Line 160 - Clusters #1 and #2 are likely written in the wrong order. It should have been "activating the majority of DUX targets in cluster #2, not cluster #1" and "failed to activate those in cluster #1, not cluster #2", based on the RNA-seq heatmap in Fig. 2f.
We thank the reviewer for this comment, and the error has been corrected in the manuscript.
4) Line 188 - Delete the word "of" in the following sentence fragment: "DUX binding sites correlating with the of transcriptional".
Thanks – corrected.
5) Line 191 - Delete the word "aids" in the following sentence fragment: "important for conferring H3K9ac aids at bound".
Thanks – corrected.
6) Line 711 - "C1-C3 a,b,d" should be "C1-C3 a,b,c".
Thanks – corrected.
7) Lines 711-712 - The colors "pink to blue" and "blue to pink" are likely written in the wrong order. Based on Fig. 2c, the blue to pink bar graphs should represent C1-C3 a,b,c in that order, and likewise the pink to blue bar graphs should represent C3-C1 a,b,c in that order.
Thanks – corrected.
8) There is an overload of data presented in Fig. 2c, such that it is difficult to follow which part of the figure represents each data segment as written in the figure legend. It is recommended that the data presented here is split into 2 sub-figures.
Figure 2c has a supporting figure in Supplementary Figure 2b. While there is both a graphical depiction of the constructions and the data both in the main panel of Figure 2C, we have depicted it as so to be as clear as possible for the reader to interpret the complexity and presentence of amino acids in each of the constructs.
9) Line 717 - "following" is misspelt.
Thanks – corrected.
10) Lines 720-721 - "(Top)" and "(Bottom)" should be replaced with "(Left)" and "(Right)", as the 2 bar graphs presented in Fig. 2d are placed side by side to each other, not on the top and bottom.
Thanks – corrected.
11) Lines 725 and 839 - "Principle" is misspelt. It should be "Principal".
Thanks – corrected.
12) In Figures 3d and 3e, the sample labeled "C3+14_1" should be re-labeled to "C3+14", in accordance with the other sub-figures. Additionally, for the sake of consistency, "aa" should be appended to the relevant constructs, e.g. "C3+14aa" and "C3Δ14aa".
Thanks – corrected.
13) Line 773 - Were the DUX domain constructs over-expressed for 12hr (as written in the figure legend) or 18hr (as labeled in Fig. 5d)?
Thanks – corrected.
14) Related to minor point 19 above, is there a reason/rationale for why some of the experiments used 12hr over-expression of DUX domain constructs (e.g. for CUT&TAG in Fig. 3), whereas in other experiments 18hr over-expression was chosen instead (e.g. flow cytometry for MERVL::GFP reporter in Figures 1 and 2, and co-IP validations of BirA*-DUX interactions in Fig. 4)?
Thanks for the opportunity to explain. In this work, experiments that reported on proteins that are translated following DUX gene activation (e.g. MERVL:GFP via flow) were done at 18hr to allow for enough time for transcription and translation of GFP (or other DUX target genes). For experiments that report on the impact of DUX on chromatin and transcription, such as RNA-seq, CUT&Tag, and ATAC-seq, we induced DUX domain constructs for 12 hours.
15) Line 804 - "ΔHDs" is missing between "C2345+14aa" and "ΔHD1".
Thanks – corrected.
16) In Fig. 5c, "Chromatin remodelers" is misspelt.
Thanks – corrected.
17) There is no reference in the manuscript to the proposed model that is presented in Fig. 6b.
Thanks – corrected.
Reviewer #3 (Recommendations For The Authors):
Given the uncertainty of the function of the Dux peptide repeats in mice, could it not also be possible that the underlying repeated nature of the (coding) DNA? That is, could these DNA repeats exert a regulatory function on Dux transcription itself (also given the dire consequences of misregulated DUX4 expression as seen in FSHD, for example).
Yes, it remains possible that the internal coding repeats within Dux are playing a role in locus regulation, and might be interesting to examine. However, we consider this question as being outside the scope of the current paper.
Finally, it would be interesting to know whether these repeats are, in fact, present in all mouse species. Already no longer present in rat, do they exist, or not, in more "distant" mice, e.g. M. caroli?
Determining whether all mouse strains contain C-terminal repeats in DUX is a question we also considered. However, Dux and its orthologs are present in long and very complex repeat arrays that are not present in the sequencing data or annotation in other mouse strains. Therefore, we are not unable to answer this question from existing sequencing data. Answering would require a considerable genome sequencing and bioinformatics effort, or alternatively a considerable effort aimed at cloning ortholog cDNAs from 2-cell embryos.
Minor points:
line 169: here it seems, in fact, that the 'inactive' C2, C4 repeats are more similar to each other (my calculation: 91 and 96% identity at the protein and DNA level, respectively) than the active C3 and C5 repeats (82 and 89% identity, resp.), the outlier being C1.
Thanks for this comment, which was mentioned by other reviewers as well and has been addressed through new statistical analyses and interpretation (see new Figure S1d).
line 191: I'm not sure this sentence parses correctly ("...14AA tail is important for conferring H3K9Ac aids at bound sites...")
We thank the reviewer for this comment, and we have corrected the sentence in the manuscript.
-
Reviewer #3 (Public Review):
Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.
By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.
The experiments are of high quality, with appropriate controls, and thus provide a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).
The central question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function ("sub-functionalization") on activation mediated by C3 and/or C5, it could similarly be argued that the different repeats are indeed expected to display different activation potentials, chromatin opening, cofactor recruitment, due to, simply, the differences in their sequences. The argument for an active attenuating function would have been strengthened, for example, by the finding of repressor recruitment by C1/C2/C4 (and not just less of everything). The possible biological relevance of these repeats thus remains to be established.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
This study presents an important finding on human m6A methyltransferase complex (including METTL3, METTL14 and WTAP). The evidence supporting the claims of the authors is convincing, although the model and assays need to be further modified. The work will be of interest to biologists working on RNA epigenetics and cancer biology.
In mammals, a large methyltransferase complex (including METTL3, METTL14 and WTAP) deposits m6A across the transcriptome, and METTL3 serves as its catalytic core component. In this manuscript, the authors identified two cleaved forms of METTL3 and described the function of METTL3a (residues 239-580) in breast tumorigenesis. METTL3a mediates the assembly of METTL3-METTL14-WTAP complex, the global m6A deposition and breast cancer progression. Furthermore, the METTL3a-mTOR axis was uncovered to mediate the METTL3 cleavage, providing potential therapeutic target for breast cancer. This study is properly performed and the findings are very interesting; however, some problems with the model and assays need to be modified. It is widely known that METTL3 and METTL14 form a stable heterodimer with the stoichiometric ratio of 1:1 (Wang X et al. Nature 534, 575-578 (2016), Su S et al. Cell Res 32(11), 982994 (2022), Yan X et al. Cell Res 32(12), 1124-1127 (2022)), the numbers of METTL3 and METTL14 in the model of Fig 7P are not equivalent and need to be modified.
We thank for reviewer’s good suggestion. We have modified the model in Fig. 7P.
Reviewer #2 (Public Review):
In this study, Yan et al. report that a cleaved form of METTL3 (termed METTL3a) plays an essential role in regulating the assembly of the METTL3-METTL14-WTAP complex. Depletion of METTL3a leads to reduced m6A level on TMEM127, an mTOR repressor, and subsequently decreased breast cancer cell proliferation. Mechanistically, METTL3a is generated via 26S proteasome in an mTOR-dependent manner.
The manuscript follows a smooth, logical flow from one result to the next, and most of the results are clearly presented. Specifically, the molecular interaction assays are welldesigned. If true, this model represents a significant addition to the current understanding of m6A-methyltransferase complex formation.
A few minor issues detailed below should be addressed to make the paper even more robust. The specific comments are contained below.
1) The existence of METTL3a and METTL3b.<br /> In this study, the author found the cleaved form of METTL3 in breast cancer patient tissues and breast cancer cell lines. Is it a specific event that only occurs in breast cancer? The author may examine the METTL3a in other cell lines if it is a common rule.
We thank reviewer for point this out. We discovered the cleaved form of METTL3 in breast cancer, and we further examined this cleaved METTL3 in other cell lines such as lung cancer cell lines, renal cancer cell lines, HCT116 and MEF (new Supplementary Figures 1A-1C), these data suggest that it is a common rule. Therefore, we speculate that METTL3a may be ubiquitiously expressed. We have added this part in the revised manuscript, please see Line 118-120.
2) Generation of METTL3a and METTL3b.
1) Figure 1 shows that METTL3a and METTL3b were generated from the C-terminal of full-length METTL3. Because the sequence of METTL3a is involved in the sequences of METTL3b, can METTL3b be further cleaved to produce METTL3a?
Although the sequence of METTL3a is involved in the sequences of METTL3b, overexpression of METTL3b in T47D, MDA-MB-231 and 293T cells did not show METTL3a expression in these cells (please see Figures 3A, 3C, 3G), suggesting that METTL3b can not be further cleaved to produce METTL3a, and the METTL3 cleavage may require its N-terminal region. We have added this in the discussion, please see Line 358 to 360.
2) Based on current data, the generation of METTL3a and METTL3b are separated. Are there any factors that affect the cleavage ratio between METTL3a and METTL3b?
We thank for reviewer’s excellent question. In this study, we show that both METTL3a and METTLb are produced through proteasomal cleavage, and both of them are positively regulated by the mTOR pathway. On the other hand, we indeed observed the differential cleavage ratios between METTL3a and METTL3b across different cell lines. For example, METTL3a/METTLb ratio was greater than 1 in MDA-MB-231 cells (see Figure 7C), less than 1 in T47D and 293T cell lines (see Figure 7A and 7B), and equal to 1 in MEF cells (see Figure 7O). Based on these results, we speculate that there may be some factors that control the cleavage ratio between METTL3a and METTL3b, which warrants further investigation. We have added this in the discussion, please see Line 374 to 379.
3) In Figure 2G, the author shows the result that incubation of the Δ198+Δ238 METTL3 protein with T47D cell lysates cannot produce the METTL3a and METTL3b variants. The author may also show the results that Δ198 METTL3 protein or Δ238 METTL3 protein incubates with T47D cell lysates, respectively.
Following the reviewer’s suggestion, we had performed in vitro cleavage assays by incubation of METTL3-Δ238 or METTL3-Δ198 with T47D cell lysates, and had incorporated this result in the revised manuscript. Please see our new Supplementary Figure 3A.
4) As well as many results published in previous studies, the in vitro methylation assay shows that WT METTL3 is capable of methylating RNA probe (figure 2H). The main point of this study is that METTL3a is required for the METTL3-METTL14 assembly. However, the absence of METTL3a in the in vitro system did not inhibit METTL3METTL14 methylation activity. Moreover, the presence of METTL3a even resulted in a weak m6A level.
The main point of this study is that METTL3a is required for the METTL3WTAP interaction, but dispensable for the METTL3-METTL14 assembly (see Figure 4A-4B). In this in vitro methylation assays, METTL3 and METTL14 is capable of methylating RNA probe in the absent of WTAP. In this condition, we found that METTL3 WT as well as its different variants (METTL3-Δ238, METTL3-Δ198, METTL3b and METTL3a) except the catalytically dead mutant METTL3 APPA showed methylation activity in vitro.
5) In Figure 4A, the author suggests that WTAP cannot be immunoprecipitated with METTL3a and 3b because WTAP interacted with the N-terminal of METTL3. If this assay is performed in WT cells, the endogenous full-length METTL3 may help to form the complex. In this case, WTAP is supposed to be co-immunoprecipitated.
We thank reviewer for point this out. METTL3 interacts with WTAP through its N-terminal (1-33aa) (1). Consistently, we find that the two cleaved forms METTL3a and METTL3b which lack the N-terminal region are not able to bind with WTAP. In Figure 4A, we overexpressed METTL3 WT as well as its different variants METTL3-Δ238, METTL3-Δ198, METTL3b and METTL3a respectively in WT cells, and compared the binding ability with WTAP or METTL14 across these overexpressed METTL3 variants. We acknowledge that the exogenous METTL3a and METTL3b interact with endogenous full-length METTL3, and the endogenous full-length METTL3 may help them to form the complex with WTAP. But in fact, the exogenous expression levels of METTL3a and METTL3b are much higher than that of endogenous full-length METTL3 (see Figure 3A and 3C). In this case, METTL3a or METTL3b predominantly interacts with itself, METTL3, METTL14 or other potential interacting proteins through its C-terminal region, this may greatly dilute the condition for the interaction between WTAP and endogenous full-length METTL3. Moreover, in Figure 4A, the comparison is among overexpressed METTL3 variants, the week indirect interactions through much lower expression levels of endogenous protein are probably not comparable to those direct interactions between overexpressed METTL3 variants and WTAP.
Reference:
1) Schöller, E., Weichmann, F., Treiber, T., Ringle, S., Treiber, N., Flatley, A., Feederle, R., Bruckmann, A., and Meister, G. (2018). Interactions, localization, and phosphorylation of the m6A generating METTL3–METTL14–WTAP complex. Rna 24, 499-512
Reviewer #1 (Recommendations For The Authors):
Major points:
1) It is widely known that METTL3 and METTL14 form a stable heterodimer with the stoichiometric ratio of 1:1 (Wang X et al. Nature 534, 575-578 (2016), Su S et al. Cell Res 32(11), 982-994 (2022), Yan X et al. Cell Res 32(12), 1124-1127 (2022)), the numbers of METTL3 and METTL14 in the model of Fig 7P are not equivalent and need to be modified.
We thank for reviewer’s good suggestion. We have modified the model in Fig. 7P.
2) The in vitro methylation activity was detected by the m6A antibody, which has limited linear range. The MTase-Glo{trade mark, serif} Methyltransferase Assay is a SAMdependent enzyme assay with wide applications (Please refer to the references below).
Could this assay be performed by authors?
Wilkinson AW et al. Nature 565(7739), 372-376 (2019).
Yu D et al. Nucleic Acids Res 49(20),11629-11642 (2021).
Yan X et al. Cell Res 32(12), 1124-1127 (2022).
Chen J et al. Nat Commun 13(1), 3257 (2022).
Thanks for reviewer’s good suggestion. We had performed the in vitro methylation assay by using MTase-Glo kit, and the data is consistent with the dot blot results. Please see the new Figure 2H-J.
3) When expressed alone in mammalian cell lines, METTL14 is unstable and is easily contaminated with endogenous METTL3 during purification (Yang W et al. Nat Cell Biol 16(2), p.191-8 (2014), Fig 1e). In Fig 2I, Co-expressing METTL3 and METTL14 maybe a good choice.
We thank for reviewer’s good suggestion. In fact, we co-expressed METTL3 and METTL14 in this in vitro methylation assay in Fig 2I (new Figure 2J in the revised version), METTL3-Flag or its mutant with Flag tag and METTL14-Flag were co-transfected into 293T cells, and co-purified by using Flag M2 magnetic beads from the cell lysates. We have added these details in the indicated method section, please see Line 574-585.
Other minor points:
1) In Fig 5D, the protein domain information of METTL3 and relevant references need to be added (Su S et al. Cell Res 32(11), 982-994 (2022), Fig 6g; Yan X et al. Cell Res 32(12), 1124-1127 (2022), Fig 1a).
We have added these references in the revised manuscript.
2) In Fig 5, would METTL3b contribute to the METTL3-METTL3 interaction?
Our data showed that METTL3a but not METTL3b is responsible for the METTL3-WTAP interaction, breast cancer cell proliferation and the m6A modification. Then, we investigated the mechanism of how METTL3a regulates the METTL3-WTAP interaction, and found that METTL3a is essential for METTL3-METTL3 interaction, which is a prerequisite step for WTAP recruitment in MTC complex. In this case, we speculate that METTL3b is not required for the METTL3-METTL3 interaction. Indeed, through Co-IP assays,we found that METTL3b has no effect on the METTL3-METTL3 interaction (new supplementary Figure 4D), which is consistent with our above data showing that METTL3b is dispensable for the METTL3-WTAP interaction. We have added this comment in Page 6, Line 226 to 228.
3) In Fig 3F, the color in the legend and figure is inconsistent.
We have corrected the inconsistent color in the revised manuscript.
Reviewer #2 (Recommendations For The Authors):
1) In Figure 5D, the construction details of METTL3-HA and Flag should have been included in the method section. Are these tag sequences in the N-terminal of METTL3 protein?
These tags are all in the C-terminal of METTL3. We have added the construction details of these plasmids in the method section. Please see Line 434.
2) In Figure 7A, the labels of the inhibitors are overlapped with the figures.
We have corrected the labels of the inhibitors in Figure 7A in the revised manuscript.
-
-
developers.google.com developers.google.com
-
www.derstandard.at www.derstandard.at
-
Der 15. Juli wurde in der EU zum ersten Mal als Tag des Gedenkens an die Opfer der Klimakrise begangen. EU Vizepräsident Franz Timmermanns begründet in einem Gastkommentar, warum Klimapolitik energischer betrieben werden muss als bisher. Es wird deutlich dass die Finanzierung von weitergehenden Klimaschutz- und Klimaanpassungsmaßnahmen ein entscheidendes Konfliktthema auf EU-Ebene sein wird. Ab dem kommenden Frühjahr wird sich die EU an einer regelmäßigen Bewertung der Klimarisiken orientieren . https://www.derstandard.at/story/3000000178734/jetzt-handeln-um-das-klimachaos-zu-begrenzen
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
Reviewer #1 (Public Review):
This paper investigates whether bistable rhodopsins can be used to manipulate GPCR signalling in zebrafish. As a first step, the authors compared the performance of bistable rhodopsins fused with a flag tag or with a fluorescent protein tag (TagCFP). Constructs were compared by expressing in HEK cells followed by calcium imaging with aequorin or cAMP monitoring with GloSensor. This showed that the protein with a smaller flag tag performed better. Then, a series of transgenic zebrafish lines were made, in which tagged rhodopsins were expressed in reticulospinal neurons or cardiomyocytes.
The data indicate that bistable rhodopsin can be used to manipulate Gq and Gi/o signalling in zebrafish. The Gq-coupled SpiRh1 was effective in manipulating reticulospinal neurons, as indicated by analysis of tail movements and calcium imaging of the neurons. Gi/o signalling could be manipulated by Opn3 from mosquitoes, TMT from pufferfish, and parapinopsin from lamprey, as shown by their effects on the heartbeat. Lamprey parapinopsin has the interesting property that it can be turned on and off by different wavelengths of light, and this was used to stop and restart the heart. Finally, the authors show that the cardiac effects are mediated by an inward-rectifier K+ channel, through the use of pharmacological inhibitors.
A strength of this paper is the testing of a range of bistable rhodopsins, with a total of 10 proteins tested. This provides a good resource for future experiments. A weakness is the failure to show that some experiments involved repeated sampling of the same animal. Figure 3 gives the impression that there are 48 independent datapoints. However, there are 8 animals, with 6 datapoints coming from each. Similarly, Figure 4 shows the data from 6 trials of 4 animals, not 24 independent animals. Repeated sampling should be reflected in the data presentation, and in the statistical analysis. Was there an effect of trial number, which is suggested in Figure 6?
In response to the reviewer’s comments, we modified the graph to show the average data for individual animals in Figure 3A-E, Figure 3-supplement 2, Figure 4D-F, H, and Figure 4-supplement 2B. We also showed the effect of trial number (difference between trials 1 and 6) in Figure 3-supplement 1 and Figure 4-supplement 1. In addition, we also showed all data as source data. We believe that more accurate statistical analyses were conducted using data from each individual animal.
Delta F/F refers to relative change, which should be (F-F0)/F0. This should be zero when t = 0. The values in Figure 3E, and 3F are ~ 1 when t = 0, however. Are these figures showing F/F0?
The reviewer is correct. It is indeed F-F0/F0 (ΔF/F0). In Figure 3F (3E in the original manuscript), t=0 was the time when 470-495 nm light (for both stimulation of SpiRh1 and detection of GCaMP6s fluorescence) started to be applied. In the experiment in Figure 3G (3F in the original manuscript), 405 nm light was applied to activate SpiRh1[S186F] for 2 s and then 470-495 nm light was applied to detect GCaMP6s fluorescence. In other words, t=0 is the time when 405 nm light started to be applied.
The authors' conclusions that the bistable rhodopsins are useful tools in the zebrafish system appear largely justified. This is consistent with findings from other organisms, including mouse (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8097317/, https://www.sciencedirect.com/science/article/pii/S0896627321001616). The tools here are likely to find broad use by scientists who use the zebrafish as the experimental system for a variety of different areas.
For the studies on LamPP and MosOpn3, we cited the references mentioned by the reviewer. We believe that our study substantiates that LampPP and MosOpn3, as well as other bistable rhodopsins, are valuable tools for zebrafish research, as pointed out by the reviewer.
Reviewer #2 (Public Review):
The presented study aims at deciphering the physiological function of GPCR signaling in excitable cells. To this end, the authors developed transgenic zebrafish models expressing a selection of Gq- and Gi/o-coupled bistable rhodopsins in either reticulospinal neurons or cardiomyocytes and elucidated behavioral responses (tail movements) or physiological responses (heartbeat) as well as intracellular Ca2+ dynamics following optical stimulation of rhodopsins.
One of the major strengths of the presented study is the functional comparison of five Gq- and five Gi/o-coupled rhodopsins in two major classes of excitable cells, however; the selection of rhodopsins tested remains elusive. More importantly, it is not obvious why some of the effects of rhodopsin activation were assessed in both neurons and cardiomyocytes, while others were only tested in one of the two systems without further explanation. The main chosen experimental readouts (swimming/tail bending or cardiac contractions) have limited informative value regarding GPCR signaling, as they will only report the peak of the iceberg, namely whether movements are elicited or heartbeats inhibited. No analysis on subtle changes in heart rate and contraction force was included, but such modulation of cardiac activity (e.g. positive or negative chronotropic, inotropic, dromotropic, bathmotropic, and/or lusitropic responses) would represent better the physiological modulation of the heart via GPCR and down-stream signaling events. In line, the presented data only represents behavior at one light intensity tested, whereas a light titration of observed effects could provide more meaningful insight into both rhodopsin responses and signaling mechanisms. Also, the potential promiscuity of G protein activation of selected receptors has not been addressed, neither experimentally nor in the discussion part. As a result of the above-mentioned limitations, it is difficult to follow the logic of the study and especially to interconnect the data obtained in reticulospinal neurons (where activation of jumping spider rhodopsin elicited tail bending) to myocyte data (where three Gi-coupled rhodopsins suppressed cardiac activity). Moreover, as such, the study does not provide explanations on why a certain tool might evoke an effect in one system or the other, or not, which could be the main deliverable of such a comparative analysis.
We are grateful for helpful and insightful comments from the reviewer. We believe that the presentation of experimental findings in the original manuscript may have led to a misunderstanding. We examined the effects of Gq and Gi/o-coupled bistable rhodopsins on both reticulospinal V2a neurons and cardiomyocytes. We observed noticeable effects of Gq rhodopsins on reticulospinal V2a neurons, but no significant effects on cardiomyocytes. Similarly, we found effects of Gi/o-coupled rhodopsins on cardiomyocytes, but no significant effects on reticulospinal V2a neurons. These discrepancies could be attributed to differences in the target cells and experimental conditions, suggesting the need for further optimization. We described the data on page 13, lines 16-22 and page 16, lines 9-10 in the Result section and Table 1, and discussed the relationship between the activity of bistable rhodopsins and their effects on target cells on page 21, lines 6-15 and page 24, line 19-page 25, line 2 in the Discussion section of the revised manuscript.
In order to clarify the function of Gi/o-coupled rhodopsins on the heart in more detail, we conducted experiments in which we activated cardiomyocytes expressing bistable rhodopsins at various light intensities to observe the effects on heartbeats. We analyzed cardiac arrest rate, latency to cardiac arrest, and time to resumption of heartbeat. The results of these experiments are shown in Figure 4 and Figure 4-supplement 2, 3 in the revised manuscript. We described the data on page 15, line 16-page 16, line 1 in the revised manuscript, as follows.
To analyze the photosensitivity of Gi/o-coupled rhodopsins, we applied light of various intensities for 1 s and examine their effect on HBs (Figure 4-supplement 2). Cardiac arrest was induced and sustained for over 20 s after stimulation of MosOpn3 with 0.05 mW/mm2 light for 1 s. Photoactivation of PufTMT and LamPP at lower light intensities (0.2 or 0.05 mW/mm2) resulted in cardiac arrest, but faster HB recovery than stimulation with 0.5 mW/mm2 light (Figure 4-supplement 2). The data indicate that the ability of MosOpn3 to suppress HBs is more photosensitive than PufTMT and LamPP in the zebrafish heart. We further examined atrial-ventricular (AV) conductivity by measuring the time difference between atrial and ventricular contractions before and after light stimulation when HBs had slightly recovered. There was no significant difference in AV conductivity before and after light stimulation (Figure 4-supplement 3).
We performed experiments to the best of our ability with current technology regarding cardiac function. However, we hope that the reviewer is willing to acknowledge that there are certain limitations in conducting a detailed analysis of the zebrafish larval heart, since many experimental techniques, such as electrophysiological analysis, have not yet been fully or effectively established for this animal model.
While the presented data is interesting, the graphical presentation and description of the data are insufficient. Most importantly, the current version of the text does not include a quantitative description of effects and statistical analyses (which are found in the figures and legends!). The lack of quantitative description also extends to both the introduction and discussion, which remain general without a specific dissection of observed effects.
We have described quantitative data in the Result section.
One major concern is the selective citation of own work. While single statements in both the introduction and discussion are supported by up to ten own papers, recent studies using rhodopsins for dissecting GPCR signaling in neurons are not sufficiently discussed and new data is not compared to published results by other teams. Moreover, relevant papers on cardiomyocytes (e.g. PMID: 35579776, 35365606, 34987414, 30894542) are not cited at all, despite the use of similar rhodopsins and/or optogenetic activation of the same signaling pathways. Taking into account these published studies may help to better understand the observed responses.
We apologize for not citing important relevant papers in the original manuscript. We have now cited all four papers (Dai et la., 2022; Wagdi et al., 2022; Cokic et al., 2021; Makowka et al., 2019) mentioned by the reviewer, as well as a new paper describing the use of MosOpn3 and LamPP in C. elegans neurons (Koyanagi et al., 2022) in the Introduction section. We also discussed the differences between our findings and previously published data in the Discussion section.
Additional comment: Data were obtained from larvae zebrafish. It would be useful to include a discussion on how GPCR signaling might be different in adult fish compared to larvae, and how to test whether the observed effects are more generally applicable.
We discussed the differences between the hearts of zebrafish larvae and adults, and the differences in GPCR signaling, on page 27, lines 10-16, as follows. In this study, we used zebrafish larvae to study the role of GPCR signaling in cardiac function, and there are differences in heart structure and function between larvae and adult zebrafish. As a zebrafish grows, blood pressure increases and the heart becomes more complex with the development of valves and ventricular trabeculae. Therefore, GPCR signaling, which regulates heart structure and function, may differ between juvenile and adult fish. Optogenetic manipulation of the heart’s function in adult zebrafish using bistable opsins should clarify this issue.
