4,823 Matching Annotations
  1. Jan 2024
    1. root.unmount() Call root.unmount to destroy a rendered tree inside a React root. root.unmount(); An app fully built with React will usually not have any calls to root.unmount. This is mostly useful if your React root’s DOM node (or any of its ancestors) may get removed from the DOM by some other code. For example, imagine a jQuery tab panel that removes inactive tabs from the DOM. If a tab gets removed, everything inside it (including the React roots inside) would get removed from the DOM as well. In that case, you need to tell React to “stop” managing the removed root’s content by calling root.unmount. Otherwise, the components inside the removed root won’t know to clean up and free up global resources like subscriptions. Calling root.unmount will unmount all the components in the root and “detach” React from the root DOM node, including removing any event handlers or state in the tree. Parameters root.unmount does not accept any parameters. Returns root.unmount returns undefined. Caveats Calling root.unmount will unmount all the components in the tree and “detach” React from the root DOM node. Once you call root.unmount you cannot call root.render again on the same root. Attempting to call root.render on an unmounted root will throw a “Cannot update an unmounted root” error. However, you can create a new root for the same DOM node after the previous root for that node has been unmounted. Usage Rendering an app fully built with React If your app is fully built with React, create a single root for your entire app. import { createRoot } from 'react-dom/client';const root = createRoot(document.getElementById('root'));root.render(<App />); Usually, you only need to run this code once at startup. It will: Find the browser DOM node defined in your HTML. Display the React component for your app inside. index.jsindex.htmlApp.jsindex.js ResetFork91234567import { createRoot } from 'react-dom/client';import App from './App.js';import './styles.css';const root = createRoot(document.getElementById('root'));root.render(<App />); If your app is fully built with React, you shouldn’t need to create any more roots, or to call root.render again. From this point on, React will manage the DOM of your entire app. To add more components, nest them inside the App component. When you need to update the UI, each of your components can do this by using state. When you need to display extra content like a modal or a tooltip outside the DOM node, render it with a portal. NoteWhen your HTML is empty, the user sees a blank page until the app’s JavaScript code loads and runs:<div id="root"></div>This can feel very slow! To solve this, you can generate the initial HTML from your components on the server or during the build. Then your visitors can read text, see images, and click links before any of the JavaScript code loads. We recommend using a framework that does this optimization out of the box. Depending on when it runs, this is called server-side rendering (SSR) or static site generation (SSG). PitfallApps using server rendering or static generation must call hydrateRoot instead of createRoot. React will then hydrate (reuse) the DOM nodes from your HTML instead of destroying and re-creating them. Rendering a page partially built with React If your page isn’t fully built with React, you can call createRoot multiple times to create a root for each top-level piece of UI managed by React. You can display different content in each root by calling root.render. Here, two different React components are rendered into two DOM nodes defined in the index.html file: index.jsindex.htmlComponents.jsindex.js ResetFork99123456789101112import './styles.css';import { createRoot } from 'react-dom/client';import { Comments, Navigation } from './Components.js';const navDomNode = document.getElementById('navigation');const navRoot = createRoot(navDomNode); navRoot.render(<Navigation />);const commentDomNode = document.getElementById('comments');const commentRoot = createRoot(commentDomNode); commentRoot.render(<Comments />); You could also create a new DOM node with document.createElement() and add it to the document manually. const domNode = document.createElement('div');const root = createRoot(domNode); root.render(<Comment />);document.body.appendChild(domNode); // You can add it anywhere in the document To remove the React tree from the DOM node and clean up all the resources used by it, call root.unmount. root.unmount(); This is mostly useful if your React components are inside an app written in a different framework. Updating a root component You can call render more than once on the same root. As long as the component tree structure matches up with what was previously rendered, React will preserve the state. Notice how you can type in the input, which means that the updates from repeated render calls every second in this example are not destructive: index.jsApp.jsindex.js ResetFork99123456789101112import { createRoot } from 'react-dom/client';import './styles.css';import App from './App.js';const root = createRoot(document.getElementById('root'));let i = 0;setInterval(() => { root.render(<App counter={i} />); i++;}, 1000); It is uncommon to call render multiple times. Usually, your components will update state instead. Troubleshooting I’ve created a root, but nothing is displayed Make sure you haven’t forgotten to actually render your app into the root: import { createRoot } from 'react-dom/client';import App from './App.js';const root = createRoot(document.getElementById('root'));root.render(<App />); Until you do that, nothing is displayed. I’m getting an error: “Target container is not a DOM element” This error means that whatever you’re passing to createRoot is not a DOM node. If you’re not sure what’s happening, try logging it: const domNode = document.getElementById('root');console.log(domNode); // ???const root = createRoot(domNode);root.render(<App />); For example, if domNode is null, it means that getElementById returned null. This will happen if there is no node in the document with the given ID at the time of your call. There may be a few reasons for it: The ID you’re looking for might differ from the ID you used in the HTML file. Check for typos! Your bundle’s <script> tag cannot “see” any DOM nodes that appear after it in the HTML. Another common way to get this error is to write createRoot(<App />) instead of createRoot(domNode). I’m getting an error: “Functions are not valid as a React child.” This error means that whatever you’re passing to root.render is not a React component. This may happen if you call root.render with Component instead of <Component />: // 🚩 Wrong: App is a function, not a Component.root.render(App);// ✅ Correct: <App /> is a component.root.render(<App />); Or if you pass a function to root.render, instead of the result of calling it: // 🚩 Wrong: createApp is a function, not a component.root.render(createApp);// ✅ Correct: call createApp to return a component.root.render(createApp()); My server-rendered HTML gets re-created from scratch If your app is server-rendered and includes the initial HTML generated by React, you might notice that creating a root and calling root.render deletes all that HTML, and then re-creates all the DOM nodes from scratch. This can be slower, resets focus and scroll positions, and may lose other user input. Server-rendered apps must use hydrateRoot instead of createRoot: import { hydrateRoot } from 'react-dom/client';import App from './App.js';hydrateRoot( document.getElementById('root'), <App />); Note that its API is different. In particular, usually there will be no further root.render call.

      Certainly! Let's break it down:

      1. What is root.unmount()?
      2. root.unmount() is a function in React that you can use to clean up and remove a rendered tree inside a React root. It's like saying, "Hey React, I'm done with this part, please clean it up."

      3. When do you need it?

      4. You might need it when the DOM node where your React app lives is going to be removed by some other code. For example, if you have a tab panel made with jQuery that removes inactive tabs, calling root.unmount() helps React know that it should stop managing the components inside the removed tab.

      5. What does it do?

      6. When you call root.unmount(), it removes all the React components in that part of the app and disconnects React from the corresponding DOM node. This cleanup includes removing event handlers and state.

      7. How to use it?

      8. If your entire app is built with React, you typically create one root at the beginning, and you don't need to call root.unmount(). You set it up once, and React takes care of everything. javascript const root = createRoot(document.getElementById('root')); root.render(<App />);

      9. Cautions and Restrictions:

      10. After calling root.unmount(), you can't call root.render() again on the same root. You would need to create a new root for the same DOM node.
      11. If you're using server rendering, use hydrateRoot instead of createRoot for the initial setup.

      12. Troubleshooting Tips:

      13. If nothing is displayed, make sure you actually called root.render(<App />);.
      14. If you get a "Target container is not a DOM element" error, check if the DOM node you're passing to createRoot is valid.
      15. If you get a "Functions are not valid as a React child" error, ensure you're passing a React component, not just a function.

      In simple terms, root.unmount() is like telling React, "I'm done with this part of the app, clean it up," and you typically use it in specific situations where parts of your app might be removed dynamically.

    1. API ReferenceLegacy React APIscreateElementcreateElement lets you create a React element. It serves as an alternative to writing JSX.const element = createElement(type, props, ...children) Reference createElement(type, props, ...children) Usage Creating an element without JSX Reference createElement(type, props, ...children) Call createElement to create a React element with the given type, props, and children. import { createElement } from 'react';function Greeting({ name }) { return createElement( 'h1', { className: 'greeting' }, 'Hello' );} See more examples below. Parameters type: The type argument must be a valid React component type. For example, it could be a tag name string (such as 'div' or 'span'), or a React component (a function, a class, or a special component like Fragment). props: The props argument must either be an object or null. If you pass null, it will be treated the same as an empty object. React will create an element with props matching the props you have passed. Note that ref and key from your props object are special and will not be available as element.props.ref and element.props.key on the returned element. They will be available as element.ref and element.key. optional ...children: Zero or more child nodes. They can be any React nodes, including React elements, strings, numbers, portals, empty nodes (null, undefined, true, and false), and arrays of React nodes. Returns createElement returns a React element object with a few properties: type: The type you have passed. props: The props you have passed except for ref and key. If the type is a component with legacy type.defaultProps, then any missing or undefined props will get the values from type.defaultProps. ref: The ref you have passed. If missing, null. key: The key you have passed, coerced to a string. If missing, null. Usually, you’ll return the element from your component or make it a child of another element. Although you may read the element’s properties, it’s best to treat every element as opaque after it’s created, and only render it. Caveats You must treat React elements and their props as immutable and never change their contents after creation. In development, React will freeze the returned element and its props property shallowly to enforce this. When you use JSX, you must start a tag with a capital letter to render your own custom component. In other words, <Something /> is equivalent to createElement(Something), but <something /> (lowercase) is equivalent to createElement('something') (note it’s a string, so it will be treated as a built-in HTML tag). You should only pass children as multiple arguments to createElement if they are all statically known, like createElement('h1', {}, child1, child2, child3). If your children are dynamic, pass the entire array as the third argument: createElement('ul', {}, listItems). This ensures that React will warn you about missing keys for any dynamic lists. For static lists this is not necessary because they never reorder. Usage Creating an element without JSX If you don’t like JSX or can’t use it in your project, you can use createElement as an alternative. To create an element without JSX, call createElement with some type, props, and children: import { createElement } from 'react';function Greeting({ name }) { return createElement( 'h1', { className: 'greeting' }, 'Hello ', createElement('i', null, name), '. Welcome!' );} The children are optional, and you can pass as many as you need (the example above has three children). This code will display a <h1> header with a greeting. For comparison, here is the same example rewritten with JSX: function Greeting({ name }) { return ( <h1 className="greeting"> Hello <i>{name}</i>. Welcome! </h1> );} To render your own React component, pass a function like Greeting as the type instead of a string like 'h1': export default function App() { return createElement(Greeting, { name: 'Taylor' });} With JSX, it would look like this: export default function App() { return <Greeting name="Taylor" />;} Here is a complete example written with createElement: App.jsApp.js ResetForkimport { createElement } from 'react'; function Greeting({ name }) { return createElement( 'h1', { className: 'greeting' }, 'Hello ', createElement('i', null, name), '. Welcome!' ); } export default function App() { return createElement( Greeting, { name: 'Taylor' } ); } Show more And here is the same example written using JSX: App.jsApp.js ResetForkfunction Greeting({ name }) { return ( <h1 className="greeting"> Hello <i>{name}</i>. Welcome! </h1> ); } export default function App() { return <Greeting name="Taylor" />; } Both coding styles are fine, so you can use whichever one you prefer for your project. The main benefit of using JSX compared to createElement is that it’s easy to see which closing tag corresponds to which opening tag.

      Certainly! Let's break down the information in a simpler way with examples:

      1. createElement Function:
      2. What it does: createElement is a function in React that allows you to create a React element. It's an alternative to using JSX.
      3. Example: javascript const element = createElement('h1', { className: 'greeting' }, 'Hello');

      4. Parameters:

      5. type: Specifies the type of element you want to create. It can be a tag name string (e.g., 'div', 'span') or a React component.
      6. props: An object that holds the properties (attributes) for the element.
      7. ...children: Optional. Represents child elements or content.
      8. Example: javascript createElement('h1', { className: 'greeting' }, 'Hello', createElement('i', null, 'World'));

      9. Returns:

      10. The function returns a React element object with properties like type, props, ref, and key.
      11. Example: javascript const element = createElement('h1', { className: 'greeting' }, 'Hello'); console.log(element.type); // 'h1' console.log(element.props); // { className: 'greeting' }

      12. Usage Caveats:

      13. React elements and their props should be treated as immutable. They should not be changed after creation.
      14. JSX tags should start with a capital letter for custom components.
      15. When using JSX, dynamic children should be passed as an array to ensure React warns about missing keys for dynamic lists.
      16. Example: javascript createElement('ul', {}, listItems); // Dynamic children as an array

      17. Creating an Element Without JSX:

      18. If you're not using JSX, you can use createElement to create elements.
      19. Example: javascript function Greeting({ name }) { return createElement('h1', { className: 'greeting' }, 'Hello ', createElement('i', null, name), '. Welcome!'); }

      20. Comparison with JSX:

      21. JSX is a more concise and readable way to create elements compared to using createElement.
      22. Example: javascript function Greeting({ name }) { return <h1 className="greeting">Hello <i>{name}</i>. Welcome!</h1>; }

      23. Rendering Your Own Component:

      24. You can use createElement to render your own React components.
      25. Example: javascript export default function App() { return createElement(Greeting, { name: 'Taylor' }); }
      26. With JSX: javascript export default function App() { return <Greeting name="Taylor" />;

      In summary, createElement is a foundational function in React for creating elements, and it is often used behind the scenes when JSX is transpiled. While it's useful, JSX provides a more readable syntax for creating React elements. You can choose the style that best fits your project.

    1. How I Start My School Year: Lesson One,

      PE is the field I am going into. After reading this article I have learned a couple new things. Responsibility, respectfulness, and gratefulness are very important in any classrroom. I like the things talked about, and even the videos of the frozen tag game he explained.

    1. Die OPEC geht davon aus, dass sich die Nachfrage nach Öl in diesem Jahr um 2,25 Millionen Barrel pro Tag erhöhen wird. Für das kommende Jahr erwartet die OPEC eine Steigerung um 1,85 Millionen Barrel am Tag. Die Prognosen der OPEC liegen deutlich höher als die der IEA. Die USA haben in der zweiten Januarwoche mit mit 13,3 Millionen Barrel pro Tag einen neuen Rekord in der Ölproduktion aufgestellt. https://www.reuters.com/business/energy/oil-prices-edge-higher-opec-demand-estimate-while-cold-hits-us-output-2024-01-18/

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We are thankful to the reviewers for the time and effort invested in assessing our manuscript and for their suggestions to improve it. We have now considered the points raised by them, carried out additional experiments, and modified the text and figures to address them. We feel that the new experiments and modifications have been able to solve all concerns raised by the reviewers and have improved the manuscript substantially, strengthening and extending our conclusions.

      The main modifications include:

      • We have extended the analysis of the overexpression strains to highly stringent conditions, which revealed a mild acidification defect for the strain overexpressing Oxr1. In addition, we have included in our analysis a strain in which both proteins are overexpressed, which resulted in a further growth defect.
      • We have analyzed the recruitment of Rtc5 to the vacuole under additional conditions: deletion of the main subunit of the RAVE complex RAV1, medium containing galactose as the sole carbon source and pharmacological inhibition of the V-ATPase. These experiments allowed us to strengthen and extend our conclusions regarding the requirements for Rtc5 targeting to the vacuole.
      • We have analyzed V-ATPase disassembly in intact cells, by addressing the localization to the vacuole of subunit C (Vma5) in glucose and galactose-containing medium. The results strengthen our conclusion that both Rtc5 and Oxr1 promote an in vivo state of lower V-ATPase assembly.
      • We have extended our analyses of V-ATPase function to medium containing galactose as a carbon source, since glucose availability is one of the main regulators of V-ATPase function in vivo. The results are consistent with what we observed in glucose-containing medium.
      • We have included a diagram of the structure of the V-ATPase for reference.
      • We have included a diagram and a paragraph describing Oxr1 and Rtc5 regarding protein length and domain architecture and comparing them to other TLDc domain-containing proteins.
      • We have made changes to the text and figures to improve clarity and accuracy, including a methods section that was missing. We include below a point-by-point response to the reviewers´ comments.

      2. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __ __Suggestions:

      1. The authors observed that knockout of Rtc5p or Oxr1p does not affect vacuolar pH. If Rtc5p and Oxr1p both cooperate to dissociate V-ATPase, the authors may wish to characterize the effect of a ∆Rtc5p∆Oxr1p double knockout on vacuolar pH. The double mutant ∆rtc5∆oxr1 was already included in the original manuscript (the growth test is shown in Figure 5 B and the BCECF staining is shown in Figure 5C). This strain behaved like wt in both of these assays. Of note, what we observe for the deletion strains is increased assembly (Figure 5 D - G), so we expect that it would be hard to observe a difference in vacuole acidity or growth in the presence of metals.

      Therefore, we have now also included a strain with the double overexpression of Oxr1 and Rtc5. Since overexpression of the proteins results in decreased assembly, it is more likely that this strain will show impaired growth under conditions that strongly rely on V-ATPase activity. Indeed, we observed that the overexpression of Oxr1 alone resulted in a slight growth defect in media containing high concentrations of ZnCl2 and the double overexpression strain showed an even further defect (Figure 6 A and C).

      The manuscript would benefit from a well-labelled diagram showing the subunits of V-ATPase (e.g. in Figure 2D).

      We agree with the reviewer and we have now added a diagram of the structure of the V-ATPase labeling the different subunits in Figure 2B.

      The images of structures, especially in Figure 1-Supplement 1B, are not particularly clear and could be improved (e.g. by removing shadows or using transparency).

      We are thankful to the reviewer for this suggestion. To improve the clarity of the structures in Figure 1 C and Figure 1 – Supplement 1A, we are now presenting the different subunits in the structures with different shades of blue and grey.

      The authors should clearly describe the differences between Rtc5p and Oxr1p in terms of protein length, sequence identity, domain structure, etc.

      We are thankful for this suggestion and we have now included a diagram of the domain architecture and protein length of Rtc5 and Oxr1, comparing with two human proteins containing a TLDc domain in Figure 5A. In addition, we have added the following paragraph describing the features of the proteins.

      “Rtc5 is a 567 residue-long protein. Analysis of the protein using HHPred (Zimmermann et al., 2018), finds homology to the structure of porcine Meak7 (PDB ID: 7U8O, (Zi Tan et al., 2022)) over the whole protein sequence (residues 37-559). For both yeast Rtc5 and human Meak7 (Uniprot ID: Q6P9B6), HHPred detects homology of the C-terminal region to other TLDc domain containing proteins like yeast Oxr1 (PDBID: 7FDE), Drosophila melanogaster Skywalker (PDB ID: 6R82), and human NCOA7 (PDB ID: 7OBP), while the N-terminus has similarity to EF-hand domain calcium-binding proteins (PDB IDs: 1EG3, 2CT9, 1S6C6, Figure 5A). HHPred analysis of the 273 residue long Saccharomyces cerevisiae Oxr1, on the other hand, only detects similarity to TLDc domain containing proteins (PDB IDs: 7U80, 6R82, 7OBP), which spans the majority of the sequence of the protein (residues 71-273). The overall sequence identity between Oxr1 and Rtc5 is 24% according to a ClustalOmega alignment within Uniprot. The Alphafold model that we generated for Rtc5 is in good agreement with the available partial structure of Oxr1 (7FDE) (root mean square deviation (RMSD) of 3.509Å) (Figure 5 - S1 A), indicating they are structurally very similar, in the region of the TLDc domain. Taken together, these analyses suggest that Oxr1 belongs to a group of TLDc domain-containing proteins consisting mainly of just this domain like the splice variants Oxr1-C or NCOA7-B in humans (NP_001185464 and NP_001186551, respectively), while Rtc5 belongs to a group containing an additional N-terminal EF-hand-like domain and a N-myristoylation sequence, like human Meak7 (Finelli & Oliver, 2017) (Figure 5 A).”

      Minor:

      1. The "O" in VO should be capitalized. This has been corrected.

      In Figure 4 supplement 1, the labels "I", "S", and "P" should be defined.

      This has been clarified in the figure legend.

      Please clarify what is meant by "switched labelling"

      This refers to the SILAC vacuole proteomics experiments, for which yeast strains are grown in medium containing either L-Lysine or 13C6;15N2- L-Lysine to produce normal (‘light’) or heavy isotope-labeled (‘heavy’) proteins. This allows comparing two conditions. To increase the robustness of the comparisons, the experiments are done twice with both possible labeling schemes (condition A – light, condition B – heavy + condition A – heavy + condition B – light), which is commonly described as switched labeling or label switching.

      We have exchanged the original sentence in the manuscript for:

      “Performing the same experiments but switching which strain was labeled with heavy and light amino acids gave consistent results.”

      The meaning of the sentence "Indeed, this was the case for both of them" is ambiguous.

      We have now replaced this sentence with the following:

      “Indeed, overexpression of either Rtc5 or Oxr1 resulted in increased growth defects in the context of Stv1 deletion (Figure 7 H and I).”

      For Figure 1-Supplement 1B it is hard to see the crosslink distances.

      We have updated this figure to improve the visibility of the cross-links. In addition, we now include a supplemental table (supplemental table 5) with a list of the Cα- Cα distances measured for all the crosslinks we mapped onto high-resolution structures.

      The statement "The effects of Oxr1 are greater than those caused by Rtc5" requires more context. Is there a way of quantifying this effect for the reader?

      We agree that this sentence was too general and vague. The effects caused by one or the other protein depend on the condition and the assay. We have thus deleted this sentence, and we think it is better to refer to the description of the individual assays performed.

      The phrase "negative genetic interaction" should be clarified.

      We have included in the text the following explanation of genetic interactions:

      “A genetic interaction occurs when the combination of two mutations results in a different phenotype from that expected from the addition of the phenotypes of the individual mutations. For example, deletion of OXR1 or RTC5 has no impact on growth in neutral pH media containing zinc in a control background but improves the growth of RAV1 deletion strains (Figure 7 E and F), so this is a positive genetic interaction. On the other hand, overexpression of either Rtc5 or Oxr1 results in a growth defect in a background lacking Rav1 in neutral media containing zinc, a negative genetic interaction.”

      * * In the sentence "Isogenic strains with the indicated modifications in the genome where spotted as serial dilutions in media with pH=5.5, pH=7.5 or pH=7.5 and containing 3 mM ZnCl2", "where" should be "were".

      This has been corrected.

      Figure 2D: the authors should consider re-coloring these models, as it is challenging to distinguish Rtc5p from the V-ATPase.

      We have changed the coloring of this structure and added a diagram of the V-ATPase structure with the same coloring scheme to improve clarity.

      Reviewer #1 (Significance (Required)):

      The vacuolar protein interaction map alone from this manuscript is a nice contribution to the literature. Experiments establishing colocalization of Rtc5p to the vacuole are convincing, as is dependence of this association on the presence of assembled V-ATPase. Similarly, experiments related to myristoylation are convincing. The observed mislocalization of V-ATPases that contain Stv1p to the vacuole (which is also known to occur when Vph1p has been knocked out) upon knockout of Oxr1p is also extremely interesting. Overall, this is an interesting manuscript that contributes to our understand of TLDc proteins.

      We are thankful to the reviewer for their appreciation of the significance of our work, including the interactome map of the vacuole as a resource and the advances on the understanding of the regulation of the V-ATPase by TLDc domain-containing proteins.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Major points:

      1. The evidence of Oxr1 and Rtc5 as V-ATPase disassembly factors is circumstantial. The authors base their interpretation primarily on increased V1 (but not Vo) at purified vacuoles from Oxr1- or Rtc5-deleted strains, which does not directly address disassembly. Of course, the results regarding Oxr1 confirm detailed disassembly experiments with the purified protein complex (PMID 34918374), but on their own are open to other interpretations, e.g. suppression of V-ATPase assembly. Of note, the authors emphasize that they provide first evidence of the in vivo role of Oxr1, but monitor V1 recruitment with purified vacuoles and do not follow V-ATPase assembly in intact cells. We are thankful to the reviewer for pointing this out. We did not want to express that the molecular activity of the proteins is the disassembly of the complex, as our analyses include in vivo and ex vivo experiments and do not directly address this. We rather meant that both proteins promote an in vivo state of lower assembly of the V-ATPase. We have modified the wording throughout the manuscript to be clearer about this.

      In addition, we have added new experiments to monitor V-ATPase assembly in intact cells, as suggested by the reviewer. Previous work has shown that in yeast, only subunit C leaves the vacuole membrane under conditions that promote disassembly, while the other subunits remain at the vacuole membrane (Tabke et al 2014). Our own experiments agree with what was published (Figure 3 D). We have thus monitored Vma5 localization to the vacuole under glucose or after shift to galactose containing media in cells lacking or overexpressing Rtc5 or Oxr1. We observed that cells overexpressing either TLDc domain protein show lower levels of Vma5 recruitment to the vacuole in glucose (Figure 6 D and E). Additionally cells lacking either Rtc5 or Oxr1 contain higher levels of Vma5 at the vacuole after 20 minutes in galactose medium (Figure 5 F and G). Thus, these results re-inforce our conclusions that Rtc5 and Oxr1 promote states of lower assembly.

      Oxr1 and Rtc5 have very low sequence similarity. It would be helpful if the authors provided more detail on the predicted structure of the putative TLDc domain of Rtc5 and its relationship to the V-ATPase - Oxr1 structure. Is Rtc5 more closely related to established TLDc domain proteins in other organisms?

      We have now included a diagram of the domain architecture of Rtc5 and Oxr1, and comparison to the features of other TLDc domain containing proteins in Figure 5 A, as well as a paragraph describing them:

      “Rtc5 is a 567 residue-long protein. Analysis of the protein using HHPred (Zimmermann et al., 2018), finds homology to the structure of porcine Meak7 (PDB ID: 7U8O, (Zi Tan et al., 2022)) over the whole protein sequence (residues 37-559). For both yeast Rtc5 and human Meak7 (Uniprot ID: Q6P9B6), HHPred detects homology of the C-terminal region to other TLDc domain containing proteins like yeast Oxr1 (PDBID: 7FDE), Drosophila melanogaster Skywalker (PDB ID: 6R82), and human NCOA7 (PDB ID: 7OBP), while the N-terminus has similarity to EF-hand domain calcium-binding proteins (PDB IDs: 1EG3, 2CT9, 1S6C6, Figure 5A). HHPred analysis of the 273 residue long Saccharomyces cerevisiae Oxr1, on the other hand, only detects similarity to TLDc domain containing proteins (PDB IDs: 7U80, 6R82, 7OBP), which spans the majority of the sequence of the protein (residues 71-273). The overall sequence identity between Oxr1 and Rtc5 is 24% according to a ClustalOmega alignment within Uniprot. The Alphafold model that we generated for Rtc5 is in good agreement with the available partial structure of Oxr1 (7FDE) (root mean square deviation (RMSD) of 3.509Å) (Figure 5 - S1 A), indicating they are structurally very similar, in the region of the TLDc domain. Taken together, these analyses suggest that Oxr1 belongs to a subfamily of TLDc domain-containing proteins consisting mainly of just this domain like the splice variants Oxr1-C or NCOA7-B in humans (NP_001185464 and NP_001186551, respectively) , while Rtc5 belongs to a subfamily containing an additional N-terminal EF-hand-like domain and a N-myristoylation sequence, like human Meak7 (Finelli & Oliver, 2017) (Figure 5 A).”

      The authors conclude vacuolar recruitment of Rtc5 depends on the assembled V-ATPase, based on deletion of different V1 and Vo domain subunits. However, these genetic manipulations likely cause a strong perturbation of vacuolar acidification; indeed, the images show drastically altered vacuolar morphology. To strengthen their conclusion, it would be helpful to show that Rtc5 recruitment is not blocked by inhibition of vacuolar acidification, and that conversely it is blocked by deletion of rav1.

      We are thankful to the reviewer for this insightful suggestion and we have now performed both experiments suggested. The experiment regarding rav1Δ is now Figure 3C, and we observed that this mutation also disrupts Rtc5 localization to the vacuole. In addition, we decided to include an experiment showing the subcellular localization of Rtc5 after shifting the cells to galactose containing medium for 20 minutes, as a physiologically relevant condition that results in disassembly of the complex (Figure 3D). We observed that under these conditions Rtc5 re-localizes to the cytosol. This result is particularly interesting given that in yeast only subunit C (but not other V1 subunits) re-localizes to the cytosol under these conditions. In addition, the experiment using Bafilomycin A to inhibit the V-ATPase shows that Rtc5 is still localized at the vacuole membrane under conditions of V-ATPase inhibition (Figure 3 F). Taken together these results allowed us to strengthen our original interpretation that Rtc5 requires an assembled V-ATPase for its localization and extend it to the fact that the V-ATPase does not need to be active.

      Reviewer #2 (Significance (Required)):

      This is an interesting paper that confirms and extends previous findings on TLDc domain proteins as a novel class of proteins that interact with and regulate the V-ATPase in eukaryotes. The title seems to exaggerate the findings a bit, as the authors do not investigate V-ATPase (dis)assembly directly and only phenotypically describe altered subcellular localization of the Golgi V-ATPase in Oxr1-deleted cells. A recent structural and biochemical characterization of Oxr1 as a V-ATPase disassembly factor (PMID 34918374) somewhat limits the novelty of the results, but the function of Oxr1 in regulating subcellular V-ATPase localization and the identification of a second potential TLDc domain protein in yeast provide relevant insights into V-ATPase regulation. This paper will be of interest to cell biologists and biochemists working on lysosomal biology, organelle proteomics and V-ATPase regulation.

      We thank the reviewer for the assessment of our work, and for recognizing the novel insights that we provide. Regarding the previous biochemical work on Oxr1 and the V-ATPase, we have clearly cited this work in the manuscript. In our opinion, our results complement and extend this article, showing that the function in disassembly is relevant in vivo. Additionally, this is only one of five major points of the article, the other four being

      • The interactome map of the vacuole as a resource
      • The identification of Rtc5 as a second yeast TLDc domain containing protein and interactor of the V-ATPase.
      • The identification of the role of Rtc5 in V-ATPase assembly.
      • The identification of the role of Oxr1 in Stv1 subcellular localization. We believe these additional points add important insights to researchers interested in lysosomes, the V-ATPase, intracellular trafficking and TLDc-domain containing proteins.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Major comments

      __1) Re: A cross-linking mass spectrometry map of vacuolar protein interactions (results) __ While XL-MS is a very powerful method, it is a high-throughput approach and there should be some kind of negative control in these experiments. In cross-linking experiments, non-cross-linked samples are usually used as negative controls. What was the negative control in cross-linking mass-spectrometry experiments here? If there was no negative control, how the specificity of interactions was evaluated? Maybe the authors analyzed the dataset for highly improbable interactions and found very few of them?

      We fully agree that it is crucial to ensure the specificity of the interactions detected by XL-MS. To achieve this, one needs to control (1) the specificity of the data analysis (i.e. that the recorded mass spectrometry data are correctly matched to cross-linked peptides from the sequence database) and (2) the biological specificity (i.e. that the cross-linking captured natively occurring interactions).

      To ascertain that criterion (1) is met, cross-link identifications are filtered to a pre-defined false-discovery rate (FDR) – an approach that the XL-MS field adopted from mass spectrometry-based proteomics. As a result, low-confidence identifications (e.g. cross-linked peptides that are only supported by a few signals in a given mass spectrum) are removed from the dataset. FDR filtering in XL-MS is a rather complex matter as it can be done at different points during data analysis and the optimal FDR cut-off depends on the specific scientific question at hand (for more details see for example Fischer and Rappsilber, Anal Chem, 2017). Generally speaking, an overly restrictive FDR cut-off would remove a lot of correct identifications, thereby greatly limiting the sensitivity of the analysis. On the other hand, a too relaxed FDR cut-off would dilute the correct identifications with a high number of false-positives, which would impair the robustness and specificity of the dataset. While many XL-MS study control the FDR on the level of individual spectrum matches, we opted for a 2% FDR cut-off on the level of unique residue pairs, which is more stringent (see Fischer and Rappsilber, Anal Chem, 2017). Our FDR parameters are described in the Methods section (Cross-linking mass spectrometry of isolated vacuoles - Data analysis). Of note, we have made all raw mass spectrometry data publicly available through the PRIDE repository (https://www.ebi.ac.uk/pride/ ; accession code PXD046792; login details during peer review: Username = reviewer_pxd046792@ebi.ac.uk, Password = q1645lTP). This will allow other researchers to re-analyze our data with the data analysis settings of their choice in the future.

      To ascertain that criterion (2) is met, we mapped the identified cross-links onto existing high-resolution structures of vacuolar protein complexes. Taking into account the length of our cross-linking reagent, the side-chain length of the cross-linkable amino acids (i.e. lysines), and a certain degree of in-solution flexibility, cross-links can reasonably occur between lysines with a mutual Cα-Cα distance of up to 35 Å. Using this cut-off, the lysine-lysine pairs in the high-resolution structures we studied can be split into possible cross-linking partners (Cα-Cα distance 35 Å). Of all cross-links we could map onto high-resolution structures, 95.2% occurred between possible cross-linking partners. In addition, our cross-links reflect numerous known vacuolar protein interactions that have not yet been structurally characterized. These lines of evidence increase our confidence that our XL-MS approach captured genuine, natively occurring interactions. These analyses are described in more detail in the first Results sub-section (“A cross-linking mass spectrometry map of vacuolar protein interactions”).

      In addition, the high purity of vacuole preparation is critical. How was it assessed by the authors?

      We disagree that the purity of the vacuole preparation is critical for this analysis to be valid. The accuracy of the protein-protein interactions detected will depend on their preservation during sample preparation until the sample encounters the cross-linker, and the data analysis, as described above. The experiment would have been equally valid if performed on whole cell lysates without any enrichment of vacuoles, but the coverage of vacuolar proteins would have likely been very low. For this reason, we decided to use the vacuole isolation procedure to obtain better coverage of the proteins of this particular organelle. The use of the Ficoll gradient protocol (Haas, 1995) was based on that it is a protocol that yields strong enrichment of proteins annotated with the GO Term “vacuole” (Eising et al, 2019) and that it preserves the functionality of the organelle, as evidenced by its use for multiple functional assays (vacuole-vacuole fusion (Haas, 1995), autophagosome-vacuole fusion (Gao et al, 2018), polyphosphate synthesis by the VTC complex (Desfougéres et al, 2016), among others).

      2) Re: Rtc5 and Oxr1 counteract the function of the RAVE complex (results)

      Taken together, data, presented in this section of the manuscript, provide strong evidence that Rtc5 and Oxr1 negatively regulate V-ATPase activity, counteracting the V-ATPase assembly, facilitated by the activity of the RAVE complex. However, the complete deletion of the major RAVE subunit Rav1p was required to observe this effect in vivo in yeast. The other way to induce V-ATPase disassembly in yeast is glucose deprivation. It will be interesting to study if there is a synergistic effect between glucose deprivation and RTC5/OXR1 deletion on V-ATPase assembly, vacuolar pH, and growth of single oxr1Δ, rtc5Δ or double oxr1Δrtc5Δ mutants (OPTIONAL). Glucose deprivation is a more physiologically relevant condition than a deletion of an entire gene.

      We would like to point out that an effect on assembly is observed without deleting the RAVE complex: deletions of Oxr1 or Rtc5 resulted in increased V-ATPase assembly in vivo in the presence of glucose and of the RAVE complex (Figures 5 D and E). We have now also added the experiments showing that the overexpression strains have a mild growth defect under conditions that force cells to strongly rely on V-ATPase activity (Figures 6 A and C).

      Nevertheless, we agree that addressing the effect of changing the levels of Oxr1 and Rtc5 under low-glucose conditions is an interesting physiologically relevant question. We have now included growth assays and BCECF staining in medium containing galactose as the carbon source (Figures 5 – Supplement 1 B and C, and Figure 6 C and Figure 6- Supplement 1A). In addition, we have addressed the vacuolar localization of Vma5 in medium containing glucose or after shifting to medium containing galactose for 20 minutes, as a proxy for V-ATPase disassembly in intact cells (Figure 5 F and G, Figure 6 D and E). Taken together, these analyses reinforce our conclusions that both Rtc5 and Oxr1 promote an in vivo state of lower V-ATPase assembly, based on the following observations:

      • Higher localization of Vma5 to the vacuole after 20 mins in galactose in cells lacking Oxr1 or Rtc5 (Figure 5 F and G).
      • Lower localization of Vma5 to the vacuole in medium containing glucose in cells overexpressing Oxr1 or Rtc5 (Figure 6 D and E).
      • Growth defect of the strain overexpressing Oxr1 in medium containing galactose with pH = 7.5 and zinc chloride, with a further growth defect caused by additional overexpression of Rtc5 (Figure 6 C). 3) Re: Figure 6 - supplement 1. The title is relevant to panel D only, it should be renamed to reflect the results of the disassembly of V-ATPase in rav1Δ mutant strains, while results about the stv1Δ-based strains (Panel D) should be shown together with similar experiments in Figure 7 - supplement 2 for clarity.

      We have shifted the Panel D from the original Figure 6 – Supplement 1 to the main Figure (now Figure 7 – H and I). Regarding the title of the Figure, whether Supplemental Figures have titles or not will depend on the journal where the manuscript is published. For now, we have removed all titles from supplemental figures, as they are conceived to complement the main Figures.

      4) Re: Figure 7 - supplement 1, Panel A. The proper assay to show that Stv1-mNeonGreen is functional is to express it in double mutant vph1Δstv1Δ to see if the growth defect is reversed. In addition, the vph1Δ growth defect is not changed (improved or worsened) in the presence of Stv1-mNeonGreen, so it means that the expression of Stv1-mNeonGreen does not further compromise the V-ATPase function, but it does not mean that it improves its function.

      It is clear from the experiment suggested by the reviewer that they think that we have expressed Stv1-mNeonGreen from a plasmid. This was not the case, Stv1 was C-terminally tagged with mNeonGreen in the genome. It is thus the only expressed version in the strain. The experiment we have performed is thus equivalent to the one suggested by the reviewer, but for genomically expressed variants. For reference, the genotypes of all the strains used can be found in Supplemental Table 1.

      5) Re: Figure 7 - supplement 2. This figure should be combined with Fig. 6- suppl 1, panel D as also mentioned above. The figure seems to lack some labels, and conclusions are not accurate as discussed below. However, this data provides important additional information about relationships between isoform-specific subunits of V-ATPase Vph1 and Stv1 and both Rtc5 and Oxr1 and should be repeated if it is not done yet to have a better idea about these relationships.

      Panel B: Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of VPH1, since double deletion mutant vph1Δ rtc5Δ grows worse than each individual mutant. Although it also means that there is no positive interaction, it is not the same.

      Indeed, there is a negative genetic interaction between the deletion of RTC5 and VPH1. We have replaced the growth tests in this figure (Figure 8 – Supplement 2 A in the new manuscript) to show this negative genetic interaction better. This effect is reproducible, as shown in the repetitions of the experiments.

      Panel C: Same as for panel B. Based on this picture, the deletion of OXR1 has a weak negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ oxr1Δ grows worse than each individual mutant at 6 mM ZnCl2.

      Panel D: Same as for panels B and C. Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ rtc5Δ grows worse than each individual mutant at 6 mM ZnCl2. There is no label in the middle panel (growth conditions) and no growth assay data in the presence of CaCl2.

      However, these results will be then in contradiction with the results from Figure 6 - Supplement 1, panel D, showing negative genetic interaction between the overexpression of Rtc5 or Oxr1 and deletion of Stv1, since both deletion and overexpression of Rtc5 or Oxr1 would have negative genetic interactions with Stv1.

      For both Panels C and D (Now Figure 8 - Supplement 2 B and C). The effect pointed out by the reviewer (slightly stronger growth defect for the double mutants than for the single mutants) is very mild. We have attempted to make it more evident by assessing growth in medium with higher and lower concentrations of zinc and this was not possible. This is in contrast with the very clear positive genetic interaction that we observe between the deletion of OXR1 and VPH1 (Now Figure 8 H). This is the reason that we decided to report the lack of a positive genetic interaction instead of the presence of a negative one, as we do not want to draw conclusions based on results that are borderline detectable.

      In addition, there is no label for the media in the middle panel, is it just YPAD pH=7.5, without the addition of any metals?

      Indeed, the media is YPAD pH=7.5, without the addition of any metals. The line drawn above several images based on this media indicated this. Since this form of labeling appears to be confusing, we have now replaced it and placed the label directly above the image.

      Why there is no growth assay in the presence of CaCl2, like in panels A and B?

      Every growth test shown in the manuscript was performed including growth in YPD pH=5,5 as a control of a permissive condition for lack of V-ATPase activity, and then in YPD pH=7,5 including a broad range of Zinc Chloride and Calcium chloride concentrations. From all these pictures, the conditions where the differences among strains were clearly visible were chosen to assemble the figures. Conditions that did not provide any information for that particular experiment were not included in the figure to avoid making them unnecessarily large and crowded.

      Re: Figure 7 - supplement 2, continued. How many times all these experiments were repeated? These experiments should be repeated at least 3 times, which is especially necessary for the experiments in panel C, because the effects are borderline. If results are reproducible and statistically significant, although small, the conclusion should be changed from "no positive genetic interactions" to "negative genetic interactions", which is more precise and informative.

      All growth tests shown in the manuscript were repeated at least three times for the conditions shown. We are thankful to the reviewer for pointing out that this was not mentioned, and we have added this to the methods section. We have assembled a file with all repetitions of the shown growth tests and added it at the end of this file. In doing so, these are already available for the public. These repetitions show that all effects reported are reproducible. We will then discuss with the editors of the journal where this manuscript is published about the necessity of including it with the final article.

      Regarding reporting the lack of a positive genetic interaction vs. a negative one, we have discussed this above. Shortly, for Panel B (Figure 8 – Supplement 2 A in the new manuscript) we have changed the conclusion to “negative genetic interaction” as adjusting the zinc chloride concentration allowed us to show this clearly and reproducibly, as shown by the repetitions of the experiments. For panels C and D (Now Figure 8 - Supplement 2 B and C), the effect is really mild and barely detectable, even when we tried a wide range of zinc chloride concentrations. For this reason, we would prefer to maintain the “no positive genetic interaction” conclusion.

      Re: Methods. There is no description of yeast serial dilution growth assay at all. In addition, why the specific media (neutral pH, in the presence of high concentrations of calcium or zinc) was used is not explained either in the results or methods. Appropriate references should be included, for example, PMID: 2139726, PMID: 1491236.

      We apologize for the oversight of the missing methods section, which we have now included.

      Regarding the explanation of the media used, the following section was already a part of the results section, before the description of the first growth test:

      “The V-ATPase is not essential for viability in yeast cells, and mutants lacking subunits of this complex grow similarly to a wt strain in acidic media. However, when cells grow at near-neutral pH or in the presence of divalent cations such as calcium and zinc, the mutants lacking V-ATPase function show a strong growth impairment (Kane et al, 2006).”

      We have now replaced this with the following, more complete version:

      “As a first approach for addressing the role of these proteins, we tested growth phenotypes related to V-ATPase function in strains lacking or overexpressing them. The V-ATPase is not essential for viability in yeast cells, and mutants lacking subunits of this complex grow similarly to a wt strain in acidic media, but display a growth defect at near-neutral pH the mutants (Nelson & Nelson, 1990). In addition, the proton gradient across the vacuole membrane generated by the V-ATPase energizes the pumping of metals into the vacuole, as a mechanism of detoxification. Thus, increasing concentrations of divalent cations such as calcium and zinc, generate conditions in which growth is increasingly reliant on V-ATPase activity (Förster & Kane, 2000; MacDiarmid et al, 2002; Kane, 2006).”


      MINOR COMMENTS

      Yeast proteins are named with "p" at the end, such as "Rtc5p".

      This nomenclature rule is falling into disuse during the last decades, as the use of capitals vs lowercase and italics allows to distinguish between genes proteins and strains (OXR1 = gene, Oxr1 = protein, oxr1Δ = strain). As an example, I include a list of the latest papers by some of the major yeast labs around the world, all of which use the same nomenclature as we do (in alphabetical order). This list even includes some work in the field of the V-ATPase.

      • Alexey Merz, USA. PMID: 33225520
      • Benoit Kornmann, UK. PMID: 35654841
      • Christian Ungermann, Germany. PMID: 37463208
      • Claudio de Virgilio, Switzerland. PMID: 36749016
      • Daniel E. Gottschling, USA. PMID: 37640943
      • David Teis, Austria. PMID: 32744498
      • Elizabeth Conibear, Canada. PMID: 35938928
      • Fulvio Reggiori, Denmark. PMID: 37060997
      • J Christopher Fromme, USA. PMID: 37672345
      • Maya Schuldiner, Israel. PMID: 37073826
      • Patricia Kane, USA. PMID: 36598799
      • Scott Emr, USA. PMID: 35770973
      • W Mike Henne, USA. PMID: 37889293
      • Yoshinori Ohsumi, Japan. PMID: 37917025 In addition, we would prefer to keep the nomenclature that we already use, to keep consistency with other published articles from our lab.

      Re: Introduction. In the introduction it should be indicated that Rtc5 was originally discovered as a "restriction of telomere capping 5", using screening of temperature-sensitive cdc13-1 mutants combined with the yeast gene deletion collection [PMID: 18845848]. A couple of sentences should be written about the RAVE complex and its role in V-ATPase assembly.

      We are thankful for this suggestion and we have now included both pieces of information in the introduction.

      *“The re-assembly of the V1 onto the VO complex when glucose becomes again available, is aided by a dedicated chaperone complex known as the RAVE complex, which also likely has a general role in V-ATPase assembly (Seol et al, 2001; Smardon et al, 2002, 2014).” *

      “In our cross-linking mass spectrometry interactome map of isolated vacuoles we found that the only other TLDc-domain containing protein of yeast, Rtc5, is a novel interactor of the V-ATPase. Rtc5 is a protein of unknown function, originally described in a genetic screen for genes related to telomere capping (Addinall et al, 2008)”

      Re: The TLDc domain-containing protein of unknown function Rtc5 is a novel interactor of the vacuolar V-ATPase (results)

      1) It is important to understand, that Oxr1 was co-purified before with the V1 domain of V-ATPase from a certain mutant strain, not wild-type yeast [PMID: 34918374]. It may explain why the authors did not identify it in their original protein-protein interactions screen here.

      The structural work on the V1 domain bound to Oxr1 (Khan et al, 2022) showed that the binding of Oxr1 prevented V1 from assembling onto the Vo. Since our experiments rely on the purification of vacuoles, they should contain mainly only V1 assembled onto the VO, and not the free soluble V1. This is likely the reason that we do not detect Oxr1, in addition to it being less abundant. We have clarified this now in the manuscript and added the fact that Oxr1 was co-purified with a V1 containing a mutant version of the H subunit.

      “In a previous study, Oxr1 was co-purified with a V1 domain containing a mutant version of the H subunit, and its presence prevented the in vitro assembly of this V1 domain onto the VO domain and promoted disassembly of the holocomplex (Khan et al., 2022). This is likely the reason why we do not detect Oxr1 in our experiments, which rely on isolated vacuoles and thus would only include V1 domains that are assembled onto the membrane. In addition, Oxr1 is less abundant in yeast cells than Rtc5 according to the protein abundance database PaxDb (Wang et al, 2015).”

      2) It is a wrong conclusion that because Rtc5 was co-purified with both V1 and V0 domain subunits it interacts with the assembled V-ATPase, this does not exclude a possibility that Rtc5 also interacts with separate V1 sector or separate V0 sector of V-ATPase.

      We agree with the reviewer that the co-purification of Rtc5 with both V1 and VO domain subunits does not necessarily mean that it interacts with the assembled V-ATPase. Thus, we have modified the text in this part to:

      “The fact that we can co-enrich Rtc5 both with Vma2 and with Vph1 indicates that it can interact either with both the VO and V1 domains or with the assembled V-ATPase.”

      However, other results throughout the manuscript can be taken into account to strengthen this idea:

      1. Rtc5 requires an assembled V-ATPase to localize to the vacuole membrane, and thus seems not to interact with free VO domains, which would be available when we delete V1 subunits or in medium containing galactose.
      2. Rtc5 becomes cytosolic in galactose-containing media. This would indicate that it also does not interact with free V1 domains, which are still localized to the vacuole membrane under these conditions. Taken together with the pull-downs, these results suggest that Rtc5 interacts with the assembled V1-VO V-ATPase. Thus, we have included the following sentence after Figure 3, which shows the subcellular localization experiments.

      *“Taking into account that Rtc5 is co-enriched with subunits of both the VO and V1 domain, and that it localizes at the vacuole membrane dependent on an assembled V-ATPase, we suggest that Rtc5 interacts with the assembled V-ATPase complex.” *

      Re: Figure 1, Panel C. Is it possible to show individual proteins in different colors for clarity?

      Panel D. How were cross-link distances measured? It is not obvious if you are not an expert in the field and it is not described in the methods.

      We have modified Figure 1 C and Figure 1 – Supplement 1B (now Figure 1 – Supplement 1 A) to present the different subunits in the structures with different shades of blue and grey.

      Furthermore, we have clarified the distance measurement approach in the methods section and in the legend of Fig 1D: “Ca-Ca distances were determined using the measuring function in Pymol v.2.5.2 (Schrodinger LLC).”

      __Re: Figure 1 - Supplement 1, __

      Panel A. What scientific information are we getting from this picture?

      This panel was just a visual representation of the complexity of the protein network we obtained. Indeed, there was no specific scientific message, so we have decided to remove this panel from the revised manuscript.

      Panel B. Why are these complexes shown separately from the complexes in Figure 1, panel C? Also, can individual proteins be colored differently here as well?

      We did not want to overload Fig 1C, so we decided to show some of the protein complexes in Fig 1 – Supplement 1B. The most important information is the histogram showing that 95% of the mapped cross-links fall within the expected length range, and this is shown in the main Figure (Figure 1D). As stated above, we have adjusted the subunit coloring in Figure 1 C to improve clarity.

      Re: Figure 3. It will be nice to show the localization of the untagged protein as well if antibodies are available (OPTIONAL).

      Unfortunately, there are no available antibodies for either Rtc5 or Oxr1. This hinders us from detecting the endogenous untagged proteins. We would like to point out that we have been very careful in showing which tagged proteins are functional (C-terminally tagged Rtc5) and which are not (C-terminally tagged Oxr1), so that the reader can know how to interpret the localization data.

      Re: Figure 4. Why different tags were used in panels A (GFP), C (msGFP2) and D

      (mNeonGreen)?

      In general, we prefer to use mNeonGreen as a tag for microscopy experiments because it is brighter and more stable, and msGFP2 as a tag for experiments involving Western blots because we have better antibodies available. There was a mistake in the labeling, and actually, all constructs labeled as GFP were msGFP2. We have now corrected this. Of note, we have tested the functionality of both tagged version (mNeonGreen and msGFP2).

      Panels B and C. Were Rtc5 fusions detected using anti-GFP antibodies?

      Indeed, Rtc5-msGFP2 was detected with an anti-GFP antibody. We have now indicated next to each Western blot membrane the primary antibody used. In addition, all antibodies are detailed in Supplemental Figure 3.

      The authors should have full-size Western blots available, not just cut-out bands, as some journals and reviewers require them for publication.

      For all western blots, we always showed a good portion of the membrane and not cut-out bands. The cropping was performed to avoid making figures unnecessarily large. The whole membranes are of course available and will be included in an “extended data file” if required by the journal.

      Re: Figure 4 - Supplement 1, Panel A. Does "-" and "+" mean -/+ Azido-Myr?

      Indeed. We have now added this label to the figure.

      Panel B. There is no blot with a membrane protein marker (Vam3 or Vac8), it should be included.

      We have replaced this western blot for a different repetition of this experiment in which a membrane protein marker was included. Of note, the two other repetitions of the experiment shown (Figure 4 – Supplement 1 panel C and Figure 4 panel C) also include both a membrane protein marker and a soluble protein marker.

      Re: Figure 5. The title does not describe all results in this figure and should be modified accordingly.

      The original data from Figure 5 is now separated into Figures 5 and 6 because of the additional experiments included during revisions. We have modified the Figure titles to be descriptive of the overall message of the Figures.

      Panel C. Statistical significance value for *** should be indicated in the legend.

      This has been indicated in the Figure legend.

      It is not clear how many times yeast growth assays were repeated. Usually, all experiments should be done in triplicates or more.

      All shown growth tests were performed at least three times for the conditions shown. We have now indicated this in the materials and methods section. In addition, we now provide in this response a file with all repetitions of growth tests, which will be appended to the article if deemed necessary by the editors.

      Re: Figure 5 - supplement 1. No title

      Re: Figure 5 - supplement 2. No title

      Whether the supplemental Figures should have a title or not will depend on the style of the journal where the manuscript is finally published. The current idea of the supplemental Figures is that they complement the corresponding main Figure. For this reason, we have removed all titles from supplemental Figures.

      Re: Figure 6. There is a typo on the second lane in the legend: "...the genome were", not "...the genome where".

      This has been corrected.

      Panel C. Why the analysis of BCECF vacuole staining of double mutants oxr1Δrav1Δ and rtc5Δrav1Δ is not shown? Was it done at all?

      We had not included this piece of data, as we thought that the genetic interaction of RTC5 and OXR1 and rav1Δ was sufficiently well supported with the included data (growth tests in combination with the deletion, growth tests in combination with the overexpression, vacuole proteomics in combination with overexpression, and BCECF staining in combination with the overexpression). Because of the request of the reviewer, we have now included this experiment as Figure 7 G.

      Re: Figure 6 - Supplement 2. Why were two different tags (2xmNG and msGFP2) used?

      We tried both tags to see if one of them would be functional. Unfortunately, they both resulted in non-functional proteins, as shown by the corresponding growth tests.

      Did the authors study N-terminally tagged Oxr1? Was it functional?

      We have tagged Oxr1 N-terminally, and this unfortunately resulted in a protein that was not completely functional. We show below the localization of N-terminally mNeon-tagged Oxr1, under the control of the TEF1 promoter. The protein appears cytosolic (Panel A) but is not completely functional (Panel B). The localization of Oxr1 had already been misreported by using a tagged version that we now show to be non-functional. For this reason, we preferred not to include this data in the manuscript, to avoid again including in the literature subcellular localizations that correspond to non-functional or partially functional proteins.

      Panel B. Results for the untagged TEF1pr-Oxr1 overexpression are not shown, thus tagged and untagged proteins can't be compared. Are they available? What is the promoter for the expression of 2xmNG fusion constructs?

      Oxr1-2xmNG was C-terminally tagged in the genome, which means that the promoter is the endogenous one, it was not modified. For this reason, the correct controls are a strain expressing Oxr1 at endogenous levels (the wt strain) and a strain lacking Oxr1. Both controls were included in the Figure, and in all repetitions made of this experiment. For reference, all the genotypes of the strains used are found in Supplemental Table 1.

      Re: Methods. Were vacuoles prepared differently for XL-MS and SILAC-based vacuole proteomics (there are different references) and why? Methods for XL-MS and quantitative SILAC-based proteomics can be placed together for clarity.

      The basis for the method of vacuole purification is the same, from (Haas, 1995). This reference was included in both protocols that include vacuole purifications. However, modifications of this method were performed to fit the crosslinking method (higher pH, no primary amines) or to fit the SILAC labeling (combination of two differentially labeled samples in one purification). The reference for the vacuole proteomics (Eising et al 2022) corresponds to a paper in which the SILAC-based comparison of vacuoles from different mutant strains was optimized, and includes not only the vacuole purification but the growth conditions and downstream processing of the vacuoles.

      Since both the SILAC-based vacuole proteomics and the XL-MS are multi-step methods, containing numerous parameters including the sample preparation, processing for MS, MS run and data analysis, we would prefer to keep them separate. We think this would allow a person attempting to reproduce these methods to go through them step by step.

      What is CMAC dye? Why was it used to stain the vacuolar lumen?

      We apologize for this oversight, we have included the definition of CMAC as 7-Amino-4-Chlormethylcumarin. It is a standard-used organelle marker for the lumen of the vacuole.

      Some abbreviations (TEAB, ACN) are not explained.

      We apologize for this oversight. We have now replaced these abbreviations with the full names of the compounds in the article.

      What is 0% Ficoll?

      We used the term 0% Ficoll, because this is the name given to the buffer in the original Haas 1995 paper on vacuole purifications. However, we agree that the term is misleading and we have now added the composition of the buffer (10 mM PIPES/KOH pH=6.8, 0.2 M Sorbitol).

      Reviewer #3 (Significance (Required)):

      The vacuolar-type proton ATPase, V-ATPase, is the key proton pump, that hydrolases ATP and uses this energy to pump protons across membranes. Amazingly, this proton pump and its function are conserved in eukaryotes from yeast to mammals. While V-ATPase structure and function have been studied for more than 30 years in various organisms, its regulation is not completely understood. The very recent discoveries of two new V-ATPase interacting proteins in yeast, first Oxr1 (OXidative Resistance 1), and now Rtc5 (Restriction of Telomere Capping 5), both the only two members of TLDc (The Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic) proteins in yeast, provide new insights in V-ATPase regulation in yeast, and because the interaction is conserved in mammals its relevance to mammalian V-ATPases regulation as well.

      TLDc proteins are best known for their role in protection from oxidative stress, in particular in yeast and in the nervous system in mammals. The discovery of the novel Rtc5-V-ATPase interaction points to the role of V-ATPase not only in protection from oxidative stress but also in restriction of telomere capping in yeast and most likely higher species. The studies of other species also highlight the possible conserved role of V-ATPase in lifespan determination and Torc1 signaling, mediated through these interactions. Thus, the discovery of this new functionally important interaction between the second TLDc family member in yeast, Rtc5, and V-ATPase will shed light on the molecular mechanisms of all these essential biological processes and pathways.

      In addition, because the authors performed a comprehensive proteomics protein-protein interaction study of the purified yeast vacuole it provides a valuable resource for all researchers who study vacuoles and/or related to them lysosomes.

      The follow-up functional studies using the rav1Δ strain clearly demonstrated that Rtc5 and Oxr1 disassemble V-ATPase and counteract the function of V-ATPase assembly RAVE complex in vivo in yeast. Thus, they are essentially the first discovered endogenous eukaryotic protein inhibitors of V-ATPase. Moreover, because the authors obtained the evidence that Oxr1 is the regulator of the specific subunit isoform of V-ATPase Stv1p in vivo in yeast, it suggests that different TLDc proteins may regulate different specific V-ATPase subunit isoforms in cell- and tissue-specific manner in higher eukaryotes. The mechanism of this isoform-specific regulation in yeast and other species needs further investigation in the future.

      Because of the conservation of the TLDc-V-ATPase interactions, all this information can be extrapolated to higher species, all the way to humans, in whom genetic mutations in various TLDc proteins are known to cause devastating diseases and syndromes.

      We are thankful to the reviewer for their positive comments about the significance of our work.

    1. Blog: A Learner's Guide
      • Who: The author of the post, @mrenglish
      • What: The post is a guide for beginners on blogging and discusses the definition and advantages of blogs.
      • Why: The post is submitted to @clixmoney's weekly DCC tag contest focused on blogs and blogging.
      • When: The post was published recently, as it mentions the current political transition in Nigeria.
      • How: The author explains what a blog is, the difference between a blog and a website, the advantages of having a blog (such as running campaigns, making money, running a business, and socializing), and how blogging can help improve one's expertise. The author also promotes another user's blog post and includes an excerpt from it.
    1. Die Repubblica interviewt Carlo Buontempo, den Leiter des europäischen Klimaservice Copernicus. 20 23 wurden viele Anomalien beobachtet. Jeder Tag war mindestens ein Grad wärmer als in der Vergleichsperiode, fast die Hälfte der Tage 1,5 und zwei sogar zwei Grad. Der Juli war der heißeste je gemessene Monat. Es sei noch unklar, ob es sich dabei um Ausnahmen handelt oder um den Beginn einer neuen Phase. https://www.repubblica.it/economia/2024/01/15/news/clima_cambiamenti_climatici_caldo_record_carlo_buontempo_copernicus-421876070/

    1. aword cloud presenting key words can be used for pre-reading discussion on what thearticle might be about

      “根据前人研究发现,tag cloud这一工具可以用在读前的预测/讨论阶段”。 运用前人研究证实工具确实可以运用于阅读教学。 下面就开始解释tag cloud这一工具如何具体使用,或者如何在阅读阶段使用。

    Annotators

    1. Tweeting has rapidly become an integral part of the conference scene, with a subset of attendees on Twitter providing real-time running commentary through a common “tag” (#mla09, for example),

      This is very interesting to look at after the recent downfall of twitter. It makes me wonder if these people are still using twitter or if they've moved to another platform

    1. Author Response

      eLife assessment

      This important work describes the first high-resolution structure of HGSNAT, a lysosomal membrane protein required for the degradation of heparan sulfate (HS). Through careful structural analysis, this work proposes potential reasons why certain mutations in HGSNAT lead to lysosomal storage disorders and outlines the enzyme's catalytic mechanism. The experimental evidence presented provides incomplete support for the proposed molecular mechanism of the HS acetylation reaction and the impact of disease-causing mutations.

      We thank the editors and reviewers for taking the time to provide a critical assessment of our manuscript. We appreciate the input and suggestions to improve the analysis. Included here are only our provisional responses. We will address the concerns raised in more detail and incorporate them in the revised version of the manuscript.

      Reviewer #1 (Public Review):

      This article by Navratna et al. reports the first structure of human HGSNAT in an acetyl-CoAbound state. Through careful structural analysis, the authors propose potential reasons why certain human mutations lead to lysosomal storage disorders and outline a catalytic mechanism. The structural data are of good quality, and the manuscript is clearly written. This study represents an important step toward understanding the mechanism of HGSNAT and is valuable to the field. I have the following suggestions:

      We thank the reviewer for their encouraging and positive overall assessment of our work.

      1. The authors should characterize whether the purified protein is active. Otherwise, how does one know if the detergent used maintains the protein in a biologically relevant state? The authors should at least attempt to do so. If these prove to be challenging, at the very least, the authors should try a cell-based assay to demonstrate that the GFP tag does not interfere with the function.

      Thank you for highlighting this concern. The cryo-EM sample was prepared without the exogenous addition of ligand, as noted in the manuscript; the acetyl-CoA that we see in the structure was intrinsically bound to the protein, indicating the ability of GFP-tagged HGSNAT protein to bind the ligand. We purified the protein at a pH optimal for acetyl-CoA binding, as suggested by Bame, K. J. and Rome, L. H. (1985) and Meikle, P. J. et al., (1995). Because we see acetyl-CoA in a structure obtained using a GFP fusion, we argue that GFP does not interfere with protein stability and ability to bind to the co-substrate. As demonstrated by existing literature HGSNAT catalyzed reaction is compartmentalized spatially and conditionally. The binding of acetyl-CoA happens towards the cytosol and is optimal at pH 7-0.8.0, while the transfer of the acetyl group to heparan sulfate occurs towards the luminal side and is optimal at pH 5.0-6.0. We are working on establishing a robust assay to study this complicated and compartmentalized acetyl transfer assay.

      1. In Figure 5, the authors present a detailed schematic of the catalytic cycle, which I find to be too speculative. There is no evidence to suggest that this enzyme undergoes isomerization, like a transporter, between open-to-lumen and open-to-cytosol states. Could it not simply involve some movements of side chains to complete the acetyl transfer?

      The acetyl-CoA bound structure presented in the paper does not conclusively support a potential for isomerization and conformational dynamics. We agree with the reviewer that the reaction schematic presented in Figure 5 is speculative. We acknowledge in the discussion that our structure represents only a single step of the reaction, and defining the precise mechanism of acetyl transfer needs additional work. However, we will reword the discussion and change Figure 5 to address this concern raised by multiple reviewers.

      Reviewer #2 (Public Review):

      Summary:

      This work describes the structure of Heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), a lysosomal membrane protein that catalyzes the acetylation reaction of the terminal alpha-D-glucosamine group required for the degradation of heparan sulfate (HS). HS degradation takes place during the degradation of the extracellular matrix, a process required for restructuring tissue architecture, regulation of cellular function, and differentiation. During this process, HS is degraded into monosaccharides and free sulfate in lysosomes.

      HGSNAT catalyzes the transfer of the acetyl group from acetyl-CoA to the terminal non-reducing amino group of alpha-D-glucosamine. The molecular mechanism by which this process occurs has not been described so far. One of the main reasons to study the mechanism of HGSNAT is that multiple mutations spanning the entire sequence of the protein, such as nonsense mutations, splicesite variants, and missense mutations lead to dysfunction that causes abnormal accumulation of HS within the lysosomes. This accumulation is a cause of mucopolysaccharidosis IIIC (MPS IIIC), an autosomal recessive neurodegenerative lysosomal storage disorder, for which there are no approved drugs or treatment strategies.

      This paper provides a 3.26A structure of HGSNAT, determined by single-particle cryo-EM. The structure reveals that HGSNAT is a dimer in detergent micelles and a density assigned to acetylCoA. The authors speculate about the molecular mechanism of the acetylation reaction, map the mutations known to cause MPS IIIC on the structure and speculate about the nature of the HGSNAT disfunction caused by such mutations.

      Strengths:

      The description of the architecture of HGSNAT is the highlight of the paper since this corresponds to the first description of the structure of a member of the transmembrane acyl transferase (TmAT) superfamily. The high resolution of an HGSNAT bound to acetyl-CoA is an important leap in our understanding of the HGSNAT mechanism. The density map is of high quality, except for the luminal domain. The location of the acetyl-CoA allows speculation about the mechanistic role of multiple residues surrounding this molecule. The authors thoroughly describe the architecture of HGSNAT and map the mutations leading to MPS IIIC. The description of the dimeric interphase is a novel result, and future studies are left to confirm the importance of oligomerization for function.

      We thank the reviewer for their time and for highlighting both the quality and novelty of the structure presented in this work.

      Weaknesses:

      Apart from the cryo-EM structure, the article does not provide any other experimental evidence to support or explain a molecular mechanism. Due to the complete absence of functional assays, mutagenesis analysis, or other structures such as a ternary complex or an acetylated enzyme intermediate, the mechanistic model depicted in Figure 5 should be taken with caution.

      Thank you for pointing out this concern. The proposed mechanistic model in Figure 5 is a hypothesis based on previously reported biochemical characterization of HGSNAT by Rome & Crain (1981), Rome et al, (1983), Miekle et al., (1995) and Fan et al., (2011). However, we agree with the reviewer that this schematic is not experimentally proven and is speculative at best. Especially because our structure presents only a single step of the reaction, which does not conclusively support either ping-pong or random-order bi-substrate reactions. We will rephrase this section of our discussion and edit Figure 5 to address this concern.

      The authors discuss that H269 is an essential residue that participates in the acetylation reaction, possibly becoming acetylated during the process. However, there is no solid experimental evidence, e.g. mutagenesis analysis or structural analysis, in this or previous articles, that demonstrates this to be the case.

      H269, as a crucial catalytic residue, was suggested by monitoring the effect of chemical modifications of amino acids on acetylation of HGSNAT membranes by Bame, K. J. and Rome, L. H. (1986). We agree that mutagenesis, catalysis, and structural evidence for the same are not currently available. We are pursuing a more thorough exploration of the role of both H269 (previous studies) and N258 (from this study) on the stability and function of HGSNAT.

      In the discussion part, the authors mention previous studies in which it was postulated that the catalytic reaction can be described by a random order mechanistic model or a Ping Pong Bi Bi model. However, the authors leave open the question of which of these mechanisms best describes the acetylation reaction. The structure presented here does not provide evidence that could support one mechanism or the other.

      We agree with the reviewer’s observation that the structure doesn’t indeed support one reaction mechanism or another. We are pursuing the structural and kinetic characterization of HGSNAT in the presence of other co-substrates and multiple pHs that are required to address this concern thoroughly.

      Although the authors map the mutations leading to MPS IIIC on the structure and use FoldX software to predict the impact of these mutations on folding and fold stability, there is no experimental evidence to support FoldX's predictions.

      We are working on assessing the impact of specific mutations on the stability of HGSNAT and will add them to the revised version of the manuscript. We thank the reviewer for this suggestion.

      Reviewer #3 (Public Review):

      Summary:

      Navratna et al. have solved the first structure of a transmembrane N-acetyltransferase (TNAT), resolving the architecture of human heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT) in the acetyl-CoA bound state using single particle cryo-electron microscopy (cryoEM). They show that the protein is a dimer and define the architecture of the alpha- and beta- GSNAT fragments, as well as convincingly characterizing the binding site of acetyl-CoA.

      Strengths:

      This is the first structure of any member of the transmembrane acyl transferase superfamily, and as such it provides important insights into the architecture and acetyl-CoA binding site of this class of enzymes.

      The structural data is of a high quality, with an isotropic cryoEM density map at 3.3Å facilitating the building of a high-confidence atomic model. Importantly, the density of the acetyl-CoA ligand is particularly well-defined, as are the contacting residues within the transmembrane domain.

      The open-to-lumen structure of HSGNAT presented here will undoubtedly lay the groundwork for future structural and functional characterization of the reaction cycle of this class of enzymes.

      We thank the reviewer for their positive assessment of the data presented in this work. We really appreciate and agree with the reviewer's comment that the “structure of HSGNAT presented here will undoubtedly lay the groundwork for future structural and functional studies.”

      Weaknesses:

      While the structural data for the open-to-lumen state presented in this work is very convincing, and clearly defines the binding site of acetyl-CoA, to get a complete picture of the enzymatic mechanism of this family, additional structures of other states will be required.

      We agree with the reviewers’ assessment and are heavily invested in pursuing the structures of all the steps of acetyl transfer by HGSNAT.

      A potentially significant weakness of the study is the lack of functional validation. The enzymatic activity of the enzyme characterized was not measured, and the enzyme lacks native proteolytic processing, so it is a little unclear whether the structure represents an active enzyme.

      We thank the reviewer for this comment. While the proteolytic cleavage of the protein remains debated, we find no evidence of such an event in our purification (SDS-PAGE and SEC). Studies like Durand et al., (2010) and Fan et al., (2011) suggest that even the ER retained monomeric HGSNAT is active. Because we see acetyl-CoA (co-substrate) bound to the protein in our structure, we surmise that proteolysis is not necessary for function, at least not for substrate binding. However, we are working towards the structural and kinetic characterization of recombinant α- and β-HGSNAT construct to explore the role of proteolysis on HGSNAT stability and function.

    2. Reviewer #1 (Public Review):

      This article by Navratna et al. reports the first structure of human HGSNAT in an acetyl-CoA-bound state. Through careful structural analysis, the authors propose potential reasons why certain human mutations lead to lysosomal storage disorders and outline a catalytic mechanism. The structural data are of good quality, and the manuscript is clearly written. This study represents an important step toward understanding the mechanism of HGSNAT and is valuable to the field. I have the following suggestions:

      1. The authors should characterize whether the purified protein is active. Otherwise, how does one know if the detergent used maintains the protein in a biologically relevant state? The authors should at least attempt to do so. If these prove to be challenging, at the very least, the authors should try a cell-based assay to demonstrate that the GFP tag does not interfere with the function.

      2. In Figure 5, the authors present a detailed schematic of the catalytic cycle, which I find to be too speculative. There is no evidence to suggest that this enzyme undergoes isomerization, similar to a transporter, between open-to-lumen and open-to-cytosol states. Could it not simply involve some movements of side chains to complete the acetyl transfer?

    1. Don’t expect people to change their behavior just so you can measure it. For example, don’t expect that everybody will tag their bugs, PRs, etc. in some special way just so that you can count them.

      100% true.

  2. Dec 2023
    1. As always, the annotations you see will be yours, those posted in Public, and those posted in groups of which you are a member.

      The real question is: how to exclude some results?

      For example, I have few annotations under tag search results, but there are some of mine, and I want to see only those which are not mine, but others. How can I accomplish that?

      It would be helpful, because it provides solution for excluding from results users or websites which are unworthy or spammed with worthless annotations.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Note to all Reviewers

      We appreciate the reviewers’ comments and suggestions for improving the manuscript. Below is a summary of new data added and a brief description of the major new results. A detailed pointby-point response follows.

      New data:

      • Figure 1f

      • Figure 2b, f, g

      • Figure 4b

      • Figure S7 • Figure S8

      • Figure S9

      Summary of major new results/edits:

      • At the request of Reviewer #1 we have updated the name of the degradation tag to be more specific and we now call it the “LOVdeg” tag.

      • We have added new controls demonstrating that light stimulation does not cause photobleaching or toxicity issues (Fig. S7).

      • We now show that LOVdeg can function at various points in the growth cycle, demonstrating robust degradation (Fig. 1f, Fig. S8).

      • We have included relevant controls for the AcrB-LOVdeg efflux pump results (Fig. 2f-g).

      • We have included important benchmarking controls, such as an EL222-only control and SsrA tag control to provide a clearer view of how LOVdeg performance compares to other systems (Fig. S9, Fig. 4b).

      Additional note:

      • While repeating experiments during the revision process we found that the results for the combined action of EL222 and the LOVdeg tag were not as dramatic as in our original measurements, though the overall findings are consistent with our original results. Specifically, we still find that the combination of EL222 and the LOVdeg tag produces a lower signal than either on their own. We have updated these data in the revised manuscript (Fig. 4b).

      Reviewer #1:

      Public Review:

      Specifically controlling the level of proteins in bacteria is an important tool for many aspects of microbiology, from basic research to protein production. While there are several established methods for regulating transcription or translation of proteins with light, optogenetic protein degradation has so far not been established in bacteria. In this paper, the authors present a degradation sequence, which they name "LOVtag", based on iLID, a modified version of the blue-light-responsive LOV2 domain of Avena sativa phototropin I (AsLOV2). The authors reasoned that by removing the three C-terminal amino acids of iLID, the modified protein ends in "-E-A-A", similar to the "-L-A-A" C-terminus of the widely used SsrA degradation tag. The authors further speculated that, given the light-induced unfolding of the C-terminal domain of iLID and similar proteins, the "-E-A-A" C-terminus would become more accessible and, in turn, the protein would be more efficiently degraded in blue light than in the dark.

      Indeed, several tested proteins tagged with the "LOVtag" show clearly lower cellular levels in blue light than in the dark. While the system works efficiently with mCherry (10-20x lower levels upon illumination), the effect is rather modest (2-3x lower levels) in most other cases. Accordingly, the authors propose to use their system in combination with other light-controlled expression systems and provide data validating this approach. Unfortunately, despite the claim that the "LOVtag" should work faster than optogenetic systems controlling transcription or translation of protein, the degradation kinetics are not consistently shown; in the one case where this is done, the response time and overall efficiency are similar or slightly worse than for EL222, an optogenetic expression system.

      The manuscript and the figures are generally very well-composed and follow a clear structure. The schematics nicely explain the underlying principles. However, limitations of the method in its main proposed area of use, protein production, should be highlighted more clearly, e.g., (i) the need to attach a C-terminal tag of considerable size to the protein of interest, (ii) the limited efficiency (slightly less efficient and slower than EL222, a light-dependent transcriptional control mechanism), and (iii) the incompletely understood prerequisites for its application. In addition, several important controls and measurements of the characteristics of the systems, such as the degradation kinetics, would need to be shown to allow a comparison of the system with established approaches. The current version also contains several minor mistakes in the figures.

      We thank reviewer #1 for the feedback and suggestions to strengthen the manuscript. We have addressed these comments in the points that follow and now include important controls and benchmarks for our molecular tool.

      Major points

      1. The quite generic name "LOVtag" may be misleading, as there are many LOV-based tags for different purposes.

      We appreciate that it would be beneficial to have a more specific name. We have updated the name to “LOVdeg” tag, which captures both the inclusion of LOV and the degradation function of the tag.

      Updated throughout the manuscript and figures

      1. Throughout the manuscript, the authors use "expression levels". As protein degradation is a post-expression mechanism, "protein levels" should be used instead.

      We have transitioned to using “protein levels” at many points in the manuscript.

      Updated throughout the manuscript

      1. Degradation dynamics (time course experiments) should be shown. The only time this is done in the current version (in Fig. 4), degradation appears to be in the same range (even a bit slower) than for EL222, which does not support the claim that the "LOVtag" acts faster than other optogenetic systems controlling protein levels.

      In the revised manuscript, time course data are now shown at multiple points. These include new data in Fig. 1f and Fig. S8 that demonstrate degradation at various stages of growth. Fig. S4 also shows the dynamics of degradation when comparing to the addition of exogenously expressed ClpA. We have added text in the results section to point the reader to these data. In addition, we have made minor modifications to the text in the Introduction to avoid making claims about speed comparisons. Fig. 1f, Fig. S8, Fig. S4

      Results: Design and characterization of the AsLOV2-based degradation tag, Introduction

      1. "Frequency" is used incorrectly for Fig. 3. A series of 5 seconds on, 5 seconds off corresponds to a frequency of 0.1 Hz (1 illumination round / 10 s), not of 0.5 Hz. What the authors indicate as "frequency" is the fraction of illumination time. However, the (correct) frequency should be given, as this is likely the more important factor.

      We have changed how we calculate frequency to use the proposed definition of one pulse per time period. We updated the values in the text and in the figure. Fig. 3c

      Results: Tuning frequency response of the LOVdeg tag

      1. To properly evaluate the system, several additional controls are needed:

      a. To test for photobleaching of mCherry by blue light illumination, untagged controls should be shown for the mCherry-based experiments. Fluorescence always seems to be lower upon illumination, except for the AsLOV2*(546) data, where it cannot be excluded that fluorescence readings are saturated. Relatedly, the raw data for OD and fluorescence should be included. Showing a Western blot against mCherry in at least one case would allow to separate the effects of photobleaching and degradation.

      We appreciate the suggestion and have conducted these important controls. We now include new data demonstrating that light induction does not change fluorescence levels using an untagged mCherry control, nor does it significantly affect endpoint OD levels. Based on these results, we did not perform a Western blot because there were no effects to separate. Fig. S7

      b. In Fig. 2b, light + IPTG should be shown to estimate the activity of the system at higher expression levels.

      We have added these to the figure. Light + IPTG modestly increases expression compared to IPTG only, likely due to the saturating level of IPTG added, which achieves near full induction. Fig. 2b

      c. In Fig. 4, EL222 alone should be shown to allow a comparison with the LOVtag. From the data presented, it looks like EL222 is both slightly faster and more efficient than the LOVtag.

      We have added the EL222-only case for comparison with LOVdeg only and EL222 + LOVdeg. We note that Reviewer #3 raised a similar concern. Fig. 4b

      d. The effect of the used light on bacterial viability under exponential and stationary conditions should be shown.

      In this revision, we have added new data on light exposure at various points during exponential and stationary phase (Fig. 1f, Fig. S8). These OD data show that growth curves are similar for all cultures, regardless of the time light is applied during the growth phase. Additionally, we also now include ODs for the photobleaching experiments. These data also show that growth is not significantly altered under continuous light exposure. Figure 1f, Fig. S7b

      1. The claim that "Post-translational control of protein function typically requires extensive protein engineering for each use case" is not correct. The authors should discuss alternative options, e.g. based on dimerization, more extensively and in a less biased manner.

      We have toned down the language in this location and at other points in the manuscript. However, we maintain that other types of post-translational control, such as dimerization or LOV2 domain insertion, require more protein engineering than inserting a degradation tag. For example, we and others have directly demonstrated this in previous work (e.g. DOI: 10.1021/acssynbio.9b00395, 10.1101/2023.05.26.542511, 10.1038/s41467-023-38993-6), where numerous split site or insertion variants need to be screened and fine-tuned for successful light control. In contrast, a degradation mechanism has the potential to require less fine tuning to achieve a light response. We have included the above sources to clarify this point. Introduction, Results: Modularity of the LOVdeg tag

      Minor points

      1. In Suppl. Fig. 1, amino acid numbers seem to be off. Also, the alterations in iLID (compared to AsLOV2) that are not used in "LOVtag" appear to be missing and the iLID sequence incorrect, as a consequence.

      Thank you for catching this. The number indices in Fig. S1 have been corrected. We also realized we were reporting the iLID(C530M) variant in our amino acid sequence and have reverted the 530M back to C. Fig. S1

      1. Why is AsLOV2(543) more efficiently degraded than AsLOV2(543) (blue column in Fig. 1d) when the dark state should be stabilized in AsLOV2(543)?

      We are not sure of the exact reason for the increased degradation response in the AsLOV2*(543) variant. It may be that the dark-state stabilizing mutations introduced also have more favorable interactions with degradation machinery, although this is highly speculative.

      1. Why does the addition of EL222 reduce protein levels so strongly in the dark for CpFatB1* (Fig. 5)?

      We believe this effect stems from the EL222 responsive promoter (PEL222). With LOVdeg only, CpFatB1* is expressed from an IPTG inducible promoter (PlacUV5) whereas EL222 responsive constructs necessitate a promoter switch containing an EL222 binding site. We have clarified this point and expanded our discussion of these results.

      Results: Optogenetic control of octanoic acid production

      1. Fig. 2f / S10 are difficult to interpret. Why does illumination only lead to a significant effect at 2.5 and 5 µg/ml and not at lower concentrations, where the degradation system would be expected to be most efficient?

      We have expanded our discussion on these results to explain that this likely stems from basal protein levels of AcrB-LOVdeg in the light that can provide resistance at low antibiotic concentrations. We have also added new controls to this figure to show the chloramphenicol sensitivity of a ΔacrB strain and a ΔacrB strain with an IPTG-inducible version of acrB with no induction, demonstrating the lowest achievable chloramphenicol resistance from a standard inducible system.

      Results: Modularity of the LOVdeg tag, Fig. 2f-g

      1. Fig. 2f / S10 do not measure the MIC (which is a clearly defined value), but the sensitivity to Chloramphenicol.

      We have changed the text to use the term chloramphenicol sensitivity instead of MIC. Results: Modularity of the LOVdeg tag

      1. "***" in Fig. S1 should be explained.

      We have removed the ‘***’ to avoid confusion. Fig. S1

      1. The fold-change differences between light and dark, indicated in some selected cases, should be listed for all figures.

      We have added fold-change values where appropriate. Fig 1d, Fig. 2b

      Reviewer #2:

      Public Review:

      In this manuscript the authors present and characterize LOVtag, a modified version of the bluelight sensitive AsLOV2 protein, which functions as a light-inducible degron in Escherichia coli. Light has been shown to be a powerful inducer in biological systems as it is often orthogonal and can be controlled in both space and time. Many optogenetic systems target regulation of transcription, however in this manuscript the authors target protein degradation to control protein levels in bacteria. This is an important advance in bacteria, as inducible protein degradation systems in bacteria have lagged behind eukaryotic systems due to protein targeting in bacteria being primarily dependent on primary amino acid sequence and thus more difficult to engineer. In this manuscript, the authors exploit the fact that the J-alpha helix of AsLOV2, which unwinds into a disordered domain in response to blue light, contains an E-A-A amino acid sequence which is very similar to the C-terminal L-A-A sequence in the SsrA tag which is targeted by the unfoldases ClpA and ClpX. They truncate AsLOV2 to create AsLOV2(543) and combine this truncation with a mutation that stabilizes the dark state to generate AsLOV2*(543) which, when fused to the C-terminus of mCherry, confers light-induced degradation. The authors do not verify the mechanism of degradation due to LOVtag, but evidence from deletion mutants contained in the supplemental material hints that there is a ClpA dominated mechanism. They demonstrate modularity of this LOVtag by using it to degrade the LacI repressor, CRISPRa activation through degradation of MCP-SoxS, and the AcrB protein which is part of the AcrAB-TolC multidrug efflux pump. In all cases, measurement of the effect of the LOVtag is indirect as the authors measure reduction in LacI repression, reduction in CRISPRa activation, and drug resistance rather than directly measuring protein levels. Nevertheless the evidence is convincing, although seemingly less effective than in the case of mCherry degradation, although it is hard to compare due to the different endpoints being measured. The authors further modify LOVtag to contain a known photocycle mutation that slows its reversion time in the dark, so that LOVtag is more sensitive to short pulses of light which could be useful in low light conditions or for very light sensitive organisms. They also demonstrate that combining LOVtag with a blue-light transcriptional repression system (EL222) can decrease protein levels an additional 269-fold (relative to 15-fold with LOVtag alone). Finally, the authors apply LOVtag to a metabolic engineering task, namely reducing expression of octanoic acid by regulating the enzyme CpFatB1, an acyl-ACP thioesterase. The authors show that tagging CpFatB1 with LOVtag allows light induced reduction in octanoic acid titer over a 24 hour fermentation. In particular, by comparing control of CpFatB1 with EL222 transcriptional repression alone, LOVtag, or both the authors show that light-induced protein degradation is more effective than light-induced transcriptional repression. The authors suggest that this is because transcriptional repression is not effective when cells are at stationary phase (and thus there is no protein dilution due to cell division), however it is not clear from the available data that the cells were in stationary phase during light exposure. Overall, the authors have generated a modular, light-activated degron tag for use in Escherichia coli that is likely to be a useful tool in the synthetic biology and metabolic engineering toolkit.