-
-
www.amplenote.com www.amplenote.com
-
As described in the Double Bracket Note Link Syntax help article, you can specify a tag hierarchy when you're creating a new note by prefacing the note title with its hierarchy. For example [[recipes/pizza/BBQ Hawaiian Pizza]] will show as:
Create a new note with tag hierarchy
-
-
www.reddit.com www.reddit.com
-
The other potentially useful suggestion is to insert your task into a New Note, and then later search for `group:untagged`, which will give you a list of all notes that haven't yet had a tag applied
Use group untagged to filter no tag notes
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
In the manuscript entitled 'Unveiling the Domain-Specific and RAS Isoform-Specific Details of BRAF Regulation', the authors conduct a series of in vitro experiments using N-terminal and C-terminal BRAF fragments (SPR, HDX-MS, pull-down assays) to interrogate BRAF domain-specific autoinhibitory interactions and engagement by H- and KRAS GTPases. Of the three RAF isoforms, BRAF contains an extended N-terminal domain that has yet to be detected in X-ray and cryoEM reconstructions but has been proposed to interact with the KRAS hypervariable region. The investigators probe binding interactions between 4 N-terminal (NT) BRAF fragments (containing one more NT domain (BRS, RBD, and CRD)), with full-length bacterial expressed HRAS, KRAS as well as two BRAF C-terminal kinase fragments to tease out the underlying contribution of domain-specific binding events. They find, consistent with previous studies, that the BRAF BSR domain may negatively regulate RAS binding and propose that the presence of the BSR domain in BRAF provides an additional layer of autoinhibitory constraints that mediate BRAF activity in a RAS-isoform-specific manner. One of the fragments studied contains an oncogenic mutation in the kinase domain (BRAF-KDD594G). The investigators find that this mutant shows reduced interactions with an N-terminal regulatory fragment and postulate that this oncogenic BRAF mutant may promote BRAF activation by weakening autoinhibitory interactions between the N- and C-terminus.
While this manuscript sheds light on B-RAF specific autoinhibitory interactions and the identification and partial characterization of an oncogenic kinase domain (KD) mutant, several concerns exist with the vitro binding studies as they are performed using tagged-isolated bacterial expressed fragments, 'dimerized' RAS constructs, lack of relevant citations, controls, comparisons and data/error analysis. Detailed concerns are listed below.
1. Bacterial-expressed truncated BRAF constructs are used to dissect the role of individual domains in BRAF autoinhibition. Concerns exist regarding the possibility that bacterial expression of isolated domains or regions of BRAF could miss important posttranslational modifications, intra-molecular interactions, or conformational changes that may occur in the context of the full-length protein in mammalian cells. This concern is not addressed in the manuscript.
2. The experiments employ BRAF NT constructs that retain an MBP tag and RAS proteins with a GST tag. Have the investigators conducted control experiments to verify that the tags do not induce or perturb native interactions?
3. The investigators state that the GST tag on the RAS constructs was used to promote RAS dimerization, as RAS dimerization is proposed to be key for RAF activation. However, recent findings argue against the role of RAS dimers in RAF dimerization and activation (Simanshu et al, Mol. Cell 2023). Moreover, while GST can dimerize, it is unclear whether this promotes RAS dimerization as suggested. In methods for the OpenSPR experiments probing NT BRAF:RAS interactions, it is stated that "monomeric KRAS was flowed...". This terminology is a bit confusing. How was the monomeric state of KRAS determined and what was the rationale behind the experiment? Is there a difference in binding interactions between "monomeric vs dimeric KRAS"?
4. The investigators determine binding affinities between GST-HRAS and NT BRAF domains (NT2 7.5 {plus minus} 3.5; NT3 22 {plus minus} 11 nM) by SPR, and propose that the BRS domain has an inhibitory role HRAS interactions with the RAF NT. However, it is unclear whether these differences are statistically meaningful given the error.
5. It is unclear why NT1 (BSR+RBD+CRD) was not included in the HDX experiments, which makes it challenging to directly compare and determine specific contributions of each domain in the presence of HRAS. Including NT1 in the experimental design could provide a more comprehensive understanding of the interplay between the domains and their respective roles in the HRAS-BRAF interaction. Further, excluding certain domains from the constructs, such as the BSR or CRD, may overlook potential domain-domain interactions and their influence on the conformational changes induced by HRAS binding.
6. The authors perform pulldown experiments with BRAF constructs (NT1: BSR+RBD+CRD, NT2: BSR+RBD, NT3: RBD+CRD, NT4: RBD alone), in which biotinylated BRAF-KD was captured on streptavidin beads and probed for bound His/MBP-tagged BRAF NTs. Western blot results suggest that only NT1 and NT3 bind to the KD (Figure 5). However, performing a pulldown experiment with an additional construct, CRD alone, it would help to determine whether the CRD alone is sufficient for the interaction or if the presence of the RBD is required for higher affinity binding. This additional experiment would strengthen the authors' arguments and provide further insights into the mechanism of BRAF autoinhibition.
7. While the investigators state that their findings indicate that H- and KRAS differentially interact with BRAF, most of the experiments are focused on HRAS, with only a subset on KRAS. As SPR & pull-down experiments are only conducted on NT1 and NT2, evidence for RAS isoform-specific interactions is weak. It is unclear why parallel experiments were not conducted with KRAS using BRAF NT3 & NT4 constructs.
8. The investigators do not cite the AlphaFold prediction of full-length BRAF (AF-P15056-F1) or the known X-ray structure of the BRAF BRS domain. Hence, it is unclear how Alpha-Fold is used to gain new structural information, and whether it was used to predict the structure of the N-terminal regulatory or the full-length protein.
9. In HDX-MS experiments, it is unclear how the authors determine whether small differences in deuterium uptake observed for some of the peptide fragments are statistically significant, and why for some of the labeling reaction times the investigators state " {plus minus} HRAS only" for only 3 time points?
10. The investigators find that KRAS binds NT1 in SPR experiments, whereas HRAS does not. However, the pull-down assays show NT1 binding to both KRAS and HRAS. SI Fig 5 attributes this to slow association, yet both SPR (on/off rates) and equilibrium binding measurements are conducted. This data should be able to 'tease' out differences in association.
11. The model in Figure 7B highlights BSR interactions with KRAS, however, BSR interactions with the KRAS HVR (proximal to the membrane) are not shown, as supported by Terrell et al. (2019).
12. The investigators state that 'These findings demonstrate that HRAS binding to BRAF directly relieves BRAF autoinhibition by disrupting the NT1-KD interaction, providing the first in vitro evidence of RAS-mediated relief of RAF autoinhibition, the central dogma of RAS-RAF regulation. However, in Tran et al (2005) JBC, they report pull-down experiments using N-and C-terminal fragments of BRAF and state that 'BRAF also contains an N-terminal autoinhibitory domain and that the interaction of this domain with the catalytic domain was inhibited by binding to active HRAS'. This reference is not cited.
13. In Fig 2, panels A and C, it is unclear what the grey dotted line in is each plot.
14. In Fig 3, error analysis is not provided for panel E.
15. How was RAS GMPPNP loading verified?
-
-
razorpay.com razorpay.com
-
examples:
remove the br tag here.
-
-
sspai.com sspai.com
-
要和原始上下文结合才便于理解。因此,理想的
where is my tag
-
-
oneclick.es oneclick.es
-
learning environment where teachers
annotation
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
Reviewer #2 (Public Review):
The manuscript by Ma et al, "Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes" examines the contribution of two RNA-binding proteins on the exosomal loading of miR223. The authors conclude that YBX1 and YBAP1 work in tandem to traffic and load miR223 into the exosome. The manuscript is interesting and potentially impactful. It proposes the following scenario regarding the exosomal loading of miR223: (1) YBAP1 sequesters miR223 in the mitochondria, (2) YBAP1 then transfers miR223 to YBX1, and (3) YBX1 then delivers miR223 into the early endosome for eventual secretion within an exosome. While the authors propose plausible explanations for this phenomenon, they do not specifically test them and no mechanism by which miR223 is shuttled between YBAP1 and YBX1, and the exosome is shown. Thus, the paper is missing critical mechanistic experiments that could have readily tested the speculative conclusions that it makes.
Comments:
1) The major limitation of this paper is that it fails to explore the mechanism of any of the major changes it describes. For example, the authors propose that miR223 shuttles from mitochondrially localized YBAP1 to P-body-associated YBX1 to the exosome. This needs to be tested directly and could be easily addressed by showing a transfer of miR223 from YBAP1 to YBX1 to the exosome.
Testing this idea using fluorescently labeled miR223 would indeed be an ideal experiment. However, miRNA imaging presents challenges. As reviewer 1 pointed out, and we have now confirmed, the atto-647 dye itself localizes to mitochondria. We will continue our efforts to identify a suitable fluorescent label for miR223in order to be in a position to evaluate the temporal relationship between mitochondrial and endosomal miR223.
2) If YBAP1 retains miR223 in mitochondria, what is the trigger for YBAP1 to release it and pass it off to YBX1? The authors speculate in their discussion that sequestration of mito-miR223 plays a "role in some structural or regulatory process, perhaps essential for mitochondrial homeostasis, controlled by the selective extraction of unwanted miRNA into RNA granules and further by secretion in exosomes...". This is readily testable by altering mitochondria dynamics and/or integrity.
A previous study has reported that YBAP1 can be released from mitochondria to the cytosol during HSV-1 infection (Song et al., 2021). However, due to restrictions, we are unable to conduct experiments using HSV to verify this condition. We attempted to induce mitochondrial stress by using different concentrations of CCCP, but we did not observe the release of YBAP1 from mitochondria after CCCP treatment. We speculate that not all mitochondrial stress conditions can trigger YBAP1 release. Investigating the mechanism of mito-miR223 release from mitochondria is one of our interests that we aim to explore in future studies.
3) Much of the miRNA RT-PCR analysis is presented as a ratio of exosomal/cellular. This particular analysis assumes that cellular miRNA is unaffected by treatments. For example, Figure 1a shows that the presence of exosomal miR223 is significantly reduced when YBX1 is knocked out. This analysis does not consider the possibility that YBX1-KO alters (up or down-regulates) intracellular miR223 levels. Should that be the case, the ratiometric analysis is greatly skewed by intracellular miRNA changes. It would be better to not only show the intracellular levels of the miRs but also normalize the miRNA levels to the total amount of RNA isolated or an irrelevant/unchanged miRNA.
Our previous publications demonstrated that miR223 levels are increased in YBX1-KO cells and decreased in exosomes derived from YBX1 KO cells. However, no significant changes were observed in miR190 levels (Liu et al., 2021; Shurtleff et al., 2016). The repeated data has been included in Figure 1a.
For the analysis of other miRNAs by RT-PCR, we assessed changes in intracellular and exosomal miRNA levels in the corresponding figures. In the qPCR analysis, miRNA levels were normalized to the total amount of RNA.
4) In figure 1, the authors show that in YBX1-KO cells, miR223 levels are decreased in the exosome. They further suggest this is because YBX1 binds with high affinity to miR223. This binding is compared to miR190 which the authors state is not enriched in the exosome. However, no data showing that miR190 is not present in the exosome is shown. A figure showing the amount of cellular and exosomal miR223 and 190 should be shown together on the same graph.
In previous publications we demonstrated that miR190 is not localized in exosomes and not significantly changed in YBX1 knockout (KO) cells and exosomes derived from YBX1 KO cells (Liu et al., 2021; Shurtleff et al., 2016). The repeated data has been included in Figure 1a.
5) Figure 2 Supplement 1 - As to determine the nucleotides responsible for interacting with YBX1, the authors made several mutations within the miR223 sequence. However, no explanation is given regarding the mutant sequences used or what the ratios mean. Mutant sequences need to be included. How do the authors conclude that UCAGU is important when the locations of the mutations are unclear? Also, the interpretation of this data would benefit from a binding affinity curve as shown in Fig 2C.
The ratio is of labeled miR223/unlabeled miR223 (wt and mutant). All mutant sequences of miR223 have been included in Figure 2 supplement 1.
6) While the binding of miR223mut to YBX1 is reduced, there is still significant binding. Does this mean that the 5nt binding motif is not exact? Do the authors know if there are multiple nucleotide possibilities at these positions that could facilitate binding? Perhaps confirming binding "in vivo" via RIP assay would further solidify the UCAGU motif as critical for binding to YBX1.
The binding affinity of miR223mut with YBX1 is reduced approximately 27-fold compared to miR223. We speculate that the secondary structure of miR223 may contribute to the interaction with YBX1.
Our EMSA data, in vitro packaging data, and exosome analysis reinforce the conclusion that UCAGU is critical for YBX1 binding. These findings suggest that the presence of the UCAGU motif in miR223 is crucial for its interaction with YBX1 and subsequent sorting into exosomes.
7) Figures 2g, h - It would be nice to show that miR190mut also packages in the cell-free system. This would confirm that the sequence is responsible. Also, to confirm that the sorting of miR223 is YBX1-dependent, a cell-free reaction using cytosol and membranes from YBX1 KO cells is needed.
Although we have not performed the suggested experiment, we purified exosomes from cells overexpressing miR190sort and observed an increase in the enrichment of miR190sort in exosomes compared to miR190. This finding confirmed that the UCAGU motif facilitates miRNA sorting into exosomes.
Regarding the in vitro packaging assay, our previously published paper demonstrated that cytosol from YBX1 knockout (KO) cells significantly reduces the protection of miR223 from RNase digestion. We concluded that the sorting of miR223 into exosomes is dependent on YBX1 (Shurtleff et al., 2016).
8) In Figure 3a, the authors show that miR223 is mitochondrially localized. Does the sequence of miR223 (WT or Mut) matter for localization? Does it matter for shuttling between YBAP1 and YBX1?
The localization of miR223mut has not been tested in our current study. We plan to conduct these experiments in the future.
9) Supplement 3c - Is it strange that miR190 is not localized to any particular compartment? Is miR190 present ubiquitously and equally among all intracellular compartments?
Most mature miRNAs are predominantly localized in the cytoplasm. Although there is no specific subcellular localization reported for miR190 in the literature, our experimental findings indicate a relatively high expression of miR190 in 293T cells. It is likely that most of miR190 is localized in the cytosol. However, it is also possible that a small fraction of miR190 may associate with a membrane, which could explain its distribution in various subcellular structures. Importantly, we did not observe enrichment of miR190 in the mitochondria or exosomes.
10) Figure 3h - Why would the miR223 levels increase if you remove mitochondria? Does CCCP also cause miR223 upregulation? I would have thought miR223 would just be mis-localized to the cytosol.
We report that the levels of cytoplasmic miR223 increase following the removal of mitochondria using CCCP treatment. While we cannot rule out the possibility that upregulation of miR223 is directly caused by CCCP treatment, we suggest that miR223 becomes mis-localized to the cytosol upon mitochondrial removal. Our data suggests that mitochondria contribute to the secretion of miR223 into exosomes. When mitochondria are removed by mitophagy, cytosolic miR223 is not efficiently secreted, which provides an alternative explanation for the observed increase in miR223 level after mitochondrial removal.
11) Figure 3i - What is the meaning of "Urd" in the figure label? This isn't mentioned anywhere.
“Urd” represents Uridine. Uridine is now spelled out in figure 3i. The absence of mitochondria can impact the function of the mitochondrial enzyme dihydroorotate dehydrogenase, which plays a role in pyrimidine synthesis. To address this issue, one approach is to supplement the cell culture medium with Urd. A previous study demonstrated that primary fibroblasts showed positive responses when Urd was added to the cell culture medium, resulting in improved cell viability for extended periods of time (Correia-Melo et al., 2017).
12) Figure 3j - The data is presented as a ratio of EV/cell. Again, this inaccurately represents the amount of miR223 in the EV. This issue is apparent when looking at Figures 3h and 3j. In 3h, CCCP causes an upregulation of intracellular miR223. As such, the presumed decrease in EV miR233 after CCCP (3j) could be an artifact due to increased levels of intracellular miR223. Both intracellular and EV levels of miRs need to be shown.
Both the intracellular and exosomal levels of miR223 have been included in Figure 3j.
13) In Figure 4, the authors show that when overexpressed, YBX1 will pulldown YBAP1. Can the authors comment as to why none of the earlier purifications show this finding (Figure 1 for example)? Even more curious is that when YBAP1 is purified, YBX1 does not co-purify (Figure 4 supplement 1a, b).
In Figure 4a-b, human YBX1 fused with a Strep II tag was purified from 293T cells using Strep-Tactin® Sepharose® resin in a one-step purification process. Our data has shown that YBAP1 is expressed in 293T cells.
In Figure 1 and Figure 4 Supplement 1a, human YBX1 or YBAP1 fused with His and MBP tags were purified from insect cells using a three-step purification process involving Ni-NTA His-Pur resin, amylose resin, and Superdex-200 gel filtration chromatography.
One possibility is that human YBX1 or YBAP1 may not interact well with insect YBAP1 or YBX1, which could result in separate tagged forms of YBX1 or YBAP1 isolated from insect cells.
Another possibility is that the expression levels of insect YBAP1 and YBX1 may be too low. Consequently, tagged forms YBX1 or YBAP1 expressed in insect cells may copurify with partners not readily detected by Coomassie blue stain. However, in Figure 4 Supplement 1b, human YBX1 fused with His and MBP tags was co-expressed with non-tagged human YBAP1, and both bands of YBX1 and YBAP1 were visible on the Coomassie blue gel after purification using Ni-NTA His-Pur resin, amylose resin, and Superdex-200 gel filtration chromatography.
14) Figure 4f, g - The text associated with these figures is very confusing, as is the labeling for the input. Also, what is "miR223 Fold change" in this regard? Seeing as your IgG should not have IP'd anything, normalizing to IgG can amplify noise. As such, RIP assays are typically presented as % input or fold enrichment.
The RIP assay results have been calculated and presented as a % input in Figure 4g.
15) Figure 4h - The authors show binding between miR223 and YBAP1 however it is not clear how significant this binding is. There is more than a 30-fold difference in binding affinity between miR223 and YBX1 than between miR223 and YBAP1. Even more, when comparing the EMSAs and fraction bound from figures 1 and 2 to those of Figure 4h, the binding between miR223 and YBAP1 more closely resembles that of miR190 and YBX1, which the authors state is a non-binder of YBX1. The authors will need to reconcile these discrepancies.
We agree that the binding of YBAP and YBX1 differ quite significantly in the affinity of their interaction with miR223. It is difficult to draw conclusions from a comparison of the affinities of YBX1 for miR190 and YBAP1 for miR223. Nonetheless, a quantitative difference in the interaction of YBAP1 with miR223 and miR190 is apparent (Fig. 4 h, I, j) and we observed no enrichment miR190 in isolated mitochondria (Fig. 3 supplement 1a) whereas YBAP1 selectively IP’d miR223 from isolated mitochondria (Fig. 4 f and g).
16) Can the authors present the Kd values for EMSA data?
The Kd values for the EMSA data have been added to the respective figures.
17) Figure 5 - Does YBAP1-KO affect mitochondrial protein integrity or numbers?
We generated stable cell lines expressing 3xHA-GFP-OMP25 in both 293T WT and YBAP1-KO cells, but we did not observe any alterations in mitochondrial morphology (Author response image 1).
Author response image 1.
Additionally, we performed a comparison of different mitochondrial markers using immunoblot in 293T WT cells and YBAP1-KO cells and did not observe any changes in these markers (data has been included in Figure 5b.).
18) Figure 6a - Are the authors using YBAP1 as their mitochondrial marker? Please include TOM20 and/or 22.
In Figure 4c and 4e, our data clearly demonstrate that the majority of YBAP1 is localized in the mitochondria.
To further validate this localization, we performed immunofluorescence staining using antibodies against endogenous Tom20 and YBX1. The immunofluorescence images document YBX1 associated with mitochondria (Author response image 2 and new Fig 6a.).
Author response image 2.
19) Figure 6b - Rab5 is an early endosome marker and may not fully represent the organelles that become MVBs. Co-localization at this point does not suggest that associating proteins will be present in the exosome, and it is possible that the authors are looking at the precursor of a recycling endosome. Even more, exosome loading does not occur at the early endosome, but instead at the MVB. Perhaps looking at markers of the late endosome such as Rab7 or ideally markers of the MVB such as M6P or CD63 would help draw an association between YBX1, YBAP1, and the exosome. Also, If the authors want to make the claim that interactions at the early endosome leads to secretion as an exosome, the authors should show that isolated EVs from Rab5Q79L-expressing cells contain miR223.
We have previously used overexpressed Rab5(Q79L) to monitor the localization of exosomal content, specifically CD63 and YBX1, in enlarged endosomes (Liu et al. 2021, Fig. 4A, B). These endosomes exhibit a mixture of early and late endocytic markers, including CD63. (Wegner et al., 2010). Hence, the presence of Rab5(Q79L)-positive enlarged endosomes does not solely indicate early endosomes.
20) The mentioning of P-bodies is interesting but at no time is an association addressed. This is therefore an overly speculative conclusion. Either show an association or leave this out of the manuscript.
In a previous paper we demonstrated that YBX1 puncta colocalize with P-body markers EDC4, Dcp1 and DDX6 (Liu et al., 2021).
21) In lines 55-58, the authors make the comment "However, many of these studies used sedimentation at ~100,000 g to collect EVs, which may also collect RNP particles not enclosed within membranes which complicates the interpretation of these data." Do RNPs not dissolve when secreted? Can the authors give a reference for this statement?
In a previous paper, we demonstrated that the RNP Ago2 does not dissolve in the conditioned medium and is not in vesicles but sediments to the bottom of a density gradient (Temoche-Diaz et al., 2019).
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
eLife assessment:
Trypanosoma brucei evades mammalian humoral immunity through the expression of different variant surface glycoprotein genes. In this fundamental paper, the authors extend previous observations that TbRAP1 both interacts with PIP5pase and binds PI(3,4,5)P3, indicating a role for PI(3,4,5)P3 binding and suggesting that antigen switching is signal dependent. While much of the evidence is compelling, one reviewer suggested that the work would benefit from further controls.
We appreciate the evaluation of the work and agree that the findings substantially advance our understanding of antigenic variation. A detailed response to the public review is included below, which addresses and clarifies the issues raised by the reviewers, including those concerning controls. We also want to highlight the comment by Reviewer #3 “The methods used in the study are rigorous and well-controlled…. their results support the conclusions made in the manuscript.”. We hope this and our comments will help address the issue of controls in this eLife statement.
Reviewer #1 (Public Review):
Trypanosoma brucei undergoes antigenic variation to evade the mammalian host’s immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) have shown that PIP5pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1-300, aa301-560, and aa 561-855). These fragments’ DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulating the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author’s hypothesis that this regulation is through an “allosteric switch”. Therefore, the title should be revised.
We appreciate the reviewer’s detailed evaluation of our work. There are a few general comments that we would like to clarify. We will break them into three points. All data included here are new and were not previously published.
i) “RNAseq and ChIPseq analyses have been performed previously …(ref. 24).” Reference 24 is Cestari et al. 2019, Mol Cell Biol. We, or others, have not published ChIP-seq of RAP1 in T. brucei. Previous work showed ChIP-qPCR, which analyses specific loci. The ChIP-seq shows genome-wide binding sites of RAP1, and new findings are shown here, including binding sites in the BES, MESs, and other genome loci such as centromeres. We also identified DNA sequence bias defining RAP1 binding sites (Fig 2A). We also show by ChIP-seq how RAP1-binding to these loci changes upon expression of catalytic inactive PIP5Pase. As for the RNA-seq, this is also the first time we show RNA-seq of T. brucei expressing catalytic inactive PIP5Pase, which establishes that the regulation of VSG silencing and switching is dependent on PIP5Pase enzyme catalysis, i.e., PI(3,4,5)P3 dephosphorylation. To improve clarity in the manuscript, we edited page 4, line 122, as follows: “We showed that RAP1 binds telomeric or 70 bp repeats (24), but it is unknown if it binds to other ES sequences or genomic loci.”
ii) “The in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al. (ref. 24) already.”. We published in reference 24 that RAP1-HA can bind agarose beads-conjugated synthetic PI(3,4,5)P3. Here, we were able to measure T. brucei endogenous PI(3,4,5)P3 associated with RAP1-HA (Fig 4F). Moreover, we showed that the endogenous RAP1-HA and PI(3,4,5)P3 binding is about 100-fold higher when PIP5Pase is catalytic inactive than WT PIP5Pase. The data establish that in vivo endogenous PI(3,4,5)P3 binds to RAP1-HA and how the binding changes in cells expressing mutant PIP5Pase; this data is new and relevant to our conclusions.
iii) “no convincing data have been shown to support the author’s hypothesis that this regulation is through an “allosteric switch””. We show here in vitro and in vivo data supporting the conclusion. We show that PI(3,4,5)P3 binds to the N-terminus of rRAP1-His with a calculated Kd of about 20 µM (Fig 4B-E, Table 1). In contrast, we show by EMSA and binding kinetics by microscale thermophoresis that rRAP1-His binds to 70 bp and telomeric repeats via protein regions encompassing the Myb (central) or Myb-L domains (C-terminal) but not the N-terminus containing the VHP domain (Fig 3C-G, and Fig S5). Using microscale thermophoresis, we also show that rRAP1-His binds to 70 bp and telomeric repeats with Kd of 10 and 24 nM, respectively (Fig 3 and Table 1). Notably, we show that 30 µM of PI(3,4,5)P3, but not PI(4,5,)P2 – used as a control – disrupts rRAP1-His binding to 70 bp and telomeric repeats, changing Kds to about 188 and 155 nM, respectively (Fig 5A-C). We also show that PI(3,4,5)P3 does not disrupt the binding of rRAP1-His fragments (Myb or MybL) without the N-terminus domain (Fig S5), implying binding of PI(3,4,5)P3 to RAP1 N-terminus is required for displacement of RAP1 DNA binding domains (Myb and MybL) from telomeric and 70 bp repeats, and that PI(3,4,5)P3 is not competing for Myb or Myb-L binding to DNA. Moreover, we show that RAP1-HA binding to 70 bp and telomeric repeats in vivo is displaced in T. brucei cells expressing catalytic inactive PIP5Pase (Fig 5D-G), which we show results in RAP1-HA binding about 100-fold more endogenous PI(3,4,5)P3 than in T. brucei expressing WT PIP5Pase (Fig 4F). The in vivo data agrees with the in vitro data. The data show a typical allosteric regulator system, in which binding of a ligand to one site of the protein, here PI(3,4,5)P3 binding to RAP1 N-terminus, affects other domains (RAP1 Myb and Myb-L domains) binding to DNA. To improve the clarity of the title, we will change it in the revised version to imply a direct role of PI(3,4,5)P3 regulation of RAP1 in the process. This will provide more specific information to the readers and addresses the concern of the reviewer related to the “allosteric switch”. The new title will be: PI(3,4,5)P3 allosteric regulation of RAP1 controls antigenic switching in trypanosomes
There are serious concerns about many conclusions made by Touray et al., according to their experimental approaches:
1) The authors have been studying RAP1’s chromatin association pattern by ChIPseq in cells expressing a C-terminal HA tagged RAP1. According to data from tryptag.org, RAP1 with an N-terminal or a C-terminal tag does not seem to have identical subcellular localization patterns, suggesting that adding tags at different positions of RAP1 may affect its function. It is therefore essential to validate that the C-terminally HA-tagged RAP1 still has its essential functions. However, this data is not available in the current study. RAP1 is essential. If RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. In addition, these cells should have the WT VSG expression pattern, and RAP1-HA should still interact with TRF. Without these validations, it is impossible to judge whether the ChIPseq data obtained on RAP1-HA reflect the true chromatin association profile of RAP1.
Tryptag data show both N- and C-terminus RAP1 with nuclear localization in procyclic forms, although there are differences in signal intensities in the images (http://tryptag.org/?id=Tb927.11.370). It is important to note that Tryptag data is from procyclic forms, and DNA constructs are not validated for their integration in the correct locus. As for the RAP1-HA localization in bloodstream forms, we demonstrated that C-terminally HA-tagged RAP1 co-localizes with telomeres by a combination of immunofluorescence and fluorescence in situ hybridization (Cestari and Stuart, 2015, PNAS), and RAP1-HA co-immunoprecipitate telomeric and 70 bp repeats (Cestari et al. 2019 Mol Cell Biol). We also showed by immunoprecipitation and mass spectrometry that HA-tagged RAP1 interacts with nuclear and telomeric proteins, including PIP5Pase (Cestari et al. 2019). Others have also tagged T. brucei RAP1 in bloodstream forms with HA without disrupting its nuclear localization (Yang et al. 2009, Cell; Afrin et al. 2020, Science Advances). As for the experiment suggested by the reviewer, there is no guarantee that cells lacking one allele of RAP1 will behave as wildtype, i.e., normal growth and repression of VSGs genes. Also, less than 90% of T. brucei TRF was reported to interact with RAP1 (Yang et al. 2009, Cell), which might be indirect via their binding to telomeric DNA repeats rather than direct protein-protein interactions.
2) Touray et al. expressed and purified His6-tagged recombinant RAP1 fragments from E. coli and used these recombinant proteins for EMSA analysis: The His6 tag has been used for purifying various recombinant proteins. It is most likely that the His6 tag itself does not convey any DNA binding activities. However, using His6-tagged RAP1 fragments for EMSA analysis has a serious concern. It has been shown that His6-tagged human RAP1 protein can bind dsDNA, but hRAP1 without the His6 tag does not. It is possible that RAP1 proteins in combination with the His6 tag can exhibit certain unnatural DNA binding activities. To be rigorous, the authors need to remove the His6 tag from their recombinant proteins before the in vitro DNA binding analyses are performed. This is a standard procedure for many in vitro assays using recombinant proteins.
We show in Fig 3C-G that His-tagged full-length rRAP1 does not bind to scrambled telomeric dsDNA sequences, which indicates that His-tagged rRAP1 does not bind unspecifically to DNA. Moreover, in Fig 3G, we show that His-tagged rRAP11-300 also does not bind to 70 bp or telomeric repeats. In contrast, full-length His-tagged rRAP1, rRAP1301-560, or rRAP1561-855 bind to 70 bp or telomeric repeats (Fig 3C-G). Since all proteins were His-tagged, the His tag cannot be responsible for the DNA binding.
As for the statement that human rRAP1-His has unspecific DNA binding properties, we could not find a reference to this statement; we cannot compare it without knowing the details of the experiment. Biochemical assays can result in unspecific binding depending on binding/buffer conditions. Also, humans and T. brucei RAP1 share only 15% of amino acid identity; unspecific binding to DNA could be specific to human RAP1.
3) It is unclear why Nanopore sequencing was used for RNAseq and ChIPseq experiments. The greatest benefit of Nanopore sequencing is that it can sequence long reads, which usually helps with mapping, particularly at genome loci with repetitive sequences. This seems beneficial for RAP1 ChIPseq analysis as RAP1 is expected to bind telomere repeats. However, for ChIPseq, the chromatin needs to be fragmented. Larger DNA fragments from ChIPseq experiments will decrease the accuracy of the final calculated binding sites. Therefore, ChIPseq experiments are not supposed to have long reads to start with, so Nanopore sequencing does not seem to bring any advantage. In addition, compared to Illumina sequencing, Nanopore sequencing usually yields smaller numbers of reads, and the sequencing accuracy rate is lower. The Nanopore sequencing accuracy may be a serious concern in the current study. All telomeres have the perfect TTAGGG repeats, all VSG genes have a very similar 3’ UTR, and all 70 bp repeats have very similar sequences. In fact, the active and silent ESs have 90% sequence identity. Are sequence reads accurately mapped to different ESs? How is the sequencing and mapping quality controlled? Furthermore, it is unclear whether the read depth for RNAseq is deep enough.
The mean sequence length for the ChIP-seq was about 500 bp (see Table S3), which helps to align reads to ESs and distinguish the different ESs, and it is a reasonable size range to define RAP1 binding sites. Although sequencing depths are usually higher in Illumina than in nanopore (all depending on the amount of sequencing), most Illumina short reads map to multiple genomic sequences, making it difficult to distinguish ESs. This is particularly important for RAP1 because it binds to repeats such as 70 bp and telomeric repeats. Mapping short reads to those regions would be virtually impossible; hence, our choice of nanopore sequencing. For RNA-seq, the ~500 bp read length help sequence alignment to the subtelomeric regions containing many VSG genes. The nanopore reads obtained here had an average sequencing score 12 (i.e., base call accuracy of 94%). Filtering reads with MAPQ ≥ 20 (99% probability of correct alignment) helped us to distinguish RAP1 binding to specific ESs, including silent vs active ES (ChIP-seq) or VSG sequences (RNA-seq). The details of the analysis and sequencing metrics (i.e., sequencing depth and read length) were described in the Methods section “Computational analysis of RNA-seq and ChIP-seq” and Table S3, respectively.
4) Many statements in the discussion section are speculations without any solid evidence. For example, lines 218 - 219 “likely due to RAP1 conformational changes”, no data have been shown to support this at all. In lines 224-226, the authors acknowledged that more experiments are necessary to validate their observations, so it is important for the authors to first validate their findings before they draw any solid conclusions. Importantly, RAP1 has been shown to help compact telomeric and subtelomeric chromatin a long time ago by Pandya et al. (2013. NAR 41:7673), who actually examined the chromatin structure by MNase digestion and FAIRE. The authors should acknowledge previous findings. In addition, the authors need to revise the discussion to clearly indicate what they “speculate” rather than make statements as if it is a solid conclusion.
The statement “likely due to RAP1 conformational changes” in lines 218-219 (page 6) is part of the Discussion. We did not make a strong statement but discussed a possibility. We believe that it is beneficial to the reader to have the data discussed, and we do not feel this point is overly speculative.
For lines 224-226 (page 6), the statement refers to the finding of RAP1 binding to centromeric regions by ChIP-seq, which is a new finding but not the focus of this work. Hence, future studies are necessary for this finding, and we believe it is appropriate in the Discussion to be upfront and highlight this point to the readers. However, for the RAP1 binding to telomeric ES sites, e.g., 70 bp repeats and telomeric repeats (the focus of this work), we validated the binding by EMSA and by performing binding kinetics using microscale thermophoresis.
We did not include Pandya et al. 2013 NAR because the authors demonstrated RAP1 compaction of chromatin to occur in procyclic forms only. Pandya et al. stated in their abstract: “no significant chromatin structure changes were detected on depletion of TbRAP1 in BF cells”. Hence, the suggested reference is not relevant to the context of our conclusions in bloodstream forms. Nevertheless, we have reviewed the Discussion to avoid broad speculations in the revised version of the manuscript.
There are also minor concerns:
1) In the PIP5Pase conditional knockout system, the WT or mutant PIP5Pase with a V5 tag is constitutively expressed from the tubulin array. What’s the relative expression level of this allele and the endogenous PIP5Pase? Without a clear knowledge of the mutant expression level, it is hard to conclude whether the mutant has any dominant negative effects or whether the mutant phenotype is simply due to a lower than WT PIP5pase expression level.
The relative mRNA levels of the exclusive expression of PIP5Pase Mut compared to the WT is available in the Data S1, RNA-seq. The Mut allele’s relative expression level is 0.85-fold to the WT allele (both from tubulin loci). We also showed by Western blot the WT and Mut PIP5Pase protein expression (Cestari et al. 2019, Mol Cell Biol). Concerning PIP5Pase endogenous alleles, we compared RNA-seq reads counts per million from the conditional null PIP5Pase cells exclusively expressing WT or the Mut PIP5Pase alleles (Data S1, this work) to our previous RNA-seq of single-marker 427 strain (Cestari et al. 2019, Mol Cell Biol). We used the single-maker 427 because the conditional null cells were generated in this strain background. The PIP5Pase WT and Mut mRNAs expressed from tubulin loci are 1.6 and 1.3-fold the endogenous PIP5Pase levels in single-marker 427, respectively. We include a statement in the Methods, page 7, lines 265-268: “The WT or Mut PIP5Pase mRNAs exclusively expressed from tubulin loci are 1.6 and 1.3-fold the WT PIP5Pase mRNA levels expressed from endogenous alleles in the single marker 427 strain. The fold-changes were calculated from RNA-seq reads counts per million from this work (WT and Mut PIP5Pase, Data S1) and our previous RNA-seq from single marker 427 strain (24).”
2) In EMSA analysis, what are the concentrations of the protein and the probe used in each reaction? The amount of protein used in the binding assay appears to be very high, and this can contribute to the observation that many complexes are stuck in the well. Better quality EMSA data need to be shown to support the authors’ claims.
All concentrations were provided in the Methods section. See page 9 Electrophoretic mobility shift assays: “100 nM of annealed DNA were mixed with 1 μg of recombinant protein…”. For microscale thermophoresis, also see page 9, Microscale thermophoresis binding kinetics: “1 μM rRAP1 was diluted in 16 two-fold serial dilutions in 250 mM HEPES pH 7.4, 25 mM MgCl2, 500 mM NaCl, and 0.25% (v/v) N P-40 and incubated with 20 nM telomeric or 70 bp repeats…”. Note that two different biochemical approaches, EMSA and microscale thermophoresis, were used to assess rRAP1-His binding to DNA. Both show similar results (Fig 3 and 5, and Fig S5; microscale thermophoresis shows the binding kinetics, data available in Table 1). The EMSA images clearly show the binding of RAP1 to 70 bp or telomeric repeats but not to scramble telomeric repeat DNA.
Reviewer #2 (Public Review):
This manuscript by Touray, et al. provides a significant new twist to our understanding of how antigenic variation may be regulated in T. brucei. Key aspects of antigenic variation are the mutually exclusive expression of a single antigen per cell and the periodic switching from expression of one antigen isoform to another. In this manuscript, the authors show, as they have previously shown, that depletion of the nuclear phosphatidylinositol 5-phosphatase (PIP5Pase) results in a loss of mutually exclusive VSG expression. Furthermore, using ChIP-seq, the authors show that the repressor/activator protein 1 (RAP1) binds to regions upstream and downstream of VSG genes located in transcriptionally repressed expression sites and that this binding is lost in the absence of a functional PIP5Pase. Importantly, the authors decided to further investigate this link between PIP5Pase and RAP1, a protein that has previously been implicated in antigenic variation in T. brucei, and found that inactivation of PIP5Pase results in the accumulation of PI(3,4,5)P3 bound to the RAP1 N-terminus and that this binding impairs the ability of RAP1 to bind DNA. Based on these observations, the authors suggest that the levels of PI(3,4,5)P3 may determine the cellular function of RAP1, either by binding upstream of VSG genes and repressing their function, or by not binding DNA and allowing the simultaneous expression of multiple VSG genes in a single parasite.
While I find most of the data presented in this manuscript compelling, there are aspects of Figure 1 that are not clear to me. Based on Figure 1F, the authors claim that transient inactivation of PIP5Pase results in a switch from the expression of one VSG isoform to another. However, I am not exactly sure what the authors are showing in this panel, nor do the data in Figure 1F seem to be consistent with those shown in Figure 1C. Based on Figure 1F, a transient inactivation of PIP5Pase appears to result in an almost exclusive switch to a VSG located in BES12. However, based on Figure 1E, the VSG transcripts most commonly found after a transient inactivation of PIP5Pase are those from the previously active VSG (BES1) and VSGs located on chr 1 and 6 (I believe). The small font and the low resolution make it impossible to infer the location of the expressed VSG genes, nor to confirm that ALL VSG genes located in expression sites are activated, as the authors claim. Also, I was not able to access the raw ChIP-seq and RNA-seq reads. Thus, could not evaluate the quality of the sequencing data.
We appreciate the reviewer’s comments and evaluation of our work. Fig 1E shows VSG-seq of a population after transient (24h) exclusive expression of the PIP5Pase mutant, followed by re-expression of the WT PIP5Pase allele for 60 hours (multiple VSGs are detected). As a control, it also shows VSG-seq in cells continuously expressing WT PIP5Pase (mostly VSG2, BES1 is detected). Fig 1F and Fig S1 show the sequencing of VSGs expressed by clones isolated (5-6 days of growth) after a temporary knockdown (24h) of PIP5Pase (tet -), followed by its re-expression. For comparison, no knockdown (tet +) was included. Fig 1F shows potential switchers in the population, the Fig 1E confirms VSG switching in clones.
To clarify the difference between Fig 1E and 1F, we edited the manuscript on page 3, lines 103-110: “To verify PIP5Pase role in VSG switching, we knocked down PIP5Pase for 24h (Tet -), then restored its expression (Tet +) and isolated clones by limiting dilution and growth for 5-6 days. Analysis of isolated clones after temporary PIP5Pase knockdown (Tet -/+) confirmed VSG switching in 93 out of 94 (99%) of the analyzed clones (Fig 1F, Fig S1). The cells switched to express VSGs from silent ESs or subtelomeric regions, indicating switching by transcription or recombination mechanisms. Moreover, no switching was detected in 118 isolated clones from cells continuously expressing WT PIP5Pase (Tet +, Fig 1F).”. We also edited Fig 1F to indicate temporary knockdown (Tet -/+) vs no knockdown (Tet -). The modifications will be available in the resubmitted version of the manuscript.
We agree that the heat map is difficult to read due to the amount of information. We will include in the revised version of the manuscript a table with the data in the supplementary information; the reader will be able to evaluate the data in detail.
A preference for switching to specific ESs has been observed in T. brucei (Morrison et al. 2005, Int J Parasitol; Cestari and Stuart, 2015, PNAS), which may explain several clones switching to BES12. Many potential switchers were detected in the VSG-seq (Fig 1F, the whole cell population is over 107 parasites), but not all potential switchers were detected in the clonal analysis because we analyzed 212 clones total, a fraction of the over 107 cells analyzed by VSG-seq (Fig 1E). Also, it is possible that not all potential switchers are viable. However, the point of the clonal analysis is to validate the VSG switching after genetic perturbation of PIP5Pase.
Fig 1C shows examples of ES derepression by RNA-seq after 24h exclusive expression of the mutant compared to WT PIP5Pase. The RNA-seq shows that all ESs are derepressed (Fig 1B). This can be visualized in the volcano plot (Fig 1B, BES and MES VSGs are labelled) and on the spreadsheet Data S1. Although all ESs are derepressed after PIP5Pase mutant expression, not all ESs are selected during switching, as observed in Fig 1E-F. This agrees with our previous observations in switching assays with proteins that control VSG switching (Cestari and Stuart, 2015, PNAS).
As for metrics of sequencing and raw sequencing data. See Methods section, page 13, lines 483-485: “Sequencing information is available in Table S3 and fastq data is available in the Sequence Read Archive (SRA) with the BioProject identification PRJNA934938.” Table S3 has a summary of sequencing data. Metrics information such as sequencing quality and analysis can be found in the Methods section “Computational analysis of RNA-seq and ChIP-seq”. The latter includes information about nanopore reads, i.e., mean Q-score of 12.
Reviewer #3 (Public Review):
In this manuscript, Touray et al investigate the mechanisms by which PIP5Pase and RAP1 control VSG expression in T. brucei and demonstrate an important role for this enzyme in a signalling pathway that likely plays a role in antigenic variation in T. brucei.
The methods used in the study are rigorous and well-controlled. The authors convincingly demonstrate that RAP1 binds to PI(3,4,5)P3 through its N-terminus and that this binding regulates RAP1 binding to VSG expression sites, which in turn regulates VSG silencing. Overall their results support the conclusions made in the manuscript.
There are a few small caveats that are worth noting. First, the analysis of VSG derepression and switching in Figure 1 relies on a genome that does not contain minichromosomal (MC) VSG sequences. This means that MC VSGs could theoretically be misassigned as coming from another genomic location in the absence of an MC reference. As the origin of the VSGs in these clones isn’t a major point in the paper, I do not think this is a major concern, but I would not over-interpret the particular details of switching outcomes in these experiments.
The authors state that “our data imply that antigenic variation is not exclusively stochastic.” I am not sure this is true. While I also favor the idea that switching is not exclusively stochastic, evidence for a signaling pathway does not necessarily imply that antigenic variation is not stochastic. This pathway could be important solely for lifecycle-related control of VSG expression, rather than antigenic variation during infection. Nevertheless, these data are critical for establishing a potential pathway that could control antigenic variation and thus represent a fundamental discovery.
Another aspect of this work that is perhaps important, but not discussed much by the authors, is the fact that signalling is extremely poorly understood in T. brucei. In Figure 1B, the RNA-seq data show many genes upregulated after expression of the Mut PIP5Pase (not just VSGs). The authors rightly avoid claiming that this pathway is exclusive to VSGs, but I wonder if these data could provide insight into the other biological processes that might be controlled by this signaling pathway in T. brucei.
Overall, this is an excellent study that represents an important step forward in understanding how antigenic variation is controlled in T. brucei. The possibility that this process could be controlled via a signalling pathway has been speculated for a long time, and this study provides the first mechanistic evidence for that possibility.
We thank the reviewer for the evaluation of our work. We agree that it is difficult to ensure the origin of all VSG genes not having minichromosome sequences; hence we did not emphasize this point in the manuscript. We used the 427-2018 reference genome assembled by PacBio and Hi-C (Muller et al. 2018, Nature), which we believe is the best assembly for the 427 strain, especially related to the VSG genes.
We also agree that having signaling controlling switching in vitro does not mean the switching necessarily occurs by signaling in vivo. Nevertheless, stochastic switching is an accepted model; but it has not been proved, whereas we provide molecular evidence that signaling can cause switching. To express this reviewer’s suggestion, we edited the Discussion, page 7, line 250: from “our data imply that antigenic variation is not exclusively stochastic” to “our data suggest that antigenic variation is not exclusively stochastic”.
Most of the RNA-seq data were VSGs genes/pseudogenes. Other genes upregulated included retrotransposons and DNA/RNA processing enzymes such as endonucleases and polymerases. We included in the Results, page 3, line 100: “Other genes upregulated include primarily retrotransposons, endonucleases, and polymerase proteins.”.
-
Reviewer #1 (Public Review):
Trypanosoma brucei undergoes antigenic variation to evade the mammalian host's immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) have shown that PIP5Pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5Pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5Pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5Pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1-300, aa301-560, and aa 561-855). These fragments' DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5Pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulating the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author's hypothesis that this regulation is through an "allosteric switch". Therefore, the title should be revised.
There are serious concerns about many conclusions made by Touray et al., according to their experimental approaches:<br /> 1. The authors have been studying RAP1's chromatin association pattern by ChIPseq in cells expressing a C-terminal HA tagged RAP1. According to data from tryptag.org, RAP1 with an N-terminal or a C-terminal tag does not seem to have identical subcellular localization patterns, suggesting that adding tags at different positions of RAP1 may affect its function. It is therefore essential to validate that the C-terminally HA-tagged RAP1 still has its essential functions. However, this data is not available in the current study. RAP1 is essential. If RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. In addition, these cells should have the WT VSG expression pattern, and RAP1-HA should still interact with TRF. Without these validations, it is impossible to judge whether the ChIPseq data obtained on RAP1-HA reflect the true chromatin association profile of RAP1.
2. Touray et al. expressed and purified His6-tagged recombinant RAP1 fragments from E. coli and used these recombinant proteins for EMSA analysis: The His6 tag has been used for purifying various recombinant proteins. It is most likely that the His6 tag itself does not convey any DNA binding activities. However, using His6-tagged RAP1 fragments for EMSA analysis has a serious concern. It has been shown that His6-tagged human RAP1 protein can bind dsDNA, but hRAP1 without the His6 tag does not. It is possible that RAP1 proteins in combination with the His6 tag can exhibit certain unnatural DNA binding activities. To be rigorous, the authors need to remove the His6 tag from their recombinant proteins before the in vitro DNA binding analyses are performed. This is a standard procedure for many in vitro assays using recombinant proteins.
3. It is unclear why Nanopore sequencing was used for RNAseq and ChIPseq experiments. The greatest benefit of Nanopore sequencing is that it can sequence long reads, which usually helps with mapping, particularly at genome loci with repetitive sequences. This seems beneficial for RAP1 ChIPseq analysis as RAP1 is expected to bind telomere repeats. However, for ChIPseq, the chromatin needs to be fragmented. Larger DNA fragments from ChIPseq experiments will decrease the accuracy of the final calculated binding sites. Therefore, ChIPseq experiments are not supposed to have long reads to start with, so Nanopore sequencing does not seem to bring any advantage. In addition, compared to Illumina sequencing, Nanopore sequencing usually yields smaller numbers of reads, and the sequencing accuracy rate is lower. The Nanopore sequencing accuracy may be a serious concern in the current study. All telomeres have the perfect TTAGGG repeats, all VSG genes have a very similar 3' UTR, and all 70 bp repeats have very similar sequences. In fact, the active and silent ESs have 90% sequence identity. Are sequence reads accurately mapped to different ESs? How is the sequencing and mapping quality controlled? Furthermore, it is unclear whether the read depth for RNAseq is deep enough.
4. Many statements in the discussion section are speculations without any solid evidence. For example, lines 218 - 219 "likely due to RAP1 conformational changes", no data have been shown to support this at all. In lines 224-226, the authors acknowledged that more experiments are necessary to validate their observations, so it is important for the authors to first validate their findings before they draw any solid conclusions. Importantly, RAP1 has been shown to help compact telomeric and subtelomeric chromatin a long time ago by Pandya et al. (2013. NAR 41:7673), who actually examined the chromatin structure by MNase digestion and FAIRE. The authors should acknowledge previous findings. In addition, the authors need to revise the discussion to clearly indicate what they "speculate" rather than make statements as if it is a solid conclusion.
There are also minor concerns:
1. In the PIP5Pase conditional knockout system, the WT or mutant PIP5Pase with a V5 tag is constitutively expressed from the tubulin array. What's the relative expression level of this allele and the endogenous PIP5Pase? Without a clear knowledge of the mutant expression level, it is hard to conclude whether the mutant has any dominant negative effects or whether the mutant phenotype is simply due to a lower than WT PIP5pase expression level.
2. In EMSA analysis, what are the concentrations of the protein and the probe used in each reaction? The amount of protein used in the binding assay appears to be very high, and this can contribute to the observation that many complexes are stuck in the well. Better quality EMSA data need to be shown to support the authors' claims.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this paper, the authors developed an image analysis pipeline to automatically identify individual neurons within a population of fluorescently tagged neurons. This application is optimized to deal with multi-cell analysis and builds on a previous software version, developed by the same team, to resolve individual neurons from whole-brain imaging stacks. Using advanced statistical approaches and several heuristics tailored for C. elegans anatomy, the method successfully identifies individual neurons with a fairly high accuracy. Thus, while specific to C. elegans, this method can become instrumental for a variety of research directions such as in-vivo single-cell gene expression analysis and calcium-based neural activity studies.
The analysis procedure depends on the availability of an accurate atlas that serves as a reference map for neural positions. Thus, when imaging a new reporter line without fair prior knowledge of the tagged cells, such an atlas may be very difficult to construct. Moreover, usage of available reference atlases, constructed based on other databases, is not very helpful (as shown by the authors in Fig 3), so for each new reporter line a de-novo atlas needs to be constructed.
I have a few comments that may help to better understand the potential of the tool to become handy:
1) I wonder the degree by which strain mosaicism affects the analysis (Figs 1-4) as it was performed on a non-integrated reporter strain. As stated, for constructing the reference atlas, the authors used worms in which they could identify the complete set of tagged neurons. But how sensitive is the analysis when assaying worms with different levels of mosaicism? Are the results shown in the paper stem from animals with a full neural set expression? Could the authors add results for which the assayed worms show partial expression where only 80%, 70%, 50% of the cells population are observed, and how this will affect identification accuracy? This may be important as many non-integrated reporter lines show high mosaic patterns and may therefore not be suitable for using this analytic method. In that sense, could the authors describe the mosaic degree of their line used for validating the method.<br /> <br /> 2) For the gene expression analysis (Fig 5), where was the intensity of the GFP extracted from? As it has no nuclear tag, the protein should be cytoplasmic (as seen in Fig 5a), but in Fig 5c it is shown as if the region of interest to extract fluorescence was nuclear. If fluorescence was indeed extracted from the cytoplasm, then it will be helpful to include in the software and in the results description how this was done, as a huge hurdle in dissecting such multi-cell images is avoiding crossreads between adjacent/intersecting neurons.<br /> <br /> 3) In the same matter: In the methods, it is specified that the strain expressing GCAMP was also used in the gene expression analysis shown in Figure 5. But the calcium indicator may show transient intensities depending on spontaneous neural activity during the imaging. This will introduce a significant variability that may affect the expression correlation analysis as depicted in Figure 5.
-
-
www.theguardian.com www.theguardian.com
-
Die Beschlüsse der Konferenz der Welt-Schifffahrtsorganisation MPI zur Dekarbonisierung der Schifffahrt genügen nicht, um die Ziele des Pariser Abkommens zu erreichen. Man will die Emissionen bis 2030 um mindestens 20% reduzieren und „um 2050" emissionsfrei sein. Ein Beschluss zu einer Abgabe –zur Finanzierung der Dekarbonisierung armer Länder – wurde aufgeschoben.
Mehr zu der Konferenz zur Dekarbonisierung der Schifffahrt: https://hypothes.is/search?q=tag%3A%22event%3A%20MEPC%2080%22
-
-
www.nature.com www.nature.com
-
f Jurkat cells expressing PD-1 (myc tagged) and TIM-3 (3xFlag tagged) individually or together were incubated with or without 2 μg/ml exogenous Gal-9 followed by IP/western blotting with indicated antibodies.