      We thank Reviewer #2 for the constructive feedback. In the updated manuscript, we now include data demonstrating degradation at different growth stages and address other points brought up in the review to improve understanding of the degradation tag.

      Overall, the authors present a well written manuscript that characterizes an interesting and likely very useful tool for bacterial synthetic biology and metabolic engineering. I have a few suggestions that could improve the presentation of the material.

      Major Comments:

      • Could the authors clarify, perhaps through OD measurements, that the cultures in the octanoic acid experiment are actually in stationary phase during the relevant light induction. It isn't clear from the methods.

      We have updated the Methods to clarify that the cells are entering stationary phase (OD600 = 0.6) when light is either kept on or turned off for production experiments. Production is continued for the following 24 hours. Note that we now show OD measurements in a separate set of experiments (Fig. 1f, Fig. S8).

      Methods: Octanoic acid production experiment. Fig. 1f, Fig. S8

      • Can the authors clarify why there is an overall decrease in protein in the clpX deletion? And is it this initial reduction that is the source of the change in fold in 1C? Similarly, for hslU is it because overall protein levels are higher with the tag? In general, I feel that the interpretation of Supplemental Figures S6-S10 could be moved in more detail to the main text, or at least the main takeaway points. But this is a personal preference, and not necessary to the major flow of the story which is about the utility of the LOVtag tool.

      As shown in Fig. S5, expression of mCherry without any degradation tag is decreased in a clpX knockout strain compared to wild type. This difference may be the result of reduced cell health, and we now note this in the text. The strains shown in Fig. 1c are in wild type cells with normal expression, so this is not the source of the fold change. As for hslU, we agree it is interesting that expression seems to increase. However, the increase is modest and could stem from gene network regulation differences in that strain compared to wild type and may not be related to LOVdeg tag degradation. Each endogenous protease is involved in a wide range of functions within the cell, and it is unknown how global gene expression is impacted. We acknowledge the suggestion of moving the protease results to the main text, but we have ultimately elected to keep these data in the Supplementary Information to maintain the flow in the manuscript. However, we have added additional text pointing the reader to the Supplemental Text and include a brief summary of the findings in the main text.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • What is the source of the poor repression in Figure 2D?

      Presumably, this stems from low levels of the CRISPRa MCP-SoxS activator, even in the presence of light. We have added this point to the text.

      Results: Modularity of the LOVdeg tag

      • In general, it would be nice to have light-only controls for many of the experiments to validate that light is not affecting the indicated proteins or their function.

      We thank the reviewer for this suggestion and note that Reviewer #1 raised a similar concern. We have now included light-only data for a strain containing IPTG-inducible mCherry without the LOVdeg tag (Fig. S7). These data show that light itself, at the levels used in this study, does not affect mCherry expression or cell growth. This strain serves as a direct control for data presented in Fig. 1 and Fig. 2b, as the systems are identical except for the addition of the LOVdeg tag onto either mCherry or the LacI repressor. Additionally, the control translates to other experiments since mCherry is used as a reporter for other systems in this study. Fig. S7

      • It would be nice to directly measure the function of the tool at different phases of E. coli growth to show directly that protein degradation works at stationary phase, rather than the more indirect measurements used in the octanoic acid experiment.

      We thank the reviewer for this suggestion, which significantly strengthens our results. We have added an experiment that tests the LOVdeg tag at different phases of growth (Fig. 1f, Fig. S8). In this experiment, cultures are growth from early exponential to stationary phase, and light is introduced at various points. Exposure windows of 4 hours, ranging from early exponential to stationary phase, all show functional light inducible degradation. Fig. 1f, Fig. S8.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Minor Comments:

      • It would be nice to make clear that the data in S6d and S7 is repeated, but with the HslUV data in S7.

      We clarified this point in the caption of Fig. S4 (the former Fig. S7 in the original manuscript). Fig. S4 caption

      • Why was 5s picked for the frequency response in Figure 3

      We picked 5s because 1) it is a substantially shorter timescale than overall degradation dynamics seen for the LOVdeg tag, and 2) we found that shorter pulses could not be reliably achieved with the light stimulation hardware and software we used (Light Plate Apparatus with Iris software). To ensure high fidelity pulses, we opted for 5 second pulses that we empirically determined to be stable throughout long experiments. We have added text clarifying this. Results: Tuning frequency response of the LOVdeg tag

      Reviewer #3:

      Public Review:

      The authors present the mechanism, validation, and modular application of LOVtag, a light-responsive protein degradation tag that is processed by the native degradosome of Escherichia coli. Upon exposure to blue light, the c-terminal alpha helix unfolds, essentially marking the protein for degradation. The authors demonstrate the engineered tag is modular across multiple complex regulatory systems, which shows its potential widespread use throughout the synthetic biology field. The step-by-step rational design of identifying the protein that was most dark stabilized as well as most light-responsive for degradation, was useful in terms of understanding the key components of this system. The most compelling data shows that the engineered LOVTag can be fused to multiple proteins and achieve light-based degradation, without affecting the original function of the fused protein; however, results are not benchmarked against similar degradation tagging and optogenetic control constructs. Creating fusion proteins that do not alter either of the original functions, is often difficult to achieve, and the novelty of this should be expanded upon to drive further impact.

      We appreciate the feedback from Reviewer #3 to improve the manuscript. We have included important controls and benchmarking experiments to address the reviewer’s concerns, which are detailed in the points below.

      Benchmarking:

      The similarity between the L-A-A sequence of SsrA and the E-A-A sequence of LOVtag is one of the pieces of evidence that led the authors to their current protein design. The differences in degradation efficiency between the SsrA degradation tag and LOVtag are not shown, and benchmarking against SsrA would be a valuable way to demonstrate the utility of this construct relative to an established protein tagging tool.

      We thank the reviewer for suggesting an experiment to benchmark performance. We have added new experimental data where a full length SsrA tag is added to a fusion protein of nearly identical size (mCherry-iLID), allowing us to directly compare performance to mCherryLOVdeg (Fig. S9). These results show that light inducible control with LOVdeg tag decreases protein expression levels to near those achieved with the native SsrA tag. Fig. S9.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Additionally, there is a lack of an EL222-only control presented in Figure 4b and in the results section beginning with "Integrating the LOVtag with EL222...". Without benchmarking against this control the claim that "EL222 and the LOVtag work coherently to decrease expression" is unsubstantiated. No assumptions of synergy can be made.

      We appreciate this comment and note that Reviewer #1 raised a similar concern. We have added data to Fig. 4b with an EL222-only control for comparison. Fig. 4b

      The dramatic change in dark octanoic acid titer between the EL222, LOVtag and combined conditions are surprising, especially in comparison to the lack of change in the dark mCherry expression shown in Figure 4b. This data is the only to suggest that LOVtag may perform better than EL222. However, the inconsistencies in dark state regulation presented in the two experiments, and between conditions in this experiment bring the latter claim to question. A recommendation is that the authors either repeat this experiment, or comment on the observed discrepancy in dark state octanoic acid titers in their discussion.

      First, a key difference between the data presented in Fig. 4 and Fig. 5 is that the production experiment is conducted over a long time period (24 hours) and the EL222/LOVdeg reporter experiment is conducted over 5 hours. Likely, performance differences between EL222 and the LOVdeg tag become more pronounced as protein accumulation occurs. Second, the LOVdeg only construct is expressed from a non-EL222 promoter which is able to achieve higher expression (see response to Reviewer #1, Minor point #3). Lastly, a convoluting factor is that the relationship between expression of CpFatB1 and octanoic acid production is not completely linear, and there are likely thresholds or expressions windows that result in similar endpoint titers. We agree a more detailed examination of how CpFatB1 changes over the course of the production period would be very interesting. However, this is beyond the scope of the present study, whose goal is to introduce and showcase the utility of the LOVdeg tag as a tool. We have added new discussion on this in the Results section to clarify some of these points. We have also repeated all experiments in Fig. 4 and consistently see the LOVdeg tag performing as well as or better than EL222. As noted in the remarks to all reviewers, these data have been updated in the revised manuscript.

      Results: Optogenetic control of octanoic acid production. Fig. 4d

      Based on the methodology presented, no change in the duration in light exposure was tested, even though this may be an important part of the system response. The on/off, for example in Figure 4b, is either all light or all dark, but they claim that their system is beneficial especially at stationary phase. The authors should consider showing the effects of shifting from dark to light at set intervals. (i.e. 1 hr dark then light, 2hr dark until light, etc.) This data would also aid in supporting the utility of this tag for controlling expression during different growth phases, where light may be used after the cells have reached a certain phase.

      We have added new data showing the effect of light stimulation at different times in the growth cycle (see response to Reviewer #2, bullet point #5). These data demonstrate that the LOVdeg tag performs well at various points in the growth cycle. Fig. 1f, Fig. S8.

      Results: Design and characterization of the AsLOV2-based degradation tag

      Minor Revisions Figures:

      • Figure 1:

      • More clarity is needed in the naming conventions for this figure and in the body of the text. For example, a different convention than 546 and 543 should be used to refer to the full and truncated lengths of the tag. It would greatly aid understanding for this to be made more clear. The authors could simply continue to use "full" and "truncated" to refer to them. In addition, the term "stabilizing mutations" in 1c could be changed to read "dark state stabilizing mutations" to aid in clarity.

      When describing the design of the LOVdeg tag, we opted towards a more technically accurate description over clarity in order to make our engineering process easily comparable to other LOV2 systems. As such, we kept the number-based nomenclature (543 or 546) to represent the domain within the phototropin 1 protein from Avena sativa (AsLOV2). The domain used in this study, and many other studies, are only amino acids 404-546, i.e. not the full sequence, thus saying simply ‘full’ or ‘truncated’ is not technically accurate. We believe the detailed nomenclature, which is limited to one section, is important to provide clarity on exactly what we used for protein engineering. In the revised version we introduce the nickname “LOVdeg” tag earlier and use it throughout the rest of the manuscript.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • 1b It is not clear that this is the dark state stabilized structure in the figure, but is referred to as such only in the body of the text.

      We have added text in the manuscript to clarify this is AsLOV2, not iLID, and have labeled it in the figure caption as well.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • 1d. Fold change is reported in Figure 2d, and may be relevant to include those values in 1d as well.

      Done. Fig. 1d

      • 1e. It is not clear which tag is being used in this bar plot. Please specify that this is the dark state stabilized, truncated tag.

      We have added a title to the plot and language to the caption, both of which clarify this point. Fig. 1e

      • In addition, the microscopy images provided in supplemental material should be included in the first figure as it adds a compelling observation of LOVtag activity.

      We are pleased to hear that the microscopy results are beneficial, however we elected to leave them in Supplementary to preserve the flow of the manuscript in the text surrounding Fig. 1.

      • Figure 2:

      • 2d. It is unclear what the 2.5x fold change is relative to (the baseline or the dark)

      We have added a line in the figure to clarify the comparison being made. Fig. 2d

      • 2f. More discussion can be added to describe what concentration of chloramphenicol is biologically/bioreactor relevant.

      Our previous studies on the relationship between AcrAB expression and mutation rate (cited in the text) were carried out at a concentration within the range in which the LOVdeg tag is effective (5 μg/ml), suggesting this range to be relevant to tolerance and resistance.

      • Figure 3:

      • We recommend that this data and discussion are better suited for supplementary figures. The results shown here essentially recapitulate the same findings of Zoltowski et al., 2009. In addition, the paper describing this mutation should be cited in this figure caption in addition to the body of the text

      Although these results are in line with previous findings, we believe this dataset is important for several reasons. First, the agreement with known mutations validates the unfolding-based mechanism for degradation control. Second, degradation that is contingent on unfolding of LOV2 offers a direct actuating mechanism of photocycle properties. Other systems, like that in Zoltowski et al., examine properties of purified proteins but lack the mechanism to translate its effect in live cells. This figure demonstrates how degradation can do so and lays the groundwork for degradation-based frequency processing circuits. Last, there are discrepancies between photocycle kinetics in situ, as reported by Li et al. (DOI: 10.1038/s41467-020-18816-8), and in cell-free studies such as in Zoltowski et al. The studies use different methods of measuring photocycle kinetics (in situ vs cell-free). This dataset substantiates relaxation times from Li et al. and suggests cell-free relaxation time constants are over estimated relative to our live cell results.

      • Figure 4:

      • There is a lack of an EL222-only control presented in Figure 4b. Without this data present, the claim that "EL222 and the LOVtag work coherently to decrease expression" is unsubstantiated. No assumptions of synergy can be made.

      We have added EL222-only data to the figure; we note that Reviewer #1 made a similar request. Figure 4b

      Manuscript

      Results

      • Design and characterization...

      • Due to the extensive discussion of ClpX at the beginning of this section, more of the results on evaluating the binding partners and mechanism of LOVtag degradation should be presented in the main body of the manuscript and not in supplementary materials.

      To maintain flow of the manuscript and focus on how the LOVdeg tag works as a synthetic biology tool, we have opted to keep this section in the Supplement Information, but have several lines in the text related to Fig. 1 that point the reader to this material. Results: Design and characterization of the AsLOV2-based degradation tag

      • In the second paragraph of this section, the authors theorize that the C-terminal truncated E-AA sequence will "remain caged as part of the folded helix". How did the authors determine this? Was there any evidence to suggest that the truncated state would be any more responsive than the full length sequence? More data or rationale may need to be introduced to support the overall hypothesis presented in this paragraph.

      We determined this by examining the crystal structure which shows that the E-A-A sequence is part of the folded helix. As seen in Fig. 1b, addition of amino acids after the EAAKEL sequence would not be part of the folded helix which ends prior to the terminal leucine. We added text to clarify our logic.

      Results: Design and characterization of the AsLOV2-based degradation tag

      • The similarity between the L-A-A sequence of SsrA and the E-A-A sequence of LOVtag is one of the pieces of evidence that brought the authors to their current protein design. The differences in degradation efficiency between the SsrA degradation tag and LOVtag are not clear, and benchmarking against SsrA would be a valuable way to demonstrate the utility of this construct relative to an established protein tagging tool.

      We added an SsrA comparison to benchmark the system. Fig. S9

      Results: Design and characterization of the AsLOV2-based degradation tag

      • Tuning frequency and response...

      • Overall the results presented in this section essentially recapitulate the effects that mutation presented in Zoltowski et. al., 2009 have on AsLOV2 dark state recovery and although this is a useful observation of LOVtag performance, a recommendation is to move this into a supplementary section.

      See above response to Fig. 3 comment.

      • Integrating the LOVtag with EL222...

      • The claim is made in this section that LOVtag and EL222 work synergistically, however the experiments presented do not test repression due to EL222 activity alone. Without benchmarking against this control, the claim of synergy is not supported and we recommend that the authors perform this experiment again with the EL222-only control.

      We have added this important control. Fig. 4b

      Discussion

      • The statement "the LOVtag can easily be integrated with existing optogenetic systems to enhance their function" is not substantiated without benchmarking LOVtag against an EL222- only control. As mentioned above this condition should be included in the experiments discussed in Figure 4 and in the section "Integrating the LOVtag with EL222.."

      We added EL222-only regulation to benchmark the LOVdeg tag and LOVdeg + EL222 experiments. Fig. 4b

      Experiments

      Applications:

      The application of this tag to the metabolic control of octanoic acid production could be more impactful. For instance, using the LOVtag with two different enzymes to change the composition of long/short chain fatty acids with light induction., Or possibly integrating the tag into a switch to activate production. However, the authors address that "decreasing titers is not the overall goal in metabolic engineering" in their discussion, and therefore the pursuit of this additional experiment is up to the authors' discretion.

      We appreciate the suggestions for further applications of the LOVdeg tag. We envision that follow up studies will focus on the application of the LOVdeg tag in metabolic engineering. However, this will require significant development of production systems. We believe this to be out of the scope of this work, where the goal is to present the design and function of the LOVdeg tag as a tool.

    2. eLife assessment

      This valuable study reports on a new tool that allows for light-controlled protein degradation in Escherichia coli. With the improved light-responsive protein tag, endogenous protein levels can be reduced severalfold. The methodology is convincing and will be of interest to the fields of gene expression regulation in bacteria and, more generally to synthetic biologists.

    3. Reviewer #1 (Public Review):

      Specifically controlling the level of proteins in bacteria is an important tool for many aspects of microbiology, from basic research to protein production. While there are several established methods for regulating transcription or translation of proteins with light, optogenetic protein degradation has so far not been established in bacteria. In this paper, the authors present a degradation sequence, which they name "LOVdeg", based on iLID, a modified version of the blue-light-responsive LOV2 domain of Avena sativa phototropin I (AsLOV2). The authors reasoned that by removing the three C-terminal amino acids of iLID, the modified protein ends in "-E-A-A", similar to the "-L-A-A" C-terminus of the widely used SsrA degradation tag. The authors further speculated that, given the light-induced unfolding of the C-terminal domain of iLID and similar proteins, the "-E-A-A" C-terminus would become more accessible and, in turn, the protein would be more efficiently degraded in blue light than in the dark.

      Indeed, several tested LOVdeg-tagged proteins show clearly lower cellular levels in blue light than in the dark. Depending on the nature and expression level of the target protein, protein levels are reduced modestly to strongly (2 to 20x lower levels upon illumination). Accordingly, the authors propose to use their system in combination with other light-controlled expression systems and provide data validating this approach. The LOVdeg system allows to modulate protein levels to a similar degree and with comparable kinetics as optogenetic systems controlling transcription or translation of protein, and can be combined with such systems.

      The manuscript and the figures are generally very well-composed and follow a clear structure. The schematics nicely explain the underlying principles. Besides the advantages of the LOVdeg approach, including its complementarity to controlled expression of proteins, the revised version of the manuscript also highlights the limitations of the method more clearly, e.g., (i) the need to attach a C-terminal tag of considerable size to the protein of interest, (ii) the limited efficiency (slightly less efficient and slower than EL222, a light-dependent transcriptional control mechanism), and (iii) the incompletely understood prerequisites for its application. Taken together, this manuscripts describes the LOVdeg system as a valuable addition to the tool box for controlling protein levels in prokaryotic cells.

    4. Reviewer #2 (Public Review):

      In this manuscript the authors present and characterize LOVdeg, a modified version of the blue-light sensitive AsLOV2 protein, which functions as a light-inducible degron in Escherichia coli. Light has been shown to be a powerful inducer in biological systems as it is often orthogonal and can be controlled in both space and time. Many optogenetic systems target regulation of transcription, however in this manuscript the authors target protein degradation to control protein levels in bacteria. This is an important advance in bacteria, as inducible protein degradation systems in bacteria have lagged behind eukaryotic systems due to protein targeting in bacteria being primarily dependent on primary amino acid sequence and thus more difficult to engineer. In this manuscript, the authors exploit the fact that the J-alpha helix of AsLOV2, which unwinds into a disordered domain in response to blue light, contains an E-A-A amino acid sequence which is very similar to the C-terminal L-A-A sequence in the SsrA tag which is targeted by the unfoldases ClpA and ClpX. They truncate AsLOV2 to create AsLOV2(543) and combine this truncation with a mutation that stabilizes the dark state to generate AsLOV2*(543) which, when fused to the C-terminus of mCherry, confers light-induced degradation. The authors do not verify the mechanism of degradation due to LOVdeg, but evidence from deletion mutants contained in the supplemental material hints that there is a ClpA dominated mechanism. The LOVdeg is able to target mCherry for protein degradation across different phases of bacterial growth, which is important for regulating processes at stationary phase and a potential additional advantage over transcriptional repression systems. They demonstrate modularity of this LOVdeg by using it to degrade the LacI repressor, CRISPRa activation through degradation of MCP-SoxS, and the AcrB protein which is part of the AcrAB-TolC multidrug efflux pump. In all cases, measurement of the effect of the LOVdeg is indirect as the authors measure reduction in LacI repression, reduction in CRISPRa activation, and drug resistance rather than directly measuring protein levels. Nevertheless the evidence is convincing, although seemingly less effective than in the case of mCherry degradation, although it is hard to compare due to the different endpoints being measured. The authors further modify LOVdeg to contain a known photocycle mutation that slows its reversion time in the dark, so that LOVdeg is more sensitive to short pulses of light which could be useful in low light conditions or for very light sensitive organisms. They also demonstrate that combining LOVdeg with a blue-light transcriptional repression system (EL222) can decrease protein levels an additional 23-fold (relative to 7-fold with LOVdeg alone). Finally, the authors apply LOVdeg to a metabolic engineering task, namely reducing expression of octanoic acid by regulating the enzyme CpFatB1, an acyl-ACP thioesterase. The authors show that tagging CpFatB1 with LOVdeg allows light induced reduction in octanoic acid titer over a 24 hour fermentation. In particular, by comparing control of CpFatB1 with EL222 transcriptional repression alone, LOVdeg, or both the authors show that light-induced protein degradation is more effective than light-induced transcriptional repression. The authors suggest that this is because transcriptional repression is not effective when cells are at stationary phase (and thus there is no protein dilution due to cell division). Overall, the authors have generated a modular, light-activated degron tag for use in Escherichia coli that is likely to be a useful tool in the synthetic biology and metabolic engineering toolkit.

    5. Reviewer #3 (Public Review):

      The authors present the mechanism, validation, and modular application of LOVtag, a light-responsive protein degradation tag that is processed by the native degradosome of Escherichia coli. Upon exposure to blue light, the c-terminal alpha helix unfolds, essentially marking the protein for degradation. The authors demonstrate the engineered tag is modular across multiple complex regulatory systems, which shows its potential widespread use throughout the synthetic biology field. The step-by-step rational design of identifying the protein that was most dark-stabilized as well as most light-responsive for degradation, was useful in terms of understanding the key components of this system. The most compelling data shows that the engineered LOVTag can be fused to multiple proteins and achieve light-based degradation, without affecting the original function of the fused protein.

    1. Letterboxd has called itself “Goodreads for movies” but it has far surpassed that initial tag line, having figured out how to create a smooth and intuitive user experience, provide a pleasant and inviting community and earn revenue from both optional paid memberships and advertisers, including studios that produce the films being discussed.

      Says Maris Kreizman in NYT on 24 Dec 2023.

    1. 4. Cite Card Icon : Hat (something above you)Tag : 5th block Quotation, cooking recipe from book, web, tv, anything about someone else’s idea is classified into this class. Important here is distinguishing “your idea (Discovery Card)” and “someone else’s idea (Cite Card)”. Source of the information must be included in the Cite Card. A book, for example, author, year, page(s) are recorded for later use.

      https://www.flickr.com/photos/hawkexpress/189972899/in/album-72157594200490122/

      Despite being used primarily as a productivity tool the PoIC system also included some features of personal knowledge management with "discovery cards" and "citation cards". Discovery cards were things which contained one's own ideas while the citation cards were the ideas of others and included bibliographic information. Citation cards were tagged on the 5th block as an indicator within the system.

      Question: How was the information material managed? Was it separate from the date-based system? On first blush it would appear not, nor was there a subject index which would have made it more difficult for one to find data within the system.

    1. 0. PoIC Format Move your mouse over the picture. This is the basic of PoIC Fromat. It is consisted from Tag, Icon, Title, Date and Time Stamp, and Contents. After several trial, you will remember this format easily. It's virtual template. You can start PoIC with blank card, anytime, anywhere. In this universe, there are only four class of information : Record, Discovery, GTD, and Cite.

      Introduction to the Pile of Index Cards method.

    1. Discovery Card Icon : Electric Bulb (lightning)Tag : 3rd block Things from my brain, mind, spirit, anything emerge from inside me, are classified into this class. This is the most important and enjoyable cards among the Four Cards. You will see your discoveries emerges in your mind like a water from spring. In fact, the 80% of index cards in my dock is dominated by this Discovery Card.

      These are more similar to zettelkasten and commonplacing traditions. They comprise the majority of the system.

    1. Reviewer #1 (Public Review):

      Tiedje et al. investigated the transient impact of indoor residual spraying (IRS) followed by seasonal malaria chemoprevention (SMC) on the plasmodium falciparum parasite population in a high transmission setting. The parasite population was characterized by sequencing the highly variable DBL$\alpha$ tag as a proxy for var genes, a method known as varcoding. Varcoding presents a unique opportunity due to the extraordinary diversity observed as well as the extremely low overlap of repertoires between parasite strains. The authors also present a new Bayesian approach to estimating individual multiplicity of infection (MOI) from the measured DBL$\alpha$ repertoire, addressing some of the potential shortcomings of the approach that have been previously discussed. The authors also present a new epidemiological endpoint, the so-called "census population size", to evaluate the impact of interventions.

      This study provides a nice example of how varcoding technology can be leveraged, as well as the importance of using diverse genetic markers for characterizing populations, especially in the context of high transmission. The data are robust and clearly show the transient impact of IRS in a high transmission setting, however, some aspects of the analysis are confusing.

      1) Approaching MOI estimation with a Bayesian framework is a well-received addition to the varcoding methodology that helps to address the uncertainty associated with not knowing the true repertoire size. It's unfortunate that while the authors clearly explored the ability to estimate the population MOI distribution, they opted to use only MAP estimates. Embracing the Bayesian methodology fully would have been interesting, as the posterior distribution of population MOI could have been better explored.

      2) The "census population size" endpoint has unclear utility. It is defined as the sum of MOI across measured samples, making it sensitive to the total number of samples collected and genotyped. This means that the values are not comparable outside of this study, and are only roughly comparable between strata in the context of prevalence where we understand that approximately the same number of samples were collected. In contrast, mean MOI would be insensitive to differences in sample size, why was this not explored? It's also unclear in what way this is a "census". While the sample size is certainly large, it is nowhere near a complete enumeration of the parasite population in question, as evidenced by the extremely low level of pairwise type sharing in the observed data.

      3) The extraordinary diversity of DBL$\alpha$ presents challenges to analyzing the data. The authors explore the variability in repertoire richness and frequency over the course of the study, noting that richness rapidly declined following IRS and later rebounded, while the frequency of rare types increased, and then later declined back to baseline levels. The authors attribute this to fundamental changes in population structure. While there may have been some changes to the population, the observed differences in richness as well as frequency before and after IRS may also be compatible with simply sampling fewer cases, and thus fewer DBL$\alpha$ sequences. The shift back to frequency and richness that is similar to pre-IRS also coincides with a similar total number of samples collected. The authors explore this to some degree with their survival analysis, demonstrating that a substantial number of rare sequences did not persist between timepoints and that rarer sequences had a higher probability of dropping out. This might also be explained by the extreme stochasticity of the highly diverse DBL$\alpha$, especially for rare sequences that are observed only once, rather than any fundamental shifts in the population structure.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Heyndrickx et al describes protein crystal formation and function that bears similarity to Charcot-Leyden crystals made of galectin 10, found in humans under similar conditions. Therefore, the authors set out to investigate CLP crystal formation and their immunological effects in the lung. The authors reveal the crystal structure of both Ym1 and Ym2 and show that Ym1 crystals trigger innate immunity, activated dendritic cells in the lymph node, enhancing antigen uptake and migration to the lung, ultimately leading to induction of type 2 immunity.

      Strengths:

      We know a lot about expression levels of CLPs in various settings in the mouse but still know very little about the functions of these proteins, especially in light of their ability to form crystal structures. As such data presented in this paper is a major advance to the field.

      Resolving the crystal structure of Ym2 and the comparison between native and recombinant CLP crystals is a strength of this manuscript that will be a very powerful tool for further evaluation and understanding of receptor, binding partner studies including the ability to aid mutant protein generation.

      The ability to recombinantly generate CLP crystals and study their function in vivo and ex vivo has provided a robust dataset whereby CLPs can activate innate immune responses, aid activation and trafficking of antigen presenting cells from the lymph node to the lung and further enhances type 2 immunity. By demonstrating these effects the authors directly address the aims for the study. A key point of this study is the generation of a model in which crystal formation/function an important feature of human eosinophilic diseases, can be studied utilising mouse models. Excitingly, using crystal structures combined with understanding the biochemistry of these proteins will provide a potential avenue whereby inhibitors could be used to dissolve or prevent crystal formation in vivo.

      The data presented flows logically and formulates a well constructed overall picture of exactly what CLP crystals could be doing in an inflammatory setting in vivo. This leaves open a clear and exciting future avenue (currently beyond the scope of this work) for determining whether targeting crystal formation in vivo could limit pathology.

      Weaknesses:

      Although resolving the crystal structure of Ym2 in particular is a strength of the authors work, the weaknesses are that further work or even discussion of Ym2 versus Ym1 has not been directly demonstrated. The authors suggest Ym2 crystals will likely function the same as Ym1, but there is insufficient discussion (or data) beyond sequence similarity as to why this is the case. If Ym1 and Ym2 crystals function the same way, from an evolutionary point, why do mice express two very similar proteins that are expressed under similar conditions that can both crystalise and as the authors suggest act in a similar way. Some discussion around these points would add further value.

      We agree with reviewer. We have further elaborated the discussion section including these points, stating clearly that more research needs to be done using Ym2 crystals before we can draw parallels in vivo.

      Additionally, the crystal structure for Ym1 has been previously resolved (Tsai et al 2004, PMID 15522777) and it is unclear whether the data from the authors represents an advance in the 3D structure from what is previously known.

      The crystal structure of Ym1 has indeed been previously solved, and we refer to that paper. In addition, we also provide the crystal structure of in vitro grown Ym1, ashowing biosimilarity. This, for the field of crystallography is a major finding, since it validates the concept that crystal structures generated in vitro can reflect in vivo grown structures. Moreover, the in vivo crystallization of Ym2 was unknown prior to this work, and is now clear as revealed by the ex vivo X-ray crystallography. The strength of our story is that we can now compare Ym1 and Ym2 crystals structures in detail.

      Whilst also generating a model to understand Charcot-Leyden crystals (CLCs), the authors fail to discuss whether crystal shape may be an important feature of crystal function. CLCs are typically needle like, and previous publications have shown using histology and TEM that Ym1 crystals are also needle like. However, the crystals presented in this paper show only formation of plate like structures. It is unclear whether these differences represent different methodologies (ie histology is 2D slides), or differences in CLP crystals that are intracellular versus extracellular. These findings highlight a key question over whether crystal shape could be important for function and has not been addressed by the authors.

      In contrast to the bipyramidal, needle-like CLC crystals formed by human galectin-10 protein (hexagonal space group P6522), the in vivo grown Ym1 and Ym2 crystals we were able to isolate for X-ray diffraction experiments had a plate-like morphology with identical crystallographic parameters as recombinant Ym1/Ym2 crystals (space group P21). We note that depending on the viewing orientation of the thin plate-like Ym1 crystals, they may appear needle-like in histology and TEM images. In addition, we can fully not exclude that both Ym1 or Ym2 may crystallize in vivo in different space groups (which could result in different crystal morphologies for Ym1/Ym2) but we have no data to support this. It is finally also a possibility that plate like structures can break up in vivo along a long axis as a result of mechanical forces, and end up as rod-or needle like shapes.

      Ym1/Ym2 crystals are often observed in conditions where strong eosinophilic inflammation is present. However, soluble Ym1 delivery in naïve mice shows crystal formation in the absence of a strong immune response. There is no clear discussion as to the conditions in which crystal formation occurs in vivo and how results presented in the paper in terms of priming or exacerbating an immune response align with what is known about situations where Ym1 and Ym2 crystals have been observed.

      Although Ym1 and Ym2 crystals are often observed in mice at sites of eosinophilic inflammation, they are not made by eosinophils, but mainly by macrophages and epithelial cells, respectively. In vitro, protein crystallization typically starts from supersaturated solutions that support crystal nucleation. Several factors such as temperature and pH can affect the solubility of Ym1 and Ym2 in vivo and thus affect the nucleation and crystallization process. For Ym1 and Ym2 we noticed in vitro that a small drop in pH facilitates the crystallization process. Although the physiological pH is 7.4, during inflammation, there is a drop in pH. This drop in pH is the result of the infiltration and activation of inflammatory cells in the tissue, which leads to an increased energy and oxygen demand, accelerated glucose consumption via glycolysis and thus increased lactic acid secretion. In addition, we cannot exclude that in vivo, the nucleation process for Ym1/Ym2 is facilitated by interaction with ligands in the extracellular space (e.g. polysaccharide ligands or other – yet to be identified – specific ligands to Ym1/Ym2).

      Reviewer #2 (Public Review):

      Summary:

      This interesting study addresses the ability of Ym1 protein crystals to promote pulmonary type 2 inflammation in vivo, in mice.

      Strengths:

      The data are extremely high quality, clearly presented, significantly extending previous work from this group on the type 2 immunogenicity of protein crystals.

      Weaknesses:

      There are no major weaknesses in this study. It would be interesting to see if Ym2 crystals behave similarly to Ym1 crystals in vivo. Some additional text in the Introduction and Discussion would enrich those sections.

      We agree that this would be interesting to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved experiments and to strengthen findings:

      I think additional data on the ability of Ym2 crystals to induce an immune response would be advantageous. I'm not by any means suggesting the authors repeat all the experiments with Ym2 crystals, but even just the ability to show that Ym2 could promote type 2 immunity in the acute OVA model, would help to strengthen the argument that these crystals in general function in a similar way. Alternatively, a discussion on whether these protein crystals may function in different scenarios/tissues or conditions could help in light of additional data

      We agree that this is an interesting point to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Measuring IL-33 in lung tissue is difficult to interpret as cells will express intracellular IL-33 that is not active and may explain why the results in Fig 2D are not overly convincing. It could just be that Ym1 crystals are changing the number of cells expressing IL-33 (e.g macrophages, or type 2 pneumocytes) Did the authors also measure active IL-33 release in the BAL fluid which may give a better indication of Ym1's ability to activate DAMPs?

      We also measured active IL-33 release in the BAL fluid, but due to the limited sample availability we could only measure this in one of the two repeat experiments, resulting in non-significant results for the BAL fluid. However, certainly for the 6h timepoint we saw a similar trend in the BAL fluid as in the lung tissue, meaning higher levels of IL-33 in the Ym1 crystal group compared to the PBS and soluble Ym1 group.

      Crystals in Fig 2F staining with Ym1 appear to be brighter in the soluble Ym1 group. Is this related to increased packing of Ym1 in the crystals formed in vivo as opposed to those formed in vitro? Aside from reduced amount of crystals that form when you give soluble Ym1, could the type of crystal also be influencing the ability of soluble Ym1 crystals to generate an immune response?

      Our X-ray diffraction experiments show that the packing of Ym1 is identical for in vivo and in vitro grown crystals. Possibly the apparent difference in brightness is caused by stochastic staining by the antibody. In this regard we note that the crystals formed from soluble Ym1 after 24h also can appear as less bright in a similar fashion as recombinant Ym1 crystals.

      Overall, the data and writing of the manuscript is presented to a very high standard

      A few minor points:

      • Fig 2F - a little unsure what the number in the left top corner of the images represented.

      These numbers represent the picture numbers generated by the software, but as they don’t have any added value for the story, we removed these numbers from the images.

      • Not clear why two different expression vectors were used - one for Ym1 and one for Ym2?

      Because we observed that recombinant Ym2 is more poorly secreted in the mammalian cell culture supernatant as compared to recombinant Ym1, we produced Ym2 with an N-terminal hexahistidine-tag followed by a Tobacco Etch Virus (TEV)-protease cleavage site to facilitate its purification.

      Reviewer #2 (Recommendations For The Authors):

      The authors briefly outline in their Introduction potential Sources of Ym1/2 in vivo, highlighting monocytes, M2 macrophages, alveolar macrophages, neutrophils and epithelial cells. Do DCs also make detectable/meaningful amounts of Ym1/2 in vivo, particularly in type 2 settings?

      In the introduction we only highlighted the main cellular sources of Ym1 and Ym2, but there is literature available stating/showing that Ym1/2 is not only expressed by macrophages, neutrophils, monocytes and epithelial cells, but can also be induced in DCs and mast cells. We added the word ‘mainly’ to this sentence in the introduction, to make clear that macrophages, neutrophils and monocytes are not the only sources of Ym1.

      Given the nicely demonstrated similarity of recombinant Ym1 and Ym2 crystals, I think it is important for the authors to include at least initial data on the outcome of recombinant Ym2 crystal admin to mice, in comparison to their Ym1 data.

      We agree that this is an interesting point to investigate, however, we choose to not include recombinant Ym2 crystal data in this report. However, we have further elaborated the discussion section including this point.

      Given the generation of crystals following in vivo administration of soluble Ym1, albeit at a lower level than when crystals were administered, it would be interesting to see if increased concentrations of soluble material show a dose dependent increase in lung inflammation readouts.

      We agree that this would be an interesting point to investigate. Alongside this we could also titrate down the crystal dose, to see if there is a dose dependent decrease in lung inflammation readouts. However, at this time, we choose to not investigate this further.

      I couldn't easily follow the authors' Discussion about potential ability of anti Ym-1/2 Abs to dissolve Ym1/2 crystals (similar to what they have demonstrated for Abs vs Gal10 crystals). Have they addressed this possibility experimentally? If so, addition of such data to the manuscript would be extremely interesting, given the obvious potential Ym1/2 crystal dissolving Abs for investigation of the role of these in a range of different murine models of type 2 inflammation.

      We agree that the phrasing of this part of the discussion can be unclear/confusing. We rephrased this part to make it clearer. However, we did not address the possibility of Ym1/2 crystal dissolving antibodies experimentally.

      In the Results section, the authors briefly comment on the pro-type 2 nature of Ym1 crystals in relation to their previous work with uric acid and Gal10 crystals, proposing that the pulmonary type 2 response may be a 'generic response to crystals of different chemical composition'. The Discussion would be enriched by deeper exploration of this comment.

      We have further elaborated the discussion section including this point.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We agree with the reviewer that the statistics are buried in a dense excel file without a read-me page. We will address this by making a summary excel page for p-values during the production process.


      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study uses genomically-engineered glypican alleles to demonstrate convincingly that Dally (not Dally-like protein [Dlp]) is the key contributor to formation of the Dpp/BMP morphogen gradient in the wing disc of Drosophila. The authors provide solid genetic evidence that, surprisingly, the core domain of Dally appears to suffice to trap Dpp at the cell surface. They conclude with a model according to which Dally modulates the range of Dpp signaling by interfering with Dpp's internalization by the Dpp receptor Thickveins.

      Public Reviews:

      Reviewer #1 (Public Review):

      How morphogens spread within tissues remains an important question in developmental biology. Here the authors revisit the role of glypicans in the formation of the Dpp gradient in wing imaginal discs of Drosophila. They first use sophisticated genome engineering to demonstrate that the two glypicans of Drosophila are not equivalent despite being redundant for viability. They show that Dally is the relevant glypican for Dpp gradient formation. They then provide genetic evidence that, surprisingly, the core domain of Dally suffices to trap Dpp at the cell surface (suggesting a minor role for GAGs). They conclude with a model that Dally modulates the range of Dpp signaling by interfering with Dpp's degradation by Tkv. These are important conclusions, but more independent (biochemical/cell biological) evidence is needed.

      As indicated above, the genetic evidence for the predominant role of Dally in Dpp protein/signalling gradient formation is strong. In passing, the authors could discuss why overexpressed Dlp has a negative effect on signaling, especially in the anterior compartment. The authors then move on to determine the role of GAG (=HS) chains of Dally. They find that in an overexpression assay, Dally lacking GAGs traps Dpp at the cell surface and, counterintuitively, suppresses signaling (fig 4 C, F). Both findings are unexpected and therefore require further validation and clarification, as outlined in a and b below.

      a. In loss of function experiments (dallyDeltaHS replacing endogenous dally), Dpp protein is markedly reduced (fig 4R), as much as in the KO (panel Q), suggesting that GAG chains do contribute to trapping Dpp at the cell surface. This is all the more significant that, according to the overexpression essays, DallyDeltaHS seems more stable than WT Dally (by the way, this difference should also be assessed in the knock-ins, which is possible since they are YFP-tagged). The authors acknowledge that HS chains of Dally are critical for Dpp distribution (and signaling) under physiological conditions. If this is true, one can wonder why overexpressed dally core 'binds' Dpp and whether this is a physiologically relevant activity.

      According to the overexpression assay, DallyDeltaHS seems more stable than WT Dally (Fig. 4B’, E’, 5A’, B’). As the reviewer suggested, we addressed the difference using the two knock-in alleles and found that DallyDeltaHS is more stable than WT Dally (Fig.4 L, M inset), further emphasizing the insufficient role of core protein of Dally for extracellular Dpp distribution.

      In summary, we showed that, although Dally interacts with Dpp mainly through its core protein from the overexpression assay (Fig. 4E, I), HS chains are essential for extracellular Dpp distribution (Fig. 4R). Thus, the core protein of Dally alone is not sufficient for extracellular Dpp distribution under physiological conditions. These results raise a question about whether the interaction of core protein of Dally with Dpp is physiologically relevant. Since the increase of HS upon dally expression but not upon dlp expression resulted in the accumulation of extracellular Dpp (Fig. 2) and this accumulation was mainly through the core protein of Dally (Fig. 4E, I), we speculate that the interaction of the core protein of Dally with Dpp gives ligand specificity to Dally under physiological conditions.

      To understand the importance of the interaction of core protein of Dally with Dpp under physiological conditions, it is important to identify a region responsible for the interaction. Our preliminary results overexpressing a dally mutant lacking the majority of core protein (but keeping the HS modified region intact) showed that HS chains modification was also lost. Although this is consistent with our results that enzymes adding HS chains also interact with the core protein of Dally (Fig. 4D), the dally mutant allele lacking the core protein would hamper us from distinguishing the role of core protein of Dally from HS chains.

      Nevertheless, we can infer the importance of the interaction of core protein of Dally with Dpp using dally[3xHA-dlp, attP] allele, where dlp is expressed in dally expressing cells. Since Dally-like is modified by HS chains but does not interact with Dpp (Fig. 2, 4), dally[3xHA-dlp, attP] allele mimics a dally allele where HS chains are properly added but interaction of core protein with Dpp is lost. As we showed in Fig.3O, S, the allele could not rescue dallyKO phenotypes, consistent with the idea that interaction of core protein of Dally with Dpp is essential for Dpp distribution and signaling and HS chain alone is not sufficient for Dpp distribution.

      b. Although the authors' inference that dallycore (at least if overexpressed) can bind Dpp. This assertion needs independent validation by a biochemical assay, ideally with surface plasmon resonance or similar so that an affinity can be estimated. I understand that this will require a method that is outside the authors' core expertise but there is no reason why they could not approach a collaborator for such a common technique. In vitro binding data is, in my view, essential.

      We agree with the reviewer that a biochemical assay such as SPR helps us characterize the interaction of core protein of Dally and Dpp (if the interaction is direct), although the biochemical assay also would not demonstrate the interaction under the physiological conditions.

      However, SPR has never been applied in the case of Dpp, probably because purifying functional refolded Dpp dimer from bacteria has previously been found to be stable only in low pH and be precipitated in normal pH buffer (Groppe J, et al., 1998)(Matsuda et al., 2021). As the reviewer suggests, collaborating with experts is an important step in the future.

      Nevertheless, SPR was applied for the interaction between BMP4 and Dally (Kirkpatrick et al., 2006), probably because BMP4 is more stable in the normal buffer. Although the binding affinity was not calculated, SPR showed that BMP4 directly binds to Dally and this interaction was only partially inhibited by molar excess of exogenous HS, suggesting that BMP4 can interact with core protein of Dally as well as its HS chains. In addition, the same study applied Co-IP experiments using lysis of S2 cells and showed that Dpp and core protein of Dally are co-immunoprecipitated, although it does not demonstrate if the interaction is direct.

      In a subsequent set of experiments, the authors assess the activity of a form of Dpp that is expected not to bind GAGs (DppDeltaN). Overexpression assays show that this protein is trapped by DallyWT but not dallyDeltaHS. This is a good first step validation of the deltaN mutation, although, as before, an invitro binding assay would be preferable.

      Our overexpression assays actually showed that DppDeltaN is trapped by DallyWT and by dallyDeltaHS at similar levels (Fig. 5C), indicating that interaction of DppDeltaN and HS chains of Dally is largely lost but DppDeltaN can still interact with core protein of Dally.

      We thank the reviewer for the suggesting the in vitro experiment. Although we decided not to develop biophysical experiments such as SPR for Dpp in this study due to the reasons discussed above, we would like to point out that our result is consistent with a previous Co-IP experiment using S2 cells showing that DppDeltaN loses interaction with heparin (Akiyama2008).

      However, in contrast to our results, the same study also proposed by Co-IP experiments using S2 cells that DppDeltaN loses interaction with Dally (Akiyama2008). Although it is hard to conclude since western blotting was too saturated without loading controls and normalization (Fig. 1C in Akiyama 2008), and negative in vitro experiments do not necessarily demonstrate the lack of interaction in vivo. One explanation why the interaction was missed in the previous study is that some factors required for the interaction of DppDeltaN with core protein of Dally are missing in S2 cells. In this case, in vivo interaction assay we used in this study has an advantage to robustly detect the interaction.

      Nevertheless, the authors show that DppDeltaN is surprisingly active in a knock-in strain. At face value (assuming that DeltaN fully abrogates binding to GAGs), this suggests that interaction of Dpp with the GAG chains of Dally is not required for signaling activity. This leads to authors to suggest (as shown in their final model) that GAG chains could be involved in mediating the interactions of Dally with Tkv (and not with Dpp. This is an interesting idea, which would need to be reconciled with the observation that the distribution of Dpp is affected in dallyDeltaHS knock-ins (item a above). It would also be strengthened by biochemical data (although more technically challenging than the experiments suggested above). In an attempt to determine the role of Dally (GAGs in particular) in the signaling gradient, the paper next addresses its relation to Tkv. They first show that reducing Tkv leads to Dpp accumulation at the cell surface, a clear indication that Tkv normally contributes to the degradation of Dpp. From this they suggest that Tkv could be required for Dpp internalisation although this is not shown directly. The authors then show that a Dpp gradient still forms upon double knockdown (Dally and Tkv). This intriguing observation shows that Dally is not strictly required for the spread of Dpp, an important conclusion that is compatible with early work by Lander suggesting that Dpp spreads by free diffusion. These result show that Dally is required for gradient formation only when Tkv is present. They suggest therefore that Dally prevents Tkv-mediated internalisation of Dpp. Although this is a reasonable inference, internalisation assays (e.g. with anti-Ollas or anti-HA Ab) would strengthen the authors' conclusions especially because they contradict a recent paper from the Gonzalez-Gaitan lab.

      Thanks for suggesting the internalization assay. As we discussed in the discussion, our results suggest that extracellular Dpp distribution is severely reduced in dally mutants due to Tkv mediated internalization of Dpp (Fig. 6). Thus, extracellular Dpp available for labelling with nanobody is severely reduced in dally mutants, which can explain the reduced internalization of Dpp in dally mutants in the internalization assay. Therefore, we think that the nanobody internalization assay would not distinguish the two contradicting possibilities.

      The paper ends with a model suggesting that HS chains have a dual function of suppressing Tkv internalisation and stimulating signaling. This constitutes a novel view of a glypican's mode of action and possibly an important contribution of this paper. As indicated above, further experiments could considerably strengthen the conclusion. Speculation on how the authors imagine that GAG chains have these activities would also be warranted.

      Thank you very much!

      Reviewer #2 (Public Review):

      The authors are trying to distinguish between four models of the role of glypicans (HSPGs) on the Dpp/BMP gradient in the Drosophila wing, schematized in Fig. 1: (1) "Restricted diffusion" (HSPGs transport Dpp via repetitive interaction of HS chains with Dpp); (2) "Hindered diffusion" (HSPGs hinder Dpp spreading via reversible interaction of HS chains with Dpp); (3) "Stabilization" (HSPGs stabilize Dpp on the cell surface via reversible interaction of HS chains with Dpp that antagonizes Tkv-mediated Dpp internalization); and (4) "Recycling" (HSPGs internalize and recycle Dpp).

      To distinguish between these models, the authors generate new alleles for the glypicans Dally and Dally-like protein (Dlp) and for Dpp: a Dally knock-out allele, a Dally YFP-tagged allele, a Dally knock-out allele with 3HA-Dlp, a Dlp knock-out allele, a Dlp allele containing 3-HA tags, and a Dpp lacking the HS-interacting domain. Additionally, they use an OLLAS-tag Dpp (OLLAS being an epitope tag against which extremely high affinity antibodies exist). They examine OLLAS-Dpp or HA-Dpp distribution, phospho-Mad staining, adult wing size.

      They find that over-expressed Dally - but not Dlp - expands Dpp distribution in the larval wing disc. They find that the Dally[KO] allele behaves like a Dally strong hypomorph Dally[MH32]. The Dally[KO] - but not the Dlp[KO] - caused reduced pMad in both anterior and posterior domains and reduced adult wing size (particularly in the Anterior-Posterior axis). These defects can be substantially corrected by supplying an endogenously tagged YFP-tagged Dally. By contrast, they were not rescued when a 3xHA Dlp was inserted in the Dally locus. These results support their conclusion that Dpp interacts with Dally but not Dlp.

      They next wanted to determine the relative contributions of the Dally core or the HS chains to the Dpp distribution. To test this, they over-expressed UAS-Dally or UAS-Dally[deltaHS] (lacking the HS chains) in the dorsal wing. Dally[deltaHS] over-expression increased the distribution of OLLAS-Dpp but caused a reduction in pMad. Then they write that after they normalize for expression levels, they find that Dally[deltaHS] only mildly reduces pMad and this result indicates a major contribution of the Dally core protein to Dpp stability.

      Thanks for the comments. We actually showed that compared with Dally overexpression, Dally[deltaHS] overexpression only mildly reduces extracellular Dpp accumulation (Fig. 4I). This indicates a major contribution of the Dally core protein to interaction with Dpp, although the interaction is not sufficient to sustain extracellular Dpp distribution and signaling gradient.

      The "normalization" is a key part of this model and is not mentioned how the normalization was done. When they do the critical experiment, making the Dally[deltaHS] allele, they find that loss of the HS chains is nearly as severe as total loss of Dally (i.e., Dally[KO]). Additionally, experimental approaches are needed here to prove the role of the Dally core.

      Since the expression level of Dally[deltaHS] is higher than Dally when overexpressed, we normalized extracellular Dpp distribution (a-Ollas staining) against GFP fluorescent signal (Dally or Dally[deltaHS]). To do this, we first extracted both signal along the A-P axis from the same ROI in the previous version. The ratio was calculated by dividing the intensity of a-Ollas staining with the intensity of GFP fluorescent signal at a given position x. The average profile from each normalized profile was generated and plotted using the script described in the method (wingdisc_comparison.py) as other pMad or extracellular staining profiles.

      Although this analysis provides normalized extracellular Dpp accumulation at different positions along the A-P axis, we are more interested in the total amount of Dpp or DppDeltaN accumulation upon Dally or dallyDeltaHS expression. Therefore, in the revised ms, we decided to normalize total amount of extracellular Dpp against the level of Dally or Dally[deltaHS] by dividing total signal intensity of extracellular Dpp staining (ExOllas staining) by total GFP fluorescent signal (Dally or Dally[deltaHS]) around the Dpp producing cells in each wing disc. Statistical analysis showed that accumulation of extracellular Dpp is only slightly reduced without HS chains (Fig.4I), indicating that Dally interacts with Dpp mainly through its core protein.

      We agree with the reviewer that additional experimental approaches are needed to address the role of the core protein of Dally. As we discussed in the response to the reviewer1, to understand the importance of the interaction of core protein of Dally with Dpp, it is important to identify a region responsible for the interaction. Our preliminary results overexpressing a dally mutant lacking the majority of core protein (but keeping the HS modified region intact) showed that HS chains modification was also lost. Although this is consistent with our results that enzymes adding HS chains also interact with the core protein of Dally (Fig. 4D), the dally mutant allele lacking the core protein would hamper us from distinguishing the role of the core protein of Dally from HS chains.

      Nevertheless, we can infer the importance of the interaction of core protein of Dally with Dpp using dally[3xHA-dlp, attP] allele, where dlp is expressed in dally expressing cells. Since Dally-like is modified by HS chains but does not interact with Dpp (Fig. 2, 4), dally[3xHA-dlp, attP] allele mimics a dally allele where HS chains are properly added but interaction of core protein with Dpp is lost. As we showed in Fig.3O, S, the allele could not rescue dallyKO phenotypes, consistent with the idea that interaction of core protein of Dally with Dpp is essential for Dpp distribution and signaling.

      Prior work has shown that a stretch of 7 amino acids in the Dpp N-terminal domain is required to interact with heparin but not with Dpp receptors (Akiyama, 2008). The authors generated an HA-tagged Dpp allele lacking these residues (HA-dpp[deltaN]). It is an embryonic lethal allele, but they can get some animals to survive to larval stages if they also supply a transgene called “JAX” containing dpp regulatory sequences. In the JAX; HA-dpp[deltaN] mutant background, they find that the distribution and signaling of this Dpp molecule is largely normal. While over-expressed Dally can increase the distribution of HA-dpp[deltaN], over-expression of Dally[deltaHS] cannot. These latter results support the model that the HS chains in Dally are required for Dpp function but not because of a direct interaction with Dpp.

      Our overexpression assays actually showed that both Dally and Dally[deltaHS] can accumulate Dpp upon overexpression and the accumulation of Dpp is comparable after normalization (Fig. 5C), consistent with the idea that interaction of DppdeltaN and HS chains are largely lost. As the reviewer pointed out, these results support the model that the HS chains in Dally are required for Dpp function but not because of a direct interaction with Dpp.

      In the last part of the results, they attempt to determine if the Dpp receptor Thickveins (Tkv) is required for Dally-HS chains interaction. The 2008 (Akiyama) model posits that Tkv activates pMad downstream of Dpp and also internalizes and degrades Dpp. A 2022 (Romanova-Michaelides) model proposes that Dally (not Tkv) internalizes Dpp.

      To distinguish between these models, the authors deplete Tkv from the dorsal compartment of the wing disc and found that extracellular Dpp increased and expanded in that domain. These results support the model that Tkv is required to internalize Dpp.

      They then tested the model that Dally antagonizes Tkv-mediated Dpp internalization by determining whether the defective extracellular Dpp distribution in Dally[KO] mutants could be rescued by depleting Tkv. Extracellular Dpp did increase in the D vs V compartment, potentially providing some support for their model. However, there are no statistics performed, which is needed for full confidence in the results. The lack of statistics is particularly problematic (1) when they state that extracellular Dpp does not rise in ap>tkv RNAi vs ap>tkv RNAi, dally[KO] wing discs (Fig. 6E) or (2) when they state that extracellular Dpp gradient expanded in the dorsal compartment when tkv was dorsally depleted in dally[deltaHS] mutants (Fig. 6I). These last two experiments are important for their model but the differences are assessed only visually. In fact, extracellular Dpp in ap>tkv RNAi, dally[KO] (Fig. 6B) appears to be lower than extracellular Dpp in ap>tkv RNAi (Fig. 6A) and the histogram of Dpp in ap>tkv RNAi, dally[KO] is actually a bit lower than Dpp in ap>tkv RNAi, But the author claim that there is no difference between the two. Their conclusion would be strengthened by statistical analyses of the two lines.

      We provided statistics for all the quantifications for pMad and extracellular Dpp distribution as supplementary data. In the previous version, we argued that extracellular Dpp level in ap>tkvRNAi, dallyKO (Fig.6B) does not increase compared with that in ap>tkvRNAi (Fig.6A). Statistical analysis (t-test) showed that the extracellular Dpp level in Fig. 6B is similar to or lower than that in Fig. 6A (Fig. 6E), confirming our conclusion. Statistical analysis (t-test) also confirmed that extracellular Dpp distribution expanded when tkv was knocked down in dallyHS mutants (Fig. 6I).

      Strengths:

      1. New genomically-engineered alleles

      A considerable strength of the study is the generation and characterization of new Dally, Dlp and Dpp alleles. These reagents will be of great use to the field.

      Thanks. We hope that these resources are indeed useful to the field.

      1. Surveying multiple phenotypes

      The authors survey numerous parameters (Dpp distribution, Dpp signaling (pMad) and adult wing phenotypes) which provides many points of analysis.

      Thanks!

      Weaknesses:

      1. Confusing discussion regarding the Dally core vs HS in Dpp stability. They don't provide any measurements or information on how they "normalize" for the level of Dally vs Dally[deltaHS]? This is important part of their model that currently is not supported by any measurements.

      We explained how we normalized in the above section and updated the method section in the revised ms.

      1. Lacking quantifications and statistical analyses:

      a. Why are statistical significance for histograms (pMad and Dpp distribution) not supplied? These histograms provide the key results supporting the authors' conclusions but no statistical tests/results are presented. This is a pervasive shortcoming in the current study.

      Thanks. We provided t-test analyses together with the raw data as supplementary data.

      b. dpp[deltaN] with JAX transgene - it would strengthen the study to supply quantitative data on the percent survival/lethal stage of dpp[deltaN] mutants with or without the JAK transgene

      In this study, we are interested in the role of dpp[deltaN] during the wing disc development. Therefore, we decided not to perform the detailed analysis on the percent survival/lethal stage of dpp[deltaN] mutants with or without the JAX transgene in the current study. Nevertheless, the fact that dpp[deltaN] allele is maintained with a balanced stock and JAX;dpp[deltaN] allele can be maintained as homozygous stock indicates that the lethality of dpp[deltaN] allele comes from the early stages. Indeed, our preliminary results showed that pMad signal is severely lost in the dpp[deltaN] embryo without JAX (data not shown), indicating that the allele is lethal at early embryonic stages.

      c. The graphs on wing size etc should start at zero.

      Thanks. We corrected this in the current ms.

      d. The sizes of histograms and graphs in each figure should be increased so that the reader can properly assess them. Currently, they are very small.

      Thanks. We changed the sizes in the current ms.

      The authors' model is that Dally (not Dlp) is required for Dpp distribution and signaling but that this is not due to a direct interaction with Dpp. Rather, they posit that Dally-HS antagonize Tkv-mediated Dpp internalization. Currently the results of the experiments could be considered consistent with their model, but as noted above, the lack of statistical analyses of some parameters is a weakness.

      Thanks. We now performed and provided the statistical analyses in the revised ms.

      One problematic part of their result for me is the role of the Dally core protein (Fig. 7B). There is a mis-match between the over-expression results and Dally allele lacking HS (but containing the core). Finally, their results support the idea that one or more as-yet unidentified proteins interact with Dally-HS chains to control Dpp distribution and signaling in the wing disc.

      Our results simply suggest that Dpp can interact with Dally mainly through core protein but this interaction is not sufficient to sustain extracellular Dpp gradient formation under physiological conditions (dallyDeltaHS) (Fig. 4Q). We find that the mis-match is not problematic if the role of Dally is not simply mediated through interaction with Dpp. We speculate that interaction of Dpp and core protein of Dally is transient and not sufficient to sustain the Dpp gradient without HS chains of Dally stabilizing extracellular Dpp distribution by blocking Tkv-mediated Dpp internalization.

      There is much debate and controversy in the Dpp morphogen field. The generation of new, high quality alleles in this study will be useful to Drosophila community, and the results of this study support the concept that Tkv but not Dally regulate Dpp internalization. Thus the work could be impactful and fuel new debates among morphogen researchers.

      Thanks.

      The manuscript is currently written in a manner that really is only accessible to researchers who work on the Dpp gradient. It would be very helpful for the authors to re-write the manuscript and carefully explain in each section of the results (1) the exact question that will be asked, (2) the prior work on the topic, (3) the precise experiment that will be done, and (4) the predicted results. This would make the study more accessible to developmental biologists outside of the morphogen gradient and Drosophila communities.

      Thanks. We modified texts and changed the order of Fig.5. We hope that the changes make this study more accessible to developmental biologists outside of the field.

    2. Joint Public Review:

      The authors are trying to distinguish between four models of the role of glypicans (HSPGs) on the Dpp/BMP gradient in the Drosophila wing, schematized in Fig. 1: (1) "Restricted diffusion" (HSPGs transport Dpp via repetitive interaction of HS chains with Dpp); (2) "Hindered diffusion" (HSPGs hinder Dpp spreading via reversible interaction of HS chains with Dpp); (3) "Stabilization" (HSPGs stabilize Dpp on the cell surface via reversible interaction of HS chains with Dpp that antagonizes Tkv-mediated Dpp internalization); and (4) "Recycling" (HSPGs internalize and recycle Dpp).

      To distinguish between these models, the authors generate new alleles for the glypicans Dally and Dally-like protein (Dlp) and for Dpp: a Dally knock-out allele, a Dally YFP-tagged allele, a Dally knock-out allele with 3HA-Dlp, a Dlp knock-out allele, a Dlp allele containing 3-HA tags, and a Dpp lacking the HS-interacting domain. Additionally, they use an OLLAS-tag Dpp (OLLAS being an epitope tag against which extremely high affinity antibodies exist). They examine OLLAS-Dpp or HA-Dpp distribution, phospho-Mad staining, adult wing size.

      They find that over-expressed Dally - but not Dlp - expands Dpp distribution in the larval wing disc. They find that the Dally[KO] allele behaves like a Dally strong hypomorph Dally[MH32]. The Dally[KO] - but not the Dlp[KO] - caused reduced pMad in both anterior and posterior domains and reduced adult wing size (particularly in the Anterior-Posterior axis). These defects can be substantially corrected by supplying an endogenously tagged YFP-tagged Dally. By contrast, they were not rescued when a 3xHA Dlp was inserted in the Dally locus. These results support their conclusion that Dpp interacts with Dally but not Dlp.

      They next wanted to determine the relative contributions of the Dally core or the HS chains to the Dpp distribution. To test this, they over-expressed UAS-Dally or UAS-Dally[deltaHS] (lacking the HS chains) in the dorsal wing. Dally[deltaHS] over-expression increased the distribution of OLLAS-Dpp but caused a reduction in pMad. They do a critical experiment, making the Dally[deltaHS] allele, they find that loss of the HS chains is nearly as severe as total loss of Dally (i.e., Dally[KO]). These results indicate that the HS are critical for Dally's role in Dpp distribution and signaling.

      Prior work has shown that a stretch of 7 amino acids in the Dpp N-terminal domain is required to interact with heparin but not with Dpp receptors (Akiyama, 2008). The authors generated an HA-tagged Dpp allele lacking these residues (HA-dpp[deltaN]). It is an embryonic lethal allele, but they can get some animals to survive to larval stages if they also supply a transgene called "JAK" containing dpp regulatory sequences. In the JAK; HA-dpp[deltaN] mutant background, they find that the distribution and signaling of this Dpp molecule is largely normal. While over-expressed Dally can increase the distribution of HA-dpp[deltaN], over-expression of Dally[deltaHS] cannot. These latter results support the model that the HS chains in Dally are required for Dpp function but not because of a direct interaction with Dpp.

      In the last part of the results, they attempt to determine if the Dpp receptor Thickveins (Tkv) is required for Dally-HS chains interaction. The 2008 (Akiyama) model posits that Tkv activates pMad downstream of Dpp and also internalizes and degrades Dpp. A 2022 (Romanova-Michaelides) model proposes that Dally (not Tkv) internalizes Dpp. To distinguish between these models, the authors deplete Tkv from the dorsal compartment of the wing disc and found that extracellular Dpp increased and expanded in that domain. These results support the model that Tkv is required to internalize Dpp. They then tested the model that Dally antagonizes Tkv-mediated Dpp internalization by determining whether the defective extracellular Dpp distribution in Dally[KO] mutants could be rescued by depleting Tkv. Extracellular Dpp did increase in the D vs V compartment, potentially providing some support for their model. The results are statistically significant but the statistics are buried in an excel file without a read-me page. The code for the statistics is available from Github. These p values should be made more readily accessible and/or intelligible to the reader.

      Strengthens:<br /> 1. New genomically-engineered alleles<br /> A considerable strength of the study is the generation and characterization of new Dally, Dlp and Dpp alleles. These reagents will be of great use to the field.

      2. Surveying multiple phenotypes<br /> The authors survey numerous parameters (Dpp distribution, Dpp signaling (pMad) and adult wing phenotypes) which provides many points of analysis.

      Weaknesses (minor):<br /> 1. The results are statistically significant but the statistics are buried in a dense excel file without a read-me page. The code for the statistics is available from Github. These p values should be made more readily accessible to the reader.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions.<br /> The authors' model is that Dally (not Dlp) is required for Dpp distribution and signaling but that this is not due to a direct interaction with Dpp. Rather, they posit that Dally-HS antagonize Tkv-mediated Dpp internalization. Currently the results of the experiments could be considered consistent with their model. Finally, their results support the idea that one or more as-yet unidentified proteins interact with Dally-HS chains to control Dpp distribution and signaling in the wing disc.

      There is much debate and controversy in the Dpp morphogen field. The generation of new, high quality alleles in this study will be useful to Drosophila community, and the results of this study support the concept that Tkv but not Dally regulate Dpp internalization. Thus the work could be impactful and fuel new debates among the morphogen researchers.

    1. Rome they're tagged to the inbox page

      Ryder, has a tag called #inbox inside of Roam. All the stuff that he reads, goes inside of ReadWise, and from ReadWise to the Inbox inside of Roam where he processes that information.

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] Weaknesses:

      1. I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aim to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:

      Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.

      Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725

      Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666

      Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.

      The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d). It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?

      The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins, and the bipolar crushing is not expected to help with this.

      The authors would like to clarify that the velocity-nulling gradient is NOT designed to suppress all the contributions from intravascular blood. Instead, we tried to find a balance so that the VN gradient maximally suppressed the macrovascular signal in unspecific veins but minimally attenuated the microvascular signal in specific capillary bed. We acknowledge the reviewer's concern regarding the potential extravascular contributions from large, non-specific vessels. This aspect will be thoroughly evaluated and addressed in the revised manuscript. Additionally, we will make clarifications in other parts that may have cause the reviewer’s misunderstandings.

      1. The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions. VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.

      Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358

      Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121

      If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.

      We acknowledge that the degree of velocity nulling varies across the cortical folding pattern. We intend to discuss potential solutions to address this variance, and these may be implemented in the revised manuscript as appropriate. Furthermore, we will provide a comprehensive discussion on the advantages and disadvantages of both CBV-based and BOLD-based approaches.

      1. The comparison with VASO is misleading. The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years. Koiso et al. performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation), 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation). Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).

      Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502

      Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855

      Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544

      The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that wants to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401

      Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab? Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion, it looks like random noise, with most of the activation outside the ROI (in white matter).

      Those literatures will be included and discussed in the revised manuscript. Furthermore, we are considering the exclusion of the LGN results presented in Figure 6, as they may divert attention from the primary focus of the study.

      We are enthusiastic about sharing our imaging sequence, provided its usefulness is conclusively established. However, it's important to note that without an online reconstruction capability, such as the ICE, the practical utility of the sequence may be limited. Unfortunately, we currently don’t have the manpower to implement the online reconstruction. Nevertheless, we are more than willing to share the offline reconstruction codes upon request.

      1. The repeatability of the results is questionable. The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact, the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. The location of peaks turns into locations of dips and vice versa. The methods are not described in enough detail to reproduce these results. The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.

      It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination. No data are shared for reproduction of the analysis.

      There may have been a misunderstanding regarding the presentation in Figure 4, which illustrates the impact of TEs and the VN gradient. To enhance clarity and avoid further confusion, we will redesign this figure for improved comprehension.

      The authors are open to sharing the MATLAB codes associated with our study. However, we were limited by manpower for refining and enhancing the readability of these codes for broader use.

      Regarding the coil combination, we utilized an adaptive coil combination approach as described in the paper by Walsh DO, Gmitro AF, and Marcellin MW, titled 'Adaptive reconstruction of phased array MR imagery' (Magnetic Resonance in Medicine 2000; 43:682-690). The MATLAB code for this method was implemented by Dr. Diego Hernando. We will include a link for downloading this code in the revised manuscript for the convenience of interested readers.

      1. The application of NODRIC is not validated. Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.

      Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924

      Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658

      During our internal testing, we observed that the NORDIC denoising process did not alter the activation patterns. These findings will be incorporated into the revised manuscript. The details of NORDIC will be provided as well.

      Reviewer #2 (Public Review):

      [...] The well-known double peak feature in M1 during finger tapping was used as a test-bed to evaluate the spatial specificity. They were indeed able to demonstrate two distinct peaks in group-level laminar profiles extracted from M1 during finger tapping, which was largely free from superficial bias. This is rather intriguing as, even at 7T, clear peaks are usually only seen with spatially specific non-BOLD sequences. This is in line with their simple simulations, which nicely illustrated that, in theory, intravascular macrovascular signals should be suppressible with only minimal suppression of microvasculature when small b-values of the VN gradients are employed. However, the authors do not state how ROIs were defined making the validity of this finding unclear; were they defined from independent criteria or were they selected based on the region mostly expressing the double peak, which would clearly be circular? In any case, results are based on a very small sub-region of M1 in a single slice - it would be useful to see the generalizability of superficial-bias-free BOLD responses across a larger portion of M1.

      Given the individual variations in the location of the M1 region, we opted for manual selection of the ROI. In the revised manuscript, we plan to explore and implement an independent criterion for ROI selection to enhance the objectivity and reproducibility of our methodology.

      As repeatedly mentioned by the authors, a laminar fMRI setup must demonstrate adequate functional sensitivity to detect (in this case) BOLD responses. The sensitivity evaluation is unfortunately quite weak. It is mainly based on the argument that significant activation was found in a challenging sub-cortical region (LGN). However, it was a single participant, the activation map was not very convincing, and the demonstration of significant activation after considerable voxel-averaging is inadequate evidence to claim sufficient BOLD sensitivity. How well sensitivity is retained in the presence of VN gradients, high acceleration factors, etc., is therefore unclear. The ability of the setup to obtain meaningful functional connectivity results is reassuring, yet, more elaborate comparison with e.g., the conventional BOLD setup (no VN gradients) is warranted, for example by comparison of tSNR, quantification and comparison of CNR, illustration of unmasked-full-slice activation maps to compare noise-levels, comparison of the across-trial variance in each subject, etc. Furthermore, as NORDIC appears to be a cornerstone to enable submillimeter resolution in this setup at 3T, it is critical to evaluate its impact on the data through comparison with non-denoised data, which is currently lacking.

      We appreciate the reviewer’s comments. Those issues will be addressed carefully.

      Reviewer #3 (Public Review):

      [...] Weaknesses: - Although the VASO acquisition is discussed in the introduction section, the VN-sequence seems closer to diffusion-weighted functional MRI. The authors should make it more clear to the reader what the differences are, and how results are expected to differ. Generally, it is not so clear why the introduction is so focused on the VASO acquisition (which, curiously, lacks a reference to Lu et al 2013). There are many more alternatives to BOLD-weighted imaging for fMRI. CBF-weighted ASL and GRASE have been around for a while, ABC and double-SE have been proposed more recently.

      The principal distinction between DW-fMRI and our methodology lies in the level of the b-value employed. DW-fMRI typically measures cellular swelling by utilizing a b-value greater than 1000 s/mm^2 (e.g. 1800). Conversely, our Velocity Nulling functional MRI (VN-fMRI) approach continues to assess hemodynamic responses, utilizing a smaller b-value specifically for the suppression of signals from draining veins. In addition, other layer-fMRI methods will be discussed.

      • The comparison in Figure 2 for different b-values shows % signal changes. However, as the baseline signal changes dramatically with added diffusion weighting, this is rather uninformative. A plot of t-values against cortical depth would be much more insightful.
      • Surprisingly, the %-signal change for a b-value of 0 is not significantly different from 0 in the gray matter. This raises some doubts about the task or ROI definition. A finger-tapping task should reliably engage the primary motor cortex, even at 3T, and even in a single participant.
      • The BOLD weighted images in Figure 3 show a very clear double-peak pattern. This contradicts the results in Figure 2 and is unexpected given the existing literature on BOLD responses as a function of cortical depth.

      In our study, the TE in Figure 2 is shorter than that in Figure 3 (33 ms versus 43 ms). It has been reported in the literature that BOLD fMRI with a shorter TE tends to include a greater intravascular contribution. Acknowledging this, we plan to repeat the experiments with a controlled TE to ensure consistency in our results.

      • Given that data from Figures 2, 3, and 4 are derived from a single participant each, order and attention affects might have dramatically affected the observed patterns. Especially for Figure 4, neither BOLD nor VN profiles are really different from 0, and without statistical values or inter-subject averaging, these cannot be used to draw conclusions from.

      The order of the experiments were randomized to ensure unbiased results.

      It is important to note that the error bars presented in Figures 2, 3, and 4 do not represent the standard deviation of the residual fitting error. Instead, they illustrate the variation across voxels within a specific layer. This approach may lead to the error bars being influenced by the selection of the Region of Interest (ROI). In light of this, we intend to refine our statistical methodologies in the revised manuscript to address this issue.

      • In Figure 5, a phase regression is added to the data presented in Figure 4. However, for a phase regression to work, there has to be a (macrovascular) response to start with. As none of the responses in Figure 4 are significant for the single participant dataset, phase regression should probably not have been undertaken. In this case, the functional 'responses' appear to increase with phase regression, which is contra-intuitive and deserves an explanation.
      • Consistency of responses is indeed expected to increase by a removal of the more variable vascular component. However, the microvascular component is always expected to be smaller than the combination of microvascular + macrovascular responses. Note that the use of %signal changes may obscure this effect somewhat because of the modified baseline. Another expected feature of BOLD profiles containing both micro- and microvasculature is the draining towards the cortical surface. In the profiles shown in Figure 7, this is completely absent. In the group data, no significant responses to the task are shown anywhere in the cortical ribbon.
      • Although I'd like to applaud the authors for their ambition with the connectivity analysis, I feel that acquisitions that are so SNR starved as to fail to show a significant response to a motor task should not be used for brain wide directed connectivity analysis.

      We agree that exploring brain-wide directed functional connectivity may be overly ambitious at this stage, particularly before the VN-fMRI technique has been comprehensively evaluated and validated. In the revised manuscript, we will focus more on examining the characteristics of the layer-dependent BOLD signal rather than delving into layer-dependent functional connectivity.

    2. Reviewer #1 (Public Review):

      Summary:

      This study aims to provide imaging methods for users of the field of human layer-fMRI. This is an emerging field with 240 papers published so far. Different than implied in the manuscript, 3T is well represented among those papers. E.g. see the papers below that are not cited in the manuscript. Thus, the claim on the impact of developing 3T methodology for wider dissemination is not justified. Specifically, because some of the previous papers perform whole brain layer-fMRI (also at 3T) in more efficient, and more established procedures.

      The authors implemented a sequence with lots of nice features. Including their own SMS EPI, diffusion bipolar pulses, eye-saturation bands, and they built their own reconstruction around it. This is not trivial. Only a few labs around the world have this level of engineering expertise. I applaud this technical achievement. However, I doubt that any of this is the right tool for layer-fMRI, nor does it represent an advancement for the field. In the thermal noise dominated regime of sub-millimeter fMRI (especially at 3T), it is established to use 3D readouts over 2D (SMS) readouts. While it is not trivial to implement SMS, the vendor implementations (as well as the CMRR and MGH implementations) are most widely applied across the majority of current fMRI studies already. The author's work on this does not serve any previous shortcomings in the field.

      The mechanism to use bi-polar gradients to increase the localization specificity is doubtful to me. In my understanding, killing the intra-vascular BOLD should make it less specific. Also, the empirical data do not suggest a higher localization specificity to me.

      Embedding this work in the literature of previous methods is incomplete. Recent trends of vessel signal manipulation with ABC or VAPER are not mentioned. Comparisons with VASO are outdated and incorrect.

      The reproducibility of the methods and the result is doubtful (see below).

      I don't think that this manuscript is in the top 50% of the 240 layer-fmri papers out there.

      3T layer-fMRI papers that are not cited:<br /> Taso, M., Munsch, F., Zhao, L., Alsop, D.C., 2021. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). Journal of Cerebral Blood Flow and Metabolism. https://doi.org/10.1177/0271678X20982382

      Wu, P.Y., Chu, Y.H., Lin, J.F.L., Kuo, W.J., Lin, F.H., 2018. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Scientific Reports 8, 1-14. https://doi.org/10.1038/s41598-018-31292-x

      Lifshits, S., Tomer, O., Shamir, I., Barazany, D., Tsarfaty, G., Rosset, S., Assaf, Y., 2018. Resolution considerations in imaging of the cortical layers. NeuroImage 164, 112-120. https://doi.org/10.1016/j.neuroimage.2017.02.086

      Puckett, A.M., Aquino, K.M., Robinson, P.A., Breakspear, M., Schira, M.M., 2016. The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. NeuroImage 139, 240-248. https://doi.org/10.1016/j.neuroimage.2016.06.019

      Olman, C.A., Inati, S., Heeger, D.J., 2007. The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring. NeuroImage 34, 1126-1135. https://doi.org/10.1016/j.neuroimage.2006.08.045

      Ress, D., Glover, G.H., Liu, J., Wandell, B., 2007. Laminar profiles of functional activity in the human brain. NeuroImage 34, 74-84. https://doi.org/10.1016/j.neuroimage.2006.08.020

      Huber, L., Kronbichler, L., Stirnberg, R., Ehses, P., Stocker, T., Fernández-Cabello, S., Poser, B.A., Kronbichler, M., 2023. Evaluating the capabilities and challenges of layer-fMRI VASO at 3T. Aperture Neuro 3. https://doi.org/10.52294/001c.85117

      Scheeringa, R., Bonnefond, M., van Mourik, T., Jensen, O., Norris, D.G., Koopmans, P.J., 2022. Relating neural oscillations to laminar fMRI connectivity in visual cortex. Cerebral Cortex. https://doi.org/10.1093/cercor/bhac154

      Strengths:

      See above. The authors developed their own SMS sequence with many features. This is important to the field. And does not leave sequence development work to view isolated monopoly labs. This work democratises SMS.<br /> The questions addressed here are of high relevance to the field: getting tools with good sensitivity, user-friendly applicability, and locally specific brain activity mapping is an important topic in the field of layer-fMRI.

      Weaknesses:

      1. I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aim to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:

      Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.

      Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725

      Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666

      Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.

      The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d).<br /> It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?

      The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins, and the bipolar crushing is not expected to help with this.

      2. The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions.<br /> VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.

      Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358

      Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121

      If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.

      3. The comparison with VASO is misleading.<br /> The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years.<br /> Koiso et al. performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation), 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation).<br /> Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).

      Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502

      Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855

      Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544

      The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that wants to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401

      Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab?<br /> Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion, it looks like random noise, with most of the activation outside the ROI (in white matter).

      4. The repeatability of the results is questionable.<br /> The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact, the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. The location of peaks turns into locations of dips and vice versa.<br /> The methods are not described in enough detail to reproduce these results.<br /> The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.

      It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination.<br /> No data are shared for reproduction of the analysis.

      5. The application of NODRIC is not validated.<br /> Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.

      Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924

      Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658

    1. I disagree. What is expressed is an attempt to solve X by making something that should maybe be agnostic of time asynchronous. The problem is related to design: time taints code. You have a choice: either you make the surface area of async code grow and grow or you treat it as impure code and you lift pure synchronous logic in an async context. Without more information on the surrounding algorithm, we don't know if the design decision to make SymbolTable async was the best decision and we can't propose an alternative. This question was handled superficially and carelessly by the community.

      superficially and carelessly?

    1. Joint Public Review:

      Summary:

      Cincotta et al set out to investigate the presence of glucocorticoid receptors in the male and female embryonic germline. They further investigate the impact of tissue specific genetically induced receptor absence and/or systemic receptor activation on fertility and RNA regulation. They are motivated by several lines of research that report inter and transgenerational effects of stress and or glucocorticoid receptor activation and suggest that their findings provide an explanatory mechanism to mechanistically back parental stress hormone exposure induced phenotypes in the offspring.

      Strengths:

      - A chronological immunofluorescent assessment of GR in fetal and early life oocyte and sperm development.<br /> - RNA seq data that reveal novel cell type specific isoforms validated by q-RT PCR E15.5 in the oocyte.<br /> - 2 alternative approaches to knock out GR to study transcriptional outcomes. Oocytes: systemic GR KO (E17.5) with low input 3-tag seq and germline specific GR KO (E15.5) on fetal oocyte expression via 10X single cell seq and 3-cap sequencing on sorted KO versus WT oocytes - both indicating little impact on polyadenylated RNAs -<br /> - 2 alternative approaches to assess the effect of GR activation in vivo (systemic) and ex vivo (ovary culture): here the RNA seq did show again some changes in germ cells and many in the soma.<br /> - They exclude oocyte specific GR signaling inhibition via beta isoforms<br /> - Perinatal male germline shows differential splicing regulation in response to systemic Dex administration, results were backed up with q-PCR analysis of splicing factors.

      Weaknesses:

      - Sequencing techniques used are not Total RNA but either are focused on all polyA transcripts (10x) - effects on non-polyA-transcripts are left unexplored.<br /> The number of replicates in the low input seq is very low and hence this might be underpowered. Since Dex treatment showed some (modest) changes in oocyte RNA effects of GR depletion might only become apparent upon Dex treatment as an interaction. Meaning GR activation in the presence of GR shows changes, upon GR depletion those changes are abolished --> statistically speaking an interaction --> conclusion: there are germline GR effects that get abolished when there is no GR hinting on germline GR autonomous effects.<br /> - Effects in oocytes following systemic Dex might be indirect due to GR activation in the soma. The changes observed might be irrelevant to meiosis and thus in the manuscript are deemed irrelevant, but they could still lead to settle consequences. in other terms.

      Even though ex vivo culture of ovaries shows GR translocation to nucleus it is not sure whether the in vivo systemic administration does the same. The authors argue in their rebuttal that GR is already nuclear in fetal oocytes hence the<br /> conclusion that fetal oocytes are resistant to GR manipulation is understandable, at least for the readouts that were considered. Yet the question arises: If GR is already nuclear (active) in the absence of additional Dex treatment why does GR knock out not elicit any changes in the considered readouts -> what are we missing.

      This work is a good reference point for researchers interested in glucocorticoid hormone signaling fertility and RNA splicing. It might spark further studies on germline-specific GR functions and the impact of GR activation on alternative splicing.<br /> The study provides a characterization of GR and some aspects of GR perturbation, and the negative findings in this study do help to rule out a range of specific roles of GR in the germline. This will help the study of unexplored options. The authors do acknowledge the unexplored options in their discussion.<br /> The intro of the study eludes to implications for intergenerational effects via epigenetic modifications in the germline and points out additional potential indirect effects of reproductive tissue GR signaling on the germline. Future studies might hence focus on further exploration of epigenetic modifications and/or indirect effects.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This work challenges previously published results regarding the presence and abundance of 6mA in the Drosophila genome, as well as the claim that the TET or DMAD enzyme serves as the "eraser" of this DNA methylation mark and its roles in development. This information is needed to clarify these questions in the field. I am less familiar with the biochemical approaches in this work, so my comments are mainly on the genetic analyses. Generally speaking, the methods for fly husbandry and treatment seem to be in accordance with those established in the field.

      Response : We thank the reviewer for his/her work and positive assessment of our manuscript.

      Reviewer #2 (Public Review):

      DNA adenine methylation (6mA) is a rediscovered modification that has been described in a wide range of eukaryotes. However, 6mA presence in eukaryote remains controversial due to the low abundance of its modification in eukaryotic genome. In this manuscript, Boulet et al. re-investigate 6mA presence in drosophila using axenic or conventional fly to avoid contaminants from feeding bacteria. By using these flies, they find that 6mA is rare but present in the drosophila genome by performing LC/MS/MS. They also find that the loss of TET (also known as DMAD) does not impact 6mA levels in drosophila, contrary to previous studies. In addition, the authors find that TET is required for fly development in its enzymatic activity-independent manner.

      The strength of this study is, that compared to previous studies of 6mA in drosophila, the authors employed axenic or conventional fly for 6mA analysis. These fly strains make it possible to analyze 6mA presence in drosophila without bacterial contaminant. Therefore, showing data of 6mA abundance in drosophila by performing LC-MS/MS in this manuscript is more convincing as compared with previous studies. Intriguingly, the authors find that the conserved iron-binding motif required for the catalytic activity of TET is dispensable for its function. This finding could be important to reveal TET function in organisms whose genomic 5mC levels are very low.