For Figure 3 experiments, not only is there a TIM3-GAL9-PD-1 extracellular triplet interaction going on but they show in figure 3F that there may be something intracellular between TIM3 and PD-1 despite an absence of GAL9 since in figure 3F, the FLAG tag was only on TIM3 so if TIM3 didn't interact with PD-1 without GAL9's help, there would be no PD-1 bands in 4th lane in the top most blot since the IP is only targeting TIM3. Since PD-1 is interacting with TIM3 somehow, PD-1 is present regardless.
-
Lysates of Jurkat cells transduced with control lentivirus or PD-1 tagged at the C-terminus with 3× FLAG tag (PD-1.3F) were immunoprecipitated with anti-FLAG magnetic beads and the associated proteins were subjected to immunoblotting with Gal-9 or PD-1 antibodies. The three Gal-9 bands (L, M, S) represent different isoforms resulted from alternative pre-mRNA splicing.
Lysate (top blot) should have all the galectin in all cells (control and PD-1.3F) but the middle blot is only IP of the PD-1 protein so if galectin9 did not bind to PD-1 protein, then there should theoretically only be PD-1 protein in the sample aka the bottom blot. However, since galectin 9 does bind to PD-1, there is present galectin 9 per the middle blot in the PD-1.3F sample.
-
-
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
Summary:
The rupture of single membrane-bound autophagic bodies is essential to release and catabolize contents of autophagosomes deposited in the vacuole. The phospholipase Atg15 has been thought to play an important role in this process. This study establishes methods to analyze phospholipase activity in isolated Saccharomyces cerevisiae vacuoles and elucidates the mechanisms that activate Atg15. Using an elegant cell-free assay the authors demonstrate that vacuolar extracts can cleave phosphatidyl ethanolamine in an Atg15 and Pep4/Prb-dependent manner. Atg15 is cleaved in the presence of Pep4/Prb, likely causing the release of Atg15 cytosolic domain in the vacuole. An Atg15 construct lacking the transmembrane anchor retains its lipase activity and when artificially targeted to vacuole using CPY tag localizes to autophagic bodies. The authors also establish the minimum construct of Atg15 that is sufficient to execute lipase function. The authors then isolate Atg15 from vacuolar extracts using a FLAG tag-based pulldown and show that the FLAG eluate is sufficient to cleave a range of phospholipids. Finally, using a protease-protection assay the authors show that Atg15 isolated using FLAG resin can cause disruption of isolated autophagic bodies.
Major comments:
- Throughout the manuscript, TLC data and Ape1 maturation data are not quantified. The authors should include data on replicates and quantitation for all TLC and Ape1 processing data.
- The conclusion that Atg15 is the sole source of phospholipase activity is based on cleavage of NBD-PE alone. It is not clear why specifically PE was chosen to test lipase activity of Atg15. It is possible that Atg15 has a higher preference for PE as has been shown previously (Ramya and Rajsekaran 2016). Have the authors tested to see if other phospholipids can be cleaved by vacuolar lysates derived from Atg15 knockout cells? This should be investigated further before concluding that Atg15 is the sole source of all lipase activity in vacuolar extracts.
- Atg15 overexpressed and purified from Saccharomyces cerevisiae is shown to be sufficient to catalyze the cleavage of PE (among other phospholipids). How do the authors reconcile this finding with their observations on the requirement of Pep4 and Prb? This information should be included in the discussion.
- Regarding Figure 3 and movie EV3, especially the lower panel, the overlap of cherry-Atg8 (autophagic bodies) and CPY(1-50)-Atg15(DN35)-mNG is not very clear. There appear to be several CPY(1-50)-Atg15(DN35)-mNG rings that do not surround Atg8.
- a. Are these images from a single stack or represent the entire volume of the cell? This result could be better represented as a line profile and through a correlation analysis.
- b. The finding that CPY(1-50)-Atg15(DN35) binds autophagic bodies is interesting, but it should be demonstrated with native/wild type protein. This can be achieved by expressing lipase deficient Atg15-mNG in rapamycin-treated cells, which should have intact accumulated autophagic bodies.
- c. Atg15-mNG also localizes to a ring-like structure outside the vacuole. The authors should comment on the potential impact of this finding.
- The rationale for using detergent solubilized and FLAG-eluted Atg15 to test lipase activity with other phospholipids (LPC, PI, PC and PG) is not clear. Detergent solubilized and FLAG-eluted Atg15 is degraded (Figure4C). Does this mean that degraded forms of Atg15 exhibit broader lipase activity? The authors should test for breakdown of other phospholipids with whole vacuolar extracts or vacuolar pellet fraction that has intact membrane bound Atg15. If only degraded forms of Atg15 show broad phospholipid lipase activity, then this will be informative about regulation of Atg15 function.
- Figure6B: ProteinaseK is a broad-spectrum protease. It is unclear why it would specifically cleave GST-GFP and prApe1 to produce single bands (and not a smear) corresponding to free-GFP and dApe1. This result can be explained better.
Minor comments:
- Fig1E legend states, "Each vacuolar lysates were added at a volume ratio of 1:5:25". It's not clear what this means or what this ratio is for. In general figure legends need to be more descriptive on how the experiment was performed.
- It's not clear what processed Atg15 (pcrAtg15) refers to in Figure4C. Is it indicating the smear around the 75kDa band? This should be explained clearly in the figure legend and the results section.
Significance
The phospholipase Atg15 is known to play a crucial role in the degradation of autophagic bodies within the vacuole. However, the regulatory mechanisms that prevent detrimental lipase activity of Atg15 have remained unclear. This study shows that proteolytic processing and membrane binding could activate Atg15, thereby providing important insights into the mechanism of Atg15 regulation.<br /> Using isolated autophagic bodies and vacuolar extract, the results here show direct disruption of autophagic bodies by Atg15. The cell-free assay to assess lipase activity can be further utilized to analyze vacuolar function. These finding will be of interest to a audience interested in various forms of autophagy and vacuolar degradation.
-
-
www.reddit.com www.reddit.com
-
When I tag a note with a new keyword like [[Productivity]], it then becomes a ghost note on the graph.
This is the first time I've seen someone use the phrase "ghost note" to mean a future implied note which could be created by using wiki syntax [[*]] which in some systems like Obsidian or WikiMedia creates a (red) link which one could click on to create that note.
via u/THX-Eleven38 at https://www.reddit.com/r/Zettelkasten/comments/14ox2tw/what_is_the_proper_way_to_create_a_moc_note_from/
-
- Jun 2023
-
www.biorxiv.org www.biorxiv.org
-
Author Response:
Reviewer #1 (Public Review):
The study investigates the nature of "trailblazer" cells in distinct tumor models, including luminal B (MMTV/PyMT) and triple negative (TNBC) tumors (C3-TAg). The authors note that the trail-blazer phenotypes in the TNBC model are more complex relative to the Luminal B model and represent distinct EMT programs associated with the expression of distinct EMT-TFs (Zeb1, Zeb2 and Fra-1). They demonstrated that of numerous EMT-TFs, Zeb1 and Fra-1 were required for increased cancer cell migration and invasion. They reveal that TGF-beta and EGF-mediated signaling are required for the diverse EMT states that are required for trailblazer cell activity and increased cell migration/invasion. TGF-beta signaling engaged Zeb 1 and Zeb2 while EGF sig-naling activated Fra-1. Indeed, inhibitors of either TGF-beta or EGF signaling could impair cell migration/invasion. While both pathways contributed to trailblazer phenotypes, EGF signaling was shown to interfere with certain TGF-beta induced transcriptional response, including the ex-pression of genes encoding extracellular matrix proteins.
One concern was the heavy reliance of the C3-TAg as the sole TNBC model in which the dis-tinct trailblazer phenotypes were described. The data in Fig. 3 of the submission reveals that the phenotypes observed in the C3-TAg model could be recapitulated in a TNBC patient-derived xenograft model (PDX). Using this PDX, the authors were able to show vimentin expression in lung metastatic TNBC cells that were intravascular, those that had extravasated and clusters of cancer cells fully within the lung parenchyma. This was an important addition to the manuscript. The additional experiments to investigate the role of Zeb1 and Zeb1 more fully, beyond the focus on Fra-1 in the initial submission was an additional strength of the new submission. Additional clarifications to the discussion also clarified the concepts articulated in the study. The study em-ploys multiple breast cancer models, utilizes numerous in vitro and in vivo assessments of the trailblazer phenotypes, and the experimental design is rigorous and the interpretation of the data is sound. The manuscript will be of general interest to the research community.
Thank you for the supportive comments. We are glad that the revisions addressed your prior concerns.
Reviewer #2 (Public Review):
This represents an important study that demonstrates a high degree of heterogeneity within trailblazer cells in clusters that participate in collective migration. Solid methods highlight this het-erogeneity and show that in TNBC cancers, trailblazer cells are defined by vimentin (and not Keratin 14) and are dependent on both TGFbeta and EGFR signaling. Additional, single cell stud-ies would further support this work.
Thank you for the suggestion. Our current data establishes that trailblazer cells are heterogene-ous using FACS, immunostaining and functional studies of fresh tumor organoids and estab-lished tumor organoid lines. In addition, our RNA-seq experiments provided deep insight into the nature of gene expression changes that corresponded with the evolution of new trailblazer states. This discovery of trailblazer cell heterogeneity was one of multiple key new discoveries in this manuscript, along with revealing a Krt14-independent invasion mechanism, the regulation of trailblazer cells by Tgfβ and Egfr signaling and a new compromise mode of signal integration. We agree that our results support further investigation of the nature and function of basal-like breast cancer heterogeneity during the progression to metastasis. However, a comprehensive implementation of scRNA-seq is mostly likely required to further unravel new aspects of hetero-geneity that substantially advance upon the conclusions supported by our current data. Such an undertaking is beyond the scope of this investigation.
We agree that scRNA-seq would be confirmatory of trailblazer cell heterogeneity that has been demonstrated with multiple approaches rather than a new discovery of heterogeneity.
Strengths:
The paper highlights that collective migration, and the nature of trailblazer cells can be highly heterogeneous. This is important as it suggests that the ability to move between states may su-persede a singular phenotype.
The paper uses animal models and organoids and in several areas attempts to correlate find-ings to human tissues.
The experiments are logically described.
Reviewer #3 (Public Review):
Cancer is a disease of many faces and in particular, the ability of cancers cells to change their phenotypes and cell behaviors - cancer cell plasticity - is a major contributor to cancer lethality and therapeutic challenge of treating this disease. In this study, Nasir, Pearson et al., investigate tumor cell plasticity through the lens of invasive heterogeneity, and in particular in models of tri-ple-negative breast cancer (TNBC), a subtype of breast cancer with particularly poor clinical prognosis and more limited treatment modalities. Using organoid models in a variety of matrix systems, microscopy, and signaling pathway inhibitors, they find that invading TNBC breast tu-mors, primarily in the C31-Tag genetically engineered mouse model of TNBC, are composed of heterogeneous invasive/"trailblazer" type tumor cells that in many cases express vimentin, a classical intermediate filament marker of epithelial-mesenchymal transition, and reduced keratin-14, another filament marker of basal epithelial cells associated with collective invasion in differ-ent breast cancer models. Supportive genetic and pharmacologic evidence is provided that gen-eration of these cells is TGF-beta signaling pathway driven, likely in vivo from the surrounding tumor microenvironment, in accord with published studies in this space. Another important as-pect of this study is the good transcriptional evidence for multiple migratory states showing dif-fering degrees of partial overlap with canonical EMT programs, dependent on TGF-beta, and suggestive but at present incomplete understanding of a parallel program involving Egfr/Fra-1 mediated effects on invasion. When taken in context with other recent studies (Grasset et al. Science Translational Medicine 2022), these data are broadly supportive of concept of targeting vimentin-dependent invasion programs in TNBC tumors.
The core conclusions of this paper are generally supported by the data, but there are some conceptual and technical considerations that should be taken into account when interpreting this study. Specific comments:
1) The contribution of the different vimentin-positive trailblazer cells to distant metastasis was not directly confirmed in vivo in this study. Given the limited proliferative potential of many fully EMT'd cells and in light of recent studies indicating that invasion can be uncoupled from meta-static potential, it seems important to directly test whether the different C31-tag isolates, varying in invasive potential in this study, produce metastases and if so do metastases abundance corre-late with the invasive potential in 3D culture. The collection of lungs at 34 days post injection de-scribed in methods is too short to evaluate metastatic frequency.
We agree that it is important to determine the contribution of trailblazer cells towards metastatic dissemination. In this manuscript, we show that Vimentin expressing cells in a triple negative breast cancer (TNBC) PDX model disseminate to the lungs (Figure 3F). We have also shown that Vimentin expressing SUM159 breast cancer (BC) trailblazer cells spontaneously metasta-size to the lungs in previous publications (Fig. 2–figure supplement 1C) and (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Maine et al, Oncotarget, 2016, 10.18632/oncotarget.7408). Notably, the depletion of genes specifically expressed in trailblazer cells reduced spontaneous metastasis without significantly impinging on primary tumor growth (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Maine et al, Oncotarget, 2016, 10.18632/oncotarget.7408). Our new results in Figure 5D show that Tgfβ activates genes that define the trailblazer state in the metastatic SUM159 trailblazer cell model. Thus, features of the Tgfβ regulated trailblazer program in the C3-TAg cells is active in the SUM159 trailblazer model of spontaneous metastasis. In addition, commonly employed BC cell line metastasis models, such as MDAMB231 derivatives are highly mesenchymal (Fig. 2–figure supplement 1C) and (Kang et al, Cell, 2003, 10.1016/S1535-6108(03)00132-6 and Minn et al, Nature, 2005, 10.1038/nature03799, as examples).
It is not technically feasible to establish a correlation between the relative invasion of The C3-TAg GEMM primary tumors and spontaneous metastasis. C3-TAg GEMM primary tumors de-velop rapidly and the mice must be euthanized prior to the detection of metastasis. This limitation of the model is mentioned in the Results section “Trailblazer cells are specified by Vimentin ex-pression in basal-like breast cancer patient tumors”. The aggressive primary tumor growth and limited spontaneous metastasis of the the C3-TAg model has also been previously reported by others (Green et al, Oncogene, 2000, 10.1038/sj.onc.1203280). Surgical resection of the original primary tumor is not feasible option to allow metastases to form since additional tumors develop in multiple mammary glands.
In response to reviewer requests, we initiated the growth of orthotopic primary tumors from con-trol or Tgfβ treated 1339-org cells to address the relationship between induction of the trailblazer state and primary tumor cell dissemination. We had to euthanize the mice at day 34 (d34) be-cause tumors within both cohorts had reached the maximum permitted diameter of 2 cm. This will be indicated in the Methods section with revised text. We detected CTCs from the mice bearing control and Tgfβ treated 1339-org cell tumors. However, no micrometastases were de-tected, which is indicated in the text describing Figure 4–figure supplement 3A-B. Thus, per-forming surgical resection in new experiments would not be expected to allow the later detection of metastasis, as there did not appear to be DTCs in the lungs that could initiate colonization. In addition, we would have to resect the tumors prior to d34 to successfully and humanely remove the primary tumors, further reducing the odds of metastases developing. We will continue our work to identify an experimental balance that permits sufficient primary tumor growth to initiate spontaneous metastasis. However, the time scale of resolving this technical challenge is uncer-tain and we believe that our published analysis of trailblazer cell metastasis and new findings here showing the dissemination of Vimentin expressing cells in a PDX model addresses the question of whether Vimentin expressing trailblazer cells metastasize.
We agree that certain cell states induced by EMT programs can limit the proliferative potential of tumor cells. As described in the Introduction, we previously found that the induction of a trailblaz-er state in a subset of breast cancer cell line models triggers a collateral cost in fitness that limits the ability of trailblazer cells to initiate tumor growth (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). The traits that distinguish trailblazer cells which are capable of tumor initiation and metastasis versus trailblazer cells with reduced fitness have begun to be delineated. Our prior report suggested that cells that were dependent on p63 for growth lost their proliferative capacity when converting to a trailblazer state (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). C3-TAg cells are not dependent on p63 for growth, which is indicated by the vast majority of the tumor cells lacking p63 expression in primary tumors and primary tumor organoids (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014), similar to the metastatic SUM159 breast cancer cell line model. We were also able to derive clonal trailblazer cell lines that lacked detectable p63 expression from a C3-TAg tumor (Figure 2—figure supplement 1B) and grow organoids even when the limited extent of p63 expression was further reduced by Tgfβ (Figure 5C). Additionally, the persistent Tgfβ treated 1339-org cells, which were enriched for trailblazer cells and had reduced p63 expression, were capable of initiating primary tumor growth (Figure 4F). Together, these results indicate that C3-TAg trail-blazer cells are capable of initiating metastatic colonization. However, given the heterogeneity in trailblazer states that we discovered, it is possible that a subset of trailblazer cell states have re-duced proliferative capacity. Our analysis approach in this manuscript would not necessarily de-tect these low fitness trailblazer cells if they were a relatively small fraction of the total trailblazer population. We will clarify this point in the Discussion section in the revised manuscript. Our re-sults have begun to reveal mechanisms for the transcriptional regulation of trailblazer cell heter-ogeneity. We plan to continue delineating the regulatory programs conferring specific transcrip-tion state, defining approaches for the prospective isolation of distinct trailblazer subpopulations and determining trailblazer subpopulation specific biomarkers to understand the specific contri-bution of distinct trailblazer subpopulations towards metastasis. Given the scope of this analysis, it is not feasible to incorporate these future studies into this manuscript.
2) The invasion of cancer cells is dependent on 3D matrix composition. In other studies, collec-tive cancer invasion is performed in exclusively collagen type 1 gels or in other instances entirely in 3D reconstituted basement membrane gel, e.g. lung cancer invasion studies. In this study, the authors use a mixture composed of both matrices. Given the invasion suppressive effects of matrigel, particularly for epithelial type cells, further studies would be important to determine whether the invasion phenotypes seen in this study are generalizable across matrix environ-ments.
The invasion of C3-TAg and PyMT organoids embedded in a 100% pure reconstituted base-ment is shown in Fig. 1–figure supplement 1G. We will emphasize that trailblazer invasion was evaluated in multiple ECM compositions with revised text and figure graphic. We also provide images for the reviewer showing that C3-TAg organoids collectively invade in a pure Collagen I ECM. Importantly, these findings are consistent with our results showing that Vimentin express-ing cells are associated with basal-like mammary tumor cell invasion in the complex ECM of C3-TAg GEMM primary tumors (Figure 2G) and patient primary tumors (Figure 3D). Moreover, Vimentin expressing cells disseminated to the lungs in the TNBC PDX that we evaluated (Figure 3F).
The ECM composition selected for experiments is dictated by the experimental question(s) being addressed. It is unlikely that mammary tumor cells would only ever collectively invade through an ECM that is either pure Collagen I or pure reconstituted basement membrane (BM). Indeed, it has been proposed that mixtures of Collagen I and BM proteins best reconstitute the complexity of primary tumor ECM (Hooper et al, Methods Enzymol, 2006, 10.1016/S0076-6879(06)06049-6). In line this observation, mixtures of Collagen I and BM proteins have been routinely used for the past 20 years to define mechanisms of 3D invasion; Xiang and Muthuswamy, Methods En-zymol, 2006, 10.1016/S0076-6879(06)06054-X; Calvo et al, Nat Cell Biol, 2013 10.1038/ncb2756; and Kato et al, eLife, 2023, 10.7554/eLife.76520, as examples).
Consistent with the known complexity of the ECM in the tumor microenvironment (TME), we detect Collagen I and Collagen IV (a key component of experimental BM) in the TME of primary breast cancer tumor models (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). Important-ly, we have found that a mixture of collagen I and experimentally derived BM proteins reliably reveals breast cancer trailblazer cell invasion mechanisms that promote the malignant progres-sion and metastasis of primary tumors and whose expression correlates with poor patient out-come (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767 and Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014, as examples). Notably, the relative differences in trail-blazer and opportunist cell invasive phenotypes are not dictated by the ECM composition used in our 3D assays. We have previously tested the invasion of trailblazer and opportunist subpopula-tions in different ECM compositions using both spheroid vertical invasion assays (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). Increasing collagen I concentration enhanced the rela-tive rate of trailblazer cell invasion, with trailblazer cells always showing a significantly enhanced invasion relative to opportunist cells.
The relationship between trailblazer and opportunist cells that we have detected in primary tu-mors is recapitulated when using mixtures of Collagen I and BM proteins in our past publications and in this manuscript. The clonal opportunist cell lines derived from a C3-TAg tumor expressed high levels of the transcription factor p63 (Figure 2–figure supplement 1A-B). We previously showed that p63 restricts induction of a trailblazer state in human breast cancer trailblazer cell lines (Westcott et al, Cancer Res, 2020, 10.1158/0008-5472.CAN-20-0014). Notably, we showed that p63 expressing C3-TAg cells were not able to initiate collective invasion in the same ECM composition used in our current manuscript. Moreover, p63 cells in primary C3-TAg tumors were noninvasive opportunist cells that were limited to trailing p63-low trailblazer cells when collective-ly invading in primary tumors and in organoids (Westcott et al, Cancer Res, 2020). We now show that p63 expressing opportunist cell lines are limited to invading behind primary C3-TAg trailblazer cells and trailblazer cell lines in our 3D invasion assays (Figure 1B and Figure 1–figure supplement 1D-E). Together, these results indicate that the ECM employed in our 3D assays reveals the mechanistic underpinnings of both trailblazer and opportunist cell invasion in primary tumors.
With respect to lung cancer invasion, leader cells that we would classify as trailblazer cells have been isolated from 2 non-small cell lung cancer cell line spheroid models grown in pure reconsti-tuted BM extract (Konen et al, Nat Comm, 2017, 10.1038/ncomms15078). However, it unclear whether these cell line derived NSCLC trailblazer cells are more intrinsically invasive than non-trailblazer siblings in primary NCSCLC tumors or if the traits associated cell line NSCLC trail-blazer cells are required for metastasis. These tests have never been reported to the best of our knowledge. Similarly, it is not clear whether these NSCLC cell line derived trailblazer cells reflect features of primary NSLC primary tumor cells, as we are unaware of any such comparisons be-ing reported. Thus, there is no reason to consider pure reconstituted BM to be an equivalent or preferred experimental option to define trailblazer cell features. Nevertheless, as we mentioned before, our discovery approach identifies trailblazer cells that are intrinsically more invasive than opportunist siblings across multiple ECM conditions, including pure reconstituted BM and, im-portantly, in primary tumors.
3) TGF-beta is well known to induce EMT. Although this study identifies potential transcriptional mediators of the invasion/trailblazer program, is this program reversible?
We have previously shown the breast cancer trailblazer cells can convert to an opportunist state, demonstrating that trailblazer states are reversible (Westcott et al, J Clin Invest, 2015, 10.1172/JCI77767). In this manuscript. we show that C3-TAg organoid lines derived in the Tgfbr1 inhibitor A83-01 have few if any cells with a trailblazer phenotype relative to C3-TAg pri-mary tumors, suggesting a reversion of the trailblazer state (Fig. 4C and Figure 4–figure sup-plement 2A-C). However, our results do not entirely rule out the possibility that only non-trailblazer cells grew to establish the organoid lines. Indeed, the problem of tracing phenotypic conversions when evaluating heterogeneous populations is a systemic challenge that extends beyond our analysis of trailblazer cells. Clearly defining the conversion rates for trailblazer cells will require multiple genetic markers to distinguish the different trailblazer states we have now identified, in addition to phenotypic and molecular analysis over multiple days, or possibly weeks. Thus, further definition of the rate of reversion of different trailblazer cells is worthy line of future investigation rather than a feasible objective of this study.
-
Reviewer #1 (Public Review):
The study investigates the nature of "trailblazer" cells in distinct tumor models, including luminal B (MMTV/PyMT) and triple negative (TNBC) tumors (C3-TAg). The authors note that the trailblazer phenotypes in the TNBC model are more complex relative to the Luminal B model and represent distinct EMT programs associated with the expression of distinct EMT-TFs (Zeb1, Zeb2 and Fra-1). They demonstrated that of numerous EMT-TFs, Zeb1 and Fra-1 were required for increased cancer cell migration and invasion. They reveal that TGF-beta and EGF-mediated signaling are required for the diverse EMT states that are required for trailblazer cell activity and increased cell migration/invasion. TGF-beta signaling engaged Zeb 1 and Zeb2 while EGF signaling activated Fra-1. Indeed, inhibitors of either TGF-beta or EGF signaling could impair cell migration/invasion. While both pathways contributed to trailblazer phenotypes, EGF signaling was shown to interfere with certain TGF-beta induced transcriptional response, including the expression of genes encoding extracellular matrix proteins.
One concern was the heavy reliance of the C3-TAg as the sole TNBC model in which the distinct trailblazer phenotypes were described. The data in Fig. 3 of the submission reveals that the phenotypes observed in the C3-TAg model could be recapitulated in a TNBC patient-derived xenograft model (PDX). Using this PDX, the authors were able to show vimentin expression in lung metastatic TNBC cells that were intravascular, those that had extravasated and clusters of cancer cells fully within the lung parenchyma. This was an important addition to the manuscript. The additional experiments to investigate the role of Zeb1 and Zeb1 more fully, beyond the focus on Fra-1 in the initial submission was an additional strength of the new submission. Additional clarifications to the discussion also clarified the concepts articulated in the study. The study employs multiple breast cancer models, utilizes numerous in vitro and in vivo assessments of the trailblazer phenotypes, and the experimental design is rigorous and the interpretation of the data is sound. The manuscript will be of general interest to the research community.
-
Reviewer #3 (Public Review):
Cancer is a disease of many faces and in particular, the ability of cancers cells to change their phenotypes and cell behaviors - cancer cell plasticity - is a major contributor to cancer lethality and therapeutic challenge of treating this disease. In this study, Nasir, Pearson et al., investigate tumor cell plasticity through the lens of invasive heterogeneity, and in particular in models of triple-negative breast cancer (TNBC), a subtype of breast cancer with particularly poor clinical prognosis and more limited treatment modalities. Using organoid models in a variety of matrix systems, microscopy, and signaling pathway inhibitors, they find that invading TNBC breast tumors, primarily in the C31-Tag genetically engineered mouse model of TNBC, are composed of heterogeneous invasive/"trailblazer" type tumor cells that in many cases express vimentin, a classical intermediate filament marker of epithelial-mesenchymal transition, and reduced keratin-14, another filament marker of basal epithelial cells associated with collective invasion in different breast cancer models. Supportive genetic and pharmacologic evidence is provided that generation of these cells is TGF-beta signaling pathway driven, likely in vivo from the surrounding tumor microenvironment, in accord with published studies in this space. Another important aspect of this study is the good transcriptional evidence for multiple migratory states showing differing degrees of partial overlap with canonical EMT programs, dependent on TGF-beta, and suggestive but at present incomplete understanding of a parallel program involving Egfr/Fra-1 mediated effects on invasion. When taken in context with other recent studies (Grasset et al. Science Translational Medicine 2022), these data are broadly supportive of concept of targeting vimentin-dependent invasion programs in TNBC tumors.