      The manuscript in this paper is well written but some aspects of data analysis and discussion need to be clarified and extended.

      1. It is convincing that an increase in 6mA levels is not observed in TETnull presented in Fig1. But it seems 6mA levels are altered in Ax.TET1/2 compared with Ax.TETwt and Ax.TETnull presented in Fig1f (and also WT vs TET1/2 presented in Fig1g). Is it sure that no statistically significant were not observed between Ax.TET1/2 and Ax.TETwt?

      2. The representing data of in vitro demethylation assay presented in Fig.3 is convincing, but it is not well discussed and analyzed why these results are contrary to previous reports (Yao et al., 2018 and Zhang et al., 2015).

      We thank the reviewer for his/her work and positive assessment of our manuscript.

      (1) We repeated our statistical analyses and confirmed that there is no significant difference between wildtype and tet1/2 mutant embryos in axenic conditions (Welch two sample t-test : p=0.075).

      (2) We added some elements in the revised manuscript to discuss the possible reasons for the discrepancies with previous reports. Notably both studies performed the in vitro demethylation assays over a much longer time course and with different sources of recombinant proteins. Zhang et al. purified TET catalytic domain from human cells (HEK293T) and observed around 2.5% of 6mA demethylation at 30 min and less than 25% after 10 hours of incubation as measured by HPLC-MS/MS analyses. Yao et al. incubated recombinant TET catalytic domain with 6mA DNA for 3h and observed a 25% decrease in 6mA levels as measured by dot blot. These results suggest that drosophila TET may oxidize 6mA, but with a much lower affinity than 5mC since with observed a near complete oxidation of 5mC after 1 minute and no decrease in 6mA levels after 30 minutes of reaction (for identical concentrations of substrate and enzyme). It is possible too that the preparation of TET catalytic domain in different systems changes its enzymatic activity, potentially in relation with distinct post-translational modifications. Still, as already mentioned in our manuscript, extensive biochemical analyses of the distant TET homolog from the fungus Coprinopsis cinerea (Mu et al., Nature Chem Biol 2022) strongly argue that TET enzymes do not harbor the residues required to serve as 6mA demethylase.

      Reviewer #1 (Recommendations For The Authors):

      Here are one comment (#1) and a couple of questions (#2-3) that could be addressed in the future, in order to understand the roles of 6mA and TET. Even though #2 and #3 are likely beyond the scope of this paper, #1 should be addressed within the scope of this work and compared with previous reports.

      1. The phenotypic analyses in Fig. 4 should use tet_null/Deficiency and tet_CD/Deficiency for their potential phenotypes. This needs to be addressed since both the tet_null and the tet_CD were generated using the same starting fly line (GFP knock-in). Using a deficiency chromosome and testing these alleles in hemizygotes would be helpful to eliminate any secondary effects due to genetic background issues.

      Thanks for this comment. Actually, tet_null and tet_CD were not generated using the same starting lines. Whereas tet_cd was generated (by CRISPR) using the tet-GFP knock-in line, tet_null was generated by FRT site recombination between two PBac insertions (Delatte et al. 2016). As for tet1 and tet2 (used in allelic combination in Fig 4 J-L), they correspond to two distinct mutant alleles generated by CRISPR (Zhang et al. 2015). We have clarified this in the M&M (page 9).

      1. Regarding the estimated "200 to 400 methylated adenines per haplogenome", is there any insight into where are they located in the genome?

      It is an interesting question and we initially used SMRT-seq sequencing to obtain this kind of information. As it turned out that this technique gives a high level of false positive, we should consider with caution the interpretation of these data and we decided not to include them in the manuscript. Still, we characterized the genomic features of the 6mA detected using stringent criteria (mQV>100, cov>25x in the fusion dataset and triplicated across samples of the same genotype). Both in wild type and tet_null, 6mA were dispersed along each chromosome although few of them were found on chromosome X. In both cases there appeared to be a higher accumulation of 6mAs on the histone locus and the transposon-rich tip of chromosome X, but 6mA density remained below 1.3/kb in other genomic regions. Comparisons with annotated genomic regions indicated that 6mA were enriched in long interspersed nuclear elements (LINEs) and satellite repeats, and depleted in 3’UTR and exons, but there was no significant difference in their repartition between the two genetic contexts. Besides, motif analyses showed similar enrichments in both conditions, with GAG triplet accounting for more than one quarter of all the sites. Whether this reflects the specificity of a putative adenine methylase or a technical bias associated the with SMTR-seq technology remains to be established.

      1. The TET-GFP and TET-CD-GFP knock-in lines give proper nuclear localization and could be used to identify genomic regions bound with full-length TET and TET-CD using anti-GFP for ChIP-seq or CUT&RUN (or CUT&TAG).

      Indeed, this is a line of research that we are following up and will be part of another study. Actually, our ChIP-seq experiments indicate that they bind on the same genomic regions.

      Reviewer #2 (Recommendations For The Authors):

      • I think the major findings of this paper are showing 6mA present in drosophila by using xenic or conventional breeding conditions and finding that TET function independently of its catalytic activity is essential for fly development. The authors could have been more precise in title and abstract to emphasize these findings.

      We have now modified the abstract to try to emphasize these findings.

      • The authors claim that any increase of 6mA levels was not observed in both TETnull and TET1/2, but it is not sufficiently convincing. Because it seems 6mA levels were increased in Ax. tet1/2 embryo as compared with in Ax.wt embryo (Fig.1). In this scenario, 6mA abundance in both TETnull and TET1/2 mutant are supposed to be the same. It would be better to re-analyze data carefully and discuss if 6mA levels were significantly increased in TET1/2, and why 6mA levels are different between TETnull and TET1/2. Additionally, the authors describe that the TET null mutant is pupal lethal, while the TET1/2 survivor is available. The text suggests that TET1/2 could have partial functionality on fly development (Fig.4). It would be better to check whether the N-terminus of TET is expressed in the TET1/2 mutant.

      Indeed, the increase in 6mA levels in Ax. tet1/2 embryo seems consequent (although it is not statistically significant) and no increase was observed in Ax tet_null embryos. Thus, the putative effect on 6mA levels in tet1/2 embryos may not be directly due to the absence of TET function. We now mention in the revised manuscript (page 6) that “the apparent increase in 6mA levels in tet1/2 axenic embryos was not reproduced in tet_null embryos, suggesting that it does not simply reflect the tet loss of function, and that it was not statistically significant”. Besides, we do not have an antibody to check whether the N-terminus of TET is expressed in the tet1/2 mutants, but the western blot published by Zhang et al 2015 shows that tet2 mutation leads to the expression of TET N-terminal domain. This N-terminal domain could have partial TET functionality and/or interfere with the function of other factors (notably those implicated in 6mA metabolism).

      • The authors show that SMRT-seq data did not reveal an increase in 6mA levels in loss of TET (Fig.2). It is convincing that total 6mA abundance was not altered by loss of TET. But were 6mA-accumulated locus/regions observed in WT not altered by loss of TET?

      Please refer to our answer to reviewer 1 on that point.

      • It remains unclear that the TET proteins the authors prepared do not exhibit 6mA demethylate activity in vitro, contrary to what was reported in previous papers (Fig.3). I think the preparation of recombinant proteins may make different results between this and previous papers. Yao et al., 2018 and Zhang et al., 2015 used recombinant proteins purified from Human cells or insect cells, while the author purified them from E.Coli. Additionally, it's mentioned that VK Rao et al., 2020 demonstrated cdk5-mediated phosphorylation of Tet3 increases its in catalytic activity in vitro. These previous reports suggest modification of TET could change demethylase activity. More analysis and discussion are needed to support the conclusion.

      Thanks for your insights. This in an important point and we added the following elements in the revised manuscript to discuss possible reasons for the discrepancies with previous reports (pages 7-8): “Our results contrast with previous reports showing that recombinant drosophila TET demethylates 6mA on dsDNA in vitro (Yao et al. 2018; Zhang et al., 2015a). However, both studies ran much longer reactions (up to 10 hours) and used different sources of recombinant protein (drosophila TET catalytic domain purified from human HEK293T cells). Notably, Zhang et al. (2015a) only found around 2.5% of 6mA demethylation at 30 min and less than 25% after 10 hours of incubation as measured by HPLC-MS/MS analyses. These results suggest that drosophila TET may oxidize 6mA, but with a much lower affinity than 5mC since with observed a near complete oxidation of 5mC after 1 min. and no significant decrease in 6mA levels after 30 min. of reaction (for identical concentrations of substrate and enzyme). It is possible too that the preparation of TET catalytic domain in different systems changes its enzymatic activity, potentially in relation to distinct post-translational modifications.”

    2. Reviewer #1 (Public Review)

      This work challenges previously published results regarding the presence and abundance of 6mA in Drosophila genome, as well as the claim that the TET or DMAD enzyme serves as the "eraser" of this DNA methylation mark and its roles in development. This information is needed to clarify these questions in the field. Generally speaking, the methods for fly husbandry and treatment seem to be in accordance with those established ones in the field.

      Here are a couple of suggestions that could be discussed with the current work and addressed in the future, in order to better understand the roles of 6mA and TET.

      1. Regarding the estimated "200 to 400 methylated adenines per haplogenome", some insights regarding where they are enriched in the genome could inform the potential target sites regulated by 6mA.

      2. The TET-GFP and TET-CD-GFP knock-in lines give proper nuclear localization and could be used to identify genomic regions bound with full-length TET and TET-CD using anti-GFP for ChIP-seq or CUT&RUN (or CUT&TAG).

    1. negative effects of lost instructional time for those students who were suspended and positive effects of reduced number of disruptive peers in the classroom for students who were not.

      this creates a gap between the class, some people are way above the mark, while others can barely tag along in class

    1. Reviewer #1 (Public Review):

      In this study, the authors examined the role of IBTK, a substrate-binding adaptor of the CRL3 ubiquitin ligase complex, in modulating the activity of the eiF4F translation initiation complex. They find that IBTK mediates the non-degradative ubiquitination of eiF4A1, promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and tumor cell growth. Correspondingly, phosphorylation of  IBTK by mTORC1/ S6K1 increases eIF4A1 ubiquitination and sustains oncogenic translation.

      Strengths:

      This study utilizes multiple biochemical, proteomic, functional, and cell biology assays to substantiate their results.  Importantly, the work nominates IBTK as a unique substrate of mTORC1, and further validates eiF4A1 ( a crucial subunit of the ei44F complex) as a promising therapeutic target in cancer. Since IBTK interacts broadly with multiple members of the translational initial complex - it will be interesting to examine its role in eiF2alpha-mediated ER stress as well as eiF3-mediated translation. Additionally, since IBTK exerts pro-survival effects in multiple cell types, it will be of relevance to characterize the role of IBTK in mediating increased mTORC1 mediated translation in other tumor types, thus potentially impacting their treatment with eiF4F inhibitors.

      Limitations/Weaknesses:

      The findings are mostly well supported by data, but some areas need clarification and could potentially be enhanced with further experiments:

      1) Since eiF4A1 appears to function downstream of IBTK1, can the effects of IBTK1 KO/KD in reducing puromycin incorporation (in Fig 3A),  cap-dependent luciferase reporter activity (Fig 3G), reduced oncogene expression ( Fig 4A) or 2D growth/ invasion assays (Fig 4) be overcome or bypassed by overexpressing eiF4A1? These could potentially be tested in future studies. 

      2) The decrease in nascent protein synthesis in puromycin incorporation assays in Figure 3A suggest that the effects of IBTK KO are comparable to and additive with silvesterol. It would be of interest to examine whether silvesterol decreases nascent protein synthesis or increases stress granules in the IBTK KO cells stably expressing IBTK as well. 

      3) The data presented in Figure 5 regarding the role of mTORC1 in IBTK-mediated eiF4A1 ubiquitination needs further clarification on several points:

      - It is not clear if the experiments in Figure 5F with Phos-tag gels are using the FLAG-IBTK deletion mutant or the peptide containing the mTOR sites as it is mentioned on line 517, page 19 "To do so, we generated an IBTK deletion mutant (900-1150 aa) spanning the potential mTORC1-regulated phosphorylation sites" This needs further clarification.

      -It may be of benefit to repeat the Phos tag experiments with full-length FLAG-IBTK and/or endogenous IBTK with molecular weight markers indicating the size of migrated bands.

      -Additionally, torin or Lambda phosphatase treatment may be used to confirm the specificity of the band in separate experiments.

      -Phos-tag gels with the IBTK CRISPR KO line would also help confirm that the non-phosphorylated band is indeed IBTK. 

      -It is unclear why the lower, phosphorylated bands seem to be increasing (rather than decreasing) with AA starvation/ Rapa in Fig 5H.

    1. Evernote 的筆記標籤、連結等無法直接轉移,需要一邊執行一邊重新建立。

      WAH? Evernote tags cannot be imported into Upnote??? Seriously?

      This video contradicts and mentions tags can be imported:

      link

      後記:根據影片說法,這是新功能,所以電腦玩物當初可能不知道。

    1. the new ability to import tags from Evernote I get a lot of questions about importing tags from Evernote

      Awesome! This is so important. I wonder why Esor in his intro to Upnote said Evernote tags can't be imported to Upnote.

      Evernote標籤可匯入Upnote。(牴觸Esor電腦玩物的說法)

    1. Reviewer #1 (Public Review):

      This is a review of the manuscript entitled "Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure" by Faysal et al., in this manuscript the authors used an elegant single virion fluorescence assay based on TIRF to measure the stability of mature HIV cores. Virions were biotinylated and captured onto glass coverslips through specific Biotin-Avidin interactions. Immobilized virions were then introduced to the imaging buffer which contained the pore-forming protein DLY, and fluorescently labeled CypA. Mature virions were identified through the binding of CypA which had a red fluorescent tag allowing them to measure the dynamics of GFP trapped within the mature cores as well as the CypA bound outside the core. The authors show that the addition of LEN starting from about 50nM stabilized the mature cores even after cores have ruptured and released their internal GFP. Higher concentration of Len results in ultrastabilization of the cores and rapid rupture leading to the release of GFP at an earlier timepoint. A biochemical assembly assay was performed which showed uM quantities of Len synergized with IP6 to promote CA assembly. Purified mature virions were also treated with 700nM of Len and analyzed by CryoET, this analysis showed an increased representation of irregular cores within the Len-treated sample. Putting all of this together, the authors concluded that Len facilitates core rupture through hyperstabilization of HIV cores, as described in the title.

      While I have found this work technically well performed and well explained, I do not believe that the presented data supports the conclusions reached by the authors.

  3. Nov 2023
    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study reports important findings regarding the systemic function of hemocytes controlling whole-body responses to oxidative stress. The evidence in support of the requirement for hemocytes in oxidative stress responses as well as the hemocyte single-nuclei analyses in the presence or absence of oxidative stress are convincing. In contrast, the genetic and physiological analyses that link the non-canonical DDR pathway to upd3/JNK expression and high susceptibility, and the inferences regarding the function of hemocytes in systemic metabolic control are incomplete and would benefit from more rigorous approaches. The work will be of interest to cell and developmental biologists working on animal metabolism, immunity, or stress responses.

      We would like to thank the editorial team for these positive comments on our manuscript and the constructive suggestions to improve our manuscript. We are now happy to send you our revised manuscript, which we improved according to the suggestions and valuable comments of the referees.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study examines how hemocytes control whole-body responses to oxidative stress. Using single cell sequencing they identify several transcriptionally distinct populations of hemocytes, including one subset that show altered immune and stress gene expression. They also find that knockdown of DNA Damage Response (DDR) genes in hemocytes increases expression of the immune cytokine, upd3, and that both upd3 overexpression in hemocytes and hemocyte knockdown of DDR genes leads to increased lethality upon oxidative stress.

      Strengths

      1. The single cell analyses provide a clear description of how oxidative stress can cause distinct transcriptional changes in different populations of hemocytes. These results add to the emerging them in the field that there functionally different subpopulations of hemocytes that can control organismal responses to stress.

      2. The discovery that DDR genes are required upon oxidative stress to limit cytokine production and lethality provides interesting new insight into the DDR may play non-canonical roles in controlling organismal responses to stress.

      We are grateful to referee 1 to point out the importance and novelty of our snRNA-seq data and our findings on the role of DNA damage-modulated cytokine release by hemocytes during oxidative stress. We further extended these analyses in the revised manuscript by looking deeper into the transcriptomic alterations in fat body cells upon oxidative stress (Figure 4, Figure S4). We further provide additional data to support the connection of DNA damage signaling and regulation of upd3 release from hemocytes (Figure 6F). Here we show that upd3-deficiency can abrogate the increased susceptibility of flies with mei41 and tefu knockdown in hemocytes. In line with this finding, we also show that upd3null mutants show a reduced but not abolished susceptibility to oxidative stress overall (Figure 6F), underlining the role of upd3 as a mediator of oxidative stress response.

      Weaknesses

      1. In some ways the authors interpretation of the data - as indicated, for example, in the title, summary and model figure - don't quite match their data. From the title and model figure, it seems that the authors suggest that the DDR pathway induces JNK and Upd3 and that the upd3 leads to tissue wasting. However, the data suggest that the DDR actually limits upd3 production and susceptibility to death as suggested by several results:

      According to the referee’s suggestion, we revised the manuscript and adjusted our title, abstract and graphical summary to be more precise that DNA damage signaling seem to have a modulatory or regulatory effect on upd3 release. Furthermore, we provide now additional data to support the connection between DNA damage signaling and upd3 release. For example, we added several genetic “rescue” experiments to strengthen the epistasis that modulation of DNA damage signaling and the higher susceptibility of the fly is connected to altered upd3 levels (Figure 6F). We now provide additional data showing that the loss of upd3 rescues the susceptibility to oxidative stress in flies, which are deficient for DDR components in hemocytes.

      a. PQ normally doesn't induce upd3 but does lead to glycogen and TAG loss, suggesting that upd3 isn't connected to the PQ-induced wasting.

      Even though in our systemic gene expression analysis of upd3 expression, we could not detect a significant induction of upd3 upon PQ feeding. However, we found upd3 expression within our snRNAseq data in a distinct cluster of immune-activated hemocytes (Figure 3B, Cluster 6). Upon knockdown of the DNA damage signaling in hemocytes, the levels then increase to a detectable level in the whole fly. This supports our assumption that upd3 is needed upon oxidative stress to induce energy mobilization from the fat body, but needs to be tightly controlled to balance tissue wasting for energy mobilization. Furthermore, we found evidence in our new analysis of the snRNA-seq data of the fat body cells, that indeed we can find Jak/STAT activation in one cell cluster here, which could speak for an interaction of Cluster 6 hemocytes with cluster 6 fat body cells. A hypothesis we aim to explore in future studies.

      b. knockdown of DDR upregulates upd3 and leads to increased PQ-induced death. This would suggest that activation of DDR is normally required to limit, rather than serve as the trigger for upd3 production and death.

      Our data support the hypothesis that DDR signaling in hemocytes “modulates” upd3 levels upon oxidative stress. We now carefully revised the text and the graphical summary of the manuscript to emphasize that oxidative stress causes DNA damage, which subsequently induces the DNA damage signaling machinery. If this machinery is not sufficiently induced, for example by knockdown of tefu and mei-41, non-canonical DNA damage signaling is altered which induces JNK signaling and induces release of pro-inflammatory cytokines, including upd3. Whereas DNA damage itself is only slightly increase in the used DDR deficient lines (Figure 5C) and hemocytes do not undergo apoptosis (unaltered cell number on PQ (Figure 5B)), we conclude that loss of tefu, mei-41, or nbs1 causes dysregulation of inflammatory signaling cascades via non-canonical DNA damage signaling. However, oxidative stress itself seems to also induce upd3 release and DNA damage signaling in the same cell cluster, as shown by our snRNA-seq data (Figure 3B). Hence, we think that DNA damage signaling is needed as a rate-limiting step for upd3 release.

      c. hemocyte knockdown of either JNK activity or upd3 doesn't affect PQ-induced death, suggesting that they don't contribute to oxidative stress-induced death. It’s only when DDR is impaired (with DDR gene knockdown) that an increase in upd3 is seen (although no experiments addressed whether JNK was activated or involved in this induction of upd3), suggesting that DDR activation prevents upd3 induction upon oxidative stress.

      Whereas the double knockdown of upd3 or bsk and DDR genes was resulting in insufficient knockdown efficiencies, we added a rescue experiment where we combined upd3null mutants with knockdown of tefu and mei-41 in hemocytes and found a reduced susceptibility of DDR-deficient flies to oxidative stress.

      1. The connections between DDR, JNK and upd3 aren't fully developed. The experiments show that susceptibility to oxidative stress-induced death can be caused by a) knockdown of DDR genes, b) genetic overexpression of upd3, c) genetic activation of JNK. But whether these effects are all related and reflect a linear pathway requires a little more work. For example, one prediction of the proposed model is that the increased susceptibility to oxidative stress-induced death in the hemocyte DDR gene knockdowns would be suppressed (perhaps partially) by simultaneous knockdown of upd3 and/or JNK. These types of epistasis experiments would strengthen the model and the paper.

      As mentioned before, we had some technical difficulties combining the knockdown of bsk or upd3 with DDR genes. However, we added a new experiment in which we show that upd3null mutation can rescue the higher susceptibility of hemocytes with tefu and mei41 knockdown.

      1. The (potential) connections between DDR/JNK/UPD3 and the oxidative stress effects on depletion of nutrient (lipids and glycogen) stores was also not fully developed. However, it may be the case that, in this paper, the authors just want to speculate that the effects of hemocyte DDR/upd3 manipulation on viability upon oxidative stress involve changes in nutrient stores.

      In the revised version of the manuscript, we now provide a more thorough snRNA-seq analysis in the fat body upon PQ treatment to give more insights on the changes in the fat body upon PQ treatment. We added additional histological images of the abdominal fat body on control food and PQ food, to demonstrate the elimination of triglycerides from fat body with Oil-Red-O staining (Figure S1). We also analyzed now hemocyte-deficient (crq-Gal80ts>reaper) flies for their levels of triglycerides and carbohydrates during oxidative stress, to support our hypothesis that hemocytes are key players in the regulation of energy mobilization during oxidative stress. Loss of hemocytes (and therefore also their regulatory input on energy mobilization from the fat body) results in increased triglyceride storage in the fat body during steady state with a decreased consumption of these triglycerides on PQ food compared to control flies (Figure 1J). In contrast, glycogen storage and mobilization, which is mostly done in muscle, is not altered in these flies during oxidative stress (Figure 1L). Interestingly, free glucose levels are drastically reduced in hemocyte-deficient flies, which could be due to insufficient energy mobilization from the fat body and subsequently results in a higher susceptibility of these flies on oxidative stress (Figure 1K). Additionally, we aim to point out here that “functional” hemocytes are needed for effective response to oxidative stress, but this response has to be tightly balanced (see also new graphical abstract).

      Reviewer #2 (Public Review):

      Hersperger et al. investigated the importance of Drosophila immune cells, called hemocytes, in the response to oxidative stress in adult flies. They found that hemocytes are essential in this response, and using state-of-the-art single-cell transcriptomics, they identified expression changes at the level of individual hemocytes. This allowed them to cluster hemocytes into subgroups with different responses, which certainly represents very valuable work. One of the clusters appears to respond directly to oxidative stress and shows a very specific expression response that could be related to the observed systemic metabolic changes and energy mobilization. However, the association of these transcriptional changes in hemocytes with metabolic changes is not well established in this work. Using hemocyte-specific genetic manipulation, the authors convincingly show that the DNA damage response in hemocytes regulates JNK activity and subsequent expression of the JAK/STAT ligand Upd3. Silencing of the DNA damage response or excessive activation of JNK and Upd3 leads to increased susceptibility to oxidative stress. This nicely demonstrates the importance of tight control of JNK-Upd3 signaling in hemocytes during oxidative stress. However, it would have been nice to show here a link to systemic metabolic changes, as the authors conclude that it is tissue wasting caused by excessive Upd3 activation that leads to increased susceptibility, but metabolic changes were not analyzed in the manipulated flies.

      We thank the referee for the suggestion to better connect upd3 cytokine levels to energy mobilization from the fat body. We agree that this is an important point to support our hypothesis. First, we added now a detailed analysis of fat body cells in our snRNA-seq data to evaluate the changes induced in the fat body upon oxidative stress. We further added additional metabolic analyses of hemocyte-deficient flies (crq-Gal80ts>reaper) to support our hypothesis that hemocytes are key players in the regulation of energy mobilization during oxidative stress (see also answer to referee 1). Loss of the regulatory role of hemocytes in the energy mobilization and redistribution leads to a decreased consumption of these triglycerides on PQ food compared to control flies (Figure 1J). In contrast, glycogen storage and mobilization from muscle, is not affected in hemocyte-deficient flies during oxidative stress (Figure 1L). Interestingly, free glucose levels are drastically reduced in hemocyte-deficient flies compared to controls, which could be due to insufficient energy mobilization from the fat body resulting in a higher susceptibility to oxidative stress (Figure 1K). This data supports our assumption that “functional” hemocytes are needed for effective response to oxidative stress, but this response has to be tightly balanced (see also new graphical summary).

      The overall conclusion of this work, as presented by the authors, is that Upd3 expression in hemocytes under oxidative stress leads to tissue wasting, whereas in fact it has been shown that excessive hemocyte-specific Upd3 activation leads to increased susceptibility to oxidative stress (whether due to increased tissue wasting remains a question). The DNA damage response ensures tight control of JNK-Upd3, which is important. However, what role naturally occurring Upd3 expression plays in a single hemocyte cluster during oxidative stress has not been tested. What if the energy mobilization induced by this naturally occurring Upd3 expression during oxidative stress is actually beneficial, as the authors themselves state in the abstract - for potential tissue repair? It would have been useful to clarify in the manuscript that the observed pathological effects are due to overactivation of Upd3 (an important finding), but this does not necessarily mean that the observed expression of Upd3 in one cluster of hemocytes causes the pathology.

      We agree with the referee that the pathological effects and increased susceptibility to oxidative stress are mediated by over-activated hemocytes and enhanced cytokine release, including upd3 during oxidative stress. We edited the revised manuscript accordingly to imply a “regulatory” role of upd3, which we suspect and suggest as an important mediator for inter-organ communication between hemocytes and fat body. Whereas our used model for oxidative stress (15mM Paraquat feeding) is a severe insult from which most of the flies will not recover, we could not account and test how upd3 might influence tissue repair after injury, insults and infection. We believe that this is an important factor, we aim to explore in future studies.

      Reviewer #3 (Public Review):

      In this study, Kierdorf and colleagues investigated the function of hemocytes in oxidative stress response and found that non-canonical DNA damage response (DDR) is critical for controlling JNK activity and the expression of cytokine unpaired3. Hemocyte-mediated expression of upd3 and JNK determines the susceptibility to oxidative stress and systemic energy metabolism required for animal survival, suggesting a new role for hemocytes in the direct mediation of stress response and animal survival.

      Strength of the study:

      1. This study demonstrates the role of hemocytes in oxidative stress response in adults and provides novel insights into hemocytes in systemic stress response and animal homeostasis.

      2. The single-cell transcriptome profiling of adult hemocytes during Paraquat treatment, compared to controls, would be of broad interest to scientists in the field.

      We are grateful to these positive comments on our data and are excited that the referee pointed out the importance of our provided snRNA-seq analysis of hemocytes and other cell types during oxidative stress. In the revised, version we now extended this analysis and looked not only into hemocytes but also highlighted induced changes in the fat body (Figure 4).

      Weakness of the study:

      1. The authors claim that the non-canonical DNA damage response mechanism in hemocytes controls the susceptibility of animals through JNK and upd3 expression. However, the link between DDR-JNK/upd3 in oxidative stress response is incomplete and some of the descriptions do not match their data.

      In the revised manuscript, we aimed to strengthen the weaknesses pointed out by the referee. We now included additional genetic crosses to validate the connection of DDR signaling in hemocytes with upd3 release. For example, we added now survival studies where we show that upd3null mutation can rescue the higher susceptibility of flies with tefu and mei41 knockdown in hemocytes during oxidative stress. Furthermore, we added additional data to highlight the importance of hemocytes themselves as essential regulators of susceptibility to oxidative stress. We analyzed the hemocyte-deficient flies (crq-Gal80ts>reaper) for their triglyceride content and carbohydrate levels during oxidative stress (Figure 1 I-L). As outlined above, loss of hemocytes leads to a decreased consumption of these triglycerides on PQ food compared to control flies (Figure 1J). In contrast, glycogen storage and mobilization from muscle, is not affected in hemocyte-deficient flies during oxidative stress (Figure 1L). Interestingly, free glucose levels are drastically reduced in hemocyte-deficient flies, which could be due to insufficient energy mobilization from the fat body resulting in a higher susceptibility to oxidative stress (Figure 1K).

      1. The schematic diagram does not accurately represent the authors' findings and requires further modifications.

      We carefully revised the text throughout the manuscript describing our results and edited the graphical abstract to display that upd3 levels and hemocytes are essential to balance and modulate response to oxidative stress.

      Reviewer #1 (Recommendations For The Authors):

      The summary doesn't say too much about what the specific discoveries and results of the study are. The description is limited to just one sentence saying, "Here we describe the responses of hemocytes in adult Drosophila to oxidative stress and the essential role of non-canonical DNA damage repair activity in direct "responder" hemocytes to control JNK-mediated stress signaling, systemic levels of the cytokine upd3 and subsequently susceptibility to oxidative stress" which doesn't provide sufficient explanation of what the results were.

      In the revised version of our manuscript, we now provide further information for the reader to outline the findings of our study in a concise way in the summary.

      Reviewer #2 (Recommendations For The Authors):

      1. To strengthen the conclusion that the DDR response suppresses JNK, and thus Upd3, rescue of DDR by upd3 null mutation would help (knockdown by Hml>upd3IR might not work, RNAi seems problematic).

      We would like to thank the referee for this suggestion and included now a genetic experiment where we combined upd3null mutants with hemocyte-specific knockdown of mei-41 and tefu to test their susceptibility to oxidative stress. Our data indeed provide evidence that loss of upd3 rescues the higher susceptibility of flies with hemocyte-specific knockdown for tefu and mei-41 (Figure 6F). Furthermore, we see that upd3null mutants show a diminished susceptibility to oxidative stress compared to control flies (Figure 6F).

      1. To link the observed effects to systemic metabolic changes, it would be useful to measure glycogen and triglycerides in these flies as well:
      2. crq-Gal80ts>reaper to see what role hemocytes play in the observed metabolic changes.

      3. Hml-Upd3 overexpression and Upd3 null mutant (Upd3 RNAi seems to be problematic, we have similar experiences) to see if Upd3 overexpression leads to even more profound changes as suggested, and if Upd3 mutation at least partially suppresses the observed changes.

      We agree with the referee that analyzing the connection of hemocyte activation to metabolic changes should be demonstrated in our manuscript to support our claim that hemocytes are important regulators of energy mobilization during oxidative stress. Hence, we analyzed triglycerides and carbohydrate levels in hemocyte-deficient flies (crq-Gal80ts>reaper) during oxidative stress. Indeed, we found substantial differences in energy mobilization in these flies supporting the assumption that the higher susceptibility of hemocyte-deficient flies could be caused by substantial decrease in free glucose and inefficient lysis of triglycerides from the fat body (Figure 1I-K).

      1. To test whether the cause of the increased susceptibility to oxidative stress is due to Upd3 overactivation induced by DDR silencing, the authors should attempt to rescue DDR silencing with an Upd3 null mutation.

      The suggestion of the reviewer was included in the revised manuscript and as outlined above we now added this data set to our manuscript (Figure 6F). Indeed, we can now provide evidence that upd3null mutation rescues the higher susceptibility of flies with DDR knockdown in hemocytes.

      1. Lethality after PQ treatment varies widely (sometimes from 10 to 90%! as in Figure 5D) - is this normal? In some experiments the variability was much lower. In particular, Figure 5D is very problematic and for example the result with upd3 null mutant compared to control is not very convincing. This could be an important result to test whether Upd3, with normal expression likely coming from cluster 6, actually plays a beneficial role, whereas overexpression with Hml leads to pathology.

      We agree with the referee that it would be more convincing if the variation cross of survival experiments would be less. However, we included a lot of flies and vials in many individual experiments to test our hypothesis and variation in these survivals was always the case. These effects can be caused by many factors for example the amount of food intake by the flies, genetic background or inserted transgenes. The n-number is quite high across our survivals; so that we are convinced, the seen effects are valid. This reflects also the power of using Drosophila melanogaster as a model organism for such survivals. The high n-number in our data falls into a normal Gauss distribution with a distinct mean susceptibility between the genotypes analyzed.

      1. I like the conclusion at the end of the results: line 413: "We show that this oxidative stressmediated immune activation seems to be controlled by non-canonical DNA damage signaling resulting in JNK activation and subsequent upd3 expression, which can render the adult fly more susceptible to oxidative stress when it is over-activated." This is actually a more appropriate conclusion, but in the summary, introduction and discussion along with the overall schematic illustration, this is not actually stated as such, but rather as Upd3 released from cluster 6 causes the pathology. For example: line 435 "Hence, we postulate that hemocyte-derived upd3, most likely released by the activated plasmatocyte cluster C6 during oxidative stress in vivo and subsequently controlling energy mobilization and subsequent tissue wasting upon oxidative stress."

      We thank the referee for this suggestion and edited our manuscript and conclusions accordingly.

      Reviewer #3 (Recommendations For The Authors):

      1. In Figure 2, the authors claim showed that PQ treatment changes the hemocyte clusters in a way that suppresses the conventional Hml+ or Pxn+ hemocytes (cluster1) while expanding hemocyte clusters enriched with metabolic genes such as Lpin, bmm etc. It is not clear whether these cells are comparable to the fat body and if these clusters express any of previously known hemocyte marker genes to claim that these are bona fide hemocytes.

      We now included a new analysis of our snRNA-seq data in Figure S4, where we clearly show that all identified hemocyte clusters do not have a fat body signature and are hemocytes, which seem to undergo metabolic adaptations (Figure S4A). Furthermore, we show that the identified fat body cells have a clear fat body signature (Figure S4B) and do not express specific hemocyte markers (Figure S4C).

      1. In Figure 4C, the authors showed that comet assays of isolated hemocytes result in a statistically significant increase in DNA damage in DDR-deficient flies before and after PQ treatment. However, the authors conclude that, in lines 324-328, the higher susceptibility of DDR-deficient flies is not due to an increase in DNA damage. To explicitly conclude that "non-canonical" DNA damage response, without any DNA damage, is specifically upregulated during PQ treatment, the authors require further support to exclude the potential activation of canonical DDR.

      The referee is correct that we do not provide direct evidence for non-canonical DNA damage signaling. Therefore, we also decided to tune down our statement here a bit and removed that claim from the title. Increase in DNA damage can of course also increase the non-canonical DNA damage signaling pathway, loss of DNA damage signaling genes such as tefu and mei-41 seem to only have minor impacts on the overall amount of DNA damage acquired in hemocytes by oxidative stress. We therefore concluded that the induction in immune activation is most unlikely only caused by increased DNA damage but might be connected to dysregulation in non-canonical DNA damage signaling. Canonical DNA damage signaling leads essentially to DDR, which could be slow in adult hemocytes because they post-mitotic, or to apoptosis, which we could not observe in the analyzed time window in our experiments. Hemocyte number remained stable over the 24h PQ treatment without reduction in cell number (Figure 1H).

      1. From Figure 4D-F, the authors showed that loss of DDR in hemocytes induces the expression of unpaired 2 and 3, Socs36E, which represent the JAK/STAT pathway, and thor, InR, Pepck in the InR pathway, and a JNK readout, puc. These results indicate that the DDR pathway normally inhibits the upd-mediated JAK/STAT activation upon PQ treatment, compared to wild-type animals during PQ treatment in Figure 1B-C, which in turn protects the animal during oxidative stress responses. However, the authors claim that "enhanced DNA damage boosts immune activation and therefore susceptibility to oxidative stress (lines 365-366); we show that this oxidative stress-mediated immune activation seems to be controlled by non-canonical DNA damage signaling resulting in JNK activation and subsequent upd3 expression (line 413-416)". These conclusions are not compatible with the authors' data and may require additional data to support or can be modified.

      In the revised manuscript, we carefully revised now the text and our statements that it seems that DNA damage signaling in hemocytes has regulatory or modulatory effect on the immune response during oxidative stress. Accordingly, we also adjusted our graphical summary. We agree with the referee and used the term “non-canonical” DNA damage signaling more carefully throughout the manuscript. The slight increase in DNA damage seen after PQ treatment can contribute to immune activation but seems to be not correlative to the induced cytokine levels or the susceptibility of the flies to oxidative stress.

      1. In Fig 1I, the authors showed that genetic ablation of hemocytes using UAS-repear induces susceptibility to PQ treatment. It is possible that inducing cell death in hemocytes itself causes the expression of cytokine upd3 or activates the JNK pathway to enhance the basal level of upd3/JNK even without PQ treatment. If this phenotype is solely mediated by the loss of hemocytes, the results should be repeated by reducing the number of hemocytes with alternative genetic backgrounds.

      In the different genotypes analyzed across our manuscript we did not detect cell death of hemocytes or a dramatic reduction in hemocytes number (see Figure 1H, Figure 5B, Figure 6C). The higher susceptibility if hemocyte-deficient flies during oxidative stress is most likely caused by the loss of their regulatory role during energy mobilization. We tested triglyceride levels in hemocyte-deficient flies and found a decreased triglyceride consumption (lipolysis), with reduced levels of circulating glucose levels. This findings support our hypothesis that hemocytes are needed to balance the response to oxidative stress. In contrast, the flies with DDR-deficient hemocytes show higher systemic cytokine levels, which most likely enhance energy mobilization from the fat body and therefore result in a higher susceptibility of the fly to oxidative stress. Hence, we claim that hemocytes and their regulation of systemic cytokine levels are important to balance the response to oxidative stress and guarantee the survival of the organism.

      1. Lethality of control animals in PQ treatment is variable and it is hard to estimate the effect of animal susceptibility during 15mM PQ feeding. For example, Fig1A shows that control animals exhibit ~10% death during 15mM PQ which is further enhanced by crq-Gal80>reaper expression to 40% (Fig 1I). However, in Fig 5D-E, the basal lethality of wild-type controls already reaches 40~50%, which makes them hard to compare with other genetic manipulations. Related to this, the authors demonstrated that the expression of upd3 in hemocytes is sufficient to aggravate animal survival upon PQ treatment; however, upd3 null mutants do not rescue the lethality, which indicates that upd3 is not required for hampering animal mortality. These data need to be revisited and analyzed.

      As outlined above, we find the variability of susceptibility to oxidative stress across all of our experiments. This could be due to different effects such as food intake but also transgene insertion and genetic background. Crq-gal80ts>reaper flies are healthy, but show a shortened life span on normal food (Kierdorf et al., 2020) due to enhanced loss of proteostasis in muscles. We show in the revised manuscript that these flies have a higher susceptibility to oxidative stress and that this effect could be mediated by defects in energy mobilization and redistribution as shown by less triglyceride lysis from the fat body and decreasing levels in free glucose. This would explain the high mortality rate of these flies at 7 days after eclosion. Paraquat treatment (15mM) is a severe inducer of oxidative stress, which results in death of most flies when they are maintained for longer time windows on PQ food. Hence, it is a model, which is not suitable to examine and monitor recovery from this detrimental insult. upd3null mutants were extensively reexamined in this manuscript, and even though we could not see a full protection of these flies from oxidative stress induced death, we found a reduced susceptibility compared to control flies (Figure 6F). Furthermore, when we combined upd3null mutants with flies deficient for tefu and mei-41 in hemocytes, the increased susceptibility to oxidative stress was rescued.

    1. Reviewer #3 (Public Review):

      Summary:<br /> This manuscript describes some biochemical experiments on the crucial virulence factor EsxA (ESAT-6) of Mycobacterium tuberculosis. EsxA is secreted via the ESX-1 secretion system. Although this system is recognized to be crucial for virulence the actual mechanisms employed by the ESX-1 substrates are still mostly unknown. The EsxA substrate is attracting the most attention as the central player in virulence, especially phagosomal membrane disruption. EsxA is secreted as a dimer together with EsxB. The authors show that EsxA is also able to form homodimers and even tetramers, albeit at very low pH (below 5). Furthermore, the addition of a nanobody that specifically binds EsxA blocks intracellular survival, as well as if the nanobody is produced in the cytosol of the infected macrophages.

      Strengths:<br /> -Decent biochemical characterization of EsxA and identification of a new and interesting tool to study the function of EsxA (nanobody).

      -The manuscript is well-written.

      Weaknesses:<br /> The findings are not critically evaluated using extra experiments or controls.

      For instance, tetrameric EsxA in itself is interesting and could reveal how EsxA works. But one would say that this is a starting point to make small point mutations that specifically affect tetramer formation and then evaluate what the effect is on phagosomal membrane lysis. Also one would like to see experiments to indicate whether these structures can be produced under in vitro conditions, especially because it seems that this mainly happens when the pH is lower than 5, which is not normally happening in phagosomes that are loaded with M. tuberculosis.

      Also, the fact that the addition of the nanobody, either directly to the bacteria or produced in the cytosol of macrophages is interesting, but again it is the starting point for further experimentation. As a control, one would like to see the effect on an Esx-1 secretion mutant. Furthermore, does cytosolic production or direct addition of the nanobody affect phagosomal escape? What happens if an EsxA mutant is produced that does not bind the nanobody?

      Finally, it is a bit strange that the authors use a non-native version of esxA that has not only an additional His-tag but also an additional 12 amino acids, which makes the protein in total almost 20% bigger. Of course, these additions do not have to alter the characteristics, but they might. On the other hand, they easily discard the natural acetylation of EsxA by mycobacteria itself (proven for M. marinum) as not relevant for the function because it might not happen in (the close homologue) M. tuberculosis.

    1. Lovely. I guess what I'm trying to define is some methodology for practicing. Many times I simply resort to my exhaustive method, which has worked for me in the past simply due to brute force.Thank you for taking the time to respond and for what look like some very interesting references.

      reply to u/ethanzanemiller at https://www.reddit.com/r/Zettelkasten/comments/185xmuh/comment/kb778dy/?utm_source=reddit&utm_medium=web2x&context=3

      Some of your methodology will certainly depend on what questions you're asking, how well you know your area already, and where you'd like to go. If you're taking notes as part of learning a new area, they'll be different and you'll treat them differently than notes you're collecting on ideas you're actively building on or intriguing facts you're slowly accumulating. Often you'll have specific questions in mind and you'll do a literature review to see what's happing around that area and then read and take notes as a means of moving yourself closer to answering your particular questions.

      Take for example, the frequently asked questions (both here in this forum and by note takers across history): how big is an idea? what is an atomic note? or even something related to the question of how small can a fact be? If this is a topic you're interested in addressing, you'll make note of it as you encounter it in various settings and see that various authors use different words to describe these ideas. Over time, you'll be able to tag them with various phrases and terminologies like "atomic notes", "one idea per card", "note size", or "note lengths". I didn't originally set out to answer these questions specifically, but my interest in the related topics across intellectual history allowed such a question to emerge from my work and my notes.

      Once you've got a reasonable collection, you can then begin analyzing what various authors say about the topic. Bring them all to "terms" to ensure that they're talking about the same things and then consider what arguments they're making about the topic and write up your own ideas about what is happening to answer those questions you had. Perhaps a new thesis emerges about the idea? Some have called this process having a conversation with the texts and their authors or as Robert Hutchins called it participating in "The Great Conversation".

      Almost anyone in the forum here could expound on what an "atomic note" is for a few minutes, but they're likely to barely scratch the surface beyond their own definition. Based on the notes linked above, I've probably got enough of a collection on the idea of the length of a note that I can explore it better than any other ten people here could. My notes would allow me a lot of leverage and power to create some significant subtlety and nuance on this topic. (And it helps that they're all shared publicly so you can see what I mean a bit more clearly; most peoples' notes are private/hidden, so seeing examples are scant and difficult at best.)

      Some of the overall process of having and maintaining a zettelkasten for creating material is hard to physically "see". This is some of the benefit of Victor Margolin's video example of how he wrote his book on the history of design. He includes just enough that one can picture what's happening despite his not showing the deep specifics. I wrote a short piece about how I used my notes about delving into S.D. Goitein's work to write a short article a while back and looking at the article, the footnotes, and links to my original notes may be illustrative for some: https://boffosocko.com/2023/01/14/a-note-about-my-article-on-goitein-with-respect-to-zettelkasten-output-processes/. The exercise is a tedious one (though not as tedious as it was to create and hyperlink everything), but spend some time to click on each link to see the original notes and compare them with the final text. Some of the additional benefit of reading it all is that Goitein also had a zettelkasten which he used in his research and in leaving copies of it behind other researchers still actively use his translations and notes to continue on the conversation he started about the contents of the Cairo Geniza. Seeing some of his example, comparing his own notes/cards and his writings may be additionally illustrative as well, though take care as many of his notes are in multiple languages.

      Another potentially useful example is this video interview with Kathleen Coleman from the Thesaurus Linguae Latinae. It's in the realm of historical linguistics and lexicography, but she describes researchers collecting masses of data (from texts, inscriptions, coins, graffiti, etc.) on cards which they can then study and arrange to write their own articles about Latin words and their use across time/history. It's an incredibly simple looking example because they're creating a "dictionary", but the work involved was painstaking historical work to be sure.

      Again, when you're done, remember to go back and practice for yourself. Read. Ask questions of the texts and sources you're working with. Write them down. Allow your zettelkasten to become a ratchet for your ideas. New ideas and questions will emerge. Write them down! Follow up on them. Hunt down the answers. Make notes on others' attempts to answer similar questions. Then analyze, compare, and contrast them all to see what you might have to say on the topics. Rinse and repeat.

      As a further and final (meta) example, some of my answer to your questions has been based on my own experience, but the majority of it is easy to pull up, because I can pose your questions not to my experience, but to my own zettelkasten and then quickly search and pull up a variety of examples I've collected over time. Of course I have far more experience with my own zettelkasten, so it's easier and quicker for me to query it than for you, but you'll build this facility with your own over time.

      Good luck. 🗃️

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Warfvinge et al. reports the results of CITE-seq to generate single-cell multi-omics maps from BM CD34+ and CD34+CD38- cells from nine CML patients at diagnosis. Patients were retrospectively stratified by molecular response after 12 months of TKI therapy using European Leukemia Net (ELN) recommendations. They demonstrate heterogeneity of stem and progenitor cell composition at diagnosis, and show that compared to optimal responders, patients with treatment failure after 12 months of therapy demonstrate increased frequency of molecularly defined primitive cells at diagnosis. These results were validated by deconvolution of an independent previously published dataset of bulk transcriptomes from 59 CML patients. They further applied a BCR-ABL-associated gene signature to classify primitive Lin-CD34+CD38- stem cells as BCR:ABL+ and BCR:ABL-. They identified variability in the ratio of leukemic to non-leukemic primitive cells between patients, showed differences in the expression of cell surface markers, and determined that a combination of CD26 and CD35 cell surface markers could be used to prospectively isolate the two populations. The relative proportion of CD26-CD35+ (BCR:ABL-) primitive stem cells was higher in optimal responders compared to treatment failures, both at diagnosis and following 3 months of TKI therapy.

      Strengths:

      The studies are carefully conducted and the results are very clearly presented. The data generated will be a valuable resource for further studies. The strengths of this study are the application of single-cell multi-omics using CITE-Seq to study individual variations in stem and progenitor clusters at diagnosis that are associated with good versus poor outcomes in response to TKI treatment. These results were confirmed by deconvolution of a historical bulk RNAseq data set. Moreover, they are also consistent with a recent report from Krishnan et al. and are a useful confirmation of those results. The major new contribution of this study is the use of gene expression profiles to distinguish BCR-ABL+ and BCR-ABL- populations within CML primitive stem cell clusters and then applying antibody-derived tag (ADT) data to define molecularly identified BCR:ABL+ and BCR-ABL- primitive cells by expression of surface markers. This approach allowed them to show an association between the ratio of BCR-ABL+ vs BCR-ABL- primitive cells and TKI response and study dynamic changes in these populations following short-term TKI treatment.

      Weaknesses:

      One of the limitations of the study is the small number of samples employed, which is insufficient to make associations with outcomes with confidence. Although the authors discuss the potential heterogeneity of primitive stem, they do not directly address the heterogeneity of hematopoietic potential or response to TKI treatment in the results presented. Another limitation is that the BCR-ABL + versus BCR-ABL- status of cells was not confirmed by direct sequencing for BCR-ABL. The BCR-ABL status of cells sorted based on CD26 and CD35 was evaluated in only two samples. We also note that the surface markers identified were previously reported by the same authors using different single-cell approaches, which limits the novelty of the findings. It will be important to determine whether the GEP and surface markers identified here are able to distinguish BCR-ABL+ and BCR-ABL- primitive stem cells later in the course of TKI treatment. Finally, although the authors do describe differential gene expression between CML and normal, BCR:ABL+ and BCR:ABL-, primitive stem cells they have not as yet taken the opportunity to use these findings to address questions regarding biological mechanisms related to CML LSC that impact on TKI response and outcomes.

    1. documented evidence of oral transmission of index card use as a method

      reply to u/atomicnotes at https://www.reddit.com/r/Zettelkasten/comments/1843k2w/comment/kaypbk2/?utm_source=reddit&utm_medium=web2x&context=3

      I'm reasonably certain that most of the transmission of the traditions was specifically from person to person rather than from text to person. Yours is an interesting and important (and rare oral) example of person to person zettelkasten transmission, of which I've been collecting some scant examples. (Other examples appreciated, inquire within.)

      Interestingly a lot of this transmission is still happening every day (though now more "visibly" online) in fora like Reddit, zettelkasten.de, Discord, in social media, and even smaller group courses. As Annie Murphy Paul indicates in The Extended Mind, people like to imitate rather than innovate. Perhaps Luhmann, being on his own outside of the establishment, was more likely to innovate because he was on his own and took Heyde's advice, but evolved it to his needs rather than asking questions on Reddit?

    1. Reviewer #1 (Public Review):

      Summary:<br /> The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function.

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on behavioral outcomes were not yet fully resolved.

      After virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences?

      In general, the manuscript would also benefit from more clarity about the statistical comparisons that were made and sample sizes used to reach their conclusions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Trebino et al. investigated the BRAF activation process by analysing the interactions of BRAF N-terminal regulatory regions (CRD, RBD, and BSR) with the C-terminal kinase domain and with the upstream regulators HRAS and KRAS. To this end, they generated four constructs comprising different combinations of N-terminal domains of BRAF and analysed their interaction with HRAS as well as conformational changes that occur. By HDX-MS they confirmed that the RBD is indeed the main mediator of interaction with HRAS. Moreover, they observed that HRAS binding leads to conformational changes exposing the BSR to the environment. Next, the authors used OpenSPR to determine the binding affinities of HRAS to the different BRAF constructs. While BSR+RBD, RBD+CRD, and RBD bound HRAS with nanomolar affinity, no binding was observed with the construct comprising all three domains. Based on these experiments, the authors concluded that BSR and CRD negatively regulate binding to HRAS and hypothesised that BSR may confer some RAS isoform specificity. They corroborated this notion by showing that KRAS bound to BRAF-NT1 (BSR+RBD+CRD) while HRAS did not. Next, the authors analysed the autoinhibitory interaction occurring between the N-terminal regions and the kinase domain. Through pulldown and OpenSPR experiments, they confirm that it is mainly the CRD that makes the necessary contacts with the kinase domain. In addition, they show that the BSR stabilizes these interactions and that the addition of HRAS abolishes them. Finally, the D594G mutation within the KD of BRAF is shown to destabilise these autoinhibitory interactions, which could explain its oncogenic potential.

      Overall, the in vitro study provides new insights into the regulation of BRAF and its interactions with HRAS and KRAS through a comprehensive in vitro analysis of the BRAF N-terminal region. Also, the authors report the first KD values for the N- and C-terminal interactions of BRAF and show that the BSR might provide isoform specificity towards KRAS. While these findings could be useful for the development of a new generation of inhibitors, the overall impact of the manuscript could probably be enhanced if the authors were to investigate in more detail how the BSR-mediated specificity of BRAF towards certain RAS isoforms is achieved. Moreover, though the very "clean" in vitro approach is appreciated, it also seems useful to examine whether the observed interactions and conformational changes occur in the full-length BRAF molecule and in more physiological contexts. Some of the results could be compared with studies including full-length constructs.

      Public Response: We would like to express our gratitude for your valuable feedback on our manuscript. Your insightful suggestions have significantly improved the quality and completeness of our research. In response to your comments, we have conducted additional experiments and incorporated new data into the revised manuscript.

      To gain a deeper understanding of how the BSR-mediated specificity of BRAF towards certain RAS isoforms is achieved, we performed HDX-MS to investigate the impact of KRAS interactions on the BSR. Our findings indicate that when KRAS is bound to BRAF NT2, there is no significant difference in hydrogen-deuterium exchange rates in the BSR compared to the apo-NT2 state (Figure 4). This observation contrasts with the effect of HRAS binding, where peptides from the BRAF-BSR exhibit an increased rate change, suggesting that HRAS induces a conformationally more dynamic state (Figure 2).

      Our results align with the conclusions of Terrell et al. in their 2019 publication, which propose that isoform preferences in the RAS-RAF interaction are driven by opposite charge attractions between BRAF-BSR and KRAS-HVR, promoting the interaction.1 Our data offers a potential mechanistic explanation, suggesting that HRAS disrupts the conformational stability of the BSR provided by the RBD, while KRAS-HVR restores stability and enhances interaction favorability. It is important to note that our results do not directly confirm a long-lasting interaction between the BRAF-BSR and KRAS-HVR, but they do not rule out the possibility of a transient, low-affinity interaction or close proximity between the two.

      Furthermore, our binding kinetics measurements conducted using OpenSPR support these findings. Particularly, in the case of NT1, when the CRD accompanies the BSR and RBD, no interactions with HRAS were observed. Additionally, we quantified the binding affinities between NT3:KRAS and NT4:KRAS, demonstrating that they are equally strong and that the presence of the BSR or CRD does not singularly affect the primary RBD interaction, consistent with HRAS. The BSR appears to exert an inhibitory effect on HRAS when the entire N-terminal region (BSR+RBD+CRD) is present. The BSR-mediated specificity is achieved through a coordinated interplay with the CRD.

      Moreover, we have addressed your concern regarding the physiological relevance of our conclusions. In response, we utilized active, full-length (FL) BRAF purified from HEK293F cells in OpenSPR experiments. Our findings indicate that FL-BRAF behaves similarly to BRAF-NT1, as it does not bind to HRAS but binds to KRAS with a deviation comparable to NT1. We have demonstrated that post-translational modifications or native intramolecular interactions do not alter our initial results. Several literature sources, employing cell systems or expressing proteins from insect or mammalian cells, further support the findings presented in our study.2–5

      Thank you once again for your constructive feedback, which has contributed significantly to the refinement of our work.

      For the author:

      Major points:

      1. Figure 1D: Negative control is missing.

      Response: We have incorporated the negative control into this figure as suggested.

      1. Figure 3F and G: negative controls (GST only) are missing.

      Response: We have incorporated the negative control into this figure as suggested.

      1. The authors demonstrate that BRAF NT1 (BSR+RBD+CRD) interacts with KRAS but not HRAS in SPR experiments (Figure 4). What about the conformational change that affects the positioning of BSR when NT2 (BSR+RBD) binds to HRAS (Figure 2)? Does it also occur with KRAS or not? When a rate change is observed between free protein and bound protein in HDX, particularly when this rate change results in a sigmoidal curve that closely parallels the reference curve, it signifies that all residues within the peptide share a uniform protection factor. This suggests that they collectively undergo conformational changes at the same rate, likely due to a concerted opening as a cohesive unit. In the context of our time plots, we observe this distinctive characteristic in the curves derived from the BSR peptides, indicating that HRAS binding perturbs this region, alters its flexibility, and induces a coordinated conformational shift. This compelling evidence strongly supports our assertion that HRAS instigates a reorientation of the BSR.

      Response: In response to the reviewer's comments, we conducted additional experiments to explore whether KRAS elicits any comparable alterations in the H-D exchange of the BSR within BRAF-NT2. Our findings indicate that KRAS does not induce a similar conformational change in the BSR. We have detailed these results in the Results section under the heading "BSR Differentiates the BRAF-KRAS Interaction from the BRAF-HRAS Interaction" and have included corresponding panels in Figure 4 to visually illustrate these observations.

      1. Related to point 3: The authors mention that the HVR domain is responsible for isoform-specific differences. Does the BSR interact with the HVR domain of KRAS (but not HRAS)?

      Response: It has been suggested by Terrell and colleagues1 that the BRAF-BSR and KRASHVR are directly responsible for the isoform specific interactions. We have no direct evidence confirming an interaction between the HVR and BSR. However, we deduce the possibility of such interaction based on previous research findings. Our HDX-MS experiments have demonstrated that the BRAF-BSR does not engage with HRAS. In our new HDX-MS experiments involving KRAS, we observed that the presence of KRAS does not lead to any discernible increase or decrease in the rate of deuterium exchange within the BRAF-BSR. It is important to emphasize that the absence of a rate change does not necessarily negate the occurrence of binding; rather, it might indicate a transient interaction with an affinity level below the detection threshold of HDX-MS.

      Given that the only major difference between H- and K-RAS isoforms is the HVR, we hypothesize that binding differences between BRAF and RAS isoforms can be attributed to the HVR. Notably, BRAF-NT3 resembles CRAF, which also behaves in line with the findings from Terrell et al. in which the BSR is not present to impact RAS-RAF association. We have updated some of the discussion section to include the new results and draw relevant conclusion.

      We mention in the text in the results section, “The HVR is an important region for regulating RAS isoform differences, like membrane anchoring, localization, RAS dimerization, and RAF interactions6… These results, combined with HDX-MS results, which showed that the BSR is exposed when bound to HRAS, suggest that the electrostatic forces surrounding the BSR promote BRAF autoinhibition and the specificity of RAF-RAS interactions.”

      We also write in the discussion, “However, BRET assays suggest that CRAF does not show preference for either H- or KRAS, while BRAF appears to prefer KRAS.1 This preference is suggested to result from the potential favorable interactions between the negatively charged BSR of BRAF and the positively charged, poly-lysine region of the HVR of KRAS1… Our binding data provide additional examples of isoform-specific activity. We speculate that diminished BRAF-NT1 binding to HRAS and increased BSR exposure upon HRAS binding may be due to electrostatic repulsion between HRAS and the BSR. Our full-length KRAS and its interaction with NT1 support the hypothesis that the BSR attenuates fast binding to HRAS but not to KRAS.”

      1. The authors might consider including NRAS in their study to give more weight to this interesting aspect.

      Response: While this suggestion is intriguing and could contribute to the expanding body of literature on RAS signaling, particularly in the context of NRAS-mutant tumors, we believe that delving into this topic would be beyond the scope of the present manuscript.

      1. Figure 6A: In this pulldown experiment the authors wish to demonstrate that binding of HRAS abolishes the autoinhibitory binding between NT1 and the kinase domain. However, the experimental design (i.e., pulldown of RAS) does not allow us to assess whether NT1 and KD are bound to each other in these conditions at all. The authors should rather pull down the KD and show that the interaction with NT1 is abolished when RAS is added.

      Response: We appreciate your suggestion. The experimental design for this study was intentionally structured to focus on the specific subset of NT1 that interacts with HRAS. The BRAF N-terminal region has the capacity to bind both HRAS and KD, resulting in two distinct populations within BRAF-NT1: NT1:KD and NT1:HRAS, although we believe the ratio between those two populations is not 1:1. If we were to design the experiment by isolating either the KD or NT1, it would lead to the observation of both populations simultaneously, making it challenging to distinguish between them. Our pulldown experiments are performed under the same conditions (i.e. all the proteins were maintained in a molar ratio of 1:1 and exposed to the same buffer components), and we rely on pulldown assays, such as those depicted in Figure 5, to clearly demonstrate the binding interactions between NT1 and KD.

      1. The authors have chosen a purely in vitro approach for their interaction studies, which initially makes sense for the addressed questions. However, since the BRAF constructs studied are only fragments and neither BRAF nor K/HRAS has any posttranslational modifications, the question arises to what extent the findings obtained hold up in vivo. Therefore, the manuscript would greatly benefit from monitoring the described interactions in full-length proteins and in cells or at least with proteins purified from cells.

      Response: Thank you for your valuable suggestion, which we take very seriously to enhance the quality of our manuscript. Upon carefully reviewing your comments, we conducted additional experiments involving full-length, wild-type BRAF (FL-BRAF) that was purified from mammalian cells, encompassing the post-translational modifications and scaffolding proteins such as 14-3-3 (Supplementary Fig 8A). We have incorporated the findings from these OpenSPR experiments into the revised manuscript within the Results Section titled "BSR Differentiates the BRAF-KRAS Interaction from the BRAFHRAS Interaction" and Figure 4. In summary, our results with FL-BRAF affirm the extension of our initial observations. Both NT1 and FL-BRAF interact with KRAS with comparable affinities, and neither NT1 nor FL-BRAF demonstrates an interaction with HRAS using OpenSPR. These results underscore that BRAF fragments accurately represent active, fully processed BRAF, lending support to our in vitro approach.

      Moreover, the conserved interactions we report in this manuscript are supported by literature. The interaction between RAF-RBD and RAS has been extensively documented, spanning investigations conducted in both insect and mammalian cell lines. For instance, Tran et al. (2021) utilized mammalian expression systems to explore the role of RBD in mediating BRAF activation through RAS interaction, identifying the same binding surfaces that we highlighted using HDX-MS.2 They quantified the KRAS-CRAF interaction yielding binding affinities in the low nanomolar range, similar to our findings for BRAF-NT:KRAS OpenSPR.2 In the manuscript text, we compared the binding affinity of BRAF residues 1245 purified from insect cells3 to our BRAF 1-227 (NT2 from E. coli), noting that the published value falls within the standard deviation of our experimental value. Additionally, our results align with the autoinhibited FL-BRAF:MEK:14-3-3 structure, which was expressed in Sf9 insect cells and reveals the central role of the CRD in maintaining autoinhibition through interactions with KD.4 In 2005, Tran and colleagues revealed specific domains within the BRAF N-terminal region are involved in binding to KD through Co-IP experiments conducted in mammalian cells.5

      While we are fully aware of the limitations of taking a purely in vitro approach to study the role of BRAF regulatory domains in RAS-RAF interactions and autoinhibition, as well as to quantify the affinity of these interactions, we emphasize that this approach enables us to dissect and examine the specific regions of RAF that are under investigation. As we write in the manuscript: “Our in vitro studies were conducted using proteins purified from E. coli, which lack the membrane, post-translational modifications, and regulatory, scaffolding, or chaperone proteins that are involved in BRAF regulation. Nonetheless, our study provides a direct characterization of the intra- and inter-molecular protein-protein interactions involved in BRAF regulation, without the complications that arise in cell-based assays.” We have added the following comment to clarify the advantages of our in vitro approach and the challenges associated with cell-based assays: “… without the complications and false-positives that can arise in cell-based assays, which often cannot distinguish between proximity and biochemical interactions.”

      Once again, we appreciate your insight feedback, which has contributed significantly to the improvement of our manuscript.

      Minor:

      1. Page 7, paragraph 2, line 6: It should probably read "BRAF autoinhibition" not "BRAF autoinhibitory".

      Response: Thank you for bringing this to our attention. We have fixed this typo.

      1. Figure 3G: In the first lane (time point 0 min) there is no input band for His/MBP-NT1. Probably a mistake when cropping the image from the original photo.

      Response: We sincerely appreciate your diligence in identifying cropping errors, and we have taken comprehensive measures to review the manuscript and correct any such errors. Regarding this specific figure, it is important to note that NT1 was not added at the "0" minute time point, which explains the absence of an input band at that stage. To avoid any confusion, we have revised the notation from "0" to "-" for clarity.

      Reviewer #2 (Public Review):

      In the manuscript entitled 'Unveiling the Domain-Specific and RAS Isoform-Specific Details of BRAF Regulation', the authors conduct a series of in vitro experiments using Nterminal and C-terminal BRAF fragments (SPR, HDX-MS, pull-down assays) to interrogate BRAF domain-specific autoinhibitory interactions and engagement by H- and KRAS GTPases. Of the three RAF isoforms, BRAF contains an extended N-terminal domain that has yet to be detected in X-ray and cryoEM reconstructions but has been proposed to interact with the KRAS hypervariable region. The investigators probe binding interactions between 4 N-terminal (NT) BRAF fragments (containing one more NT domain (BRS, RBD, and CRD)), with full-length bacterial expressed HRAS, KRAS as well as two BRAF C-terminal kinase fragments to tease out the underlying contribution of domainspecific binding events. They find, consistent with previous studies, that the BRAF BSR domain may negatively regulate RAS binding and propose that the presence of the BSR domain in BRAF provides an additional layer of autoinhibitory constraints that mediate BRAF activity in a RAS-isoform-specific manner. One of the fragments studied contains an oncogenic mutation in the kinase domain (BRAF-KDD594G). The investigators find that this mutant shows reduced interactions with an N-terminal regulatory fragment and postulate that this oncogenic BRAF mutant may promote BRAF activation by weakening autoinhibitory interactions between the N- and C-terminus.

      While this manuscript sheds light on B-RAF specific autoinhibitory interactions and the identification and partial characterization of an oncogenic kinase domain (KD) mutant, several concerns exist with the vitro binding studies as they are performed using taggedisolated bacterial expressed fragments, 'dimerized' RAS constructs, lack of relevant citations, controls, comparisons and data/error analysis. Detailed concerns are listed below.

      1. Bacterial-expressed truncated BRAF constructs are used to dissect the role of individual domains in BRAF autoinhibition. Concerns exist regarding the possibility that bacterial expression of isolated domains or regions of BRAF could miss important posttranslational modifications, intra-molecular interactions, or conformational changes that may occur in the context of the full-length protein in mammalian cells. This concern is not addressed in the manuscript.

      Response: Reviewer 1 raised a similar concern, and we have duplicated our response below for your reference:

      Thank you for your valuable suggestion, which we take very seriously to enhance the quality of our manuscript. Upon carefully reviewing your comments, we conducted additional experiments involving full-length, wild-type BRAF (FL-BRAF) that was purified from mammalian cells, encompassing the post-translational modifications and scaffolding proteins such as 14-3-3 (Supplementary Fig 8A). We have incorporated the findings from these OpenSPR experiments into the revised manuscript within the Results Section titled "BSR Differentiates the BRAF-KRAS Interaction from the BRAF-HRAS Interaction" and Figure 4. In summary, our results with FL-BRAF affirm the extension of our initial observations. Both NT1 and FL-BRAF interact with KRAS with comparable affinities, and neither NT1 nor FL-BRAF demonstrates an interaction with HRAS using OpenSPR. These results underscore that BRAF fragments accurately represent active, fully processed BRAF, lending support to our in vitro approach.

      Moreover, the conserved interactions we report in this manuscript are supported by literature. The interaction between RAF-RBD and RAS has been extensively documented, spanning investigations conducted in both insect and mammalian cell lines. For instance, Tran et al. (2021) utilized mammalian expression systems to explore the role of RBD in mediating BRAF activation through RAS interaction, identifying the same binding surfaces that we highlighted using HDX-MS.2 They quantified the KRAS-CRAF interaction yielding binding affinities in the low nanomolar range, similar to our findings for BRAF-NT:KRAS OpenSPR.2 In the manuscript text, we compared the binding affinity of BRAF residues 1245 purified from insect cells3 to our BRAF 1-227 (NT2 from E. coli), noting that the published value falls within the standard deviation of our experimental value. Additionally, our results align with the autoinhibited FL-BRAF:MEK:14-3-3 structure, which was expressed in Sf9 insect cells and reveals the central role of the CRD in maintaining autoinhibition through interactions with KD.4 In 2005, Tran and colleagues revealed specific domains within the BRAF N-terminal region are involved in binding to KD through Co-IP experiments conducted in mammalian cells.5

      While we are fully aware of the limitations of taking a purely in vitro approach to study the role of BRAF regulatory domains in RAS-RAF interactions and autoinhibition, as well as to quantify the affinity of these interactions, we emphasize that this approach enables us to dissect and examine the specific regions of RAF that are under investigation. As we write in the manuscript: “Our in vitro studies were conducted using proteins purified from E. coli, which lack the membrane, post-translational modifications, and regulatory, scaffolding, or chaperone proteins that are involved in BRAF regulation. Nonetheless, our study provides a direct characterization of the intra- and inter-molecular protein-protein interactions involved in BRAF regulation, without the complications that arise in cell-based assays.” We have added the following comment to clarify the advantages of our in vitro approach and the challenges associated with cell-based assays: “… without the complications and false-positives that can arise in cell-based assays, which often cannot distinguish between proximity and biochemical interactions.”

      Once again, we appreciate your insight feedback, which has contributed significantly to the improvement of our manuscript.

      1. The experiments employ BRAF NT constructs that retain an MBP tag and RAS proteins with a GST tag. Have the investigators conducted control experiments to verify that the tags do not induce or perturb native interactions?

      Response: Thank you for highlighting this important issue. We have conducted control experiments whenever feasible, particularly in cases where tags were not required for visualization, immobilization, or where cleave sites were present. We have subsequently included these control experiments in the supplementary figures and accompanying text within the manuscript.

      It is essential to note that many of the techniques employed in this manuscript rely on tags, such as immobilizing proteins onto NTA OpenSPR sensors and employing various resins/beads for pulldown assays. Utilizing tags for protein immobilization in OpenSPR applications offers distinct advantages, including homogeneous and site-specific immobilization of the protein, ensuring that binding sites remain accessible for the study of protein-protein interactions (PPIs) of interest. Furthermore, in all BRAF-RAS SPR experiments, the MBP protein serves as the reference channel "blocking" protein. This reference channel is instrumental in mitigating any potential false-positive signals resulting from binding interactions with the MBP protein. Any such signal is subsequently subtracted out during data analysis.

      To provide a comprehensive understanding of these aspects, we have incorporated these details into the manuscript text for clarity:

      “Maltose bind protein (MBP) is immobilized on the OpenSPR reference channel, which accounts for any non-specific binding or impacts to the native PPIs that may result from the presence of tags. Kinetic analysis is performed on the corrected binding curves, which subtracts any response in the reference channel.”

      We describe the control experiment to examine whether His/MBP-tag affects NT1 binding with BRAF-KD: “Similarly, we removed the His/MBP-tag from BRAF-NT1 through a TEV protease cleavage reaction and flowed over untagged NT1. Kinetic analysis confirmed that the interaction is preserved with the KD=13 nM (Supplemental Figure 6F).”

      We show that the GST-tag does not affect KRAS interactions with NTs in supplemental figure 6. We purified full-length, His/MBP-KRAS and subsequently removed the tag through TEV cleavage. BRAF-NT interactions are preserved with untagged KRAS. GST alone, also does not interact with BRAF-NTs. We updated the text in the results section “BSR differentiates the BRAF-KRAS interaction from the BRAF-HRAS interaction.”

      Additionally, Vojtek and colleagues used the same fusion-protein combinations (GSTRAS and MBP-RAF) in pulldown experiments and also found no perturbations from these tags.8

      1. The investigators state that the GST tag on the RAS constructs was used to promote RAS dimerization, as RAS dimerization is proposed to be key for RAF activation. However, recent findings argue against the role of RAS dimers in RAF dimerization and activation (Simanshu et al, Mol. Cell 2023). Moreover, while GST can dimerize, it is unclear whether this promotes RAS dimerization as suggested. In methods for the OpenSPR experiments probing NT BRAF:RAS interactions, it is stated that "monomeric KRAS was flowed...". This terminology is a bit confusing. How was the monomeric state of KRAS determined and what was the rationale behind the experiment? Is there a difference in binding interactions between "monomeric vs dimeric KRAS"?

      Response: Thank you for conducting such a comprehensive review of our manuscript and for identifying the mention of "monomeric KRAS" in the experimental section, which was inadvertently included and should not have been present. This terminology originally referred to a series of experiments involving "monomeric" KRAS that were initially considered for inclusion in the main body of the manuscript but were subsequently removed before submission. Furthermore, we adjusted the terminology to prevent any confusion or unwarranted implications.

      To clarify, this "monomeric" construct refers to the tagless, full-length KRAS variant that was confirmed to exist in a monomeric state through Size Exclusion Chromatography, eluting at a volume equivalent to 21 kDa. We have incorporated the findings from experiments involving this untagged KRAS variant into the supplementary figures to provide supporting evidence, particularly in response to comment #2, that the GST-tag does not interfere with native interactions. Supplementary Figure 1 illustrates that both GST-HRAS (45 kDa) and GST-KRAS (45 kDa) elute as dimers in solution, at approximately 90 kDa. It is important to note that the main text figures primarily feature the GST-tagged, "dimeric" RAS constructs. Our research results do not suggest any significant differences between "monomeric," untagged KRAS and "dimeric" GST-tagged KRAS, indicating that the binding kinetics between RAS and RAF are not influenced by oligomerization state (Supplementary Fig 6). To mitigate any potential confusion, we have made the necessary distinctions in the text and have revised the methods description to accurately reflect these aspects.

      While the recent findings summarized by Simanshu and colleagues were published concurrently with our manuscript submission, we would like to address this comment in the following manner. The authors assert that RAS does not engage in dimerization through the G domain, a hypothesis that contrasts with certain prior research findings. Instead, they propose that the plasma membrane plays a pivotal role in the clustering of RAS. Furthermore, the authors mention the involvement of RAS "dimerization" in RAF dimerization and activation in the subsequent statements:

      “Recruitment of two RAF proteins by RAS proteins in close proximity facilitate RAF activation but are not required for RAF dimerization.”

      “However, the PM recruitment of two RAF proteins by two non-dimerized but co- localized RAS proteins would serve equally well to promote RAF dimerization. Moreover, recent work on the activation cycle of RAF dimers (ref 20–23) argues strongly against a role for RAS dimers while revealing regulation by the 14-3-3 and SHOC2-MRAS- PP1C complexes. (Ref 24)”

      The primary focus of our study centers on elucidating the intricate details of the RAS-RAF interaction and the mechanisms underlying RAF autoinhibition, rather than emphasizing RAF dimerization as the sole pathway to RAF activation. It is important to recognize that RAF activation encompasses multiple steps, including RAS-mediated relief of RAF autoinhibition.

      To mimic physiological conditions as closely as possible, we employed a GST-tag on RAS in our experiments. It's worth noting that GST has a dimerization property,9 which brings RAS molecules into close proximity to one another, effectively emulating conditions akin to the plasma membrane. Our primary objective is not solely to facilitate interactions by bringing RAS into close proximity. Instead, our aim is to replicate cellular conditions to the greatest extent feasible, especially within the predominantly in vitro framework of our studies. Furthermore, we have revised the sentence pertaining to HRAS as follows: “As verified by size exclusion chromatography (Supplementary Fig 1A), the GST-tag dimerizes and forces HRAS into close proximity to recapitulate physiological conditions. (ref. 35)”

      1. The investigators determine binding affinities between GST-HRAS and NT BRAF domains (NT2 7.5 {plus minus} 3.5; NT3 22 {plus minus} 11 nM) by SPR, and propose that the BRS domain has an inhibitory role HRAS interactions with the RAF NT. However, it is unclear whether these differences are statistically meaningful given the error.

      Response: Thank you for bringing up this matter for further discussion. We are fully aware that these distinctions (NT2 and NT3), considering the overlapping error, lack statistical significance. Our conclusion points toward the most notable differences occurring when comparing NT1 to either NT2 or NT3, highlighting that the presence of the BSR has an inhibitory effect, particularly when the CRD is also present. It's important to note that we did not directly compare NT2 and NT3 to each other. Our comparison primarily elucidates that BSR without the CRD, and conversely, CRD without the BSR, do not exhibit the inhibitory effect. This collective evidence leads to the conclusion that all three domains collaboratively play a role in negatively regulating BRAF against HRAS.

      1. It is unclear why NT1 (BSR+RBD+CRD) was not included in the HDX experiments, which makes it challenging to directly compare and determine specific contributions of each domain in the presence of HRAS. Including NT1 in the experimental design could provide a more comprehensive understanding of the interplay between the domains and their respective roles in the HRAS-BRAF interaction. Further, excluding certain domains from the constructs, such as the BSR or CRD, may overlook potential domain-domain interactions and their influence on the conformational changes induced by HRAS binding.

      Response: We acknowledge that incorporating NT1 into the HDX experiments would have provided clearer insights into the specific contributions of each domain. Originally, it was our intention to include NT1 in these experiments. Unfortunately, we encountered challenges with the HDX experiments when it came to BRAF-NT1, as it yielded a significantly low sequence coverage after MS/MS analysis. We made multiple attempts to address this issue, which included additional protein purifications involving reducing agents, increasing the concentration of reaction buffer components, and extending the incubation time with reducing agents before injection. Despite these efforts, we were unable to obtain the desired sequence coverage for NT1. Consequently, we switched our approach to analyze NT2 and NT3 as the next best alternative.

      1. The authors perform pulldown experiments with BRAF constructs (NT1: BSR+RBD+CRD, NT2: BSR+RBD, NT3: RBD+CRD, NT4: RBD alone), in which biotinylated BRAF-KD was captured on streptavidin beads and probed for bound His/MBP-tagged BRAF NTs. Western blot results suggest that only NT1 and NT3 bind to the KD (Figure 5). However, performing a pulldown experiment with an additional construct, CRD alone, it would help to determine whether the CRD alone is sufficient for the interaction or if the presence of the RBD is required for higher affinity binding. This additional experiment would strengthen the authors' arguments and provide further insights into the mechanism of BRAF autoinhibition.

      Response: We are grateful for this valuable suggestion, and in response, we have taken the initiative to clone and purify a CRD-only construct (NT5) to strengthen our arguments. Subsequently, we conducted OpenSPR experiments to measure the binding affinity between NT5 and KD. Our findings clearly indicate that the CRD alone is not sufficient to mediate the autoinhibitory interactions and that the presence of the RBD is indeed necessary. These results have been incorporated into Figure 5 and are described within the Results Section for enhanced clarity and support.

      1. While the investigators state that their findings indicate that H- and KRAS differentially interact with BRAF, most of the experiments are focused on HRAS, with only a subset on KRAS. As SPR & pull-down experiments are only conducted on NT1 and NT2, evidence for RAS isoform-specific interactions is weak. It is unclear why parallel experiments were not conducted with KRAS using BRAF NT3 & NT4 constructs.

      Response: We sincerely appreciate your suggestion, which has contributed to enhancing the overall robustness of the evidence regarding isoform-specific differences between H- and K-RAS. In response, we performed additional experiments involving NT3 and NT4. The outcomes of these experiments have been integrated into Figure 4, and we have provided a comprehensive description of these results within the Results section “BSR differentiates the BRAF-KRAS interaction from the BRAF-HRAS interaction” of the manuscript.

      1. The investigators do not cite the AlphaFold prediction of full-length BRAF (AFP15056-F1) or the known X-ray structure of the BRAF BRS domain. Hence, it is unclear how Alpha-Fold is used to gain new structural information, and whether it was used to predict the structure of the N-terminal regulatory or the full-length protein.

      Response: We greatly appreciate the reviewer’s commitment to upholding good scientific practices and ensuring the inclusion of relevant citations in publications. In our original manuscript, we employed the UniProt ID P15056 to reference the specific AlphaFold structure used in our study. This was clarified as follows: "Since the full-length structure of BRAF is still unresolved, we applied the AlphaFold Protein Structure Database for a model of BRAF to display the conformation of the N-terminal domains and the HDX-MS results.40,41” Additionally, we referenced AlphaFold using the two citations recommended on their website (references 35 and 36 in the original manuscript). To prevent any potential confusion in the future, we have incorporated "AF-P15056-F1," as suggested.

      We are sorry for any misunderstanding that may have arisen regarding the use of AlphaFold for gaining new structural insights. Our sole intention was to utilize AlphaFold as a tool for modeling HDX, as a full-length structure of BRAF, encompassing the entire N-terminal domain, remains unavailable. We have taken steps to clarify our objectives in the manuscript to ensure the purpose of our AlphaFold utilization is unambiguous.

      Furthermore, we wish to emphasize that our utilization of AlphaFold was never intended to exclude the known X-ray structure of the BRAF-BSR domain. In our revised text, we have added clarity to our purposes and cited the Lavoie et al. Nature publication from 2018, which provides alignment between the X-ray structure and the AlphaFold model, thereby enhancing the confidence in the latter.

      1. In HDX-MS experiments, it is unclear how the authors determine whether small differences in deuterium uptake observed for some of the peptide fragments are statistically significant, and why for some of the labeling reaction times the investigators state " {plus minus} HRAS only" for only 3 time points?

      Response: First, in reference to the question about " ‘{plus minus} HRAS only’ for only 3 time points,” we write:

      “Both constructs were incubated with and without GMPPNP-HRAS in D2O buffer for set labeling reaction times (NT3: 2 sec [NT3 ± HRAS only], 6 sec [NT3 ± HRAS only], 20 sec, 30 sec [NT3 ± HRAS only], 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, and 24 h)...”

      We realize how this can be confusing. To avoid such confusion, we fixed the text to read instead:<br /> “Both constructs were incubated with and without GMPPNP-HRAS in D2O buffer for set labeling reaction times (NT3: 2 sec, 6 sec, 20 sec, 30 sec, 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, 45 h and 24 h at RT; NT2: 20 sec, 60 sec, 5 min, 10 min, 30 min, 90 min, 4.5 h, 15 h, and 24 h at RT)...”

      Next, with regard to assessing significance, we determine it by closely examining a consistent trend in smooth time course plots. To establish this trend, we rely on the presence of more than four overlapping peptides, each with multiple charge states, within a specific sequence range. When we observe multiple peptides showing even a small difference in rate exchange, we can confidently infer that structural changes have taken place. This confidence stems from the inherent reliability and redundancy in the data analysis approach we have employed.11,12 It is noteworthy that our focus is primarily on reporting the binding or no binding, rather than quantifying the magnitude of exchange. As such, conducting multiple replicates or statistical testing is not deemed necessary.13,14 This is true for multiple reasons:

      1) Instead of small deuterium changes (y-axis), we are focusing on the x-axis changes, which provides a slowing factor and how much that H-D exchange rate has changed.

      • In a publication investigating the ideal HDX-MS data set, the author explains, “with the availability of high resolution HDX-MS raw data, it may be the time to shift the data analysis paradigm from determination of centroid values and presentation of deuteration levels to deconvolution of isotope envelopes and presentation of exchange rates.” 15

      • Presentation of data through rate changes provides a physical chemistry measurement, as opposed to a relative measurement with percent deuteration. For example, slowing with a factor of 10 equates to the energy in 1 kCal. By quick visual estimation, we see a slowing factor of about 2 when RAS is bound to the BRAF-RBD.

      • We made some changes to the text to clear up any confusion about measuring D uptake vs rate.

      2) Looking at sigmoidal curves only—the “smooth time course” shows that the timedependent deuterium changes are not random, artifacts, or false positives/negatives. When parallel sigmoidal curves are present, any x-axis change is a measure of H-D exchange. Only plots with a smooth time course are used to make conclusions about BRAF’s conformational changes or binding interfaces.

      3) Wide time range- the extended time also confirms that any observed difference is reliable and accurate. This extended time frame provides coverage for deuteration levels from 0 to 100% for peptides. A smooth time course is present in complete coverage.

      • A narrow time window is a common flaw in HDX-MS studies14,15

      4) The rate change is observed at multiple time points (at least 4 for each peptide), which are all independent reactions, and show reproducibility of change

      5) Many overlapping peptides show the same pattern- the exchange rate difference is observed in at least 4 peptide time plots without contradictory evidence within the sequence range.

      • We included the complete set of peptide time plots in the supplemental materials.

      6) The many other peptide time plots that do not show any difference with and without RAS is a form of reproducibility, that no difference means no difference.

      1. The investigators find that KRAS binds NT1 in SPR experiments, whereas HRAS does not. However, the pull-down assays show NT1 binding to both KRAS and HRAS. SI Fig 5 attributes this to slow association, yet both SPR (on/off rates) and equilibrium binding measurements are conducted. This data should be able to 'tease' out differences in association.

      Response: Thank you for bringing up this important point. It's crucial to note that the experiments conducted at slow flow rates generated low responses, making it challenging to perform kinetic analyses effectively. Consequently, we are unable to provide accurate equilibrium binding measurements (on/off rates) for NT1 and HRAS. Regrettably, comparing the association rates between KRAS and HRAS is not feasible due to the differing flow rates employed. We have addressed this limitation in the manuscript as follows:

      “We therefore immobilized NT1 and flowed over HRAS at a much slower flow rate (5 µL/min), during which we saw minimal but consistent binding (Supplementary Fig 5A). The low response and long timeframe of each injection, however, makes the dissociation constant (KD) unmeasurable and incomparable to our other NT-HRAS OpenSPR results.”

      1. The model in Figure 7B highlights BSR interactions with KRAS, however, BSR interactions with the KRAS HVR (proximal to the membrane) are not shown, as supported by Terrell et al. (2019).

      Response: Thank you for the suggestion. We reoriented the BSR closer to HVR of KRAS rather than G-domain.

      1. The investigators state that 'These findings demonstrate that HRAS binding to BRAF directly relieves BRAF autoinhibition by disrupting the NT1-KD interaction, providing the first in vitro evidence of RAS-mediated relief of RAF autoinhibition, the central dogma of RAS-RAF regulation. However, in Tran et al (2005) JBC, they report pulldown experiments using N-and C-terminal fragments of BRAF and state that 'BRAF also contains an N-terminal autoinhibitory domain and that the interaction of this domain with the catalytic domain was inhibited by binding to active HRAS'. This reference is not cited.

      Response: We appreciate the concern raised regarding our statement. We want to clarify that it was never our intention to disregard this JBC publication, and we apologize for any misunderstanding caused by our phrasing. We recognize that our initial statement was contentious, and we have removed the word "first" from the phrase "first in vitro evidence." In the section of the discussion where we originally cited the Tran et al. (2005) publication, we have revised the language to eliminate "first" and have rephrased the sentence, as provided below:

      “Our in vitro binding studies align with previous implications that RAS relieves RAF autoinhibition shown through cell-based coIP’s.5”

      1. In Fig 2, panels A and C, it is unclear what the grey dotted line in is each plot.

      Response: Thank you for drawing our attention to the additional explanation needed here. The gray dotted lines represent the maximum deuterium exchange. We added the following description to the figure 2 legend:

      “Gray dotted lines represent the theoretical exchange behavior for specified peptide that is fully unstructured (top) or for specified peptide with a uniform protection factor (fraction of time the residue is involved in protecting the H-bond) of 100 (lower).”

      1. In Fig 3, error analysis is not provided for panel E.

      Response: We added the standard deviation values to this panel. We additionally added these for Fig 4C and Fig 5B.

      1. How was RAS GMPPNP loading verified?

      Response: Ras loading is a well-established protocol with a solid foundation in the literature.16– 21 We followed this accepted method for nucleotide exchange. Our controls, as evident in pulldown and OpenSPR experiments (fig 1C, 4E), unequivocally demonstrate that GMPPNPloaded RAS is active, while unloaded RAS is inactive, as evidenced by the absence of no binding. We also added supplemental figure 6E to show that inactive (unloaded) GST-KRAS does not bind to BRAF during OpenSPR analysis. To exemplify this, we included binding curves of 1 µM GST-KRAS- GMPPNP and -GDP flowed over NTA-immobilized BRAF-NT2 at a flow rate of 30 µl/min.

      References

      (1) Terrell, E. M.; Durrant, D. E.; Ritt, D. A.; Sealover, N. E.; Sheffels, E.; Spencer-Smith, R.; Esposito, D.; Zhou, Y.; Hancock, J. F.; Kortum, R. L.; Morrison, D. K. Distinct Binding Preferences between Ras and Raf Family Members and the Impact on Oncogenic Ras Signaling. Mol. Cell 2019, 76 (6), 872-884.e5. https://doi.org/10.1016/j.molcel.2019.09.004.

      (2) Tran, T. H.; Chan, A. H.; Young, L. C.; Bindu, L.; Neale, C.; Messing, S.; Dharmaiah, S.; Taylor, T.; Denson, J. P.; Esposito, D.; Nissley, D. V.; Stephen, A. G.; McCormick, F.; Simanshu, D. K. KRAS Interaction with RAF1 RAS-Binding Domain and Cysteine-Rich Domain Provides Insights into RAS-Mediated RAF Activation. Nat. Commun. 2021, 12 (1176), 1–16. https://doi.org/10.1038/s41467-021-21422-x.

      (3) Fischer, A.; Hekman, M.; Kuhlmann, J.; Rubio, I.; Wiese, S.; Rapp, U. R. B- and C-RAF Display Essential Differences in Their Binding to Ras: The Isotype-Specific N Terminus of B-RAF Facilitates Ras Binding. J. Biol. Chem. 2007, 282 (36), 26503–26516. https://doi.org/10.1074/jbc.M607458200.

      (4) Park, E.; Rawson, S.; Li, K.; Kim, B. W.; Ficarro, S. B.; Pino, G. G. Del; Sharif, H.; Marto, J. A.; Jeon, H.; Eck, M. J. Architecture of Autoinhibited and Active BRAF–MEK1–14-3-3 Complexes. Nature 2019, 575 (7783), 545–550. https://doi.org/10.1038/s41586-0191660-y.

      (5) Tran, N. H.; Wu, X.; Frost, J. A. B-Raf and Raf-1 Are Regulated by Distinct Autoregulatory Mechanisms. J. Biol. Chem. 2005, 280 (16), 16244–16253. https://doi.org/10.1074/jbc.M501185200.

      (6) Prior, I. A.; Hancock, J. F. Ras Trafficking, Localization and Compartmentalized Signalling. Semin. Cell Dev. Biol. 2012, 23 (2), 145–153.

      (7) Herrmann, C.; Martin, G. A.; Wittinghofer, A. Quantitative Analysis of the Complex between P21 and the Ras-Binding Domain of the Human Raf-1 Protein Kinase. J. Biol. Chem. 1995, 270 (7), 2901–2905. https://doi.org/10.1074/jbc.270.7.2901.

      (8) Vojtek, A. B.; Hollenberg, S. M.; Cooper, J. A. Mammalian Ras Interacts Directly with the Serine/Threonine Kinase Raf. Cell 1993, 74 (1), 205–214. https://doi.org/10.1016/00928674(93)90307-C.

      (9) Parker, M. W.; Bello, M. Lo; Federici, G. Crystallization of Glutathione S-Transferase from Human Placenta. J. Mol. Biol. 1990, 213 (2), 221–222. https://doi.org/10.1016/S00222836(05)80183-4.

      (10) Inouye, K.; Mizutani, S.; Koide, H.; Kaziro, Y. Formation of the Ras Dimer Is Essential for Raf-1 Activation. J. Biol. Chem. 2000, 275 (6), 3737–3740. https://doi.org/10.1074/JBC.275.6.3737.

      (11) Z. Y. Kan, X. Ye, J. J. Skinner, L. Mayne, S. W. E. ExMS2: An Integrated Solution for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Anal Chem 2019, 91 (11), 7474–7481.

      (12) Mayne, L.; Kan, Z. Y.; Sevugan Chetty, P.; Ricciuti, A.; Walters, B. T.; Englander, S. W. Many Overlapping Peptides for Protein Hydrogen Exchange Experiments by the Fragment Separation-Mass Spectrometry Method. J. Am. Soc. Mass Spectrom. 2011, 22 (11), 1898–1905. https://doi.org/10.1007/S13361-011-0235-4.

      (13) Ye, X.; Lin, J.; Mayne, L.; Shorter, J.; Englander, S. W. Hydrogen Exchange Reveals Hsp104 Architecture, Structural Dynamics, and Energetics in Physiological Solution. Proc. Natl. Acad. Sci. 2019, 116 (15), 7333–7342. https://doi.org/10.1073/pnas.1816184116.

      (14) Ye, X.; Lin, J.; Mayne, L.; Shorter, J.; Englander, S. W. Structural and Kinetic Basis for the Regulation and Potentiation of Hsp104 Function. Proc. Natl. Acad. Sci. 2020, 117 (17), 9384–9392. https://doi.org/10.1073/pnas.1921968117.

      (15) Hamuro, Y. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope. J. Am. Soc. Mass Spectrom. 2017, 28 (3), 486–497. https://doi.org/10.1007/s13361-016-1571-1.

      (16) Herrmann, C.; Horn, G.; Spaargaren, M.; Wittinghofer, A. Differential Interaction of the Ras Family GTP-Binding Proteins H-Ras, Rap1A, and R-Ras with the Putative Effector Molecules Raf Kinase and Ral-Guanine Nucleotide Exchange Factor. J. Biol. Chem. 1996, 271 (12), 6794–6800. https://doi.org/10.1074/jbc.271.12.6794.

      (17) Miller, A. F.; Halkides, C. J.; Redfield, A. G. An NMR Comparison of the Changes Produced by Different Guanosine 5’-Triphosphate Analogs in Wild-Type and Oncogenic Mutant P21ras. Biochemistry 1993, 32 (29), 7367–7376. https://doi.org/10.1021/bi00080a006.

      (18) Amendola, C. R.; Mahaffey, J. P.; Parker, S. J.; Ahearn, I. M.; Chen, W. C.; Zhou, M.; Court, H.; Shi, J.; Mendoza, S. L.; Morten, M. J.; Rothenberg, E.; Gottlieb, E.; Wadghiri, Y. Z.; Possemato, R.; Hubbard, S. R.; Balmain, A.; Kimmelman, A. C.; Philips, M. R. KRAS4A Directly Regulates Hexokinase 1. Nature 2019. https://doi.org/10.1038/s41586019-1832-9.

      (19) John, J.; Sohmen, R.; Feuerstein, J.; Linke, R.; Wittinghofer, A.; Goody, R. S. Kinetics of Interaction of Nucleotides with Nucleotide-Free H-Ras P21. Biochemistry 1990, 29 (25), 6058–6065. https://doi.org/10.1021/bi00477a025.

      (20) Dharmaiah, S.; Tran, T. H.; Messing, S.; Agamasu, C.; Gillette, W. K.; Yan, W.; Waybright, T.; Alexander, P.; Esposito, D.; Nissley, D. V.; McCormick, F.; Stephen, A. G.; Simanshu, D. K. Structures of N-Terminally Processed KRAS Provide Insight into the Role of N-Acetylation. Sci. Reports 2019 91 2019, 9 (1), 1–15. https://doi.org/10.1038/s41598-019-46846-w.

      (21) Rathinaswamy, M. K.; Gaieb, Z.; Fleming, K. D.; Borsari, C.; Harris, N. J.; Moeller, B. E.; Wymann, M. P.; Amaro, R. E.; Burke, J. E. Disease-Related Mutations in PI3Kγ Disrupt Regulatory C-Terminal Dynamics and Reveal a Path to Selective Inhibitors. Elife 2021, 10. https://doi.org/10.7554/eLife.64691.

    1. Reviewer #2 (Public Review):

      In this study, the investigators describe an unbiased phosphoproteomic analysis of cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) mice that was then integrated with transcriptomic and proteomic data. The phosphoproteomic analysis was performed using tandem mass tag-labeling mass spectrometry of left ventricular (LV) tissue in TGAC8 and wild-type mice. The initial principal component analysis showed differences between the TGAC8 and WT groups. The integrated analysis demonstrated that many stress-response, immune, and metabolic signaling pathways were activated at transcriptional, translational, and/or post-translational levels.

      The authors are to be commended for a well-conducted study with quality control steps described for the various analyses. The rationale for following up on prior transcriptomic and proteomic analyses is described. The analysis appears thorough and well-integrated with the group's prior work. Confirmational data using Western blot is provided to support their conclusions. Their findings have the potential of identifying novel pathways involved in cardiac performance and cardioprotection.

    1. Hitzebedingte Todesfälle bei über 65-Jährigen haben seit den 90ern um 85% zugenommen. Senior:innen sind – wie kleine Kinder – zweimal soviel Hitzewellen-Tagen ausgesetzt wie 1986-2005. Extreme Hitze führte 2022 zu Produktivitätsverlusten von ca. 863 Milliarden USD. Alle Indikatoren für öffentliche Gesundheit haben sich in den letzten 9 Jahren verschlechtert. – Die NYT stellt den 2023 Report des Lancet Countdown ausführlich dar. https://www.nytimes.com/2023/11/14/climate/climate-change-health-effects-lancet.html

      Mehr zum Rreport: https://hypothes.is/search?q=tag%3A%222023%20report%20of%20the%20Lancet%20Countdown%20on%20health%20and%20climate%20change%22

    1. Eine neue Studie ergibt, dass sich das Abschmelzen des westantarktischen Eisschilds selbst dann fortsetzen wird, wenn die Erderhitzung auf 1,5° begrenzt wird. Das Schelfeis stellt ein Kipppelememt dar. Der Abschmelzvorgang verstärkt sich selbst und führt zu einer unaufhaltsamen Erhöhung des Meeresspiegels, weil er den Weg für das hinter dem Schelfeis gelegene Gletschereis frei macht. https://www.derstandard.at/story/3000000192327/meterhoher-meeresanstieg-durch-abschmelzen-des-westantarktischen-eisschelfs

      Studie: https://www.nature.com/articles/s41558-023-01818-x

      Mehr zur Studie: https://hypothes.is/search?q=tag%3A%27report%3A+Unavoidable+future+increase+in+West+Antarctic+ice-shelf+melting%27

    1. Reviewer #1 (Public Review):

      Summary: The paper by McGinnis et al. uses a combination of genetic and biochemical approaches to understand how the conserved 5'-3' RNA exonuclease Xrn1 affects autophagy in response to methionine starvation in S. cerevisiae. The authors present evidence Xrn1 affects autophagy primarily via its effect on regulating TORC1 signaling. They present some evidence that Xrn1's effect on TORC1 singnaling is via its physical interaction with the SEACIT complex.

      Strengths: The experiments in general for this paper are clear and have proper controls.

      Weaknesses:<br /> The authors seem to try and fit the data to a simplistic model rather than embrace the complexity of the data. I will give some examples below.

      1) Figure 1 clearly shows that xrn1d results in loss of tight repression of autophagy. Specifically, the 0 timepoint has increased autophagy in both the idh-GFP and ALP assays. However, it is incorrect to say that it is related in any way to methionine deprivation. The same basic pattern of regulation occurs in WT and xrn1d strains. The only difference is the "leakiness" of repression at t=0.

      2) Figure 2 shows that catalytically inactive Xrn1 has the same autophagy phenotype as a deletion, indicating that Xrn1 enzymatic activity is important for function. However, it is also clear that xrn1-deletion cells expressing wt Xm1-flag do not repress autophagy as well as XRN+ cells, even though the amount of expressed protein seems similar. Does this imply the flag-tag may be a less active version of the protein? This should be discussed.

      3) Figure 3 shows Xrn1-loss effects TORC signaling and that npr2-deletion inhibits autophagy. The surprising result is that a xrn1d/npr2d behaves like WT with regards to autophagy. This needs to be discussed. To me, this seems to strongly suggest that methionine repression of autophagy is occurring downstream of both xrn1 and npr2. Measuring p-S6 in the double mutant may be informative.

      4) Figure 4 appears to show that even in the absence of GTR1, autophagy is repressed in rich media, active in YPL-SL, but still responds to methionine repression. This does not seem consistent with the model presented in Figure 5. Shouldn't loss of GTR1 result in repressed Torc1? The GTP and GDP-lock mutants are either all on, or all off. Why is deletion different? This needs to be explained and discussed. Also, the Figure legend does not match figures (problem after Fig4b).

      5) Figure 5B shows GTR1 IP with Xrn1-FLAG. However, there are no negative controls in this experiment, so the result could be background. RNAaseA and RNA addition experiments are convincing.

      6) Line 254-255. The lead sentence is simply not supported by the data. There is no evidence that Xrn1 actually affects the regulation of Gtr1/2 binding states.

      7) Line 259-260. This is again overstated. Just because a mutant can be rescued by Gtr1-GTP-locked, does not say anything about RNA decay. In fact, the double mutant has extra high levels of some ATG RNA's, so I have no idea how the Gtr1 rescues.

      8) Line 268-281. Your model here ignores the fact that methionine regulation takes place in the absence of both xrn1 and npr2. Therefore the model, as proposed, can't be correct.

      9) Line 290-300. The slow growth rate of Xrn1 mutants may be affecting the metabolite levels. I felt that this entire paragraph was overly speculative.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Anderson, Henikoff, Ahmad et al. performed a series of genomics assays to study Drosophila spermatogenesis. Their main approaches include (1) Using two different genetic mutants that arrest male germ cell differentiation at distinct stages, bam and aly mutant, they performed CUT&TAG using H3K4me2, a histone modification for active promoters and enhancers; (2) Using FACS sorted pure spermatocytes, they performed CUT&TAG using antibodies against RNA PolII phosphorylated Ser 2, H4K16ac, H3K9me2, H3K27me3, and ubH2AK118. They also compare these chromatin profiling results with the published single-cell and single-nucleus RNA-seq data. Their analyses are across the genome but the major conclusions are about the chromatin features of the sex chromosomes. For example, the X chromosome is lack of dosage compensation as well as inactivation in spermatocytes, while Y chromosome is activated but enriched with ubH2A in spermatocytes. Overall, this work provides high-quality epigenome data in testes and in purified germ cells. The analyses are very informative to understand and appreciate the dramatic chromatin structure change during spermatogenesis in Drosophila. Some new analyses and a few new experiments are suggested here, which hopefully further take advantage of these data sets and make some results more conclusive.

      Major comments: 1. The step-wise accumulation of H3K4me2 in bam, aly and wt testes are interesting. Is it possible to analyse the cis-acting sequences of different groups of genes with distinct H3K4me2 features, in order to examine whether there is any shared motif(s), suggesting common trans-factors that potentially set up the chromatin state for activating gene expression in a sequential manner?

      While the histone H3K4me2 mark is low and more widespread at genes active in late spermatocytes and in spermatids (shown in Figure 2C and some examples in Figure 1C-D), we suggest that this may be due to a general decrease in the importance of this modification in late spermatogenesis rather than a specific feature of those genes. We point this out in lines 146-152. This idea is supported by the widespread change in RNAPII distribution in all genes in the germline, shown in Figure 3F and supplementary Figure 2.

      1. Pg. 4, line 141-142: "we cannot measure H3K4me2 modification at the bam promoter in bam mutant testes or at the aly promoter in aly mutant testes", what are the allelic features of the bam mutant and aly mutant? Are the molecular features of these mutations preventing the detection of H3K4me2 at the endogenous genes' promoters? Also, the references cited (Chen et al., 2011) and (Laktionov et al., 2018) are not the original research papers where these two mutants were characterized.

      We have corrected these citations to the original papers. We clarified in the text that the bamΔ86 allele is a deletion of almost all of the coding sequence (reported in Bopp, D., Horabin, J.I., Lersch, R.A., Cline, T.W., Schedl, P. (1993). Expression of the Sex-lethal gene is controlled at multiple levels during Drosophila oogenesis. Development 118(3): 797--812.). The aly1 allele is also a P element-induced mutation; it is not molecularly characterized (it was first described here: Lin, T.Y., Viswanathan, S., Wood, C., Wilson, P.G., Wolf, N., Fuller, M.T. (1996). Coordinate developmental control of the meiotic cell cycle and spermatid differentiation in Drosophila males. Development 122(4): 1331--1341.) We noticed a lack of reads for various histone modifications in aly mutants in part of the gene, suggesting that the deletion is limited to the promoter and the first exon. Signal for the H3K4me2 modification is at background levels for the distal portion of aly, suggesting that the deletion inactivates the gene.

      1. The original paper that reported the Pc-GFP line and its localization is: Chromosoma 108, 83 (1999).

      We are citing the first published description of this marker in the male germline (lines 291-293).

      The Pc-GFP is ubiquitously expressed and almost present in all cell types. In Figure 6B, there is no Pc-GFP signals in bam and aly mutant cells.

      We apologize, our labeling of the figure was easily overlooked - the bam and aly genotypes do not carry the PcGFP marker, since we didn’t need it for staging the germline nuclei. We have clarified this in the figure.

      According to the Method "one testis was dissected", does it mean that only one testis was prepared for immunostaining and imaging? If so, definitely more samples should be used for a more confident conclusion.

      We corrected the text to make it clear that all cytological examinations were repeated at least times (lines 438-439).

      Also, why use 3rd instar larval testes instead of adult testes?

      Generally, we find that immunostaining of the larval testes is cleaner, and we now mention this in the Methods (lines 439-440). We have immunostained both larval and adult testes for these markers with consistent results.

      Finally, it is better to compare fixed tissue and live tissue, as the Pc-GFP signal could be lost during fixation and washing steps. Please refer to the above paper [Chromosoma 108, 83 (1999)] for Pc-GFP in spermatogonial cells and Development 138, 2441-2450 (2011) for Pc-GFP localization in aly mutant.

      We are using PcGFP staining for staging with antibody detection of other chromatin features, which requires fixed material, although we have compared PcGFP signal in both live and fixed tissue. We have added the 1999 reference for nuclear staging in the male germline.

      1. Ubiquitinylation of histone H2A is typically associated with gene silencing, here it has been hypothesized that ubH2A contributes to the activation of Y chromosome. This conclusion is strenuous, as it entirely depends on correlative results.

      We agree that this is a correlation. We cite in the text examples where uH2A is associated with gene activation. We have added a comment to clarify that this is a correlation (lines 318-320), and now present an alternative that uH2A on the Y chromosome may be moderating expression from these highly active genes (lines 405-407).

      For example, the lack of co-localization of ubH2A immunostaining and Pc-GFP are not convincing evidence that ubH2A is not resulting from PRC1 dRing activity. It would be a lot stronger conclusion by using genetic tools to show this. For example, if dRing is knocked down (using RNAi driven by a late-stage germline driver such as bam-Gal4) or mutated in spermatocytes (using mitotic clonal analysis), would they detect changes of ubH2A levels?

      We have tested multiple constructs to knockdown dRING using the bam-GAL4 driver although we have not reported it in the manuscript. These knockdowns have no effect on uH2A staining in the testis, on motile sperm production, or on male fertility, although these RNAi constructs do produce Polycomb phenotypes when expressed in somatic cells from an en-GAL4 driver. This is the reason why we point out in the text that there are multiple alternative candidates for an H2A ubiquitin ligase in the Drosophila genome and that in other species RING1 is not responsible for sex body uH2A in the male germline (lines 394-396).

      1. Regarding "X chromosome of males is thought to be upregulated in early germline cells", it has been shown that male-biased genes are deprived on the X chromosome [Science 299:697-700 (2003); Genome Biol 5:R40 (2004); Nature 450:238-241 (2007)], so are the differentiation genes of spermatogenesis [Cell Research 20:763-783 (2010)]. It would be informative to discuss the X chromatin features identified in this work with these previous findings.

      We now mention that the Drosophila X chromosome is moderately depleted of male germline-expressed genes (lines 362-363).

      For example, the lack of RNAPII on X chromosome in spermatocytes could be due to a few differentiation genes expressed in spermatocytes located on the X chromosome.

      We show in Figure 3B that there is a minor non-significant reduction in RNAPII on the X chromosome in spermatocytes. This small reduction might be due to the moderate paucity of male germline-expressed genes on this chromosome, but since it is non-significant we have not discussed it.

      Reviewer #2 (Public Review):

      Anderson et al profiled chromatin features, including active chromatin marks, RNA polymerase II distribution, and histone modifications in the sex chromosomes of spermatogenic cells in Drosophila. The results are new and the experiments and analyses look well done, including with appropriate numbers of replicates. Results were parsed by comparing them among two arrest mutants and wildtype, as well as in FACS-sorted spermatocytes. The authors also profiled larval wing discs to serve as reference-somatic cells, which allowed them to focus only on features in their testis data that were associated with germ cells. Their results were further refined by categorizing the genes of interest based on available single nucleus RNA seq expression profiles. The authors document interesting phenomena, such as differences in the distribution of RNAPIIS2p on some genes in germ cells vs somatic cells, the presence of a uH2A body beginning in early spermatocytes, and high levels of uH2A on the Y chromosome and little or none on the X. The former is intriguing because this modification is usually associated with silencing, yet the Y chromosome is active in spermatogenic cells. The authors interpret some of their data as implying a lack of dosage compensation of the X chromosome in spermatocytes.

      The data are believable and new, but it is not fully clear how to interpret them. The paper's interpretations rely on subtractive logic to parse results from mixtures of cells down to cell type, extracting spermatogonia, spermatocyte, etc. features by comparing bam mutants (only spermatogonia) to aly mutants (spermatogonia and early spermatocytes but no later stages) to wildtype (all spermatogenic stages), and extracting testis germline data by comparison to wing disc soma; their FACS sorted spermatocytes also have heterogeneity. I recognize that the present paper was a lot of work and am not suggesting that the authors redo their study using methods that give more purity and precision of stage (https://doi.org/10.1126/science.aal3096, https://doi.org/10.1101/gad.335331.119), but they should be aware of them and of their results.

      The pulse-release system that the reviewer points to is an interesting system, but more limited in material and in useable markers than the systems we used here. We have added to our discussion of the the limitations of subtractive comparisons between arrest genotypes, both in regards to using mutants that may alter gene expression programs, and to how subtractive comparisons may limit our detection of differences between cell types (lines 143-147).

      The conclusions about dosage compensation are indirect, but are consistent with the current model documented in the studies cited by the authors, as well as earlier studies (doi: 10.1186/jbiol30).

      We disagree; our data directly speaks to the molecular mechanisms at play. Our profiling of the H4K16acetylation mark and RNAPII in isolated spermatocytes (Figure 4) demonstrates that current models are correct, and so are useful for settling this point in the literature.

      Reviewer #1 (Recommendations For The Authors):

      Throughout the manuscript, it is better to cite the original research papers.

      We have added citations for the original characterizations of bam and aly alleles used, for the descriptions of PCGFP in spermatocytes, and for issues raised by reviewer comments.

      Minor comments:

      Pg.2, line 70-71: "Germline stem cells at the apical tip of the testis asymmetrically divide to birth spermatogonia", should be gonialblast.

      Fixed (line 71).

      Pg.2, line 71: "four rapid mitotic divisions", the spermatogonial cell cycle lasts several hours-- "rapid" is subjective and relative, better to leave this word out.

      Fixed (line 71).

      Reviewer #2 (Recommendations For The Authors):

      Other than the major issue raised in the public review this paper only needs a few minor modifications, listed by line number below. The first one would be considered essential by this reviewer.

      27: In the sentence that ends on this line, please add the word testis after Drosophila.

      Fixed (line 27).

      119: It must be known from the Fly Cell Atlas data whether these genes do begin to express in spermatogonia.

      Collated expression values from the FCA are provided in Supplementary Table 2. In many cases there is detectable expression of these genes in spermatogonia, although transcript abundance peaks in early spermatocytes.

      198: remove "distribution of".

      Fixed (line 200).

      311: enrichment relative to what?

      Fixed (line 313). It is relative to signal in wing discs.

      344: other aspects could be regulated such as elongation, termination.

      We have added caveats to our speculations in this sentence (lines 340-356). The increased signal we see in gene bodies could be due to slower RNAPII elongation, but we don’t see a way that changes in termination would produce this pattern.

      369: This part of the paper seems overly speculative, given the many molecular differences between dosage compensation mechanisms of Drosophila vs mammals, and studies that indicate that MSCI does occur in Drosophila (DOI: 10.3390/genes12111796).

      We disagree, and this is a central point in our manuscript. The paper referred to here does not directly assess MSCI in Drosophila, instead they argue that MSCI could be the force driving the evolutionary depletion of male-germline-expressed genes they describe. These and many studies in the literature have conflated the effects of a lack of X dosage compensation and of MSCI in the male germline. Our direct measurements of RNAPII in spermatocytes demonstrates that there is no dosage compensation nor is there MSCI. Further, profiling of histone modifications associated with Drosophila somatic dosage compensation (H4K16ac) or with mammalian MSCI (uH2A, H3K9me2) show that the molecular mechanisms found in these other settings are not in play in the Drosophila male germline. As we have established these biological differences between mammals and Drosophila, it is appropriate to now speculate on why these differences may be, which we do on lines 374-384.

      (several lines): Can the authors justify their assumption that chromatin features of larval wing disc cells will match those of somatic cells of adult testes?

      We don’t only compare germline features to somatic cells of the wing disc, but also to genes with somatic expression in the testes annotated by FCA expression data (H3K4me2 in Figure 2C, RNAPII in Figure 3F). Note in Supplementary Figure 2 the distribution of RNAPII in whole testes (which includes somatic cells) is similar to that of larval wing discs, confirming that the differences we describe are specific to germline cells.

    2. Reviewer #1 (Public Review):

      Anderson, Henikoff and Ahmad et al. performed a series of genomics assays to study Drosophila spermatogenesis. Their main approaches include (1) Using two different genetic mutants that arrest male germ cell differentiation at distinct stages, bam and aly mutant, they performed CUT&TAG using H3K4me2, a histone modification for active promoters and enhancers; (2) Using FACS sorted pure spermatocytes, they performed CUT&TAG using antibodies against RNA PolII phosphorylated Ser 2, H4K16ac, H3K9me2, H3K27me3, and ubH2AK118. They also compare these chromatin profiling results with the published single-cell and single-nucleus RNA-seq data. Their analyses are across the genome but the major conclusions are about the chromatin features of the sex chromosomes. For example, the X chromosome is lack of dosage compensation as well as inactivation in spermatocytes, while Y chromosome is activated but enriched with ubH2A in spermatocytes. Overall, this work provides high quality epigenome data in testes and in purified germ cells. The analyses are very informative to understand and appreciate the dramatic chromatin structure change during spermatogenesis in Drosophila.

    1. What a great tour the summary can be found in the timestamps for the video, but I'd like to point out a few things. Through Maggie's daily tag. She has a field for what's on her mind. This makes it really easy to scan through the list and see how that's changed. Over previous weeks, we show an advanced way to set it up, which is how she originally set it up as well as a simpler way to capture similar benefits.

      What a nice feature

    1. Reviewer #3 (Public Review):

      Summary:<br /> This study aims to investigate the stoichiometric effect between core factors and partners forming the heterodimeric transcription factor network in living cells at endogenous expression levels. Using state-of-the-art single-molecule analysis techniques, the authors tracked individual RARα and RXRα molecules labeled by HALO-tag knock-in. They discovered an asymmetric response to the overexpression of counter-partners. Specifically, the fact that an increase in RARα did not lead to an increase in RXRα chromatin binding is incompatible with the previous competitive core model. Furthermore, by using a technique that visualizes only molecules proximal to partners, they directly linked transcription factor heterodimerization to chromatin binding.

      Strengths:<br /> The carefully designed experiments, from knock-in cell constructions to single-molecule imaging analysis, strengthen the evidence of the stoichiometric perturbation response of endogenous proteins. The novel finding that RXR, previously thought to be a target of competition among partners, is in excess provides new insight into key factors in dimerization network regulation. By combining the cutting-edge single-molecule imaging analysis with the technique for detecting interactions developed by the authors' group, they have directly illustrated the relationship between the physical interactions of dimeric transcription factors and chromatin binding. This has enabled interaction analysis in live cells that was challenging in single-molecule imaging, proving it is a powerful tool for studying endogenous proteins.

      Weaknesses:<br /> As the authors have mentioned, they have not investigated the effects of other T2NRs or RXR isoforms. These invisible factors leave room for interpretation regarding the origin of chromatin binding of endogenous proteins (Recommendations 4). In the PAPA experiments, overexpressed factors are visualized, but changes in chromatin binding of endogenous proteins due to interactions with the overexpressed proteins have not been investigated. This might be tested by reversing the fluorescent ligands for the Sender and Receiver. Additionally, the PAPA experiments are likely to be strengthened by control experiments (Recommendations 5).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: Hansen et al. dissect the molecular mechanisms of bacterial ice nucleating proteins mutating the protein systematically. They assay the ice nucleating ability for variants changing the R-coils as well as the coil capping motifs. The ice nucleation mechanism depends on the integrity of the R-coils, without which the multimerization and formation of fibrils are disrupted.

      Strengths: The effects of mutations are really dramatic, so there is no doubt about the effect. The variants tested are logical and progressively advance the story. The authors identify an underlying mechanism involving multimerization, which is plausible and compatible with EM data. The model is further shown to work in cells by tomography.

      Weaknesses: The theoretical model presented for how the proteins assemble into fibrils is simple, but not supported by much data.

      Agreed. This theoretical INP multimer model was introduced to promote discussion and elicit ideas on how to prove or disprove it. The length and width of the fibres are defined by cryo-ET results, in which the narrow width is just sufficient to accommodate a dimer of the INPs, and the long length requires that several INPs are joined end to end. Their antiparallel arrangement produces identical ends to the dimer and avoids steric clash of the C-terminal cap structures as well as the C-terminal GFP tag. This model can accommodate the wide range of INPs lengths seen in nature (due to different numbers of water-organizing coils) and introduced in mutagenesis experiments (Forbes et al. 2022). It defines a critical role for the R-coil subdomain in joining the dimers together and explains why this region cannot be shortened by more than a few coils either in nature or by experimentation.

      In response to specific criticisms of the model (Fig. 9), we have redesigned this to be less schematic and to incorporate several copies of the AlphaFold-predicted structure.

      Reviewer #2 (Public Review):

      Summary:

      This paper further investigates the role of self-assembly of ice-binding bacterial proteins in promoting ice-nucleation. For the P. borealis Ice Nucleating Protein (PbINP) studied here, earlier work had already determined clearly distinct roles for different subdomains of the protein in determining activity. Key players are the water-organizing loops (WO-loops) of the central beta-solenoid structure and a set of non-water-organizing C-terminal loops, called the R-loops in view of characteristically located arginines. Previous mutation studies (using nucleation activity as a read-out) had already suggested the R-loops interact with the WO loops, to cause self-assembly of PbINP, which in turn was thought to lead to enhanced ice-nucleating activity. In this paper, the activities of additional mutants are studied, and a bioinformatics analysis on the statistics of the number of WO- and R-loops is presented for a wide range of bacterial ice-nucleating proteins, and additional electron-microscopy results are presented on fibrils formed by the non-mutated PbINP in E coli lysates.

      Strengths:

      -A very complete set of additional mutants is investigated to further strengthen the earlier hypothesis.

      -A nice bioinformatics analysis that underscores that the hypothesis should apply not only to PbINP but to a wide range of (related) bacterial ice-nucleating proteins.

      -Convincing data that PbINP overexpressed in E coli forms fibrils (electron microscopy on E coli lysates).

      Weaknesses:

      -The new data is interesting and further strengthens the hypotheses put forward in the earlier work. However, just as in the earlier work, the proof for the link between self-assembly and ice-nucleation remains indirect. Assembly into fibrils is shown for E coli lysates expressing non-mutated pbINP, hence it is indeed clear that pbINP self-associates. It is not shown however that the mutations that lead to loss of ice-nucleating activity also lead to loss of self-assembly. A more quantitative or additional self-assembly assay could shine light on this, either in the present or in future studies.

      The control cryo-ET experiment where the R-coils were deleted and INP fibres were not seen is consistent with a link between the loss of ice-nucleating activity and the loss of self-assembly. However, we agree that a more direct measurement of the physical state of INP molecules is needed to prove the link.

      -Also the "working model" for the self-assembly of the fibers remains not more than that, just as in the earlier papers, since the mutation-activity relationship does not contain enough information to build a good structural model. Again, a better model would require different kinds of experiments, that yield more detailed structural data on the fibrils.

      Reviewer #1 also raised these criticisms of the model, which we have responded to (above). Testing the model is a focus of our continuing experiments on INPs.

      Reviewer #3 (Public Review):

      Summary: in this manuscript, Hansen and co-authors investigated the role of R-coils in the multimerization and ice nucleation activity of PbINP, an ice nucleation protein identified in Pseudomonas borealis. The results of this work suggest that the length, localization, and amino acid composition of R-coils are crucial for the formation of PbINP multimers.

      Strengths: The authors use a rational mutagenesis approach to identify the role of the length, localisation, and amino acid composition of R-coils in ice nucleation activity. Based on these results, the authors hypothesize a multimerization model. Overall, this is a multidisciplinary work that provides new insights into the molecular mechanisms underlying ice nucleation activity.

      Weaknesses: Several parts of the work appear cryptic and unsuitable for non-expert readers. The results of this work should be better described and presented.

      In revising the manuscript for reposting we have rewritten sections to make it more accessible to the non-expert. Incorporating the detailed recommendations of the reviewers has been helpful in this effort.

      Recommendations for the authors: please note that you control which revisions to undertake from the public reviews and recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      Introduction: Curiously, there is no mention at all in the introduction of what the biological function of these ice-nucleating proteins is.

      We added the following text to the first paragraph of the Introduction: ”INP-producing bacteria are widespread in the environment where they are responsible for initiating frost (4) and atmospheric precipitation (5). As such, these bacteria play a significant role in the Earth’s hydrological cycle and in agricultural productivity.”

      Line 70: TXT, SLT, and Y motifs are mentioned, but only the first is described. Also, TXT name alternates between TXT and TxT in the manuscript. (I think the latter is more correct).

      These putative water-organizing motifs are introduced in the preceding paper (new ref 8). We now use TxT consistently throughout the manuscript and have converted SLT to SxT because L is an inward-pointing residue that is not directly involved in water organization.

      Line 236: A construct with repeats deleted is tested for thermostability, but it is not really explained what hypothesis this experiment is supposed to test.

      This is an observation that adds information about the stability of the INP multimers and will need to be explained by the structure.

      Line 267: The authors test a mutant where the N-terminal coil is disrupted and find a big effect. Nevertheless, no conclusion is drawn. What does this result mean?

      On the contrary, INP activity is not appreciably affected by N-terminal deletion.

      Line 269: The CryoEM begins rather abruptly with technical details. Consider introducing the paragraph with a brief statement about what you want to investigate. Also, the analysis seems a little half-hearted.

      Given that the authors describe other EM studies of fibrils of the same protein it would be nice with a clear statement about what is new in their study and how it compares to previous studies.

      We have added this statement about why we used Cryo-EM: “The idea that INPs must assemble into larger structures to be effective at ice nucleation has persisted since their discovery (6). In the interim the resolving power of cryo-EM has immensely improved. Here we elected to use cryo-electron tomography to view the INP multimers in situ and avoid any perturbation of their superstructure during isolation.”

      Fig. 7B: Single-letter amino acid codes are always capitalized.

      We have revised this figure to use capital letters for the amino acids.

      Fig. 9: This figure is really hard to read even though it is very simplistic. I would consider making a figure with several copies of the AlphaFold model instead. Especially panel D, I do not know what is supposed to show.

      We have followed this advice and have completely revised the figure using copies of the AlphaFold model. Panel D (now C) shows two cross-sections through the AlphaFold model.

      Line 355 onwards: The model of the INP is the weakest part of the manuscript. This reviewer considers that the model is crude and it is unclear what information the model is supported by. The authors might want to consider running an AlphaFold multimer to get a better model of at least the dimer.

      Our objective now is to validate or disprove the model by experimentation using protein-protein cross-linking in conjunction with mass spectrometry, and higher resolution cryo-EM methods.

      Reviewer #2 (Recommendations For The Authors):

      I would suggest more frankly discussing the weaknesses mentioned in my public review, as well as approaches that could be used in the future to address these.

      In the cryo-ET analysis, INP mutations of the R-coils that lead to loss of ice-nucleating activity fail to show fibres in the bacteria (Fig. S4), which is consistent with the loss of self-assembly. We are working on physical methods that can assess the degree of assembly of the different INP constructs and mutations. We are working to validate and improve the working model of INP multimers.

      Reviewer #3 (Recommendations For The Authors):

      Abstract

      Line 18. Below 0 Celsius should be < 0 {degree sign}C.

      Done

      Line 25. E. coli should be Escherichia coli

      Done

      Line 29. E. coli should be in italics.

      Done

      Introduction

      The introduction is weak and not suitable for non-expert readers. Moreover, in some parts it is cryptic and it is not clear whether the authors are describing INP in general or PbINP. The introduction should be reorganized to highlight the novelty of this paper compared to Forbes et al. 2022.

      The changes we have made to the Introduction can be seen in the ‘documents compared’ version where the changes are tracked.

      Line 45. It is unclear whether this paragraph is a result reported in the literature or the result of this work. Please clarify.

      These are results reported in the literature as indicated by the references cited in the paragraph.

      Line 54. It is not clear whether this paragraph describes PbINP or INP in general.

      This paragraph begins with INPs in general and then focuses on PbINP.

      Results

      Line 109. This section would benefit from a paragraph in which the authors describe the rationale for this bioinformatic analysis.

      We added the following Statement: “A bioinformatic analysis of bacterial INPs was undertaken to identify their variations in size and sequence to understand what is common to all that could guide experiments to probe higher order structure and help develop a collective model of the INP multimer.”

      Some information is needed on the selected sequences such as sequence identity, what do the authors mean by nr database?

      The abbreviation nr has been replaced by ‘non-redundant’. As explained in that same paragraph the sequences selected were those from long-read sequences that could be relied on to accurately count the number of solenoid coils.

      Line 144. The standard deviation is necessary to understand whether these differences are statistically significant.

      These have been added as p values.

      Figure 2. I noticed that the authors used GFP-tagged PbINP. Why? In addition, panel C is never mentioned in the manuscript.

      The GFP tag was used to confirm expression of the PbINP in E. coli. We have added this sentence: “As previously described these constructs were tagged with GFP as an internal control for INP production, and its addition had no measured effect on ice nucleation activity (8).”The GFP tag was also useful as in internal control for the heat denaturation experiments featured in Fig. 6, where it lost its fluorescence between 65 and 75 °C.

      Fig. 2C is now cited alongside Fig. 2B.

      Figure 3. In my opinion, the results of the R-coil deletion should also be shown in Figure 2. Line 171. This section is cryptic. A logo sequence or an alignment of WO-coils and R-coils of PbINP could be helpful for the reader. Instead of the architecture of the whole protein, it would be useful to have the sequence of the R-coils with the residues that the authors mutagenised.

      The logo sequences are available in Fig. 1.

      Line 202. Here, the authors describe a new experimental setup. As the Materials and Methods section follows the Discussion, the authors should state in the first paragraph of the Results section that IN activity was measured on whole cells.

      We have now modified the introductory sentence to read: “Ice nucleation assays were performed on intact E. coli expressing PbINP to assess the activity of the incremental replacement mutants.”

      Line 202. The authors investigated the effects of pH and temperature (Line 223) on the IN activity. The authors should better introduce the rationale for these experiments and how they fit within the work.

      We have now modified the following sentence to provide the rationale: “To see how important electrostatic interactions were in the multimerization of PbINP as reflected by its ice nucleation activity, it was necessary to lyse the E. coli to change the pH surrounding the INP multimers.”

      Line 245. This work is supported by a model provided by Alphafold. I wonder how reliable this model is; the authors should indicate the quality of the model and provide the accuracy values of the residuals.

      This information is now provided in Figure S1.

      Line 259. Typically in mutagenesis studies, a key residue is substituted with alanine to create a loss of function variant. In this case, the authors have made the following substitutions F1204D, D1208L, and Y1230D, it is not clear to me why the authors have replaced an aromatic residue with one of aspartic acid that is negatively charged.

      We have justified these more extreme changes as follows: “For an enhanced effect of the mutations hydrophobic residues were replaced with charged ones and vice versa.”

      Line 269. This paragraph seems completely unrelated to the section entitled: The β-solenoid of INPs is stabilized by a capping structure at the C terminus, but not at the N terminus.

      We had omitted the sub-heading “Cryo-electron tomography reveals INPs multimers form bundled fibres in recombinant cells”, which is now in place.

      Discussion

      Overall, the discussion is too long and some parts appear cryptic, this section should be reorganized.

      The changes we have made to the Discussion can be seen in the ‘documents compared’ version where the changes are tracked.

      Line 354. It is not clear what experimental evidence supports this model. In the results, this model is never mentioned and it is not clear whether it was obtained by computational analysis or not.

      The model is presented in the Discussion because it was not arrived at by experimentation but is an attempt to integrate the observations made in the Results section. The experimental evidence that supports this model is reviewed in the Discussion section: “Working model of the INP multimer is consistent with the properties of INPs and their multimers.”

      Line 354. The authors used GFP-tagged PbINP. The Authors should discuss the role of GFP in this model and IN activity. A measurement of IN activity on PbINP without GFP would be useful.

      We have previously shown in Ref 8 that the GFP tag has no detrimental effect on ice nucleation activity. Our model for the INP multimer can accommodate this C-terminal tag without any steric hindrance.

      Line 364. The Authors hypothesize that electrostatic interactions stabilize end-to-end dimer associations. To test this hypothesis, the authors should measure the activity of IN at increasing concentrations of NaCl. It is known that high salt concentrations shield charges by preventing the formation of electrostatic intermolecular interactions.

      We have added this sentence to the Discussion: “Another useful test of the electrostatic component to the multimer model would be to study the effects of increasing salt concentration on ice nucleation activity of the E. coli extracts.”

      Line 439. Conclusions should be useful for the reader.

      Material and Methods

      In several sections, the authors refer to what has already been published in Forbes et al. However, the minimum information should also be described in this work. In addition, the Authors should indicate the number of replicates.

      The ice nucleation assays on whole cells were done on the WISDOM apparatus, which integrates 100’s of individual measurements to obtain a T50 value. These T50 values were confirmed by assays on the nanoliter osmometer apparatus. The numbers of replicates used on the nanoliter osmometer apparatus are indicated by box and whisker plots in Figs. 5 & 6 with boxes and bars showing quartiles, with medians indicated by a centre line.

      Line 500. This paragraph should be removed as the results are not described in the manuscript.

      This is a Methods section that describes how that INPs were expression in E. coli. It has details that are important for researchers who want to repeat our findings, such as the use of the Arctic Express strain for producing INP.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      "MAGIC" was introduced by the Rong Li lab in a Nature letters article in 2017. This manuscript is an extension of this original work and uses a genome wide screen the Baker's yeast to decipher which cellular pathways influence MAGIC. Overall, this manuscript is a logical extension of the 2017 study, however the manuscript is challenging to follow, complicated by the data often being discussed out of sequence. Although the manuscripts make claims of a mechanism being pinpointed, there are many gaps and the true mechanisms of how the factors identified in the screen influence MAGIC is not clear. A key issue is that there are many assumptions drawn on previous literature, but central aspects of the mechanisms being proposed are not adequately shown.

      Key comments:

      1. Reasoning and pipelines presented in the first two sections of the results are disordered and do not follow figure order. In some instances, the background to experimental analyses such as detailing the generation of spGFP constructs in the YKO mutant library, or validation of Snf1 activation are mentioned after respective results are discussed. This needs to be fixed.

      We thank the reviewer for pointing out potential confusion to readers. We have revised the first two sections according to reviewer’s suggestion. (Page 4-6)

      1. In general there is a lack of data to support microscopy data and supporting quantification analysis. The validity of this data could be significantly strengthened with accompanying western blots showing accumulation of a given constructs in mitochondrial sub compartments (as was the case in the lab’s original paper in 2017).

      We appreciate the reviewer’s suggestion on biochemical validations. However, the validity of this imaging-based assay for detecting import of cytosolic misfolded proteins into mitochondria, including the use of FlucSM as a model misfolding-prone protein, was carefully established in our previous study by using appropriate controls, super resolution imaging, APEX-based proximity labeling, and classical biochemical fractionation and protease protection assay (Ruan et al., 2017 Nature, ref. 10). We have reminded readers of these validation experiments in the previous study on Page 4, line 14-17.

      In recent years, advancements in imaging-based tools have allowed many protein interactions and dynamic processes, which were previously examined by using biochemical assays in lysates of populations of cells, to be observed with various level of quantitation in live cells with intact cellular compartments. Many of these assays, e.g., the RUSH assay for ER to Golgi transport, FRAP-based analysis for nuclear/cytoplasmic shuttling of proteins, or FRET-based assays for protein-protein interactions, have been well accepted and even embraced by the respective fields of study once validated with genetic and biochemical approaches. The advantages for live-cell imaging-based assays are often their unique ability to report dynamic processes or unstable molecular species with spatiotemporal sensitivity. Respectfully, it is our view, based on our own experience, that the traditional protease protection assay is not adequate or sufficiently quantitative for examining the presence of unstable misfolded proteins in mitochondrial sub-compartments, given the obligatorily lengthy in vitro cell lysis and mitochondrial isolation process, during which the unstable proteins are continuously being degraded. This likely explains our previous biochemical fractionation result that only weak protein signals were detected in the matrix fraction (Ruan et al., 2017 Nature, ref. 10). In addition, unlike stably folded, native mitochondrial matrix proteins, misfolded/unfolded proteins such as Lsg1 or FlucSM are highly susceptible to protease treatment. This sensitivity makes the assay unreliable for detecting such proteins if trace amount of the protease penetrates mitochondrial membranes during cell lysis even without detergent treatment.

      While we agree that protease protection assay is highly valuable for qualitative detection of the presence of a protein in certain mitochondrial compartments or determining its topology on membranes, this assay (regrettably in our hands) does not allow quantitative comparisons that were necessary for this study, because of inherent sample to sample variation, yet the laborious and low throughput nature of this assay makes it difficult for adequate statistical analysis. Furthermore, the level of protein detection in various fractions is highly sensitive to how the sample is treated with protease and detergent. Our imaging-based quantification, on the other hand, allows us to compare increased or decreased presence of GFP11-tagged proteins in mitochondria under different metabolic conditions or in different mutant or wild-type strains. Data from hundreds of cells and at least three independent biological replicates allowed us to apply adequate statistical analysis to aid our conclusion.

      1. Much of the mechanisms proposed relies on the Snf1 activation. This is however not shown but assumed to be taking place. Given that this activation is central to the mechanism proposed, this should be explicitly shown here - for example survey the phosphorylation status of the protein.

      Both REG1 deletion and low glucose conditions have been demonstrated extensively for Snf1 phosphorylation and activation in yeast (e.g., many seminal papers from Marian Carlson’s and other lab, such as ref. 24-28). In our study, we have indeed corroborated this by showing that Mig1 was exported from the nucleus in Δreg1 mutant and in low glucose conditions (Figure 1—figure supplement 2H and I. The mechanism of Snf1-mediated nuclear export of Mig1 has been characterized in detail as well (e.g., ref. 29-31).

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      Reviewer #1 (Recommendations For The Authors):

      SPECIFIC COMMENTS

      Genetic Screen o Line 20 - the narrative moves to SNF1, but the reasoning for the selection of this Class I substrate is not defined. What was the basis for this selection - what happened to the other Class I substrates. It is stated in the text that the other Class I proteins show the same increase in spGFP signal. The data showing this should be included in the Supp Figure 1 for transparency.

      We have moved the narratives of Snf1 function to the second section and clarified that we were interested in this gene due to its central role in metabolism and mitochondrial functions that may influence MAGIC (Page 5: line 16-20). Other genes in class 1 were shown in Table S1. Detailed discussion of other genes in this category is beyond the scope of this study.

      Snf1/AMPK prevents MP accumulation in mitochondria:

      The FlucDM data in human RPE-1 mitochondria seems to be added to only increase the significance of the work. The mechanisms suggested here with Hap4 would not be possible in human cells as there is no homologue of this protein in human cells. Making generalisations that these pathways are conserved based on this one experiment is not appropriate.

      We appreciate this feedback. Although the focus of this study is the regulation of MAGIC by the yeast AMPK Snf1, we would like to share our initial observation that suggests a similar role of AMPK in human RPE-1 cells. We acknowledge that the underlying mechanisms regarding the downstream transcription factors and pathway for misfolded protein import could be different in mammalian cells, but the overall effect of AMPK in mitochondrial biogenesis is well known to resemble that of Snf1. To avoid making over-generalization, we changed our statement of conclusion to: ‘These results suggest that AMPK in human cells regulates MP accumulation in mitochondria following a similar trend as in yeast, although the underlying mechanisms might differ between these organisms.’ (Page 7: line 2-4)

      Mechanisms of MAGIC regulation by Snf1:

      While the lysosome is ruled out here the authors have not considered the proteasomes. Is there a reason for this? Given accumulation of aggregates outside of mitochondria, and previous connections of the proteasome to mitochondrial quality control this would be an obvious thing to check. We examined the role of lysosomal degradation here because it is known to be activated under Snf1active condition (ref. 37). We appreciate this feedback and have included a new analysis on MG132treated FlucSM spGFP strains in which PDR5 gene was deleted to avoid drug efflux.

      This result suggests that the proteosome inhibitor did not ablate the difference in FlucSM accumulation between these conditions. That MG132 promoted mitochondrial accumulation of FlucSM in both high glucose and low glucose conditions was not surprising, as FlucSM is also degraded by proteasome in the cytosol (Ruan et al., 2017 Nature, ref. 10), and preventing this pathway could divert more of such protein molecules toward MAGIC. (Page 7: line 26-29).

      Line 13 "we hypothesized that elevated expression of mitochondrial preproteins induced by the activation of Snf1-Hap4 axis (REF) may outcompete MPs for import channels". This statement has some assumptions. The authors have not shown that Snf1 is activated in thier models and more importantly that they have an accumulation of mitochondrial preproteins. The data that follows using the cytosolic domains of the receptors is hard to rationalise without seeing evidence that there is in fact pre-protein accumulation or impacts on the mitochondrial proteome in this system.

      As stated in our response to main point [3], Snf1 activation in reg1 mutant or in low glucose is evidenced by our data showing Mig1 export from nucleus to cytoplasm and had also been shown in many previous publications. A recent study (Tsuboi et al., 2020 eLife) also showed a dramatic increase in mitochondrial volume fraction in Δreg1 cells and wild-type cells in respiratory conditions, further supporting the role of Snf1 in mitochondrial biogenesis. We have provided relevant references in the manuscript (ref. 24-28).

      The ability of Tom70 cytosolic domain (Tom70cd), which can bind mitochondrial preproteins but not localize to mitochondria due to lack of N-terminal targeting sequence, to compete with endogenous Tom70 for mitochondrial preproteins has been well documented (ref. 47-49). However, we agree with the reviewer that a future quantitative proteomics study to measure changes in mitochondrial proteome under Tom70cd over-expression could allow more accurate interpretation of our experimental result.

      AMPK protects cellular fitness during proteotoxic stress:

      The inhibition of preprotein import by overexpressing the cytosolic domains of receptors is not supported with some proof of principle data. If this was working as the authors assume, it is not clear why only an effect with Tom70 is observed. The majority of the mitochondrial proteome is imported via Tom20/Tom22 so this does not align with what the authors are suggesting. Is the Tom70CD and any associated Hsp proteins facilitating the observed changes to the MPs?

      We thank the reviewer for raising this point. We expressed different TOM receptor cytosolic domains but found that Tom70cd had the strongest rescue on MAGIC under AMPK activation conditions. It is possible that certain Tom70 substrates or Tom70-assoicated heat shock proteins inhibit the import of MAGIC substrates. We admit that a clear explanation of this unexpected observation necessitates a better understanding of how native and MAGIC substrates are selected and imported by the outer-membrane channel. We can only offer our best interpretation based on the current state of the understanding, and we feel that we have been careful to acknowledge such in the manuscript.

      While the effect of AMPK inactivation reducing FUS accumulation was striking, this was all in the context of overexpression and may not be physiologically relevant - or may occur very transiently under basal conditions. Is GST an appropriate control here, why not use WT FUS? Likewise, one representative image is shown in Figure 5 - can the authors show western blotting that mitochondrial accumulation of FUS can be reduced with AMPK activation?

      We thank the reviewer for this suggestion, however, overexpressed FUS WT is also aggregation prone (Zhihui Sun et al., 2011, PloS Biology; Shulin Ju, 2011, PloS Biology; Jacqueline C. Mitchell et., 2013, Acta Neuro). We believe that GST, as a well-folded protein, is an appropriate control (Ruan et al., 2017 Nature, ref. 10). As we discussed in response to main point [1], the in vitro assay involving protease protection and western blots do not allow reliable quantitative comparison in our hands.

      In text changes.

      The analysis pipeline of the YKO mutant library should be introduced at the very start of the first paragraph, not the end.

      Addressed on Page 4, second paragraph

      "Fluc" should be introduced as "Firefly luciferase" within the first paragraph of the first section, also need to define SM and DM in FlucSM/FlucDM - these appear to be missing.

      Addressed in both Introduction (Page 2: line 29; Page 3: line 8-9) and re-clarified in Result (Page 5: line 27-29)

      The role of Reg1 should be explicitly stated in the text, not just in the figure.

      Addressed on Page 6: line 3-6

      Figure 1H legend states Reg1 (WT) is Snf1-inactive and Reg1 KO is Snf1-active. This wording is confusing and is not supported by data, but by assumption. If the authors want to use this wording then evidence needs to be provided - as suggested above.

      We have changed this and other legends to only show genotypes and medium conditions.

      "Tom70cd overexpression also exacerbated growth rate reduction due to FlucSM expression in HG medium (Figure 4A; Figure 4 - figure supplement 1A)" should be figure supplement 1B.

      Fixed on Page 10: line 10

      "These results suggest that glucose limitation protects mitochondria and cellular fitness during FlucSM induced proteotoxic stress through Snf1-dependent inhibition of MP import into mitochondria". The phrase "Snf1-dependent inhibition of MP import into mitochondria" may be misleading, as Snf1 isn't modulating import directly but is acting on transcriptional regulators to modulate mitochondrial import under stress.

      We restated the conclusion as follows: ‘These results suggest that Snf1 activation under glucose limitation protects mitochondrial and cellular fitness under FlucSM-associated proteotoxic stress.’ (Page 10: line 20- 21)

      "... Significantly increased the fraction of spGFP-positive and MMP-low cells in both HG and LG medium (Figure 4G-K)" should be (Figure 4J-K).

      Fixed on Page 11: line 3

      Reviewer #2 (Public Review):

      Work of Rong Li´s lab, published in Nature 2017 (Ruan et al, 2017), led the authors to suggest that the mitochondrial protein import machinery removes misfolded/aggregated proteins from the cytosol and transports them to the mitochondrial matrix, where they are degraded by Pim1, the yeast Lon protease. The process was named mitochondria as guardian in cytosol (MAGIC).

      The mechanism by which MAGIC selects proteins lacking mitochondrial targeting information, and the mechanism which allows misfolded proteins to cross the mitochondrial membranes remained, however, enigmatic. Up to my knowledge, additional support of MAGIC has not been published. Due to that, MAGIC is briefly mentioned in relevant reviews (it is a very interesting possibility!), however, the process is mentioned as a "proposal" (Andreasson et al, 2019) or is referred to require "further investigation to define its relevance for cellular protein homeostasis (proteostasis)" (Pfanner et al, 2019).

      Rong Li´s lab now presents a follow-up story. As in the original Nature paper, the major findings are based on in vivo localization studies in yeast. The authors employ an aggregation prone, artificial luciferase construct (FlucSM), in a classical split-GFP assay: GFP1-10 is targeted to the matrix of mitochondria by fusion with the mitochondrial protein Grx5, while GFP11 is fused to FlucSM, lacking mitochondrial targeting information. In addition the authors perform a genetic screen, based on a similar assay, however, using the cytosolic misfolding-prone protein Lsg1 as a read-out.

      My major concern about the manuscript is that it does not provide additional information which helps to understand how specifically aggregated cytosolic proteins, lacking a mitochondrial targeting signal could be imported into mitochondria. As it stands, I am not convinced that the observed FlucSM-/Lsg1-GFP signals presented in this study originate from FlucSM-/Lsg1-GFP localized inside of the mitochondrial matrix. The conclusions drawn by the authors in the current manuscript, however, rely on this single approach.

      In the 2017 paper the authors state: "... we speculate that protein aggregates engaged with mitochondria via interaction with import receptors such as Tom70, leading to import of aggregate proteins followed by degradation by mitochondrial proteases such as Pim1." Based on the new data shown in this manuscript the authors now conclude "that MP (misfolded protein) import does not use Tom70/Tom71 as obligatory receptors." The new data presented do not provide a conclusive alternative. More experiments are required to draw a conclusion.

      In my view: to confirm that MAGIC does indeed result in import of aggregated cytosolic proteins into the mitochondrial matrix, a second, independent approach is needed. My suggestion is to isolate mitochondria from a strain expressing FlucSM-GFP and perform protease protection assays, which are well established to demonstrate matrix localization of mitochondrial proteins. In case the authors are not equipped to do these experiments I feel that a collaboration with one of the excellent mitochondrial labs in the US might help the MAGIC pathway to become established.

      We thank Reviewer 2 for these suggestions, but we would like to respectfully offer our difference in opinion:

      a. Regarding the suggestion “to isolate mitochondria from a strain expressing FlucSM-GFP and perform protease protection assays”, in our previous study (Ruan et al., 2017 Nature, ref. 10), we have indeed applied two independent biochemical approaches: APEX-mitochondrial matrix proximity labeling and classic protease protection assay using non-spGFP strains, both consistently confirmed the entry of misfolded proteins into mitochondria under proteotoxic stress. Our super-resolution imaging further confirmed the import of the split GFP-labeled proteins to be inside mitochondria. Moreover, as we discussed in response to Reviewer 1’s main point [2], while the suggested biochemical assay is useful for validating topology within mitochondria, it is not quantitative and may not reliably report the in vivo accumulation of misfolded proteins in mitochondria due to the isolation process that takes hours, during which the unstable proteins could be continuously degraded within mitochondria.

      While we agree with the reviewer that we do not yet understand how misfolded proteins are imported into mitochondria, it would be unfair to state “as it stands, I am not convinced..” simply because the underlying mechanism remains to be elucidated. We would like to point out that targeting sequences for many well-established mitochondrial proteins are still not well defined. It is well known that mitochondrial targeting sequences are not as uniformly predictable as, for example, nuclear targeting sequences. Our finding that deletion of TOM6 enhances the import of misfolded proteins suggest that their import may involve the TOM channel in a more promiscuous conformation, which may reduce the requirement for a specific sequence-based targeting signal associated with the substrate.

      b. Regarding the role of Tom70, in our 2017 study, using proteomics and subsequently immunoprecipitation we validated the binding, albeit not necessarily direct, between misfolded protein FlucSM and Tom70. Therefore, “we speculate that protein aggregates engaged with mitochondria via interaction with import receptors such as Tom70”. Recent studies from different labs confirmed the interactions between Tom70 and aggregation prone proteins (Backes et al., 2021, Cell Reports; Liu et al., 2023, PNAS). In the current study, surprisingly, knockout of TOM70 did not block MAGIC, suggesting redundant components of mitochondria import system may facilitate the recruitment of misfolded proteins in the absence of Tom70, and this does not contradict the notion that Tom70 helps tether protein aggregates to mitochondria.

      c. Regarding other studies also showing the import of misfolding or aggregation-prone cytosolic proteins into mitochondria, there have been at least several recent studies in the literature for mammalian cells involving either model substrates or disease proteins (e.g., ref. 12-15; 56-58; Vicario, M. et al. 2019 Cell Death Dis.). The studies are briefly mentioned in Introduction (Page 3, paragraph 2). The present manuscript documents a major effort from our group using whole genome screen in yeast to understand the mechanism and regulation of MAGIC. Many of the screen hits have yet to be studied in detail. We full agree that much remains to be understood about whether and how this pathway affects proteostasis and what might be the evolutionary origin for such a mechanism.

      Additional comments:

      The genetic screen:

      The genetic screen identified five class 1 deletion strains, which lead to enhanced accumulation of Lsg1GFP and a larger set of class 2 mutants, which lead to reduced accumulation. Please note, in my opinion it is not clear that accumulation of the reporters occurs inside the mitochondria. In any case, the authors selected one single protein for further analysis: Snf1, the catalytic subunit of the yeast SNF complex, which is required for respiratory growth of yeast.

      The results of the screen are not discussed in any detail. The authors mention that ribosome biogenesis factors are abundant among class 2 mutants. Noteworthy, Lsg1 is involved in 60S ribosomal subunit biogenesis. As Lsg1-GFP11 is overexpressed in the screen this should be discussed. Class 2 mutants also .include several 40S ribosomal subunit proteins (only one of the 60S subunit). What does this imply for the MAGIC model? Also, it should be discussed that the screen did not identify reg1 and hap4, which I had expected as hits based on the data shown in later parts of the manuscript.

      We apologize for the confusion, but the GFP11 tag was in fact knocked into the C-terminus of Lsg1 in the endogenous LSG1 locus, and so Lsg1 was not overexpressed in the screen. We have made sure that this information is clearly conveyed in the revised manuscript (Page 4: line 20-22). How the ribosome small subunit affects MAGIC is beyond the focus of the current study and will be pursued in the future.

      Regarding why certain mutants did not come out of our initial screen, this is not unexpected as the YKO collection, although extremely valuable to the community, is known to be potentially affected by false knockouts, suppressor accumulation and cross contamination (for references, e.g., Puddu et al., 2019 Nature). Additionally, high-through screens can also miss real hits. In our experience using this collection in several studies, we often found additional hits from analysis of genes implicated by known genetic or biochemical interactions.

      Mutant yeast strains and growth assays:

      The Δreg1 strain grows poorly in all growth conditions and frequently accumulates extragenic suppressor mutations (Barrett et al, 2012). It would be good to make sure that this is not the case in the strains employed in this study. My suggestion is to do (and show) standard yeast plating assays with the relevant mutant strains including Δreg1, snf1, hap4, Δreg1Δhap4 without the split GFP constructs and also with them (i.e. the strains that were used in the assays).

      We thank the reviewer for the suggestion. We were indeed aware of potential accumulation of suppressor mutations from the YKO library. Therefore, deletion mutants like Δreg1 and loss of TFs downstream of Snf1 that we used in the study after the initial screen were all freshly made and validated. At least 3 independent colonies were analyzed for each mutant (mentioned in Methods & Materials; Page 33, line 57). Moreover, the plating assay suggested here may not reveal additional information other than growth, which was taken into consideration during our experiments.

      Activation of Snf1 in the relevant strains should be tested with the commercially available antibody recognizing active Snf1, which is phosphorylated at Snf1-T210.

      Snf1 activation was validated by the Mig1 exporting from the nucleus. We also noted above that many studies have clearly demonstrated Snf1 activation in reg1 mutant and under low glucose growth (e.g., ref. 24-28).

      Effects of Snf1, Reg1, Hap4 and respiratory growth conditions:

      The authors show that split GFP reporters show enhanced accumulation during fermentative growth, in Δsnf1, and Δreg1Δhap4 and fail to accumulate during respiratory growth, in Δreg1 and upon overexpression of HAP4. Analysis of Δhap4 should be included in Fig. 2. The suggestion that upon activation of Snf1 enhanced Hap4-dependent expression "outcompetes" misfolded protein import seems unlikely as only a fraction of mitochondrial genes is under control of Hap4. Without further experimental evidence I do not find that a valid assumption. More likely, the membrane potential plays a role: it is low during fermentative growth, in Δsnf1 and Δreg1Δhap4, and high during respiratory growth and in Δreg1 (Hübscher et al, 2016). Such an effect of the membrane potential seems to contradict the findings in the 2017 paper and the issue should be clarified and discussed. In any case, these data do not reveal that GFP reporters accumulate inside of the mitochondria. Based on the currently available evidence they may accumulate in close proximity/attached to the mitochondria. This has to be tested directly (see above).

      We have included our analysis of Δhap4 in Page 8: line 14-15 and Figure 2—figure supplement 1H. Consistent with our result for Δreg1Δhap4 in glucose-rich medium, HAP4 deletion also resulted in a significant increase in mitochondrial accumulation of FlucSM in low glucose medium compared to WT. It did not have effect in high glucose condition in which Snf1 is largely inactive.

      It is our view that the importance of Hap4 should not be judged by the number of nuclear encoded mitochondrial proteins they regulate. Still, this sub-group comprises a considerable number of proteins (at least 55 genes upregulated by Hap4 overexpression, ref. 43), and certain substrates may be more competitive with misfolded cytosolic proteins for import. Our genetic data strongly suggest that the inhibitory effect of active Snf1 on MAGIC is through Hap4, although we agree with the reviewer that detailed mechanism on how Hap4 substrates may compete with misfolded proteins need to be addressed in future studies.

      Membrane potential is important for mitochondrial import. During respiratory growth and in Δreg1, membrane potential is well known to be elevated comparing to fermentative condition (e.g., Figure 4C). Our observation that the import of misfolded proteins into mitochondria is reduced under these conditions simply suggests that this reduction is not due to a lack of membrane potential. This is not in any way contradictory to our 2017 finding that misfolded protein import requires membrane potential (ref. 10).

      Again, the accumulation of misfolded proteins in mitochondria, especially the model protein FlucSM, has been validated by using super resolution imaging (Figure 1—figure supplement 1A) in addition to the protease protection assay in our 2017 study.

      Introduction and Discussion:

      Both are really short, too short in my view. Please provide some background of the general principals of mitochondrial protein import and information of how exactly translocation of cytosolic, aggregated proteins (lacking targeting information) is supposed to work. I do not understand exactly how the authors actually envisage the process.

      We thank the reviewer for the suggestion. In the revised manuscript, we have extended both Introduction (Page 2-3) and Discussion section (Page 11-13)

      The results from the 2022 eLife paper (Liu et al, 2022), which suggests that Tom70 may "regulate both the transcription/biogenesis and import of mitochondrial proteins so the nascent mitochondrial proteins do not compromise cytosolic proteostasis or cause cytosolic protein aggregation" should be discussed with regard to the data obtained with overexpression of the Tom70 soluble domain.

      We thank the reviewer for pointing out that study and we have included a brief comment in Discussion section (Page 12: line 13-16). As the function of Tom70 appears to be complex, we cannot exclude the possibility that overexpression of the cytosolic domain has additional or indirect effects in addition to that due to preprotein binding.

      Andreasson, C., Ott, M., and Buttner, S. (2019). Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 20, e47865.

      Barrett, L., Orlova, M., Maziarz, M., and Kuchin, S. (2012). Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot Cell 11, 119-128.

      Hubscher, V., Mudholkar, K., Chiabudini, M., Fitzke, E., Wolfle, T., Pfeifer, D., Drepper, F., Warscheid, B., and Rospert, S. (2016). The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae. Nucleic Acids Res. 44, 5629-5645.

      Liu, Q., Chang, C.E., Wooldredge, A.C., Fong, B., Kennedy, B.K., and Zhou, C. (2022). Tom70-based transcriptional regulation of mitochondrial biogenesis and aging. Elife 11

      Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20, 267-284.

      Ruan, L., Zhou, C., Jin, E., Kucharavy, A., Zhang, Y., Wen, Z., Florens, L., and Li, R. (2017). Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443-446.

      I prefer to have "all in one", also due to time limitation.

      It would be great to be able to upload the review file as otherwise formatting and symbols get lost.

      Reviewer #3 (Public Review):

      In this study, Wang et al extend on their previous finding of a novel quality control pathway, the MAGIC pathway. This pathway allows misfolded cytosolic proteins to become imported into mitochondria and there they are degraded by the LON protease. Using a screen, they identify Snf1 as a player that regulates MAGIC. Snf1 inhibits mitochondrial protein import via the transcription factor Hap4 via an unknown pathway. This allows cells to adapt to metabolic changes, upon high glucose levels, misfolded proteins an become imported and degraded, while during low glucose growth conditions, import of these proteins is prevented, and instead import of mitochondrial proteins is preferred.

      This is a nice and well-structured manuscript reporting on important findings about a regulatory mechanism of a quality control pathway. The findings are obtained by a combination of mostly fluorescent protein-based assays. Findings from these assays support the claims well.

      While this study convincingly describes the mechanisms of a mitochondria-associated import pathway using mainly model substrates, my major concern is that the physiological relevance of this pathway remains unclear: what are endogenous substrates of the pathway, to which extend are they imported and degraded, i.e. how much does MAGIC contribute to overall misfolded protein removal (none of the experiments reports quantitative "flux" information). Lastly, it remains unclear by which mechanism Snf1 impacts on MAGIC or whether it is "only" about being outcompeted by mitochondrial precursors.

      We thank Reviewer 3 for the positive and encouraging comments on our manuscript. We agree with the reviewer that identifying MAGIC endogenous substrates and understanding what percentage of them are degraded in mitochondria are very important issues to be addressed. We are indeed carrying out projects to address these questions. We also agree with Reviewer 3 that the effect of Snf1 on MAGIC may have additional mechanisms in addition to precursors competition, such as Tom6 mediated conformational changes of TOM pores. In the revised manuscript, we had added a discussion to address these comments (Page 12: line 21-28).

      Reviewer #3 (Recommendations For The Authors):

      1. In their screen, the authors utilize differences in GFP intensity as a measure for import efficiency. However, reconstitution of the GFP from GFP1-10 and GFP11 in the matrix might also be affected (folding factors, differential degradation).

      Upon Snf1 activation, the protein abundance of mitochondrial chaperones such as Hsp10, Hsp60, and Mdj1, and mitochondrial proteases such as Pim1 are not significantly changed (ref. 35). Therefore, it is unlikely that the folding and degradation capacity of mitochondrial matrix is drastically affected by Snf1 activation.

      To examine the effect of Snf1 activation on spGFP reconstitution, Grx5 spGFP strain was constructed in which the endogenous mitochondrial matrix protein Grx5 was C-terminally tagged with GFP11 at its genomic locus, and GFP1-10 was targeted to mitochondria through cleavable Su9 MTS (MTS-mCherryGFP1-10) (ref. 10). Only modest reduction in Grx5 spGFP intensity was observed in LG compared to HG, and no significant difference after adjusting the GFP1-10 abundance (spGFP/mCherry ratio) (Figure 1— figure supplement 3A-D). These data suggest that any effect on spGFP reconstitution is insufficient to explain the drastic reduction of MP accumulation in mitochondria under Snf1 activation. Overall, our results demonstrate that Snf1 activation primarily prevents mitochondrial accumulation of MPs, but not that of normal mitochondrial proteins. (Page 6: line 17-25).

      We admit, however, that to fully rule out these factors, specific intra-mitochondrial folding or degradation reporter assays would be needed.

      1. Scoring of protein import always takes place using fluorescence-based assays. These always require folding of the "sensors" in the matrix. An additional convincing approach that would not rely on matrix folding could be pulse chase approaches coupled to fractionation assays and immunoprecipitation.

      We thank reviewer 3 for this suggestion. In our previous study, we applied two different biochemical assays: APEX proximity labeling, and mitochondrial fractionation followed by protease protection. Both confirmed the entry of misfolded proteins into mitochondria as observed by using split GFP. As we discussed in response to Reviewer 1’s main point [3], the fractionation assays are not quantitative enough for the comparisons made in our study. In particular, during the over 2-hour assay, misfolded proteins continue to be degraded within mitochondria. By using proper controls, our spGFP system provides quantitative comparisons for mitochondrial accumulation of misfolded proteins in non-disturbed physiological conditions.

      1. Could the pathway be reconstituted in vitro with isolated mitochondria to test for the "competition hypothesis"

      This is an excellent suggestion, but setting up such a reconstituted system is a project on its own. The study documented in this manuscript already encompasses a large amount of work that we feel should be published timely.

      1. Fluorescence figures are not colour blind friendly (red-green). This should be improved by changing the color scheme.

      We thank reviewer 3 for pointing this out and sincerely apologize for any inconvenience. However, we are unfortunately unable to change all images within a limited time. We will adopt another color scheme in future work.

      1. spGFP in human cells appears to form "spot-like" structures. What are these granules?

      We indeed observed granule-like structures by spGFP labeled FUS in mitochondria, which is interesting, but we did not investigate this further because it is a not a focus of this study.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Overall, we were pleased that the reviewers found our study carefully designed and interesting. We have addressed their comments below.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Kern, et al., demonstrates that phagocytosis in macrophages is regulated in part by the intermolecular distance of phagocytosis-promoting receptors engaging phagocytic targets. Cells expressing chimeric receptors containing cytosolic domains of Fc receptors (FcR) and defined ligand-binding DNA domains were used to drive phagocytosis of opsonized glass beads coated with complementary DNA ligands of defined spacing and number. These so-called origami ligands allowed manipulation of receptor spacing following engagement, which allowed the demonstration that tight spacing of ligands (7 nm or 3.5 nm) optimized signaling for phagocytosis. The study is carefully performed and convincing. I have a few technical concerns and minor suggestions.

      1. __ It is assumed that the origami preparations were entirely uniform. How much variation was there? Is that supported by TIRF microscopy of origami preparations? Was the TIRF microscopy calibrated for uniformity of fluorescence (ie., shade correction)?__ Our laboratory, Dong et al., has extensively characterized the origami uniformity and robustness of these exact pegboards. This paper was just posted on bioRxiv (Dong et. al, 2021). We have also cited this paper in our revised manuscript in reference to the characterization of the DNA origami (Line 117).

      We did not use any shade correction. Instead we only collected data from a central ROI in our TIRF field. To check for uniformity of illumination, we plotted the origami pegboard fluorescent intensity along the x and y axis. We observed very modest drop off in signal - the average signal intensity of origamis within 100 pixels of the edge is 76 ± 6% the intensity of origamis in a 100 pixel square in the center of the ROI. Fitting this data with a Gaussian model resulted in very poor R values. While this may account for some of the variation in signal intensity at individual points, we expect the normalized averages of each condition to be unaffected. We have amended the methods to describe this strategy (Lines 851-854).

      (Image could not be uploaded)

      __ Likewise, how much variation was there in the expression of the chimeric receptors? Large variation in receptor numbers per cell could significantly alter the quantitative studies. Aside from the flow sorting for cells expressing two different molecules, how were cells selected for analysis?__

      We thank the reviewer for bringing up this point. We confirmed comparable receptor expression levels at the cell cortex of the DNA CAR-𝛾 and the DNA CAR-adhesion used throughout the paper. We also have confirmed that receptor levels at the cell cortex were similar for the large DNA CAR constructs used in Figure 6C-D. This data is now included in Figures S5 and S7. We have also altered the text to include this (lines 169-172):

      Expression of the various DNA CARs at the cell cortex was comparable, and engulfment of beads functionalized with both the 4T and the 4S origami platforms was dependent on the Fc𝛾R signaling domain (Figure S5).

      When quantifying bead engulfment, cells were selected for analysis based on a threshold of GFP fluorescence, which was held constant throughout analysis for each individual experiment. We have amended the “Quantification of engulfment” methods section to convey this (lines 921-923).

      __ The scale of the origami relative to the cells is difficult to discern in Figures 2C and D. Additional text would be helpful to indicate, for example, that the spots on the Fig. 2D inset indicate entire origami rather than ligand spots on individual origami particles.__

      Thank you for pointing this out, we see how the legend was unclear and have corrected it (lines 453-454), including specifically noting “Each diffraction limited magenta spot represents an origami pegboard.” We have also outlined the cell boundary in yellow to make the cell size more clear.

      __ Figure 5 legend, line 482: How was macrophage membrane visualized for these measurements?__

      We have added the following clarification (line 535-536): “The macrophage membrane was visualized using the DNA CAR𝛾, which was present throughout the cell cortex.”

      __ line 265: "our data suggest that there may be a local density-dependent trigger for receptor phosphorylation and downstream signaling". This threshold-dependent trigger response was also indicated in the study of Zhang, et al. 2010. PNAS.__

      The Zhang et al. study was influential in our study design, and we wish to give the appropriate credit. Zhang et al. found that a sufficient amount of IgG is necessary to activate late (but not early) steps in the phagocytic signaling pathway. In contrast, our study addresses IgG concentration in small nanoclusters. We find that this nanoscale density affects receptor phosphorylation. Thus, we think these two studies are distinct and complementary.

      Lines 283-287 now read:

      While this model has largely fallen out of favor, more recent studies have found that a critical IgG threshold is needed to activate the final stages of phagocytosis (Zhang et al., 2010). Our data suggest that there may also be a nanoscale density-dependent trigger for receptor phosphorylation and downstream signaling.

      __ line 55: Rephrase, “we found that a minimum threshold of 8 ligands per cluster maximized FcgR-driven engulfment.” It is difficult to picture how a minimum threshold maximizes something.__

      We now state “we found that 8 or more ligands per cluster maximized FcgR-driven engulfment.”

      __ line 184: Rephrase, "we created... pegboards with very high-affinity DNA ligands that are predicted not to dissociate on a time scale of >7 hr". Remove "not".__

      Thank you for pointing this out, it is now correct.

      Reviewer #1 (Significance (Required)):

      This study provides a significant advance in understanding about the molecular mechanisms of signaling for particle ingestion by phagocytosis.

      --

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript on “Tight nanoscale clustering of Fcg-receptors using DNA origami promotes phagocytosis" studies how clustering and nanoscale spacing of ligand molecules for a chimeric Fcg-receptors influence the phagocytosis of functionalized silicon beads by macrophage cell lines. The basis of this study is the design of a chimeric Fc-receptor (DNA-CARg) comprising an extracellular SNAP-tag domain that can be loaded with single-stranded (ss) DNA, the transmembrane part of CD86 and the cytosolic part of the Fc-receptor g-chain containing an immunoreceptor tyrosine-based activation motif (ITAM) as well as a C-terminal green fluorescent protein (GFP). As control the authors used a similar designed DNA-CAR that is lacking the intracellular ITAM-containing FCg tail. The chosen target for this chimeric DNA-CAR, are silicon beads covered by a lipid bilayer that contains biotin-labelled lipids that, via Neutravidin, can be loaded with a biotinylated DNA origami pegboard displaying complimentary ss-DNA as ligand for the DNA-CAR. The DNA origami pegboard contains four ATTO647N fluorescence for visualization and the ssDNA ligand in different quantities and spacing. Using these principles, the authors study how ligand affinity, concentration and spacing influence the activation of the DNA-CARg and the engulfment of the loaded beads.

      The authors show that bead engulfment is increased between 2 till 8 ssDNA ligands on the pegboard. After this, ligand numbers do not play a role anymore in the engulfment. They then study the role of the ligand spacing using pegboards that either contain 4 single strand DNA ligands in close (7nm/3,5nm) proximity or a more spaced version using 21/17,5 nm or 35/38,5 nm. The authors find that the bead engulfment is maximally and positively affected by the close spacing of the ssDNA ligands. In their final experiments the authors vary the design of the DNA-CARs by tetramerization of the ITAM-containing Fcg-signaling subunit. In their discussion the authors mention different possibilities for the effect of spacing on the engulfment process.

      I think that, in general, this is an interesting study. However, it has some caveats and open issues that should be clarified before its publication.

      **Major comments**

      1. __ As a general comment, it is somewhat a pity that the authors did not use the endogenous FcR as a control. It would have been quite easy for the authors to place the SNAP-tag domain on the Fcg extracellular domain which would allow to do all their experiments in parallel, not only with the DNA-CAR, but also with a DNA-containing wild type receptor. Such a control would be important because, by using a CD86 transmembrane domain, the authors do not know whether the nanoscale localization of their chimeric receptors is reflecting that of the endogenous Fcg receptor.__

      We agree with the reviewer completely. We have repeated experiments shown in Figure 4A with a DNA-CAR containing the Fc𝛾 transmembrane domain instead of CD86 as the reviewer suggests. We also included a DNA-CAR version of the Fc𝛾R1 alpha chain, although this construct was not expressed as well as the others. These data are now included in Figure S5, and referenced in lines 167-168.

      __ An important issue that is discussed by the authors but not addressed in this manuscript is whether the different amount and spacing of the ligand is only impacting on signaling or also on the mechanical stress of the cells. Indeed, mechanical stress on the cytoskeleton arrangement could influence the engulfment process. For this, it would be very important to test that the different bead engulfment, for example, those shown in Fig. 4, is strictly dependent on signaling kinases. The authors should repeat the experiment of Fig. 4 a and b in the presence or absence of kinase inhibitors such as the Syk inhibitor R406 or the Src inhibitor PP2 to show whether the different phase of engulfment is dependent on the signaling function of these kinases. This crucial experiment is clearly missing from their study.__

      We agree this is an interesting point. We find that ligand spacing affects receptor phosphorylation; however this does not preclude effects on downstream aspects of the signaling pathway. We will clarify this by adding the following comment to the manuscript (line 299-301):

      While our data pinpoints a role for ligand spacing in regulating receptor phosphorylation, it is possible that later steps in the phagocytic signaling pathway are also directly affected by ligand spacing.