The core conclusions of this paper are generally supported by the data, but there are some conceptual and technical considerations that should be taken into account when interpreting this study. Specific comments:
1) The contribution of the different vimentin-positive trailblazer cells to distant metastasis was not directly confirmed in vivo in this study. Given the limited proliferative potential of many fully EMT'd cells and in light of recent studies indicating that invasion can be uncoupled from metastatic potential, it seems important to directly test whether the different C31-tag isolates, varying in invasive potential in this study, produce metastases and if so do metastases abundance correlate with the invasive potential in 3D culture. The collection of lungs at 34 days post injection described in methods is too short to evaluate metastatic frequency.
2) The invasion of cancer cells is dependent on 3D matrix composition. In other studies, collective cancer invasion is performed in exclusively collagen type 1 gels or in other instances entirely in 3D reconstituted basement membrane gel, e.g. lung cancer invasion studies. In this study, the authors use a mixture composed of both matrices. Given the invasion suppressive effects of matrigel, particularly for epithelial type cells, further studies would be important to determine whether the invasion phenotypes seen in this study are generalizable across matrix environments.
3) TGF-beta is well known to induce EMT. Although this study identifies potential transcriptional mediators of the invasion/trailblazer program, is this program reversible?
-
-
dragon.tce.woa.com dragon.tce.woa.com升级模板-新建1
-
数据Tag的含义
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
__Reviewer 1____: __
1-Localization of ESYT1 and SYNJ2BP
The claim of a localization at ER-mitochondria contacts relies on two type of assays. Light microscopy and subcellular fractionation. Concerning microscopy, while the staining pattern is obviously colocalizing with the ER (a control of specificity of staining using KO cells would nevertheless be desirable)
the idea that ESYT1 foci "partially colocalized with mitochondria" is either trivial or unfounded
Every cellular structure is "partially colocalized with mitochondria" simply by chance at the resolution of light microscopy
If the meaning of the experiment is to show that ESYT1 'specifically' colocalizes with mitochondria, then this isn't shown by the data
There is no quantification that the level of colocalization is more than expected by chance
nor that it is higher than that of any other ER protein
Moreover, the author's model implies that ESYT1 partial colocalization with mitochondria is, at least partially, due to its interaction with SYNJ2BP. This is not tested.
- To analyze and measure MERCs parameters and functions, we used a set of validated methods described in the following specialized review articles (Eisenberg-Bord, Shai et al. 2016, Scorrano, De Matteis et al. 2019).
- To support and confirm the localization of ESYT1-SYNJ2BP complex at MERCs, we performed supplementary BioID analysis using ER target BirA*, OMM targeted BirA* and ER-mitochondria tether BirA* (Table S1, Figure S1 and Figure 1 A and B). These results confirmed the specificity of the interaction of the 2 partners. ESYT1 is not identified as a prey in OMM BioID and SYNJ2BP is not identified in ER BioID, on the other hand both partners are identified in the ER-mitochondria tether BioID.
- To improve our description of the partial localization of ESYT1 at mitochondria, we performed a quantitative analysis using confocal microscopy on control human fibroblasts stably overexpressing SEC61B-mCherry as an ER marker which were labelled with ESYT1 and TOMM40 for mitochondria. We measured the % of ESYT1 signal colocalizing with mitochondria and the % of mitochondria positive for ESYT1 (Figure 1E).
-
To demonstrate than ESYT1 partial colocalization with mitochondria is, at least partially, due to its interaction with SYNJ2BP, we performed a quantitative analysis using confocal microscopy. Human control fibroblasts, KO SYNJ2BP fibroblasts and SYNJ2BP overexpressing fibroblasts were labelled with ESYT1, TOMM40 for mitochondria and CANX for ER. We measured the % of ESYT1 signal colocalizing with mitochondria in each condition (Figure 3C). Membranes (MAM) can be purified and are enriched for proteins that localize at ER-mitochondria contacts. This idea originated in the early 90's and since then, myriad of papers has been using MAM purification, and whole MAM proteomes have been determined. Yet the evidence that MAM-enriched proteins represent bona fide ER-mitochondria-contact-enriched proteins (as can nowadays be determined by microscopy techniques) remain scarce. Here, anyway, ESYT1 fractionation pattern is identical to that of PDI, a marker of general ER, with no indication of specific MAM accumulation.
-
To highlight the enrichment of ESYT1 in the MAM fraction, we quantified the ESYT1 signal in each fraction. Those results show a similar fractionation pattern than the MAM resident protein SIGMAR1 (Figure 1F). For SYNJ2BP, it is different as it is more enriched in the MAM than the general mitochondrial marker PRDX3. However, PRDX3 is a matrix protein, making it a poor comparison point, since SYNJ2BP is an OMM protein.
-
To confirm the partial enrichment of SYNJ2BP in the MAM fraction compared to another outer mitochondrial membrane protein, we added the signal of the well characterized OMM protein CARD19 (Rios, Zhou et al. 2022). Again, the model implies that ESYT1 and SYNJ2BP accumulation in the MAM should be dependent on each other. This is not tested.
-
As describe above, we demonstrated in Figure 3C than the accumulation of ESYT1 at mitochondria is, at least partially, dependent on the quantity of SYNJ2BP.
- We moreover showed a reciprocal effect in Figure 3E. A quantitative analysis using confocal microscopy demonstrated that the effect of SYNJ2BP overexpression on MERCs formation is partially dependent of the presence of ESYT1. 2-ESYT1-SYNJ2BP interaction.
The starting point of the paper is a BioID signal for SYNJ2BP when BioID is fused to ESYT1. One confirmation of the interaction comes in figure 4, using blue native gel electrophoresis and assessing comigration. Because BioID is promiscuous and comigration can be spurious, better evidence is needed to make this claim. This is exemplified by the fact that, although SYNJ2BP is found in a complex comigrating with RRBP1, according to the BN gel, this slow migrating complex isn't disturbed by RRBP1 knockdown, but is somewhat disturbed by ESYT1 knockdown. More than a change in abundance, a change in migration velocity when either protein is absent would be evidence that these comigrating bands represent the same complex.
- We showed in Figure 4C that the presence of SYNJ2BP in a complex of a similar molecular weight that ESYT1 (410KDa) is totally dependent of the presence of ESYT1, suggesting an interaction of the 2 proteins.
-
To confirm this interaction, in figure 4A we analyzed on BN cells overexpressing SYNJ2BP together with a 3xFlag tagged version of ESYT1. As a result of the addition of the Flag tag, the complex positive for ESYT1 shifted to a higher molecular weight. The complex positive for SYNJ2BP shifted to a similar the molecular weight, demonstrating the interaction and dependence of the 2 partners. ESYT1-SYNJ2BP interaction needs to be tested by coimmunoprecipitation of endogenous proteins, yeast-2-hybrid, in vitro reconstitution or any other confirmatory methods.
-
To confirm the interaction of the 2 partners, we performed co-immunoprecipitation of the ESYT1-3xFlag protein that we showed in Figure 1H to form complexes similar to the endogenous protein. SYNJ2BP is found as the strongest prey, followed by ESYT2 and SEC22B two described interactors of ESYT1, confirming the quality of the analysis (Table S2) (Giordano, Saheki et al. 2013, Gallo, Danglot et al. 2020). 3-Tethering by ESYT1- SYNJ2BP.
This is assessed by light and electron microscopy. Absence of ESYT1 decreases several metrics for ER-mitochondria contacts (whether absence of SYNJ2BP has the same effect isn't tested).
- Using PLA (proximity ligation assay) we demonstrated that the loss of SYNJ2BP leads to a decrease in MERCs (Figure 7 H and I), confirming previous studies (Ilacqua, Anastasia et al. 2022, Pourshafie, Masati et al. 2022). This interesting phenomenon could be due to many things, including but not limited to the possibility that "ESYT1 tethers ER to mitochondria".
This statement and the respective subheading title are therefore clearly overreaching and should be either supported by evidence or removed.
Indeed, absence of ESYT1 ER-PM tethering and lipid exchange could have knock-on effects on ER-mito contacts, therefore strong statements aren't supported.
Moreover, the effect on ER-mitochondria contact metrics could be due to changes in ER-mitochondria contact indeed but may also reflect changes in ER and/or mitochondria abundance and/or distribution, which favour or disfavour their encounter. Abundance and distribution of both organelles are not controlled for.
-
The mitochondrial phenotypes caused by the loss of ESYT1 are all rescued by the introduction of an artificial mitochondrial-ER tether, demonstrating that they are due to loss of the tethering function of ESYT1. Finally, the authors repeat a finding that SYNJ2BP overexpression induces artificial ER-mitochondria tethering. Again, according to the model, this should be, at least in part, due to interaction with ESYT1. Whether ESYT1 is required for this tethering enhancement isn't tested.
-
As described above, we demonstrated in Figure 3C that the accumulation of ESYT1 at mitochondria is, at least partially, dependent on the quantity of SYNJ2BP.
- We moreover showed a reciprocal effect in Figure 3F. A quantitative analysis using confocal microscopy demonstrated that the effect of SYNJ2BP overexpression on MERC formation is partially dependent of the presence of ESYT1. 4-Phenotypes of ESYT1/SYNJ2BP KD or KO.
The study goes in details to show that downregulation of either protein yields physiological phenotypes consistent with decreased ER-mitochondria tethering. These phenotypes include calcium import into mitochondria and mitochondrial lipid composition.
Figure 5 shows that histamine-evoked ER-calcium release cause an increase in mitochondrial calcium, and this increase is reduced in absence of ESYT1, without detectable change in the abundance of the main known players of this calcium import. This is rescued by an artificial ER-mitochondria tether. However, Figure 5D shows that the increase in calcium concentration in the cytosol upon histamine-evoked ER calcium release is equally impaired by ESYT1 deletion, contrary to expectation. Indeed, if the impairment of mitochondrial calcium import was due to improper ER-mitochondria tethering in ESYT1 mutant cells, one would expect more calcium to leak into the cytosol, not less.
The remaining explanation is that ESYT1 knockout desensitizes the cells to histamine, by affecting GPCR signalling at the PM, something unexplored here.
In any case, a decreased calcium discharge by the ER upon histamine treatment, explains the decreased uptake by mitochondria.
The authors argue that ER calcium release is unaffected by ESYT1 KO, but crucially use thapsigargin instead of histamine to show it. Thus, the most likely interpretation of the data is that ESYT1 KO affects histamine signalling and histamine-evoked calcium release upstream of ER-mitochondria contacts.
- Silencing ESYT1 impairs SOCE efficiency in Jurkat cells (Woo, Sun et al. 2020), but not in HeLa cells (Giordano, Saheki et al. 2013, Woo, Sun et al. 2020). Analysis of the role of ESYT1 in HeLa cells prevents confounding effects due to the loss of ESYT1 at ER-PM. In this model, knock-down of ESYT1 led to a decrease of mitochondrial Ca2+ uptake from the ER upon histamine stimulation, as monitored by genetically encoded Ca2+ indicator targeted to mitochondrial matrix (Figure 5A and B). ESYT1 silencing in HeLa cells did not impact ER Ca2+ store measured by the ER-targeted R-GECO Ca2+ probe (Figure 5C and D). The expression of the artificial mitochondria-ER tether was able to rescue mitochondrial Ca2+ defects observed in ESYT1 silenced cells (Figure 5B), confirming that the observed anomalies are specifically due to MERC defects.
- In contrast loss of ESYT1 impaired SOCE efficiency in fibroblasts (Figure 6 A and B). This phenotype was fully rescued by re-expression of ESYT1-Myc but not the artificial tether. We therefore investigated the influence of ESYT1 loss on cytosolic Ca2+ concentration following ATP (Figure 6F to H) or histamine stimulation (Figure S3 D to F), both of which showed a reduced cytosolic Ca2+ concentration and uptake in ESYT1 KO cells. This phenotype was fully rescued by the re-expression of ESYT1-Myc but not the artificial tether. Measurment of cytosolic Ca2+ after tharpsigargin treatment in Ca2+-fee media, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase SERCA that blocks Ca2+ pumping into the ER, showed that ESYT1 KO does not influence the total ER Ca2+ pool (Figure 6K and L). However, ER-Ca2+ release capacity upon histamine stimulation (Figure 6I and J) is decreased in ESYT1 KO cells. This phenotype was fully rescued by the re-expression of ESYT1-Myc but not the artificial tether. Loss of ESYT1 decreased the Ca2+ uptake capacities of mitochondria after activation with histamine (Figure S3 A to C) or ATP (Figure 6 C to E). This phenotype was rescued by re-expression of ESYT1-Myc and also the engineered ER-mitochondria tether. Thus, despite the ER-Ca2+ release defect observed after ESYT1 loss, the artificial tether fully rescued the mitochondrial phenotype.
-
These results highlight the distinct and dual roles of ESYT1 in Ca2+ regulation at the ER-PM and at MERCs. The data with SYNJ2BP deletion are more compatible with decreased ER-mito contacts, as no decreased in cytosolic calcium is observed. This is compatible with the previously proposed role of SYNJ2BP in ER-mitochondria tethering, but the difference with ESYT1 rather argue that both proteins affect calcium signaling by different means, meaning they act in different pathways.
-
We explain the different results concerning cytosolic calcium by the fact that ESYT1 is a bi-localized protein with dual functions on cellular calcium. Implicated both in SOCE at ER-PM and in mitochondrial calcium uptake at MERCs. On the other hand, SYNJ2BP is only present at MERCs and its loss do not influence PM-ER signaling or ER-Ca2+ release. Finally, the study delves into mitochondrial lipids to "investigated the role of the SMP-domain containing protein ESYT1 in lipid transfer from ER to mitochondria". In reality, it is not ER-mitochondria lipid transport that is under scrutiny, but general lipid homeostasis, and changes in ER-PM lipids could have knock-on effects on mitochondrial lipids without the need to invoke disruptions in ER-mitochondria transfer activity.
-
The fact that the artificial tether, which specifically rescue MERCs, fully rescue the lipid phenotype argue for a direct loss of MERCs tethering function when ESYT1 is missing. The changes observed are interesting but could be due to anything. Surprisingly, PCA analysis shows that the rescue of the knockout by the ESYT1 gene clusters with the rescue by the artificial tether, and not with the wildtype. This indicates that overexpressing either ESYT1 or a tether cause similar lipidomic changes. These could be due, for instance, to ER stress caused by protein overexpression, and not to a rescue.
-
In order to verify if the overexpression of ESYT1 or the artificial tether induces ER stress, we performed a WB analysis to compare markers of ER stress in control fibroblasts, KO ESYT1 fibroblasts, KO ESYT1 fibroblasts overexpressing ESYT1-Myc or the tether (Figure S4C). This showed no changes in the levels of several different markers of ER stress or cell death. __Reviewer 2____: __
1) the interaction between those proteins is direct,
2) if SYNJ2BP is necessary and sufficient to localize E-Syt1 at MERC, and
3) if MERCs extension induced by SYNJ2BP is dependent on E-Syt1.
Those points are important to investigate because SYNJ2BP has already been shown to induce MERCs by interacting with the ER protein RRBP1. In addition, some experiments need to be better quantified.
Major comments: E-syt1/SYNJ2BP in MERCs formation: the authors provide several convincing lines of evidence that both proteins are in the same complex (proximity labelling, localization in the same complex in BN-PAGE, localization in MAM) but it is not clear in which extent the direct interaction between both proteins regulates ER-mitochondria tethering. 1- Pull down experiments or BiFC strategy could be performed to show the direct interaction between both proteins.
- We showed in Figure 4C that the presence of SYNJ2BP in a complex of a similar molecular weight to that ESYT1 (410KDa) is totally dependent of the presence of ESYT1, suggesting an interaction of the 2 proteins.
- To confirm this interaction, in figure 4A we analyzed on BN cells overexpressing SYNJ2BP together with a 3xFlag tagged version of ESYT1. As a result of the addition of the Flag tag, the complex positive for ESYT1 shifted to a higher molecular weight. Significantly, the complex positive for SYNJ2BP shifted to a similar the molecular weight, demonstrating the interaction and dependence of the 2 protein partners.
-
To confirm the interaction of the 2 partners, we performed co-immunoprecipitation of the ESYT1-3xFlag protein (Table S2). SYNJ2BP was found as the strongest prey, followed by ESYT2 and SEC22B two described interactors of ESYT1, confirming the quality of the analysis (Giordano, Saheki et al. 2013, Gallo, Danglot et al. 2020). 2- SYNJ2BP OE has already been demonstrated to increase MERCs and this being dependent on the ER binding partners RRBP1 (10.7554/eLife.24463). Therefore, it would be of interest to perform OE of SYNJ2BP in KO Esyt1 to address the question of whether ESyt1 is also required to increase MERCs.
-
A quantitative analysis using confocal microscopy demonstrated that the effect of SYNJ2BP overexpression on MERCs formation is partially dependent of the presence of ESYT1 (Figure 3F). 3- The authors show that Esyt1 punctate size increases when SYNJ2BP is OE (Fig3C), but this can be indirectly linked to the increase of MERCs in the OE line. Thus, it could be interesting to test if the number/shape of E-syt1 punctate located close to mitochondria decreases in KO SYNJ2B. This could really show the dependence of SYNJ2BP for E-syt1 function at MERCs.
-
To improve our description of the partial localization of ESYT1 at mitochondria, we performed a quantitative analysis using confocal microscopy on control human fibroblasts stably overexpressing SEC61B-mCherry as an ER marker which were labelled with ESYT1 and TOMM40 for mitochondria. We measured the % of ESYT1 signal colocalizing with mitochondria and the % of mitochondria colocalizing with ESYT1 (Figure 1E).
-
To demonstrate than ESYT1 partial colocalization with mitochondria is, at least partially, due to its interaction with SYNJ2BP, we performed a quantitative analysis using confocal microscopy. Human control fibroblasts, KO SYNJ2BP fibroblasts and SYNJ2BP overexpressing fibroblasts were labelled with ESYT1, TOMM40 for mitochondria and CANX for ER. We measured the % of ESYT1 signal colocalizing with mitochondria in each condition (Figure 3C). Lipid analyses: the results of MS on isolated mitochondria clearly show that mitochondrial lipid homeostasis is affected on KO-Syt1 and rescued by expression of Syt1-Myc and artificial mitochondria-ER tether. However, p.15, the authors wrote "The loss of ESYT1 resulted in a decrease of the three main mitochondrial lipid categories CL, PE and PI, which was accompanied by an increase in PC ». As the results are expressed in mol%, this interpretation can be distorted by the fact that mathematically, if the content of one lipid decreases, the content of others will increase. I would suggest to express the results in lipid quantity (nmol)/mg of mitochondria proteins instead of mol%. This will clarify the role of E-Syt1 on mitochondrial lipid homeostasis and which lipid increase and decrease.
-
We changed the sentence in the text as suggested. Also it could be of high interest to have the lipid composition of the whole cells to reinforce the direct involvement of E-Syt1 in mitochondrial lipid homeostasis and verify that the disruption of mitochondrial lipid homeostasis is not linked to a general perturbation of lipid metabolism as this protein acts at different MCSs.
-
This is beyond the scope of the project and we would argue that the results of such an experiment would be difficult to interpret. To better understand the impact of Esyt1 of mitochondria morphology, the author could analyze the mitochondria morphology (size, shape, cristae) on their EM images of crt, KO and OE lines. Indeed, on OE (Fig3A), the mitochondria look bigger and with a different shape compared to crt.
-
As we do not observe obvious differences in mitochondrial morphology between control, KO and OE fibroblasts we do not think that quantitative analysis would add to the understanding of the effect of ESYT1 on mitochondrial function. Also, they performed a lot of BN-PAGE. Is it possible to check whether the mitochondrial respiratory chain super-complexes are affected on Esyt1 KO line compared to crt?
-
We decided to remove the data on the metabolic consequences of ESYT1 loss since it was too preliminary and required deeper investigations, focusing instead on the effect of ESYT1 loss on calcium homeostasis. Quantifications: some western blots needs to be quantified (Fig 5K, 6J, S3E);
-
We did not observe obvious differences in the protein levels so we think that quantitation would not add significantly to the understanding of the differences in calcium dynamics that we report. Fig1A: Can the author provide a higher magnification of the triple labeling and perform quantification about the proportion of E-Syt1 punctate located close to mitochondria?
-
We added higher magnification of the same area in all channels and arrows that point to the foci of ESYT1 colocalizing with both ER and mitochondria (Figure 1D).
-
To improve our description of the partial localization of ESYT1 at mitochondria, we performed a quantitative analysis using confocal microscopy on control human fibroblasts stably overexpressing SEC61B-mCherry as an ER marker which were labelled with ESYT1 and TOMM40 for mitochondria. We measured the % of ESYT1 signal colocalizing with mitochondria and the % of mitochondria colocalizing with ESYT1 (Figure 1E). Minor comments:
-
Fig1E + text: according to the legend, the BN-PAGE has been performed on Heavy membrane fraction. Why the authors speak about complexes at MAM in the text of the corresponding figure? Is-it the MAM or the heavy fraction (MAM + mito + ER...)? If BN have been performed from heavy membranes, it is not a real proof that E-syt1 is in MAMs.
-
Heavy membranes have been used in this experiment. The text and conclusions have been changed accordingly.
-
On fig3C (panel crt): it seems like SYNJ2BP dots are not co-localizaed with mito. Is this protein targeted to another organelle beside mitochondria?
-
It is not described that SYNJ2BP would be targeted to another organelle beside mitochondria. It is possible that those dots outside of mitochondria could be non-specific signals from the antibody we used.
-
Fig4A: can the author provide a control of protein loading (membrane staining as example) to confirm the decrease of E-Syt1 in siSYNJ2BP?
-
As we performed this experiment only once we have removed the statement suggesting a decrease in ESYT1 protein in response to the siSYNJ2BP.
-
Fig5E/F: it is not clear to me why the expression of E-Syt1 in the KO is not able to complement the KO phenotype for cytosolic Ca++. Can the authors comment this?
-
We performed further analysis using ATP to trigger calcium release from the ER (figure 6 F to H). In those conditions, expression of ESYT1 in the KO is able to complement the KO phenotype for cytosolic Ca2+. __Reviewer 3____: __
Main points 1. Confirming the MERC localization of ESYT1 should include some more of tethering factors as demonstrated interactors (some are mentioned above) and should not be limited to lipid homeostasis.
- As shown in Figure 1B, VAPB, PDZD8 and BCAP31 are found as preys in the ESYT1 bioID analysis. Those proteins have been described as MERC tethers, their loss leading to mitochondrial calcium defects. To support and confirm the specificity of ESYT1-SYNJ2BP complex at MERCs, we performed a supplementary BioID analysis using ER targeted BirA* and OMM targeted BirA* (Table S1, Figure S1 and Figure 1 A and B). These results confirmed the specificity of the interaction of the 2 partners. ESYT1 is not identified as a prey in OMM BioID and SYNJ2BP is not identified in ER BioID. Additional ER-mitochondria tether BirA* analyses showed that tether-BirA* identified both ESYT1 and SYNJ2BP as a prey at MERCs, confirming the localisation of this interaction. Interestingly, a large majority of the known MERCs tethers VAPB-PTPIP51, MFN2, ITPRs, BCAP31 are also found as preys in the tether-BirA* (Figure 1B), confirming the quality of these data.
- To confirm the interaction of the 2 partners, we performed co-immunoprecipitation of the ESYT1-3xFlag protein. SYNJ2BP is found as the strongest prey, followed by ESYT2 and SEC22B two described interactors of ESYT1, confirming the quality of the analysis (Table S2) (Giordano, Saheki et al. 2013, Gallo, Danglot et al. 2020).
The fact that in ESYT1 KO cells both mitochondrial calcium transfer and cytosolic calcium accumulation are accompanied by decreased ER-cepia1ER signal decay upon histamine addition suggest that the main reason for ER-mitochondria calcium transfer defects are due to impaired SOCE. Calcium-free medium and histamine are used to show that ESYT1 does not affect ER calcium content. However, if it affects SOCE, then the absence of extracellular calcium would abolish such an effect; moreover, histamine does not test for leak effects. As additional information, the authors should investigate whether ER calcium content is affected by the presence of extracellular calcium in the ko scenario using thapsigargin. The authors should inhibit SOCE to test whether this mechanism is affected in ESYT1 KO and could account for observed signal differences. Excluding SOCE is critical, since any change in calcium entry from the outside would potentially negate a role of ESYT1 in mitochondrial calcium uptake.
- Silencing ESYT1 impairs SOCE efficiency in Jurkat cells (Woo, Sun et al. 2020), but not in HeLa cells (Giordano, Saheki et al. 2013, Woo, Sun et al. 2020). Analysis of the role of ESYT1 in HeLa cells prevents confounding effects due to the loss of ESYT1 at ER-PM. In this model, knock-down of ESYT1 led to a decrease of mitochondrial Ca2+ uptake from the ER upon histamine stimulation, as monitored by genetically encoded Ca2+ indicator targeted to mitochondrial matrix (Figure 5A and B). ESYT1 silencing in HeLa cells did not impact ER Ca2+ store measured by the ER-targeted R-GECO Ca2+ probe (Figure 5C and D). The expression of the artificial mitochondria-ER tether was able to rescue mitochondrial Ca2+ defects observed in ESYT1 silenced cells (Figure 5B), confirming that the observed anomalies are specifically due to MERC defects.
- In contrast loss of ESYT1 impaired SOCE efficiency in fibroblasts (Figure 6 A and B). This phenotype was fully rescued by re-expression of ESYT1-Myc but not the artificial tether. We therefore investigated the influence of ESYT1 loss on cytosolic Ca2+ concentration following ATP (Figure 6F to H) or histamine stimulation (Figure S3 D to F), both of which showed a reduced cytosolic Ca2+ concentration and uptake in ESYT1 KO cells. This phenotype was fully rescued by the re-expression of ESYT1-Myc but not the artificial tether. Measurment of cytosolic Ca2+ after tharpsigargin treatment in Ca2+-fee media, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase SERCA that blocks Ca2+ pumping into the ER, showed that ESYT1 KO does not influence the total ER Ca2+ pool (Figure 6K and L). However, ER-Ca2+ release capacity upon histamine stimulation (Figure 6I and J) is decreased in ESYT1 KO cells. This phenotype was fully rescued by the re-expression of ESYT1-Myc but not the artificial tether. Loss of ESYT1 decreased the Ca2+ uptake capacities of mitochondria after activation with histamine (Figure S3 A to C) or ATP (Figure 6 C to E). This phenotype was rescued by re-expression of ESYT1-Myc and also the engineered ER-mitochondria tether. Thus, despite the ER-Ca2+ release defect observed after ESYT1 loss, the artificial tether fully rescued the mitochondrial phenotype.