      The DNA-CAR-adhesion in Figure 1 strongly suggests that intracellular signaling is essential for phagocytosis. We have now included additional controls using this construct as detailed in our response to point 3 below. Unfortunately, Src and Syk inhibitors or knockout abrogate Fc𝛾R mediated phagocytosis (for example, PMIDs 11698501, 9632805, 12176909, 15136586) and thus would eliminate phagocytosis in both the 4T and 4S conditions. This precludes analysis of downstream steps in the phagocytic signaling pathway.

      __ Another problem of this study is that the authors show in Fig. 1A the control DNA-CAR-adhesion but then hardly use it in their study. For example, the crucial experiments shown in Fig. 4 should be conducted in parallel with DNA-CAR-adhesion expressing macrophage cells. This study could provide another indication whether or not ITAM signaling is important for the engulfment process.__

      We have added this control. It is now included in Figure S5 and S7. Figure 3D also shows that the DNA-CAR-adhesion combined with the 4T origami pegboards does not activate phagocytosis and we have amended the text to make this more clear (line 152).

      __ Another important aspect is how the concentration of the loaded origami pegboard is influencing the engulfment process. In particular, it would be interesting to show the padlocks with different spacings such as the 4T closed spacing versus 4s large spacing show a different dependency on the concentration of this padlock loading on the beads. This would be another important experiment to add to their study.__

      We agree that this is an interesting question. We suspect that at a very high origami density, 4S signaling would improve, and potentially approach the 4T. However, we are currently coating the beads in saturating levels of origami pegboards. Thus we cannot increase origami pegboard density and address this directly.

      **Minor comments:**

      1. __ The definition of the ITAM is Immunoreceptor Tyrosine-based Activation Motif and not "Immune Tyrosine Activation Motif" as stated by the authors.__ We have corrected this.

      __ The authors discuss that it is the segregation of the inhibitory phosphatase CD45 from the clustered Fc receptors is the major mechanism explaining their finding that 4T closed spacing is more effective than 4s large spacing. With the event of the CRISPR/Cas9 technology it is trivial to delete the CD45 gene in the genome of the RAW264.7 macrophage cell line used in this study and I am puzzled why they author are not conducting such a simple but for their study very important experiment (it takes only 1-2 month to get the results).__

      This experiment may be informative but we have two concerns about its feasibility. First, CD45 is a phosphatase with many different roles in macrophage biology, including activating Src family kinases by dephosphorylating inhibitory phosphorylation sites (PMID 8175795, 18249142, 12414720). Second, CD45 is not the only bulky phosphatase segregated from receptor nanoclusters. For example, CD148 is also excluded from the phagocytic synapse (PMID 21525931). CD45 and CD148 double knockout macrophages show hyperphosphorylation of the inhibitory tyrosine on Src family kinases, severe inhibition of phagocytosis, and an overall decrease in tyrosine phosphorylation (PMID 18249142). CD45 knockout alone showed mild phenotypes in macrophages. We anticipate that knocking out CD45 alone would have little effect, and knocking out both of these phosphatases would preclude analysis of phagocytosis. Because of our feasibility concerns and the lengthy timeline for this experiment, we believe this is outside of the scope of our study.

      In our discussion, we simplistically described our possible models in terms of CD45 exclusion, as the mechanisms of CD45 exclusion have been well characterized. This was an error and we have amended our discussion to read (lines 335-343):

      As an alternative model, a denser cluster of ligated receptors may enhance the steric exclusion of the bulky transmembrane proteins like the phosphatases CD45 and CD148 (Bakalar et al., 2018; Goodridge et al., 2012; Zhu, Brdicka, Katsumoto, Lin, & Weiss, 2008).

      Reviewer #2 (Significance (Required)):

      The innovative part of this study is the combination of SNAP-tag attached, chimeric Fc-receptor with the DNA origami pegboard technology to address important open question on receptor function.

      **Referees cross-commenting**

      I find most of my three reviewing colleagues reasonable

      I also agrée to Reviewer #1 comments 2

      Likewise, how much variation was there in the expression of the chimeric receptors? Large variation in receptor numbers per cell could significantly alter the quantitative studies. Aside from the flow sorting for cells expressing two different molecules, how were cells selected for analysis?

      But I want to add it is not only the amount of receptors but ils the nanoscale location that is key to receptor function

      We have ensured that all receptors are trafficked to the cell surface. We have also measured their intensity at the cell cortex as discussed in response to Reviewer 1.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This is a very nicely done synthetic biology/biophysics study on the effect of ligands spacing on phagocytosis. They use a DNA based recognition system that the group has previously use to investigate T cell signaling, but express the SNAP tag linked transmembrane receptor in a macrophage cell line and present the ligands using DNA origami mats to control the number and spacing of complementary ligands that are designed to be in the typical range for low or high affinity FcR, a receptor that can trigger phagocytosis. The study offers some very nice quantitative data sets that will be of immediate interest to groups working in this area and, in the future, for design of synthetic receptors for immunotherapy applications. Other groups are working on similar platform for TCR. I don't feel there is any need for more experiments, but I have some questions and suggestions. Answering and considering these could clarify the new biological knowledge gained.

      We thank the reviewer for their support of our manuscript. Given the reviewer’s statement that no new experiments are required, we have answered their questions to the best of our ability given the current data. Should the editor decide that any of these topics require experimental data to enhance the significance of the paper, we are happy to discuss new experiments.

      Reviewer #3 (Significance (Required)):

      I think the significance would be increased by addressing these questions, that would help understand how the synthesis system described related to other system directed as similar questions and more natural settings.

      1. __ The densities of the freely mobile DNA ligands required to trigger phagocytosis is quite high. Was the length of the DNA duplexes optimized? The entire complex for both the intermediate and high affinity duplexes seems quite short, perhaps The extracellular domain of the DNA-CAR (SNAP tag and ssDNA strand) are approximately 10 nm (PMID 28340336). The biotinylated ligand ssDNA is attached to the bilayer via neutravidin, resulting in a predicted 14 nm intermembrane spacing. The endogenous IgG FcR complex is 11.5 nm. Bakalar et al (PMID 29958103) tested the effect of antigen height on phagocytosis and found that the shortest intermembrane distance tested (approximately 15 nm) was the most effective. As the reviewer notes, the optimal distance between macrophage and target may be larger than our DNA-CAR. However we think the intermembrane spacing in our system is within the biologically relevant range.

      We saw robust phagocytosis at 300 molecules/micron of ssDNA, which is similar to the IgG density used on supported lipid bilayer-coated beads in other phagocytosis studies (PMID 29958103, 32768386). As the reviewer noticed, this is significantly higher than ligand density necessary to activate T cells (PMID 28340336). We have added a comment on ligand density to lines 96-97.

      __ Are the origami mats generally laterally mobile on the bilayers. If so, what is the diffusion coefficient? Can one detect the mats accumulating in the initial interface between the bead and cell, particularly in cased where there is no phagocytosis? Would immobility of the mats make them more efficient at mediating phagocytosis compared to the monodispersed ligands, which I assume are highly mobile and might even be "slippery".__

      We have confirmed that our bead protocol generally produces mobile bilayers, where his-tagged proteins can freely diffuse to the cell-bead interface (see accumulation of a his-tagged FRB binding to a transmembrane FKBP receptor at the cell-bead synapse below). We can qualitatively say that the origamis appear mobile on a planar lipid bilayer (see Dong et. al 2021 and images below). Directly measuring the diffusion coefficient on the beads is extremely difficult because the beads themselves are mobile (both diffusing and rotating), and cannot be imaged via TIRF. We do not see much accumulation of the origami at cell-bead synapses. This could reflect lower mobility of the origamis, or could be because the relative enrichment of origamis is difficult to detect over the signal from unligated origamis.

      Overall, we expect the origami pegboards (tethered by 12 neutravidins) are less mobile than single strand DNA (tethered by a single neutravidin, supported by qualitative images below). We are uncertain whether this promotes phagocytosis. At least one study suggests that increased IgG mobility promotes phagocytosis (PMID 25771017). However, the zipper model would suggest that tethered ligands may provide a better foothold for the macrophage as it zippers the phagosome closed (PMID 14732161). Hypothetically, ligand mobility could affect signaling in two ways - first by promoting nanocluster formation, and second by serving as a stable platform for signaling as the phagosome closes. Since our system has pre-formed nanoclusters, the effect of ligand mobility may be quite different than in the endogenous setting.

      (Image could not be uploaded)

      In the above images, a 10xHis-FRB labeled with AlexaFluor647 was conjugated to Ni-chelating lipids in the bead supported lipid bilayer. The macrophages express a synthetic receptor containing an extracellular FKBP and an intracellular GFP. Upon addition of rapamycin, FRB and FKBP form a high affinity dimer, and FRB accumulates at the bead-macrophage contact sites.

      (Image could not be uploaded)

      In the above images, single molecules were imaged for 3 sec. The tracks of each molecule are depicted by lines, colored to distinguish between individual molecules. The scale bar represents 5 microns in both panels.

      __ Breaking down the analysis into initiation and completion is interesting. When using the non-signalling adhesion constructs, would they get to the initiation stage or would that attachment be less extensive than the initiation phase.__

      This is an interesting question. While we did not include the DNA-CAR-adhesion in our kinetic experiments, we have now quantified the frequency of cups that would match our ‘initiation’ criteria in 3 representative data sets where macrophages were fixed after 45 minutes of interaction with origami pegboard-coated beads. We found that an average of 16/125 of 4T beads touching DNA-CAR-adhesion macrophages met the ‘initiation’ criteria and an average of 2/125 were eaten (14% total). In comparison, we examined 4T beads touching DNA CAR𝛾 macrophages and found that on average 23/125 met the ‘initiation’ criteria, and 45/125 were already engulfed (54%). This suggests that the DNA-CAR-adhesion alone may induce enough interaction to meet our initiation criteria, but without active signaling from the FcR this extensive interaction is rare. We have added this data in a new Figure S6 and commented on this in lines 213-215.

      __ It would be interesting to put these results in perspective of earier work on spacing with planar nanoarrays, although these can't be applied to beads. For integrin mediated adhesion there was a very distinct threshold for RGD ligand spacing that could be related to the size of some integrin-cytoskeletal linkers (PMID: 15067875). On the other hand, T cell activation seemed more continuous with changes in spacing over a wide range with no discrete threshold (PMID: 24117051, 24125583) unless the spacing was increased to allow access to CD45, in which case a more discrete threshold was generated (PMID: 29713075). The results here for phagocytosis with the very small ligands that would likely exclude CD45 seems to be more of a continuum without a discrete threshold, although high densities of ligand are needed. This issue of continuous sensing vs sharp threshold is biologically interesting so would be good assess this by as consistent standards are possible across systems.__

      We agree that this is an interesting body of literature worth adding to our discussion. We have added a paragraph that puts our study in the context of prior work on related systems, including these nanolithography studies (Line 364-382):

      How does the spacing requirements for Fc𝛾R nanoclusters compare to other signaling systems? Engineered multivalent Fc oligomers revealed that IgE ligand geometry alters Fcε receptor signaling in mast cells (Sil, Lee, Luo, Holowka, & Baird, 2007). DNA origami nanoparticles and planar nanolithography arrays have previously examined optimal inter-ligand distance for the T cell receptor, B cell receptor, NK cell receptor CD16, death receptor Fas, and integrins (Arnold et al., 2004; Berger et al., 2020; Cai et al., 2018; Deeg et al., 2013; Delcassian et al., 2013; Dong et al., 2021; Veneziano et al., 2020). Some systems, like integrin-mediated cell adhesion, appear to have very discrete threshold requirements for ligand spacing while others, like T cell activation, appear to continuously improve with reduced intermolecular spacing (Arnold et al., 2004; Cai et al., 2018). Our system may be more similar to the continuous improvement observed in T cell activation, as our most spaced ligands (36.5 nm) are capable of activating some phagocytosis, albeit not as potently as the 4T. Interestingly, as the intermembrane distance between T cell and target increases, the requirement for tight ligand spacing becomes more stringent (Cai et al., 2018). This suggests that IgG bound to tall antigens may be more dependent on tight nanocluster spacing than short antigens. Planar arrays have also been used to vary inter-cluster spacing, in addition to inter-ligand spacing (Cai et al., 2018; Freeman et al., 2016). Examining the optimal inter-cluster spacing during phagosome closure may be an interesting direction for future studies.

      --

      Additional experiments performed in revision

      In addition to these reviewer comments, we have added additional controls validating the DNA-CAR-4x𝛾 used in Figure 6c,d. We compared the DNA-CAR-4x𝛾 to versions of the DNA-CAR-1x𝛾-3x𝛥ITAM construct with the functional ITAM in the second and fourth positions (see the schematics now included Figure S7). We found that four individual receptors with a single ITAM each were able to induce phagocytosis regardless of which position the ITAM was in. However the DNA-CAR-4x𝛾 construct, which also contains 4 ITAMs, was not. This further validates the experiment presented in 6c,d. We also fixed minor errors we discovered in the presentation of data for Figures 1C and S1A.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02157

      Corresponding author(s): Satish, Mishra

      1. General Statements [optional]

      We thank the editor and reviewers for their helpful comments. We have successfully addressed most of the comments. We are performing some additional experiments as suggested by the reviewers and will be included if considered further. We attempted to pulldown the S14 interacting partner using anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify interactome using mass spectrometry but failed. So, accordingly, we have toned down the conclusion.

      The point-by-point response to the reviewer’s comments is given as follows.

      2. Description of the planned revisions

      Reviewer #1:

      Figure 1F You have not formally shown that this signal corresponds to palmitoylated S14. Could be heavy chain. Response: The possibility of a heavy chain is negligible because we have used sporozoite samples and probed it with an anti-rabbit antibody conjugated to HRP. Also, the size of the S14 bands does not correspond to heavy chain. However, we have toned down the conclusion. Currently, we are performing the depalmitoylation experiment, and data will be included in the next round of revision.

      Reviewer #2

      Line 149: To definitively state S14 is a membrane protein, biochemical assays proving such should be performed. (or perhaps genetic mutation of the predicted palmitoylation site?) Otherwise, this should be rephrased. Response: We are performing the depalmitoylation assay, and the data will be included during the second round of revision. However, we have rephrased the sentence in the current version of the manuscript.

      Lines 257-258: for yeast 2-hybrid, the controls of expressing S14, GAP45 and MTIP together with control proteins where no interaction would be predicted are absent. Response: We are performing experiments with additional controls, and data will be included in the next round of revision.

      Reviewer #3

      Conclusions that S14 knockout does not impact the expression and organization of two surface proteins, CSP and TRAP, and two IMC rely on a qualitative analysis only. However, quantitative analysis to support their observations is missing. Response: We are quantifying the IFA images and data will be included in the next round of revision.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: The authors have identified a sporozoite gliding motility protein through bioinformatic analysis. From the main text I do not know how, or what bioinformatic analysis was performed, in order to focus on this protein which is called S14. The authors then go on to tag the protein, produce a KO and show its involvement in gliding motility. The KO shows that parasites lacking S14 fail to invade the mosquito salivary glands. This is due to a motility defect. Y2H and docking studies are used to define an interaction with MTIP and GAP45, two known components of the glideosome. Response: We identified this gene from the Kaiser et al., 2004 paper (DOI: 10.1046/j.1365-2958.2003.03909.x). The S14 was found to be highly upregulated in salivary gland sporozoites but lacked signal sequence and transmembrane domain. Next, we looked into other sporozoite proteins lacking signal sequence and transmembrane domain and found several gliding-associated proteins with similar properties. By using the guilt-by-association principle (DOI: 10.1186/gb-2009-10-4-104), we studied the following properties of existing glideosome components along with S14: (1) Classical pathway secretion using the signal peptide (SignalP, https://services.healthtech.dtu.dk/services/SignalP-5.0) (http://dx.doi.org/10.1016/j.jmb.2004.05.028). (2) Nonclassical pathway secretion (SecretomeP , https://services.healthtech.dtu.dk/services/SecretomeP-1.0/) (10.1093/protein/gzh037). (3) Presence of transmembrane domains (TMHMM , https://services.healthtech.dtu.dk/services/TMHMM-2.0/) (10.1006/jmbi.2000.4315). (4) Presence of a potential palmitoylation site (CSS-Palm, http://bioinformatics.lcd-ustc.org/css_palm) (Ren et al, 2008). This is a similar association prediction method as employed by the STRING database. However, mentioning that we identified a gliding motility protein by bioinformatic analysis was wrong, and we modified the sentence.

      Major comments: The paper is sometimes hard to follow and lacks clarity. The reason: important information is omitted, or explained at the end of a section rather than at first mention; experimental details that are of essence need to be mentioned or explained in the main text; there is ample use of the word 'bioinformatic' without explaining what kind of analysis was performed in the main text. I cite from the abstract: 'In silico analysis of a novel protein, S14, which is uniquely upregulated in salivary gland sporozoites, suggested its association with glideosome-associated proteins.' I cite from the introduction: 'A study comparing transcriptome differences between sporozoites and merozoites using suppressive subtraction hybridization found several genes highly upregulated in sporozoites and named them 'S' genes (Kaiser et al, 2004). We narrowed it down to a candidate named S14, which lacked signal peptide and transmembrane domains.' From reading the main text, I do not know why Plasmodium berghei S14 was chosen in this manuscript. S14 is one of 25 transcripts identified by Kappe et al in Plasmodium yoelii (https://doi.org/10.1046/j.1365-2958.2003.03909.x) to be upregulated in sporozoites. The material and methods section does not explain either why S14 was chosen. Perhaps the authors could update Figure 2 from Kappe et al with the most recent annotations from plasmodb. Response: We have edited the manuscript for clarity and mentioned the name of the bioinformatic analysis performed. We chose S14 from Kaiser et al., 2004 (https://doi.org/10.1046/j.1365-2958.2003.03909.x) that identified transcripts in P. yoelii. We work on the rodent malaria parasite P .berghei and validated S14 transcripts by qPCR which showed its upregulation in sporozoites.

      Rodent malaria parasites P. berghei and P. yoelii have been used extensively as models of human malaria. Both species have been widely used in studies on the biology of Plasmodium sporozoites and liver stages due to the availability of efficient reverse genetics technologies, and the ability to analyze these parasites throughout the life cycle stages have made these two species the preferred models for the analysis of Plasmodium gene function. A genetic screen and phenotype analysis were performed in P. berghei (DOI: 10.1016/j.cell.2017.06.030 and DOI: 10.1016/j.cell.2019.10.030) that makes in-depth characterization easier due to the availability of reagents and preliminary gene-phenotype like its dispensability in the blood. As suggested by this reviewer, we have updated the most recent annotations from PlasmoDB.

      Reproducibility: None of the main Figures or Figure legends define ' N = '. For example I cite: 'The S14 KO clonal lines were first analyzed for asexual blood-stage propagation, and for this, 200 µl of iRBCs with 0.2% parasitemia was intravenously injected into a group of mice.' There are 2 mentions of 'N=' in the supplementary figures. I have not found any others.

      I'm not sure what the convention is. Should unpublished data for this gene (PBANKA_0605900) found in pberghei.eu (a database for mutant berghei parasites) be cited? After all it confirms their findings.

      The authors need to use more recent references for some of their statements; see some comments below. __Response: __We have mentioned N in the figures legends of the revised manuscript and also mentioned the unpublished data of RMGM. We have also added recent references in the revised manuscript.

      Minor comments:

      line 1-2 Add the Plasmodium species of this study.

      Response: Added.

      abstract Which species do you work with?

      Response: We have mentioned P. berghei in the abstract of the revised manuscript.

      29 mosquito salivary glands and human host hepatocytes

      Response: Corrected.

      30 to the glideosome, a protein complex containing [...]

      Response: Corrected.

      32-33 What kind of in silico analysis suggested S14 is part of the glideosome? S14 is not uniquely upregulated; there are other S-type genes identified by Kappe and Matuschewski. 25 I believe.

      Response: Mentioning that in silico analysis suggested S14 is part of the glideosome was a wrong statement, and we have modified the sentence for clarity in the revised manuscript.

      32 Please point out he species were S genes were identified. SGS of which species?

      Response: The S genes were identified in the transcriptomic study of Plasmodium yoelii.

      34 expression: change to transcription

      Response: Changed.

      39 What kind of in silico analysis was used here? and therefore malaria transmission

      __Response: __In silico, protein-protein docking interaction analysis was used.

      55 A single zygote transforms into a single ookinete, which establishes a single oocyst, which in turn can produce thousands of midgut sporozoites. Please correct the life cycle passage.

      Response: Corrected. located or anchored in the IMC? And located between the IMC and plasma membrane?

      Response: Glideosome is located between the plasma membrane and IMC, and the same has been corrected in the revised manuscript.

      61-63 Refer to Table S1 and its contents here 64 Name the known GAPs. Response: Done.

      65-67 Which transmembrane domain proteins? Please add more recent references than King 1988.

      Response: We have added TRAP as a transmembrane domain protein and updated the reference.

      71-72 TRAP was the first protein found to be ...

      Response: Corrected.

      74-76 Add additional, more recent references: for example search Frischknecht and TRAP

      Response: Added.

      76 S6 (TREP) is also [...]

      Response: Done.

      88 Some of these proteins are also expressed in ookinetes.

      Response: Corrected.

      89-91 The sentence needs a verb.

      Response: Added.

      88-96 Please add some more recent glideosome papers. After 2013.

      Response: Added.

      91 Why do you call it a peripheral protein?

      Response: Because the GAP45 was detected at the periphery of the merozoite in P. falciparum. As there are no such reports in sporozoites hence we have removed peripheral in the revised manuscript.

      91-93 There are more recent citations for GAP45 and GAP50. Response: We have added recent citations.

      96 Insert a reference here.

      Response: Added.

      99 Please define the gliding-associated proteins. What are they? Aren't there papers on GAP40, 45 and 50? DOI: 10.1016/j.chom.2010.09.002

      Response: Done.

      99 .... What prompted you to identify a novel GAP? And why is S14 classified as a GAP?

      Response: This was a wrong statement, which we removed in the revised manuscript.

      99-102 What kind of bioinformatic study? Why was S14 chosen? Please outline how you ended up with S14. Any other proteins that came out of the bioinformatic screen from the list of S genes?

      Response: We identified S14 from the Kaiser et al., 2004 paper and analyzed its properties using the “guilt-by-association” principle. The analysis showed that S14 had properties similar to GAP45 and MTIP. The S14 upregulation in sporozoites and its properties similar to known GAPs, we were prompted to study this gene's function.

      How many proteins were identified in the screen for sporozoite upregulated proteins by Kappe and Matuschewski?

      Response: 25 genes were identified in that paper, including the two characterized genes CSP and TRAP during that study.

      102-103 Define the nonclassical secretion pathway. Please reference GAP45 and GAP50 data for the nonclassical pathway.

      Response: When proteins are secreted out of the cytosol without predictable or known signal sequences or secretory motifs are classified as non-classically secreted proteins, and the pathway is called a non-classical protein secretory pathway. References: https://doi.org/10.1371/journal.pone.0125191; https://doi.org/10.1016/S0171-9335(99)80097-1; doi: 10.3389/fmicb.2016.00194

      105 Please add P. berghei to the title, the abstract, the introduction.

      Response: Added.

      111 The results section does not outline what bioinformatic analysis was used

      Response: The guilt-by-association principle was used, and it is outlined in the revised manuscript.

      112-114 Please specify the exact number of upregulated in sporozoites genes. I think it was 25. And add the species the study was performed in. Why did you choose the Kappe study but not the uis genes from berghei?

      Response: It was 25, and the species was P. yoellli. The domains of all 25 proteins are shown in Figure 2 of Kappe study. It intrigued us after having a glance at it. Later, we confirmed the upregulation of S14 transcripts in P. berghei sporozoites and chose to study the function of this gene.

      114-115 How did you narrow it down to S14? The Kappe paper lists 25 S-type genes from P. yoelii.

      Response: The domains of all 25 proteins are shown in the Kappe study. Two proteins, S14 and S15, lack signal sequence and transmembrane domain, which intrigued us after glancing at them. We chose S14 because its microarray induction is higher compared to S15.

      118 Plasmodia is not the plural for a group of different Plasmodium species. Use: [...] conserved among Plasmodium spp.

      Response: Corrected.

      118-119 Which proteins did you analyze? And how did you analyze them? Where is the data for this analysis? Outline the amino acids that predict palmitoylation? The nonclassical pathway?

      Response: The proteins we analyzed are given in Table S1. We analyzed them by the guilt-by-association principle. The data for this analysis is shown in Table S1. The amino acids predicted to be palmitoylated are C59 and C228 (S14), C5 (GAP45), C8 and C5 (MTIP). Non-classical pathway secretion was predicted by SecretomeP ( 10.1093/protein/gzh037).

      119-122 Here: do you mean S14 has similar properties as GAP 45 and GAP50? Define the nonclassical pathway? How do you know S14 is in the IMC?

      Response: The similar properties of S14 and GAP45 are Signal Peptide Prediction, Prediction of Non-classical pathway secretion, number of predicted transmembrane domains and prediction of Palmitoylation signal. GAP50 was wrongly mentioned here and has been removed from the revised manuscript.

      When proteins are secreted out of the cytosol without predictable or known signal sequences or secretory motifs are classified as non-classically secreted proteins. The pathway is called a non-classical protein secretory pathway.

      Our colocalization data of S14 with GAP45 and MTIP indicated that S14 is in the IMC.

      122-123 Please reference the bioinformatic analysis plus URL that allows targeting to the IMC to be analyzed.

      Response: All the URLs with references are given in the method section, lines 348-358 in the revised manuscript.

      123-124 Please reference the URLs for TM, palmitoylation, and interactions analyses.

      Response: All URLs with references are given in the method section, lines 348-358 in the revised manuscript.

      125-127 How did you predict that S14 is secreted via the nonclassical pathway?

      Response: We predicted non-classical pathway secretion of S14 using - SecretomeP (https://services.healthtech.dtu.dk/services/SecretomeP-1.0/) (10.1093/protein/gzh037).

      128-130 Define the nonclassical pathway when it first appears in your manuscript.

      The citation Moskes 2004 is not in the reference list

      Response: The nonclassical pathway is defined in lines 105-107. The citation Moskes 2004 has been included in the revised manuscript.

      132 Which membrane?

      Response: Live S14-mCherry localization on the membrane does not differentiate between the outer membrane or IMC. Hence, only membrane is mentioned. Next, in Figure 4A, we confirmed S14 localization on IMC by treating sporozoites with Triton X-100 and colocalizing with IMC proteins GAP45 and MTIP.

      134-135 In which species?

      Response: We have mentioned P. berghei in the text in the revised manuscript.

      141-142 Please include images of blood stage and liver stage parasites.

      Response: Blood and liver stage images are included in the revised manuscript as Figure S2.

      142-143 Which membrane?

      Response: Live S14-mCherry localization on the membrane does not differentiate between the outer membrane or IMC. Hence, only membrane is mentioned. Next, in Figure 4A, we confirmed S14 localization on IMC by treating sporozoites with Triton X-100 and colocalizing with IMC proteins GAP45 and MTIP.

      148-149 I cannot find the specific figure you refer to; I checked the online version of the Frenal 2010 paper.

      Response: Electromobility shifts of GAP45 due to the palmitoylation have been reported in (Rees-Channer et al, 2006; DOI: 10.1016/j.molbiopara.2006.04.008). Frenal 2010 paper has stated about two bands but experimentally, it was shown in Rees-Channer et al, 2006 in Figures 1 and 2B.

      175 gland, we counted [...]

      Response: Corrected.

      177 Compared to the

      Response: Corrected.

      177-179 Failed to invade (absolutely)? Or invaded in highly reduced numbers?

      Response: Corrected.

      182-186 Please be precise: I think you mean you let all types of mosquitoes take a blood meal; s14 knockout-infected mosquitoes did not infect mice.

      Response: Corrected.

      181-202 Perhaps use paragraphs to indicate the different types of experiments performed here.

      Response: Done.

      204 Please introduce paragraphs to identify the different experiments in this section

      Response: Done.

      208 Outer or inner membrane of what? IMC, the plasma membrane?

      Response: We treated sporozoites with Triton X-100 to analyze whether S14 is present on the outer membrane (plasma membrane) or IMC.

      228 onwards Structural models were obtained from whom? Which species did you use for the docking study? Could you use in one approach 3 berghei proteins, and confirm your docking studies with the falciparum proteins? That would strengthen your model. Should you include a negative control protein in the approach? Response: The structural models were obtained using the trROSETTA server. We used P. berghei for the docking study. In the old annotation and RMGM, the ortholog of P. berghei (PBANKA_0605900) in P.falciparum (PF3D7_1207400) was indicated. However, the updated PlasmodDB does not show PBANKA_0605900 ortholog in P. falciparum. We did try to generate structure models of P. falciparum MTIP, GAP45 and S14 using the trROSETTA server. We successfully reproduced the structure of MTIP, and GAP45 but the quality of S14 structure was unsuitable for the interaction studies. The negative control cannot be included in this kind of study because it gives a false interface, and none of the previous studies have used negative control.

      250-251 Was all of the gene cloned? Please define amino acid range. discussion

      Response: Full-length gene of S14, MTIP and GAP45 was cloned and the same has been mentioned in materials and methods in the revised manuscript.

      Please discuss data from https://elifesciences.org/articles/77447 in relation to your protein Response: Discussed.

      298-300 More recent glideosome papers exist. For example https://doi.org/10.1038/s42003-020-01283-8

      Response: Included.

      340 List the proteins you analysed. Add URL (websites) to the analyses tools.

      Response: They are listed in Table S1. The method section gives all the URLs with references, lines 348-358 in the revised manuscript.

      343 Known association from the literature: how was this done?

      Response: The interactions demonstrated by different groups have been summarized in the review by Boucher & Bosch, 2015 (doi: 10.1016/j.jsb.2015.02.008).

      346-349 A few glideosome components? On what basis were they selected and which are they? Response: The analysis showed that S14 had properties similar to GAP45 and MTIP. Additionally, S14 localized with GAP45 and MTIP, hence selected for interaction studies.

      471 Can AlphaFold Structure Predictions be used in the docking studies?

      Response: Even the Alphafold AI is trained on existing sequence/structure information despite being advertised as a de novo prediction system. That's why it can't produce good quality structures of evolutionarily unique proteins such as S14. We initially started our protein model generation by alphafold2, but the quality of the structure was very low; then we further used the trRosetta server (https://yanglab.nankai.edu.cn/trRosetta/), which shows the quality of all three protein structures above 95 after validation by using UCLA-DOE LAB-SAVES V6.0 (https://saves.mbi.ucla.edu/).

      tr-Rosetta includes inter-residue distance, orientation distribution by a deep-neural network, and homologous template to improve the accuracy of models (DOI: 10.1038/s41596-021-00628-9).

      We have given the model structure generated using alphafold2 for your reference.

      Model generated by using AlphaFold2.ipynb (https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb#scrollTo=kOblAo-xetgx).

      Structure quality assessment by __http://saves.mbi.ucla.edu/.__

      GAP 45

      __S14 __

      MTIP

      487 What parts of theses genes was cloned? Define the amino acid range.

      Response: The full-length protein-encoding gene was cloned.

      714 Please split the table into A Mosquito bite and B haemolymph Sporozoites Response: Done.

      Figure 1 For clarity, maybe write S14::mCherry

      Response: Done.

      Figure 1 It would be useful to show blood stage parasite images.

      Response: Blood stage parasite image is included in the revised manuscript as Figure S2.

      Figure 2G Haemolymph sporozoites ?

      Response: Done.

      Figure 8 You argued that S14 is a membrane-bound protein through palmitoylation. Here the protein is shown to be cytoplasmic. Please update our model with more recent ones. Response: We have shown that S14 colocalizes with GAP45 and MTIP, suggesting its IMC localization. We have updated our model in Figure 8.

      Figure S2B It would be good to include a positive control for these PCRs.

      Response: We have replaced the figure's new gel with a positive control.

      Figure S3 It would be good to include a positive control for these PCRs. Response: We already have positive controls in Figure S3C and S3F for all the primer pairs used.

      Tabel S1 Table S1 is only mentioned twice in the text: lines 124 and 128. There is no mention that the table contains all (??) known gliding motility proteins.

      Response: The table does not contain all the gliding proteins; however, most of the proteins mentioned in the Boucher & Bosch, 2015 paper (doi: 10.1016/j.jsb.2015.02.008) were included.

      Table S1 The algorithms / websites used for bioinformatic prediction need to be listed here.

      Response: Included.

      Table S2 Add the plasmodb gene identifiers here. The table does not show all Plasmodium spp. but a selection. Response: All the orthologs mentioned in Figure S1 and Table S2 are not shown in the updated PlasmoDB. Accordingly, we have removed the Figure S1 and Table S2 in the revised manuscript__.__

      Reviewer #1 (Significance (Required)):

      General assessment: The authors provide an in-depth analyses of the Plasmodium berghei protein S14 and its involvement in gliding motility. Response: Thank you.

      Advance: This paper is the first analysis of the S14 protein. The authors suggest a bridging function for the protein between MTIP and GAP45. Response: Thank you.

      Audience: Gliding motility is of interest to the apicomplexan field. I think this particular proteins is specific to Plasmodium spp. Response: Thank you.

      Reviewer #2

      Summary:

      The authors tag the sporozoite protein S14 in P. berghei and show localization near the sporozoite plasma membrane. They also convincingly show, through the generation of S14 knockout lines, that S14 is required for sporozoite motility and thereby also salivary gland and hepatocyte invasion. Their bioinformatic results support possible interactions between S14 and the inner membrane complex proteins MTIP and GAP45. These analyses were performed with these specific candidate proteins rather than being unbiased searches for potential interaction partners. The yeast 2-hybrid data to support these possible protein interactions need further controls.

      Lines 143-144: Unless the sporozoites were not permeablized prior to staining, it is not clear if the protein is "on" the plasma membrane or just under the plasma membrane. Furthermore, this statement anyway seems contradictory to the authors' interpretation of Figure 4A. Response: Live S14-mCherry localization on the membrane does not differentiate between the outer membrane or IMC. Next, in Figure 4A, we confirmed S14 localization on IMC by treating sporozoites with Triton X-100 and colocalizing with IMC proteins GAP45 and MTIP. Further, we ensured that mCherrey signals were bleached post-fixation and performed IFA with and without permeabilization. We revealed the mCherry and CSP signals using Alexa 488 and Alexa 594, respectively. We observed the mCherrey signal with permeablized sporozoites, not without permeabilization.

      Line 218: "This result indicates that S14 is present within the inner membrane of sporozoites." While this data shows that S14 is not in the plasma membrane of the parasite, how can the authors be sure it is at the IMC? Response: S14 colocalization with MTIP and GAP45 suggested its localization on IMC.

      Line 225-226: This sentence overreaches in its conclusion. There is no indication that this protein provides the power or force behind the sporozoites forward movement. Several proteins are known to be required for gliding motility, but they are not all force-providing factors. Response: We have modified the sentence, and now it states, ‘These data demonstrate that S14 is an IMC protein, essential for the sporozoite's gliding motility.

      Minor comments:

      Line 99: "the role of gliding-associated proteins is unexplored" There are several publications on GAP40, GAP45 and GAP50 (some of which are referenced in the previous paragraph). Response: We have included the reference for studied proteins and modified the sentence for clarity.

      Line 114: "We narrowed it down to a candidate" Narrowed down how? Or rephrase. Response: We identified the S14 gene from the Kaiser et al., 2004 paper (DOI: 10.1046/j.1365-2958.2003.03909.x) and rephrased the sentence in the revised manuscript.

      Lines 120-123 are strangely written, and I don't follow the logic. What "similar properties" do GAP45 and GAP50 have with S14 and are they really indicative of function? Also if palmitoylation and myristylation and nonclassical secretion are present in most eukaryotes, why would they necessarily be evidence of IMC targeting? Response: It was wrongly written, we have modified the sentence for clarity.

      Line 148-149. I did not see examples of this electromobility shift of GAP45 in this publication (although I may have overlooked it).

      Response: Electromobility shifts of GAP45 due to the palmitoylation have been reported in (Rees-Channer et al, 2006; DOI: 10.1016/j.molbiopara.2006.04.008). Frenal 2010 paper has stated about two bands, but experimentally it was shown in Rees-Channer et al, 2006 in Figure 1 and 2B.

      Table 1 legend should preferably specify that hemolymph sporozoites were used for IV infections. Response: Done.

      Line 228: Should be rephrased for accuracy. "revealed the" should be replaced with "suggests" Response: Replaced.

      Lines 305-307: I don't entirely understand the logic laid out here.

      Response: This was written about GAP45 and MTIP coordination; however, it has been removed in the revised manuscript.

      Lines 320-322: "We hypothesize that S14 possibly plays a structural role and maintains the stability of IMC required for the activity of motors during gliding and invasion." The data about the IMC structure shown is fluorescence microscopy - and there no change is observed in the IMC in the knockout line. I suggest removing or rephrasing this point if no extra data is provided to show this. Response: We have removed this sentence in the revised manuscript.

      Reviewer #2 (Significance (Required)):

      The work gives insights into an unstudied, conserved Plasmodium protein, S14, which the authors show is critical for Plasmodium transmission from mosquitoes. The parasite genetics and phenotyping demonstrating this are strong. The conclusions about interactions with glideosome/inner membrane complex components need further experimental support. The work is of interest to the Plasmodium field and may be also of interest to people interested in other protozoan parasites or in cellular motility.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Gosh and colleagues demonstrates that S14 is a glideosome-associated protein in sporozoites. S14 knockout sporozoites fail to infect mosquito salivary glands and liver cells in the mammalian host. These sporozoites are also defective in gliding motility as S14 localizes to the inner membrane. S14 was shown to interact with the glideosome-associated proteins GAP45 and MTIP using the yeast two-hybrid system. The authors also provide an in-silico prediction on the S14, GAP45 and MTIP interaction.

      Major issues:

      Overall, there is information lacking in the manuscript, including on the figure legends, regarding experiments replication and n analyzed.

      For complementation, the authors engineered an independent S14 knockout line. For this line is clear that parasites failed to infect salivary glands contrarily to the knockout line. Despite not showing it, did the authors confirm that this knockout line has no defects in infecting mosquito midguts and producing sporozoites? Response: We analyzed the midgut for sporozoite formation, which was comparable to the original KO line, and included the data (Figure 2D) in the revised manuscript.

      Did the authors conduct IV injections in mice with a higher number of sporozoites? Hemolymph sporozoites are less infectious than sporozoites collected from the salivary glands and I was wondering whether patent infections with S14 ko sporozoites can be obtained by injecting a higher inoculum. The same applies to the infectivity experiments with HepG2cells. Response: We increased the sporozoites dose and infected mice with 10,000 hemolymph sporozoites, but no infection was observed (Table 1). No EEFs were observed in HepG2 cells infected with 10,000 S14 KO hemolymph sporozoites.

      Please provide information on the number of sporozoites that were analyzed in the trails experiment. Response: We analyzed 210, 225, and 212 sporozoites for WT GFP, S14 KO c1, and S14 KO c2, respectively.

      Minor issues:

      In Figure 1. F) WB on S14-3xHA-mCherry tagged sporozoites showing two bands on the WB. The Palm-band is only inferred thus I suggest correcting the figure to S14-3xHA-mcherry. On 1D all the mcherry signal is detected on the membrane but then on WB, a smaller fraction is palm? What is the explanation for the ratio between the two bands? Why so distinct CSP intensity bands between wt and tagged line? Were very distinct amounts of protein loaded?

      Response: We have corrected the Palm-S14-3xHA-mcherry to S14-3xHA-mcherry.

      This reviewer raises a valid point regarding the discrepancy between IFA and Western blot. The non-palmitoylated S14-mCherrey signal was possibly corrected after deconvolution in image 1D and mainly the membrane signal was prominent. In Figure 1C, many sporozoites show some cytosolic signal, perhaps representing non-palmitoylated S14. Western blot concentrates the protein of interest as a single band, allowing more accurate visualization of protein.

      The distinct CSP intensity bands between wt and the tagged line are due to the loading of a higher amount of parasite lysate in WT lane. To ensure that the western blot signal is specific to S14, we loaded a higher amount of protein in WT.

      Figure 1. A) Statistical analysis is missing. Not clear if the bars represent mean values +/- standard deviation. No information on the material and methods of how the relative expression was calculated. Response: No error bars are shown in Figure 1 because it was performed once.

      In the introduction lines 54 and 58 I suggest replacing humans with mammalian host. Response: Replaced.

      Line 58. Not clear why the ref Ripp et al., 2021 is used for a general sentence to introduce the Plasmodium life cycle. Response: Removed.

      Line 72: I suggest replacing "TRAP mutant" with "TRAP knockouts" (Sultan et al., 1997). More recently there are TRAP mutants with impaired motility and normal invasion of mosquito salivary glands (Klug et al., 2020) Response: Replaced.

      Lines 78 to 86: In this paragraph, authors refer to several proteins involved in sporozoite gliding motility and host cell invasion, however for most of the studies this conclusion comes from the characterization of knockouts defective phenotype and actually a direct role for some of these molecules in the process awaits clear demonstration. Response: We have replaced involved with implicated.

      Line 78: Authors do not consider that maebl knockout sporozoites display reduced adhesion, including to cultured hepatocytes, which could contribute to the defects in multiple biological processes, such as in gliding motility, hepatocyte wounding, and invasion. Response: We have corrected maebl role in the revised manuscript.

      Line 80: I suggest authors reconcile the contradictory reports in the literature on the role of TRSP in sporozoites invasion. Response: We have removed this reference in the revised manuscript.

      Line 82-83: Please revise it. Response: Revised.

      Table 1. Correct table as when sporozoites were transmitted by mosquito bite the term "number of sporozoites injected" does not apply. Please give more details on the bite experiments. Is this the number of mosquitoes for all four animals? For how long the mosquitoes were allowed to bite? Response: For clarity, we have split the table into A Mosquito bite and B haemolymph Sporozoites. We used ten mosquitoes/mice in the bite experiment. Mosquitos were allowed to probe for blood meal for 20 minutes, and the feeding was ensured by observing mosquitoes post-blood meal; approximately 70% of mosquitoes received the blood meal in all the cages.

      Line 288 and 289. There are several publications showing that maebl knockout sporozoites are impaired at invading the mosquito salivary glands and at infecting the vertebrate host contradicting Kariu et al., 2002 findings in the vertebrate host. Response: We have removed maebl from this line.

      Line 290. I suggest "was most likely due to" instead of " due to" as sporozoite adhesion to cells was not evaluated. Response: Corrected.

      Line 291: "Cellular transmigration and host cell invasion are prerequisites for gliding motility" please revise. Response: Revised.

      Line 437: indicate which clone was used.

      Response: Indicated (3D11).

      Line: 463: indicate the % of the gel in the SDS-PAGE Response: We have used 10% SDS-PAGE gel and it is indicated in the revised manuscript.

      Line 499: indicate the version of the GraphPad Prism software. Response: GraphPad Prism version 9.

      Figure S3 legend needs to be corrected. Panels in the figure are from A to F while in legend G and H are included. Response: Corrected.

      4. Description of analyses that authors prefer not to carry out

      Reviewer #2

      Line 39-41: "Using in silico and the yeast two-hybrid system, we showed the interaction of S14 with the glideosome-associated proteins GAP45 and MTIP. Together, our data show that S14 is a glideosome-associated protein" Although these interactions can be speculated based on the results shown, these interactions were not confirmed in this study. Response: We attempted to pulldown the S14 interacting partner using anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify interactome using mass spectrometry but failed. Hence, we selected two known IMC localized gliding proteins MTIP and GAP45. Performing pull-down from sporozoites is challenging, so we checked this interaction using yeast 2-hybrid assay and bioinformatic analysis for protein-protein interaction.

      In order to claim interaction between S14 and IMC proteins, interaction needs to be shown experimentally. Well-controlled yeast 2-hybrid would be a start - then interaction would be more than just speculative. But immunoprecipitation from sporozoites or other biochemical interactions would give more support to this idea. Response: We attempted to pulldown the S14 interacting partner using an anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify interactome using mass spectrometry but failed. Hence, we selected two known IMC localized gliding proteins MTIP and GAP45. Performing pull-down from sporozoites is challenging, so we checked this interaction using yeast 2-hybrid assay and bioinformatic analysis for protein-protein interaction.

      Reviewer #3

      The authors provide convincing data on the S14 localization in the inner membrane of sporozoites and interaction with GAP45 and MTIP using the yeast model. Did the authors consider conducting co-IP followed by MS analysis to pull down S14 in the complex with GAP45 and MTIP? Response: We attempted to pulldown the S14 interacting partner using an anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify the interactome using mass spectrometry but failed. Hence, we selected two known IMC localized gliding proteins, MTIP and GAP45. Performing pull-down from sporozoites is challenging, so we checked this interaction using yeast 2-hybrid assay and bioinformatic analysis for protein-protein interaction.

      __Reviewer #3 (Significance (Required)):____ __ Sporozoite gliding motility is a critical feature of parasite infectivity. Impairment of this important feature has been described for several mutant/knockout parasite lines. This study goes beyond the phenotypic analysis of mutant parasites to infer the role of S14 by providing more mechanistic evidence to show S14 interaction with other glideosome-associated proteins. However, this interaction was investigated using the two-hybrid system in yeast. Still, in sporozoites, no experiments were conducted to evaluate the interaction between these proteins.

      Response: We attempted to pulldown the S14 interacting partner using an anti-mCherry antibody from S14-3XHA-mCherry transgenic sporozoites and then further tried to identify interactome using mass spectrometry but failed. Hence, we selected two known IMC localized gliding proteins, MTIP and GAP45. Performing pull-down from sporozoites is challenging, so we checked this interaction using yeast 2-hybrid assay and bioinformatic analysis for protein-protein interaction.

      Please consider I'm not an expert on the in-silico interaction studies.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      The authors tag the sporozoite protein S14 in P. berghei and show localization near the sporozoite plasma membrane. They also convincingly show, through the generation of S14 knockout lines, that S14 is required for sporozoite motility and thereby also salivary gland and hepatocyte invasion. Their bioinformatic results support possible interactions between S14 and the inner membrane complex proteins MTIP and GAP45. These analyses were performed with these specific candidate proteins rather than being unbiased searches for potential interaction partners. The yeast 2-hybrid data to support these possible protein interactions need further controls.

      Major comments:

      Line 39-41: "Using in silico and the yeast two-hybrid system, we showed the interaction of S14 with the glideosome-associated proteins GAP45 and MTIP. Together, our data show that S14 is a glideosome-associated protein" Although these interactions can be speculated based on the results shown, these interactions were not confirmed in this study.

      Lines 143-144: Unless the sporozoites were not permeablized prior to staining, it is not clear if the protein is "on" the plasma membrane or just under the plasma membrane. Furthermore, this statement anyway seems contradictory to the authors' interpretation of Figure 4A.

      Line 218: "This result indicates that S14 is present within the inner membrane of sporozoites." While this data shows that S14 is not in the plasma membrane of the parasite, how can the authors be sure it is at the IMC?

      Line 149: To definitively state S14 is a membrane protein, biochemical assays proving such should be performed. (or perhaps genetic mutation of the predicted palmitoylation site?) Otherwise, this should be rephrased.

      Line 225-226: This sentence overreaches in its conclusion. There is no indication that this protein provides the power or force behind the sporozoites forward movement. Several proteins are known to be required for gliding motility, but they are not all force-providing factors.

      Lines 257-258: for yeast 2-hybrid, the controls of expressing S14, GAP45 and MTIP together with control proteins where no interaction would be predicted are absent.

      In order to claim interaction between S14 and IMC proteins, interaction needs to be shown experimentally. Well-controlled yeast 2-hybrid would be a start - then interaction would be more than just speculative. But immunoprecipitation from sporozoites or other biochemical interactions would give more support to this idea.

      Minor comments:

      Line 99: "the role of gliding-associated proteins is unexplored" There are several publications on GAP40, GAP45 and GAP50 (some of which are referenced in the previous paragraph).

      Line 114: "We narrowed it down to a candidate" Narrowed down how? Or rephrase.

      Lines 120-123 are strangely written, and I don't follow the logic. What "similar properties" do GAP45 and GAP50 have with S14 and are they really indicative of function? Also if palmitoylation and myristylation and nonclassical secretion are present in most eukaryotes, why would they necessarily be evidence of IMC targeting?

      Line 148-149. I did not see examples of this electromobility shift of GAP45 in this publication (although I may have overlooked it).

      Table 1 legend should preferably specify that hemolymph sporozoites were used for IV infections.

      Line 228: Should be rephrased for accuracy. "revealed the" should be replaced with "suggests"

      Lines 305-307: I don't entirely understand the logic laid out here.

      Lines 320-322: "We hypothesize that S14 possibly plays a structural role and maintains the stability of IMC required for the activity of motors during gliding and invasion." The data about the IMC structure shown is fluorescence microscopy - and there no change is observed in the IMC in the knockout line. I suggest removing or rephrasing this point if no extra data is provided to show this.

      Significance

      The work gives insights into an unstudied, conserved Plasmodium protein, S14, which the authors show is critical for Plasmodium transmission from mosquitoes. The parasite genetics and phenotyping demonstrating this are strong. The conclusions about interactions with glideosome/inner membrane complex components need further experimental support. The work is of interest to the Plasmodium field and may be also of interest to people interested in other protozoan parasites or in cellular motility.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary: The authors have identified a sporozoite gliding motility protein through bioinformatic analysis. From the main text I do not know how, or what bioinformatic analysis was performed, in order to focus on this protein which is called S14. The authors then go on to tag the protein, produce a KO and show its involvement in gliding motility. The KO shows that parasites lacking S14 fail to invade the mosquito salivary glands. This is due to a motility defect. Y2H and docking studies are used to define an interaction with MTIP and GAP45, two known components of the glideosome.

      Major comments: The paper is sometimes hard to follow and lacks clarity. The reason: important information is omitted, or explained at the end of a section rather than at first mention; experimental details that are of essence need to be mentioned or explained in the main text; there is ample use of the word 'bioinformatic' without explaining what kind of analysis was performed in the main text. I cite from the abstract: 'In silico analysis of a novel protein, S14, which is uniquely upregulated in salivary gland sporozoites, suggested its association with glideosome-associated proteins.' I cite from the introduction: 'A study comparing transcriptome differences between sporozoites and merozoites using suppressive subtraction hybridization found several genes highly upregulated in sporozoites and named them 'S' genes (Kaiser et al, 2004). We narrowed it down to a candidate named S14, which lacked signal peptide and transmembrane domains.' From reading the main text, I do not know why Plasmodium berghei S14 was chosen in this manuscript. S14 is one of 25 transcripts identified by Kappe et al in Plasmodium yoelii (https://doi.org/10.1046/j.1365-2958.2003.03909.x) to be upregulated in sporozoites. The material and methods section does not explain either why S14 was chosen. Perhaps the authors could update Figure 2 from Kappe et al with the most recent annotations from plasmodb.

      Reproducibility: None of the main Figures or Figure legends define ' N = '. For example I cite: 'The S14 KO clonal lines were first analyzed for asexual blood-stage propagation, and for this, 200 µl of iRBCs with 0.2% parasitemia was intravenously injected into a group of mice.' There are 2 mentions of 'N=' in the supplementary figures. I have not found any others.

      I'm not sure what the convention is. Should unpublished data for this gene (PBANKA_0605900) found in pberghei.eu (a database for mutant berghei parasites) be cited? After all it confirms their findings.

      The authors need to use more recent references for some of their statements; see some comments below.

      Minor comments:

      line

      1-2 Add the Plasmodium species of this study. abstract Which species do you work with? 29 mosquito salivary glands and human host hepatocytes 30 to the glideosome, a protein complex containing [...] 32-33 What kind of in silico analysis suggested S14 is part of the glideosome? S14 is not uniquely upregulated; there are other S-type genes identified by Kappe and Matuschewski. 25 I believe. 32 Please point out he species were S genes were identified. SGS of which species? 34 expression: change to transcription 39 What kind of in silico analysis was used here? and therefore malaria transmission 55 A single zygote transforms into a single ookinete, which establishes a single oocyst, which in turn can produce thousands of midgut sporozoites. Please correct the life cycle passage. located or anchored in the IMC? And located between the IMC and plasma membrane? 61-63 Refer to Table S1 and its contents here 64 Name the known GAPs.

      65-67 Which transmembrane domain proteins? Please add more recent references than King 1988. 71-72 TRAP was the first protein found to be ... 74-76 Add additional, more recent references: for example search Frischknecht and TRAP 76 S6 (TREP) is also [...] 88 Some of these proteins are also expressed in ookinetes. 89-91 The sentence needs a verb. 88-96 Please add some more recent glideosome papers. After 2013. 91 Why do you call it a peripheral protein? 91-93 There are more recent citations for GAP45 andGAP50. 96 Insert a reference here. 99 Please define the gliding-associated proteins. What are they? Aren't there papers on GAP40, 45 and 50? DOI: 10.1016/j.chom.2010.09.002 99 .... What prompted you to identify a novel GAP? And why is S14 classified as a GAP? 99-102 What kind of bioinformatic study? Why was S14 chosen? Please outline how you ended up with S14. Any other proteins that came out of the bioinformatic screen from the list of S genes? How many proteins were identified in the screen for sporozoite upregulated proteins by Kappe and Matuschewski? 102-103 Define the nonclassical secretion pathway. Please reference GAP45 and GAP50 data for the nonclassical pathway. 105 Please add P. berghei to the title, the abstract, the introduction. 111 The results section does not outline what bioinformatic analysis was used 112-114 Please specify the exact number of upregulated in sporozoites genes. I think it was 25. And add the species the study was performed in. Why did you choose the Kappe study but not the uis genes from berghei? 114-115 How did you narrow it down to S14? The Kappe paper lists 25 S-type genes from P. yoelii. 118 Plasmodia is not the plural for a group of different Plasmodium species. Use: [...] conserved among Plasmodium spp. 118-119 Which proteins did you analyze? And how did you analyze them? Where is the data for this analysis? Outline the amino acids that predict palmitoylation? The nonclassical pathway? 119-122 Here: do you mean S14 has similar properties as GAP 45 and GAP50? Define the nonclassical pathway? How do you know S14 is in the IMC? 122-123 Please reference the bioinformatic analysis plus URL that allows targeting to the IMC to be analyzed. 123-124 Please reference the URLs for TM, palmitoylation, and interactions analyses. 125-127 How did you predict that S14 is secreted via the nonclassical pathway? 128-130 Define the nonclassical pathway when it first appears in your manuscript. The citation Moskes 2004 is not in the reference list 132 Which membrane? 134-135 In which species? 141-142 Please include images of blood stage and liver stage parasites. 142-143 Which membrane? 148-149 I cannot find the specific figure you refer to; I checked the online version of the Frenal 2010 paper. 175 gland, we counted [...] 177 Compared to the 177-179 Failed to invade (absolutely)? Or invaded in highly reduced numbers? 182-186 Please be precise: I think you mean you let all types of mosquitoes take a blood meal; s14 knockout-infected mosquitoes did not infect mice. 181-202 Perhaps use paragraphs to indicate the different types of experiments performed here. 204 Please introduce paragraphs to identify the different experiments in this section 208 Outer or inner membrane of what? IMC, the plasma membrane? 228 onwards Structural models were obtained from whom? Which species did you use for the docking study? Could you use in one approach 3 berghei proteins, and confirm your docking studies with the falciparum proteins? That would strengthen your model. Should you include a negative control protein in the approach? 250-251 Was all of the gene cloned? Please define amino acid range. discussion Please discuss data from https://elifesciences.org/articles/77447 in relation to your protein

      298-300 More recent glideosome papers exist. For example https://doi.org/10.1038/s42003-020-01283-8 340 List the proteins you analysed. Add URL (websites) to the analyses tools. 343 Known association from the literature: how was this done? 346-349 A few glideosome components? On what basis were they selected and which are they?

      471 Can AlphaFold Structure Predictions be used in the docking studies? 487 What parts of theses genes was cloned? Define the amino acid range. 714 Please split the table into A Mosquito bite and B haemolymph Sporozoites Figure 1 For clarity, maybe write S14::mCherry Figure 1 It would be useful to show blood stage parasite images. Figure 1F You have not formally shown that this signal corresponds to palmitoylated S14. Could be heavy chain. Figure 2G Haemolymph sporozoites ? Figure 8 You argued that S14 is a membrane-bound protein through palmitoylation. Here the protein is shown to be cytoplasmic. Please update our model with more recent ones.

      Figure S2B It would be good to include a positive control for these PCRs. Figure S3 It would be good to include a positive control for these PCRs.

      Tabel S1 Table S1 is only mentioned twice in the text: lines 124 and 128. There is no mention that the table contains all (??) known gliding motility proteins. Table S1 The algorithms / websites used for bioinformatic prediction need to be listed here. Table S2 Add the plasmodb gene identifiers here. The table does not show all Plasmodium spp. but a selection.

      Significance

      General assessment: The authors provide an in-depth analyses of the Plasmodium berghei protein S14 and its involvement in gliding motility.

      Advance: This paper is the first analysis of the S14 protein. The authors suggest a bridging function for the protein between MTIP and GAP45.

      Audience: Gliding motility is of interest to the apicomplexan field. I think this particular proteins is specific to Plasmodium spp.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Dear Editor,

      Herewith we submit our fully revised peer-reviewed preprint that had been reviewed by Review Commons. We thank the Review Commons team and reviewers for thoroughly commenting on our preprint and providing very useful additional points for consideration and discussion.

      You will find - the revised manuscript (third preprint version uploaded on biorxiv)<br /> - two reviewer letters (through Review Commons), - our rebuttal letter<br /> - a revised manuscript version with highlighted changes.

      Our manuscript reports that an active form of FIT, an essential transcription factor for root iron acquisition in plants, forms dynamic nuclear condensates in response to a blue light stimulus.<br /> A hallmark of our work is the thorough investigation of the nature of the FIT nuclear bodies in plant cells, that we were able to characterize as highly dynamic condensates in which active FIT homo- and heteromeric protein complexes can accumulate preferentially. Through co-localization with nuclear body markers, we found that these FIT condensates are related to speckles, which are a sub-type of nuclear bodies connected with splicing activities. This suggests that FIT condensates are linked with post-transcriptional regulation mechanisms.

      The reviewers highlight that an “impressive set of microscopic techniques” has been combined to study in a unique manner the characteristics and functionalities of FIT nuclear bodies in living plant cells. We show that FIT nuclear bodies can be formed in roots of Arabidopsis thaliana. The microscopic imaging techniques we used to characterize the nature and functionalities of FIT nuclear bodies in plant cells have several constraints related to sensitivity and a required strength of fluorescent protein signal. For technical reasons to be able to apply qualitative and quantitative imaging techniques, we conducted the investigation of FIT condensates in Nicotiana benthamiana, a classical and widely used plant protein expression system.

      As stated in the reviews, the connection between plant nutrition and nuclear bodies is an “unprecedented” new mode of regulation. The significance of our work is underlined by the fact that we report a “very precise cellular and molecular mechanism in nutrition” that is as yet “still largely unexplored in this context”. Therefore, our study “sheds light on the functional role of this membrane-less compartment and will be appreciated by a large audience.”

      We propose that condensate formation is a mechanism that may steer iron nutrition responses by providing a link between iron and light signaling. For sessile plants, it is absolutely essential that environmental signals are sensed and integrated with developmental and physiological programs so that plants can rapidly adjust to a changing environment and potential stress situations. Since iron is a micronutrient that may be toxic when present in excess, e.g. through catalyzing oxidative stress, plants strictly control the acquisition and allocation of iron. Hence, FIT nuclear bodies may be regulatory hubs that integrate at the sub-nuclear level environmental signaling inputs in the control of micronutrient uptake, possibly connected with splicing.

      Our work lays the ground for future studies that can address the proof of concept in more detailed manner in plants exposed to varying environmental conditions to reveal the interconnection of environmental and nutritional signaling.

      We prepared a revised preprint in which we address all reviewer comments. Please find our revision and our detailed response to all reviewer comments.

      With these changes, we hope that our peer-reviewed preprint can receive a positive vote,

      We are looking forward to your response,

      Sincerely

      Petra Bauer and Ksenia Trofimov on behalf of all authors

      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity):

      In this paper entitled " FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) accumulates in homo- and heterodimeric complexes in dynamic and inducible nuclear condensates associated with speckle components", Trofimov and colleagues describe for the first time the function of FIT in nuclear bodies. By an impressive set of microscopies technics they assess FIT localization in nuclear bodies and its dynamics. Finally, they reveal their importance in controlling iron deficiency pathway. The manuscript is well written and fully understandable. Nonetheless, at it stands the manuscript present some weakness by the lack of quantification for co-localization and absence controls making hard to follow authors claim. Moreover, to substantially improve the manuscript the authors need to provide more proof of concepts in A. thaliana as all the nice molecular and cellular mechanism is only provided in N. bentamiana. Finally, some key conclusions in the paper are not fully supported by the data.<br /> Please see below:

      Main comments:

      1) For colocalization analysis, the author should provide semi-quantitative data counting the number of times by eyes they observed no, partial or full co-localization and indicate on how many nucleus they used.

      Authors:

      We have added the information in the Materials and Method section, lines 731-734:

      In total, 3-4 differently aged leaves of 2 plants were infiltrated and used for imaging. One infiltrated leaf with homogenous presence of one or two fluorescence proteins was selected, depending on the aim of the experiment, and ca. 30 cells were observed. Images are taken from 3-4 cells, one representative image is shown.

      In all analyzed cases, except in the case of colocalization of FIT and PIF4 fusion proteins, the ca. 30 cells had the same localization and/or colocalization patterns. This information has also been added in the figure legends. Each experiment was repeated at least 2-3 times, or as indicated in the figure legend.

      2) Do semi-quantitative co-localization analysis by eyes, on FIT NB with known NB makers in the A. thaliana root. For now, all the nicely described molecular mechanism is shown in N. benthamiana which makes this story a bit weak since all the iron transcriptional machinery is localized in the root to activate IRT1.

      Authors:

      The described approach has been very optimal, and we were able to screen co-localizing marker proteins in FIT NBs in N. benthamiana to better identify the nature of FIT NBs. This has been successful as we were able to associate FIT NBs with speckles. The N. benthamiana system allowed optimal microscopic observation of fluorescence proteins and quantification of FIT NB characteristics in contrast to the root hair zone of Arabidopsis where Fe uptake takes place. FIT is expressed at a low level in roots and also in leaves, whereby fluorescence protein expression levels are insufficient for the here-presented microscopic studies. The tobacco infiltration system is also well established to study FIT-bHLH039 protein interaction and nuclear body markers. We discuss this point in the discussion, see line 489-500.

      3) The authors need to provide data clearly showing that the blue light induce NB in A. thaliana and N. benthamiana.

      Authors:

      For tobacco, see Figure 1B (t = 0, 5 min) and Supplemental Movies S1. For Arabidopsis, please see Figure 1A (t = 0, 90 and 120 min) and Supplemental Figure S1A. We provide an additional image of pFIT:cFIT-GFP Arabidopsis control plants, showing that NB formation is not detected in plants that were grown in white light and not exposed to blue light before inspection (Supplemental Figure S1B). We state, that upon blue light exposure, plants had FIT NBs in at least 3-10 nuclei of 20 examined nuclei in the root epidermis in the root hair zone (in three independent experiments with three independent plants). White-light-treated plants showed no NB formation unless an additional exposure to blue light was provided (in three independent experiments, three independent plants per experiment and with 15 examined nuclei per plant).

      4) Direct conclusion in the manuscript:

      • Line 170: At this point of the paper the author cannot claim that the formation of FIT condensates in the nucleus is due to the light as it might be indirectly linked to cell death induced by photodamaging the cell using a 488 lasers for several minutes. This is true especially with the ELYRA PS which has strong lasers made for super resolution and that Cell death is now liked to iron homeostasis. The same experiment might be done using a spinning disc or if the authors present the data of the blue light experiment mentioned above this assumption might be discarded. Alternatively, the author can use PI staining to assess cell viability after several minutes under 488nm laser.

      Authors:

      As stated in our response to comment 3, we have included now a white light control to show that FIT NB formation is not occurring under the normal white light conditions. Since the formation of FIT NBs is a dynamic and reversible process (Figure 1A), it indicates that the cells are still viable, and that cell death is not the reason for FIT NB formation.

      • Line 273: I don't agree with the first part of the authors conclusion, saying that "wild-type FIT had better capacities to localize to NBs than mutant FITmSS271AA, presumably due its IDRSer271/272 at the C-terminus. This is not supported by the data. In order to make such a claim the author need to compare the FA of FIT WT with FITmSS271AA by statistical analysis. Nonetheless, the value seems to be identical on the graphs. The main differences that I observed here are, 1) NP value for FITmSS271AA seems to be lower compared to FIT-WT, suggesting that the Serine might be important to regulate protein homedimerization partitioning between the NP and the NB. 2) To me, something very interesting that the author did not mention is the way the FA of FITmSS271AA in the NB and NP is behaving with high variability. The FA of those is widely spread ranging from 0.30 to 0.13 compared to the FIT-WT. To me it seems that according to the results that the Serine 271/272 are required to stabilize FIT homodimerization. This would not only explain the delay to form the condensate but also the decreased number and size observed for FITmSS271AA compared to FIT-WT. As the homodimerization occurs with high variability in FITmSS271AA, there is less chance that the protein will meet therefore decreasing the time to homodimerize and form/aggregate NB.

      Authors:

      We fully agree. We meant to describe this result it in a similar way and thank you for help in formulating this point even better. Rephrasing might make it better clear that the IDRSer271/272 is important for a proper NB localization, lines 272-278:

      “Also, the FA values did not differ between NBs and NP for the mutant protein and did not show a clear separation in homodimerizing/non-dimerizing regions (Figure 3D) as seen for FIT-GFP (Figure 3C). Both NB and NP regions showed that homodimers occurred very variably in FITmSS271AA-GFP.

      In summary, wild-type FIT could be partitioned properly between NBs and NP compared to FITmSS271AA mutant and rather form homodimers, presumably due its IDRSer271/272 at the C-terminus.”

      • Line 301: According to my previous comment (line 273), here it seems that the Serine 271/272 are required only for proper partitioning of the heterodimer FIT/BHLH039 between the NP and NB but not for the stability of the heterodimer formation. However, it might be great if the author would count the number of BHLH039 condensates in both version FITmSS271AA and FIT-WT. To my opinion, they would observe less BHLH039 condensate because the homodimer of FITmSS271AA is less likely to occur because of instability.

      Authors:

      bHLH039 alone localizes primarily to the cytoplasm and not the nucleus, and the presence of FIT is crucial for bHLH039 nuclear localization (Trofimov et al., 2019). Moreover, bHLH039 interaction with FIT depends on SS271AA (Gratz et al., 2019). We therefore did not consider this experiment for the manuscript and did not acquire such data, as we did not expect to achieve major new information.

      5) To wrap up the story about the requirements of NB in mediating iron acquisition under different light regimes, provide data for IRT1/FRO2 expression levels in fit background complemented with FITmSS271AA plants. I know that this experiment is particularly lengthy, but it would provide much more to this nice story.

      Authors:

      Data for expression of IRT1 and FRO2 in FITmSS271AA/fit-3 transgenic Arabidopsis plants are provided in Gratz et al. (2019). To address the comment, we did here a NEW experiment. We provide gene expression data on FIT, BHLH039, IRT1 and FRO2 splicing variants (previously reported intron retention) to explore the possibility of differential splicing alterations under blue light (NEW Supplemental Figure S6 and S7, lines 454-466). Very interestingly, this experiment confirms that blue light affects gene expression differently from white light in the short-term NB-inducing condition and that blue light can enhance the expression of Fe deficiency genes despite of the short 1.5 to 2 h treatment. Another interesting aspect was that the published intron retention was also detected. A significant difference in intron retention depending on iron supply versus deficiency and blue/white light was not observed, as the pattern of expression of transcripts with respective intron retentions sites was the same as the one of total transcripts mostly spliced.

      Minor comments

      In general, I would suggest the author to avoid abbreviation, it gets really confusing especially with small abbreviation as NB, NP, PB, FA.

      Authors:

      We would like to keep the used abbreviations as they are utilized very often in our work and, in our eyes, facilitate the understanding.

      Line 106: What does IDR mean?

      Authors:

      Explanation of the abbreviation was added to the text, lines 105-108:

      “Intrinsically disordered regions (IDRs) are flexible protein regions that allow conformational changes, and thus various interactions, leading to the required multivalency of a protein for condensate formation (Tarczewska and Greb-Markiewicz, 2019; Emenecker et al., 2020).”

      Line 163-164: provide data or cite a figure properly for blue light induction.

      Authors:

      We have removed this statement from the description, as we provide a white light control now, lines 157-158:

      “When whole seedlings were exposed to 488 nm laser light for several minutes, FIT became re-localized at the subnuclear level.”

      Line 188: Provide Figure ref.

      Authors:

      Figure reference was added to the text, lines 184-185:

      “As in Arabidopsis, FIT-GFP localized initially in uniform manner to the entire nucleus (t=0) of N. benthamiana leaf epidermis cells (Figure 1B).”

      Line 194: the conclusion is too strong. The authors conclude that the condensate they observed are NB based on the fact the same procedure to induce NB has been used in other study which is not convincing. Co-localization analysis with NB markers need to be done to support such a claim. At this step of the study, the author may want to talk about condensate in the nucleus which might correspond to NB. Please do so for the following paragraph in the manuscript until colocalization analysis has not been provided. Alternatively provide the co-localization analysis at this step in the paper.

      Authors:

      We agree. We changed the text in two positions.

      Lines 176-178__: “__Since we had previously established a reliable plant cell assay for studying FIT functionality, we adapted it to study the characteristics of the prospective FIT NBs (Gratz et al., 2019, 2020; Trofimov et al., 2019).”

      Lines 192-193: “__We deduced that the spots of FIT-GFP signal were indeed very likely NBs (for this reason hereafter termed FIT NBs).”

      Line 214: In order to assess the photo bleaching due to the FRAP experiment the quantification of the "recovery" needs to be provided in an unbleached area. This might explain why FIT recover up to 80% in the condensate. Moreover, the author conclude that the recovery is high however it's tricky to assess since no comparison is made with a negative/positive control.

      Authors:

      In the FRAP analysis, an unbleached area is taken into account and used for normalization.

      We reformulated the description of Figure 1F, lines 212-214:

      “According to relative fluorescence intensity the fluorescence signal recovered rapidly within FIT NBs (Figure 1F), and the calculated mobile fraction of the NB protein was on average 80% (Figure 1G).”

      Line 220-227: The conclusion it's too strong as I mentioned previously the author cannot claim that the condensate are NBs at this step of the study. They observed nuclear condensates that behave like NB when looking at the way to induce them, their shape, and the recovery. And please include a control.

      Authors:

      Please see the reformulated sentences and our response above.

      Lines 176-178: “Since we had previously established a reliable plant cell assay for studying FIT functionality, we adapted it to study the characteristics of the prospective FIT NBs (Gratz et al., 2019, 2020; Trofimov et al., 2019).”

      Lines 192-193: “__We deduced that the spots of FIT-GFP signal were indeed very likely NBs (for this reason hereafter termed FIT NBs).”

      Line 239: It's unappropriated to give the conclusion before the evidence.

      Authors:

      Thank you. We removed the conclusion.

      Line 240: Figure 2A, provide images of FIT-G at 15min in order to compare. And the quantification needs to be provided at 5 minutes and 15 minutes for both FIT-G WT and FIT-mSS271AA-G counting the number of condensates in the nucleus. Especially because the rest of the study is depending on these time points.

      Authors:

      This information is provided in the Supplemental Movie S1C.

      Line 241: the author say that the formation of condensate starts after 5 minutes (line 190) here (line 241) the author claim that it starts after 1 minutes. Please clarify.

      Authors:

      In line 190 we described that FIT NB formation occurs after the excitation and is fully visible after 5 min. In line 241 we stated that the formation starts in the first minutes after excitation, which describes the same time frame. We rephrased the respective sentences.

      Lines 185-188: “A short duration of 1 min 488 nm laser light excitation induced the formation of FIT-GFP signals in discrete spots inside the nucleus, which became fully visible after only five minutes (t=5; Figure 1B and Supplemental Movie S1A).”

      Lines 239-242: “While FIT-GFP NB formation started in the first minutes after excitation and was fully present after 5 min (Supplemental Movie S1A), FITmSS271AA-GFP NB formation occurred earliest 10 min after excitation and was fully visible after 15 min (Supplemental Movie S1C).”

      Line 254: Not sure what the authors claim "not only for interaction but also for FIT NB formation ". To me, the IDR is predicted to be perturbed by modeling when the serines are mutated therefore the IDR might be important to form condensates in the nucleus. Please clarify.

      Authors:

      The formation of nuclear bodies is slow for FITmSS271AA as seen in Figure 2. Previously, we showed that FITmSS271AA homodimerizes less (Gratz et al., 2019.) Therefore, the said IDR is important for both processes, NB formation and homodimerization. We have added this information to make the point clear, lines 253-255:

      “This underlined the significance of the Ser271/272 site, not only for interaction (Gratz et al., 2019) but also for FIT NB formation (Figure 2).”

      Line 255: It's not clear why the author test if the FIT homodimerization is preferentially associated with condensate in the nucleus.

      Authors:

      We test this because both homo- and heterodimerization of bHLH TFs are generally important for the activity of TFs, and we unraveled the connection between protein interaction and NB formation. We state this in lines 228-232.

      Line 269-272: It's not clear to what the authors are referring to.

      Authors:

      We are describing the homodimeric behavior of FIT and FITmSS271AA assessed by homo-FRET measurements that are introduced in the previous paragraph, lines 256-268.

      Line 309: This colocalization part should be presented before line 194.

      Authors:

      We find it convincing to first examine and characterize the process underlying FIT NB formation, then studying a possible function of NBs. The colocalization analysis is part of a functional analysis of NBs. We thank the reviewer for the hint that colocalization also confirms that indeed the nuclear FIT spots are NBs. We will take this point and discuss it, lines 516-522:

      “Additionally, the partial and full colocalization of FIT NBs with various previously reported NB markers confirm that FIT indeed accumulates in and forms NBs. Since several of NB body markers are also behaving in a dynamic manner, this corroborates the formation of dynamic FIT NBs affected by environmental signals.”

      “In conclusion, the properties of liquid condensation and colocalization with NB markers, along with the findings that it occurred irrespective of the fluorescence protein tag preferentially with wild-type FIT, allowed us to coin the term of ‘FIT NBs’.”

      Line 328: add the ref to figure, please.

      Authors:

      Figure reference was added to the text, lines 330-332:

      “The second type (type II) of NB markers were partially colocalized with FIT-GFP. This included the speckle components ARGININE/SERINE-RICH45-mRFP (SR45) and the serine/arginine-rich matrix protein SRm102-mRFP (Figure 5).”

      Line 334: It seems that the size of the SR45 has an anormal very large diameter between 4 and 6 µm. In general a speckle measure about 2-3µm in diameter. Can the author make sure that this structure is not due to overexpression in N. benthamiana or make sure to not oversaturate the image.

      Authors:

      Thank you for this hint. Indeed, there are reports that SR45 is a dynamic component inside cells. It can redistribute depending on environmental conditions and associate into larger speckles depending on the nuclear activity status (Ali et al., 2003). We include this reference and refer to it in the discussion, lines 557-564:

      “Interestingly, typical FIT NB formation did not occur in the presence of PB markers, indicating that they must have had a strong effect on recruiting FIT. This is interesting because the partially colocalizing SR45, PIF3 and PIF4 are also dynamic NB components. Active transcription processes and environmental stimuli affect the sizes and numbers of SR45 speckles and PB (Ali et al., 2003; Legris et al., 2016; Meyer, 2020). This may indicate that, similarly, environmental signals might have affected the colocalization with FIT and resulting NB structures in our experiments. Another factor of interference might also be the level of expression.”

      Line 335: It seems that the colocalization is partial only partial after induction of NB. The FIT NB colocalize around SR45. But it's hard to tell because the images are saturated therefore creating some false overlapping region.

      Authors:

      The localization of FIT with SR45 is partial and occurs only after FIT has undergone condensation, see lines 335-338.

      Line 344-345: It's unappropriated to give the conclusion before the evidence.

      Authors:

      We explain at an earlier paragraph that we will show three different types of colocalization and introduce the respective colocalization types within separate paragraphs accordingly, see lines 314-321.

      Line 353: increase the contrast in the image of t=5 for UAP56H2 since it's hard to assess the colocalization.

      Authors:

      This is done as noted in the figure legend of Figure 6.

      Line 381-382: "In general" does not sound scientific avoid this kind of wording and describe precisely your findings.

      Authors:

      We rephrased the sentence, line 387-388:

      Localization of single expressed PIF3-mCherry remained unchanged at t=0 and t=15 (Supplemental Figure S5A).

      Line 384-385: Provide the data and the reference to the figure.

      Authors:

      We apologize for the misunderstanding and rephrased the sentence, line 389-391:

      After 488 nm excitation, FIT-GFP accumulated and finally colocalized with the large PIF3-mCherry PB at t=15, while the typical FIT NBs did not appear (Figure 7A)

      Line 386: The structure in which FIT-G is present in the Figure 7A t=15 is not alike the once already observed along the paper. This could be explained by over-expression in N. benthamiana. Please explain.

      Authors:

      Thank you for the hint. We discuss this in the discussion part, see lines 555-568.

      Line 393: Explain and provide data why the morphology of PIF4/FIT NB do not correspond to the normal morphology.

      Authors:

      Thank you for the valuable hints. Several reasons may account for this and we provide explanations in the discussion, see lines 555-568.

      Line 396-398: It seems also from the data that co-expression of PIF4 of PIF3 will affect the portioning of FIT between the NP and the NB.

      Authors:

      We can assume that residual nucleoplasm is depleted from protein during NB formation. This is likely true for all assessed colocalization experiments. We discuss this in lines 492-494.

      The discussion is particularly lengthy it might be great to reduce the size and focus on the main findings.

      Authors:

      We shortened the discussion.

      Referees cross-commenting

      All good for me, I think that the comments/suggestions from Reviewer #2 are valid and fair. If they are addressed they will improve considerably the manuscript.

      Reviewer #1 (Significance):

      This manuscript is describing an unprecedent very precise cellular and molecular mechanism in nutrition throughout a large set of microscopies technics. Formation of nuclear bodies and their role are still largely unexplored in this context. Therefore, this study sheds light on the functional role of this membrane less compartment and will be appreciated by a large audience. However, the fine characterization is only made using transient expression in N. Bentamiana and only few proofs of concept are provided in A. thaliana stable line.

      Reviewer #2 (Evidence, reproducibility and clarity):

      The manuscript of Trofimov et al shows that FIT undergoes light-induced, reversible condensation and localizes to nuclear bodies (NBs), likely via liquid-liquid phase separation and light conditions plays important role in activity of FIT. Overall, manuscript is well written, authors have done a great job by doing many detailed and in-depth experiments to support their findings and conclusions.

      However, I have a number of questions/comments regarding the data presented and there are still some issues that authors should take into account.

      Major points/comments:

      1) Authors only focused on blue light conditions. Is there any specific reason for selecting only blue light and not others (red light or far red)?

      Authors:

      There are two main reasons: First, in a preliminary study (not shown) blue light resulted in the formation of the highest numbers of NBs. Second, iron reductase activity assays and gene expression analysis under different light conditions showed a promoting effect under blue light, but not red light or dark red light (Figure 9). This indicated to us, that blue light might activate FIT, and that active FIT may be related to FIT NBs.

      2) Fig. 3C and D: as GFP and GFP-GFP constructs are used as a reference, why not taking the measurements for them at two different time points for example t=0 and t=5 0r t=15???

      Authors:

      Free GFP and GFP-GFP dimers are standard controls for homo-FRET that serve to delimit the range for the measurements.

      3) Line 27-271: Acc to the figure 3d, for the Fluorescence anisotropy measurement of NBs appears to be less. Please explain.

      Authors:

      FA in NBs with FITmSS271AA is variable and the value is lower than that of whole nucleus but not significantly different compared with that in nucleoplasm. We describe the results of Figure 3D in lines 272-275.

      4) Figure 4: For the negative controls, data is shown at only t=0, data should be shown at t=5 also to prove that there is no decrease in fluorescence in these negative controls when they are expressed alone without bhlh39 as there is no acceptor in this case.

      Authors:

      Neither for FIT/bHLH039 nor the FITmSS271AA/bHLH039 pair, there is a significant decrease in the fluorescence lifetime values between t=0 and t=5/15. FIT-G is a control to delimit the range. The interesting experiment is to compare the protein pairs of interest between the different nuclear locations at t=5/15.

      5) Line 300-301: In Figure 4D and 4E. Fluorescence lifetime of G measurement at t=0 seems very similar for both FIT-G as well as FITmSS but if we look at the values of t=0 for FIT-G+bhlh039 it is greater than 2.5 and for FITmSS271AA-G+bhlh039 it is less which suggests more heterodimeric complexes to be formed in FITmSS271AA-G+bhlh039. Similar pattern is observed for NBs and NPs, according to the figure 4d and E.

      Therefore, heterodimeric complexes accumulated more in case of FITmSS271AA-G+bhlh039 as compared to FIT-G+bhlh039 (if we compare measurement values of Fluorescence lifetime of G of FITmSS271AA-G+bhlh039 with FIT-G+bhlh039).

      Please comment and elaborate about this further.

      Authors:

      These conclusions are not valid as the experiments cannot be conducted in parallel. Since the experiments had to be performed on different days due to the duration of measurements including new calibrations of the system, we cannot compare the absolute fluorescence lifetimes between the two sets.

      6) Figure 4: For the negative controls, data is shown at only t=0, data should be shown at t=5 also to prove that there is no decrease in fluorescence in these negative controls when they are expressed alone without bhlh39 as there is no acceptor in this case.

      Authors:

      Please see our response to your comment 4).

      7) Line 439-400: As iron uptake genes (FRO2 and IRT1) are more induced in WT under blue light conditions and FRO2 is less induced in case of red-light conditions. So, what happens to Fe content of WT grown under blue light or red light as compared to WT grown under white light. Perls/PerlsDAb staining of WT roots under different light conditions will add more information to this.

      Authors:

      We focused on the relatively short-term effects of blue light on signaling of nuclear events that could be related to FIT activity directly, particularly gene expression and iron reductase activity as consequence of FRO2 expression. These are both rapid changes that occur in the roots and can be measured. We suspect that iron re-localization and Fe uptake also occur, however, in our experience differences in metal contents will not be directly significant when applying the standard methods like ICP-MS or PERLs staining.

      Minor comments:

      Line 75-76: Rephrase the sentence

      Authors:

      We rephrased the sentence, lines 73-74:

      “As sessile organisms, plants adjust to an ever-changing environment and acclimate rapidly. They also control the amount of micronutrients they take up.”

      Line 119: Rephrase the sentence

      Authors:

      We rephrased the sentence, line 118-119:

      “Various NBs are found. Plants and animals share several of them, e.g. the nucleolus, Cajal bodies, and speckles.”

      Line 235-236: rephrase the sentence

      Authors:

      We rephrased the sentence, line 232-234:

      “In the work of Gratz et al. (2019), the hosphor-mimicking FITmS272E protein did not show significant changes in its behavior compared to wild-type FIT.”

      Line 444: Correct the sentence “Fe deficiency versus sufficiency”

      Authors:

      We corrected that, line 449-451:

      “In both, the far-red light and darkness situations, FIT was induced under iron deficiency versus sufficiency, while on the other side, BHLH039, FRO2 and IRT1 were not induced at all in these light conditions (Figure 9I-P).”

      Referees cross-commenting

      I agree with R1 suggestions/comments and i think manuscript quality will be much better if authors carry out the experiments suggested by R1. I believe this will also strengthen their conclusions.

      Reviewer #2 (Significance):

      Overall, manuscript is well written, authors have done a nice job by doing several key experiments to support their findings and conclusions. However, the results and manuscript can be improved further by addressing some question raised here. This study is interesting for basic scientists which unravels the crosstalk of light signaling in nutrient signaling pathways.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      *In their study, Yamano et al. dissect the mechanism of TBK1 activation and downstream effects, especially in its relation to mitophagy adaptor OPTN. The authors find that OPTN's interaction with ubiquitin and the autophagy machinery, forming contact sites between mitochondria and autophagic membranes, results in TBK1 accumulation and subsequent autophosphorylation. Based on these findings, the authors propose a self-propagating feedback loop wherein OPTN phosphorylation by TBK1 promotes recruitment and accumulation of OPTN to damaged mitochondria and specifically the autophagosome formation site. This formation site is then involved in TBK1 autophosphorylation, and the activated TBK1 can then further phosphorylate other pairs of OPTN and TBK1. A OPTN monobody investigation strengthens their findings. *

      *Critique: *

      • It would be helpful if the authors could more clearly highlight the previous findings in OPTN-TBK1 relationship and which gaps in the understanding their study addresses.* We thank the reviewer for this comment. As suggested, we have highlighted previous findings and detailed in the Discussion how the study advances our understanding of TBK1 activation.

      • It is not always clear whether experiments have been replicated sufficiently; this should be indicated in the figure descriptions.* In the original manuscript, most of the data shown was derived from duplicated experiments. For the revised version, we repeated experiments as needed to generate the replication necessary (i.e, N = 3) for determining statistical significance. Error bars and statistical significance have been added to the graphs and figure legends accordingly.

      • During the discussion, references to the figures that indicate conclusions should be added where appropriate.* We thank the reviewer for the suggestion. References to figures have been added were appropriate to the Discussion.

      *Figure 1 / Result "OPTN is required for TBK1 phosphorylation and subsequent autophagic Degradation": *

      *o In a) the TBK1 and TOMM20 blots feature an image artefact that makes it appear like the blots are stitched together or there was a problem with the digital imager. The quantification in b) seems to be missing replications. *

      We found that the artifact came from an automatic pixel interpolation process in Adobe Photoshop when the image was rotated by a small angle. We have provided the original immunoblotting data below as evidence that the data were not stitched from separate images. More accurate representations of the images without the artifact are now shown in Fig1 A of the revised manuscript.

      For Fig 1b, the experiment was independently replicated three times with error bars added to each plot on the graph.

      *o g) should feature the wt cell line on the same blot for better comparability as well as quantification and replication like done in f) *

      As suggested, we have included the WT cell line in the immunoblot (See Fig 1g). In addition, Reviewer 2 asked that we provide data for Penta KO cells without exogenous expression of the autophagy adaptors and expressed concern regarding the lower expression of NDP52 relative to OPTN. To address these issues, we repeated the mitophagy experiments and detected phosphorylated TBK1 in six different cell lines: WT, Penta KO, Penta KO stably expressing OPTN at both low and high expression levels, and Penta KO stably expressing NDP52 at low and high expression levels. Immunoblots of phos-TBK1(pS172), TBK1, OPTN, NDP52, TOMM20, and actin were generated under four different conditions (DMSO, valinomycin for 1 hr, valinomycin for 3 hrs, and valinomycin in the presence of bafilomycin for 3 hrs). In addition, phos-TBK1 abundance in the six cell lines was determined in response to val and baf for 3 hrs and the expression levels of NDP52 and OPTN were similarly determined in response to DMSO. Error bars based on three independent experiments have been incorporated into the data, which are shown in Figure 1g and 1h of the revised manuscript.

      *o h) is missing the blots for controls actin and TOMM20 *

      Immunoblots for actin and TOMM20 have been added, please see Fig 1i in the revised manuscript.

      *o In the text to e/f), the authors write that NDP52 KO effect on pS172 are comparable to controls, though the quantitation in f) indicates that pS172 signal is indeed significantly reduced compared to wt *

      The reviewer is correct, the phos-TBK1 (pS172) signal in NDP52 KO cells is reduced compared to that in WT cells, but is only moderately lower in NDP52 KO cells relative to OPTN KO. We regret the error, which has been corrected in the revised manuscript.

      *o In the text to h/i), the authors write "there was a significant increase in the TBK1 pS172 signal in cells overexpressing OPTN", though the quantification in i) does not indicate significance levels *

      We performed statistical analyses on the phos-TBK1 (pS172) levels between cells with or without OPTN overexpression and have added the degree of significance to Fig 1j. As indicated in the original manuscript, there was a significant increase in phos-TBK1 (pS172) levels when OPTN was overexpressed.

      *Figure 2 / Result "OPTN association with the autophagy machinery is required for TBK1 activation": ** o In b), pTBK1 at val 1 hr only features one dot/experiment per cell line *

      Three independent replicates of the experiment (val 1 hr) were performed. The levels of phos-TBK1 (pS172), total TBK1, and actin were quantified, and the graph was remade with error bars and statistical significance incorporated. Please see Fig 2b in the revised manuscript.

      *o In the text to c), the authors claim that the mutants reduce/abolish the recruitment of OPTN to the autophagosome site. A costain for LC3, as done for SupFig 1b, would be necessary to support that specific claim. *

      To address the reviewer’s concern regarding the recruitment of OPTN mutants to the autophagosomal formation site, we performed two different experiments. First, when OPTN WT is recruited to the contact site between the autophagosomal formation site and damaged mitochondria, it should be heterogeneously distributed across mitochondria. In contrast, OPTN mutants that are unable to associate with the autophagosome formation sites should be largely localized to damaged mitochondria since the mutants are still capable of binding ubiquitin. When we examined the mitochondrial distribution of OPTN WT following valinomycin treatment for 1 hr, more than 80% of the Penta KO cells exhibited a heterogeneous distribution, whereas only 10% of the cells showed a similar distribution for OPTN 4LA or OPTN 4LA/F178A (please see Fig 2g in the revised manuscript). Although the OPTN F178A mutant exhibited 50% heterogeneous distribution (Fig 2g), this may be because OPTN F178A retains the ability to interact with ATG9A vesicles. In fact, our previous mitophagy analyses (Keima-based FACS analysis, Yamano et al 2020 JCB), which are strongly correlated with OPTN mitochondrial distribution, showed that the OPTN F178A mutant moderately (~ 60%) induced mitochondrial degradation. This degradation effect was slightly higher (80%) with OPTN WT but significantly lower (9%) with the 4LA/F178A mutant. In the second experiment, Penta KO cells expressing either OPTN WT or the OPTN mutants were immunostained for exogenous FLAG-tagged OPTN, endogenous WIPI2, and HAP60 (a mitochondrial marker) after valinomycin treatment for 1 hr (see Fig 2e and 2f in the revised manuscript). Because LC3B is assembled on the autophagosomal formation site as well as completed autophagosomes, we detected endogenous WIPI2 because WIPI2 is only recruited to autophagosomal formation sites (Dooley et al. 2014 Mol Cell). Confocal microscopy images and their associated quantification data indicate that WIPI2 foci formation during mitophagy was reduced in Penta KO cells expressing the OPTN mutants (4LA, F178A and 4LA/F178A) as compared to Penta KO cells expressing OPTN WT.

      *o d) and g) as simple confirmations of KO/KD efficiency might be better suited for the supplemental part, or blots for FIP/ATG be included with the blots in e) and h) *

      Based on the reviewer comments, we performed additional experiments related to Figure 2 and have incorporated the new data into the revised figure. The original Figure 2d, e, f, g, h, and I have been moved to supplemental Figure 5.

      *o In the text to e), the authors claim that the levels of pS172 in the KO cell lines did not increase during mitophagy, though the blot and quantification in f) seem to indicate an increase. The results therefore don't seem to align completely with the claims that pS172 generation in response to mitophagy requires the autophagy machinery, or that FIP200 and ATG9A rather than ATG5 are critical for TBK1 phosphorylation. *

      Although newly generated pS172 TBK1 was reduced in FIP200 KO and ATG9A KO cells relative to WT cells, the signals gradually increased. In the autophagy KO cell lines (FIP200 KO and ATG9A KO), phos-TBK1 accumulates prior to mitophagy stimulation. Although suggesting it is mitophagy-independent, phos-TBK1 accumulation prior to mitophagy stimulation in autophagy KO cell lines complicated interpretation of the results. To avoid this issue, we used siRNA to transiently knock down FIP200 and ATG9A. As shown in the original manuscript (Fig 2g, h, I in the original manuscript, supplementary Fig 5d, e, f in the revised manuscript), knockdown of FIP200 and ATG9A prior to mitophagy induction allowed us to observe mitophagy-dependent phosphorylation of TBK1. This result strongly suggests that the autophagy machinery does induce TBK1 phosphorylation in response to Parkin-mediated mitophagy. However, TBK1 phosphorylation still increases, albeit very slightly, in the FIP200 and ATG9A knock down cells. Thus, it may be reasonable to assume that OPTN-dependent phosphorylation of TBK1 can occur to a certain degree even in the absence of autophagy components. We have noted this in the Discussion.

      While conducting experiments for the revised manuscript, we determined that TAX1BP1 is responsible for the accumulation of phos-TBK1 in the autophagy KO cell lines under basal conditions. When TAX1BP1 is knocked down in FIP200 KO or ATG9A KO cells, the basal accumulation of phos-TBK1 was eliminated and then we could observe mitophagy-specific TBK1 phosphorylation (please see Fig 2h, i, j, k in the revised manuscript). These results showed that mitophagy-dependent phos-TBK1 is largely attenuated in FIP200KO and was almost completely eliminated in ATG9A KO cells (Fig 2k in the revised manuscript).

      *o f) is missing significance indications. Its description has a typo: "bad" instead of "baf" *

      Newly synthesized pTBK1 (pS172) during mitophagy was quantified and statistical significance incorporated into the figure (please see supplementary Fig 5c). The identified typo has been corrected.

      *Figure 3 / Result "TBK1 activation does not require OPTN under basal autophagy conditions": *

      *o In the text to SupFig2, the authors claim that pS172 levels are significantly elevated, but no significance levels are indicated *

      Statistical significance was determined for all proteins shown in original supplementary Fig 2 and the results have been incorporated into the relevant figure. The original supplementary Fig 2 is now supplementary Fig 6.

      *o In the text to a), NBR1 is claimed to colocalize with Ub, but no costaining with Ub is shown. The claimed lacking colocalization of OPTN with Ub is not obvious from the images; a quantification might be appropriate. *

      Since the anti-NBR1 antibody used in the original manuscript is derived from mouse, we were unable to use it in conjunction with the mouse ubiquitin antibody. Because ubiquitin-positive foci and NBR1-positive foci contain p62 (original Fig 3a) and NBR1 and p62 are known to tightly interact each other (Kirkin et al. 2009 Mol Cell and Sanchez-Martin et al. 2020 EMBO Rep), we stated that "NBR1 colocalizes with Ub". However, the reviewer is correct. To remedy this confusion, we obtained a rabbit anti-NBR1 antibody (a gift from the Masaaki Komatsu group) and used it to co-immunostain with anti-Ub antibodies (please see supplementary Fig 7a of the revised manuscript). NBR1 foci colocalize with both ubiquitin and p62 in FIP200 KO and ATG9A KO cells. Further, based on comments from Reviewer 2, we purchased several anti-TBK1 antibodies and identified one that was able to detect endogenous TBK1 by immunostaining (see Figure 1 for reviewers in our response to Reviewer 2 below). Using this anti-TBK1 antibody, we showed that a part of TBK1 also associates with ubiquitin and p62-positive aggregates.

      *o In the text to b), the authors make reference to significant changes, but replication/ quantification/ significance testing is missing. *

      We independently performed the same experiments three times. The levels of TBK1, phos-TBK1 (pS172), all five autophagy adaptors, and TOMM20 in both the supernatants and pellets have been quantified with error bars and statistical significance indicated. These results have been incorporated into Figure 3c in the revised manuscript.

      *Figure 4b) is missing the pTBK1 data that is referenced in the text. In the text to figure 5 c/d), the authors claim that certain mutants have no significant effect on mitophagy, though d) is missing significance testing *

      *Figure 6 c/d/i) appear to be missing replication. *

      For Figure 4b, phos-TBK1 was immunoblotted (See Fig 4b of the revised manuscript). For Figure 5b and d, statistical significance was determined for the effect of TBK1 mutations on autophosphorylation and OPTN phosphorylation and the effect of the TBK1 mutants on Parkin-mediated mitophagy. For Figure 6 c/d/I, the experiment was repeated; error bars and statistical significance have been added to the associated graphs.

      *Reviewer #1 (Significance (Required)): Removal of damaged mitochondria by the mitophagy pathway provides an important safeguarding mechanism for cells. The Pink1/Parkin mechanism linked to numerous modulators and adaptor proteins ensures an efficient targeting of damaged mitochondria to the phagophore. The Ser/Thr kinase TBK1, in addition of multiple roles in innate immunity, is a major mitophagy regulator as has been revealed by the Dikic and Youle groups in 2016 (Richter et al., PNAS). The mechanistic insights provided by this manuscript add to a growing body of studies of how the autophagy machinery interconnects with cellular signalling networks. Although parts of the results need to be further validated, the data shown is of high quality, revealing an important conceptual advance. The paper is interesting and of general relevance beyond the signalling and autophagy community. *

      We would like to thank Reviewer 1 for the comments and suggestions, many of which improved our manuscript. We hope that the reviewer’s comments have been adequately addressed in the revised manuscript.

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)): Summary In this manuscript, Yamano and colleagues show that as for Sting-mediated TBK1 activation, Optn provides a platform for TBK1 activation by autophosphorylation and that TBK1 is activated after the interaction of Optn with the autophagy machinery and ubiquitin and not before. They show that TBK1 phosphorylation is blocked by bafilomycine A1, an inhibitor of vacuolar ATPases that blocks the late phase of autophagy. Furthermore, they demonstrate that Optn is require for TBK1 phosphorylation since variation of Optn expression regulates TBK1 phosphorylation in response to PINK/Parkin-mediated autophagy. Interestingly, using immunofluorescence microscopy, they show that Optn forms sphere like structures at the surface of damage mitochondria which are more dispersed in the absence of TBK1. In addition, TBK1 is also recruited at the surface of damage mitochondria and as Optn and NDP52 (but not p62) colocalize with LC3B in response to PINK/Parkin-mediated mitophagy. Next, it is demonstrated that the Leucin zipper and LIR domains of Optn (which modulate Optn interaction with autophagosome) play an important role for TBK1 activation. Additionally, the autophagy core is shown to be required for TBK1 activation. Under basal conditions, depletion of the autophagosome machinery leads to an increase in autophagy receptors (except Optn) and TBK1 phosphorylation which colocalize with ubiquitin in insoluble moieties. In contrast, Optn remains cytosolic and is dispensable for TBK1 activation in these conditions. Then, using the fluoppi technic, the authors demonstrate that the generation of Optn-Ubiquitin condensates recruits and activates TBK1. They express in HCT116 TBK1-deficient cells engineered or pathological ALS mutations of TBK1 that affect ubiquitin interaction, structure, dimerization and kinase activity of TBK1. The expression level of TBK1 was only affected by the dimerization-deficient mutations. None of the mutations impaired Optn and TBK1 ubiquitination. Interestingly, some ALS-associated mutations affect TBK1 activity and it is said in the text that the dimerization-deficient mutations of TBK1 affect its activity proportionally to their level of expression, which is not really correct (the expression level of the mutants is very heterogenous and not always correlate to their activity). Regarding their effect on mitophagy, the authors claim that the phosphorylation of TBK1 correlate with mitophagy which is not really the case. By using TBK1 inhibitor or TBK1-depleted cells, the authors conclude that TBK1 is the only kinase phosphorylating Optn. However, BX-795 is not completely specific to TBK1. Finally, the authors use monobodies against Optn effective in inhibiting mitophagy in NDP52 KO cells. Some of the monobodies have been shown to form a ternary complex with Optn and TBK1, while others compete for the interaction between Optn and TBK1 which involves the amino-terminal region of Optn and the C-terminal region of TBK1. Monobodies that compete for the interaction of Optn with TBK1 could alter the cellular distribution of Optn and inactivate TBK1, but they do not alter the ubiquitination of Optn. Finally, these monobodies inhibit 50% of mitophagy. *

      *Major and minor points: Introduction The first paragraph of the Introduction section is confused and difficult to read. First and second paragraphs (page 3 and top of page 4) are dedicated to macroautophagy processes but ended with one sentence on Parkin-mediated autophagy without further introduction, while all processes regarding mitophagy are detailed in the next paragraph. Links between ideas developed are also somewhat missing. For example, in page 6, the three last sequences detailed the phosphorylation of autophagosome component, the fact that Optn and TBK1 genes are involved in neurodegenerative diseases and autophosphorylation of TBK1 as a pre-requirement for TBK1 activation without evident links between them, except "interestingly". *

      In response to the reviewer’s suggestion, we have rewritten the Introduction. The first paragraph focused on introducing the molecular mechanism underlying macroautophagy and the second paragraph focused on Parkin-mediated mitophagy. As the reviewer indicated, the ALS mutations and TBK1 phosphorylation during Parkin-mediated mitophagy are not well related, so we moved the background material on the relationship between OPTN and TBK1 in neurodegenerative diseases to the beginning of the section describing Figure 5. We believe these changes have made the Introduction easier to read and understand.

      *Results *

      *Major points: *

      *1- Results are often over-interpreted regarding data obtained leading to inadequate conclusions (see below for details); *

      We regret the reviewer’s concerns regarding over-interpretation. To address this issue, we have carefully considered the data, performed additional experiments where necessary, and rewritten the results accordingly. Please see our point-by-point responses below.

      *2- Quantification of protein levels detected by western blot are provided as "relative intensities" without referring to specific loading control or to total protein when -phosphorylated forms are quantified (Fig. 1b, 1d, 1f, 1i, 2b, 2f, 2i, 5b, 7b, supplemental figures 2b). *

      For the immunoblots, we loaded the same amount of total cell lysate and the phosphorylated forms were quantified relative to the total protein input. This has been mentioned in the Materials and Methods.

      *3- In western blotting experiments, authors described slower migrating bands as "ubiquitinated" forms of detected proteins, but never provided experimental evidences that it could be the case. Use of non-specific deubiquitinase incubation of extracts prior to western blot could help to correctly identified ubiquitination versus other post-translational modifications such as phosphorylation, glycosylation, acetylation etc... *

      We appreciate the reviewer’s suggestion. The cell lysates after mitophagy induction were incubated in vitro with a recombinant USP2 core domain (non-specific DUB), and then immunoblotted. As shown in supplemental Fig 1 of the revised manuscript, the slower migrating OPTN bands disappeared in a USP2-dependent manner. The slower migrating NDP52 and TOMM20 bands likewise disappeared. These results confirm that the slower migrating OPTN, NDP52, and TOMM20 bands are ubiquitinated.

      *4- Conclusions from data obtained by immunofluorescent imaging are often drawn from only one image presented without further statistical analysis. *

      Statistical significance was determined for the immunofluorescent data (original figures 1j, 2c and 3a). Please see Fig 1l, 2f, 2g, and 3a in the revised manuscript.

      *Page 7: - authors referred to TBK1 phosphorylation induced by mitophagy induction as "TBK1 phosphorylation induced by Parkin-mediated ubiquitination" while mitophagy can be induced independently of Parkin (ex: via mitochondrial receptors) and without any evidence (according to referee's knowledge) of a link between ubiquitination by Parkin and TBK1 phosphorylation. *

      As the reviewer indicated, Parkin-independent and ubiquitination-independent mitophagy pathways are also known (i.e. receptor-mediated mitophagy driven by NIX, BNIP3, BCL2L13, FKBP8, FUNDC1, or Atg32). Therefore, references to "mitophagy" in our manuscript were reworded as "Parkin-mediated mitophagy". Since TBK1 phosphorylation is observed before mitochondria are degraded and is dependent on Parkin-mediated ubiquitin (for example, see Fig 1c), we use the phrase "TBK1 phosphorylation triggered by Parkin-mediated OMM ubiquitination".

      *Fig 1g: Western blots performed in Penta KO cells without exogene expression of any autophagy receptors should be provided as control. Furthermore, lower expression of NDP52 relative to that of Optn (using flag antibodies) should be discussed as it can explained the differential levels in TBK1 phosphorylation observed. *

      As suggested, we repeated the experiment using Penta KO cells in the absence of exogeneous autophagy adaptor expression. Furthermore, we expressed different amounts of NDP52 and OPTN (indicated as low and high in the figure) in Penta KO cells to rule out the possibility that higher TBK1 phosphorylation is induced by simple overexpression of autophagy adaptor (please see Fig 1g and h in the revised manuscript). At high NDP52 expression (2.5-3.0-fold higher than endogenous NDP52), phosphorylated TBK1 was reduced to ~30% the level of that observed in WT cells after 3 hrs with val and baf. In contrast, Penta KO cells with higher OPTN expression (3.0-fold higher than endogenous OPTN) had phosphorylated TBK1 signals that were 2-fold higher than those in WT cells. Based on these results, we concluded that OPTN is an important adaptor for TBK1 activation during Parkin-mediated mitophagy.

      *Page 8: Supplemental Fig 1a: - The inability of authors to observe TBK1 endogenous signal in HeLa cells using commercially available antibodies is surprising as many publications reported successful staining (see Figure 1 of Suzuki et al. 2013 Cell type-specific subcellular localization of phospho-TBK1 in response to cytoplasmic viral DNA. PLoS One. 8:e83639 among others) as well as commercial promotion (see Anti-NAK/TBK1 antibody from Abcam reference: ab235253). *

      For the original manuscript, anti-TBK1 antibodies purchased from abcam (ab235253), CST (#3013S), Proteintech (28397-1-AP), and GeneTex (GTX12116) for immunostaining were unable to yield TBK1-positive signals (please see Fig 1 for reviewers below). WT and TBK1-/- HCT116 cells stably expressing Parkin were treated with valinomycin for 1 hr and immunostained with the indicated antibodies. Anti-phos-TBK1 antibody (CST, #5483) was used as a positive control. Based on these results, we stated in the original manuscript that the "endogenous TBK1 signal could not be observed using commercially available antibodies". At the reviewer’s suggestion, we purchased anti-TBK1 antibodies from abcam (ab40676) and CST (#38066). As shown in the figure below, the immunofluorescent signals generated by these antibodies were detected in WT, but not in TBK1-/- cells. The CST (#38066) antibody yielded a stronger signal, most of which was on damaged mitochondria. Thanks to this suggestion, we repeated the experiment using the new anti-TBK1 antibody. Furthermore, based on a suggestion from Reviewer 3, we detected mitochondrial recruitment of TBK1 during mitophagy stimulation (valinomycin for 30 min or 2 hrs in the presence and absence of bafilomycin; supplemental Fig 2 in the revised manuscript). We also detected association of endogenous TBK1 with ubiquitin-positive condensates in WT, FIP200KO, and ATG9A KO cells (Fig 3a and supplementary Fig 7a in the revised manuscript).

      *- Conclusions of the localization of signal on mitochondria (dispersed, in the periphery or at contact sites) are clearly over-interpreted in the absence of other membrane or autophagosome specific labeling and statistical colocalization analyses of multiple images. It is particularly difficult to assess any difference between Tax1BP1, p62 and NBR1 localization on mitochondria subdomains. *

      We previously expressed each FLAG-tagged autophagy adaptor in Penta KO cells and observed their localization during Parkin-mediated mitophagy and found that exogenous FLAG-tagged OPTN and NDP52, but not p62, colocalized with LC3B (Yamano et al 2020 JCB). No one has assessed and compared the localization of all five endogenous autophagy adaptors. Although we still believe that the results (supplemental Fig1 in the original manuscript) are informative for researchers in the autophagy field, we decided to remove that data from the revised manuscript since they are not the main focus of the study. We will consider publishing those data elsewhere in the future after co-staining with autophagosome markers and assessing the statistical significance of colocalization as the reviewer suggested.

      *Page 9: *

      *- First part of results ended without any conclusions. *

      As detailed in the previous response, we have removed results for mitophagic recruitment of autophagy adaptors (supplementary Figure 1 in the original manuscript).

      *- The observation that "TBK1 phosphorylation was not apparent in the Optn mutant cell lines, even after 3 hrs of valinomycin, ..." is inconsistent with detection of bands with anti-pS172-TBK1 antibodies in Fig 2a detected at 1hr (with F178A) and 3 hrs (4LA, F178A, and 4LA/F178A mutants) of treatment. *

      We apologize for the confusion. This statement was clearly our mistake. We had intended to state when "all autophagy adaptors are deleted" no phosphorylated TBK1 was observed. We have rewritten this part as "TBK1 phosphorylation was not apparent in the Penta KO cells even after 3 hrs with valinomycin".

      *- Similarly, decreased levels of phosphorylated TBK1 stated for F178A mutant was only observed at 1 but not 3hrs or at 3hrs in the presence of bafilomycin. *

      Based on the mitophagy assay previously reported (Yamano et al 2020 JCB), the F178A mutant only moderately inhibited mitophagy (60% mitophagy with the F178A mutant vs 80% mitophagy with OPTN WT). Conversely, the 4LA mutant and 4LA/F178A double mutant had stronger inhibitory effects on mitophagy (35% for 4LA and 9% mitophagy for 4LA/F178A). Therefore, the levels of phos-TBK1 after 1 hr with valinomycin or 3 hrs with valinomycin in the presence of bafilomycin are consistent with mitophagy progression. When mitophagy proceeds efficiently, the amount of phos-TBK1 in the 1 hr val samples is reduced relative to the 3 hr val samples due to autophagic degradation.

      To more clearly observe and compare the levels of mitophagy-dependent phos-TBK1 among Penta KO cells expressing OPTN WT and the mutants, we treated cells with valinomycin in the presence of bafilomycin for 0, 0.5, 1, and 2 hrs and quantified phos-TBK1. The results are shown in Fig 2c and d in the revised manuscript. The phos-TBK1 signal increased over time with val and baf treatment in all OPTN expressing cells. Cells with OPTN WT generated the most phos-TBK1, whereas the signal generated by the F178A mutant was 75% that of the OPTN WT-expressing cells and the 4LA and 4LA/F178A mutants were about 40%. The experiments were independently replicated three times and error bars and statistical significance were incorporated into the associated graph. These results indicate that OPTN association with the autophagy machinery, in particular ATG9A vesicles, is important for TBK1 activation.

      *Page 10: *

      *The results and their repartition between figure 2 d, e, f, g, h, I and figure 3 is a bit confusing. In these experiments, it is shown Figure 2 that the absence or depletion of the autophagy machinery increase the phosphorylation of TBK1 and in Figure 3 it is shown that not only the phosphorylation of TBK1 accumulate but also the expression of NDP52, Tax1BP1 and p62. Is it because their degradation by autophagy is blocked (like for phosphoTBK1)? *

      The reviewer is correct that autophagy adaptors other than OPTN (especially TAX1BP1, p62 and NBR1) are constantly degraded by macro/micro autophagy (Mejlvang et al. 2018 J Cell Biol and Yamano et al. 2021 BBA Gen Subj). Therefore, these adaptors accumulate in autophagy deficient cell lines (original Fig 3). In this study, we found that in the absence of mitophagy stimulation phos-TBK1 accumulates in autophagy deficient cell lines. This suggests that the accumulated autophagy adaptors induce TBK1 phosphorylation under basal conditions. In the original manuscript, we claimed that TBK1 phosphorylation under basal conditions does not require OPTN since in FIP200 KO and ATG9A KO cells it did not accumulate and did not primarily colocalize with ubiquitin- and TBK1-positive foci (original Fig 3). To gain more direct evidence for the revised manuscript, we performed additional experiments and discovered that TAX1BP1 is the adaptor responsible for TBK1 autophosphorylation under basal autophagy. We treated FIP200KO and ATG9A KO cells with siRNAs against OPTN, NDP52, TAX1BP, p62, and NBR1, and immunoblotted total cell lysates with an anti-phos-TBK antibody. As shown in Fig 3f in the revised manuscript, TAX1BP1 siRNA treatment decreased phos-TBK1 levels without affecting total TBK1. This result indicates that the accumulation of TAX1BP1 in the FIP200 KO and ATG9A KO cells induced TBK1 autophosphorylation under basal conditions. Considering this result, we treated WT, FIP200 KO, and ATG9A KO cells with TAX1BP1 siRNA, and then induced Parkin-mediated mitophagy with valinomycin in the presence of bafilomycin. This strategy eliminated the basal accumulation of phos-TBK1 and allowed us to focus on mitophagy-dependent TBK1 phosphorylation. Please see revised Fig 2h, I, j, and k. The results showed that mitophagy-dependent phos-TBK1 is predominantly attenuated in FIP200 KO and ATG9A KO cells. In Figs 2 and 3, we would like to emphasize that OPTN is required for TBK1 phosphorylation in response to Parkin-mediated mitophagy, whereas TAX1BP1 is required for TBK1 phosphorylation in basal autophagy. Since Reviewer 3 commented that interpretation of the data in original Figs 2d, e, and f was challenging, we elected to move those results to the supplemental figures. We have incorporated the newly acquired data (mitophagy using FIP200 KO or ATG9A KO with TAX1BP1 siRNA cells) into the main figure. We believe that this makes the text easier for readers to understand.

      *- Fig 2c: conclusions on *

      *the reduction of recruitment of Optn mutants on autophagosome formation seem over-interpreted as: *

      *1- no labeling with LC3 has been used to identified autophagsome, *

      *2- immunofluorescent signals observed with mutants are dispersed throughout the entire mitochondria network (see the merged images) rendering impossible to distinguish between autophagosome-associated mitochondria and others. *

      *The following conclusive sentence stating that association of Optn to damaged mitochondria is not sufficient for TBK1 activation based solely on IF of figure 2c seems therefore unrelated to the obtained data. *

      To address concerns about the recruitment of OPTN mutants to the autophagosome formation site, we performed additional experiments. Penta KO cells and those expressing OPTN WT and mutants were treated with valinomycin for 1 hr, and FLAG-tagged OPTN, endogenous WIPI2, and HAP60 (mitochondrial marker) were detected by immunostaining. We detected endogenous WIPI2 because WIPI2 is recruited only to autophagosome formation sites (Dooley et al. 2014 Mol Cell), whereas LC3B assembles on autophagosome formation sites and is also associated with completed autophagosomes. Confocal microscopy images showed that cup-shaped OPTN WT that had been recruited to damaged mitochondria colocalized with WIPI2. Quantification further showed that during mitophagy the number of WIPI2 foci seen in cells expressing OPTN WT decreased in Penta KO cells and cells expressing OPTN mutants (4LA, F178A and 4LA/F178A). These data are shown in Fig 2e and f in the revised manuscript. In addition, we quantified the number of cells that either exhibited heterogeneous or homogeneous recruitment of OPTN to damaged mitochondria after treatment with valinomycin for 1 hr. More than 80% of Penta KO cells with OPTN WT had heterogeneous OPTN recruitment, whereas this distribution was only present in 10% of cells expressing either OPTN 4LA or OPTN 4LA/F178A. Although cells expressing the OPTN F178A mutant exhibited 50% heterogeneous recruitment, this may be because the mutant can interact with ATG9A. As mentioned above, our previous mitophagy analyses (Keima-based FACS analysis, Yamano et al 2020 JCB) showed that the OPTN F178A mutant induced ~60% mitochondrial degradation (which is correlated strongly with OPTN distribution), whereas it was 80% with OPTN WT and 9% with 4LA/F178A.

      *- Fig 2d: authors should explain why ATG KO cells displayed lipidated LC3B in the absence of efficient autophagy processes. *

      We thank the reviewer for the suggestion. We added the following sentence to explain the function of ATG5 in LC3B lipidation. "Since LC3B lipidation is catalyzed by ATG5, but not FIP200 and ATG9A, the lipidated form disappears only in ATG5 KO cells (Hanada et al 2007 J Biol Chem). "

      *- Fig 2e: despite authors statement that TBK1 phosphorylation did not increase during mitophagy in ATG KO cells, increased pS172-TBK1 is visible in FIP200 and ATG5 KO cells especially between 1 and 3 hrs of stimulation, leading to inaccurate conclusions that TBK1 phosphorylation requires the autophagy machinery. Therefore, overall assumption that both ubiquitination and autophagy subunits are required for TBK1 autophosphorylation appears erroneous. *

      As the reviewer indicated, phos-TBK1 levels gradually increased in ATG KO cells. The main text was rewritten to more accurately reflect this increase. Based on experiments using the monobodies and those conducted during the revision process, it is apparent that although the autophagy machinery may not be completely essential for TBK1 phosphorylation, it clearly facilitates TBK1 phosphorylation in response to Parkin-mediated mitophagy.

      *Page 12: *

      *- Fig 3a: conclusion that Optn signal is more cytosolic and did not localize with Ub condensates seems speculative as based on: *

      *1- only one immunofluorescence image without statistical analysis *

      *2- Optn and Ub signals are lower in images with Optn is analyzed compared to other images in which NDP52, TAX1BP1 and NBR1 are detected. *

      To address these concerns, we compared and quantified the signal intensities of all endogenous autophagy adaptors in FIP200 KO and ATG9A KO cells. The quantification data are shown in Fig 3a and the immunofluorescence images are shown in supplementary Fig 6a of the revised manuscript.

      *- Fig 3b: interpretation of western blot data is uncertain due to lack of appropriate loading control, especially with pellets (P) extracts. In addition, it is not clear how to conclude from the experiments in Fig 3b that autophagy adaptors other than Optn mediate TBK1 phosphorylation. *

      When autophagy is inhibited, p62 accumulates in the cytosol as aggregates (Komatsu et al. 2007 Cell). Therefore, p62 should be a positive control. Indeed, Fig 3b in the original manuscript (Fig 3b and c in the revised manuscript) showed that the amount of p62 in the pellet fraction was elevated in FIP200 KO and ATG9A KO cells. Furthermore, these aggregates were also observed in the imaging data (Fig 3a and supplementary Fig 7 in the revised manuscript). As the reviewer indicated, the original manuscript did not clarify whether autophagy adaptors other than OPTN mediated TBK1 phosphorylation; however, our revised results clearly demonstrate that TAX1BP1 is the adaptor responsible inducing TBK1 autophosphorylation when basal autophagy is impaired (please see Fig 3f in the revised manuscript).

      *Minor point: reference is missing in the last sentence of the paragraph stating that K48-linked chains dominate when autophagy pathways are impaired. *

      While several autophagy adaptors preferentially interact with K48-linked ubiquitin chains (Donaldson et al. 2003 PNAS etc), TRAF6 is recruited to ubiquitin-condensates via p62-mediated K63-linked ubiquitination (Linares et al. 2013 Mol Cell). Furthermore, K33-linked ubiquitin chains are also present in p62-positive condensates (Nibe et al. 2018 Autophagy). Because it’s not clear which ubiquitin-linkage is dominant in the condensates, we decided to delete the sentence. We regret the confusion.

      *Page 13: *

      *Conversely to Optn, they find that the other autophagic receptors localize in insoluble fractions (what does it mean?) independently of TBK1 expression (experiments with DKO cells) and also independently of Optn (where is this shown?). Altogether, these experiments are far from the message of the manuscript. The title of the paragraph "TBK1 activation does not require Optn under basal autophagy conditions" is not correct because even if the level of expression of autophagic receptors and TBK1 phosphorylation are increase in response to the depletion of the autophagy machinery, it does not increase autophagy. *

      According to the suggestion, we changed the title of the paragraph to "TAX1BP1, but not OPTN, mediates TBK1 phosphorylation when basal autophagy is impaired." In addition, we rewrote this section.

      *- Fig 3d: authors should mention the nature of the upper band observed in Optn western blot and show the same experiment in since solely TBK1 depleted cells since they stated that "electrophoretic migration of Optn was not affected by TBK1 deletion". In addition, suggesting from these sole experiments that "NP52, TAX1BP1, p62, NBR1 and AZI2 form Ub-positive condensates where TBK1 is activated" seems over-interpretated. *

      Reviewer 3 suggested we characterize the upper band in the OPTN blot (Fig 3d in the original manuscript). To determine if the band is genuine OPTN, we used phostag-PAGE to analyze cell lysates from cells treated with control siRNA or OPTN siRNA and found that both the lower and upper bands were OPTN species (please see "Figure 2 for reviewers" in our response to Reviewer 3). The same pattern was reported by the Wade Harper group (Heo et al. 2015 Mol Cell). They showed that the OPTN double band pattern on phos-tag PAGE was not affected by TBK1 deletion. We have cited this literature where appropriate in the revised manuscript. In WT cells, it is difficult to detect phosphorylation of autophagy adaptors by TBK1 because basal autophagy constantly degrades them. That’s why we used autophagy KO cell lines.

      *Page 14: *

      *- Fig 4: TBK1 phosphorylation was analyzed in Fig4d and not in Fig4b as stated. In addition, it is rather difficult to conclude from artificial multimerization experiments, as the authors have done, that interaction between Optn and autophagy components contributes to Optn multimerization in genuine conditions. *

      Detection of phos-TBK1 has been corrected to Fig 4b. Although artificial, the fluoppi assay provides insights into how OPTN activates TBK1 and how the autophagy machinery contributes to TBK1 activation via OPTN. To determine if artificial OPTN multimerization could bypass the autophagy machinery requirement, we used the fluoppi assay. This assay was important for us to conclude that the autophagy machinery and Parkin-mediated ubiquitination allow OPTN to be assembled in close proximity to where TBK1 is activated. The main text was rewritten to better convey the benefits of the fluoppi assay.

      *Page 15: *

      *This work could have therapeutic consequences but the pathological mutants of TBK1 used affect ALS (Figure 5) while in the discussion it is proposed that monobodies could have a therapeutic interest in familial forms of glaucoma due to the E50K mutation of Optn. It should be better to target only one pathology. *

      Both TBK1 and OPTN are causative genes for ALS and many pathogenic mutations are known to impact their function. In this study, we focused on ALS mutations in TBK1 that affect self-dimerization and investigated their impact in response to Parkin-mediated mitophagy. We created the monobodies as a tool to physically inhibit OPTN assembly at the contact site. Although our monobodies inhibit Parkin-mediated mitophagy, they would not be a useful therapeutic strategy for ALS due to the loss of function with the TBK1 mutations. However, because TBK1 E50K is a glaucomatous mutation that causes OPTN-TBK1 to bind more tightly, our monobodies might be applicable to glaucomatous pathology since they could disrupt this interaction. We thus feel that it is appropriate to mention the potential of the monobodies and their future utility in the Discussion.

      *- Fig 5c, d: Authors stated that degree of TBK1 autophosphorylation correlated with OPTN phosphorylation at S177 whereas phosphorylated TBK1 is unaffected by L693Q and V700Q mutants that display decreased phosphorylated Optn In addition, authors interpretation of Figure 5 data is clearly problematic as they stated that: *

      *1- neither 693Q and V700Q mutants had "significant effect on mitophagy", while decreasing efficiency from 78% to 37-51% *

      *2- but conclude that 49.7% mitophagy levels of R357Q mutant is significant mitochondrial degradation. *

      *Overall conclusion that mitophagy efficiency is correlated with phosphorylated TBK1 levels is therefore inaccurate. *

      We regret that this section did not sufficiently describe the data. Reviewer 3 also noted that the text referencing Fig 5 was difficult to interpret. One of the reasons for the complicated data interpretation is the number of TBK1 mutants used. The L693Q and V700Q mutations used by Li et al. (2016 Nat Commun) were expected to inhibit Parkin-mediated mitophagy since those authors reported that the mutations prevented interactions with OPTN. However, our in-cell assay showed that the two mutations only moderately affected Parkin-mediated mitophagy. Furthermore, both the L693Q and V700Q mutations were engineered based on the X-ray structure, rather than being authentic pathogenic ALS mutations. To avoid any potential confusion, we decided to remove the L693Q and V700A data. We have re-evaluated the other data and have rewritten this section accordingly. Please see the revised main text.

      *Discussion *

      *Minor points: *

      *page 20: - reference is missing in the sentence "Optn cannot oligomerize on its own on ubiquitin-decorated mitochondria". *

      We have provided the appropriate reference.

      *Major points: *

      *Authors stated that they showed that Optn recruitment to damaged mitochondria, itself, is insufficient for TBK1 autophosphorylation, but did not show experiment of Optn recruitment to mitochondria and its consequences on TBK1 phosphorylation in the absence of mitophagy induction signal. Authors could for example target HA-Ash-6Ub to mitochondria in order to artificially recruit hAG-Optn to "ubiquitinated" mitochondria in the absence of mitophagy signal. *

      We showed that the efficiency of TBK1 autophosphorylation was reduced in cells expressing the OPTN 4LA/F178A mutant, which cannot interact with the autophagy machinery (Fig 2c and d in the revised manuscript). Cells with FIP200 or ATG9A knockdown also have reduced phos-TBK1 (pS172) as shown in supplementary Fig 5e and f. The rate of phos-TBK1 (pS172) generation in ATG9AKO cells during Parkin-mediated mitophagy is reduced relative to that in WT cells (Fig 2j and k). Since a small amount of phos-TBK1 was generated in both ATG9A knockdown and KO cells (supplementary Fig 5e, f, Fig 2j and k), we concur that it would be premature to conclude that phosphorylation of TBK1 does not occur at all when autophagy core components are absent. A small amount of phos-TBK1 may be generated by OPTN that is freely distributed on the outer mitochondrial membrane. In the revised manuscript, we mention the possibility that TBK1 might be phosphorylated by OPTN independent of the autophagy machinery and were careful to avoid over-interpretation.

      As shown in Fig 4, fusing OPTN with an Azami-Green tag can induce artificial multimerization and trigger the generation of phos-TBK1 (pS172). Therefore, we expect that mitochondria-targeted HA-Ash-6Ub would induce TBK1 phosphorylation in a hAG-OPTN-dependent manner as was observed with cytosolic HA-Ash-6Ub (Fig 4). The accumulation of OPTN at the contact site in Parkin-mediated mitophagy is important for TBK1 phosphorylation. Even if OPTN is forced to anchor to the mitochondria, this would induce isolation membrane formation and subsequent autophosphorylation of TBK1. Therefore, the utility of forcing OPTN to anchor to mitochondria is questionable.

      *Similarly, experimental approaches used by authors lack dynamics parameters to conclude on formation and elongation of isolation membranes and contacts sites that could be probably obtained through video microscopy. *

      Based on the reviewer’s comment, we performed time-lapse microscopy to observe OPTN recruitment to the contact site and followed its movement along with the elongation of isolation membranes during Parkin-mediated mitophagy. HeLa cells stably expressing GFP-OPTN and pSu9-mCherry (a mitochondrial marker) were treated with valinomycin (please see Fig 2l in the revised manuscript). Initial recruitment of GFP-OPTN near mitochondria was evident as small dot-like structures that then elongated over time to become cup-shaped structures and culminated in the formation of spherical structures. Considering the colocalization of OPTN with WIPI1/WIPI2 (markers of autophagosome formation site) in Fig 2e and supplementary Fig 2a, the time-lapse images strongly suggest that OPTN assembles at contact sites followed by elongation in tandem with isolation membranes during Parkin-mediated mitophagy.

      *Finally, the model proposed by the authors does not take into account data showing that Optn basally interacts with ubiquitinated mitochondria and LC3 family members (see Wild et al., Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 2011 333:228-33), although at lower levels compared to induced conditions, relativizing the impact of the proposed model. *

      According to the Reviewer 2 comment, we again read the Science paper (Wild et al. 2011) but could not find data showing that OPTN basally interacts with ubiquitinated mitochondria. At least, we think that under steady state conditions without mitophagy induction, mitochondrial ubiquitination and mitochondrial localization of OPTN are undetectable as shown in supplementary Figure 2 in our revised manuscript.

      *In conclusion, this manuscript represents a lot of work but the experiments often lack controls and are over-interpretated. *

      ***Referees cross-commenting** *

      *In my opinion, what emerges from these 3 reviews is that the results lack controls or have not been repeated enough to support the message that the interaction of Optn with ubiquitin and the ubiquitination machinery is sufficient to activate TBK1. In particular, as reviewer 1 says, the phosphorylation kinetics shown in Figure 1a are not consistent with TBK1 phosphorylation following the interaction of Optn with the ubiquitination machinery and ubiquitin. In Figure 1e, there is a decrease in TBK1 phosphorylation in contrast to WTcells as mentioned by Reviewer 1. In agreement with Reviewer 1, we believe that the WT cells are missing in Figure 1g. *

      *With regard to Figure 2c, we agree with reviewer 1 that an LC3 label is missing in order to be able to interpret the data. In Figure 2e and f, we agree with reviewer 1 that it is difficult to understand why TBK1 phosphorylation increases in the absence of the autophagy machinery (FIP200 KO and ATG5KO). In Figure 3, loading controls are missing for 3b and c. The TBK1 KO cells alone are missing in Fig 2d. In Figure 2b, pTBK1 is missing. In agreement with reviewer 3, we believe that the data with fluoppi contradict the message of the manuscript since they show that TBK1 can be phosphorylated by ubiquitin in the absence of the ubiquitination machinery. In agreement with reviewer 3, we believe that the experiments in Figure 5 are very difficult to interpret. The first reviewer is right to ask the question of the replicates for figures 6c and d. *

      We appreciate the summary of the reviewers’ comments. To address their concerns, we have included the appropriate controls and included the results of three independent experiments in the graphs, which now include appropriate error bars and statistical significance. Thus, we believe we have answered the most critical comments concerning the lack of controls.

      In Fig 1a, phos-TBK1 was maximal following 30 min of valinomycin treatment. We confirmed using microscopy-based observations that recruitment of endogenous TBK1 and OPTN and the generation of phos-TBK1 and phos-OPTN at contact sites (marked by WIPI1) near damaged mitochondria was also maximal after 30 min of valinomycin treatment (supplementary Fig 2 and 3). Therefore, the kinetics of phos-TBK1 and phos-OPTN generation are consistent with the recruitment of OPTN-TBK1 to the contact site.

      The data presented in Fig 2 clearly indicate that the autophagy components are involved in phos-TBK1 generation during Parkin-mediated mitophagy. Therefore, the claim that ubiquitination machinery is sufficient for TBK1 activation is incorrect. Although we agree that the autophagy gene deletions cannot completely inhibit TBK1 autophosphorylation, mitophagy-dependent generation of phos-TBK1 is largely impaired by ATG9A KO (Fig 2j and k). Thus, there is no doubt that isolation membrane formation is important for TBK1 activation following Parkin-mediated mitophagy.

      Fig 1e - The reviewer is correct that phos-TBK1 is reduced in the NDP52 knockout. We have rewritten the main text. It is also true that NDP52 has a smaller effect on TBK1 autophosphorylation as compared to OPTN.

      Fig 1g - Immunoblots using total cell lysates prepared from six different cell lines (WT, Penta KO alone, Penta KO stably expressing low or high OPTN or NDP52) under four different conditions (DMSO, valinomycin 1 hr, valinomycin 3 hrs, valinomycin + bafilomycin 3 hrs) showed that OPTN is a rate-limiting factor for TBK1 phosphorylation. Please see Fig 1g and h in the revised manuscript

      Fig 2c - The recruitment of OPTN WT and associated mutants to the contact site was re-examined by immunostaining with WIPI2 labeling. We found that OPTN WT was both efficiently recruited to and formed the contact site. In contrast, the OPTN 4LA/F178A mutant was unable to interact with FIP200/LC3/ATG9A and was uniformly (i.e. homogenously) distributed on damaged mitochondria with the rate of autophagosome site formation reduced. Please see Fig 2e, f, g in the revised manuscript.

      Fig 2e and f - KO of the autophagy core components FIP200 and ATG9A increased phos-TBK1 under basal, non-mitophagy-associated conditions (see Fig 3). The levels of autophagy adaptors other than OPTN also increased in FIP200 KO and ATG9A KO cells. Furthermore, as shown in Fig 3a and supplementary Fig 7, both phos-TBK1 and the autophagy adaptors accumulated in Ub-positive condensates. Based on previous reports (Mejlvang 2018 J Cell Biol), TAX1BP1, p62, and NBR1 have short half-lives and are quicky degraded by macro/micro autophagy. The accumulation of phos-TBK1 in the absence of autophagy occurs because autophagy-dependent degradation of TAX1BP1 (and other adaptors) is inhibited. This allows for the formation of Ub-positive condensates, which brings TBK1 into sufficient proximity for activation. This has been noted in the revised manuscript.

      Fig 3b and 3c - We wonder if the "loading controls are missing for Fig 3b and 3c" statement might be a misinterpretation by the reviewer as TOMM20 was used as the loading control in the original Fig 3b. It was recovered in the supernatant fractions of WT, FIP200 KO, and ATG9A KO cells, indicating that the accumulation of autophagy adaptors in the pellet fractions depends on autophagy gene deletion. Similarly, actin and TOMM20 were used as loading controls in the original manuscript Fig 3c.

      Fig 2d (perhaps meant to be Fig 3d) – A previous study reported that phos-tag PAGE blot of OPTN in TBK1 KO cells alone revealed no differences between WT and TBK1 KO cells (Heo et al 2015 Mol Cell). We cited this reference in the revised manuscript.

      Fig 2b (perhaps meant to be Fig 4b) - Immunoblots of phos-TBK1 have been incorporated into the results of Fig 4b in the revised manuscript.

      Fig 4 - We show in Fig 2 that induction of Parkin-mediated mitophagy promotes OPTN accumulation at contact sites formed by isolation membranes and ubiquitinated mitochondria, and that autophagy core subunits are required for efficient generation of phos-TBK1. Fig 3 shows that phos-TBK1 accumulates in Ub-positive condensates with TAX1BP1, rather than OPTN, and that it is responsible for phos-TBK1 accumulation. Together, these results suggest a model in which TBK1 is activated when OPTN and TBK1 are positioned near each other. We hypothesized that if we could force OPTNs into close proximity the autophagy machinery requirement for TBK1 activation might be bypassed. To assess this model, we designed the fluoppi assay shown in Fig 4. This assay was critical in that it provided an important clue for the molecular mechanism that OPTN and the autophagy machinery use to cooperatively induce TBK1 trans-autophosphorylation. Because the original manuscript may not have sufficiently conveyed our reasoning for the fluoppi analysis, we have rewritten this section. The main point of the fluoppi assay is that engineered OPTN multimerization was able to bypass the autophagy requirement for TBK1 activation.

      Fig 5 - For easier interpretation, the L693Q and V700Q data, which are not related to ALS pathology, have been removed.

      Fig 5d – Statistical significance has been determined for the mitophagy results and the main text has been rewritten for better clarity.

      Fig 6c, d, and I – The experiments were independently replicated more than three times with statistical support and error bars incorporated into the associated graphs.

      *Reviewer #2 (Significance (Required)): *

      *this manuscript represents a lot of work but the experiments often lack controls and are over-interpretated. The manuscript is for a broad audience. *

      For the revised manuscript, additional experiments were carefully performed with appropriate controls and the manuscript was rewritten to address concerns regarding over-interpretation. We hope that we have adequately addressed the reviewer’s comments.

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)): *

      *The authors investigated the mechanisms by which TBK1 is phosphorylated and thus activated in PINK1/Parkin-mediated mitophagy. They show data indicating that OPTN, by interacting both with ubiquitin-coated mitochondria and with the autophagy machinery, provides a platform where OPTN-bound TBK1 can be hetero-autophosphorylated by adjacent TBK1. *

      *According to the prevailing model (prior to this manuscript), TBK1 activation via autophosphorylation leads to TBK1-mediated phosphorylation of OPTN S177 and subsequent pOPTN-mediated recruitment of autophagic isolation membranes to the mitochondria. However, based on the model provided in this manuscript, OPTN needs to interact first with both autophagic membranes and ubiquitin before TBK1 can become activated. *

      *This is an important topic. Overall, the experimental data are of high scientific quality. For the most part, the manuscript is clearly written. The figures have been made with great care. The novel insights are relevant. However, a number of issues need to be addressed or clarified. *

      *Major comments: *

      • Fig. 1a-b shows that pTBK1 (pS172) formation already peaks after 30 min of valinomycin. Even when bafilomycin is added, pTBK1 level already reaches a near maximum after 30 min of valinomycin. If the model proposed by the authors is correct and pTBK1 (pS172) formation requires extensive interaction of OPTN with both ubiquitin and autophagic isolation membranes, they should be able to show (by immunostaining) that OPTN already extensively forms peri-mitochondrial cup/sphere-shaped structures that colocalize with isolation membrane markers after only 30 min of valinomycin. In the present manuscript, they only show formation of such structures after 1-3 h of valinomycin.* We thank the reviewer for the critical comments. Based on the suggestion, we performed immunostaining to observe the recruitment of TBK1 and OPTN to damaged mitochondria as well as the generation of phos-TBK1 (pS172) and phos-OPTN (pS177). HeLa cells stably expressing Parkin and 3HA-WIPI1 were treated with valinomycin for 30 min, and then TBK1, OPTN, phos-TBK1, and phos-OPTN were immunostained along with 3HA-WIPI1 (a marker of the autophagosome formation site) and TOMM20 (a mitochondria marker). Please see supplementary Fig 2a and 3a in the revised manuscript. The TBK1, OPTN, phos-TBK1, and phos-OPTN signals formed dot-like, cup-shaped, and/or spherical structures, most of which were peri-mitochondrial and colocalized with 3HA-WIPI1. In separate experiments, HeLa cells stably expressing Parkin were treated with valinomycin in the presence or absence of bafilomycin for 30 min or 2 hrs and then immunostained. Please see supplementary Fig 2b in the revised manuscript. After 30 min valinomycin in the absence of bafilomycin, many TBK1 and OPTN signals were observed on damaged mitochondria. These signals were quantified from more than 160 cells for each of the four conditions. Each microscopic image generated contained 18-36 cells and corresponds to one dot in supplementary Fig 2c. Based on these results, the abundance of TBK1 and OPTN on mitochondria after 30 min of valinomycin was much higher than that after 2 hrs with valinomycin (supplementary Fig 2c). Similar results were obtained for phos-TBK1 and phos-OPTN (supplementary Fig 3b and c). These results are consistent with the immunoblot data (Fig1a and b).

      Furthermore, we show that Parkin expression levels affect the amount of phos-TBK1 generated during mitophagy. Please see supplementary Fig 4 in the revised manuscript. When PARKIN was integrated into HeLa cells under a CMV promoter via an AAVS1 (Adeno-associated virus integration site 1)-locus, the resultant cell line (referred to as high-Parkin) had higher Parkin levels than HeLa cells in which PARKIN was introduced by retrovirus infection (referred to as low-Parkin). In high-Parkin HeLa cells, phos-TBK1 levels reached a maximum after 30 min with valinomycin, while in low-Parkin HeLa cells, phos-TBK1 levels were comparable after 30 min and 1 hr. High-Parkin HeLa was used for Fig 1a, b, c, and d as well as supplementary Fig 1, 2, 3 and 4. For all other Figs, PARKIN genes were introduced by retrovirus infection. This is one of the reasons why val was used for 30 min in Fig1, but 1-3 hrs for the other Figs. Because 3 hrs valinomycin treatment may be unsuitable for evaluating OPTN recruitment to mitochondria/isolation membrane contact sites, we deleted the original Fig 2c and replaced it with the val 1 hr data (Please see Fig 2e in the revised manuscript).

      • The authors propose that OPTN needs to interact both with ubiquitin on mitochondria and with isolation membrane proteins such as ATG9A to allow TBK1 phosphorylation. However, their fluoppi experiments in Fig. 4 seem to contradict this. In the fluoppi experiments, the authors generate multimeric OPTN-Ub foci and this is apparently sufficient to induced TBK1 phosphorylation at S172 (shown in 4d,f). In this experiment, there is no induction of autophagy or formation of isolation membranes, and TBK1 nevertheless gets activated.*

      Figure 2 demonstrates that both ubiquitin on mitochondria and formation of the isolation membranes are needed to provide a platform for OPTN to assemble in close proximity to each other and subsequently induce TBK1 autophosphorylation. To determine if OPTN proximity is sufficient for TBK1 autophosphorylation (i.e., if engineered OPTN multimerization can bypass the autophagy machinery requirement for TBK1 autophosphorylation), we used the fluoppi assay. The results clearly showed that engineered OPTN multimerization induced TBK1 autophosphorylation without the need for the autophagy machinery. Although this is not a mitophagy experiment, the fluoppi assay provided crucial insights into the molecular mechanism underlying OPTN-mediated TBK1 autophosphorylation. The main text was rewritten to provide more clarity regarding the purpose of the fluoppi experiments.

      • Can the authors be more concrete/specific in the discussion about the molecular mechanisms that explain why this 'platform' that is created by OPTN-autophagy machinery interactions is so crucial for TBK1 activation? If I understand the model in Fig. 7D correctly, the OPTN-autophagy machinery interactions are mainly important because they reduce the distance between OPTN-bound TBK1 molecules so that they can trans-phosphorylate each other. But if TBK1 autophosphorylation was just a matter of proximity between OPTN-bound TBK1 molecules, interaction of OPTN with densely ubiquitinated mitochondria should already be sufficient for TBK1 phosphorylation. When multiple OPTN molecule bind to one ubiquitin chain or to closely adjacent ubiquitin chains (similar to the fluoppi experiments), TBK1 molecules binding to OPTN would be expected to be already closely enough to one another for trans-autophosphorylation.*

      The amount of phos-TBK1 during Parkin-mediated mitophagy was reduced in cells with the OPTN 4LA/F178A mutant, which cannot interact with the autophagy machinery (e.g. FIP200, ATG9A, and LC3) but can be targeted to mitochondria (see Fig 2c, d). ATG9AKO cells also had reduced amounts of phos-TBK1 relative to WT cells (See Fig 2j, k). Therefore, rather than OPTN-ubiquitin freely diffusing laterally on the outer membrane, we suggest that the contact site OPTN forms with ubiquitin and the autophagy machinery provides a more suitable platform for TBK1 autophosphorylation because it maintains TBK1 in a proximal position for a longer period of time.

      The OPTN UBAN domain binds a ubiquitin-chain composed of two ubiquitin molecules (Oikawa et al. 2016 Nat Comm), and during Parkin-mediated mitophagy only shorter length poly-ubiquitin chains are generated on the mitochondrial surface (Swatek et al. 2019 Nature). Based on those findings, it is unlikely that multiple OPTN bind to one ubiquitin chain. Of course, we cannot rule out the possibility that TBK1 autophosphorylation does not occur on mitochondria in the absence of autophagy components. While full activation of TBK1 requires OPTN to associate with the isolation membrane, initial TBK autophosphorylation at the onset of mitophagy may occur based only on the OPTN-ubiquitin interaction. These explanations have been added to the Discussion in the revised manuscript.

      Furthermore, based on comments from Reviewer 2, we performed time-lapse microscopy to observe OPTN dynamics during Parkin-mediated mitophagy (please see Fig 2l). HeLa cells stably expressing GFP-OPTN and pSu9-mCherry (a mitochondrial marker) were treated with valinomycin. GFP-OPTN was initially a peri- mitochondrial dot-like structure that elongated over time to a cup-shaped structure and which eventually ended up forming a spherical structure. The time-laps imaging showed that, at least in WT cells, OPTN is directly recruited to the contact sites and elongates along with the isolation membranes. We thus concluded that TBK1 is activated (autophosphorylated) at the contact site rather than on the outer membrane where OPTN-TBK can move freely.

      • Fig. 5c,d and P. 16: the mitophagy experiments in TBK1-/- cells expressing the different mutant forms of TBK1 are hard to interpret because it is not clear which mitophagy differences are statistically significant. The main text about this part (p. 16) is also confusing.*

      We regret the confusion. Reviewer 2 also noted that the main text for Fig 5 was difficult to interpret. One of the reasons that complicated interpretation of the data is the number of TBK1 mutants used. The L693Q and V700Q mutations used by Li et al. (2016 Nat Commun) were expected to inhibit mitophagy since those authors reported that the mutations prevented interactions with OPTN. However, our in-cell assay showed that the two mutants only moderately affected Parkin-mediated mitophagy. Furthermore, both L693Q and V700Q were engineered based on the X-ray structure and are not ALS pathogenic mutations. To simplify the data and to make data interpretation easier, we decided to delete the L693Q and V700A data. We also determined statistical significance and rewrote this section.

      • Many graphs lack statistics: Fig. 2b (pTBK1), Fig. 2f, Fig. 5b, Fig. 5d, Fig. 6c.*

      We apologize for the lack of statistical analyses. We repeated experiments (if the experiments had not been independently performed more than three times) with statistical significance and error bars incorporated into the relevant figures.

      *Other comments: *

      • Fig. 1a: how do they know that the upper OPTN band is ubiquitinated OPTN? Reviewer 2 raised the same question. To demonstrate that the upper OPTN band is ubiquitinated, cell lysates after mitophagy induction were incubated in vitro* with a recombinant USP2 core domain, and the samples immunoblotted. As shown in supplementary Fig 1 in the revised manuscript, the upper OPTN band disappeared in a USP2-dependent manner. The upper NDP52 and TOMM20 bands similarly disappeared. Therefore, the upper OPTN, NDP52 and TOMM20 bands observed after mitophagy induction are ubiquitinated.

      • Fig. 1a,b: the bafilomycin stabilization of pTBK1, OPTN and pOPTN indicates that these proteins are substantially degraded by autophagy within 30-60 minutes. This seems extremely fast for mitophagy completion. Please discuss.*

      According to Kulak et al. (2014 Nat Methods), autophagy adaptor abundance (OPTN: 2.32E+4 and NDP52: 3.34E+4 in HeLa cell line) is low compared to that of mitochondria (TOMM20: 1.45E+6 in HeLa cell line). This is one of the reasons why autophagic degradation of adaptors is easier to see. Degradation of phos-TBK1 was likewise easy to detect, whereas total TBK1 was not. This discrepancy is likely based on differences in the abundance of phos-TBK1 and total TBK1. In addition, because autophagy adaptors are localized outside of the mitochondrial membrane they may be easier targets for lysosomal degradation than matrix proteins, which are localized inside the outer and inner membranes.

      • Fig. 1a and rest of the manuscript: is there a reason why the authors only looked at S177 phosphorylation of OPTN and not also at OPTN S473, which is also phosphorylated by TBK1?*

      Both mass spectrometry and mutational analyses indicated that OPTN S473 is phosphorylated during Parkin-mediated mitophagy and that OPTN phosphorylated at S473 strongly binds ubiquitin chains (Richter et al. 2016 PNAS and Heo et al. 2015 Mol Cell). However, because a phos-S473 OPTN antibody is, to the best of our knowledge, currently not commercially available, we did not focus on S473 phosphorylation.

      • Fig. 1e-f: the main text states that "NDP52 KO effects on the pS172 signal were comparable to controls", but the blot in 1e and the graph in 1f indicate a difference between NDP52KO and WT (significant difference shown in 1f). This is confusing.*

      We regret the over-interpretation. As the reviewer indicated, the amount of phos-TBK generated in response to mitophagy was reduced in NDP52 KO cells relative to that in WT cells. This has been corrected. We would like to emphasize that, unlike OPTNdeletion, NDP52 deletion has relatively minor effects on TBK1 phosphorylation.

      • P. 9: "TBK1 phosphorylation however was not apparent in the OPTN mutant lines, even after 3 hrs with valinomycin, indicating that autophagy adaptors are essential for TBK1 activation (Fig. 2a)". However, the pTBK1 blot in Fig. 1a does show pTBK1 formation in the OPTN mutant (4LA etc.) lines. This is confusing.*

      We apologize for this error. We intended to state “TBK1 phosphorylation was not apparent in the Penta KO cells without OPTN expression even after 3 hrs with valinomycin, indicating that autophagy adaptors are essential for TBK1 activation”. This sentence has been corrected in the revised manuscript.

      • P. 10: "we subtracted the basal phosphorylation signal from that generated post-valinomycin (1 hr) and bafilomycin (3 hr)". Do they mean "from that generated post-valinomycin (3 hr) and bafilomycin (3 hr)?*

      The reviewer is correct, we have corrected the error.

      • P. 10, same paragraph: "the phosphorylation signal was ~90 but was less than 30 in ATG9A KO cells." Unclear what they mean by 90 and 30. 90% and 30%? 90-fold and 30-fold?*

      The newly generated pTBK1 levels following Parkin-mediated mitophagy were calculated as pTBK1 [val & baf 3 hrs] minus pTBK1 [DMSO]. Since pTBK1 [val & baf 3 hrs] in WT cells is set to 100%, the newly generated pTBK1 in WT cells was 100% - 5% = 95%. The calculated values for pTBK1 [DMSO] and pTBK1 [val & baf 3 hrs] in ATG9A KO cells were ~55% and ~85%, respectively. Consequently, newly generated pTBK1 in the ATG9A KO cells is ~85% - ~55% = 30%. For clarity, we modified the figure to make the meaning of the numbers more apparent.

      • Fig. 3a: Do they have an idea what kind of ubiquitinated substrates are contained in the ubiquitin-positive condensates that accumulate in FIP200 KO and ATG9A KO cells (i.e. without valinomycin treatment)?*

      According to Kishi-Itakura et al. (2014 J Cell Sci), ferritin accumulates in the p62 condensates in FIP200 KO and ATG9A KO cells. However, it is unknown if the ferritin in the condensates is ubiquitinated. In the original manuscript, we confirmed by immunostaining that the p62-NBR1 condensates contain ferritin (Fig 3a in the original manuscript and supplementary Fig 7b in the revised manuscript).

      • P. 12 and Fig. 3a: please explain why they look at ferritin, to improve readability.*

      We thank the reviewer for the suggestion. As mentioned, ferritin is a known substrate that accumulates in p62 condensates, we thus sought to confirm its presence. We have included this explanation in the revised manuscript.

      • Fig. 3a: please also include Ub stain for NBR1.*

      We thank the reviewer for the suggestion. We obtained a rabbit anti-NBR1 antibody that allowed us to co-immunostain with the mouse anti-ubiquitin antibody (please see supplementary Fig 7b in the revised manuscript).

      • Fig. 3d: the OPTN blot shows 2 OPTN bands. What does the upper OPTN band represent here?*

      To determine if the two bands are genuine OPTN, total cell lysates prepared from HeLa cells treated with control siRNA or OPTN siRNA were subjected to phos-tag PAGE followed by immunoblotting with an anti-OPTN antibody. As shown below (Figure 2 for reviewers), the two bands (indicated as blue arrowheads) were absent in the OPTN knock down cells, indicating that both are derived from OPTN. Since phosphorylated species migrate slower in phos-tag PAGE, the upper band might be a phosphorylated form. The specific Ser/Thr phosphorylated in OPTN, however, remains to be determined. Heo et al. (2015 Mol Cell) also reported the two OPTN bands on phos-tag PAGE and that both were unchanged in TBK1 KO cells, suggesting that at least the upper band is not affected by TBK1.

      • P. 14 and Fig. 4b: "Here, we found that phosphorylation of ... TBK1 (S172) was induced by the OPTN-ub fluoppi (Fig. 4b)." However, Fig 4b does not show a pTBK1 blot.*

      We immunoblotted phos-TBK1. Please see Fig 4b in the revised manuscript.

      *Reviewer #3 (Significance (Required)): *

      *The novel insights are relevant. *

      *According to the prevailing model (prior to this manuscript), TBK1 activation via autophosphorylation leads to TBK1-mediated phosphorylation of OPTN S177 and subsequent pOPTN-mediated recruitment of autophagic isolation membranes to the mitochondria. However, based on the model provided in this manuscript, OPTN needs to interact first with both autophagic membranes and ubiquitin before TBK1 can become activated. *

      Based on our time-lapse microscopy observations (Fig 2l), OPTN recruited to the vicinity of mitochondria was visible as a small dot-like structures that likely correspond to contact sites between mitochondria and the isolation membrane since OPTN colocalizes with WIPI1 (please see supplementary Fig 2). These results support our proposed model that OPTN interacts with both isolation membranes and ubiquitin at the onset of mitophagy. Without TBK1 activation, OPTN can interact with ATG9A vesicles, a seed for isolation membrane formation (Yamano et al 2020 JCB), and TBK1 can interact with the PI3K complex (Nguyen et al 2023 Mol Cell). Therefore, OPTN-TBK1 can be recruited to the contact site from the very beginning of mitophagy induction prior to TBK1 being fully activated. Furthermore, the proposed model also includes an OPTN-TBK1 positive feedback loop; however, the earliest reactions in the positive feedback loop are too difficult to observe. For example, it’s widely known that PINK1 and Parkin form a positive feedback loop to generate ubiquitin-chains on damaged mitochondria, but the initial reaction has yet to be observed. It remains unclear if PINK1 is the first to phosphorylate mitochondrial ubiquitin (if this is the case, it remains unknown how ubiquitin comes to mitochondria) or if cytosolic Parkin first adds ubiquitin to the outer membrane albeit with very weak activity. Similarly, in our proposed model, we cannot determine the earliest OPTN-TBK1 reaction. As described in the Discussion in the revised manuscript, it remains possible that in the absence of autophagy machinery OPTN distributed freely on the outer membrane can induce trans-autophosphorylation, albeit weakly, as the earliest reaction.

      We would like to thank Reviewer 3 for the critical comments and suggestions. We have performed several of the suggested experiments, added new data, and rewritten the text. We hope that these changes have sufficiently addressed the reviewer’s concerns.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Cook, Watt, and colleagues previously reported that a mouse model of Spinocerebellar ataxia type 6 (SCA6) displayed defects in BDNF and TrkB levels at an early disease stage. Moreover, they have shown that one month of exercise elevated cerebellar BDNF expression and improved ataxia and cerebellar Purkinje cell firing rate deficits. In the current work, they attempt to define the mechanism underlying the pathophysiological changes occurring in SCA6. For this, they carried out RNA sequencing of cerebellar vermis tissue in 12-month-old SCA6 mice, a time when the disease is already at an advanced stage, and identified widespread dysregulation of many genes involved in the endo-lysosomal system. Focusing on BDNF/TrkB expression, localization, and signaling they found that, in 7-8 month-old SCA6 mice early endosomes are enlarged and accumulate BDNF and TrkB in Purkinje cells. Curiously, TrkB appears to be reduced in the recycling endosomes compartment, despite the fact that recycling endosomes are morphologically normal in SCA6. In addition, the authors describe a reduction in the Late endosomes in SCA6 Purkinje cells associated with reduced BDNF levels and a probable deficit in late endosome maturation.

      We would like to thank the reviewers for their careful reading of the paper, their feedback has helped us to add information and experiments to the paper that enhance the clarity of the findings.

      Strengths:

      The article is well written, and the findings are relevant for the neuropathology of different neurodegenerative diseases where dysfunction of early endosomes is observed. The authors have provided a detailed analysis of the endo-lysosomal system in SCA6 mice. They have shown that TrkB recycling to the cell membrane in recycling endosomes is reduced, and the late endosome transport of BDNF for degradation is impaired. The findings will be crucial in understanding underlying pathology. Lastly, the deficits in early endosomes are rescued by chronic administration of 7,8-DHF.

      We thank the reviewers for their positive feedback on this work.

      Weaknesses:

      The specificity of BDNF and TrkB immunostaining requires additional controls, as it has been very difficult to detect immunostaining of BDNF. In addition, in many of the figures, the background or outside of Purkinje cell boundaries also exhibits a positive signal.

      We agree with the reviewers that the performance of the BDNF and TrkB antibodies is an important concern. We have ourselves had difficulties with the performance of many antibodies and the images in this paper are the result of many years of optimization. We have therefore added further detail about the antibody optimization to the methods section of this paper, and have carried out new staining experiments with additional controls. We have added 2 new figure panels in supplementary figures 3 and 4 to demonstrate these tests.

      In the case of anti-BDNF antibodies, we have tested several antibodies and staining protocols and found that in our hands, the only antibody that reliably stained BDNF with a good signal to noise ratio was the one used in this paper (abcam ab108319). Even for this antibody, the staining was greatly enhanced by the use of a heat induced epitope retrieval (HIER) step, which allowed the visualization of BDNF within intracellular structures such as endosomes. When we quantified the intensity of this staining in our previous paper, the results were in agreement with those from a BDNF ELISA used to measure levels of BDNF in the cerebellar vermis of WT and SCA6 mice (Cook et al., 2022), which corroborates these results. As the staining was carried out in tissue sections and not dissociated cells, we also see positive signal from the BDNF staining outside of the Purkinje cells, since BDNF acts on cell-surface receptors and is thus released into the extracellular space around cells (Kuczewski et al., 2008) and is detectable in the extracellular matrix (Lam et al., 2019) and presynaptic terminals around neurons (Camuso et al., 2022; Choo et al., 2017). This is in contrast to studies that image BDNF mRNA with in-situ hybridization, which labels BDNF mRNA predominantly found in cells, and cannot tell us about sub-cellular or extracellular localization of BDNF protein. Together, these factors explain why we observe staining that is not cell- limited, but extends into the space around the cells of interest.

      We have added an additional supplemental figure to demonstrate the importance of using HIER when staining slices with anti-BDNF (Supplementary figure 3). We tested HIER protocols that involved heating the slices to 95°C in a variety of buffers. The buffers tested were sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6), Tris buffer (10mM TBS, 0.05% Tween 20, pH 10), EDTA buffer (1mM EDTA, 0.05% Tween 20, pH 8) and neutral PBS. The PBS produced the best result, enhancing the staining of both anti-BDNF and anti-EEA1 antibodies (Supplementary figure 3). Therefore all slices stained using those antibodies were heated to 95°C in PBS using a heat block or thermocycler for 10 minutes, then allowed to cool before staining proceeded.

      The antibody we use (abcam ab108319) has been used in hundreds of other publications, including Javed et al., 2021 who ectopically expressed BDNF and noted colocalization between the antibody staining and the GFP tag of the BDNF construct, and Lejkowska et al., 2019 who overexpressed BDNF and saw a dramatic increase in antibody staining as well. The colocalization between ectopically expressed BDNF and the antibody in these studies demonstrates the specificity of the antibody.

      However, to further validate antibody specificity we used liver tissue as a negative control. In liver tissue from rodents and humans, the majority of the liver contains negligible levels of BDNF (Koppel et al., 2009; Vivacqua et al., 2014), see also the Human Protein Atlas. The exception is some cholangiocytes: epithelial cells that express BDNF at high levels (Vivacqua et al., 2014). We obtained liver tissue from a WT mouse that was undergoing surgery for an unrelated project and fixed and processed the tissue as we did for brain tissue (outlined in methods section). As we would expect, most of the cells in the liver showed BDNF immunoreactivity that was comparable to background levels (Supplementary figure 3). Interestingly, we were also able to detect sparse highly BDNF-positive cells in the liver, presumed cholangiocytes (Supp. Fig. 3). This pattern of liver BDNF expression is as predicted in the literature, and thus acts as a control for our antibody. We therefore believe that in our hands this antibody is able to stain BDNF with an appropriate degree of specificity.

      We also carried out staining experiments using a second anti-TrkB antibody that we had previously used to detect TrkB via Western bloing. We carried out immunohistochemistry as previously described using tissue sections from a WT mouse. The staining with the two different antibodies was carried out at the same time and all other reagents were kept constant. We found that both antibodies labelled TrkB in a similar pattern of localization, including in the early endosomes of the Purkinje cells (Supplementary figure 4). The second antibody however did have a lower signal to noise ratio and so we believe that the original anti-TrkB antibody used in this manuscript (EMD Millipore ab9872) is optimal for staining cerebellar tissue sections in our hands.

      One important concern about the conclusions is that the RNAseq experiment was conducted in 12-month- old SCA6 mice suggesting that the defects in the endo-lysosomal system may be caused by other pathophysiological events and, likewise, the impairment in BDNF signaling may also be indirect, as also noted by the authors. Indeed, Purkinje cells in SCA6 mice have an impaired ability to degrade other endocytosed cargo beyond BDNF and TrkB, most likely because of trafficking deficits that result in a disruption in the transport of cargo to the lysosomes and lysosomal dysfunction.

      We agree with the reviewers that the defects in the endo-lysosomal system may be caused by other events occurring in the course of disease progression. As mentioned by the reviewers, we have noted this possibility in the text. Detailed investigation into the sequence of events and the root causes of signaling disruption in SCA6 merits future study and we aim to address this in future work. We have expanded this explanation in the text.

      Moreover, the beneficial effects of 7,8-DHF treatment on motor coordination may be caused by 7,8-DHF properties other than the putative agonist role on TrkB. Indeed, many reservations have been raised about using 7,8-DHF as an agonist of TrkB activity. Several studies have now debunked (Todd et al. PlosONE 2014, PMID: 24503862; Boltaev et al. Sci Signal 2017, PMID: 28831019) or at the very least questioned (Lowe D, Science 2017: see Discussion: https://www.science.org/content/blog-post/those-compounds-aren-t- what-you-think-they-are Wang et al. Cell 2022 PMID: 34963057). Another interpretation is that 7,8-DHF possesses antioxidant activity and neuroprotection against cytotoxicity in HT-22 and PC12 cells, both of which do not express TrkB (Chen et al. Neurosci Lett 201, PMID: 21651962; Han et al. Neurochem Int. 2014, PMID: 24220540). Thus, while this flavonoid may have a beneficial effect on the pathophysiology of SCA6, it is most unlikely that mechanistically this occurs through a TrkB agonistic effect considering the potent anti-oxidant and anti-inflammatory roles of flavonoids in neurodegenerative diseases (Jones et al. Trends Pharmacol Sci 2012, PMID: 22980637).

      We thank the reviewers for raising this important point. We have noted in our previous paper (Cook et al., 2022) that 7,8-DHF may not be acting as a TrkB agonist in SCA6 mice, and are in agreement that other explanations are possible. We have now added information to the text of this paper to highlight this possibility. We did show in our previous paper that 7,8-DHF administration activates Akt signaling in the cerebellum of SCA6 mice, a signaling event that is known to take place downstream of TrkB activation. Additionally, 7,8-DHF treatment led to the increase of TrkB levels in the cerebellum of SCA6 mice (Cook et al., 2022), implicating TrkB in the mechanism of action, even if mechanistically, this is not via direct TrkB activation alone. However, even if the mechanism is currently incompletely explained, we believe that 7,8- DHF remains a valuable treatment strategy for SCA6. We have tried to rewrite the Discussion to highlight what we think is the most important takeaway: that 7,8-DHF can rescue endosomal and other deficits in SCA6, even if we do not currently know the full mechanism of action. We have therefore amended the text to add more detail about other potential explanations for the mechanism of action of 7,8-DHF.

      References

      Camuso S, La Rosa P, Fiorenza MT, Canterini S. 2022. Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis. doi:10.1016/j.nbd.2021.105606

      Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, Tanimura A, Uesaka N, Watanabe M, Sakimura K, Kano M. 2017. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun 8:195. doi:10.1038/s41467-017-00260-w

      Cook AA, Jayabal S, Sheng J, Fields E, Leung TCS, Quilez S, McNicholas E, Lau L, Huang S, Watt AJ. 2022. Activation of TrkB-Akt signaling rescues deficits in a mouse model of SCA6. Sci Adv 8:3260. doi:10.1126/sciadv.abh3260

      Javed S, Lee YJ, Xu J, Huang WH. 2021. Temporal dissection of Rai1 function reveals brain-derived neurotrophic factor as a potential therapeutic target for Smith-Magenis syndrome. Hum Mol Genet 31:275–288. doi:10.1093/HMG/DDAB245

      Koppel I, Aid-Pavlidis T, Jaanson K, Sepp M, Pruunsild P, Palm K, Timmusk T. 2009. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice. BMC Neurosci 10:68. doi:10.1186/1471-2202-10-68

      Kuczewski N, Porcher C, Ferrand N, Fiorentino H, Pellegrino C, Kolarow R, Lessmann V, Medina I, Gaiarsa JL. 2008. Backpropagating action potentials trigger dendritic release of BDNF during spontaneous network activity. J Neurosci 28:7013–7023. doi:10.1523/JNEUROSCI.1673-08.2008

      Lam D, Enright HA, Cadena J, Peters SKG, Sales AP, Osburn JJ, Soscia DA, Kulp KS, Wheeler EK, Fischer NO. 2019. Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array. Sci Rep 9. doi:10.1038/s41598- 019-40128-1

      Lejkowska R, Kawa MP, Pius-Sadowska E, Rogińska D, Łuczkowska K, Machaliński B, Machalińska A. 2019. Preclinical Evaluation of Long-Term Neuroprotective Effects of BDNF-Engineered Mesenchymal Stromal Cells as Intravitreal Therapy for Chronic Retinal Degeneration in Rd6 Mutant Mice. Int J Mol Sci 2019, Vol 20, Page 777 20:777. doi:10.3390/IJMS20030777

      Vivacqua G, Renzi A, Carpino G, Franchitto A, Gaudio E. 2014. Expression of brain derivated neurotrophic factor and of its receptors: TrKB and p75NT in normal and bile duct ligated rat liver. Ital J Anat Embryol 119:111–129. doi:10.13128/IJAE-15138

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and editor for their thoughful and careful evaluation of our manuscript. We appreciate your time and effort and have incorporated many of these suggestions to improve our revised manuscript.

      Reviewer #1 (Public Review):

      Summary: Cullinan et al. explore the hypothesis that the cytoplasmic N- and C-termini of ASIC1a, not resolved in x-ray or cryo-EM structures, form a dynamic complex that breaks apart at low pH, exposing a C-terminal binding site for RIPK1, a regulator of necrotic cell death. They expressed channels tagged at their N- and C-termini with the fluorescent, non-canonical amino acid ANAP in CHO cells using amber stop-codon suppression. Interaction between the termini was assessed by FRET between ANAP and colored transition metal ions bound either to a cysteine reactive chelator attached to the channel (TETAC) or metal-chelating lipids (C18-NTA). A key advantage to using metal ions is that they are very poor FRET acceptors, i.e. they must be very close to the donor for FRET to occur. This is ideal for measuring small distances/changes in distance on the scales expected from the initial hypothesis. In order to apply chelated metal ions, CHO cells were mechanically unroofed, providing access to the inner leaflet of the plasma membrane. At high pH, the N- and C- termini are close enough for FRET to be measured, but apparently too far apart to be explained by a direct binding interaction. At low pH, there was an apparent increase in FRET between the termini. FRET between ANAP on the N-and Ctermini and metal ions bound to the plasma membrane suggests that both termini move away from the plasma membrane at low pH. The authors propose an alternative hypothesis whereby close association with the plasma membrane precludes RIPK1 binding to the C-terminus of ASIC1a.

      Strengths: The findings presented here are certainly valuable for the ion channel/signaling field and the technical approach only increases the significance of the work. The choice of techniques is appropriate for this study and the results are clear and high quality. Sufficient evidence is presented against the starting hypothesis.

      Weaknesses: I have a few questions about certain controls and assumptions that I would like to see discussed more explicitly in the manuscript.

      My biggest concern is with the C-terminal citrine tag. Might this prevent the hypothesized interaction between the N- and C-termini? What about the serine to cysteine mutations? The authors might consider a control experiment in channels lacking the C-terminal FP tag.

      While it is certainly possible that the C-terminal citrine tag is preventing the hypothesized interaction between the intracellular termini, there are a few things that mitigate (but not eliminate) this concern. First, previous work looking at the interaction between the intracellular termini used FPs on both the N- and C-termini and concluded that in fact there is an interaction (PMID:31980622). Our channels have only a single FP, and we use a higher resolution FRET approach. Second, we aVach our citrine tag with a 11-residue linker, allowing for enhanced flexibility of the region and hopefully allowing for more space for an interaction that was posited to be between the very proximal part of the C-terminus (near the membrane and away from the tag) and the untagged N-terminus. Third, we previously showed that Stomatin, a much larger protein than the NTD, could bind the distal C-terminus of rASIC3 with a large fluorescent protein connected by the same linker on the C-terminus. In the case of Stomatin, the interaction involved the residues at the distal portion of the C-terminus close to the bulky FP. Interestingly, while we did not publish this, without this flexible linker, Stomatin could not regulate the channel and likely did not bind.

      Despite this, we agree that this is possible and have added a statement in our limitations section explicitly saying this.

      Figure 2 supplement 1 shows apparent read-through of the N-terminal stop codons. Given that most of the paper uses N-terminal ANAP tags, this figure should be moved out of the supplement. Do Nterminally truncated subunits form functional channels? Do the authors expect N-terminally truncated subunits to co-assemble in trimers with full-length subunits? The authors should include a more explicit discussion regarding the effect of truncated channels on their FRET signal in the case of such co-assembly.

      The positions that show readthrough (E6, L18, H515) were not used in the study. We eliminated them largely on the basis of these westerns. We elected to put the bulk of the blots in the supplement simply because of how many there were. We believe this is the best compromise. It allows us to show representative blots for all our positions without making an illegible figure with 7 blots.