- These results highlight the distinct and dual roles of ESYT1 in Ca2+ regulation at the ER-PM and at MERCs.
The authors claim that ER-Geco measurements show that no change of ER calcium was observed. However, they use thapsigargin treatment and then get a peak, when the signal should show a decrease due to leak. This suggests they did not use ER-Geco in Figure S3C. What was measured and what does it mean?
- We used R-GECO (not ER-GECO) which measures the cytosolic calcium.
- We measured total ER Ca2+ store using the cytosolic-targeted R-GECO Ca2+ probe upon thapsigarin treatment, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase SERCA that blocks Ca2+ pumping into the ER (Figure 5C and D) and observed no difference in our different conditions.
The findings on growth in galactose medium are intriguing but are not accompanied by respirometry to confirm mitochondria are compromised upon ESYT1 KO.
- We decided to remove the data on the metabolic consequences of ESYT1 loss since it was to preliminary and required deeper investigations, focusing instead on the effect of ESYT1 loss on calcium homeostasis
Minor points: 1. The authors mention they measure mitochondrial uptake of "exogenous" calcium by applying histamine. They should specify that these measures transferred calcium from the ER rather than uptake of calcium from the exterior (directly at the plasma membrane).
-
The text was clarified as suggested.
-
Expression levels of IP3Rs are not very indicative of any change of their activity. The authors should discuss how ESYT1 could affect their PTMs.
- A large numer of post translational modifications are known to regulate IP3R activity (Hamada and Mikoshiba 2020), and it is possible that the loss of ESYT1 could interfere with these modifications, but an exploration of this issue is beyond the scope of this study. The text was clarified as suggested. Eisenberg-Bord, M., N. Shai, M. Schuldiner and M. Bohnert (2016). "A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites." Dev Cell 39(4): 395-409.
Gallo, A., L. Danglot, F. Giordano, B. Hewlett, T. Binz, C. Vannier and T. Galli (2020). "Role of the Sec22b-E-Syt complex in neurite growth and ramification." J Cell Sci 133(18).
Giordano, F., Y. Saheki, O. Idevall-Hagren, S. F. Colombo, M. Pirruccello, I. Milosevic, E. O. Gracheva, S. N. Bagriantsev, N. Borgese and P. De Camilli (2013). "PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins." Cell 153(7): 1494-1509.
Hamada, K. and K. Mikoshiba (2020). "IP(3) Receptor Plasticity Underlying Diverse Functions." Annu Rev Physiol 82: 151-176.
Ilacqua, N., I. Anastasia, D. Aloshyn, R. Ghandehari-Alavijeh, E. A. Peluso, M. C. Brearley-Sholto, L. V. Pellegrini, A. Raimondi, T. Q. de Aguiar Vallim and L. Pellegrini (2022). "Expression of Synj2bp in mouse liver regulates the extent of wrappER-mitochondria contact to maintain hepatic lipid homeostasis." Biol Direct 17(1): 37.
Pourshafie, N., E. Masati, A. Lopez, E. Bunker, A. Snyder, N. A. Edwards, A. M. Winkelsas, K. H. Fischbeck and C. Grunseich (2022). "Altered SYNJ2BP-mediated mitochondrial-ER contacts in motor neuron disease." Neurobiol Dis: 105832.
Rios, K. E., M. Zhou, N. M. Lott, C. R. Beauregard, D. P. McDaniel, T. P. Conrads and B. C. Schaefer (2022). "CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology." Cells 11(7).
Scorrano, L., M. A. De Matteis, S. Emr, F. Giordano, G. Hajnoczky, B. Kornmann, L. L. Lackner, T. P. Levine, L. Pellegrini, K. Reinisch, R. Rizzuto, T. Simmen, H. Stenmark, C. Ungermann and M. Schuldiner (2019). "Coming together to define membrane contact sites." Nat Commun 10(1): 1287.
Woo, J. S., Z. Sun, S. Srikanth and Y. Gwack (2020). "The short isoform of extended synaptotagmin-2 controls Ca(2+) dynamics in T cells via interaction with STIM1." Sci Rep 10(1): 14433.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
We are grateful to both reviewers for reviewing our manuscript, and for providing very helpful feedback as to how we can improve this work. We have now implemented nearly all of the changes as recommended, and provide responses to these points below.
In terms of novelty, while recent pre-prints and publications have suggested that the application of multi-omics analysis improves GRN inference, there has yet to be a systematic comparison of linear and non-linear machine learning methods for GRN prediction from single cell multi-omic data. here are many computational and statistical challenges to such a study, and we therefore believe that others in the field will be especially interested in our systematic comparison of network inference methods, especially given the increased interest and utility of multi-omic data.
In addition, we report the first comprehensive inference of GRNs in early human embryo development. This is a particularly challenging to study developmental context given genetic variation, limitations of sample size due to the precious nature of the material and regulatory constraints. We anticipate that the methodology we developed and datasets we generated will be informative for computational, developmental and stem cell biologists.
We have uploaded all the network predictions on FigShare and these can be accessed using the following link: https://doi.org/10.6084/m9.figshare.21968813. In addition, we anticipate that the computational and statistical codes and pipelines we developed (available on https://github.com/galanisl/early_hs_embryo_GRNs) will be applied to other cellular and developmental contexts, especially in challenging contexts such as human development, non-typical model organisms and in clinically relevant samples.
Reviewer 1
Major comments
- The proposed strategy (i.e. combining gene expression-based regulatory inference with cis-*regulatory evidence) have been well developed (and implemented) by multiple published works like SCENIC and CellOracle, which is also properly acknowledged by the authors in the discussion section too. This leads to a serious concern on the major methodological contribution of this work. *
We would like to note that our study is the first to comprehensively evaluate machine learning linear or non-linear gene regulatory network prediction strategies from single-cell transcriptional datasets combined with available multi-omic data. We also apply these methods to a challenging to study context of human early embryogenesis. There are specific methodological challenges arising in this context that other published work has not yet addressed. In particular, the precious nature of the source material means that sample sizes are limited, unlike the contexts where SCENIC and CellOracle were applied. Notably, the numbers of cells available for downstream analysis is typically several orders of magnitude fewer than when scRNA-seq data are collected from adult human tissue or from cell culture. This restriction on sample sizes places corresponding restrictions on statistical power, and is therefore likely to mean that different statistical network inference methodologies are optimal in specific contexts. Furthermore, the inclusion of multi-omic data from complementary platforms (such as ATAC-seq data) becomes even more important in this context to mitigate the effect of reduced sample sizes. These issues are very important for choice of gene regulatory network inference methodology in relation to studies of human embryo development, and ours is the first study to address these issues directly in any context. We have further clarified the novelty of our work in the manuscript in the abstract, introduction and discussion sections.
- Most of the compared network reconstruction methods involve hyper-parameters setup (e.g., *sparsity regularization weights of the regression methods). The authors did not discuss how these hyper-parameters were chosen. *
For sparse regression, the hyperparameter controlling sparsity was set by cross-validation (CV), using the internal CV function of the R package. All default settings for GENIE3 were used. This information has now been added to the manuscript (in the Methods section), along with a description of the implementation of the mutual information method we use.
- For the real-world blastocyst data, the network prediction methods were compared in terms of their reproducibility across validation folds (Fig. 3, Fig. S4-6). However, reproducibility does not necessarily imply accuracy. In fact, statistical learning methods are generally subject to the bias-variance tradeoff, where lower variance (i.e., higher reproducibility) could imply higher bias in model prediction. While there is a lack of gold-standard ground truth to evaluate network accuracy in real biological systems, silver-standards like the ranking of known regulatory interactions in the predictions could be employed as an indirect estimate.
We thank the reviewer for the opportunity to clarify this point. We would like to avoid any misunderstanding of the reproducibility statistic R, as follows. A higher value of R indicates that the fitted model would generalise well to new data; i.e., R=1 indicates that the model is robust (stable) to perturbations of the data-set. We note that this is not the same as analysing the residual variance of the data after model fitting and related over-fitting (i.e., bias-variance trade-off). The variance that is referred to when discussing bias-variance trade-off is the mean-squared error (of data compared to model), which is not the same as what is assessed by reproducibility statistic R . Specifically, R is a Bayesian estimate of the posterior probability of observing a gene regulation given the data. R is calculated by taking a random sample of the data, doing the network inference again, checking if each gene regulation still appears in the GRN, and then recording (as the R statistic) the average fraction of inclusions over many repetitions. So when we have R close to 1, this indicates that our model predictions generalise well to new data, which is the opposite of what is suggested in this comment. In summary, the accuracy quantified by the reproducibility statistic R relates to the stability of the model predictions to perturbation of the data. We thank the reviewer for the helpful comment to draw our attention to this point, and have now clarified this point in the manuscript on page 6 line 252.
- The gene set enrichment results were reported only on EPI and TE cell types (Fig. 4C and Fig. *S12), due to the reason that CA data is only available for TE and ICM. However, many of the other results presented in Fig. 3-6 did include the PE cell type albeit using the same CA data. It is not particularly convincing why the cell type inclusion standard for gene set enrichment is different from the other results. *
We thank the reviewer for noting this and would like to clarify that we restricted the analysis to the EPI and TE, because similar lists of gene-sets were not available for primitive endoderm, where it is currently unclear which pathways are most relevant to this cell type. This has now been clarified in the manuscript on page 8, line 337.
- The authors cited TF binding in cis-regulatory regions as supporting evidence of several MICA-inferred regulatory interactions (e.g., NANOG -> ZNF343). However, the same cis-regulatory *evidence has already been used in the CA filtering step. All interactions passing CA filtering should in principle have TF-binding support. It would be more convincing if the authors provided other types of evidence as independent support, such as genetic associations like eQTL, experimental perturbations like gene knockdown/knockout, etc. *
We appreciate the reviewer’s point. We address this by describing published ChIP-seq validation in human pluripotent stem cells which is widely used as a proxy for the study of the epiblast. We feel that the ChIP-seq validation in this context is an appropriate independent validation to support the MICA-inferred cis regulatory interactions predicted from the human embryo datasets we analysed. Our inferences from ATAC-seq data cannot identify TF-DNA binding directly. ChIP-seq data is a widely accepted independent methods to support the inferred interactions from ATAC-seq data.
We agree that knockdown/knockout would provide further evidence suggesting gene regulation, and indeed these are experiments we would like to conduct systematically in the future, but such perturbations are difficult to achieve at genome-wide scale, especially with very restricted quantities of human embryo material. Notably, these studies would not be evidence of direct regulation and the gold-standard in our opinion is to perturb the cis regulatory region to demonstrate its functional importance in gene regulation. These are important experiments to conduct systematically in the future. We also note that assessing quantitative trait loci in the context of human pre-implantation embryos is extremely challenging due to the restricted sample sizes and genetic variance in the samples collected.
*- Many of the MICA-inferred regulatory interactions do not exhibit Spearman correlation (Fig. 5, Fig. S17), which could probably be explained by the ability of mutual information to capture complex non-monotonic dependencies. It would be interesting to provide further investigation on these "uncorrelated" edges, which may help demonstrate the superiority of mutual information over Spearman correlation. *
This has been added as a new Fig.S18.
- The authors conducted immunostaining experiments to validate the MICA-inferred regulatory *interaction between TFAP2C and JUND. While the identified protein co-localization is a step further than RNA co-expression, it is still correlation rather than causality. Additional evidence like the effect of knockout/knockdown perturbations would be more convincing. *
We agree with Reviewer 1 that experimental perturbations of TFAP2C and JUND to determine what consequence this has for interactions between these proteins would be informative. However due to the complexity of such an investigation in human embryos, we feel that this is beyond the scope of the current study. One option is to conduct the perturbations in human pluripotent stem cells, however it is unclear if the GRN in this context reflects the same interactions as human embryos and is a distinct question to address in the future. Moreover, while knockdown/knockout studies would be suggestive of up-stream regulation, it will not address the question of whether this is a direct or indirect effect without systematic further analysis including transcription factor-DNA binding (such as CUT&RUN, CUT&Tag or ChIP-seq) analysis as well as perturbations of the putative cis regulatory regions. These are all exciting future experiments and our study provides us and others with hypotheses to functionally test in the future. These are future directions and we have clarified this in the discussion section on page 16, line 576.
__Minor comments __
- *The γ symbols in AP-2γ are not correctly rendered. *
We note that this applies only to the way AP-2γ appears on the Review Commons website, and we are trying to fix this issue. We hope this transformation after the manuscript upload will not apply to a subsequent transfer to a journal.
- The UMAP figures (Fig. 4A, Fig. S7) are of low resolution compared to other figures.
We thank the reviewer for noting this. These figures have now been added as vector graphics files to overcome this issue.
- As the authors are focused on studying the blastocyst regulatory network, the inferred regulatory interactions should be provided as supplementary data.
We have included all of the inferred gene regulatory interactions as a supplementary folder for the MICA predictions using FigShare: doi.org/10.6084/m9.figshare.21968813. We have included code to reproduce the inferred gene regulatory interactions for the other methods which we compared to MICA. Because this includes 100,000 regulatory interactions per method, we feel that it would be impractical to include the alternative inferred interaction as supplementary data.
Reviewer 2
Minor comments
*- In the abstract, it would be adequate to already mention which normalisation method works the best. *
This has now been added to the abstract and we appreciate this suggestion.
*- In Fig. 1: *
* Describe what are squares and circles
This information has been included in the figure 1 legend.
** In the GRNs refined by keeping CA-predicted regulations only, mention that this are Cis interactions *
We have modified the figure 1 legend and the text on page 5, line 224 to clarify that these are putative cis-regulatory interactions.
* The ATAC seq shows KRT8, GATA3, RELB motifs, while the rest of the figure is very general. Maybe make the ATAC-seq peaks panel also as a sketch and relate it to the square/circles graphs on the right hand side to showcase how the filtering of the network is performed.
We appreciate this suggestion and modified figure 1 accordingly.
** The caption says Five GRN inference approaches, while abstract and text say 4. If is clear after reading that the 5th is a random approach. However, it was a surprise at first. *
We have modified the figure 1 legend to clarify that we also compared random prediction in addition to the 4 GRN inference approaches.
*- How the Simulation study was performed is not understandable for non experts as it is described in the Methods section. This is an important approach in general, and I think the audience would benefit if the authors add a full section about it in their supplementary data. *
Further details have now been added to the subsection ‘simulation study’ in the Methods section.
*- Fig. 2: *
** As it is, it is hard to tell the difference between GRN inference methods for a given sample size and number of regulators. Could the authors add a comparative panel for this (maybe some scatter plots would be enough)? MI by itself looks worse here? *
We thank the reviewer for this helpful suggestion. This comparative plot has now been included in figure 2 and indicates that MI is on par with the other GRN inference methods using simulation RNA-seq data.
*- When mentioning "samples" (e.g. last paragraph of section 1 in results), do the authors refer to "cells"? *
We appreciate the reviewer pointing this out and have amended the text throughout to state that these are cells.
*- What about normalisation effects in the simulated data? *
With regards to the simulated data, normalisation effects are not relevant as we are generating data that are idealised and therefore not subject to unwanted sources of variation such as read depth. However, in future work, this could be investigated with an expanded simulation study and we appreciate the reviewer’s suggestion.
*- Figure S7 should be cited in the first paragraph of section 2 in results. *
This has now been cited.
*Could the authors add a panel to indicate whether the data is SMART-seq2 or 10X. *
We thank the reviewer for the suggestion to clarify this, which we think is an important point. We have included a statement that all data used was generated using the SMART-seq2 sequencing technique in the figure legend. The choice of sequencing method/depth of sequencing will likely impact on the choice of GRN inference method and we have also clarified this in the discussion section on page 13, line 516.
*- In the association of inferred GRNs to human blastocyst cell lineages, the authors find the GRN edges predicted that overlap between the 4 inference methods in each cell type. Do they, therefore, recommend to always use more than one GRN inference method? *
Identifying overlapping inferences by comparing more than one GRN inference method may be a strategy to identify network edges with more confidence due to the agreement between several inference methodologies. However, this strategy may also miss some edges which can only be detected by one method and not another. We have included a statement in the discussion section to clarify this point on page 15, line 571.
- If the CA data used was only generated for the TE and ICM only, how do the authors use it to perform MICA on PE?
We appreciate that this is confusing and have since revised the manuscript on page 5, line 223 to state that the inner cell mass (ICM), comprises EPI (epiblast) and PE (primitive endoderm) cells. It may be that we miss putative cis-regulatory interactions if the ICM CA data does not reflect developmentally progressed PE and EPI cells and we have noted this caveat in the discussion section on page 15, line 561.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity):
1) It is interesting MxDnaK1 seems to prefer cytosolic proteins while Mx-DnaK2 prefers inner membrane proteins. The domain-swapping experiments seem to suggest that the NBD is important for this difference. How NBD is important is not addressed. Is it due to ATP hydrolysis, NBD-SBD interaction, or co-chaperone interactions?
Answer: Thanks for your comments. We speculate that the co-chaperone interaction might be the key factor contributing to substrate differences. According to the working principle of Hsp70, its functional diversity is largely determined by substrate differences. Co-chaperones, such as JDPs, play a crucial role in this process as they possess the ability to bind substrates and facilitate their targeted delivery. Therefore, much of the functional diversity of the HSP70s is driven by a diverse class of JDPs 1,2. We found that NBD played important roles in cochaperone recognition of MxDnaKs. Additionally, it is generally accepted that the efficiency of ATP hydrolysis does not significantly impact the substrate recognition of Hsp70. Furthermore, if the NBD-SBD interaction is crucial, the substitution of either the NBD or SBDβ domain might result in similar cell phenotypes, as both alterations disrupt the original NBD-SBDβ interaction. We believe the DnaK proteins and their cochaperones both determine the substrate spectrums. We made corresponding modifications in the revised manuscript. (Page22; Line 488-494 in the marked-up manuscript)
2) About the interactome analysis, since apyrase was added to remove ATP, it's surprising multiple Hsp40s were found in their analysis. Hsp70-Hsp40 interaction is known to require ATP. This may suggest some of the proteins found in their interactome analysis are artifacts. The authors should perform negative controls for their interactome analysis, such as using a control antibody for their CO-IP and analyze any non-specific binding to their resin.
In addition, since JDPs were pull-down, is it possible some of the substrates identified are actually substrates for JDPs, not binding directly to DnaKs?
Answer: This is an interesting question. As you correctly noted, the interaction between Hsp70 and Hsp40 requires ATP. In our experiment, we used apyrase to remove ATP in order to promote tight binding of substrate by DnaK. This methodology was initially described by Calloni, G. et al in 20123, and the authors also identified the co-chaperone protein DnaJ, but with a concentration higher than 77% of the interactors. In our opinions, the incomplete removal of ATP could be the underlying cause of this phenomenon.
We apologize for the undetailed description in Methods. Actually, we implemented negative controls for each MxDnaK in order to eliminate the potential non-specific interactions with Protein A/G beads or antibodies. Specifically, we conducted a CO-IP experiment without the presence of antibodies to assess any non-specific binding to the Protein A/G beads. To further investigate non-specific binding to the antibodies of MxDnaK2 and MxDnaK1, we utilized the mxdnak2-deleted mutant (strain YL2216) and the MxDnaK1 swapping strain with the MxDnaK2 SBDα (strain YL2204), respectively. As the SBDα of MxDnaK1 was employed as antigen to generate antibodies, and YL2204 can’t be recognized by anti-MxDnaK1 (Figure S5). We believe these controls allowed us to evaluate and exclude the non-specific interactions in our CO-IP. We have improved our description in methods. (Page 27; Line 596-607)
While one of the main functions of JDPs is to interact with unfolded substrates and facilitate their delivery to Hsp70, there may still be substrates that do not directly bind to Hsp70. It’s thus possible that some of the substrates identified only bind to JDPs. We made corresponding modifications in the revised manuscript. (Page 14; Line 290-292)
3) For Figure S7, the pull-down assay used His6-tagged JDPs. Ni resin is known to bind Hsp70s non-specifically. It's not surprising DnaK showed up in all the pull-down lanes, especially considering how much DnaK was over-expressed. For some pull-down lanes, the amount of DnaK is much more than that of JDPs, further indicating artifact. The author should include negative controls such as JDPs without His6-tag or any irrelevant protein with His6 tag.
Answer: Thanks for your suggestion. As you and another reviewer pointed out, there were some flaws in the experimental design of the pulldown assay. These include the non-specific binding of Hsp70 proteins to nickel resin, the absence of a negative control without a tag, and the inappropriate selection of the MBP tag. Thus, we employed the nLuc assay as an alternative to the pulldown experiment to validate the interaction between DnaK and JDP (Figure S9). While our manuscript employed nLuc to confirm protein dimerization, it is worth noting that nLuc assay was originally devised for investigating protein interactions 4.
4) For the proposed dimer formation in Fig. 4C, there are multiple bands above the monomer bands. What are these forms? It seems the majority of the Cys residues that could form disulfide bonds are in the NBD of MxDnaK2 since constructs with MxDnaK2-NBD form some sort of high-MW bands above the monomer. Does MxDnaK1-NBD also contain Cys at the analogous positions? The fact that MxDnaK1 didn't show disulfide-bonded bands doesn't mean it doesn't form dimer. It depends on where the Cys residues are.
It's nice the authors did Fig. 4D. However, the authors should include a positive control to show how strong the signal is for a true interaction before interpreting their results.
Answer: Thank you very much for your comments. In at least three independent experiments, we consistently observed two unidentified bands within the molecular weight range of 70-100 kDa during the purification process of His6-MxDnaK2. These bands appeared to be intermediate in size between the monomeric and dimeric forms of His6-MxDnaK2, and disappeared upon DTT treatment. the unidentified band compositions have been confirmed by LC/MS. The upper band included MxDnaK2 (65.3 kDa) and anti-FlhDC factor of E. coli (WP_001300634.1, 27 kDa). In the lower band, we detected the presence of MxDnaK2 and the 50S ribosomal protein L28 of E. coli (WP_000091955.1, 9 kDa). Based on these findings, we conclude that these two additional bands are the result of the interaction between His6-MxDnaK2 and these two E. coli proteins. The related explanations have been added in the legend of Figure 5. (Page 42; Line 938-942)
We analyzed the presence of Cys in MxDnaK1 and MxDnaK2. The NBD region of MxDnaK2 contains two Cys, located at positions 15 and 319. MxDnaK1-NBD contain a Cys at position of 316, which is the analogous position of 319-Cys of MxDnaK2. The analogous position of 15-Cys of MxDnaK2 is a Val in MxDnaK1, which might be an important factor contributing to the inability of MxDnaK1 to form oligomers.
Thanks for your suggestion to add the positive control. We re-performed the nLuc assays including a positive control(αSyn). According to the working principle of the nLuc assay, the amount of fluorescent substrate is limited. Therefore, even for proteins that interact with each other, the fluorescence value gradually decreases and reaches a plateau, similar to the negative control. This gradual decline in fluorescence is a significant indicator of protein interaction. In Figure 4D (Figure 5D in the revision version), we only presented the results of the first 20 minutes of detection. The complete two-hour detection results have been added in the supplementary figure (Figure S14).
5) line 48: "human HSC70 and HSP70 are 85% identical, and the phenotypes of their knockout mutants are different, which is consistent with their largely nonoverlapping substrates" The authors completely ignored that the promoters of HSC70 and HSP70 are very different.
Answer: This is our carelessness. Yes, HSC70 and HSP70 exhibit distinct expression patterns, which play important roles in their functional diversity. We modified the sentence in the new version (Page 5; Line 58)
6) Line 69: "The two PRK00290 proteins, not the other Myxococcus Hsp70s, could alternatively compensate the functions of EcDnaK (DnaK of E. coli) for growth." Please add references for this statement.
Answer: Added, thanks.
7) line 191: What's the mechanism for DnaK's role in oxidative stress? Is the disulfide bond formation in Fig. 4 related? Does disulfide-bond change the activity of DnaK?
Answer: Thanks for your pertinent comments. Honestly, we have no idea about the mechanism for MxDnaK2's role in oxidative stress. In our previous studies, we determined that the deletion of mxdnaK2 resulted in a longer lag phase after H2O2 treatment. Here, our aim was to investigate the impact of region swapping on the cellular function of MxDnaK2. In other bacteria, the critical role that DnaK plays in resistance to oxidative stress stems from the pleotropic functions of this chaperone. By shortening the dwelling time that proteins spend in the unfolded state, the DnaK/DnaJ chaperone system minimizes the risk of metal-catalyzed carbonylation of the side chains of proline, lysine, arginine, and threonine residues, but none of them linked to the dimerization characteristic of DnaK 5-7.
8) Fig. S9 seems redundant.
Answer: Deleted, thanks.
9) line 263, "but the NBD exchange was almost equal to the deletion of the gene with respect to phenotypes." But, the mutant has >50% activity in Fig. 3F.
Answer: We apologize for the confusing description. The “phenotypes” here indicates “cell phenotypes”. What we really tried to say with this sentence is that the NBD swapping strain of either MxDnaK1 or MxDnaK2 presented identical cell phenotypes with the gene-deleted strain. As we have already provided a detailed description of this result earlier, now we consider this sentence to be redundant and have therefore deleted it. (Page 17; Line 355-356)
10) line 221-226: the logic is not quite clear.
Answer: We apologize for the confusing description. In M. xanthus DK1622, MxDnaK1 is essential for cell survival, and an insertion of a second copy of mxdnaK1 in the genome is required for deletion of the in-situ gene. Thus, To verify whether the NBD region is required for the essentiality of MxDnaK1, we performed the region swapping of the in situ MxDnaK1 gene in the att::mxdnaK1 mutant (a DK1622 mutant containing a second copy of mxdnaK1 at attB site), and successfully obtained the MxDnaK1 mutant swapped with the MxDnaK2 NBD region. The experiment indicated that the NBD of MxDnaK1 is essential for the cellular functions of the chaperone. We have added the information and modified the sentences in the manuscript. (Page 15; Line 308-319)
Minor concerns:
Please check spelling. There are some typos such as "HPPES" in the Methods.
Answer: Corrected. Many thanks.
My areas of expertise are protein biochemistry, genetics, and structural biology on heat shock proteins.
Reviewer #2 (Evidence, reproducibility and clarity):
Major comments:
The manuscript is very nice and interesting, although some of the authors' conclusions are perhaps not well supported by their data. For example:
1) In the pulldown experiments the lack of interaction between 2747-MxDnaK2, 3015-MxDnaK2 and 1145-MxDnaK1 should be shown in order to support the conclusion made in line 197-198,
Answer: This is our carelessness. As you and another reviewer pointed out, there are some flaws in the experimental design of the pulldown assay. These include the non-specific binding of Hsp70 proteins to nickel resin, the absence of a negative control without a tag, and the inappropriate selection of the MBP tag. Thus, we employed the nLuc assay as an alternative to the pulldown experiment to validate the interaction between DnaK and JDP (including 2747-MxDnaK2, 3015-MxDnaK2 and 1145-MxDnaK1 interaction) (Figure S9). While our manuscript employed nLuc to confirm protein dimerization, it is worth noting that nLuc assay was originally devised for investigating protein interactions 4.
2) The only evidence that the NBD of MxDnaK1 is essential for bacterial growth is that this mutation couldn´t be obtained in M. xanthus. However, it could be purified in E. coli. Could the authors do some experiments with the M. xanthus strain without the chromosomal MxDnaK1 and then introduce a plasmid with the mutated gene?
Answer: We apologize for the confusing description. Actually, we determined the NBD is essential not only from the mutation couldn’t be obtained. In M. xanthus DK1622, MxDnaK1 is essential for cell survival, and in-situ deletion of the gene could be obtained after an insertion of a second copy of mxdnaK1 in the genome at the attB site. To verify whether the NBD region is required for the essentiality of MxDnaK1, we performed the region swapping of the in situ MxDnaK1 gene in the att::_mxdnaK_1 mutant (a DK1622 mutant containing a second copy of _mxdnaK_1), and successfully obtained the MxDnaK1 mutant swapped with the MxDnaK2 NBD region. The experiment indicated that the NBD of MxDnaK1 is essential for the cellular functions of the chaperone. We have added the information and modified the sentences in the manuscript. (Page 15; Line 308-319)
3) All the experiments with purified proteins were done with MxDnaKs bearing His-tags. It doesn't say explicitly its position, but as they employed a pET28A it is likely that the tag is at the N-terminus, which is close to the linker region. As this tag might interfere, it should be removed for the experiments, or at least a control done with the tag removed.
Answer: We apologize for the lack of detailed description. As you pointed out, the His-tags are located at the N-terminus of DnaKs. The full lengths of MxDnaK1 and MxDnaK2 are 638 and 607 amino acids. The linker regions are located at amino acid positions 381-386 for MxDnaK1 and 387-392 for MxDnaK2. Therefore, we believe that the His-tag is not close to the linker regions. We have included the information in new manuscript. (Page 24; Line 544-546)
The purified His6-DnaK proteins were employed for holdase activity assays and in vitro dimerization assays. Several previous studies have utilized the same holdase activity assay method with His-tagged DnaK 8,9. We suggested that the His-tag did not interfere with the holdase activity of DnaK. To exclude the influence of His-tag on oligomerization, we conducted a control with the tag removed in the in vitro dimerization assay and the result show no difference (Figure S13).
4) The authors state that MxDnaK dimerized in vitro with the NBD, and to disrupt the dimer they used 100 mM DTT, which is a very high concentration. As the protein has the His-tag, it should be removed to corroborate that it is not interfering with the dimerization.
Answer: Thanks for your suggestion. As mentioned above, to exclude the influence of the His-tag on oligomerization, we conducted a control with the tag removed in the in vitro dimerization assay and the result show no difference (Figure S13).
5) Why were the pulldown experiments done with MBP-MxDnaKs? Can you show a negative control between the MBP and the JDPs to rule out this interaction? It will be more suitable to do the pulldown assays with the purified MxDnaK´s without the His-tags (and the His-tags JDP that were employed).
Answer: Thanks for your suggestion. As mentioned above, there are some flaws in the experimental design of the pulldown assay. Thus, we employed the nLuc assay as an alternative to the pulldown experiment to validate the interaction between MxDnaKs and JDPs (Figure S9).
Minor comments:
- E. coli´s DnaK is only essential in heat shock conditions and for lambda phage cycle. If MxDnaK1 is similar to this Hsp70, why the substitution of its NBD for the NBD MxDnaK2 would be lethal for bacterial growth?
Answer: Thanks for the comments. As you correctly point out, DnaK is nonessential in E. coli. But in some other bacteria, DnaK also plays an essential role in cell growth for different reasons 10-12. In our previous studies, we determined that MxDnaK1 is essential in M. xanthus DK1622, and the MxDnaK2 is nonessential. In this study, we performed region swapping and found that only the NBD of MxDnaK1 was unreplaceable. In our opinions, the result indicated that NBD play important roles in the functional diversity between MxDnaK1 and MxDnaK2.
- I think that the writing should be revised and in the supporting information the captions of the figures should include more information.
Answer: Thanks a lot for the suggestion. We revised the manuscript and added more information in the legends of supplementary figures.
Reviewer #2 (Significance):
-General assessment: This is a nice piece of work which would benefit from revision to address the comments above. The authors showed the roles and differences between two DnaK in the same organism. They track these differences to the subdomains of the MxDnaK´s and co-chaperones. It will be interesting for future works to explore more deeply the co-chaperones and their interactions.
-Advance: I think that this manuscript fills a gap regarding the role of DnaK duplicated in bacterial strains. -Audience: I would say that the audience is broad and includes scientists interested in protein folding and chaperones, as well as myxobacteria.
- Rosenzweig, R., Nillegoda, N. B., Mayer, M. P. & Bukau, B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20, 665-680, doi:10.1038/s41580-019-0133-3 (2019).
- Kampinga, H. H. & Craig, E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11, 579-592, doi:10.1038/nrm2941 (2010).
- Calloni, G. et al. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1, 251-264, doi:10.1016/j.celrep.2011.12.007 (2012).
- Dixon, A. S. et al. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem Biol 11, 400-408, doi:10.1021/acschembio.5b00753 (2016).
- Fredriksson, A., Ballesteros, M., Dukan, S. & Nystrom, T. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187, 4207-4213, doi:10.1128/JB.187.12.4207-4213.2005 (2005).
- Santra, M., Dill, K. A. & de Graff, A. M. R. How Do Chaperones Protect a Cell's Proteins from Oxidative Damage? Cell Syst 6, 743-751 e743, doi:10.1016/j.cels.2018.05.001 (2018).
- Fredriksson, A., Ballesteros, M., Dukan, S. & Nystrom, T. Induction of the heat shock regulon in response to increased mistranslation requires oxidative modification of the malformed proteins. Mol Microbiol 59, 350-359, doi:10.1111/j.1365-2958.2005.04947.x (2006).
- Chang, L., Thompson, A. D., Ung, P., Carlson, H. A. & Gestwicki, J. E. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). J Biol Chem 285, 21282-21291, doi:10.1074/jbc.M110.124149 (2010).
- Thompson, A. D., Bernard, S. M., Skiniotis, G. & Gestwicki, J. E. Visualization and functional analysis of the oligomeric states of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Cell Stress Chaperones 17, 313-327, doi:10.1007/s12192-011-0307-1 (2012).
- Shonhai, A., Boshoff, A. & Blatch, G. L. The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 16, 1803-1818, doi:10.1110/ps.072918107 (2007).
- Vermeersch, L. et al. On the duration of the microbial lag phase. Curr Genet 65, 721-727, doi:10.1007/s00294-019-00938-2 (2019).
- Burkholder, W. F. et al. Mutations in the C-terminal fragment of DnaK affecting peptide binding. Proc Natl Acad Sci U S A 93, 10632-10637, doi:10.1073/pnas.93.20.10632 (1996).
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #2
Evidence, reproducibility and clarity
Summary: This manuscript describes interesting studies of two paralogues of the E. coli Hsp70, DnaK, from of M. xanthus: MxDnaK1 and MxDnaK2. MxDnaK1 is similar to E. coli DnaK in terms of heat shock response, subcellular localization, etc. while MxDnaK2 is involved with membrane proteins and does not participate in the heat shock response. The interactome of the Mx DnaK´s are larger than that of E. coli DnaK, and their subcellular localization is also different. Regarding the differences between M. xanthus DnaK´s, MxDnaK2 prefers proteins with a higher hydrophobicity score, consistent with its role associated with membrane proteins. The phenotype of diverse mutants with domain swapping showed that the substitution of the NBD of MxDnaK2 for the NBD of MxDnaK1 led to similar phenotypes as the deletion of MxDnaK2 in terms of sporulation and S motility. Consistently, the interactomes of these variants were reduced in number of substrates in comparison with the wild type enzymes. No obvious effect was observed when the SBD´s subdomains were swept. Both MxDnaK interact with JDPs and NEF cochaperones. However, MxDnaK2 interacts only with one of the NEFs, and it depends on the NBD, and has one specific JDP, whichdepends on the beta-subdomain of the SBD (no information provided regarding NBD). MxDnaK1 interacts with both NEFs and has two specific JDPs, which also seems to depend on the beta subdomain of the SBD. Finally, a phylogenetic analysis reveals that the duplication of the dnak gene in Mx is correlated with the complexity of the proteome.
Major comments:
- The manuscript is very nice and interesting, although some of the authors' conclusions are perhaps not well supported by their data. For example: 1) In the pulldown experiments the lack of interaction between 2747-MxDnaK2, 3015-MxDnaK2 and 1145-MxDnaK1 should be shown in order to support the conclusion made in line 197-198, 2) The only evidence that the NBD of MxDnaK1 is essential for bacterial growth is that this mutation couldn´t be obtained in M. xanthus. However, it could be purified in E. coli. Could the authors do some experiments with the M. xanthus strain without the chromosomal MxDnaK1 and then introduce a plasmid with the mutated gene?
- All the experiments with purified proteins were done with MxDnaKs bearing His-tags. It doesn't say explicitly its position, but as they employed a pET28A it is likely that the tag is at the N-terminus, which is close to the linker region. As this tag might interfere, it should be removed for the experiments, or at least a control done with the tag removed.
- The authors state that MxDnaK dimerized in vitro with the NBD, and to disrupt the dimer they used 100 mM DTT, which is a very high concentration. As the protein has the His-tag, it should be removed to corroborate that it is not interfering with the dimerization.
- Why were the pulldown experiments done with MBP-MxDnaKs? Can you show a negative control between the MBP and the JDPs to rule out this interaction? It will be more suitable to do the pulldown assays with the purified MxDnaK´s without the His-tags (and the His-tags JDP that were employed).
Minor comments:
- E. coli´s DnaK is only essential in heat shock conditions and for lambda phage cycle. If MxDnaK1 is similar to this Hsp70, why the substitution of its NBD for the NBD MxDnaK2 would be lethal for bacterial growth?
- I think that the writing should be revised and in the supporting information the captions of the figures should include more information.
Significance
General assessment: This is a nice piece of work which would benefit from revision to address the comments above. The authors showed the roles and differences between two DnaK in the same organism. They track these differences to the subdomains of the MxDnaK´s and co-chaperones. It will be interesting for future works to explore more deeply the co-chaperones and their interactions.
Advance: I think that this manuscript fills a gap regarding the role of DnaK duplicated in bacterial strains.
Audience: I would say that the audience is broad and includes scientists interested in protein folding and chaperones, as well as myxobacteria.
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #1
Evidence, reproducibility and clarity
In this study, Pan et al. characterized two Hsp70 DnaKs from Myxococcus xanthus DK1622. Through determining interactomes, the authors defined the differences and similarities between these two DnaKs in interacting with co-chaperones and substrates. Using domain-swapping, the authors analyzed the domain requirements for their functions. Lastly, their bioinformatics analyses seem to suggest the presence of these two DnaKs (i.e., DnaK duplication) is due to the increase of proteomic complexity. Overall, the results are interesting although not surprising. As the authors pointed out, many organisms have multiple Hsp70s with different but overlapping functions. Although multiple experimental approaches were used, the manuscript is generally descriptive without revealing any major mechanistic insights.
- It is interesting MxDnaK1 seems to prefer cytosolic proteins while Mx-DnaK2 prefers inner membrane proteins. The domain-swapping experiments seem to suggest that the NBD is important for this difference. How NBD is important is not addressed. Is it due to ATP hydrolysis, NBD-SBD interaction, or co-chaperone interactions?
- About the interactome analysis, since apyrase was added to remove ATP, it's surprising multiple Hsp40s were found in their analysis. Hsp70-Hsp40 interaction is known to require ATP. This may suggest some of the proteins found in their interactome analysis are artifacts. The authors should perform negative controls for their interactome analysis, such as using a control antibody for their CO-IP and analyze any non-specific binding to their resin.<br /> In addition, since JDPs were pull-down, is it possible some of the substrates identified are actually substrates for JDPs, not binding directly to DnaKs?
- For Figure S7, the pull-down assay used His6-tagged JDPs. Ni resin is known to bind Hsp70s non-specifically. It's not surprising DnaK showed up in all the pull-down lanes, especially considering how much DnaK was over-expressed. For some pull-down lanes, the amount of DnaK is much more than that of JDPs, further indicating artifact. The author should include negative controls such as JDPs without His6-tag or any irrelevant protein with His6 tag.
- For the proposed dimer formation in Fig. 4C, there are multiple bands above the monomer bands. What are these forms? It seems the majority of the Cys residues that could form disulfide bonds are in the NBD of MxDnaK2 since constructs with MxDnaK2-NBD form some sort of high-MW bands above the monomer. Does MxDnaK1-NBD also contain Cys at the analogous positions? The fact that MxDnaK1 didn't show disulfide-bonded bands doesn't mean it doesn't form dimer. It depends on where the Cys residues are.<br /> It's nice the authors did Fig. 4D. However, the authors should include a positive control to show how strong the signal is for a true interaction before interpreting their results.
- line 48: "human HSC70 and HSP70 are 85% identical, and the phenotypes of their knockout mutants are different, which is consistent with their largely nonoverlapping substrates." The authors completely ignored that the promoters of HSC70 and HSP70 are very different.
- Line 69: "The two PRK00290 proteins, not the other Myxococcus Hsp70s, could alternatively compensate the functions of EcDnaK (DnaK of E. coli) for growth." Please add references for this statement.
- line 191: What's the mechanism for DnaK's role in oxidative stress? Is the disulfide bond formation in Fig. 4 related? Does disulfide-bond change the activity of DnaK?
- Fig. S9 seems redundant.
- line 263, "but the NBD exchange was almost equal to the deletion of the gene with respect to phenotypes." But, the mutant has >50% activity in Fig. 3F.
- line 221-226: the logic is not quite clear.
Minor concerns:
Please check spelling. There are some typos such as "HPPES" in the Methods.
Significance
In this study, Pan et al. characterized two Hsp70 DnaKs from Myxococcus xanthus DK1622. Through determining interactomes, the authors defined the differences and similarities between these two DnaKs in interacting with co-chaperones and substrates. Using domain-swapping, the authors analyzed the domain requirements for their functions. Lastly, their bioinformatics analyses seem to suggest the presence of these two DnaKs (i.e., DnaK duplication) is due to the increase of proteomic complexity. Overall, the results are interesting although not surprising. As the authors pointed out, many organisms have multiple Hsp70s with different but overlapping functions. Although multiple experimental approaches were used, the manuscript is generally descriptive without revealing any major mechanistic insights.
My areas of expertise are protein biochemistry, genetics, and structural biology on heat shock proteins.
-
-
www.biorxiv.org www.biorxiv.org
-
Author Response
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
The expression and localization of Foxc2 strongly suggest that its role is mainly confined to As undifferentiated spermatogonia (uSPGs). Lineage tracing demonstrated that all germ cells were derived from the FOXC2+ uSPGs. Specific ablation of the FOXC2+ uSPGs led to the depletion of all uSPG populations. Full spermatogenesis can be achieved through the transplantation of Foxc2+ uSPGs. Male germ cell-specific ablation of Foxc2 caused Sertoli-only testes in mice. CUT&Tag sequencing revealed that FOXC2 regulates the factors that inhibit the mitotic cell cycle, consistent with its potential role in maintaining a quiescent state in As spermatogonia. These data made the authors conclude that the FOXC2+ uSPG may be the true SSCs, essential for maintaining spermatogenesis. The conclusion is largely supported by the data presented, but two concerns should be addressed: 1) terminology used is confusing: primitive SSCs, primitive uSPGs, transit amplifying SSCs... 2) the GFP+ cells used for germ cell transplantation should be better controlled using THY1+ cells.
Thanks for your good comments. According to your suggestions, we have addressed your two concerns as follows:
1> Overall our work suggest that FOXC2+ SSCs are a subpopulation of SSCs in a quiescent state, thus we have replaced the term ‘primitive’ with ‘quiescent’ in the revised manuscript. In general, ‘transient amplifying SSCs’ is considered to be ‘progenitors’, thus we have replaced ‘transient amplifying SSCs’ with ‘progenitors’ in the revised manuscript.
2> The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).
Reviewer #2 (Public Review):
The authors found FOXC2 is mainly expressed in As of mouse undifferentiated spermatogonia (uSPG). About 60% of As uSPG were FOXC2+ MKI67-, indicating that FOXC2 uSPG were quiescent. Similar spermatogonia (ZBTB16+ FOXC2+ MKI67-) were also found in human testis.
The lineage tracing experiment using Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice demonstrated that all germ cells were derived from the FOXC2+ uSPG. Furthermore, specific ablation of the FOXC2+ uSPGs using Foxc2iCreERT2/+;Rosa26LSL-DTA/+ mice resulted in the depletion of all uSPG population. In the regenerative condition created by busulfan injection, all FOXC2+ uSPG survived and began to proliferate at around 30 days after busulfan injection. The survived FOXC2+ uSPGs generated all germ cells eventually. To examine the role of FOXC2 in the adult testis, spermatogenesis of Foxc2f/-;Ddx4Cre/+ mice was analyzed. From a 2-month-old, the degenerative seminiferous tubules were increased and became Sertoli cell-only seminiferous tubules, indicating FOXC2 is required to maintain normal spermatogenesis in adult testes. To get insight into the role of FOXC2 in the uSPG, CUT&Tag sequencing was performed in sorted FOXC2+ uSPG from Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice 3 days after TAM diet feeding. The results showed some unique biological processes, including negative regulation of the mitotic cell cycle, were enriched, suggesting the FOXC2 maintains a quiescent state in spermatogonia.
Lineage tracing experiments using transgenic mice of the TAM-inducing system was well-designed and demonstrated interesting results. Based on all data presented, the authors concluded that the FOXC2+ uSPG are primitive SSCs, an indispensable subpopulation to maintain adult spermatogenesis.
The conclusion of the mouse study is mostly supported by the data presented, but to accept some of the authors' claims needs additional information and explanation. Several terminologies define cell populations used in the paper may mislead readers.
1) "primitive spermatogonial stem cell (SSC)" is confusing. SSCs are considered the most immature subpopulation of uSPG. Thus, primitive uSPGs are likely SSCs. The naming, primitive SSCs, and transit-amplifying SSCs (Figure 7K) are weird. In general, the transit-amplifying cell is progenitor, not stem cell. In human and even mouse, there are several models for the classification of uSPG and SSCs, such as reserved stem cells and active stem cells. The area is highly controversial. The authors' definition of stem cells and progenitor cells should be clarified rigorously and should compare to existing models.
Thanks for your good comments. Considering that our results showed that FOXC2+ SSCs are in a quiescent state and that Mechanistically FOXC2 maintained the quiescent state of SSCs by promoting the expression of negative regulators of cell cycle, we have replaced ‘primitive SSCs’ with ‘quiescent SSCs’ in the revised manuscript. We agree with the reviewer that ‘transient amplifying SSCs’ is considered to be ‘progenitors’, thus we have replaced ‘transient amplifying SSCs’ with ‘progenitors’ in the revised manuscript. Further,from our point of view, the FOXC2+Ki67+ SSCs could be regarded as active stem cells, and the FOXC2+Ki67- SSCs could be regarded as reserved stem cells, although further research evidence is still needed to confirm this.
2) scRNA seq data analysis and an image of FOXC2+ ZBTB16+ MKI67- cells by fluorescent immunohistochemistry are not sufficient to conclude that they are human primitive SSCs as described in the Abstract. The identity of human SSCs is controversial. Although Adark spermatogonia are a candidate population of human SSCs, the molecular profile of the Adark spermatogonia seems to be heterogeneous. None of the molecular profiles was defined by a specific cell cycle phase. Thus, more rigorous analysis is required to demonstrate the identity of FOXC2+ ZBTB16+ MKI67- cells and Adark spermatogonia.
We agree with the reviewer that the identity of human SSCs remain elusive even though Adark population demonstrates certain characteristics of SSCs. To acknowledge this notion, we have revised our conclusion as such that only suggests FOXC2+ZBTB16+MKI67- represents a quiescent state of human SSCs.
3) FACS-sorted GFP+ cells and MACS-THY1 cells were used for functional transplantation assay to evaluate SSC activity. In general, the purity of MACS is significantly lower than that of FACS. Therefore, FACS-sorted THY1 cells must be used for the comparative analysis. As uSPGs in adult testes express THY1, the percentage of GFP+ cells in THY1+ cells determined by flow cytometry is important information to support the transplantation data.
Thanks for your good comments. According to your suggestions, we have addressed your concerns as follows:
1> The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).
2> We performed FACS analysis to determine the proportion of GFP+ cells in FACS-sorted THY1+ cells from Rosa26LSL-T/G/LSL-T/G or Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G mice at day 3 post TAM induction, and the result showed that GFP+ cells account for approximately 20.9±0.21% of THY1+ cells, See Author response image 1.
Author response image 1.
4) The lineage tracing experiments of FOXC2+-SSCs in Foxc2iCreERT2/+;Rosa26LSL-T/G/LSL-T/G showed ~95% of spermatogenic cells and 100% progeny were derived from the FOXC2+ (GFP+) spermatogonia (Figure 2I, J) at month 4 post-TAM induction, although FOXC2+ uSPG were quiescent and a very small subpopulation (~ 60% of As, ~0.03% in all cells). This means that 40% of As spermatogonia and most of Apr/Aal spermatogonia, which were FOXC2 negative, did not contribute to spermatogenesis at all eventually. This is a striking result. There is a possibility that FOXC2CRE expresses more widely in the uSPG population although immunohistochemistry could not detect them.
Thanks for your good comments. From our lineage tracing results, over 95% of the spermatogenic cells are derived from the FOXC2+ SSCs in the testes of 4-month-old mice, which means that FOXC2+ SSCs maintain a long-term stable spermatogenesis. In addition, previous studies have shown that only a portion of As spermatogonia belong to SSCs with complete self-renewal ability (PMID: 28087628, PMID: 25133429), which is consistent with our findings. Therefore, we speculate that 40% of As spermatogonia and most of Apr/Aal spermatogonia, which were FOXC2 negative, did contribute to spermatogenesis but cannot maintain a long-term spermatogenesis due to limited self-renewal ability.
5) The CUT&Tag_FOXC2 analysis on the FACS-sorted FOXC2+ showed functional enrichment in biological processes such as DNA repair and mitotic cell cycle regulation (Figure 7D). The cells sorted were induced Cre recombinase expression by TAM diet and cut the tdTomato cassette out. DNA repair process and negative regulation of the mitotic cell cycle could be induced by the Cre/lox recombination process. The cells analyzed were not FOXC2+ uSPG in a normal physiological state.
We do appreciate the reviewer’s concern on the possibility of the functions enriched in the analysis as referred might be derived from Cre/lox recombination. However, we think it is unlikely that the Cre/lox recombination process, supposed to be rather local and specific, can trigger such a systemic and robust response by the DNA damage and cell cycle regulatory pathways. The reasons are as follows: First, as far as we are aware, there has been sufficient data to support this suggested scenario. Second, we did not observe any alteration in either the SSC behaviors or spermatogenesis in general upon the TAM-induced genomic changes, suggesting the impact from the Cre/lox recombination on DNA damage or cell cycle was not significant. Third, no factors associated with the DNA repair process were revealed in the differential analysis of single-cell transcriptomes of FOXC2-WT and FOXC2-KO.
6) Wei et al (Stem Cells Dev 27, 624-636) have published that FOXC2 is expressed predominately in As and Apr spermatogonia and requires self-renewal of mouse SSCs; however, the authors did not mention this study in Introduction, but referred shortly this at the end of Discussion. Their finding should be referred to and evaluated in advance in the Introduction.
Thanks for your good comments. According to your suggestion, we have revised the introduction to refer this latest parallel work on FOXC2. We are happy to see that our discoveries are converged to the important role of FOXC2 in regulating SSCs in adult mammals.
Reviewer #3 (Public Review):
By popular single-cell RNA-seq, the authors identified FOXC2 as an undifferentiated spermatogonia-specific expressed gene. The FOXC2+-SSCs can sufficiently initiate and sustain spermatogenesis, the ablation of this subgroup results in the depletion of the uSPG pool. The authors provide further evidence to show that this gene is essential for SSCs maintenance by negatively regulating the cell cycle in adult mice, thus well-established FOXC2 as a key regulator of SSCs quiescent state.
The experiments are well-designed and conducted, the overall conclusions are convincing. This work will be of interest to stem cell and reproductive biologists.
Thanks for the positive feedback.
Reviewer #1 (Recommendations for the Authors):
The authors should address the following concerns:
1) The most primitive uSPGs should be the true SSCs. The term "primitive SSCs" is very confusing.
2) In addition to FACS-sorted GFP+ cells, FACS-sorted THY1+ cells should also be used for transplantation.
Thanks for your good comments. According to your suggestions, we have addressed your two concerns as follows:
1) Overall our work suggest that FOXC2+ SSCs are a subpopulation of SSCs in a quiescent state, thus we have replaced the term ‘primitive’ with ‘quiescent’ in the revised manuscript.
2) The transplantation experiment was conducted using MACS-sorted THY1+, FACS sorted THY1+, and FACS-sorted GFP+ (FOXC2+) uSPGs simultaneously. To be consistent with the single-cell RNA-seq using the MACS-sorted THY1+ uSPGs, we only presented the results from MACS-sorted THY1+ and FACS-sorted GFP+ (FOXC2+) uSPGs in the previous manuscript. Following the reviewer’s suggestion, we have included the results derived from FACS sorted THY1+ uSPGs as the control. The overall conclusion is still fully supported by the more comprehensive dataset, i.e. FOXC2+ cells generated significant higher numbers of colonies than THY1+ cells after transplantation (Figure 2D, E).
Reviewer #3 (Recommendations for the Authors):
The experiments are well-designed and conducted, the overall conclusions are convincing. The only concerns are the writing, especially the introduction which was not well-rationalized. Sounds the three subtypes and three models for SSCs' self-renew are irrelevant to the major points of this manuscript. I don't think you need to talk too much about the markers of SSCs. Instead, I suggest you provide more background about the quiescent or activation states of the SSCs. In addition to that, as a nuclear-localized protein, it cannot be used to flow cytometric sorting, I don't think it should be emphasized as a marker. You identified a key transcription factor for maintaining the quiescent state of the primitive SSCs, that's quite important!
Appreciate the positive feedback and constructive suggestions on the writing. We have substantially revised our manuscript to include the relevant advances and understanding from the field as well as highlight the importance of FOXC2 in regulating the quiescent state of SSCs.