      The N-terminally truncated subunits would create very short peptides that are not able to create functional channels. A premature stop at say E8 would create a 7-mer. Our longest N-terminal truncation would only create a protein of 32 amino acids. These don’t contain the transmembrane segments and thus cannot make functional channels.

      As the epitope used for the western blots in Figure 2 and supplements is part of the C-terminal tag, these blots do not provide an estimate of the fraction of C-terminally truncated channels (those that failed to incorporate ANAP at the stop codon). What effect would C-terminally truncated channels have on the FRET signal if incorporated into trimers with full-length subunits?

      Alternatively, C-terminally truncated subunits would be able to form functional channels because they contain the full N-terminus, the transmembrane domains, the extracellular domain and a portion of the C-terminus. We don’t think this is a major contaminant to our experiments. The only two C-terminal ANAP positions we use are 464 and 505. In each of these cases, they are only used for memFRET. The ones that do not contain ANAP are essentially “invisible” to the experiment. Since we are measuring their proximity to the membrane, having some missing should not maVer. However, there is some chance that truncations in some subunits could allosterically affect the position of the CT in other subunits. We have added a discussion of this in the manuscript.

      Some general discussion of these results in the context of trimeric channels would be helpful. Is the putative interaction of the termini within or between subunits? Are the distances between subunits large enough to preclude FRET between donors on one subunit and acceptor ions bound on multiple subunits?

      Thank you for this comment. We did not directly test whether the distances are within or between subunits. We considered using a concatemer to do this, however, the concatemeric channels do not express particularly well. Then, UAA incorporation hurts the expression as well. It was unlikely we would be able to get sufficient expression for tmFRET.

      However, the Maclean group has previously tested this using FRET between concatenated subunits and determined that FRET is stronger within than between subunits. We have updated the manuscript to reflect a more thorough discussion of our results in the context of their trimeric assembly.

      The authors conclude that the relatively small amount of FRET between the cytoplasmic termini suggests that the interaction previously modeled in Rosetta is unlikely. Is it possible that the proposed structure is correct, but labile? For example, could it be that the FRET signal is the time average of a state in which the termini directly interact (as in the Rosetta model) and one in which they do not?

      The proposed RoseVa model does not include the reentrant loop of the channel, so it is probable that this model would change if it were redone to include this new feature of the channel.

      However, we do discuss the limitation of FRET as a method that measures a time average that is weighted towards closest approach in our discussion section. The termini are most certainly dynamic and it is possible that spend some time in close proximity. Given that FRET is biased towards closest approach, we actually think this strengthens our argument that the termini don’t spend a great deal of time in complex. In addition, our MST data suggests that the termini do not bind. We have added some commentary on this to the discussion section for clarity.

      Reviewer #2 (Public Review):

      Summary:

      The authors use previously characterised FRET methods to measure distances between intracellular segments of ASIC and with the membrane. The distances are measured across different conditions and at multiple positions in a very complete study. The picture that emerges is that the N- and C-termini do not associate.

      Strengths:

      Good controls, good range of measurements, advanced, well-chosen and carefully performed FRET measurements. The paper is a technical triumph. Particularly, given the weak fluorescence of ANAP, the extent of measurements and the combination with TETAC is noteworthy.

      The distance measurements are largely coherent and favour the interpretation that the N and C terminus are not close together as previously claimed.

      Weaknesses:

      One difficulty is that we do not have a positive control for what binding of something to either N- or Cterminus would look like (either in FRET or otherwise).

      We acknowledge that this is a challenge for the approach. Having a positive control for binding would be great but we are not sure such a thing exists. You could certainly imagine a complex between two domains where each label (ANAP and TETAC) are pointed away from one other (giving comparatively modest quenching) or one where they are very close (giving comparatively large quenching), both of which could still be bound. This is essentially a less significant version of the problem with using FPs to measure proximity…they are not very good proxies for the position of the termini. These small labels are certainly beVer proxies but still not perfect. Our conclusion here is based more on the totality of the data. We tried many combinations and saw no sign of distances closer than ~ 20A at resting pH. We think the simplest explanation is that they are not close to one another but we tried to lay out the limitations in the discussion.

      One limitation that is not mentioned is the unroofing. The concept of interaction with intracellular domains is being examined. But the authors use unroofing to measure the positions, fully disrupting the cytoplasm. Thus it is not excluded that the unroofing disrupts that interaction. This should be mentioned as a possible (if unlikely) limitation.

      Thank you for your comment. We discuss unroofing as a potential limitation because it exposes both sides of the plasma membrane to changes in pH. We have updated this section to include acknowledgement of the possibility that unroofing disrupts the interaction via washout of other critical proteins.

      Reviewer #3 (Public Review):

      Summary: The manuscript by Cullinan et al., uses ANAP-tmFRET to test the hypothesis that the NTD and CTD form a complex at rest and to probe these domains for acid-induced conformational changes. They find convincing evidence that the NTD and CTD do not have a propensity to form a complex. They also report these domains are parallel to the membrane and that the NTD moves towards, and the CTD away, from the membrane upon acidification.

      Strengths:

      The major strength of the paper is the use of tmFRET, which excels at measuring short distances and is insensitive to orientation effects. The donor-acceptor pairs here are also great choices as they are minimally disruptive to the structure being studied.

      Furthermore, they conduct these measurements over several positions with the N and C tails, both between the tails and to the membrane. Finally, to support their main point, MST is conducted to measure the association of recombinant N and C peptides, finding no evidence of association or complex formation.

      Weaknesses:

      While tmFRET is a strength, using ANAP as a donor requires the cells to be unroofed to eliminate background signal. This causes two problems. First, it removes any possible low affinity interacting proteins such as actinin (PMID 19028690). Second, the pH changes now occur to both 'extracellular' and 'intracellular' lipid planes. Thus, it is unclear if any conformational changes in the N and CTDs arise from desensitization of the receptor or protonation of specific amino acids in the N or CTDs or even protonation of certain phospholipid groups such as in phosphatidylserine. The authors do comment that prolonged extracellular acidification leads to intracellular acidification as well. But the concerns over disruption by unroofing/washing and relevance of the changes remain.

      We acknowledge that unroofing is a limitation of our approach and noted it in the discussion. However, we have updated the section to include the possibility that the act of unroofing and washing could also disrupt the potential interaction between the intracellular domains as well as between these domains and other intracellular proteins. This was the best approach we could use to address our questions and it required that we unroof the cells. However, we look forward to future studies or new techniques that do not require the unroofing of the cells.

      The distances calculated depend on the R0 between donor and acceptor. In turn, this depends on the donor's emission spectrum and quantum yield. The spectrum and yield of ANAP is very sensitive to local environment. It is a useful fluorophore for patch fluorometry for precisely this reason, and gating-induced conformational changes in the CTD have been reported just from changes in ANAP emission alone (PMID 29425514). Therefore, using a single R0 value for all positions (and both pHs at a single position) is inappropriate. The authors should either include this caveat and give some estimate of how big an impact changes spectrum and yield might have, or actually measure the emission spectra at all positions tested.

      This is a reasonable concern and one we considered. Measuring the quantum yield would be quite difficult. However, we have measured spectra at a number of positions and see a relatively minimal shik in the peak. Most positions peak between 481 and 484nm. If you calculate the difference in R0 using theoretical spectra with a blue shik of 20nm, the difference in R0 is only ~1.5A. A shik of 20nm is on the higher side of anything we have seen in the literature (PMID 30038260) and since even with that large a shik, the difference is minimal we do not think measuring spectra for each position would impact the overall conclusions presented. As you noted, though, the quantum yield also changes. Assuming a change in yield from 0.22 to 0.47, the largest we found reported in the literature (PMID:29923827) , the R0 would increase by 2A. This same paper showed that the blue shiked position was the one with the higher extinction coefficient so these changes would be working in opposition to one another making the difference in R0 even smaller. It is important to note, that while tmFRET is a much more powerful measure of distance than standard FRET, these distances, as you point out, are quite challenging to measure precisely. Our conclusions are based less on the absolute distances and more on the observation that no positions show large quenching and that if there is any change upon acidification, it is in the wrong direction.

      Overall, the writing and presentation of figures could be much improved with specific points mentioned in the recommendations for authors section.

      See below.

      The authors argue that the CTD is largely parallel to the plasma membrane, yet appear to base this conclusion on ANAP to membrane FRET of positions S464 and M505. Two positions is insufficient evidence to support such a claim. Some intermediate positions are needed.

      We do not see in the paper where we suggest that the CTD is parallel. However, your point that we could try and determine if this was the case is correct. However, we aVempted to create several other CTD TAG mutants but struggled with readthrough and poor expression of these mutants so we opted to just include S464 and M505. Our point from these data is only that the distal CTD (505) must spend significant time near the membrane to explain our FRET data.

      Upon acidification, NTD position Q14 moves towards the plasma membrane (Figure 8B). Q14 also gets closer to C515 or doesn't change relative to 505 (Figures 7C and B) upon acidification. Yet position 505 moves away from the membrane (Figure 8D). How can the NTD move closer to the membrane, and to the CTD but yet the CTD move further from the membrane? Some comment or clarification is needed.

      This is a reasonable question and one that is hard to definitively answer. Our goal here was to test the hypothesis that the termini are bound at rest. Mapping the precise positions of the termini is difficult for reasons we will enumerate in the question that asks why we didn’t make a model. There are potentially multiple explanations but the easiest one would be that the CTD could move away from the membrane but closer to Q14, for instance, if the distal termini, say, rotated towards the NTD. This would move 505 closer and have no impact on whether or not the NTD and CTD moved away or toward the membrane.

      Reviewer #1 (Recommendations For The Authors):

      Minor concerns

      The authors show the spectrum of ANAP attached to beads and use this spectrum to calculate R0 for their FRET measurements. Peak ANAP fluorescence is dependent on local environment and many reports show ANAP in protein blue-shiked relative to the values reported here. How would this affect the distance measurements reported?

      This is an important point. See above for the answer.

      Could the lack of interaction between the N- and C-terminal peptides in Figure 7 arise from the cysteine to serine mutations or lack of structure in the synthetic peptides. How were peptide concentrations measured/verified for the experiment?

      It is possible that cysteine to serine mutations could prevent the interaction. It is also possible that these peptides are not capable of adopting their native fold without the presence of the plasma membrane or due to being synthetically created. However, the termini are thought to be largely unstructured. We received these peptides in lyophilized form at >95% purity and resuspended to our desired stock concentration (3 mM C-terminus, 1 mM N-terminus). Even if our concentration was off, we see no signs of interaction up to quite a high concentration.

      How was photobleaching measured for correcting the data?

      We executed several mock experiments at various TAG positions using either pH 8 and pH 6, where we performed the experiments as usual but with a mock solution exchange when we would normally add the metal. We normalized the L-ANAP fluorescence to the first image and averaged together these values for pH 8 and pH 6. We then corrected using Equation 2 in the manuscript..

      We have updated the methods to include how we adjusted for bleaching.

      The authors may wish to make it more explicit that their Zn2+ controls also preclude the possibility that a changing FRET signal between ANAP and citrine may affect their data.

      Thank you for this comment. We agree, it would strengthen the manuscript to include this statement. We have now included this.

      It might be useful to the reader if the authors could include (as a supplement) plots of their data (like in Figure 6), in which FRET efficiency has been converted to distance.

      We considered this idea as well but felt like showing the actual data in the figures and the distances in a table would be best.

      Figure 5D is mentioned in the text before any other figures. This is unconventional. Could this panel be moved to Figure 1 or the mention moved to later?

      Changed

      western blot is not capitalized.

      Changed.

      Figure 1, the ANAP structure shown is the methyl ester, which is presumably cleaved before ANAP is conjugated to the tRNA. The authors may wish to replace this with the free acid structure.

      This is a fair point. We originally used the methyl ester structure to indicate the version of ANAP we chose to use. However, you are correct that the methyl ester is cleaved before conjugation to the tRNA. We replaced the methyl ester with the free acid structure to clarify this.

      Figures 1 and 4 should have scale bars for the images.

      Scale bars have been added to figures 1, 4, and 5.

      In Figure 3, the letters in the structures (particularly TETAC) are way too small. Please increase the font size.

      Changed

      In Figure 3 and Figure 3 supplement 1, the axes are labeled "Absorbance (M-1cm-1)." Absorbance is dimensionless. The authors are likely reporting the extinction coefficient.

      Thank you for catching this. We adjusted the axes to extinction coefficient.

      In Figures 5 B and C, it might be clearer if the headers read "Initial, +Cu2+/TETAC, DTT" rather than "Initial, FRET, Recovery."

      Changed

      The panel labels for Figure 8 seem to be out of order.

      Changed

      The L for L-ANAP should be rendered, by convention, in small caps.

      This is a good example of learning something new from the review process. This is the first I have ever heard of small caps. We can find no other papers that use small caps for L-ANAP so I am not 100% sure what convention this is referring to and don’t want to change the wrong thing in the paper. We are happy to change if the editorial staff at eLife agree but have lek this for now.

      Reviewer #2 (Recommendations For The Authors):

      With so many distances measured, why was not even a basic structural model attempted?

      We certainly considered it, but a number of things lead us to conclude that it might imply more certainty about the structure of these termini than we hope to give. 1) Given that the FRET is a time average of positions, these distance constraints would not do much constraining. 2) Given that the termini are likely unstructured and flexible this makes the problem in 1 worse. 3) There is no structural information to use as a starting point for a model. 4) The flexibility of the linkers for each FRET pair also introduces uncertainty. This can, in theory, be modeled as they do in EPR but all of this together made us decide not to do this. What we hope readers take home, is the overall picture of the data is not consistent with the original RIPK1 hypothesis.

      Maybe it would be good to draw a band on the graphs in Figure 6 for the FRET signal expected for interaction (and thus, disfavoured by these data). This would at least give context.

      We agree this could be helpful, but it is not so easy to do. What distance would we choose? We could put a line at ~5Å (the model predicted distance). As we noted above, a number of distances could be compatible with an interaction. However, we think it’s unlikely that if a complex was formed that none of our measurements would show a distance closer than 20Å at rest and that an unbinding event would then lead to a decrease in distance. This, to us, is the take home message.

      Minor points:

      "Aker unroofing the cells, only fluorescence associated with the "footprint", or dorsal surface, of the cell membrane is lek behind."

      The authors use dorsal and ventral in this section to describe parts of an adherent cell. But in the first instance, they remove the dorsal part of the cell, and then in this phrase, the dorsal part is lek behind....I am a bit confused.

      Thank you for pointing out this mistake, we have fixed this. It is indeed the ventral surface lek behind.

      "bind at rest an" - and?

      Changed

      "One previous study used a different approach to try and map the topography of the intracellular termini of ASIC1a comparable to our memFRET experiments." I think a citation is due.

      Citation added

      "great deal of precedent" even if this result is from my own lab, I would prefer that the authors note that it's one study from one lab! I think best just to delete "great deal of".

      “Great deal of” deleted

      I think the column "Significance" in the tables is unnecessary when the P value is given.

      Thank you for this suggestion. We agree and have made the change.

      Figure 7a Q14TAG has a clearly bimodal distribution at pH 8. What could be the meaning of this result? The authors do not mention it that I could find. Perhaps there is no meaning. The authors should state what they think is (or is not) going on.

      This is a good question and we don’t have a good answer. It appears to be experimental variability. The data from the “low fret” in this experimental condition all came from the same days. So something was different that day. We considered that they might be outliers to exclude but thought showing all of our data was the beVer path. We reperformed the ANOVA here separating out the “outlier” day and nothing of substance changed. Both populations were still different with P value less than 0.001.

      Typo: Lumencore

      Changed

      Maybe just a matter of taste but the panel created with Biorender in Figure 8 is not attractive and depicts the channel differently to in Figure 5D, which is again different from Figure 1A. Surely one advantage of using computer-generated artwork could be to have consistency.

      We agree and have used the same cartoon for all of our images with the one exception being the schematics that are just meant to show the positions that are present in each bar graph.

      Figure 4A was squashed to fit (text aspect ratio is wrong).

      Fixed

      Reviewer #3 (Recommendations For The Authors):

      Citrine is used to report incorporation. Yet citrine has a strong tendency to dimerize (PMID 27240257). Did the authors use mCitrine or just Citrine? This is quite important in interpreting their data.

      Thank you for pointing out this important distinction. We use mCitirine which we have added to the methods.

      The manuscript has numerous instances of imprecise language. For example, page 10, last para, first line, "previous studies have looked at..." or page 7, final paragraph "tell a similar story". Related, the figures could be much better. For example, in Figure 1, where the authors depict the anap chemical in red, as opposed to the blue one might expect of a blue emiqng fluorophore. In figure 6, ANAP is also in red with the quenching group in green. This is opposite to how one typically thinks of FRET with the warmer color being the acceptor not the donor. Moreover, the pH 6 condition is also colored the same shade of red as the ANAP. Labels of Cys positions would again be useful here. In Figure 3, the heteroatoms of TETAC and C18-NTA are very small and difficult to see. It would also be good to label these structures, and the spectra below, so the reader can tell at a glance without looking at the caption, what the structures and spectra arise from. Also, how are the absorption spectra normalized? This is not discussed in the methods. The lack of attention to presentation mars an otherwise nice study.

      Thank you for these points. We have made modifications to the manuscript to address these comments.

      Abstract, second last line "Aker prolonged acidification, ...", 'prolonged' could be interpreted as 'it takes a while for the domain to move' or 'the movement only happens aker a while'. This not what the authors intend to convey. Consider modifying to just 'Aker acidification,'

      We updated the main text to indicate that prolonged acidification is intended to describe acidification that occurs over the minutes timescale.

      Pdf page 6, bottom para on Anap incorporation not altering channel function: What is meant by 'steady state pH dependence of activation'? This implies the authors applied a pH stimulus, then waited until equilibrium was achieved ie. until desensitization was complete and measured the current at that point. It seems more likely they simply applied different pH stimuli and measured the peak response and that the use of 'steady state' here is a typo.

      We removed the phrase steady state.

      Same section, controls of electrophysiology allude to 485, 505 and 515 ANAP-containing channels. In fact, the authors have no way of determining what fraction (if any) of the pH evoked currents arise from channels containing Anap in those positions versus from simply having a translation stop but still functioning. This should be mentioned.

      This is correct. We cannot be sure the CTD TAG positions are not a mixture of ANAP-containing channels and truncations. See above for why we do not think this a big concern for the FRET experiments. Functionally, though, you are correct that we cannot tell. We now mention this in the paper.

      Methods, the abbreviation for SBT should be defined somewhere.

      Added.

      Methods, unroofing section, middle paragraph, the authors use nM not nm to list wavelengths of light.

      Changed.

      Figure 3C-D: There's an unexpected blip in the Anap emission spectra at ~500 nm. Are the grating efficiency of the spectrograph and quantum efficiency of the camera accounted for in these spectra?

      This is a good question. The data are not corrected for either camera efficiency or grating efficiency. We don’t have easy access to the actual data (although we can see a pdf version of each). There is a liVle blip in the grating efficiency graph that could partly explain the blip in our spectra.

      Figure 5C, were recovery experiments routinely done? If so, would be good to show more than n = 1 in the plot to get an idea of reproducibility.

      Recovery experiments were done in every experiment but are not shown for simplicity. We have included all FRET and recovery data for position Q14TAG-C469 at pH 6 in figure 5C to show reproducibility of our FRET and recovery data.

      Table 1, considering adding a Δ distance column (pH 8 versus 6) so the magnitude of changes are more easily seen.

      This is a reasonable suggestion but we decided not to include a Δ distance column. The data are whole numbers and people can easily determine the Δ distance. We felt that including that column would bring too much focus on what we think are preVy small changes. Our hope is that readers take away that the data are not consistent with complex formation between the determine and focus less on absolute distances.

      Figure 7A, Q14tag pH 8 condition has a quite a bit of spread and, likely, two populations. These data, as well as G11, are unlikely to be parametric and hence ANOVA is inappropriate. A normality test, and likely Kruskal-Wallis test is called for.

      Aker testing for normality, the data for Q14TAG C485 pH8 are non-normally distributed. However, a Kruskal Wallis is a non-parametric test for a one-way ANOVA and not applicable here. We separated the data out into population 1 and 2 and repeated the two-way ANOVA statistical test. When Q14TAG pH 8 is split into 2 populations, the statistics hardly change. When the data is not separated, Q14TAG pH 8 relative to pH 6 has a p-value <0.0001. When the 2 populations are separated, both populations relative to Q14TAG pH 6 still have a p-value of <0.0001.

    2. Reviewer #1 (Public Review):

      Cullinan et al. explore the hypothesis that the cytoplasmic N- and C-termini of ASIC1a, not resolved in x-ray or cryo-EM structures, form a dynamic complex that breaks apart at low pH, exposing a C-terminal binding site for RIPK1, a regulator of necrotic cell death. They expressed channels tagged at their N- and C-termini with the fluorescent, non-canonical amino acid ANAP in CHO cells using amber stop-codon suppression. Interaction between the termini was assessed by FRET between ANAP and colored transition metal ions bound either to a cysteine reactive chelator attached to the channel (TETAC) or metal-chelating lipids (C18-NTA). A key advantage to using metal ions is that they are very poor FRET acceptors, i.e. they must be very close to the donor for FRET to occur. This is ideal for measuring small distances/changes in distance on the scales expected from the initial hypothesis. In order to apply chelated metal ions, CHO cells were mechanically unroofed, providing access to the inner leaflet of the plasma membrane. At high pH, the N- and C- termini are close enough for FRET to be measured, but apparently too far apart to be explained by a direct binding interaction. At low pH, there was an apparent increase in FRET between the termini. FRET between ANAP on the N-and C-termini and metal ions bound to the plasma membrane suggests that both termini move away from the plasma membrane at low pH. The authors propose an alternative hypothesis whereby close association with the plasma membrane precludes RIPK1 biding to the C-terminus of ASIC1a.

      The findings presented here are certainly valuable for the ion channel/signaling field and the technical approach only increases the significance of the work. The choice of techniques is appropriate for this study and the results are clear and high quality. Sufficient evidence is presented against the starting hypothesis. I have a few questions about certain controls and assumptions that I would like to see discussed more explicitly in the manuscript.

      --As discussed by the authors, the C-terminal citrine could potentially disrupt the hypothesized interaction between the N- and C-termini.

      --There is apparent read-through of some of the stop codons in the absence of ANAP, which could complicate interpretation of the experiments. The largest amount of read-through is for the E6TAG, L18TAG, and H515TAG constructs, which were not used for further experiments. However, some degree of read-through is evident from western blots for V10TAG, Q14TAG, L41TAG, and A44TAG as well.

      Since the epitope used for western blots is on the C-terminus of the protein, the blots do not show the fraction of truncated protein. As discussed by the authors, N-terminally truncated constructs would be too small to assemble into channels. In constructs with the TAG codon towards the C-terminus, there is the potential for co-assembly of full-length and truncated subunits into trimers. Truncated subunits would not contribute directly to the fluorescence signal, but could potentially have allosteric effects on the position of the C-termini of full-length ANAP-tagged constructs in the context of a mixed channel.

    1. When does annotating books become a distraction? .t3_17pitv9._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #8c8c8c; --postTitleLink-VisitedLinkColor: #8c8c8c; --postBodyLink-VisitedLinkColor: #989898; }

      reply to u/Low-Appointment-2906 at https://www.reddit.com/r/books/comments/17pitv9/when_does_annotating_books_become_a_distraction/

      Through the middle ages, bookmakers would not only leave significant margins for readers to annotate, but they also illuminated books and included drolleries which readers in the know would use in conjunction with the arts of memory (from rhetoric) to memorize portions of texts more easily. I strongly suspect this isn't what booktokkers are doing; their practice is likely more like the sorts of decorative #ProductivityPorn one sees in the Bullet journal and journaling spaces. It's performative content creation.

      Those interested in refining their practices of "reading with a pen in hand", continuing the "great conversation" or having "conversations with their texts" might profitably start with Mortimer J. Adler's essay: “How to Mark a Book” (Saturday Review of Literature, July 6, 1941). In his 1975 KCET series How to Read a Book, which was based on their book of the same name, Adler mentioned to Charles Van Doren that he would buy new copies of books so he could re-annotate them without being distracted by his older annotations.

      Some have solved the problem of distracting annotations by interleaving their books so they've got lots of blank space to write their notes. It's a rarer practice now, but some publishers still print Bibles with blank pages every other page for this practice. Others put their annotations and notes into commonplace books or on index cards for their card index/zettelkasten.

      As some have mentioned, friends and lovers through time have shared books with annotations as a way of sharing their thoughts. George Custer and his wife Elizabeth did this with Tennyson.

      If you're interested in annotating digitally online, perhaps check out Hypothes.is where I've seen teachers and students using social annotation to read and make sense of books [example]. I've also seen groups of people use this tool for hosting online book groups/clubs.

      If you're in it for fun, you might appreciate:

      And those wishing to delve more deeply into the history and power of annotation might look at: Kalir, Remi H., and Antero Garcia. Annotation. The MIT Press Essential Knowledge Series. MIT Press, 2019. https://mitpressonpubpub.mitpress.mit.edu/annotation.

      Good luck annotating! 📝

    1. Author Response

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Comments on the original submission:

      Trypanosoma brucei undergoes antigenic variation to evade the mammalian host's immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) has shown that PIP5pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1300, aa301-560, and aa 561-855). These fragments' DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulate the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author's hypothesis that this regulation is through an "allosteric switch".

      Comments on revised manuscript:

      In this revised manuscript, Touray et al. have responded to reviewers' comments with some revisions satisfactorily. However, the authors still haven't addressed some key scientific rigor issues, which are listed below:

      1) It is critical to clearly state whether the observations are made for the endogenous WT protein or the tagged protein. It is good that the authors currently clearly indicate the results observed in vivo are for the RAP1-HA protein. However, this is not as clearly stated for in vitro EMSA analyses. In addition, in discussion, the authors simply assumed that the c-terminally tagged RAP1 behaves the same as WT RAP1 and all conclusions were made about WT RAP1.

      There are two choices here. The authors can validate that RAP1-HA still retains RAP1's essential function as a sole allele in T. brucei cells (as was recommended previously). Indeed, HA-tagged RAP1 has been studied before, but it is the N-terminally HA-tagged RAP1 that has been shown to retain its essential functions. Adding the HA tag to the C-terminus of RAP1 may well cause certain defects to RAP1. For example, N-terminally HA-tagged TERT does not complement the telomere shortening phenotype in TERT null T. brucei cells, while C-terminally GFP-tagged TERT does, indicating that HA-TERT is not fully functional while TERT-GFP likely has its essential functions (Dreesen, RU thesis). Although RAP1-HA behaves similar to WT RAP1 in many ways, it is still not fully validated that this protein retains essential functions of RAP1. By the way, it has been published that cells lacking one allele of RAP1 behave as WT cells for cell growth and VSG silencing (Yang et al. 2009, Cell; Afrin et al. 2020, mSphere). In addition, although RAP1 may interact with TRF weakly, the interaction is direct, as shown in yeast 2-hybrid analysis in (Yang et al. 2009, Cell).

      Alternatively, if the authors do not wish to validate the functionality of RAP1-HA, they need to add one paragraph at the beginning of the discussion to clearly state that RAP1-HA may not behave exactly as WT RAP1. This is important for readers to better interpret the results. In addition, the authors need to tune down the current conclusions dramatically, as all described observations are made on RAP1-HA but not the WT RAP1.

      The results with RAP1-HA are consistent with previous knowledge of RAP1 interactions with telomeric proteins and DNA. Hence, the C-terminal HA-tagged RAP1 seems, by all measures, functional. Nevertheless, to make it clear for the reader, we added a note in the discussion, lines 244-246: “Although we showed that C-terminal HA-tagged RAP1 protein has telomeric localization (Cestari et al. 2015, PNAS) and interactions with other telomeric proteins (Cestari et al. 2019 Mol Cell Biol); we cannot rule out potential differences between HA-tagged and non tagged RAP1.”

      For a similar reason, the current EMSA results truly reflect how C-terminally His6-tagged RAP1 and RAP1 fragments behave. If the authors choose not to remove the His6 tag, it is essential that they use "RAP1-His6" to refer to these recombinant proteins. It is also essential for the authors to clearly state in the discussion that the tagged RAP1 fragments bind DNA, but the current data do not reveal whether WT RAP1 binds DNA. In addition, the authors incorrectly stated that "disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166). In ref 29, deletion of Myb domain did not abolish RAP1-telomere association. However, point mutations in MybL domain that abolish RAP1's DNA binding activities clearly disrupted RAP1's association with the telomere chromatin. Therefore, the current observation is not completely consistent with that published in ref 29.

      We stated in line 149-150 “…we expressed and purified from E. coli recombinant 6xHistagged T. brucei RAP1 (rRAP1)”. To clarify to the authors, we replaced rRAP1 with rRAP1-His throughout the manuscript and figures. As for the statement that “disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166).”. We removed the statement from the manuscript.

      2) There is no evidence, in vitro or in vivo, that binding PI(3,4,5)P3 to RAP1 causes conformational change in RAP1. The BRCT domain of RAP1 is known for its ability to homodimerize (Afrin et al. 2020, mSphere). It is therefore possible that binding of PI(3,4,5)P3 to RAP1 simply disrupts its homodimerization function. The authors clearly have extrapolated their conclusions based on available data. It is therefore important to revise the discussion and make appropriate statements.

      We did not state that PI(3,4,5)P3 causes RAP1 conformational changes. We discussed the possibility. We stated in lines 199-201: “PI(3,4,5)P3 inhibition of RAP1-DNA binding might be due to its association with RAP1 N-terminus causing conformational changes that affect Myb and MybL domains association with DNA.” This is a reasonable discussion, given the data presented in the manuscript.

      Reviewer #2 (Public Review):

      In this manuscript, Touray et al investigate the mechanisms by which PIP5Pase and RAP1 control VSG expression in T. brucei and demonstrate an important role for this enzyme in a signalling pathway that likely plays a role in antigenic variation in T. brucei. While these data do not definitively show a role for this pathway in antigenic variation, the data are critical for establishing this pathway as a potential way the parasite could control antigenic variation and thus represent a fundamental discovery.

      The methods used in the study are generally well-controlled. The authors provide evidence that RAP1 binds to PI(3,4,5)P3 through its N-terminus and that this binding regulates RAP1 binding to VSG expression sites, which in turn regulates VSG silencing. Overall their results support the conclusions made in the manuscript. Readers should take into consideration that the epitope tags on RAP1 could alter its function, however.

      There are a few small caveats that are worth noting. First, the analysis of VSG derepression and switching in Figure 1 relies on a genome which does not contain minichromosomal (MC) VSG sequences. This means that MC VSGs could theoretically be mis-assigned as coming from another genomic location in the absence of an MC reference. As the origin of the VSGs in these clones isn't a major point in the paper, I do not think this is a major concern, but I would not over-interpret the particular details of switching outcomes in these experiments.

      We agree with the reviewer and thus made no speculations on minichromosomes. The data analysis must rely on the available genome, and the reference genome used is well-assembled with PacBio sequences and Hi-C data (Muller et al. 2018, Nature).

      Another aspect of this work that is perhaps important, but not discussed much by the authors, is the fact that signalling is extremely poorly understood in T. brucei. In Figure 1B, the RNA-seq data show many genes upregulated after expression of the Mut PIP5Pase (not just VSGs). The authors rightly avoid claiming that this pathway is exclusive to VSGs, but I wonder if these data could provide insight into the other biological processes that might be controlled by this signaling pathway in T. brucei.

      We published that the inositol phosphate pathway also plays a role in T. brucei development (Cestari et al. 2018, Mol Biol Cell; reviewed by Cestari I 2020, PLOS Pathogens)

      Overall, this is an excellent study which represents an important step forward in understanding how antigenic variation is controlled in T. brucei. The possibility that this process could be controlled via a signalling pathway has been speculated for a long time, and this study provides the first mechanistic evidence for that possibility.

      Reviewer #1 (Recommendations For The Authors):

      Please see the public review for recommendations.1. It is critical to clearly state whether the observations are made for the endogenous WT protein or the tagged protein. It is good that the authors currently clearly indicate the results observed in vivo are for the RAP1-HA protein. However, this is not as clearly stated for in vitro EMSA analyses. In addition, in discussion, the authors simply assumed that the c-terminally tagged RAP1 behaves the same as WT RAP1 and all conclusions were made about WT RAP1.

      There are two choices here. The authors can validate that RAP1-HA still retains RAP1's essential function as a sole allele in T. brucei cells (as was recommended previously). Indeed, HA-tagged RAP1 has been studied before, but it is the N-terminally HA-tagged RAP1 that has been shown to retain its essential functions. Adding the HA tag to the C-terminus of RAP1 may well cause certain defects to RAP1. For example, N-terminally HA-tagged TERT does not complement the telomere shortening phenotype in TERT null T. brucei cells, while C-terminally GFP-tagged TERT does, indicating that HA-TERT is not fully functional while TERT-GFP likely has its essential functions (Dreesen, RU thesis). Although RAP1-HA behaves similar to WT RAP1 in many ways, it is still not fully validated that this protein retains essential functions of RAP1. By the way, it has been published that cells lacking one allele of RAP1 behaves as WT cells for cell growth and VSG silencing (Yang et al. 2009, Cell; Afrin et al. 2020, mSphere). In addition, although RAP1 may interact with TRF weakly, the interaction is direct, as shown in yeast 2-hybrid analysis in (Yang et al. 2009, Cell).

      Alternatively, if the authors do not wish to validate the functionality of RAP1-HA, they need to add one paragraph at the beginning of the discussion to clearly state that RAP1-HA may not behave exactly as WT RAP1. This is important for readers to better interpret the results. In addition, the authors need to tune down the current conclusions dramatically, as all described observations are made on RAP1-HA but not the WT RAP1.

      The results with RAP1-HA are consistent with previous knowledge of RAP1 interactions with telomeric proteins and DNA. Hence, the C-terminal HA-tagged RAP1 seems, by all measures, functional. Nevertheless, to make it clear for the reader, we added a note in the discussion, lines 244-246: “Although we showed that C-terminal HA-tagged RAP1 protein has telomeric localization (Cestari et al. 2015, PNAS) and interactions with other telomeric proteins (Cestari et al. 2019 Mol Cell Biol); we cannot rule out potential differences between HA-tagged and non tagged RAP1.”

      For a similar reason, the current EMSA results truly reflect how C-terminally His6-tagged RAP1 and RAP1 fragments behave. If the authors choose not to remove the His6 tag, it is essential that they use "RAP1-His6" to refer to these recombinant proteins. It is also essential for the authors to clearly state in the discussion that the tagged RAP1 fragments bind DNA, but the current data do not reveal whether WT RAP1 binds DNA. In addition, the authors incorrectly stated that "disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166). In ref 29, deletion of Myb domain did not abolish RAP1-telomere association. However, point mutations in MybL domain that abolish RAP1's DNA binding activities clearly disrupted RAP1's association with the telomere chromatin. Therefore, the current observation is not completely consistent with that published in ref 29.

      We stated in lines 149-150 “…we expressed and purified from E. coli recombinant 6xHistagged T. brucei RAP1 (rRAP1)”. To clarify to the authors, we replaced rRAP1 with rRAP1-His throughout the manuscript text. As for the statement that “disruption of the MybL domain sequence did not eliminate RAP1telomere binding in vivo" (lines 165-166).”. We removed the statement from the manuscript.

      2) There is no evidence, in vitro or in vivo, that binding PI(3,4,5)P3 to RAP1 causes conformational change in RAP1. The BRCT domain of RAP1 is known for its ability to homodimerize (Afrin et al. 2020, mSphere). It is therefore possible that binding of PI(3,4,5)P3 to RAP1 simply disrupts its homodimerization function. The authors clearly have extrapolated their conclusions based on available data. It is therefore important to revise the discussion and make appropriate statements.

      We did not state that PI(3,4,5)P3 causes RAP1 conformational changes. We discussed the possibility. We stated in lines 199-201: “PI(3,4,5)P3 inhibition of RAP1-DNA binding might be due to its association with RAP1 N-terminus causing conformational changes that affect Myb and MybL domains association with DNA.” This is a reasonable discussion, given the data presented in the manuscript.

    1. Reviewer #2 (Public Review):

      Casp11 is a cytosolic sensor for LPS in mice (orthologue of Casp4/5 in human). It is an important innate sensor of intracellular infection. Casp11 activity results in cleavage and activation of the pore-forming protein Gasdemin D (GSDMD) leading to lytic death (pyroptosis), of an infected cell. How exactly Casp11 signals upon LPS detection is beginning to be understood, but the picture is incomplete. Previous reports suggested that upon LPS detection, Casp11 dimerizes and undergoes auto-processing to form a pyroptosis-competent enzyme. The prediction from these studies was that the formation of a fully functional Casp11 signalling complex involves two steps: inducible dimerization and auto-processing.

      In this study, authors used fluorescently tagged Casp11 reporter fusions, to report that detection of cytosolic LPS induces Casp11 assembly into a large perinuclear speck to form a signalling complex, where GSDMD can be processed. Such signalling complex resembles signalling specks formed upon the activation of other canonical inflammasomes.

      Strengths:

      Results are clean, experiments well controlled, and support the conclusions. Overall conclusions fit nicely in the general principle of innate signalling, whereby activation of many innate sensors results in their inducible assembly into higher-order oligomeric signalling complexes, called supra-molecular organizing centers (SMOCs).

      A surprising finding from this work was that catalytically inactive Casp11 (C254A mutant) did not form signalling specks, despite being able to bind LPS and dimerise. This model is proposed where LPS binding to the CARD domain of Casp11 and Casp11 dimerization is necessary but not sufficient to mediate Casp11 speck formation within cells. The Casp11 catalytic activity is needed to facilitate the assembly of the higher-order, pyroptosis-competent Casp11 signalling platform. The model is further supported by experimental evidence that auto-processing of Casp11, by an exogenous protease TEV, (i.e. in the absence of LPS), is sufficient to mediate speck assembly in cells expressing wild type, but not catalytically inactive Casp11 mutant.

      Possible technical improvements:

      In general, the authors achieved their aims, and the results support the conclusions.

      For technical robustness, it would be nice to consider a few controls:<br /> (a) Visualise Casp11 specks using constructs with smaller tags, and test whether tag placement on N or C terminus matters for speck formation; or<br /> (b) Biochemically crosslink and isolate endogenous, untagged Casp11 specks upon LPS transfection of primed macrophages (e.g. after priming through IFNs or TLRs). This would mimic the natural upregulation and activation of endogenous Casp11.<br /> (c) Test what happens after actual intracellular pathogen detection when the pathogen itself serves as a signalling platform? Are specks stills formed (or even needed)?

      The broad impact of the work, implication, and questions for future work:

      Results of this study would suggest that the enzymatic activity of Casp11 in macrophages may be highly restricted to the speck location, similar to what was described for Casp1. This may explain the very restricted substrate repertoire of Casp11 in cells, likely controlled by the substrate recruitment to the speck. This also opens avenues for follow-up work to answer several emerging questions:

      1. After LPS binding and dimerization, why Casp11 must undergo intra-molecular processing to induce the formation of a pyroptosis-competent speck? Is there any substrate for LPS-bound, uncleaved Casp11 (beyond Casp11 itself), before Casp11 forms a full speck for GSDMD processing? The only currently known targets of Casp11 activity are itself, and GSDMD. Also, after intradomain linker cleavage of Casp11, what additional substrate must the cleaved Casp11 process to allow full speck formation?

      2. Can activity probes be designed to detect the location of the active Casp11, and if so, would the activity of Casp11 be restricted to the speck? Is there a second cleavage event that would eventually dissociate Casp11 from the speck, to terminate its signalling? If not, how is speck activity terminated? If specks are released by lysis, are they capable of seeding new speck formation in neighbouring phagocytes, in prion-like behaviour previously described for canonical ASC speck?

      3. What is the role of macrophage priming in speck formation, and what roles, if any GBPs play in speck formation?

      4. Does this model apply to human orthologues, Casp4/5?

    1. Reviewer #2 (Public Review):

      Summary:

      Chew et al describe interaction of the flavivirus protein NS1 with HDL using primarily cryoEM and mass spec. The NS1 was secreted from dengue virus infected Vero cells, and the HDL were derived from the 3% FBS in the culture media. NS1 is a virulence factor/toxin and is a biomarker for dengue infection in patients. The mechanisms of its various activities in the host are incompletely understood. NS1 has been seen in dimer, tetramer and hexamer forms. It is well established to interact with membrane surfaces, presumably through a hydrophobic surface of the dimer form, and the recombinant protein has been shown to bind HDL. In this study, cryoEM and crosslinking-mass spec are used to examine NS1 secreted from virus-infected cells, with the conclusion that the sNS1 is predominantly/exclusively HDL-associated through specific contacts with the ApoA1 protein.

      Strengths:

      The experimental results are consistent with previously published data.

      Weaknesses:

      CryoEM:

      Some of the neg-stain 2D class averages for sNS1 in Fig S1 clearly show 1 or 2 NS1 dimers on the surface of a spherical object, presumably HDL, and indicate the possibility of high-quality cryoEM results. However, the cryoEM results are disappointing. The cryo 2D class averages and refined EM map in Fig S4 are of poor quality, indicating sub-optimal grid preparation or some other sample problem. Some of the FSC curves (2 in Fig S7 and 1 in Fig S6) have extremely peculiar shapes, suggesting something amiss in the map refinement. The sharp drop in the "corrected" FSC curves in Figs S5c and S6c (upper) indicate severe problems. The stated resolutions (3.42 & 3.82 Å) for the sNS1ts-Fab56.2 are wildly incompatible with the images of the refined maps in Figs 3 & S7. At those resolutions, clear secondary structural elements should be visible throughout the map. From the 2D averages and 3D maps shown in the figures this does not seem to be the case. Local resolution maps should be shown for each structure.

      The samples were clearly challenging for cryoEM, leading to poor quality maps that were difficult to interpret. None of the figures are convincing that NS1, Ab56.2 or Fab56.2 are correctly fit into EM maps. There is no indication of ApoA1 helices. Details of the fit of models to density for key regions of the higher-resolution EM maps should be shown and the models should be deposited in the PDB. An example of modeling difficulty is clear in the sNS1ts dimer with bound Fab56.2 (figs 3c & S7e). For this complex, the orientation of the Fab56.2 relative to the sNS1ts dimer in this submission (Fig 3c) is substantially different than in the bioRxiv preprint (Fig 3c). Regions of empty density in Fig 3c also illustrate the challenge of building a model into this map.

      Mass spec:

      Crosslinking-mass spec was used to detect contacts between NS1 and ApoA1, providing strong validation of the sNS1-HDL association. As the crosslinks were detected in a bulk sample, they show that NS1 is near ApoA1 in many/most HDL particles, but they do not indicate a specific protein-protein complex. Thus, the data do not support the model of an NS1-ApoA1 complex in Fig 4d. Further, a specific NS1-ApoA1 interaction should have evidence in the EM maps (helical density for ApoA1), but none is shown or mentioned. If such exists, it could perhaps be visualized after focused refinement of the map for sNS1ts-HDL with Fab56.2 (Fig S7d). The finding that sNS1-ApoA1 crosslinks involved residues on the hydrophobic surface of the NS1 dimer confirms previous data that this NS1 surface engages with membranes and lipids.

      Sample quality:

      The paper lacks any validation that the purified sNS1 retains established functions, for example the ability to enhance virus infectivity or to promote endothelial dysfunction. Peculiarities include the gel filtration profiles (Fig 2a), which indicate identical elution volumes (apparent MWs) for sNS1wt-HDL bound to Ab562 (~150 kDa) and to the ~3X smaller Fab56.2 (~50 kDa). There should also be some indication of sNS1wt-HDL pairs crosslinked by the full-length Ab, as can be seen in the raw cryoEM micrograph (Fig S5b).

      Obtaining high quality structures is often more demanding of sample integrity than are activity assays. Given the low quality of the cryoEM maps, it's possible that the acidification step in immunoaffinity purification damaged the HDL complex. No validation of HDL integrity, for example with acid-treated HDL, is reported. Acid treatment is perhaps discounted by a statement (line 464) that another group also used immunoaffinity purification in a recent study (ref 20) reporting sNS1 bound to HDL. However the statement is incorrect; the cited study used affinity purification via a strep-tag on recombinant sNS1.

      Discussion:

      The Discussion reflects a view that the NS1 secreted from virus-infected cells is a 1:1 sNS1dimer:HDL complex with the specific NS1-ApoA1 contacts detected by crosslinking mass spec. This is inconsistent with both the neg-stain 2D class average with 2 sNS1 dimers on an HDL (Fig S1c) and with the recent study of Flamand & co-workers showing 1-3 NS1 dimers per HDL (ref 20). It is also ignores the propensity of NS1 to associate with membranes and lipids. It is far more likely that NS1 association with HDL is driven by these hydrophobic interactions than by specific protein-protein contacts. A lengthy Discussion section (lines 461-522) includes several chemically dubious or inconsistent statements, all based on the assumption that specific ApoA1 contacts are essential to NS1 association with HDL and that sNS1 oligomers higher than the dimer necessarily involve ApoA1 interaction, conclusions that are not established by the data in this paper.

    1. Analog zettelkasten for natural sciences .t3_17kui2u._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; }

      Reply to u/Wooden-School-4091 at https://www.reddit.com/r/Zettelkasten/comments/17kui2u/analog_zettelkasten_for_natural_sciences/

      Given that Carl Linnaeus "invented" the standardized 3x5 inch index card and used it heavily in his scientific work (read Isabelle Charmantier and Staffan Müller-Wille's works for more on his practice), and a variety of others including me, use it for mathematics, physics, chemistry, biology, etc., Zettelkasten can certainly be used for STEM, STEAM, and any of the natural sciences.

      See also, notes and links at: https://hypothes.is/users/chrisaldrich?q=tag%3A%22zettelkasten+for+studying%22

      If I were using it for classes/university/general studying via lectures, I'd base my practice primarily on Cornell Notes in combination with creating questions/cards for spaced repetition and/or a variation on Leitner's System.

      Some of the best material on spaced repetition these days can be found via:

      and other material on their sites.

      Beyond this, I'd focus my direct zettelkasten practice less on the learning portion and more on the developing or generating ideas portion of the work. Some of my practice with respect to mathematics can be found here: https://www.reddit.com/r/Zettelkasten/comments/17bqztm/applying_zettelkasten_for_math_heavy_subjects/

      For those interested, it may bear mentioning that Bjornstad, an engineer at Remnote, has a TiddlyWiki-based zettelkasten at https://zettelkasten.sorenbjornstad.com/#PublicHomepage:PublicHomepage which he demonstrates with a walk through at https://www.youtube.com/watch?v=GjpjE5pMZMI

    1. Joint Public Review:

      In this manuscript, Kipfer et al describe a method for a fast and accurate SARS-CoV2 rescue and mutagenesis. This work is based on a published method termed ISA (infectious subgenomic amplicons), in which partially overlapping DNA fragments covering the entire viral genome and additional 5' and 3' sequences are transfected into mammalian cell lines. These DNA fragments recombine in the cells, express the full length viral genomic RNA and launch replication and rescue of infectious virus.

      CLEVER, the method described here significantly improves on the ISA method to generate infectious SARS-CoV2, making it widely useful to the virology community.

      Specifically, the strengths of this method are:<br /> 1) The successful use of various cell lines and transfection methods.<br /> 2) Generation of a four-fragment system, which significantly improves the method efficiency due to lower number of required recombination events.<br /> 3) Flexibility in choice of overlapping sequences, making this system more versatile.<br /> 4) The authors demonstrated how this system can be used to introduce point mutations as well as insertion of a tag and deletion of a viral gene.<br /> 5) Fast-tracking generation of infectious virus directly from RNA of clinical isolates by RT-PCR, without the need for cloning the fragments or using synthetic sequences.<br /> 6) The authors further expanded this method to work on additional plus-strand RNA viruses beyond SARS-CoV-2 (CHIKV, DENV)

      The manuscript clearly presents the findings, and the proof-of-concept experiments are well designed.

      Overall, this is a very useful method for SARS-CoV2 research. Importantly, it can be applicable to many other viruses, speeding up the response to newly emerging viruses than threaten the public health.

  4. Oct 2023
    1. Reviewer #1 (Public Review):

      Summary:<br /> In this manuscript, the authors have applied an asymmetric split mNeonGreen2 (mNG2) system to human iPSCs. Integrating a constitutively expressed long fragment of mNG2 at the AAVS1 locus, allows other proteins to be tagged through the use of available ssODN donors. This removes the need to generate long AAV donors for tagging, thus greatly facilitating high-throughput tagging efforts. The authors then demonstrate the feasibility of the method by successfully tagging 9 markers expressed in iPSC at various, and one expressed upon endoderm differentiation. Several additional differentiation markers were also successfully tagged but not subsequently tested for expression/visibility. As one might expect for high-throughput tagging, a few proteins, while successfully tagged at the genomic level, failed to be visible. Finally, to demonstrate the utility of the tagged cells, the authors isolated clones with genes relevant to cytokinesis tagged, and together with an AI to enhance signal-to-noise ratios, monitored their localization over cell division.

      Strengths:<br /> Characterization of the mNG2 tagged parental iPSC line was well and carefully done including validation of a single integration, the presence of markers for continued pluripotency, selected off-target analysis, and G-banding-based structural rearrangement detection.

      The ability to tag proteins with simple ssODNs in iPSC capable of multi-lineage differentiation will undoubtedly be useful for localization tracking and reporter line generation.

      Validation of clone genotypes was carefully performed and highlights the continued need for caution with regard to editing outcomes.

      Weaknesses:<br /> IF and flow cytometry figures lack quantification and information on replication. How consistent is the brightness and localization of the markers? How representative are the specific images? Stability is mentioned in the text but data on the stability of expression/brightness is not shown.

      The localization of markers, while consistent with expectations, is not validated by a second technique such as antibody staining, and in many cases not even with Hoechst to show nuclear vs cytoplasmic.

      For the multi-germ layer differentiation validation, NCAM is also expressed by ectoderm, so isn't a good solo marker for mesoderm as it was used. Indeed, the kit used for the differentiation suggests Brachyury combined with either NCAM or CXCR4, not NCAM alone.

      Only a single female parental line has been generated and characterized. It would have been useful to have several lines and both male and female to allow sex differences to be explored.

      The AI-based signal-to-noise enhancement needs more details and testing. Such models can introduce strong assumptions and thus artefacts into the resolved data. Was the model trained on all markers or were multiple models trained on a single marker each? For example, if trained to enhance a single marker (or co-localized group of markers), it could introduce artefacts where it forces signal localization to those areas even for others. What happens if you feed in images with scrambled pixel locations, does it still say the structures are where the training data says they should be? What about markers with different localization from the training set? If you feed those in, does it force them to the location expected by the training data or does it retain their differential true localization and simply enhance the signal?

    2. Reviewer #3 (Public Review):

      The authors report on the engineering of an induced Pluripotent Stem Cell (iPSC) line that harbours a single copy of a split mNeonGreen, mNG2(1-10). This cell line is subsequently used to take endogenous protein with a smaller part of mNeonGreen, mNG2(11), enabling the complementation of mNG into a fluorescent protein that is then used to visualize the protein. The parental cell is validated and used to construct several iPSC lines with endogenously tagged proteins. These are used to visualize and quantify endogenous protein localisation during mitosis.

      I see the advantage of tagging endogenous loci with small fragments, but the complementation strategy has disadvantages that deserve some attention. One potential issue is the level of the mNG2(1-10). Is it clear that the current level is saturating? Based on the data in Figure S3, the expression levels and fluorescence intensity levels show a similar dose-dependency which is reassuring, but not definitive proof that all the mNG2(11)-tagged protein is detected.

      Do the authors see a difference in fluorescence intensity for homo- and heterozygous cell lines that have the same protein tagged with mNG2(11)? One would expect two-fold differences, or not?

      Related to this, would it be favourable to have a homozygous line for expressing mNG2(1-10)?

      The complementation seems to work well for the proteins that are tested. Would this also work for secreted (or other organelle-resident) proteins, for which the mNG2(11) tag is localised in a membrane-enclosed compartment?

      The authors present a technological advance and it would be great if others could benefit from this as well by having access to the cell lines.

    1. eLife assessment

      This study describes a method to track MHC class II binding peptides on dendritic cell (DC) surfaces using a tetracystein tag and a thiol-reactive dye, which can then be investigated in vitro and in vivo. This is a valuable study for the impact on immunology and potentially other areas where the detection of cell-associated peptides is required. The methods are convincing based on the use of MHC class I/II deficient mice that have significantly reduced signal, but the non-zero background is detected, and it is not clear that this is lower than if the peptides were directly labelled with fluorophores.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The authors develop a method to fluorescently tag peptides loaded onto dendritic cells using a two-step method with a tetracystein motif modified peptide and labelling step done on the surface of live DC using a dye with high affinity for the added motif. The results are convincing in demonstrating in vitro and in vivo T cell activation and efficient label transfer to specific T cells in vivo. The label transfer technique will be useful to identify T cells that have recognised a DC presenting a specific peptide antigen to allow the isolation of the T cell and cloning of its TCR subunits, for example. It may also be useful as a general assay for in vitro or in vivo T-DC communication that can allow the detection of genetic or chemical modulators.

      Strengths:<br /> The study includes both in vitro and in vivo analysis including flow cytometry and two-photon laser scanning microscopy. The results are convincing and the level of T cell labelling with the fluorescent pMHC is surprisingly robust and suggests that the approach is potentially revealing something about fundamental mechanisms beyond the state of the art.

      Weaknesses:<br /> The method is demonstrated only at high pMHC density and it is not clear if it can operate at at lower peptide doses where T cells normally operate. However, this doesn't limit the utility of the method for applications where the peptide of interest is known. It's not clear to me how it could be used to de-orphan known TCR and this should be explained if they want to claim this as an application. Previous methods based on biotin-streptavidin and phycoerythrin had single pMHC sensitivity, but there were limitations to the PE-based probe so the use of organic dyes could offer advantages.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The study performed by Niphadkar et al. seeks to uncover the role of the phosphatase Ppg1 in regulating gluconeogenesis during post-diauxic shift in S. cerevisiae. Thea authors show that loss or inactivation of Ppg1p affects production of gluconeogenic products incl. trehaloase and glycogen. The authors show that assembly of the Far complex required the activity of Ppg1 and is required to maintain gluconeogenic outputs after glucose depletion.

      The manuscript is clearly written and methods well considered, no omics-methods have been included. Especially phosphoproteomics would be relevant to include. Specifically, the tracing experiments are an interesting and appropriate approach to confirm effects on gluconeogeneisis etc. Yet, working with regulation of posttranslational modifications (phosporylations) it is surprising that the authors only to a limited extent examine phosphorylation events, and not all examine or discuss specific phosphorylation events of e.g. Far11.

      The study is interesting and provides new insights into regulation of glucose metabolism in yeast, however, there are serious concerns that need to be addressed before it can be reconsidered for publication.

      Major points:

      The authors use electrophoretic mobility assays w/wo CIP to address the phosphorylation state of Far11. They show in figure 3E that the mobility of Far11 depends on Ppg1 activity and can be affected by CIP. Why is the mobility of Far11 not affected in e.g. figure 3D?

      There are several sites in Far11 previously reported to be phosphorylated, see e.g. Bodenmiller et al 2010 (Science Signal.) Are there sites that are specifically regulated (dephosphorylated) by Ppg1? or by other phosphatases? kinases?

      Here, it would be appropriate to apply phosphoproteomics to examine Far11 phosphorylation in Ppg1 knock out cells or in cells with inactivated Ppg1.

      The authors show that the levels of Ppg1 remain constant during growth in YPD medium, while the levels of Far11 increased after 24hrs of growth in YPD medium, and thus argue that the amount of Far complex itself increases in post-diauxic phase. The authors need to show that the level of complex indeed increases.

      The authors also apply fluorescence microscopy to address the localization of the Far11 complex etc. The quality of the shown images should be improved, also merged images should be shown. Only one single image containing one cell is shown, images should ideally show additional cells in the same image, alternatively, additional images should be shown.

      Minor points:

      Does the FLAG tag affect activity of Ppg1?

      Significance

      The study is interesting and provides new insights into regulation of glucose metabolism in yeast, however, there are serious concerns that need to be addressed before it can be reconsidered for publication.

      The manuscript is of broad interests for an audience primarily interested glucose metabolism and signalling in yeast.

    1. cops n’ robbers

      The name's that kids gave to their games back then were insane. Why was this such a fun game to play though? in Mexico tag was called* la roña * which was a name for chicken pox

    1. 39:28 - Note graph and tag discussion

      Obsidian for Academic Publishing - A Walkthrough with Jason Yuh (6)

      Jason menciona que su forma de investigación está hecha a partir de capítulos y no de ideas.

      Anthony comenta sobre "serendipity": encontrar conexiones que no encontraría por sí mismo. No las encuentra buscando "serendipity connections", sino cuando está buscando otra cosa siguiendo links. Y de repente aparece, cuando está haciendo links con otras notas.

      Jason usa tags como keywords. Pero eventualmente, cuando el concepto crece, hace una nota: ej. "Innovation".

      Tiene secciones de:

      • teoría y metodología -síntesis (con una lista de textos que ha leído, con sus respectivos links, así hace un poco un outline de su tesis) -To-Do (autores que necesita leer para el tema...).

      Importante hacer esto, con mis notas de cada concepto. O quizás con una nota más extensa para trabajar en varios conceptos que se relacionan.

    2. Jason Yuh is a Ph.D. student at the University of Toronto working on his dissertation entitled: "The Dialectics of Traditions and Innovations in the Didache through Canon and Ritual." In this session Jason shares how he uses Obsidian to organize and process notes for developing his thesis. 00:00 - Intro, Obsidian discovery, and Jason's thesis 16:08 - Jason screen sharing 17:55 - Folder structure 20:30 - Tracking scholar references 23:40 - Daily notes 29:05 - Taking notes on multi-author volumes 32:00 - Writing abstracts (and using transclusion) 38:16 - Reading vs. Writing discussion 39:28 - Note graph and tag discussion 47:32 - Deciding what to work on next 49:27 - Synthesizing notes for publication 1:01:16 - Wrap-up

      Obsidian for Academic Publishing - A Walkthrough with Jason Yuh (0)

      Anthony's Desk

      1:02:33

      https://youtu.be/P3Hlo1DMdQQ

    1. HTML had blown open document publishing on the internet

      ... which may have really happened, per se, but it didn't wholly incorporate (subsume/cannibalize) conventional desktop publishing, which is still in 2023 dominated by office suites (a la MS Word) or (perversely) browser-based facsimiles like Google Docs. Because the Web as it came to be used turned out to be as a sui generis medium, not exactly what TBL was aiming for, which was giving everything (everything—including every existing thing) its own URL.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This manuscript presents the cis-regulatory analysis of the enhancers controlling prox1a gene in zebrafish. Authors used both evolutionary conservation and existing single-cell ATAC data to highlight the major role of two elements. I feel that the transgenesis work is quite solid and the main conclusions interesting. However, I feel the authors need to provide some extra validations for some of the analysis.

      1. the authors did not discuss the fact that euteleosts underwent an extra whole genome duplication and that prox1a might have a paralogue. They also perform genome alignment using non-duplicated outgroups (gar, xenopus) without discussing. I am a bit skeptical about the use of mVISTA on relatively short expert of sequence aroudn a gene, as it is not able to capture the global molecular evolution parameters. I think the authors should also examine some of the precomputed phastCons / phylocons data performed and available on UCSC to confirm their findings. probably they should also examien a few more fish genome. I don't find this evolutioanry analysis extremely convinced and careful - which doesn't mean that the conclusions are wrong.
      2. I find the presentation, fairly obscure, the writing is quite convoluted, and the figures are very dense and not super explanatory, I would urge to improve (this is not helped by the fact that figure are their leged and presented at distinct places of this manuscript). For instance, I think having. a figure summarising signal from evolutionary conservation, scATAC and chromatin marks altogether would be quite essential.
      3. I also find the reanalysis of the single-cell ATAC described too scarcely: which are the genes used to identify the different cell populations?
      4. I feel the one additional experiment that the authors could have done would have been to use their construct to isolate the different cells population of interest and perform some regulatory profiling scuh as ATAC-seq or cut-and-tag on this population, to have a direct, in situ evidence of the activity of these regulatory elements.?

      I also feel that the evolutionary aspect could be discussed a bit more, what are the differences between the diffeerent vertebrate lineage, etc...

      (p7) active enhancer in a tissue: while ATAC gives a good indicated of accessibility it is not an indicate of activity as for instance H3K27Ac would be.

      Significance

      I think this is an interesting piece of work, which elaborates on previous studies on prox1a involvment in the lymphatic system but it doesn not bring essentially new perspective on the question.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      [The “revision plan” should delineate the revisions that authors intend to carry out in response to the points raised by the referees. It also provides the authors with the opportunity to explain their view of the paper and of the referee reports.

      1. General Statements [optional]

      In this paper we describe the new finding that the epicardial deposits the extracellular matrix component laminin onto the apical ventricular surface during cardiac development. We identify a novel role for the apicobasal polarity protein Llgl1in timely emergence of the epicardium and deposition of this apical laminin, alongside a requirement for Llgl1 in maintaining integrity of the ventricular wall at the onset of trabeculation.

      We thank the reviewers for their very positive appraisal of our manuscript, and for their helpful suggestions for useful revisions. In particular we would like to highlight the broad interest they feel this manuscript holds, not only contributing conceptual advances to our understanding of multiple aspects of cardiac development, but also to cell and developmental biologists working in epithelial polarity and extracellular matrix function. We also note their positive appraisal of the rigor of the study and quality of the manuscript.

      2. Description of the planned revisions

      Reviewer 1

      1a) It is mentioned that llgl1 CRISPR/Cas9 mutants are viable as adults on pg. 3 of the Results section. Have the authors examined heart morphology in these mutants in juvenile or adult fish?

      We have some historical data on adult llgl1 mutant survival that we plan to include in the study.

      Reviewer 2

      2a) The authors note an interesting observation with apical and basal laminin deposition dynamics surrounding cardiomyocytes, and that Llg1 has a role in apical Laminin deposition (however, highly variable at 80 hpf as Figure 3M shows). They carry out a very nice study in which they overexpress Llgl1 tagged with mCherry in the myocardium and show that there is no rescue of the extruding cardiomyocyte defect or Laminin deposition. However, there is still a possibility that the tagged Llgl1 in the transgene Tg(myl7:Llg1-mCherry)sh679 might not be functional due to improper protein folding or interference by the mCherry tag. The authors should supplement their approach with a transplantation experiment to generate mosaic llgl1 mutant animals and assess whether llgl1 mutant cardiomyocytes extrude at a higher rate than the control. This would provide definitive evidence that Llg1l acts in a cell non-autonomous manner.

      We agree with the reviewer, and propose to perform transplant experiments, transplanting cells from llgl1 mutants into wild type siblings, and quantify cell extrusion to determine whether llgl1 mutant cells are extruded more frequently than wild type.

      2b) The data in this manuscript appears to point that Llgl1 regulates Laminin deposition mainly in epicardial cells to regulate their dissemination/migration across the ventricular myocardial surface. It would be important to test this cell-autonomous function with the transplant experiment (above point) and examine whether llgl1 mutant epicardial cells fail to migrate and deposit Laminin. It might be possible to perform a rescue experiment through overexpression of Llgl1 in epicardial cells (if possible, there is a tcf21:Gal4 line available).

      Similar to above, we propose to perform transplant experiments, transplanting cells from llgl1 mutants or wild type siblings into wild type siblings or llgl1 mutants, respectively, and in this instance quantify contribution of transplanted cells to epicardial coverage.

      2c) In the Discussion, the authors propose that Llgl1 acts in two ways: Laminin deposition in epicardial cells that suppress cell extrusion and polarity regulation in cardiomyocytes to promote trabeculation. It would be important to test the second hypothesis on trabeculation and polarity regulation by using the myocardial-specific overexpression/rescue of Llgl1 in llgl1 mutants, and then quantifying the trabeculating cardiomyocytes and analyze Crb2a localization. This experiment can distinguish whether this trabeculation phenotype is rescued independently of the apical Laminin deposition that has been included in Figure S5.

      To help address the second part of our hypothesis laid out in the discussion, we propose to quantify trabecular organisation and Crb2a localisation in llgl1 mutants either carrying the myl7:llgl1-mCherry construct, or mCherry-negative controls.

      2d) The potential mis-localization of Crb2a in the llgl1 mutants is interesting, but this effect appears to be quite mild, and as the authors note, resolve by 80 hpf. Considering the role of Lgl in Drosophila in shifting Crb complex localization during early epithelial morphogenesis, it would be worth performing the analysis at earlier timepoints (between 55 and 72 hpf) to determine whether Llgl1 is indeed important for the progressive apical relocalization of Crb2a.

      We will expand our description of this in the mutants by performing analysis of Crb2a at earlier timepoints in the llgl1 mutant (55hpf and 60hpf).

      2e) OPTIONAL: It might be worth testing other antibodies that could mark the apical (particularly aPKC which is known to phosphorylate and regulate the Crb complex) and basolateral domains (Par1, Dlg) of the cardiomyocytes to definitively conclude that the epithelial integrity of the cells is affected. Although there are no reports of working antibodies marking the basal domain in zebrafish, there is at least a Tg(myl7:MARCK3A-RFP) line published (Jimenez-Amilburu et al. (2016)) - which the authors can inject to examine the localization in mosaic hearts.

      We plan to assess localisation of aPKC (see section 4 for response to other suggested polarity protein analyses).

      2f) Have the authors quantified the numbers of total cardiomyocytes in llgl1 mutants to correlate how many cells are lost as a consequence of extrusion? What is the physiological impact of this extrusion (ejection fraction, total cardiac volumes, sarcomere organization)?

      We have some of this data already which we will include in the manuscript (cell number, myocardial volume). We agree that the analysis of cardiac function could be more extensive, and we will perform more detailed analysis of cardiac function, including e.g. ejection fraction. Sarcomere organisation has been previously described in llgl1 mutants by Flinn et al, 2020, so we do not plan to replicate this data.

      2g) The lamb1a and lamc1 mutant phenotypes were nicely analyzed. However, there is basement membrane deposition on both the apical and basal sides of the cardiomyocytes. Therefore, it is unclear whether the cardiomyocyte extrusion is completely caused by loss of apical basement membrane, or whether the loss of basal basement membrane could compromise the myocardial tissue integrity. The authors should clarify this conclusion in the text.

      We will address this further in the text, but will also include 55hpf Laminin staining data for llgl1 mutants to reinforce our message.

      2h) The authors note that Llgl1-mCherry in the Tg(myl7:Llg1-mCherry)sh679 line localizes to the basolateral domain of the cardiomyocytes, which is valuable confirmation that Llgl1 protein is spatially restricted. However, only 1 timepoint (55 hpf) is noted. It would be important to perform Llgl1 localization across different developmental timepoints (at least until 80 hpf) to examine the dynamics of this protein during trabeculation and apical extrusion, and potentially correlate it with Crb2a localization for a better understanding of the apicobasal machinery in cardiomyocytes.

      We already have some of this data and will include extra timepoints in a revised version of the manuscript

      2i) The phenotypes of llgl1 mutants described here differ compared to the previous study by Flinn et al. (2020). In particular, whereas the mutants generated in this study have only mild pericardial edema and are adult viable, approximately one third of llgl1mw3 (Flinn et al. (2020)) died at 6 dpf. Is this caused by the different natures of the mutations in the llgl1 gene? Is there a possibility that the llgl1sh598 is a hypomorphic allele since the targeted deletion is in a more downstream sequence (in exon 2) compared to the llgl1mw3 (deletion in exon 1) allele?

      We thank the reviewer for noticing these subtle differences between the two llgl1 mutants. Indeed, while we occasionally see llgl1sh598 mutants with the severe phenotype described by Flinn et al, this is a small minority which we did not quantify. Our mutation is indeed slightly further downstream than that described by Flinn et al, however we believe that this will have a neglible effect on Llgl1 function. Our llgl1sh589 mutation results in truncation shortly into the WD40 domain, and importantly completely lacks the Lgl-like domain, which is responsible for the specific function of Llgl1 likely through its ability to interact with SNAREs to regulate cargo delivery to membranes (Gangar et al, Current Biology 2005).

      Interestingly, Flinn et al report no increased phenotypic severity in their maternal-zygotic llgl1 mutants when compared to zygotic mutants. Conversely, we often observed very severe phenotypes in MZ llgl1sh589 mutants, including failure of embryos during blastula stages, apparently through poor blastula integrity. We did not include this information in the manuscript due to space constraints. However, we argue that together these differences between the two alleles may not be due to hypomorphism of our llgl1sh589 allele, but rather differences in genetic background that may amplify specific phenotypes. We plan to include a short sentence summarising the above in combination with planned experiments described below to address the reviewer’s next comment.

      2j) Suggested experiment: qPCR of regions downstream of the deletion to make sure that the transcript is absent/reduced in the llgl1sh598 mutants. Alternatively, immunostaining or Western blot would be an even better option to ensure there is no Llgl1 protein production - there is an anti-Llgl1 antibody available that works for Western blots in zebrafish (Clark et al. (2012)).

      We plan to analyse llgl1 expression in llgl1 mutants using qPCR.

      Reviewer 3

      3a) Major - the authors describe that llgl1 mutants exhibit transient cardiac edema at 3 dpf, which is resolved by 5 dpf, and claim that the mutants are viable. This statement needs to be better supported - What is the proportion of mutants that survive to adulthood? The embryonic phenotypes are pretty variable - are the mutants that survive the ones with a less severe phenotype? Is there a gross defect in the adult heart of these animals?

      In line with comments from Reviewers 1 and 2 above, we will include a description of the data we have from adult animals (historical data, not generation of new animals).

      3b) Major - Many of the phenotypes described here -most importantly, the defects on epicardial development- could result from hemodynamic defects in llgl1 mutants. The authors claim that function is unaffected in these animals, but this has only been addressed by measuring heartbeat. The observation that the cardiac function in these animals is normal would conflict with a previous description (PMID: 32843528) that demonstrates that llgl1 mutant animals show significant hemodynamic defects, which would cause epicardial defects. Thus, this aspect of the work needs to be better addressed.

      In line with our comments to point 2f) from Reviewer 2, we will perform a more in-depth functional analysis on llgl1 mutant larvae.

      3c) The phenotypes related to forming multiple layers in the heart (Fig. 1) could be more convincing. In some figures, the authors use a reporter that labels the myocardial cell membrane, but in Figure 1 this is not used. Showing a myocardial membrane marker (for example, the antibody Alcama, Zn-8) would significantly strengthen this observation.

      We will describe trabecular phenotypes in more detail using the suggested antibody to highlight membranes.

      3d) The analysis of Crumbs redistribution (Fig. 2) is quite interesting. Still, given that the authors have a transgenic model to rescue llgl1 expression in cardiomyocytes, they could move from correlative evidence to experimental demonstration of the role of llgl1 in Crumbs localization.

      Similar to our response to comment 2c) from Reviewer 2, we plan to address this

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer 1:

      Although information is provided in the introduction and discussion on the role of the Llgl1 homolog in Drosophila and speculation on LLGL1 contributing to heart defects in SMS patients in the discussion, have Llgl1 homologs been examined in other vertebrate animal models during heart development or regeneration?

      With the exception of the Flinn et al paper, we find no published studies assessing the role of Llgl1 in heart development or regeneration in other vertebrates, and have updated the introduction to highlight this fact:

      ‘Zebrafish have two Lgl homologues, llgl1 and llgl2, and llgl1 has previously been shown to be required for early stages of heart morphogenesis (Flinn et al. 2020). However, although Llgl1 expression has also been reported in the developing mouse heart and both adult mouse and human hearts (Uhlén et al. 2015; Klezovitch et al. 2004), whether llgl1 plays a role in ventricular wall development has not been examined.’

      In Fig. 4J-M', there is no Cav1 signals after wt1a MO but still laminin signals. Where these laminins come from?

      The residual laminin staining observed in wt1a morphants is located at the basal surface of cardiomyocytes (while the apical laminin signal is lost, in line with the epicardial deposition of laminin at the apical ventricle surface). This basal laminin is likely deposited earlier during heart tube development by either the myocardium, endocardium or both, and thus unaffected by later formation of the epicardium. We reason this since a) it is present at the basal cardiomyocyte surface at 55hpf (see Fig 2); b) we have previously identified both myocardial and endocardial expression of laminin subunits at 26hpf and 55hpf (Derrick et al, Development, 2021); c) sc-RNA-seq analysis of hearts at 48hpf demonstrates that laminin subunits, e.g. lamc1 are expressed in myocardial and endocardial cells (Nahia et al, bioRxiv, 2023), also in line with our previous ISH analysis. We have included a sentence to reflect this in the results section:

      Conversely, *wt1a* morphants retain deposition of laminin at the basal CM surface, likely from earlier expression and deposition of laminin by either myocardial or endocardial cells (Derrick et al. 2021; Nahia et al. 2023), which is unaffected by later epicardial development.

      On page 3 of the manuscript, Fig. 1A should be included with Fig. 1B in the first sentence of paragraph 2 of the Results subsection "Llgl1 regulates ventricular wall integrity and trabeculation".

      Amended

      It would be beneficial to readers to briefly describe what cell type the transgenic reporters label when mentioned in the Results section to help readers unfamiliar with zebrafish.

      We have updated the text to read:

      We further analysed heart morphology using live lightsheet microscopy of *Tg(myl7:LifeActGFP);Tg(fli1a:AC-TagRFP)* double transgenic wild-type and *llgl1* mutant embryos, allowing visualisation of myocardium (green) and endocardium (magenta) respectively. Comparative analysis of overall heart morphology between 55hpf and 120hpf when looping morphogenesis is complete, revealing that *llgl1* mutants continue to exhibit defects in heart morphogenesis (Fig S1S-X).

      Reviewer 3

      (Optional) There is laminin in the luminal side of the heart before there is any epicardial invasion. What is the source of this laminin? The techniques the authors have used (i.e., chromogenic ISH) are fine, but a more detailed analysis using fluorescent ISH (i.e., RNAScope) would be much more definitive.

      This is related to our response to Reviewer 1 (above) – where we have included the following text included in manuscript: Conversely, *wt1a* morphants retain deposition of laminin at the basal CM surface, likely from earlier expression and deposition of laminin by either myocardial or endocardial cells (Derrick et al. 2021; Nahia et al. 2023), which is unaffected by later epicardial development. We hope this clarifies our proposed origins for the earlier laminin deposition.

      4. Description of analyses that authors prefer not to carry out

      Reviewer 1:

      As pan-epicardial transgenes like tcf21 reporters have been widely used, the authors should use such reporters to verify the expression of laminin gene expression in epicardial cells, and the efficacy and efficiency of depleting epicardial cells after wt1 MO injection.

      Several studies have demonstrated that the epicardium is not a heterogeneous population – for example, tcf21 is not expressed in all epicardial cells and thus not a pan-epicardial reporter (Plavicki et al, BMC Dev Biol, 2014, Weinberger et al, Dev Cell, 2020) – the suggested analysis would not necessarily be conclusive, and more detailed study would require acquisition of three new transgenic lines. Furthermore, we believe the evidence we present in the paper supports our claim: 1) We show expression of two laminin subunits in a thin mesothelial layer directly adjacent to the myocardium, specifically in the location of the epicardium; 2) sc-RNA seq analyses have also identified laminin expression in epicardial cells at 72hpf (where lamc1a is identified as a marker of the epicardium); 3) We demonstrate 100% efficacy of our wt1a knockdown as assayed by Cav1 expression, an established epicardial marker (Grivas et al, 2020, Marques et al, 2022) which in sc-RNA seq data is expressed at high levels broadly in the epicardial cell population (Nahia et al, 2023), representing a good assay for presence of epicardium. However, we propose to perform ISH analysis of laminin subunit expression in wt1a MO to investigate whether the mesothelial laminin-expressing layer we observe adjacent to the myocardium is absent upon loss of wt1a.

      Reviewer 2:

      The data in this manuscript appears to point that Llgl1 regulates Laminin deposition mainly in epicardial cells to regulate their dissemination/migration across the ventricular myocardial surface. It would be important to test this cell-autonomous function with the transplant experiment (above point) and examine whether llgl1 mutant epicardial cells fail to migrate and deposit Laminin. It might be possible to perform a rescue experiment through overexpression of Llgl1 in epicardial cells (if possible, there is a tcf21:Gal4 line available).

      We do not propose to perform this experiment using a tcf21:Gal4 line, as this would likely require at least 6 months to either import and quarantine, or generate the necessary stable lines. Furthermore, as mentioned above, tcf21 is not a pan-epicardial marker, and the extent and timing of the Gal4:UAS system may make this challenging to determine whether llgl1 has been expressed early or broadly enough. We will instead attempt transplantation experiments.

      OPTIONAL: It might be worth testing other antibodies that could mark the apical (particularly aPKC which is known to phosphorylate and regulate the Crb complex) and basolateral domains (Par1, Dlg) of the cardiomyocytes to definitively conclude that the epithelial integrity of the cells is affected. Although there are no reports of working antibodies marking the basal domain in zebrafish, there is at least a Tg(myl7:MARCK3A-RFP) line published (Jimenez-Amilburu et al. (2016)) - which the authors can inject to examine the localization in mosaic hearts.

      We will assess localisation of aPKC, but we do not plan to analyse the other components. Analysis of basolateral domains (Par1, Dlg, Mark3a-RGP), will not necessarily assess epithelial integrity, as suggested, but rather apicobasal polarity – which we already assess using Crb2a, and additionally plan to assess aPKC to accompany the Crb2a analysis. Since the reviewer suggests this as an optional experiment we prioritise their other suggested experiments that we think more directly address the main messages of the manuscript.

      OPTIONAL: Gentile et al. (2021) found that reducing heartbeat led to decreased cardiomyocyte extrusion in snai1b mutants. The authors could look into the contribution of mechanical pressure through contraction in the apical cardiomyocyte extrusion, and test whether reducing contraction (tnnt2 morpholino, chemical treatments) partly rescues the llgl1 mutant phenotypes.

      The relationship between cardiac function and myocardial wall integrity appears to be complex. The paper referred to by the reviewer indeed finds that reduction in heartbeat leads to decreased CM extrusion upon loss of the EMT-factor Snai1b. Previous studies have also found that endothelial flow-responsive genes klf2a/b are required to maintain myocardial ventricular wall integrity at later stages in a contractility-dependent manner (Rasouli et al, 2018). However, contractility is also required early for pro-epicardial emergence, but plays a lesser role in expansion of the epicardial layer on the myocardial surface (Peralta, 2013). Unpicking the relationship between the forces induced by mechanical contraction of the ventricular wall, contractility-based induction of e.g klf2 expression, and the impact of contractile forces on proepicardial development or epicardial expansion will be complex. We therefore think the proposed experiment will be difficult to interpret whatever the outcome, and argue that dissecting this relationship is beyond the scope of revisions for this paper.

      Reviewer 3

      How llgl1 relates to epicardial biology is left entirely unexplored in this work. Do proepicardial cells show any defect in cell polarization related to llgl1 absence?

      We agree with the reviewer that we do not delve into the mechanisms underlying regulation of epicardial development by llgl1, and that this is an interesting question. Our scope for this manuscript was to understand the mechanisms by which llgl1 regulates integrity of the ventricular wall, and feel that uncovering the molecular mechanisms by which llgl1 regulates timely epicardial emergence is a larger question that would require substantial investigation (for example, if and when llgl1 PE cells do exhibit apicobasal defects, how this impacts timing of cluster release etc). We think these are important questions that would be better answered in detail in a separate manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary: The manuscript by Pollitt et al. explores the functions of llgl1, which encodes a critical component of the basolateral domain complex, during cardiac development in zebrafish. The authors observed that llgl1 mutants exhibited compromised myocardial tissue integrity with significantly higher numbers of apically extruding cardiomyocytes. Llgl1 appears to primarily function during epicardial cell spreading on the myocardial tissue, as myocardial-specific overexpression of llgl1 did not rescue llgl1 mutant phenotypes. llgl1 mutants exhibited impaired epicardial coverage and subsequently Laminin deposition on the apical side of the cardiomyocytes. Functional linkage between Laminin/the basement membrane was identified, as extruding cardiomyocytes were also observed in mutants of two core laminin genes, lamb1a and lamc1. The epicardial defects were transmitted to myocardial tissue defects, marked by mis-localization of the apical polarity protein Crumbs2a during early heart development. Overall, the authors provide a nice study that strengthens the role of apicobasal factors in myocardial tissue morphogenesis and that sheds light on the role of epicardial-derived basement membrane in maintaining myocardial tissue integrity.

      Major comments

      • The authors note an interesting observation with apical and basal laminin deposition dynamics surrounding cardiomyocytes, and that Llg1 has a role in apical Laminin deposition (however, highly variable at 80 hpf as Figure 3M shows). They carry out a very nice study in which they overexpress Llgl1 tagged with mCherry in the myocardium and show that there is no rescue of the extruding cardiomyocyte defect or Laminin deposition. However, there is still a possibility that the tagged Llgl1 in the transgene Tg(myl7:Llg1-mCherry)sh679 might not be functional due to improper protein folding or interference by the mCherry tag. The authors should supplement their approach with a transplantation experiment to generate mosaic llgl1 mutant animals and assess whether llgl1 mutant cardiomyocytes extrude at a higher rate than the control. This would provide definitive evidence that Llg1l acts in a cell non-autonomous manner.
      • The data in this manuscript appears to point that Llgl1 regulates Laminin deposition mainly in epicardial cells to regulate their dissemination/migration across the ventricular myocardial surface. It would be important to test this cell-autonomous function with the transplant experiment (above point) and examine whether llgl1 mutant epicardial cells fail to migrate and deposit Laminin. It might be possible to perform a rescue experiment through overexpression of Llgl1 in epicardial cells (if possible, there is a tcf21:Gal4 line available).
      • In the Discussion, the authors propose that Llgl1 acts in two ways: Laminin deposition in epicardial cells that suppress cell extrusion and polarity regulation in cardiomyocytes to promote trabeculation. It would be important to test the second hypothesis on trabeculation and polarity regulation by using the myocardial-specific overexpression/rescue of Llgl1 in llgl1 mutants, and then quantifying the trabeculating cardiomyocytes and analyze Crb2a localization. This experiment can distinguish whether this trabeculation phenotype is rescued independently of the apical Laminin deposition that has been included in Figure S5.
      • The potential mis-localization of Crb2a in the llgl1 mutants is interesting, but this effect appears to be quite mild, and as the authors note, resolve by 80 hpf. Considering the role of Lgl in Drosophila in shifting Crb complex localization during early epithelial morphogenesis, it would be worth performing the analysis at earlier timepoints (between 55 and 72 hpf) to determine whether Llgl1 is indeed important for the progressive apical relocalization of Crb2a. OPTIONAL: It might be worth testing other antibodies that could mark the apical (particularly aPKC which is known to phosphorylate and regulate the Crb complex) and basolateral domains (Par1, Dlg) of the cardiomyocytes to definitively conclude that the epithelial integrity of the cells is affected. Although there are no reports of working antibodies marking the basal domain in zebrafish, there is at least a Tg(myl7:MARCK3A-RFP) line published (Jimenez-Amilburu et al. (2016)) - which the authors can inject to examine the localization in mosaic hearts.
      • Have the authors quantified the numbers of total cardiomyocytes in llgl1 mutants to correlate how many cells are lost as a consequence of extrusion? What is the physiological impact of this extrusion (ejection fraction, total cardiac volumes, sarcomere organization)?
      • The lamb1a and lamc1 mutant phenotypes were nicely analyzed. However, there is basement membrane deposition on both the apical and basal sides of the cardiomyocytes. Therefore, it is unclear whether the cardiomyocyte extrusion is completely caused by loss of apical basement membrane, or whether the loss of basal basement membrane could compromise the myocardial tissue integrity. The authors should clarify this conclusion in the text.