-
Reviewer #1 (Public Review):
The expression and localization of Foxc2 strongly suggest that its role is mainly confined to As undifferentiated spermatogonia (uSPGs). Lineage tracing demonstrated that all germ cells were derived from the FOXC2+ uSPGs. Specific ablation of the FOXC2+ uSPGs led to the depletion of all uSPG populations. Full spermatogenesis can be achieved through the transplantation of Foxc2+ uSPGs. Male germ cell-specific ablation of Foxc2 caused Sertoli-only testes in mice. CUT&Tag sequencing revealed that FOXC2 regulates the factors that inhibit the mitotic cell cycle, consistent with its potential role in maintaining a quiescent state in As spermatogonia. These data made the authors conclude that the FOXC2+ uSPG may be the true SSCs, essential for maintaining spermatogenesis. The conclusion is supported by the data presented.
-
Reviewer #2 (Public Review):
The authors found FOXC2 is mainly expressed in As of mouse undifferentiated spermatogonia (uSPG). About 60% of As uSPG were FOXC2+ MKI67-, indicating that FOXC2 uSPG were quiescent. Similar spermatogonia (ZBTB16+ FOXC2+ MKI67-) were also found in human testis.
The lineage tracing experiment using Foxc2CRE/+;R26T/Gf/f mice demonstrated that all germ cells were derived from the FOXC2+ uSPG. Furthermore, specific ablation of the FOXC2+ uSPGs using Foxc2Cre/+;R26DTA/+ mice resulted in the depletion of all uSPG population. In the regenerative condition created by busulfan injection, all FOXC2+ uSPG survived and began to proliferate at around 30 days after busulfan injection. The survived FOXC2+ uSPGs generated all germ cells eventually. To examine the role of FOXC2 in the adult testis, spermatogenesis of Foxc2f/-;Ddx4-cre mice was analyzed. From a 2-month-old, the degenerative seminiferous tubules were increased and became Sertoli cell-only seminiferous tubules, indicating FOXC2 is required to maintain normal spermatogenesis in adult testes. To get insight into the role of FOXC2 in the uSPG, CUT&Tag sequencing was performed in sorted FOXC2+ uSPG from Foxc2CRE/+;R26T/Gf/f mice 3 days after TAM diet feeding. The results showed some unique biological processes, including negative regulation of the mitotic cell cycle, were enriched, suggesting the FOXC2 maintains a quiescent state in spermatogonia.
Lineage tracing experiments using transgenic mice of the TAM-inducing system was well-designed and demonstrated interesting results. Based on all data presented, the authors concluded that the FOXC2+ uSPG are primitive SSCs, an indispensable subpopulation to maintain adult spermatogenesis. The conclusion of the mouse study is supported by the data presented.
-
-
www.biorxiv.org www.biorxiv.org
-
Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.
Learn more at Review Commons
Referee #4
Evidence, reproducibility and clarity
Summary
The authors in this manuscript create in vitro degron models of DNMT1 as tools to investigate the roles and functions of DNA methylation in molecular and cellular processes. Degron models can directly target the tagged protein of interest leading to its degradation. When it comes to DNMT1, this system can bypass the use DNMT inhibitors, like DAC and GSK3685032 that can have secondary cytotoxic effects. More specifically, the authors create DNMT1 degron tagged models of two cell lines (DLD-1 and RPE1), as well as a DNMT1 degron tagged model of a DNMT3BKO DLD-1 cell line. These systems allowed the authors to investigate the passive demethylation occurring over consecutive cell divisions, and particularly the role of DNMT1 and DNMT3B and their cooperativity in maintaining DNA methylation levels and how this differs among different genomic regions. The authors characterise the cell fitness of the models they established when DNMT1 is degraded, and methylation levels are lost, and observe a reduction of fitness due to G1 arrest. Finally, the authors show that the loss of DNA methylation observed in these cells leads to reduced levels of heterochromatin (H3K9me3) as well as changes in chromatin and nuclear compartmentalization. Overall, the authors, show an appealing in vitro model that can directly target DNMT1, allowing for more delicate experiments that address the impact of DNA methylation levels in somatic cells, to de-convolute their exact roles from other epigenetic marks and cellular processes that are often correlated with.
Major comments
- The auxin degron system relies on the ectopic expression of OsTir1, which is described in materials and methods under 'Plasmids and Cell line generation'. However, OsTir1 expression is never addressed during the manuscript. Quantification of OsTir1 expression levels across the different cell lines is very important in order to more comprehensively characterise this system. This is especially when considering one of the key points of the authors is to establish these new in vitro models as a new tool to study DNA methylation dynamics in the field.
- The degron system requires an endogenous tag of the protein of interest. Specifically in this work, a tag including the mNGreen and the AID sequence are incorporated at the N-terminus of DNMT1. It is unlikely that there is major interference of the tag to protein function as the tagged cells for DLD-1 and RPE1 are both viable and demonstrate high methylation levels. However, the authors do not consider or discuss that the tag might interfere with the function of the protein at all. It would be useful if the authors compared the tagged cell lines (untreated) with wildtype controls for their methylation levels and/or DNMT1 expression and/or DNMT1 localisation with imaging. These experiments would better substantiate the use of untreated cells as 'wildtype' equivalents and contribute to the better characterisation of these systems as in vitro models.
Furthermore, DNMT1 can have different transcripts that begin from different sites. Do the authors consider whether the tag is included in all/most isoforms of DNMT1, or if there are any expressed without it? - The authors observe that DNMT1 is important for maintaining methylation levels as well as proper cell proliferation. They also observe that DNMT1 depletion does not lead to complete lethality as previously observed (Rhee et al., 2000 Nature, Chen et al., 2007 Nature Genetics). They hypothesise that this might be due to non-specific toxic effects (from CRE) and suggest that the degron system is better suited to bypass such toxicity effects. While this might be true and degron systems do provide a direct and acute protein depletion without non-specific toxicity, the authors do not discuss the implications p53 activity might have on the lack of lethality they observe. Omitting the role of p53 in hypomethylation models and drawing conclusions about toxicity effects between different systems can be misleading and should be corrected. Specifically, it has been shown that hypomethylation triggers p53 dependent apoptosis (Jackson-Grusby et al., 2001 Nature Genetics). The authors do acknowledge the difference in p53 activity when comparing between DLD-1 and RPE-1 DNMT1 depleted cells. The reduced proliferation of RPE-1 cells would suggest that irrespective to the degron system, viability depends on tolerance of each cell line to hypomethylation (whether this is p53 dependent or not). DLD-1 cells seem to have a single nucleotide variant in p53 (p.Ser241Phe (c.722C>T)) (Liu et al., 2006 PNAS), that could potentially explain their viability upon hypomethylation, although further work is required to conclusively suggest such interaction. Furthermore, DNA methylation levels and chromatin organisation of RPE-1 NADNMT1 cells are not characterised in the manuscript and is unclear why. - Figure 1D, 1E: The authors provide a Western blot of DNMT (1/3A/3B) across the established cell lines. While some effects like the degradation of DNMT1 based on the degron system or the KO of DNMT3B are convincing (and work well to validate the cell lines), the observation about upregulation of DNMT3B when DNMT1 is degraded, or levels of DNMT1 after wash out, are not as convincing when only showing one blot. This is especially when considering that the DNMTs might have cell cycle expression differences. Additional replicas of the western blot and quantification of bands across replicas, or qPCR to show upregulation of DNMT transcripts, or imaging (like figure S1E), would help make the claim of DNMT3B upregulation and DNMT1 recovery more convincing. - The authors show that during wash out (after stopping the IAA treatment), DNMT1 levels can recover slightly and show the methylation levels of specific sites (figure 2B). However, the authors do not make any characterisation of the global levels of methylation levels and their potential recovery (?) after wash out. This could be either done by imaging (like in figure 1F and 1G) or dot blot (like figure S2A) or mass-spec.
The authors note that recovery of DNMT1 after wash out is to a lesser extent in the NADNMT1/DNMT3B-/- background. The authors do not speculate why would this be. Past reports of degron tagged proteins show that after treatment endogenous protein levels can recover. Does this hint towards a viability issue of the line due to excessive hypomethylation? While difficult to prove it would be useful to speculate why this effect occurs. - The authors employ DNAme arrays to assess the DNA methylation loss after degradation of DNMT1 and study where in the genome this occurs. Specifically, the authors look on differentially methylated probes between treated/non treated samples and demonstrate their abundance over different genomic regions (figure 2E and S2 H, I, J, K). However, this way of visualising the data is a bit difficult to interpret as differences can be small. Furthermore, number of probes across the genome is not uniformly distributed, so it would be useful to include these numbers. It would be helpful if authors can provide genome browser snapshots with methylation levels and accompanying histone marks (from available data, Rokavec et al., 2017?) like done in figure 4F, S4B and S5C to show representative regions that showcase their observations. Coverage of the EPIC array will mean that these tracks will not have high coverage and thus gaps, and ideally one would need whole genome bisulfite data, however hopefully some snapshots can demonstrate locus specific changes better.
Considering the function of DNMT1 in remethylating the DNA after replication, one would assume that methylation is lost equally across the genome as a simplistic model. Of course, there are many reasons like secondary functions of DNMT1, DNMT3A/3B and TET activity etc that could alter this and provide biases over regions of the genome. The authors discuss this and note most probes show such loss (106,647 of 178,529). It would be useful for the authors to better describe where the rest of the probes (that do not lose the expected methylation, annotated as 'late') are located and speculate what mechanisms might be involved. This is partly addressed in figures S2H and J, but it is not immediately clear what distinguishes late regions from early. Genome tracks with methylation levels and histone tracks as mentioned above could provide examples of regions.
The authors briefly discuss the role of DNMT1 and DNMT3B in methylating specific regions and their cooperativity as well as the underexplored de novo activity of DNMT1. Based on their findings, can the authors draw any new mechanistic conclusions/observations about the activity of DNMT1 and/or DNMT3B and how it is directed? Are there any sequence signatures or histone mark profiles that could explain the hypomethylation or remethylation (after wash out) of specific loci? - The authors observe that 70% of DMPs display an increased methylation in the DNMT3BKO cell line compares to NADNMT1. The authors speculate that this is due to an 'uncontrolled activity' of DNMT1 in the absence of DNMT3B. The increased levels observed could be a clonal effect when generating the KO line. While including additional clonal lines can be a significant amount of work, the authors should acknowledge the effects of clonality in their findings when comparing between the cell lines used (that do not relate to the IAA treatments). - In figures 3D and S3D, the authors compare the viability between IAA treated cells as well as DAC and GSK3685032 and observe increased toxicity/lethality in the case of DAC and GSK3685032. It would be helpful for the authors to discuss the dosage and concentration they used for each drug and why. In order to compare the viability of cells between treatment of different drugs, one would expect dosages that lead to equivalent extents of hypomethylation. - The authors show in figure 3 that the cell lines used have major cell cycle defects, with pronounce G1 arrest, when treated with IAA. Then the authors proceed to perform HiC in treated and untreated sample in figure 4. Can cell cycle differences be cofounding in chromatin compartments and thus affect the data observed in HiC? - For figure 4F and G the authors note a global reduction of H3K9me3 levels after treatment. It would be helpful if the authors include assessment of global levels of H3K9me3 (for e.g. by WB) or ChIP qPCR on loci of interest or specify the use of spike-in in methods, as alterations in global levels of a mark can lead to skewed normalisation/quantifications between samples. Alternatively, comparing the peaks/domains of a mark (and whether they are conserved across cell lines) but not directly compare levels can provide a safer interpretation of the data. - For figures 4F and S5C different days of treatment are provided, with HiC and H3K9me3 being done after 10d of IAA and CpG methylation after 4d of IAA. It is not explained why this discrepancy in days of treatment has occurred, which can be misleading as 10d treated cells should have lower methylation levels from 4d treated cells.
Minor comments:
- Typo in introduction: germiline
- Introduction has some sentences that might need rewording. For example: 'Somatic DNAme domains are erased right after fertilization to establish a totipotent germiline epigenotype, deposited de novo during early development and undergo massive re-shaping during differentiation, lineage specification, and in response to external cues; then, they are maintained and inherited through cell divisions'. It would be good if this is broken into smaller sections as it is hard to follow.
- Introduction does not include the degron technologies and their advancement in the last couple of years. Considering the main point of the paper is to establish an in vitro tool to study DNA methylation based on degrons, it would be helpful to include some information about the technology in the introduction.
- Introduction does not include HiC technologies and the different compartments (A/B, and further subcategories) that the genome can be divided in by them. As the authors then proceed to use HiC data and perform such genome compartmentalisation, it would be helpful if this is addressed briefly at the introduction.
- The authors do not mention the DNMT3BKO strategy they employed. Specifically, the exact strategy should be listed under 'Plasmids and Cell line generation'. A genotyping PCR at supplementary (like figure S1B) could be added. A schematic like Supplementary Figure S1A would also be helpful, but not necessary.
- The duration and concentration of DAC and GSK368503 are not always indicated in figure legends.
- Figure 1C. Homozygous intensity of GFP is much more heterogeneous than the heterozygous levels. It would be interesting if authors could speculate why this is.
- Figure S1D, S1E: Quantification of imaging experiments is shown, however there is no representative images of the staining performed. Incorporate an example image of each staining would be helpful to accompany the quantifications.
- Typo: 106,647 ("early") of 178,529 probes
- Figure 2D: DNA methylation levels in somatic cell lines usually have a bimodal distribution with highly and lowly methylated regions, thus the representation of the data with a boxplot can be misleading.
- Figure 3E: The no. of colonies after IAA removal (from figure 3D) is not included, as suggested from the text.
- Figure S3E: Aneuploidy will be dependent on number of cell divisions so it would be helpful if authors specified how long after treatment the experiment was performed.
- Figure S4B typo: On top track blue compartment is annotated as DLD1-H, while I think it should be DLD1-B2/B3?
- It would be helpful if the authors include an example image of how the segmentation and quantifications for figure 4A and 4B-C were performed as a supplementary figure, demonstrating the area they consider as periphery.
- Figure 3B-C have no error bars and figure legend mentions N>15643 cells per condition. It would be helpful if the number of cells per condition is included in the legend and error bars are included in the figure.
- The authors note that there must be a cooperative effect of DNMT1 and DNMT3B in maintaining DNA methylation and that they observe a strong additive effect in cell survival in double DNMT1/3B depleted cells. These observations have already been observed in the past in HCT116 cells, so it would be useful to cite these papers along with their observations. For e.g. Rhee et al., 2002 Nature, Cai et al., 2017 Genome Research
- A degron tagged DNMT1 in HCT116 cells has already been shown at Onoda et al 2022 bioRxiv that would be good to reference. While the authors in this preprint do not perform any characterisation of methylation levels of the tagged line as in this work, it provides a similar in vitro model that is helpful to include.
- The effects of extensive hypomethylation due to the lack of DNMT activity and its effect in 3D genome integrity has also been shown in the best and would be helpful to mention. For e.g. Du et al., 2021 Cell Reports
Significance
The authors in this work generate and characterise an untransformed (DLD-1) and cancer (RPE-1) cell line model of DNMT1 with a degron tag, as well as DNMT3BKO line of DLD-1 with the degron tagged DNMT1. These in vitro degron models allow for acute deletion of DNMT1 and induced hypomethylation and can be valuable tools to study the effect of DNA methylation in other epigenetic marks and cellular processes. The authors demonstrate the role of DNMT1 and DNMT3B and their cooperativity in maintaining DNA methylation levels in these cells, as previously demonstrated in similar somatic cell models. They also characterise the fitness of these cell lines after DNMT1 degradation and note their viability over DAC and GSK3685032 treatments that can have secondary cytotoxic effects. However, the viability of the cells and the reasons of observed lethality in some systems is underexplored, with the extent of hypomethylation in each system not specified. Finally, the authors show that DNMT1 and DNMT3B impact heterochromatin and the loss of DNA methylation leads to changes in chromatin compartmentalization (with HiC), which have been observed before. While the DNA methylation levels and chromatin organisation of DLD-1 cells was investigated, the authors do not provide any characterisation of these in RPE-1 cells. Furthermore, it appears that RPE-1 cells show more pronounced cell cycle defects and reduced viability hinting towards p53 dependent apoptosis due to loss of methylation, something which is not extensively explored. These observations suggest that the viability of the DLD-1 cells is 'DLD-1 specific'/p53 dependent and not due to the degron system overall. Nevertheless, these in vitro tools will be highly valuable in the epigenetics and specifically DNA methylation fields and their more comprehensive characterisation and will be of high significance.
My field of expertise lies within DNA methylation mechanisms and have limited expertise in HiC experiments.
-
-
docdrop.org docdrop.org
-
Tag endings are somewhat related to turnarounds in their basic harmonic structure, butplay different roles in tunes and complete performances. A tag ending occurs at the veryend of a tune, repeats a chord sequence (which in the course of subsequent repetitionsbecomes harmonically transformed), and has an indeterminate duration. Only the finalrepetition of the tag ending progression is harmonically closed with a clear confirmationof the tonic. Its basic role in the performance is to provide a satisfactory, coda-like endingwith a final improvisational flair. As Miles Davis demonstrated on his many recordings,tag endings may take on a life of their own—especially with Herbie Hancock, Ron Carter,and Tony Williams in the rhythm section—and frequently exceeded the length of his solos.2Tag endings and turnarounds often share similar chord progressions: the only differencebetween the Imaj7–vi7–ii7–V7 and the iii7–vi7–ii7–V7 is that the former begins on the tonicand the latter on the mediant chord. These two chords, Imaj7 and iii7, are said to befunctionally equivalent and are frequently used to substitute for one another. Figure 13.6illustrates a iii7–vi7–ii7–V7 tag ending progression realized with Model II of keyboardplaying. Each measure displaces the Charleston rhythm by a half beat.Each of these chords can be further substituted by a secondary dominant 7th and,subsequently, by a TR/X7. Since a tag ending progression is usually four bars long, wecan demonstrate the use of two harmonic techniques that will double the rate of harmonicrhythm in each measure. The technique of dominant saturation combines two dominant7th chords, diatonic or chromatic and its TR/X 7 (or vice versa) next to each other. Theuse of ii7–V7 diminution technique expands any dominant 7th chord into a local ii 7–V7
-
-
docdrop.org docdrop.org
-
The description of the lnverrary office space infuriated Coler. The surroundings were nice, he says, but by no means luxurious: "It's in a pretty place and it's on water, but it's adass B office space.•10 Nonetheless, the luxwy tag stuck.
This used as an example of the media using it's power to further influence the public.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public Review):
The authors combine the use of fluorogenic tools with fluorescence bioimaging to visualize how changes in the folding states of the RBPs TDP-43, FUS and TAF15 affect their subcellular localization and recruitment inside nuclear bodies, as well as protein fate. While the development of SNAP-tag substrates coupled with confocal microscopy in living cells (including FLIM) to monitor changes in protein folding states represents an important conceptual and technical advance for the field, I am not convinced that the authors fully achieved their aim. The authors cannot conclude on protein fate only based on the experiments performed here. Showing a correlation between a decrease in TDP-43 levels upon Hsp70 inhibition and colocalization at nuclear bodies with Hsp70 and DNAJA2 is not supporting their conclusion about protein degradation. A number of additional control experiments are needed to support their claims.
Yet, the optimization of these methods has unlimited potential since it may provide new ways to visualize and monitor a large variety of fundamental intracellular processes, including protein aggregation and fate.
-
Reviewer #3 (Public Review):
This manuscript presents a novel fluorescence toolkit designed for investigating the folding states of RNA-binding proteins (RBPs) and their association with molecular chaperones during liquid-liquid phase separation (LLPS) in the formation of nuclear bodies under stress. The strategy is to use SNAP-tag technology including cell lines stably expressing three model proteins fused with SNAP tag and a series of environmentally sensitive fluorophores that can selectively label on the SNAP proteins. The changes in the microenvironment such as microviscosity and micropolarity can be well characterized by these fluorophores to reflect the conformational states of the RBPs.
The strength of this method is that the SNAP protein is smaller than classic fluorescent proteins like GFP and thus its impact on the conformation and behavior of the targeted proteins is much smaller. The experiment is carefully designed and well thought-out. Overall, this work is of very high quality.
This method can thus be adapted by other protein systems to study the LLPS process and thus I believe it will be of great interest to cell biologists and biophysicists.
-
-
www.liberation.fr www.liberation.fr
-
Die französische Regierung legt einen Plan für Energieeinsparungen im Sommer vor, wobei sie sich vor allem auf freiwillige Maßnahmen der Unternehmen verlässt. Dazu gehört der Appell, dass die Angestellten nicht schneller als 110 Stundenkilometer fahren und an einem Tag in der Woche nur Tele gearbeitet wird. Ein ähnlicher Plan hatte den Gas- und Stromverbrauch im Winter um ca 12% gesenkt.https://www.liberation.fr/environnement/baisser-la-clim-rouler-moins-vite-teletravailler-le-plan-de-sobriete-energetique-se-met-a-lheure-dete-20230620_VCYQUBX7UFEB5O77AXVI4DLTW4/
-
-
stackoverflow.com stackoverflow.com
-
Have you ever: Been disappointed, surprised or hurt by a library etc. that had a bug that could have been fixed with inheritance and few lines of code, but due to private / final methods and classes were forced to wait for an official patch that might never come? I have. Wanted to use a library for a slightly different use case than was imagined by the authors but were unable to do so because of private / final methods and classes? I have.
-
Been disappointed, surprised or hurt by a library etc. that was overly permissive in it's extensibility? I have not.
-
-
www.biorxiv.org www.biorxiv.org
-
Background Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic data sets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multi-modal data sets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., ChIP-seq, ATAC-seq, or DNase-seq) and RNA-seq data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results.Results We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multi-modal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE data sets for cell lines K562 and MCF-7, including twelve histone modification ChIP-seq as well as ATAC-seq and DNase-seq datasets, where we observe and discuss assay-specific differences.Conclusion TF-Prioritizer accepts ATAC-seq, DNase-seq, or ChIP-seq and RNA-seq data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.
This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giad026), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:
Reviewer: Roza Berhanu Lemma
In this manuscript, Hoffmann and Trummer et al. reported a new automated pipeline that utilizes existing methods, namely (1) DESeq2 to perform differential gene expression between sample groups, (2) TEPIC, a method that links CREs to genes using a biophysical model TRAP and (3) DYNAMITE, which provides an aggregate score for TF-target genes that determine the contribution of TFs to condition specific changes between sample groups. Finally, the pipeline utilizes Mann-Whitney U test to prioritize TFs among a background distribution and a ChIP-seq specific TF distribution, which allows the identification of TFs with roles in condition-specific gene regulation. Their pipeline allows large-scale processing of data and returns a feature-rich and user-friendly interactive report.
The authors demonstrated how to use TF-prioritizer using public datasets for mouse mammary gland development study and performed independent validation using datasets from ChIP-Atlas. They were able to capture both known TFs with previously reported roles in mammary gland development/lactation and new TFs that may have a role in these processes. The work is very well thought and executed but to keep the quality of the work even higher, the authors should address the following points.
Major:
-
Although their validation nicely portrays the potential application of their pipeline in answering biological questions, my fear is for this not to be an isolated case. Therefore, the authors should test their pipeline using another example dataset and convince their readers. A suggestion could be, to run TF-Prioritizer on one of deeply profiled cell lines (e.g. K562, MCF-7, etc) to investigate TF prioritizations for e.g during differentiation (change of cell fate) and see if lineage determining TFs are prioritized in such cases. This may potentially highlight the versatility and robustness of TF-prioritizer. This is also important as your readers are not (certainly not all of them) from the mammary gland development field. As such, dedicating a large portion of your discussion about this process is too much. If you manage to highlight the versatility of your pipeline by capturing more than one specific developmental process will do the paper a great favor by highlighting the different ways TF-Prioritizer can be used, which in turn may attract more users to utilize your pipeline.
-
I have an issue on how the 'Results and Discussion' section is organized. The authors dedicated separate subtopics for each TFs they prioritized and made literature review of their role in mammary gland development and lactation. My recommendation is to instead have one subtopic and discuss these TFs paragraph by paragraph in a concise manner. A more concrete way to reorganize this will be to separate these into two subtopics, (1) Known TFs with role in mammary gland development/lactation (2) Novel TFs with predicted role in mammary gland development/lactation. To make these reorganization easier/smooth, cutdown details of what you observe in the figures (e.g. p16, line 22-27 and p17, line 1-3), discuss the main message and put the detailed text about the figures in the Figure captions
.3. All figures and tables should have more information in the caption including those in 'supplementary Material'Minor:1. p7 line 9, how often do one find these combinations of data types (modalities) in different conditions, cell types or models being studied. Could some of the HMs be replaced with other data modalities e.g ATAC-seq, DHS data or data from other chromosome profiling methods? Could the pipeline be adapted to incorporate Cut and tag/cut and run or is it specific to only ChIP-seq data. Authors should try to discuss whether this is possible or not.2. P13 line 3, the authors discuss that "ChIP-Atlas provides more than 362,121 datasets for six model organisms…". Could TF-Priotitizer be easily adapted to other databases/resources, which ChIP-Atlas do not cover (e.g. for other organisms) that the community might be interested in?3. p14 line 2 "... expressed gene for this analysis but focus on affinities only". Why this is the case is not argued/discussed. This and other choice of parameters would be nice if they are discussed under a separate subtopic to easily inform future readers/users of TF-Priotitizer
-
Figures should be cited in chronological order. Adjust the text or reorder the figures
-
When the authors discuss the evaluation of the prioritized TFs in separate sections, they often start with "In Figure Xa) …" and "Figure Yc) shows that …", etc, such kind of texts best fit as Figure captions instead of in the 'Results and Discussion'.
-
p21 line 16, "We predicted that several Rho GTPase-associated genes are regulated by the predicted TFs" This sentence sounds a bit circular, you may rephrase as follows 'We propose that our predicted TFs regulate several Rho GTPase-associated genes
'7. Figure 3 and 4 have the same general message/purpose and look redundant. This is reflected in the phrase '...(black arrows) as they are already known to be crucial in either mammary gland development or lactation.' and 'In the heatmaps, we can observe a clear separation of these target genes between the time points X and Y…'. I suggest the authors choose one of them as a main figure and place the other in Supplementary Material.
- On Fig.3,4 captions the authors should indicate what the black boxes represent. One can guess what they are from your main text but the captions could profit from a bit more detailed explanation. You should at-least describe some of the things that needs to be highlighted from the figures to easily guide your readers
-
-
-
levidigitalcommentary.org levidigitalcommentary.org
-
Deutsch spense la sigaretta, Goldner svegliò Sivadjan
Proper names. These are the first three of eleven or twelve (depending on how you count them) proper names of prisoners in the chapter (i.e. not including Dante and Ulisse). Levi uses them to create a vivid, peopled scene, to underline the mix of nationalities in the camp, and to bear witness to his fellow prisoners, many now dead. Later in the chapter, ‘Primo’ appears as a proper name for one of only three times in the whole book.
(For other names in this sequence, see, for example, also here, here, or here, or click on the 'names' tag to see linked comments).*
RG
-