      Minor comments

      • The authors note that Llgl1-mCherry in the Tg(myl7:Llg1-mCherry)sh679 line localizes to the basolateral domain of the cardiomyocytes, which is valuable confirmation that Llgl1 protein is spatially restricted. However, only 1 timepoint (55 hpf) is noted. It would be important to perform Llgl1 localization across different developmental timepoints (at least until 80 hpf) to examine the dynamics of this protein during trabeculation and apical extrusion, and potentially correlate it with Crb2a localization for a better understanding of the apicobasal machinery in cardiomyocytes.
      • The phenotypes of llgl1 mutants described here differ compared to the previous study by Flinn et al. (2020). In particular, whereas the mutants generated in this study have only mild pericardial edema and are adult viable, approximately one third of llgl1mw3 (Flinn et al. (2020)) died at 6 dpf. Is this caused by the different natures of the mutations in the llgl1 gene? Is there a possibility that the llgl1sh598 is a hypomorphic allele since the targeted deletion is in a more downstream sequence (in exon 2) compared to the llgl1mw3 (deletion in exon 1) allele? Suggested experiment: qPCR of regions downstream of the deletion to make sure that the transcript is absent/reduced in the llgl1sh598 mutants. Alternatively, immunostaining or Western blot would be an even better option to ensure there is no Llgl1 protein production - there is an anti-Llgl1 antibody available that works for Western blots in zebrafish (Clark et al. (2012)).
      • Closeups needed for Figure 3I-L' - difficult to assess mis-localization or differences in Laminin staining. Contrary to the quantification or conclusion, the Laminin staining appears stronger in llgl1 mutants compared to wild types in Figure 3I' and J'.
      • OPTIONAL: Gentile et al. (2021) found that reducing heartbeat led to decreased cardiomyocyte extrusion in snai1b mutants. The authors could look into the contribution of mechanical pressure through contraction in the apical cardiomyocyte extrusion, and test whether reducing contraction (tnnt2 morpholino, chemical treatments) partly rescues the llgl1 mutant phenotypes.

      Significance

      As someone with expertise in cardiac development and cellular behaviours, I find this study provides strong and convincing quantitative data on the role of Llgl1 in suppressing cardiomyocyte extrusion and promoting epicardial dissemination on the ventricular surface. The genetic experiments, including mutant analysis and myocardial-specific rescue, were carefully performed in a region-specific manner, which provides much insight into the non-uniformity of myocardial tissue integrity. The generation of Tg(myl7:llgl1-mCherry) line is also a valuable tool for researchers in the field interested in understanding apicobasal polarity and cardiomyocyte development and regeneration.

      A limitation of the study is the unclear link between epithelial polarity and basement membrane deposition, and how they synchronize to regulate cardiomyocyte integrity. The llgl1 mutant phenotype in increasing cardiomyocyte apical extrusion and Crb2 localization is interesting; however, the authors note that this appears to be a phenotype induced by epicardial defects. Epicardial cells are not known to exhibit apicobasal polarity and are fibroblastic by nature. Thus, the cellular mechanisms by which Llg1 regulates epicardial cell morphology or behaviours, and how it functions to regulate polarity in cardiomyocytes are not clearly defined in this work. In addition, clarification of the cell autonomous functions of Llgl1 in epicardial cells and/or cardiomyocytes would strengthen the findings.

      Overall, the findings of this study would be of interest to cell and developmental biologists in the fields of epithelial polarity, cardiac morphogenesis, and extracellular matrix function. It provides nice conceptual advance in further elucidating the mechanisms that underlie myocardial tissue integrity and epicardial-myocardial interactions.

    1. lustig. schon bald (diesen winter? nächsten winter?) wird die mehrheit verhungern und erfrieren,<br /> und die sogenannte "opposition" beschäftigt sich mit kleinscheiss.

      wir brauchen viel mehr extremismus und viel mehr radikale lösungen (selbstversorgung...),<br /> und nicht diese schwule weichgespülte "wir sind was besseres" gelaber.

      die AFD hat jeden tag angst vor parteiverbot,<br /> also werden so "radikale typen" wie ich von anfang an rausselektiert.

      dabei sollten so "radikale typen" wie ich eine blutige revolution (einen militärputsch) führen,<br /> und die ganzen versager und verräter vom alten system an die wand stellen.

      aber auf revolution habt ihr gar keine lust, ihr wollt auch nur reformen, und noch mehr gesetze,<br /> aber es gibt keine politische lösung, weil das system ist radikal falsch, also nicht reformierbar.

      deswegen, für mich sind graue wölfe 1000 mal interessanter als die AFD.<br /> ich bin sowieso kein christ oder jude, aber auch kein moslem.<br /> einfach nur pragmatisch, ein echter "wissenschaftler", einer der wissen schafft.

      "Their evil designs run against nature." -- Kevin Alfred Strom

      (ich freu mich schon auf den prozess wegen "gefühlsverletzung", ich lach mich tot...)

    1. That’s the honest-to-goodness HTML I have in the Markdown for this post. That’s it! There’s no special setup; I don’t have to remember to put specific elements on the page before calling a function or load a bunch of extra resources.1 Of course, I do need to keep the JS files around and link to them with a <script> tag.

      There's nothing special about Web Components; the author could have just as easily put the script block itself there.

    1. Die Internationale Energieagentur IEA hält eine Begrenzung der globalen Erhitzung aufgrund des schnellen Wachstums bei den erneuerbaren Energien für sehr schwierig, aber noch möglich. In ihrem Jahresbericht kommt sie zu dem Ergebnis, dass der Höhepunkt der Nachfrage nach Kohle, Gas und Öl bis 2030 erreicht werden wird. Die Energiepolitik der wichtigen Staaten ist aber bei der Umstellung auf Erneuerbare bei weitem nicht so ehrgeizig, als es nötig ist. https://www.liberation.fr/environnement/grace-aux-energies-bas-carbone-limiter-le-rechauffement-climatique-reste-possible-affirme-lagence-internationale-de-lenergie-20231024_YF7ZJA7WBFACRFIVCBRONJPKAA/

      World Energy Outlook 2023: https://origin.iea.org/reports/world-energy-outlook-2023

      Mehr zum World Energy Outlook 2023: https://hypothes.is/search?q=tag%3A%22report%3A%20World%20Energy%20Outlook%202023%22

    1. Reviewer #2 (Public Review):

      Summary:<br /> This study seeks to understand the connection between protein sequence and function in disordered regions enriched in polar amino acids (specifically Q, N, S and T). While the authors suggest that specific motifs facilitate protein-enhancing activities, their findings are correlative, and the evidence is incomplete. Similarly, the authors propose that the re-assignment of stop codons to glutamine-encoding codons underlies the greater user of glutamine in a subset of ciliates, but again, the conclusions here are, at best, correlative. The authors perform extensive bioinformatic analysis, with detailed (albeit somewhat ad hoc) discussion on a number of proteins. Overall, the results presented here are interesting, but are unable to exclude competing hypotheses.

      Strengths:<br /> Following up on previous work, the authors wish to uncover a mechanism associated with poly-Q and SCD motifs explaining proposed protein expression-enhancing activities. They note that these motifs often occur IDRs and hypothesize that structural plasticity could be capitalized upon as a mechanism of diversification in evolution. To investigate this further, they employ bioinformatics to investigate the sequence features of proteomes of 27 eukaryotes. They deepen their sequence space exploration uncovering sub-phylum-specific features associated with species in which a stop-codon substitution has occurred. The authors propose this stop-codon substitution underlies an expansion of ploy-Q repeats and increased glutamine distribution.

      Weaknesses:<br /> The preprint provides extensive, detailed, and entirely unnecessary background information throughout, hampering reading and making it difficult to understand the ideas being proposed.<br /> The introduction provides a large amount of detailed background that appears entirely irrelevant for the paper. Many places detailed discussions on specific proteins that are likely of interest to the authors occur, yet without context, this does not enhance the paper for the reader.

      The paper uses many unnecessary, new, or redefined acronyms which makes reading difficult. As examples: (1) Prion forming domains (PFDs). Do the authors mean prion-like domains (PLDs), an established term with an empirical definition from the PLAAC algorithm? If yes, they should say this. If not, they must define what a prion-forming domain is formally. (2) SCD is already an acronym in the IDP field (meaning sequence charge decoration) - the authors should avoid this as their chosen acronym for Serine(S) / threonine (T)-glutamine (Q) cluster domains. Moreover, do we really need another acronym here (we do not). (3) Protein expression-enhancing (PEE) - just say expression-enhancing, there is no need for an acronym here.

      The results suggest autonomous protein expression-enhancing activities of regions of multiple proteins containing Q-rich and SCD motifs. Their definition of expression-enhancing activities is vague and the evidence they provide to support the claim is weak. While their previous work may support their claim with more evidence, it should be explained in more detail. The assay they choose is a fusion reporter measuring beta-galactosidase activity and tracking expression levels. Given the presented data they have shown that they can drive the expression of their reporters and that beta gal remains active, in addition to the increase in expression of fusion reporter during the stress response. They have not detailed what their control and mock treatment is, which makes complete understanding of their experimental approach difficult. Furthermore, their nuclear localization signal on the tag could be influencing the degradation kinetics or sequestering the reporter, leading to its accumulation and the appearance of enhanced expression. Their evidence refuting ubiquitin-mediated degradation does not have a convincing control.

      Based on the experimental results, the authors then go on to perform bioinformatic analysis of SCD proteins and polyX proteins. Unfortunately, there is no clear hypothesis for what is being tested; there is a vague sense of investigating polyX/SCD regions, but I did not find the connection between the first and section compelling (especially given polar-rich regions have been shown to engage in many different functions). As such, this bioinformatic analysis largely presents as many lists of percentages without any meaningful interpretation. The bioinformatics analysis lacks any kind of rigorous statistical tests, making it difficult to evaluate the conclusions drawn.

      The methods section is severely lacking. Specifically, many of the methods require the reader to read many other papers. While referencing prior work is of course, important, the authors should ensure the methods in this paper provide the details needed to allow a reader to evaluate the work being presented. As it stands, this is not the case.

      Overall, my major concern with this work is that the authors make two central claims in this paper (as per the Discussion).

      The authors claim that Q-rich motifs enhance protein expression. The implication here is that Q-rich motif IDRs are special, but this is not tested. As such, they cannot exclude the competing hypothesis ("N-terminal disordered regions enhance expression"). The authors also do not explore the possibility that this effect is in part/entirely driven by mRNA-level effects (see Verma Na Comms 2019). As such, while these observations are interesting, they feel preliminary and, in my opinion, cannot be used to draw hard conclusions on how N-terminal IDR sequence features influence protein expression. This does not mean the authors are necessarily wrong, but from the data presented here, I do not believe strong conclusions can be drawn.

      That re-assignment of stop codons to Q increases proteome-wide Q usage. I was unable to understand what result led the authors to this conclusion. My reading of the results is that a subset of ciliates has re-assigned UAA and UAG from the stop codon to Q. Those ciliates have more polyQ-containing proteins. However, they also have more polyN-containing proteins and proteins enriched in S/T-Q clusters. Surely if this were a stop-codon-dependent effect, we'd ONLY see an enhancement in Q-richness, not a corresponding enhancement in all polar-rich IDR frequencies? It seems the better working hypothesis is that free-floating climate proteomes are enriched in polar amino acids compared to sessile ciliates. Regardless, the absence of any kind of statistical analysis makes it hard to draw strong conclusions here.

    1. Almost all thirty informants immediately focused on outdoor activities—tag, hide-n-seek, jumping rope, picnics, hiking, swimming, bike riding, random adventures with friends, and so on. Regardless of whether our informants grew up in a rural or urban setting, they typically recalled their girlhood as a time when media and popular culture were peripheral or absent from their lives

      This is a concept hard for many to imagine nowadays given how reliant and incorporated media is in various popular culture

    1. About 150,000transformed plants (T1 plants) expressing aT-DNA-located kanamycin-resistance gene(NPTID

      Signature tagged mutagenesis, tag is kanamycin resistance; integrate into genome and then look for unusual phenotypes (kanamycin resistance), when found, this phenotype indicates that the gene relating to the usual phenotype was inactivated

    1. Author Response

      Reviewer #1 (Public Review):

      This is a very exciting manuscript from Meng Wang's lab on lysosomal proteomics. They used several different protein tags to identify the lysosomal proteome. The exciting findings include A) specific lysosomal proteins exist in a tissue-specific manner B) lipl-4 overexpression and daf-2 extend life span using different mechanisms C) identification of novel lysosomal proteins D) demonstration of the function of several lysosomal proteins in regulation lysosome abundance and function.

      We thank the reviewer for finding our manuscript exciting.

      Reviewer #2 (Public Review):

      In this manuscript, Yu and colleagues profile the lysosome content in C. elegans. They implement lysosome immunoprecipitation (Lyso-IP) for C. elegans and they convincingly show that this method successfully isolates lysosomes from whole worms. The authors find that the lysosomes of worms overexpressing the lysosomal lipase lipl4 are enriched for AMPK subunits and nucleoporins and that these proteins are required for the longevity of lipl-4 overexpressing worms. The authors also show that this is specific to this longevity pathway given that another long-lived worm strain (daf2) does not exhibit enrichment for nucleoporins nor does it require them for longevity. The authors go on to express the Lyso-IP tag in different tissues of C. elegans (muscle, hypodermis, intestine, neurons) and identify the tissue-specific lysosome proteomes. Finally, the authors use this method to identify lysosome proteins in mature lysosomes and they find new proteins that regulate lysosomal acidification.

      The authors present a powerful tool to unbiasedly identify lysosome-associated proteins in C. elegans, and they provide an in-depth assessment of how this method can be used to understand longevity pathways and identify novel proteins. Understanding lysosomal differences in specific tissues or in response to different longevity conditions are exciting as it provides new insight into how organelles could control specific homeostasis responses. This tool and proteomics datasets also represent a great resource for the C. elegans community and should pry open new studies on the regulation and role of the lysosome at the organismal level.

      We truly appreciate that the reviewer’s positive comment on our work.

      Addressing the following suggestions would help strengthen this already strong manuscript. First, it would be helpful to validate selected candidates from the tissuespecific Lyso-IP to verify that the protocol is still specific with lower sample amounts. Second, it would be helpful to provide more details on the methods, notably for sample preparation and analysis, so that it can serve as a guideline for the community. Third, the manuscript contains a lot of data and conditions, which is great, but they may also feel disconnected in some cases and it could be helpful to focus the study on the main key findings.

      We thank the reviewer’s comments. As suggested by the reviewer, we have also generated a CRISPR knock-in line for one hypodermis-specific candidate Y58A7A.1 that encodes a copper transporter and validated its hypodermis-specific lysosomal localization (new Supplementary Figure 2E).

      As suggested by the reviewer, we have extended the method section on Lyso-IP to include more details. We believe that the new version should be sufficient for any lab to follow this protocol and conduct their own analyses. We will also take advantage of the eLife “Request a Protocol” feature to share the detailed version of the Lyso-IP method with researchers who are interested.

      We have thoroughly reorganized the manuscript to increase the textual clarity and improve the connection between different analyses and results.

      Reviewer #3 (Public Review):

      The manuscript by Ji et al dissects the important role of lysosomes in cellular metabolism and signaling and their regulation by various associated proteins. The authors utilized deep proteomic profiling in C.Elegans to identify lysosome-associated proteins involved in regulating longevity and discovered the recruitment of AMPK and nucleoporin proteins in response to increased lysosomal lipolysis. Additionally, the authors found lysosomal heterogeneity across different tissues and specific enrichment of the Ragulator complex on Cystinosin-positive lysosomes.

      Strengths of this work include the utilization of deep proteomic profiling to identify novel lysosome-associated proteins involved in longevity regulation, as well as the discovery of lysosomal heterogeneity and specific protein enrichments across different worm tissues. These findings point to a complex interplay between lysosomal protein dynamics, signal transduction, organelle crosstalk, and organism longevity.

      One weakness of this work may be the limited scope of the study, as it focuses primarily on the identification and characterization of lysosome-associated proteins involved in longevity regulation, with limited mechanistic follow-up and some unsubstantiated claims.

      We thank the reviewer for her/his helpful comments and suggestions. The primary goal of this manuscript is to provide new methods and resource to the community. We did have several biological findings from the current study, and mechanistic follow-up with these findings will be interesting future topics but may beyond the scope of the current manuscript. In addition, we have provided new experimental results to further support several claims that the reviewer has commented on.

    2. Reviewer #2 (Public Review):

      In this manuscript, Yu and colleagues profile the lysosome content in C. elegans. They implement lysosome immunoprecipitation (Lyso-IP) for C. elegans and they convincingly show that this method successfully isolates lysosomes from whole worms. The authors find that the lysosomes of worms overexpressing the lysosomal lipase lipl-4 are enriched for AMPK subunits and nucleoporins and that these proteins are required for the longevity of lipl-4 overexpressing worms. The authors also show that this is specific to this longevity pathway given that another long-lived worm strain (daf-2) does not exhibit enrichment for nucleoporins nor does it require them for longevity. The authors go on to express the Lyso-IP tag in different tissues of C. elegans (muscle, hypodermis, intestine, neurons) and identify the tissue-specific lysosome proteomes. Finally, the authors use this method to identify lysosome proteins in mature lysosomes and they find new proteins that regulate lysosomal acidification.

      The authors present a powerful tool to unbiasedly identify lysosome-associated proteins in C. elegans, and they provide an in-depth assessment of how this method can be used to understand longevity pathways and identify novel proteins. Understanding lysosomal differences in specific tissues or in response to different longevity conditions are exciting as it provides new insight into how organelles could control specific homeostasis responses. This tool and proteomics datasets also represent a great resource for the C. elegans community and should pry open new studies on the regulation and role of the lysosome at the organismal level.

      Addressing the following suggestions would help strengthen this already strong manuscript. First, it would be helpful to validate selected candidates from the tissue-specific Lyso-IP to verify that the protocol is still specific with lower sample amounts. Second, it would be helpful to provide more details on the methods, notably for sample preparation and analysis, so that it can serve as a guideline for the community. Third, the manuscript contains a lot of data and conditions, which is great, but they may also feel disconnected in some cases and it could be helpful to focus the study on the main key findings.

    1. Any recommendations on Analog way of doing it? Not the Antinet shit

      reply to u/IamOkei at https://www.reddit.com/r/Zettelkasten/comments/17beucn/comment/k5s6aek/?utm_source=reddit&utm_medium=web2x&context=3

      u/IamOkei, I know you've got a significant enough practice that not much of what I might suggest may be helpful beyond your own extension of what you've got and how it is or isn't working for you. Perhaps chatting with a zettelkasten therapist may be helpful? Does anyone have "Zettelkasten Whisperer" on a business card yet?! More seriously, I occasionally dump some of my problems and issues into a notebook, unpublished on my blog, or even into a section of my own zettelkasten, which I never index or reconsult, as a helpful practice. Others like Henry David Thoreau have done something like this and there's a common related practice of writing "Morning Pages" that you can explore. My own version is somewhat similar to the idea of rubber duck debugging but focuses on my own work. You might try doing something like this in one of Bob Doto's cohorts or by way of private consulting sessions. Another free version of this could be found by participating in Will's regular weekly posts/threads "Share with us what is happening in your ZK this week" at https://forum.zettelkasten.de/. It's always a welcoming and constructive space. There are also some public and private (I won't out them) Discords where some of the practiced hands chat and commiserate with each other. Even the Obsidian PKM/Zettelkasten Discord channels aren't very Obsidian/digital-focused that you couldn't participate as an analog practitioner. I've even found that participating in book clubs related to some of my interests can be quite helpful in talking out ideas before writing them down. There are certainly options for working out and extending your own practice.

      Beyond this, and without knowing more of your specific issues, I can only offer some broad thoughts which expand on some of the earlier discussion above.

      I recommend stripping away Scheper's religious fervor, some of which he seems to have thrown over lately along with the idea of a permanent note or "main card" (something I think is a grave mistake), and trying something closer to Luhmann's idea of ZKII.

      An alternate method, especially if you like a nice notebook or a particular fountain pen, might be to take all of your basic literature/fleeting notes along with the bibliographic data in a notebook and then just use your analog index cards/slips to make your permanent notes and your index.

      Ultimately it's all a lot of the same process, though it may come down to what you want to call it and your broad philosophy. If you're anti-antinet, definitely quit using the verbiage for the framing there and lean toward the words used by Ahrens, Dan Allosso, Gerald Weinberg, Mark Bernstein, Umberto Eco, Beatrice Webb, Jacques Barzun & Henry Graff, or any of the dozens of others or even make up your own. Goodness knows we need a lot more names and categories for types of notes—just like we all need another one page blog post about how the Zettelkasten method works by someone who's been at it for a week. Maybe someone will bring all these authors to terms one day?

      Generally once you know what sorts of ideas you're most interested in, you take fewer big notes on administrivia and focus more of your note taking towards your own personal goals and desires. (Taking notes to learn a subject are certainly game, but often they serve little purpose after-the-fact.) You can also focus less on note taking within your entertainment reading (usually a waste) and focusing more heavily on richer material (books and journal articles) that is "above you" in Adler's framing. You might make hundreds of highlights and annotations in a particular book, but only get two or three serious ideas and notes out of it ultimately. Focus on this and leave the rest. If you're aware of the Pareto principle or the 80/20 rule, then spend the majority of your time on the grander permanent notes (10-20%), and a lot less time worrying about the all the rest (the 80-90%).

      In the example above relating to Marx, you can breeze through some low level introductory material for context, but nothing is going to beat reading Marx himself a few times. The notes you make on his text will have tremendously more value than the ones you took on the low level context. A corollary to this is that you're highly unlikely to earn a Ph.D. or discover massive insight by reading and taking note posts on Twitter, Medium, or Substack (except possibly unless your work is on the cultural anthropology of those platforms).

      A lot of the zettelkasten spaces focus heavily on the note taking part of the process and not enough on the quality of what you're reading and how you're reading it. This portion is possibly more valuable than the note taking piece, but the two should be hand-in-glove and work toward something.

      I suspect that most people who have 1000 notes know which five or ten are the most important to where they're going and how they're growing. Focus on those and your "conversations with texts" relating to those. The rest is either low level context for where you're headed or either pure noise/digital exhaust.

      If you think of ideas as incunables, which notes will be worth of putting on your tombstone? In other words: What are your "tombstone notes"? (See what I did there? I came up with another name for a type of note, a sin for which I'm certainly going to spend a lot of time in zettelkasten purgatory.)

    1. Eines der Rituale, das Mohammed von den Juden übernimmt, ist das dreimalige Beten am Tag, das er durch zwei weitere ergänzt hat. Von der anfänglichen Gebetsrichtung nach Jerusalem war bereits weiter oben die Rede. Für die Muslime führte Mohammed den Freitag-Gottesdienst als zentrales rituelles Geschehen ein — damit wollte er sich von den Juden unterscheiden, für die der Samstag, der Schabbath, der heilige Tag der Woche ist. Und auch das „Fasten am Aschura-Tag“, dem zehnten Tag im hebräischen Monat Tischri, erweiterte Mohammed zum Ramadan-Fasten. Ebenso hat Mohammed die Beschneidung für alle männlichen Kinder übernommen, allerdings nicht am achten Tag nach der Geburt wie bei den Juden, sondern generell erst sehr viel später. Juden nehmen vor jeder rituellen Handlung und auch vor dem Thora-Studium das rituelle Händewaschen vor, Muslime waschen bekanntlich Gesicht, Hände und Füße, bevor sie die Moschee zum Gebet betreten. Auch dabei dürfte es sich vermutlich um mehr als bloße Ähnlichkeiten handeln.

      Der Teufel ist ein Imitator, aber ein schlechter.

    1. eLife assessment

      This study examines the expression of HDAC3 within DC compartment. Taking advantage of tamoxifen inducible ERT2-cre mouse model they observe the dependency of pDCs but not cDCs on HDAC3. The requirement of this histone modifier appears to occur during development around the CLP stage. Tamoxifen treated mice lack almost all pDC besides lymphoid progenitors. RNA seq studies identify multiple DC specific target genes within the remaining pDC - using Cut and Tag technology they validate some of the identified targets of HDAC3. Taken together, this study shows the requirement of HDAC3 on pDC but not cDC, congruent with the recent findings of a lymphoid origin of pDC.

    2. Reviewer #1 (Public Review):

      The work by Yijun Zhang and Zhimin He at al. analyzes the role of HDAC3 within DC subsets. Using an inducible ERT2-cre mouse model they observe the dependency of pDCs but not cDCs on HDAC3. The requirement of this histone modifier appears to be early during development around the CLP stage. Tamoxifen treated mice lack almost all pDCs besides lymphoid progenitors. Through bulk RNA seq experiment the authors identify multiple DC specific target gens within the remaining pDCs and further using Cut and Tag technology they validate some of the identified targets of HDAC3.<br /> Collectively the study is well executed and shows the requirement of HDAC3 on pDCs but not cDCs, in line with the recent findings of a lymphoid origin of pDC.

      While the authors provide extensive data on the requirement of HDAC3 within progenitors, the high expression of HDAC3 in mature pDCs may underly a functional requirement. Have you tested INF production in CD11c cre pDCs? Are there transcriptional differences between pDCs from HDAC CD11c cre and WT mice?

      A more detailed characterization of the progenitor compartment that is compromised following depletion would be important, as also suggested in the specific points.

    3. Reviewer #2 (Public Review):

      In this article Zhang et al. report that the Histone Deacetylase-3 (HDAC3) is highly expressed in mouse pDC and that pDC development is severely affected both in vivo and in vitro when using mice harbouring conditional deletion of HDAC3. However, pDC numbers are not affected in Hdac3fl/fl Itgax-Cre mice, indicating that HDCA3 is dispensable in CD11c+ late stages of pDC differentiation. Indeed, the authors provide wide experimental evidence for a role of HDAC3 in early precursors of pDC development, by combining adoptive transfer, gene expression profiling and in vitro differentiation experiments. Mechanistically, the authors have demonstrated that HDAC3 activity represses the expression of several transcription factors promoting cDC1 development, thus allowing the expression of genes involved in pDC development. In conclusion, these findings reveals HDAC3 as a key epigenetic regulator of the expression of the transcription factors required for pDC vs cDC1 developmental fate.

      These results are novel and very promising. However, supplementary information and eventual further investigations are required to improve the clarity and the robustness of this article.

      Major points<br /> 1) The gating strategy adopted to identify pDC in the BM and in the spleen should be entirely described and shown, at least as a Supplementary Figure. For the BM the authors indicate in the M & M section that they negatively selected cells for CD8a and B220, but both markers are actually expressed by differentiated pDC. However, in the Figures 1 and 2 pDC has been shown to be gated on CD19- CD11b- CD11c+. What is the precise protocol followed for pDC gating in the different organs and experiments?

      2) pDC identified in the BM as SiglecH+ B220+ can actually contain DC precursors, that can express these markers, too. This could explain why the impact of HDAC3 deletion appears stronger in the spleen than in the BM (Figures 1A and 2A). Along the same line, I think that it would important to show the phenotype of pDC in control vs HDAC3-deleted mice for the different pDC markers used (SiglecH, B220, Bst2) and I would suggest to include also Ly6D, taking also in account the results obtained in Figures 4 and 7. Finally, as HDCA3 deletion induces downregulation of CD8a in cDC1 and pDC express CD8a, it would important to analyse the expression of this marker on control vs HDAC3-deleted pDC.

      3) How do the authors explain that in the absence of HDAC3 cDC2 development increased in vivo in chimeric mice, but reduced in vitro (Figures 2B and 2E)? More generally, as reported also by authors (line 207), the reconstitution with HDAC3-deleted cells is poorly efficient. Although cDC seem not to be impacted, are other lymphoid or myeloid cells affected? This should be expected as HDAC3 regulates T and B development, as well as macrophage function. This should be important to know, although this does not call into question the results shown, as obtained in a competitive context.

      4) What are the precise gating strategies used to identify the different hematopoietic precursors in the Figure 4 ? In particular, is there any lineage exclusion performed? Moreover, what is the SiglecH+ CD11c- population appearing in the spleen of mice reconstituted with HDAC3-deleted CDP? Data shown in Figure 4F should be expressed as log2 and not10. Finally, how do the authors explain that Hdac3fl/fl express Il7r, while they are supposed to be sorted CD127- cells?

      5) What is known about the expression of HDAC3 in the different hematopoietic precursors analysed in this study? This information is available only for a few of them in Supplementary Figure 1. If not yet studied, they should be addressed.

      6) It would be highly informative to extend CUT and Tag studies to Irf8 and Tcf4, if this is technically feasible.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary: Sharma, et al. report the characterization of the polar tube (PT) from the microsporidian species, Vairimorpha necatrix, using a combination of optical microscopy, cryo-ET, and proteomics. The polar tube is a fascinating invasion apparatus which mediates the translocation of the parasite into the inside of a host cell to initiate infection. Similar to results obtained previously in other species, the authors show that PT firing in Vairimorpha necatrix is extremely fast, occurring on the order of 1 sec, and that the extruded PT is over 100 microns long in this species. Using cryo-ET to image the PT at a high resolution, they find that it exists in two major states: both an empty state and a state filled with cargo, and that the thickness of the tube wall changes when cargo is present. Strikingly, the authors observed that one of the cargo components, the ribosomes, are organized ordered array that may have helical symmetry. Finally, the authors took advantage of a naturally occurring "His tag" on PTP3 to affinity purify PTP3-containing protein complexes and analyze the composition using proteomics.

      Major comments

      ln 139-140: The absolute handedness of something can be very tricky to determine by cryo-ET (but certainly is possible). Variable hardware configurations between microscopes and differing conventions between software packages (e.g., for what direction is a positive tilt angle) can lead to inversion of the apparent handedness in the final tomogram. How certain are the authors that the absolute handedness is indeed right handed, as this seems to vary between the various display items in the manuscript? For example, in Fig 1c, my impression is that ribosome helices are left handed, as they are also in the supplemental movie. If this isn't known with certainty, perhaps it would be sufficient to describe the apparent helical symmetry but state that the handedness is ambiguous.

      Minor comments

      ln 39-40: Perhaps also cite the E. cuniculi genome paper?

      ln 97-98: It is interesting that the PT shortens in V. necatrix as well, and while I can pick this out in some of the individual traces in Sup Fig. 1b, it seems to get washed out in the trend line and isn't super obvious. If it isn't to laborious, it could be nice to add a panel showing the quantification of this (e.g., plotting the final length of each PT as a percentage of the maximum length achieved).

      ln 98-100: Strictly speaking, I don't think the referenced figure shows the sporoplasm being transformed into an extended conformation, only that it is spherical upon exit. Simply reword this to make clear that the deformations are inferred to occur but not directly observed.

      Because PT firing is so fast, the probability of trapping a PT in the process of transporting cargo would be pretty low. So then why does the PT still contain cellular cargo like ribosomes inside in the tomograms? Should these not have emerged in the sporoplasm which would enter the host cell? Are these "defective" spores that have failed to complete sporoplasm transport? Perhaps this is worth discussing.

      ln 118: The authors note an apparent correlation between the phase of germination and the thickness of the tube wall but don't specify what this correlation is. Is it thicker in the early phase and thinner in later phase, or vice versa? One could imagine "empty" tubes existing before or after sporoplasm transport, for example, so I'm not sure I follow how the phase is being inferred from the tomograms.

      ln 119-120: What is the evidence that the outer layer is made of PTPs, or that it is even protein (for example, as opposed to cell wall-like carbohydrate polymers)? I think this seems like a very reasonable hypothesis, but I would suggest explaining the logic and ensuring the degree of uncertainty is conveyed clearly. In light of this, I would also suggest changing figure labels, etc, that refer to the PTP layer (e.g., Fig. 3, PTPc and PTPe labels).

      ln 121, 123: "sheathed by a thin layer" and "enveloped by a thick outer layer": is this an additional layer being described? Or is this referring to the putative PTP layer, and that its thickness is variable?

      ln 125-126: While I understand how some features, like ribosomes, proteasomes, and generic membrane compartments could be identified, it is unclear to me how one would recognize the nucleus when inside the PT, nor are any examples shown. If the data is clear, perhaps the authors could show it in a figure? Otherwise, I suggest removing the claim regarding the nucleus.

      The arrangement of the ribosomes in a subset of tubes is really fascinating! While the number of observations is relatively small (n=5), it seems like it should be possible to comment preliminarily on whether there is much variability in their helical arrangement. Do the helical parameters vary much between observations? Does the til, pitch, etc vary much, are the 5 occurrences very similar? Is there any sign that they are associated with a membrane? Also, since the ribosomes form a lattice-like arrangement, it seems like it would be possible to trace ribosome helices in both the left and right handed directions. How did the authors decide between the two possibilities? This doesn't seem to be discussed.

      Fig. 2e: Are the two different colors/orientations meant to represent the two protamers of the ribosome dimer? When refined subvolumes are mapped back onto the original tomogram do the authors observe a similar crystalline arrangement of particles as in their segmentation? Are the orientations of the ribosomes correlated, and do the provide any evidence for the dimeric arrangement mentioned? The PlaceObjects plugin for Chimera can be very helpful for visualizing this: https://www.biochem.mpg.de/7939908/Place-Object

      Supp figure 4(b-d): Perhaps these models could be colored by pLDDT scores (with a key indicating the color scheme), so the reader can assess the quality of the predictions?

      How were the measurements of the membrane thickness and putative PTP layer carried out? On the tomogram projections? STAs? How were the boundaries of the layers established (e.g., map threshholding if STA?)? This information appears to be missing from the methods.

      Some tubes that are labeled as 'PTempty' actually contain cargo and look dense (example supp. Fig 2c, left and middle panels). Is it fair to classify these as empty tubes?

      Fig. 3d: I am not entirely clear on what is being shown here. Are independent reconstructions of PTcargo and PTempty superposed (aligned on membrane)? The description in the figure legend doesn't clearly say what is being displayed. I think it might be more clear to show these side-by-side instead of superposed (i.e., 4 panels instead of 2).

      Sup Fig 1: Define S and SP in legend or just spell out on figure? Missing x-axis label on panel b.

      Fig. 4b and Sup Fig 2a: The depictions of the PT in the spore here are left-handed. In a few species, the coil of the PT was found to form a right-handed helix (Jaroenlak, et al.), and it seems plausible that this may be a general feature that would be conserved across microsporidia. I appreciate that it might not be actually known to be right-handed in V. necatrix, but if there is no strong data either way, perhaps it would make sense for these depictions of the PT to be right-handed.

      I think all three of us are more or less in consensus about this manuscript, and I largely agree with the other reviewers comments. I think after addressing reviewer suggestions, this will be a pretty nice story.

      Significance

      Overall, this manuscript from Sharma, et al. presents interesting new findings about the structure and cargo transport function of the microsporidian PT. Microsporidia infect a wide range of hosts, including humans, and how the PT mediates parasite entry into cells is poorly understood. The approaches used in this study are appropriate for tackling the questions at hand, and appear to be generally well executed and interpreted. The observation that ribosomes assemble into an array within the PT is very unexpected and quite fascinating, and may be of broader interest to researchers working on ribosome structure and function, in addition to researchers studying microsporidia. The approach to investigating proteins interacting with PTP3 was quite elegant, and yielded a list of potential interactors that appears to be of very high quality and is highly plausible based on the literature field. We think this work is a substantial advance in the field and provides important new insights into the organization of the PT. - Please define your field of expertise with a few keywords to help the authors contextualize your point of view:

      Structural biology, microsporidia - Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      We are not experts in proteomics/mass spectrometry

    1. Should I use zettelkasten? .t3_172ujnk._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; } questionI am a student in college in the UK studying A levels (Advanced levels), this includes mathematics, biology, chemistry and physics. I dont really take notes for mathematics so I wont be using any type of note taking system for that but for the sciences IDK what to do.

      reply to u/Wooden-School-4091 at https://www.reddit.com/r/Zettelkasten/comments/172ujnk/should_i_use_zettelkasten/

      This comes up fairly frequently. See https://hypothes.is/users/chrisaldrich?q=tag%3A%27zettelkasten+for+studying%27 and related links for other variations and advice on this theme.

    1. ja. fehler:

      In Bayern hat sich eine konservative Mehrheit gebildet, die 67,4 Prozent der abgegebenen Stimmen erhalten hat: CSU (die Union wird hier mitgerechnet unter zumindest potentiell noch konservativ, die Red.), Freie Wähler und AfD.

      die einzige "konservative" partei ist die AFD, alle anderen sind betrüger ("conservatives in name only").

      aber die AFD war noch nie teil einer regierung, sonst würde man sehen: auch die AFD kann nichts ändern, weil alle entscheidungen kommen von oben, und politiker verkaufen diese entscheidungen nach unten, wie in einer dauerwerbesendung. deswegen, auch die AFD ist nur "controlled opposition".

      wenn politiker wirklich mal rebellieren gegen "oben", dann wird die zentralbank einfach die geldzahlungen einstellen, und am nächsten tag ist die regierung pleite. schon heute sind alle regierungen pleite, und leben von kredit von der zentralbank.

      Gebt mir die Kontrolle über die Währung einer Nation, und es ist mir gleichgültig, wer die Gesetze macht.

      -- Amschel Mayer Rothschild

      deswegen: politik ist zeitverschwendung. aktivismus heisst selbsthilfe, selbstorganisation, kleinstaaten.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Cincotta et al set out to investigate the presence of glucocorticoid receptors in the male and female embryonic germline. They further investigate the impact of tissue-specific genetically induced receptor absence and/or systemic receptor activation on fertility and RNA regulation. They are motivated by several lines of research that report inter and transgenerational effects of stress and or glucocorticoid receptor activation and suggest that their findings provide an explanatory mechanism to mechanistically back parental stress hormone exposure-induced phenotypes in the offspring.

      Strengths:<br /> - A chronological immunofluorescent assessment of GR in fetal and early life oocyte and sperm development.<br /> - RNA seq data that reveal novel cell type specific isoforms validated by q-RT PCR E15.5 in the oocyte.<br /> - 2 alternative approaches to knock out GR to study transcriptional outcomes. Oocytes: systemic GR KO (E17.5) with low input 3-tag seq and germline-specific GR KO (E15.5) on fetal oocyte expression via 10X single cell seq and 3-cap sequencing on sorted KO versus WT oocytes - both indicating little impact on polyadenylated RNAs<br /> - 2 alternative approaches to assess the effect of GR activation in vivo (systemic) and ex vivo (ovary culture): here the RNA seq did show again some changes in germ cells and many in the soma.<br /> - They exclude oocyte-specific GR signaling inhibition via beta isoforms.<br /> - Perinatal male germline shows differential splicing regulation in response to systemic Dex administration, results were backed up with q-PCR analysis of splicing factors.

      Weaknesses:<br /> - The presence of a protein cannot be entirely excluded based on IF data (staining of spermatids is referred to but not shown).<br /> - The authors do not consider post-transcriptional level a) modifications also trigged by GR activation b) non-coding RNAs (not assessed by seq).<br /> - Sequencing techniques used are not total RNA but either are focused on all polyA transcripts (10x) or only assess the 3' prime end and hence are not ideal to study splicing, The number of replicates in the low input seq is very low and hence this might be underpowered. Since Dex treatment showed some (modest) changes in oocyte RNA - effects of GR depletion might only become apparent upon Dex treatment as an interaction.<br /> - Effects in oocytes following systemic Dex might be indirect due to GR activation in the soma.<br /> - Even though ex vivo culture of ovaries shows GR translocation to the nucleus it is not sure whether the in vivo systemic administration does the same.

      The conclusion that fetal oocytes are "intrinsically buffered to GR signalling" is very strong, given that "only" poly A sequencing and few replicates of 3-prime sequencing have been analyzed and information is lacking on whether GR is activated in germ cells in the systemically dex-injected animals.

      This work is a good reference point for researchers interested in glucocorticoid hormone signaling fertility and RNA splicing. It might spark further studies on germline-specific GR functions and the impact of GR activation on alternative splicing.

      While the study provides a characterization of GR and some aspects of GR perturbation, and the negative findings in this study do help to rule out a range of specific roles of GR in the germline, there is still a range of other potential unexplored options. The introduction of the study eludes to implications for intergenerational effects via epigenetic modifications in the germline, however, it does not mention that the indirect effects of reproductive tissue GR signaling on the germline have indeed already been described in the context of intergenerational effects of stress. Also, the study does not assess epigenetic modifications.

      The conclusion that the persistence of a phenotype for up to three generations suggests that stress can induce lasting epigenetic changes in the germline is misleading. For the reader who is unfamiliar with the field, it is important to define much more precisely what is referred to as "a phenotype". Furthermore, this statement evokes the impression that the very same epigenetic changes in the germline have been observed across multiple generations.

      The evidence of the presence of GR in the germline is also somewhat limited - since other studies using sequencing have detected GR in the mature oocyte and sperm.

      The discussion ends again on the implications of sex-specific differences of GR signaling in the context of stress-induced epigenetic inheritance. It states that the observed differences might relate to the fact that there is more evidence for paternal lineage findings, without considering that maternal lineage studies in epigenetic inheritance are generally less prevalent due to some practical factors - such as more laborious study design making use of cross-fostering or embryo transfer. Since the authors comment on RNA-mediated inheritance it seems inevitable to again consider indirect effects.

    1. Comparing the two points, you can see that E is Pareto inefficient because both the rich and poor are better off at R than at E. The income distribution at R is also the one at which the poor are as rich as they can possibly be in this economy, as indicated by the feasible frontier. This is the point that Rawls favoured (and why we called it point R).

      The impact of free international financial markets on East Asia, as viewed through the lens of this section's framework, is complex. On one hand, these markets have stimulated economic growth in the region by facilitating investment and access to global capital, which has the potential to positively affect individuals' financial wealth and physical assets. However, the benefits have not been equally distributed, contributing to growing income disparities. According to SSRN, "growth-promoting economic freedoms hamper future progress by raising inequalities." The disparities are rooted in differences in education, gender, and social class, influenced by institutions and technology.

      Therefore, while free international financial markets have brought economic opportunities to East Asia, they have also exacerbated income inequality, highlighting the need to address these disparities by considering the interplay between institutions, technology, and individual endowments to achieve a more balanced outcome in the region.

      Works Cited: Ilkay Yılmaz , Mehmet Murat Balkan , Mehmet Nasih Tağ Income Inequality and Economic Freedom: The 2000s

    1. Total cost of ownership (TCO) addresses the total cost of software development from inception to sun setting. In 2011, the CRASH report stated the total cost of ownership for software code was $18/Line of Code (LOC). Of this, it is generally accepted that the majority of this cost is related to the maintenance of the software after its initial creation, with estimates ranging from 60-90%.

      $18 /LOC

    1. Reviewer #1 (Public Review):

      The manuscript by Royall et al. builds on previous work in the mouse that indicates that neural progenitor cells (NPCs) undergo asymmetric inheritance of centrosomes and provides evidence that a similar process occurs in human NPCs, which was previously unknown.

      The authors use hESC-derived forebrain organoids and develop a novel recombination tag-induced genetic tool to birthdate and track the segregation of centrosomes in NPCs over multiple divisions. The thoughtful experiments yield data that are concise and well-controlled, and the data support the asymmetric segregation of centrosomes in NPCs. These data indicate that at least apical NPCs in humans undergo asymmetric centrosome inheritance. The authors attempt to disrupt the process and present some data that there may be differences in cell fate, but this conclusion would be better supported by a better assessment of the fate of these different NPCs (e.g. NPCs versus new neurons) and would support the conclusion that younger centriole is inherited by new neurons.

    2. Reviewer #2 (Public Review):

      Royall et al. examine the asymmetric inheritance of centrosomes during human brain development. In agreement with previous studies in mice, their data suggest that the older centrosome is inherited by the self-renewing daughter cell, whereas the younger centrosome is inherited by the differentiating daughter cell. The key importance of this study is to show that this phenomenon takes place during human brain development, which the authors achieved by utilizing forebrain organoids as a model system and applying the recombination-induced tag exchange (RITE) technology to birthdate and track the centrosomes.

      Overall, the study is well executed and brings new insights of general interest for cell and developmental biology with particular relevance to developmental neurobiology. The Discussion is excellent, it brings this study into the context of previous work and proposes very appealing suggestions on the evolutionary relevance and underlying mechanisms of the asymmetric inheritance of centrosomes. The main weakness of the study is that it tackles asymmetric inheritance only using fixed organoid samples. Although the authors developed a reasonable mode to assign the clonal relationships in their images, this study would be much stronger if the authors could apply time-lapse microscopy to show the asymmetric inheritance of centrosomes.

    1. Showers and shared kitchen facilities are in a warm, permanent building, rather than the canvas tents used sixty miles away in Seattle. Every tiny house has a porch and a bathroom. As an equal proportion of the development’s total price tag, each house costs $88,000; on an individual basis they are $19,000 per unit.

      Homeless people are actually getting their basic necessities covered and it helps with better hygiene that other people living in those cabins and camps desperately needed.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful assessment of our work and their valuable critiques which we will address in the “Recommendations for the authors” section below. In particular, we appreciate Reviewer #3 noting the value of the C. elegans model system and our efforts to bridge models with our study. We agree with the reviewer that there is a need to clarify the rationale, presentation and interpretation of our results. We have substantially revised the text in our manuscript and Figure legend to address this issue, and provided extensive new commentary and citations to lay out the logic behind our experiments. Indeed, it was our oversight not being more thorough about this initially. We have further adjusted our conclusions to be less unequivocal. Finally, we added an RPM-1 signaling diagram (Fig. 8A) to more clearly annotate the players in the RPM-1/MYCBP2 signaling network that were evaluated genetically in Fig. 8. Importantly, we provide clearer commentary on how genetic enhancer effects with known RPM-1 binding proteins and the absence of genetic suppression in vab-1/Eph receptor double mutants with components of the RPM-1/FSN-1 ubiquitin ligase complex are consistent with the biochemical finding that MYCBP2 stabilizes but does not degrade EphB2. Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.

      Following extensive discussions between the three reviewers, all three agree that the C. elegans data, as presented, does not add to, and in fact might harm, your bottom line. Our combined suggestion is to take this data out unless you plan to improve it substantially. All reviewers are perplexed by Figure 2F and the presumed interactions of cytosolic proteins with the extracellular domain of EPHB2. At the very least, please provide some suggestions/model/interpretation.

      We have adjusted our manuscript substantially to address this. Please see detailed comments in the individual Reviewer sections below.

      We would like to thank the reviewers for their thorough examination of our manuscript, constructive criticisms, and helpful suggestions.

      Reviewer #1 (Recommendations For The Authors):

      The work is extensive in my view, and mostly of high quality. See minor comments on some of the figures below.

      Thank you very much.

      Two more major comments :

      • I don't think the C. elegans work adds to - in fact I think it hurts - the statement that this regulatory mechanism is specific to EphB2. I would advise the authors to take it out.

      We agree that C. elegans has a sole Eph receptor called VAB-1 and is therefore not a specific model for EPH2B. However, testing MYCBP2 specificity for EPHB2 was not the goal or our perceived value for the C. elegans experiments. We now clarify this in the text of the Results section.

      Rather, we are providing evidence that the C. elegans ephrin receptor interacts genetically with known MYCBP2/RPM-1 binding proteins. Moreover, we now provide an extensive array of citations to note that genetic enhancer interactions between different RPM-1/MYCBP2 binding proteins is well established. The reviewer has nicely highlighted for us that we handled the C. elegans genetics in too cursory a fashion in our original manuscript. We appreciate this being noted and have now aimed to make this substantially clearer. We hope the reviewer agrees that our revised C. elegans section accomplishes this goal.

      Furthermore, we extensively revised the text of the Results to emphasize a key point: our observation that axon termination defects are not suppressed in vab-1; fsn-1 and vab-1; rpm-1 double mutants excludes the possibility that the VAB-1 Eph receptor is a substrate that is inhibited or degraded by the RPM-1/FSN-1 ubiquitin ligase complex. If the VAB-1 Eph receptor were ubiquitinated and degraded by the RPM-1/FSN-1 complex, we would have observed a suppression of phenotype in vab-1; rpm-1 double mutants. The precedent for this genetic relationship between the RPM-1 ubiquitin ligase and its substrates that are degraded has been established by several prior studies (PMID: 15707898; PMID: 31676756; PMID: 35421092). We now more clearly note that the absence of genetic suppression in vab-1; rpm-1 double mutants and vab-1; fsn-1 double mutants is consistent with the non-canonical stabilizing role of MYCBP2 on EPHB2 that was observed in our biochemical experiments with mammalian cells.

      We also adjusted the text of the manuscript to stress that we are testing genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This is a key point, as genetic enhancer interactions are consistent with the Eph receptor functioning in the RPM-1 signaling network. This concept has been well established for RPM-1 binding proteins as now noted in our revised text with an extensive number of additional citations to published work.

      Based on the above arguments, we respectfully disagree with the reviewer that our C. elegans data should be removed from the paper. To re-iterate, we are not trying to evaluate specificity for MYCBP2 and EPHB2 in C. elegans. Rather, our goals are twofold: 1) To ask whether there is an evolutionarily conserved functional genetic link between Eph receptors and known RPM-1 binding proteins. 2) To provide further in vivo genetic evidence invalidating the hypothesis that Ephrin receptors could be ubiquitination substrates that are inhibited/degraded by MYCBP2.

      Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.

      • The cellular responses are not robust and the effects of MYCBP2 KO - although significant - are minor in most cases. But I don't think more experiments will help here.

      We interpret the comment about the robustness to mean that the extent to which a given cellular response is affected by the loss of MYCBP2 is minor. First, the cellular responses themselves are typical of previous studies and depend on the cellular biology underlying them. For example, a growth collapse of ~50-60% over a background of 10% (Fig. 7) is typical for these sorts of assays (PMID: 37369692; PMID: 33972524; PMID: 17785182). A decrease of cell area by ~25% (Fig. 3) is quite substantial if one considers how much of a cell’s volume is taken up by the nucleus and organelles. Second, the phenotypes elicited by the loss of MYCBP2 are likely brought on by a decrease in EphB2 protein levels, but not its complete absence, as suggested by our biochemical experiment. Given that EphB2 complete loss only affects the cellular responses to a limited extent, the minor effects are not a surprise (e.g. for GC collapse: PMID: 23143520). Nevertheless, the subtle changes in cellular phenotypes, elicited by EPHB2 signaling are often sufficient to achieve proper cell positioning and cell response to guidance cues. For instance, regulation of the growth cone collapse of the outgrowing axons requires delicate changes that are dynamic and temporal.

      Minor:

      Fig 1C - EPHA3 and EPHB2 seem to run in different sizes, is this the case? In 2A they run at the same size.

      We believe this size discrepancy is due to different percentages of SDS-PAGE gels used to resolve proteins. In Fig. 1C, we used a 6% gel for a Western blot analysis of both EPHA3/-B2-FLAG (~130 kDa) and MYCBP2 (~510 kDa). In Fig. 2A however, we performed Western blot analysis using 10% resolving gel to separate and detect EPHA3/-B2-FLAG along with MYC-FBXO45 (~30 kDa). We have reviewed the results obtained from additional biological replicates of this experiment, and observed a similar pattern in gel migration of EPHA3/-B2-FLAG across all replicates.

      Fig1F - I can't trust the MYCBP2 blot.

      Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the results replace the previous Fig. 1F panel as mentioned on line 158.

      In Fig2b the authors claim that there is enhancement in the binding of MYCBP2 and EPHB2 upon FBXO45 expression. For this type of statement quantification is required.

      The quantification is now included in Fig. 2C and its significance is mentioned on line 180. Our conclusion about the enhancement stands.

      Fig2G - it remained unclear to me where the binding site to MYCBP2 is, how long is the cytoplasmic tail in the DeltaICD protein?

      Based on our experimental observations from Fig. 2E-H, we concluded that the fragment encompassing the extracellular domain(s) and/or transmembrane (TM) domain of EPHB2 is necessary for the protein complex formation with MYCBP2. We would like to accentuate that the EPHB2-MYCBP2 interaction might not be direct, and might involve other transmembrane protein(s) acting as a scaffold for EPHB2 and MYCBP2 binding. We did not pursue experiments to determine the exact region of the extracellular-TM portion of EPHB2 that is required for the interaction with MYCBP2.

      The cytoplasmic tail in ΔICD protein consists of 25 aa of the N-terminal fragment of EPHB2 juxtamembrane (JM) region, which is adjacent to the TM helix, and followed by the 8 aa FLAG tag (EPHB2 ΔICD domain composition: extracellular domains – TM domain – 25 aa fragment of JM region – FLAG). We have determined the TM and JM sequences based on Hedger et al. (PMID: 25779975) and included the N-terminal portion of the JM region to facilitate proper ΔICD protein localization within the plasma membrane (PMID: 35793621). We modified the schematic in Fig. 2G to better visualise the EPHB2 truncations and now provide information on their size in the figure legend.

      Always good to have a model of how all these proteins work together.

      While we acknowledge that this would be helpful, we do not have a clear answer on how the EPHB2-MYCBP2 complex formation occurs. This requires further elucidation of the putative proteins involved in this ternary complex or testing the possibility that a MYCBP2 fragment is extruded extracellularly. Without these experiments there are too many possibilities to summarise into a clear model figure. We thus did not make any edits regarding these possibilities in the section starting on line 195.

      Reviewer #2 (Recommendations For The Authors):

      Overall, the experiments are classical experiments of co-immunoprecipitations, swapping experiments, collapse assays, and stripe assays which all are well carried out and are convincing.

      Thank you for your encouraging comments.

      Controls for the stripe assay may include Fc / Fc stripe assays.

      We have performed these control experiments and now include their quantifications in the results sectioning concerning Fig. 3, starting on line 249, and those concerning Fig. 6 on line 381.

      It is not clear to me why SD and not SEM has been used here for presentations.

      Standard deviation (SD) measures the dispersion of a dataset relative to its mean. The standard error of the mean (SEM) measures how much discrepancy is likely in a sample’s mean compared with the population mean. Thus, SEM includes a statistical inference about the sampling distribution while SD is a less “processed” measurement that by definition is larger than SEM. SEM might make the data look less dispersed and many journals encourage the use of SD in bar graphs (PMID: 16223828).

      Fig 7A: it is rather difficult to see 'branches' in Fig. 7A, better pictures and close-ups should be provided. How are branches defined? This piece of work needs more attention.

      To remedy this shortcoming, we now provide inverted images with GFP signal in dark pixels overlaid on Fc (white) / eB2 (pink) stripes next to the original images.

      Reviewer #3 (Recommendations For The Authors):

      1) My most important suggestion to the authors would be to more carefully describe the results and their interpretation of the results. Sometimes, the distinction is not clear.

      We modified the text throughout the manuscript to address this.

      2) There are several cases, when the authors report on trends that are not statistically significant (1D, for example), or report no change, when it is clear that the addition of one more sample could have dramatically made a difference (4M - see point 12).

      We agree that some of the nonsignificant differences could become significant if we added more Ns. But we prefer not to move our experimental design towards N-chasing and p-hacking (PMID: 25768323). The number of biological replicates is normally pre-determined before the onset of the experiment. Of course, some replicates can be discarded if there is a valid reason, such as a technical issue with the experiment or a positive control not working but this is not relevant for the dataset we have provided.

      3) Data in 1F is very difficult to interpret.

      As in response to Reviewer #1: Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the improved results are in revised Fig. 1F.

      4) Figure 2 puts Figure 1 in a strange perspective. If I understand correctly, fig 2 claims that EPHB2 interaction with MYCBP2 depends on FBXO45 - if that is the case then how does the binding in Figure 1 occur?

      Indeed, we propose that the EPHB2-MYCBP2 interaction depends on FBXO45. In Fig. 2, we reveal that FBXO45 enhances the formation of the EPHB2-MYCBP2 complex. Thus, we suspect that the endogenous FBXO45 present in HeLa cells and neurons would mediate the interaction between EPHB2 and MYCBP2 in Fig. 1 experiments. We were unable to show this by Western blotting due to lack of reliable commercial antibodies against FBXO45, the complex containing endogenous FBXO45 and EPHB2 is also implied by our AP-MS data (Fig. 1B) and published databases.

      5) I am still trying to wrap my mind around the results in 2G-H. So do MYCBP2 and FBXO45 bind the extracellular domain of EPHBP2? What does that mean?

      (see also our response to Reviewer #1, end of their section) Based on our experimental observations from Fig. 2G-H, we conclude that the fragment encompassing the extracellular domain(s) and/or transmembrane domain of EPHB2 is necessary for the protein complex formation with MYCBP2 and FBXO45. Although there is a possibility that MYCBP2 directly binds the extracellular portion of EPHB2, we have not formally tested this hypothesis. MYCBP2 has been previously shown to interact with the extracellular portion of transmembrane N-cadherin (CDH2) via BioID proximity labeling and AP-MS proteomics approaches (PMID: 32341084).

      Considering the results in Fig. 2A-B, we suspect that EPHB2-MYCBP2 interaction is indirect, as FBXO45 enhances this association. Secretion of FBXO45 and direct binding of FBXO45 to the extracellular cadherin (EC1-2) domains of N-cadherin has been documented (PMID: 25143387; PMID: 32341084). Although, not tested, this is also a possibility for EPHB2-FBXO45 mode of interaction. Nevertheless, we also cannot rule out the possibility that an unknown transmembrane protein binds EPHB2 extracellularly and the same unknown protein binds MYCBP2/FBXO45 intracellularly. Resolving this model is beyond the scope of this study and will require us to pursue extensive new lines of investigation.

      6) I don't understand the stable Hela cell line CRISPR - is this a stable MYCBP2 deletion? In which case why is there only a reduction, not complete elimination of the protein? Or, is this a stable integration of a plasmid generating gRNA against MYCBP2? In which case, I would expect a homozygous null to emerge at some point. In any case, this is not well explained.

      These lines are not derived from single cells infected with the CRISPR sgRNA-carrying viruses, therefore they are not clonal and probably contain some cells that express normal levels of MYCBP2, hence its detection on a Western. This is now clarified starting on line 221 and on line 608.

      7) In 3C - is this the right statistical analysis?? I would say you want to claim the different effect of the control +/- eB2 compared to the effect in the mutant +/- eB2. Still should be significant but I think a more correct analysis.

      We now include this comparison in Fig. 3C as well in the results section starting on line 234.

      8) The robustness of the assay in Figure 3D is underwhelming – how was the area measured?

      This is a live imaging experiment. Fig. 3D plots cell area at 60 minutes after ephrin-B2 addition as a fraction of the same cell’s area at 0 minutes (ephrin-B2 addition). For control cells that is a decrease of ~25%. If one considers that a cell’s nucleus and organelles like the Golgi Apparatus take up most of its volume, the magnitude is not that surprising.

      9) Figure 3F – did you try to plot the relative area of overlap divided by the total cellular area? You might get a more striking phenotype. Also – claiming that this confirms that MYCBP2 is REQUIRED for EPHB2 function is a bit overstated, especially given that we don’t know (do you?) the EPHB2 mutant phenotype in this assay.

      We preferred to stay with the original method of image quantification which we use for other assays. With respect to the requirement of MYCBP2 for EPHB2 function in the stripe assay, our logic is rooted in the observation that native HeLa cells do not respond to ephrin-B2 stripes (45.46 ± 7.62% of cells on eB2 stripes v. Fc; data not shown). When they are transfected with EPHB2 expression plasmids they do, therefore we assume that EPHB2 expression endows them with a sensitivity to eB2 stripes. A loss of MYCBP2 attenuates this sensitivity. We clarified this starting on line 246 and on line 251.

      10) I didn't quite get the difference between 4A and 4B.

      We apologize for the confusion. In Fig 4A, we used a stable HeLa cell line that has tetracycline-inducible expression of EPHB2-FLAG. Using these cells, we subsequently generated CTRLCRISPR or MYCBP2CRISPR cells. In these cells we then induced EPHB2 expression with tetracycline and observed that deletion of MYCBP2 resulted in the reduction of EPHB2 protein levels. To confirm this observation and to rule out the possibility that EPHB2 protein reduction is an effect of the CRISPR lines generation, we tested whereas MYCBP2 deletion reduces EPHB2, which has been transiently overexpressed (Fig. 4B). We hence conclude that loss of MYCBP2 decreases EPHB2 that was either expressed from a stable locus (Fig. 4A) or from transient transfection (Fig. 4B). We modified the Results section starting on line 262 to make this point clear.

      11) The entire link to lysosomal degradation should be strengthened. Perhaps I am confused, but if the reduced EPHB2 levels in MYCBP2 mutant cells result from impaired lysosomal degradation then inhibiting the lys-deg should bring the protein levels back to normal (i.e. CRISPR control) - no? As currently presented, I do not understand nor do I think the claim is strongly supported by the data.

      Before treatment with inhibitors, EPHB2 levels in MYCBP2CRISPR cells are already 40% lower than they are in CTRLCRISPR cells and in all our attempts, inhibitors can only rescue/restore EPHB2 in MYCBP2CRISPR cells to a level that is lower than in CTRLCRISPR cells. But this restoration is greater in MYCBP2CRISPR than in MYCBP2CTRL cells (BafA1: 19% increase in CTRL cells and 40% in MYCBP2CRISPR cells; CoQ: 10% comparing to 35%). This indicates that EPHB2 degradation through the lysosomal pathway in MYCBP2CRISPR cells is stronger, explaining why EPHB2 degradation is promoted in MYCBP2CRISPR cells, compatible with reduced EPHB2 levels and enhanced EPHB2 ubiquitination.

      12) 4M, O - reporting ns based on these data seems a bit strange to me... Add one point and it will be strongly significant.

      See our response to point (2), above. We prefer not to invoke potential p-hacking.

      13) 7d - so what are you claiming? That the cellular response to eB1 but not eB2 is affected by the addition of FBD1? this is almost the opposite of what you wrote in the text...

      We treated the cells with two different ephrin-B ligands to make a stronger conclusion. When using ephrin-B1, growth cone collapse in FBD1 WT is not significant comparing to Fc treatment. When using ephrin-B2, growth cone collapse in FBD1 WT is not as significant as it is in FBD1 mut group (* versus ). We interpret this as meaning that the EPHB2-mediated growth cone collapse to both ligands is dampened, when we disrupt the EPHB2-MYCBP2 association. The difference between these two ligands might be due to their different affinities for the receptor or signalling kinetics.

      14) By far the weakest link in this paper is the worm part. I think it's a pity because strengthening this would affect the significance of the finding. First, the authors mention new genes without introducing their relationship to the signaling pathway tested. Second, the textual logics should be strengthened. Finally and most importantly, when the difference between the phenotypic severity is so strong (vab-1 and rpm-1) then I think it's impossible to say anything from the double mutant.

      We appreciate the reviewer noting that they appreciate the value and importance of the C. elegans model. The goals of our C. elegans experiments were twofold:

      1) To evaluate genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This was not clearly explained in the original manuscript nor was the published precedent for these types of genetic enhancer experiments provided. We have now rectified this by substantially revising the text of the Results C. elegans section starting on line 431 and by adding several citations.

      2) Our C. elegans genetics confirmed that the VAB-1 Eph receptor is not inhibited/degraded by the RPM-1/MYCBP2 ubiquitin ligase complex. We have now revised the text to draw this point out more clearly.

      To further address the reviewer’s concerns, we have added a new schematic (Fig. 8A) to show the relationship between the RPM-1 and the RPM-1 binding proteins (FSN-1/FBXO45 and GLO-4/SERGEF) we are testing. We chose FSN-1 because it is part of the RPM-1 ubiquitin ligase complex and we chose GLO-4 because it functions outside the context of RPM-1 ubiquitin ligase signaling via the GLO-1 Rab GTPase to influence late endosomal/lysosomal biogenesis.

      Regarding the reviewer’s concern that different penetrance/frequency of defects between rpm-1 mutants and vab-1 mutants means outcomes with vab-1; rpm-1 double mutants cannot be interpreted. We respectfully disagree. An extensive number of published studies have demonstrated that RPM-1 binding proteins have milder phenotypes than rpm-1 mutants and display genetic enhancer effects as double mutants with one another (PMID:17698012, PMID: 22357847, PMID: 25010424, PMID: 24810406). We now make this point much more clearly. While the frequency of axon termination defects in rpm-1 mutants is high it is not completely saturated as the defect is not 100%. Moreover, a major point of the vab-1; rpm-1 double mutants is that they do not have a significant reduction in phenotypic penetrance/frequency. Thus, our system is fully capable of resolving genetic suppression, which did not occur. We now make this point much more carefully and clearly.

      To further address the reviewer’s concern, we have softened language about the VAB-1/Eph receptor functioning in the same pathway as RPM-1 throughout the manuscript. While we think this is still the case, because the frequency of axon termination defects is not fully saturated in rpm-1 mutants and defects could potentially become more severe (i.e. the hook might occur closer to the head of the animal rather than in the midbody). Nonetheless, this is not a critical point and we think it is more important to be clear about the two major goals and objectives of our C. elegans experiments. We hope the reviewer agrees that our rationale, logic and conclusions are more clearly and accurately drawn in the revised paper.

    1. Beyond just audio recordings so for that reason two of our senior 00:15:02 researchers Benjamin Hoffman and Maddie cusumano have also developed a biologer benchmark data set and so a biologer is an animal born tag like the one in the image on the right here 00:15:14 and these produce very valuable data because they can inform us about animal ecophysiology and allow us to improve conservation by monitoring animal movements and behaviors with very high 00:15:27 resolution
      • for: BEBE, biologger Ethogram Benchmark
    1. GET/active/Return the content of the active file open in Obsidian. Returns the content of the currently active file in Obsidian.返回Obsidian中当前活动文件的内容。 If you specify the header Accept: application/vnd.olrapi.note+json, will return a JSON representation of your note including parsed tag and frontmatter data as well as filesystem metadata. See "responses" below for details.如果您指定头部 Accept: application/vnd.olrapi.note+json ,将返回包括解析标签、前置数据以及文件系统元数据在内的笔记的JSON表示。有关详细信息,请参见下面的"responses"。

      该接口返回当前活动文件内容

    1. How do you think about the relationship between social media and “real life”?

      We have to admit that people nowadays cannot live without social media. Living in 2023, I believe that social media is no longer a tool to communicate, it is becoming more and more diverse and combines all kinds of functions such as a platform to show people "who they are". I know too many people who are social phobias but are a "stars" on social media. Back then, people like them would be judged as "people who don't live on the Internet", however, no one would tag them as "strange" anymore. Therefore, yes, social media has been included in real life and is making real life better and more diverse.

  5. Sep 2023
    1. Starting a blog .t3_16v8tfq._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; } Hey everyone- I’m still trying to wrap my head on how to organize this.I have my antinet growing and I want to start a blog with the use of one of my notes as a springboard.Do I9 votesWork on the blog and store the index cards after the note that I’m drawing inspiration fromCreate a new blog section in my antinet and place them thereStore them in wherever and create an hub note that points to them

      reply to u/RobThomasBouchard at https://www.reddit.com/r/antinet/comments/16v8tfq/starting_a_blog/

      The answer is:<br /> D: Start a "blog" where you post your notes as status updates and interlink them a bit. When you've got enough, you organize them into a mini thesis and write a longer article/blog post about it.

      Examples: - https://hypothes.is/users/chrisaldrich?q=tag%3A%22thought%20spaces%22 and - https://indieweb.org/commonplace_book#The_IndieWeb_site_as_a_Commonplace_book

      tl;dr: Use your website like a public, online zettelkasten. 🕸️🗃️

    1. And the rise of deepfakes—wholly AI-generated content, as opposed to the Pelosi video’s edited clips from real (fact-checkable) speeches—will only make this problem more thorny and more urgent.

      With the introduction of deepfakes into society it is very important that online users educate themselves on how to properly spot these videos. It would be nice if platforms could tag these videos with warnings but since most don't, it is crucial to fact check each piece of content that may seem suspicious.

    1. o a URL or multiple URLs. Including a document’s DOI in the metadata of a web page will ensure that annotations appear on that document regardless of where it’s hosted.For example, an article published by Cell includes the tag<meta name="citation_doi" content="10.1016/j.

      this I don't quite understand

    1. Jerry Michalski says that The Brain provides him with a "neighborhood perspective" of ideas when he reduces the external link number for his graph down to 1.

      This is similar to Nicholas Luhmann's zettelkasten which provided neighborhoods of related notes based on distance from any particular note.

      Also similar to oral cultures who relied on movement through their environment for encoding memories and later remembering them. [I'll use the tag "environmental memory" to track this until a better name comes along.]

    1. Hi, I just started to use Zettlr for my thoughts, in stead of just individual txt-files. I find it easy to add tags to notes. But if you read manuals how to use ZettelKasten, most seem to advice to link your notes in a meaningful way (and describe the link). Maybe it's because I just really started, but I don't find immediate links when I have a sudden thought. Sometimes I have 2 ideas in the same line, but they're more like siblings, so tagging with the same keyword is more evident. How do most people do this?

      reply to u/JonasanOniem at https://www.reddit.com/r/Zettelkasten/comments/16ss0yu/linking_new_notes/

      This sort of practice is harder when you start out in most digital apps because there is usually no sense of "closeness" of ideas in digital the way that is implied by physical proximity (or "neighborhood") found in physical cards sitting right next to or around each other. As a result, you have to create more explicit links or rely on using tags (or indexing) when you start. I've not gotten deep into the UI of Zettlr, but some applications allow the numbering (and the way numbered ideas are sorted in the user interface) to allow this affordance by creating a visual sense of proximity for you. As you accumulate more notes, it becomes easier and you can rely less on tags and more on direct links. Eventually you may come to dislike broad categories/tags and prefer direct links from one idea to another as the most explicit tag you could give a note . If you're following a more strict Luhmann-artig practice, you'll find yourself indexing a lot at the beginning, but as you link new ideas to old, you don't need to index (tag) things as heavily because the index points to a card which is directly linked to something in the neighborhood of where you're looking. Over time and through use, you'll come to recognize your neighborhoods and the individual "houses" where the ideas you're working with all live. As an example, Luhmann spent his life working in sociology, but you'll only find a few links from his keyword register/subject index to "sociology" (and this is a good thing, otherwise he'd have had 90,000+ listings there and the index entry for sociology would have been utterly useless.)

      Still, given all this, perhaps as taurusnoises suggests, concrete examples may help more, particularly if you're having any issues with the terminology/concepts or how the specific application affordances are being presented.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1:

      1. If doable, image dynein and dynactin simultaneously in the Halo-DYNC1H1/DCTN4-SNAP iNeurons. Co-movement of dynein and dynactin towards the somatodendritic compartment and their separate movement in the anterograde direction along the axon would provide the most convincing evidence for the key claims of the manuscript.

      Please see the planned revision section for our response

      Reviewer #2:

      Major comment (requires additional experimentation)

      1. While the data presented do certainly suggest that dynein and Lis1 are transported anterogradely on separate vesicular cargoes from dynactin and Ndel1, the study would be much stronger if supported by dual imaging of dynein and dynactin to prove that these proteins do indeed move in association with separate vesicular populations. I would like to see dual-color kymograph traces showing that the proteins move independently. The authors should be able to accomplish this using their dual Halo-DYNC1H1/DCTN4-SNAP hESC line. To acquire and analyze this data might take several months, but it would greatly strengthen this paper. If the authors do this experiment, they may also be able to address the mechanism of reversal of anterograde cargoes which they speculate about in the Discussion, which would add even more interest and insight.

      Please see the planned revision section for our response

      Minor comments (addressable without additional experimentation)

      1. The authors deduce that 1-4 Halo fluorochromes corresponds to 1-2 dynein molecules. This implies that the cells are homozygous for the Halo tag, but I do not see this addressed explicitly. The authors should state explicitly whether the lines generated for their study are heterozygous or homozygous for the tag. If the cells are heterozygous, which would seem most likely, then they may be underestimating the number of dyneins per spot and should take this into account.

      We have added whether lines are homozygous or heterozygous to the manuscript. We also include a new Supplementary Figure panel (Fig S6) showing the genotyping data. In summary, all lines are homozygous except for PAFAH1B1-Halo (hESCs) which is heterozygous.

      1. Why are the moving spots lower in intensity than the NEM-treated static spots. It appears to suggest that they may be associated with different structures. This should be clarified and discussed.

      Our data suggest that the fast-moving spots have fewer dyneins than NEM treated static spots. We suggest this is because the fast-moving cargos are smaller than the average cargo and therefore have fewer dyneins on them. This is also supported by the smaller number of dyneins reported previously on endosomes as compared to the large lysosomes. We have clarified this in the discussion (page 7-8).

      1. The authors state in the Results that most of the dynein spots were diffusing, often along microtubules, but they do not visualize microtubules so how do they know this? They may need to remove the phrase "often along microtubules".

      This has been removed.

      1. At the end of the Introduction the authors state that their data "allow us to understand how the dynein machinery drives long-range transport in the axon". This is an overstatement. The "how" in this sentence is not addressed in this study.

      We have softened the sentence by adding the phrase “better understand”.

      1. The conclusion that dynein binds to cargos stably throughout their transport along the axon is based on measurements of the fastest moving cargoes but the authors do not provide data on the distribution of velocities for the entire population of retrograde cargoes. It is not valid to extrapolate the behavior of a small number of cargoes to the entire population. The average may be much slower than the fastest cargoes. Moreover, even for the fastest organelles the authors cannot say that the dynein is stably bound because they did not track single cargoes and thus do not know that the cargoes moved continuously in one single bout of movement for 500 µm; it is possible that the cargoes moved in multiple consecutive bouts interrupted by brief pauses and dynein motors may have exchanged between bouts.

      We have added a section to the discussion to highlight that other cargos may behave differently from the fastest ones (page 7). We have also clarified the assumptions that lead us to expect a slower arrival time of the first signal (page 5).

      1. The authors say that "it is clear that at least some dyneins remain on cargoes throughout their transport along the axon". As explained above, the data do not prove this so this statement should be removed.

      We have softened this sentence from “it is clear” to “our results suggest” and explained in more detail why we make this conclusion

      1. The authors note that most of the dynein spots were not moving processively and state that this is consistent with prior studies showing that only a subset of dynein is actively involved in transport. However, as they note elsewhere, dynein is both motor and cargo and most axonal dynein is transported at slow average velocities so maybe they should be more explicit about what they mean by "involved in transport".

      We have clarified we mean fast axonal transport and thank the reviewer for highlighting this point.

      1. When the authors note that most of the dynein in axons is transported in the slow component of axonal transport, they should also cite the work of Pfister and colleagues who were the first to show this (PMID 8824315 and 8552592).

      This was an omission on our part. The references have now been added.

      1. The authors propose that dynein and Lis1 are transported together but there were significantly fewer anterogradely transported Lis1 particles than dynein particles. This should be discussed.

      We have added more information to the discussion. Although we cannot rule out this effect being due to the heterozygous tagging of our LIS1 cell line, we do not witness the same decrease in events in the retrograde direction. Therefore, we believe there is a subset of anterogradely moving dynein lacking LIS1. As discussed in the manuscript, this subset may already be bound to dynactin and therefore not require LIS1.

      1. For the statistical analysis, the authors should provide p values in the legends for the comparisons that are judged to be "not significant". The authors should also be consistent in how they label differences that are not significant - they mark them as "ns" in Fig. 1, but in the other figures they do not, leaving some ambiguity about whether particular comparisons were not tested or were found to be not significant. For example, in Fig. 4C the average speed of the dynactin is about 0.5 µm/s greater than for the other proteins and the spread in the data suggest that this could be significant, but no significance is indicated on the plot, implying p>0.05. It is not clear how confident we can be that there is no difference.

      We have now included all p values in the figure legends and have removed the “ns” in Fig 1D. In our revised manuscript, only significant differences are highlighted in the figures.

      Reviewer #3:

      • if I look at the kymographs, trajectories appear rather complex, pausing, standing still, moving and everything mixed. The explanation of how actual trajectories are extracted and on what basis is very short, too short for me. I think the authors should expand this. Furthermore, I think it would be good if the authors would present, in their kymographs examples of the tracked (and also the not included) tracks. Maybe in supplementary info.

      The analysis of this data used the Trackmate Fiji plugin. This tracks spots frame to frame in a movie and then outputs the data of the tracks. No data was extracted from kymographs but they were used as a graphical illustration of the moving spots. To better explain our analysis pipeline, we have expanded our methods section and have added an example of a tracked movie (Video 15) as well as highlighted the tracked spots in one kymograph example (Figure 7S).

      • I found 'velocity' ill defined. I get the impression, judging from the number of points (compared to the other parameters) that the authors determine the average velocity of each individual trajectory. That is an important parameter (but should indeed be called 'trajectory averaged' velocity), but might not be the only one useful to learn from the data, where trajectories do not always appear to have constant speeds (pausing, etc.). Why do the authors not determine point-to-point velocities and plot histograms of those for all the trajectories (simply plot histograms of all the displacements between subsequent data points in trajectories)? This might provide great insight into the actual maximum velocity and the fraction of pausing or moving in opposite direction etc., providing much more molecular detail than currently extracted from the data.

      The reviewer is correct. We have measured the average velocity of the spots from the beginning of the track to the end. We have clarified this in the text. Furthermore, as stated above in the revision plan, we are currently doing the additional analysis and will include it in the final revision

      • I was a bit surprised to read that the authors have gone to the effort to create a dual-color labeled cell line, but did not do actual correlative two-color measurements (or at least show them). It would be so insightful to see dynein and dynactin move separately in the anterograde direction.

      Please see the planned revision section for our response.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary - The authors use a CRISPR knock-in gene editing strategy to label endogenous dynein, dynactin (p62 or Arp11) and dynein regulators (Ndel1 and Lis1) with Halo or SNAP tags. They do this in human iPSC and ESC cell lines engineered to express doxycycline-inducible NGN2 cloned into a "safe harbor" site of the genome. They induce the cells to differentiate into iNeurons using doxycycline and image the tagged proteins in axons with single molecule sensitivity using HILO illumination. The paper is clearly written, the description of the methods is thorough, and the data and figures (including the videos) are of good quality. The use of gene editing to knock the tags into the endogenous gene loci is a superior strategy to classic overexpression strategies. The authors also make effective use of microfluidic chambers to ensure the axons are uniformly orientated and coaligned over a distance of 500µm.

      Major comment (requires additional experimentation)

      1. While the data presented do certainly suggest that dynein and Lis1 are transported anterogradely on separate vesicular cargoes from dynactin and Ndel1, the study would be much stronger if supported by dual imaging of dynein and dynactin to prove that these proteins do indeed move in association with separate vesicular populations. I would like to see dual-color kymograph traces showing that the proteins move independently. The authors should be able to accomplish this using their dual Halo-DYNC1H1/DCTN4-SNAP hESC line. To acquire and analyze this data might take several months, but it would greatly strengthen this paper. If the authors do this experiment, they may also be able to address the mechanism of reversal of anterograde cargoes which they speculate about in the Discussion, which would add even more interest and insight.

      Minor comments (addressable without additional experimentation)

      1. The authors deduce that 1-4 Halo fluorochromes corresponds to 1-2 dynein molecules. This implies that the cells are homozygous for the Halo tag, but I do not see this addressed explicitly. The authors should state explicitly whether the lines generated for their study are heterozygous or homozygous for the tag. If the cells are heterozygous, which would seem most likely, then they may be underestimating the number of dyneins per spot and should take this into account.
      2. Why are the moving spots lower in intensity than the NEM-treated static spots. It appears to suggest that they may be associated with different structures. This should be clarified and discussed.
      3. The authors state in the Results that most of the dynein spots were diffusing, often along microtubules, but they do not visualize microtubules so how do they know this? They may need to remove the phrase "often along microtubules".
      4. At the end of the Introduction the authors state that their data "allow us to understand how the dynein machinery drives long-range transport in the axon". This is an overstatement. The "how" in this sentence is not addressed in this study.
      5. The conclusion that dynein binds to cargos stably throughout their transport along the axon is based on measurements of the fastest moving cargoes but the authors do not provide data on the distribution of velocities for the entire population of retrograde cargoes. It is not valid to extrapolate the behavior of a small number of cargoes to the entire population. The average may be much slower than the fastest cargoes. Moreover, even for the fastest organelles the authors cannot say that the dynein is stably bound because they did not track single cargoes and thus do not know that the cargoes moved continuously in one single bout of movement for 500 µm; it is possible that the cargoes moved in multiple consecutive bouts interrupted by brief pauses and dynein motors may have exchanged between bouts.
      6. The authors say that "it is clear that at least some dyneins remain on cargoes throughout their transport along the axon". As explained above, the data do not prove this so this statement should be removed.
      7. The authors note that most of the dynein spots were not moving processively and state that this is consistent with prior studies showing that only a subset of dynein is actively involved in transport. However, as they note elsewhere, dynein is both motor and cargo and most axonal dynein is transported at slow average velocities so maybe they should be more explicit about what they mean by "involved in transport".
      8. When the authors note that most of the dynein in axons is transported in the slow component of axonal transport, they should also cite the work of Pfister and colleagues who were the first to show this (PMID 8824315 and 8552592).
      9. The authors propose that dynein and Lis1 are transported together but there were significantly fewer anterogradely transported Lis1 particles than dynein particles. This should be discussed.
      10. For the statistical analysis, the authors should provide p values in the legends for the comparisons that are judged to be "not significant". The authors should also be consistent in how they label differences that are not significant - they mark them as "ns" in Fig. 1, but in the other figures they do not, leaving some ambiguity about whether particular comparisons were not tested or were found to be not significant. For example, in Fig. 4C the average speed of the dynactin is about 0.5 µm/s greater than for the other proteins and the spread in the data suggest that this could be significant, but no significance is indicated on the plot, implying p>0.05. It is not clear how confident we can be that there is no difference.

      Referee Cross-Commenting

      There seems to be agreement among all three reviewers that the authors should perform dual imaging of dynein and dynactin to prove that these proteins do indeed move together in the retrograde direction but separately in the anterograde direction. This would strengthen the study greatly.

      Significance

      General assessment - There are now multiple papers that have analyzed axonal transport of cargoes in iPSC-derived neurons, but this one appears to be the first to do it by tagging dynein motors and with single-molecule sensitivity. The principal conclusions are (1) that dynein is capable of long-range movement in axons and (2) that dynein moves dynein/Lis1 complexes are transported anterogradely in association with distinct cargoes from dynactin/Ndel1 complexes. The former is a modest conclusion and is entirely expected so not very impactful, but the latter is interesting and novel. The difference between the average velocities for the four proteins in the anterograde and retrograde directions is striking. All four move at similar velocities in the retrograde direction but in the anterograde direction, dynein and Lis1 move significantly faster than dynactin and Ndel1. Given these data, it is reasonable to infer that these proteins are being transported in two separate sets of cargoes. As the authors note in their Discussion, this is important because it could provide a mechanism for transporting dynein components anterogradely in a less active form that could then be activated when the components come together in the distal axon. However, I feel that one critical experiment is missing, which is to perform dual labeling of anterogradely transported dynein and dynactin in the same cells (see major comment). Without this experiment, the evidence is indirect.

      Audience - If confirmed by the dual labeling experiment, the authors' conclusions would represent a conceptual and mechanistic insight into the mechanism of bidirectional transport in axons that would be of broad interest to neuronal cell biologists studying neuronal trafficking.

      Expertise - This reviewer has expertise in the neuronal cytoskeleton, live imaging and axonal transport and has some experience working with iPSC-derived neurons.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      To image dynein in the axon at a single-molecule level, Fellows et al. used neuron-inducible human stem cell lines to Halo/SNAP tag endogenous dynein components by gene editing, and visualized fluorescently labeled protein molecules in differentiated neurons in microfluidic chambers by HILO microscopy-based live imaging. Using those cutting edge technologies, the authors demonstrate that in the axon, not only dynein and dynactin but also the dynein regulators LIS1 and NDEL1 can move long distance retrogradely towards the somatodendritic compartment. They also show that dynein /LIS1 move faster than dynactin/NDEL1 in the anterograde direction, suggesting that they are delivered separately to the distal end of the axon. The approach to study subcellular motility of endogenous dynein/dynactin is creative, the data are solid. I would like to suggest one experiment to support more strongly the authors' conclusions:<br /> If doable, image dynein and dynactin simultaneously in the Halo-DYNC1H1/DCTN4-SNAP iNeurons. Comovement of dynein and dynactin towards the somatodendritic compartment and their separate movement in the anterograde direction along the axon would provide the most convincing evidence for the key claims of the manuscript.

      Referee Cross-Commenting

      I agree with Reviewer 2 that the authors should clarify whether the knockin lines for dynein are homozygous. I also agree with both Reviewers 2 and 3 that the authors should do more analysis of the kymographs to obtain more information.

      Significance

      This is an elegant study on dynein motility and transport in vivo. The experimental approaches and findings presented in this manuscript are very valuable contributions to the field of dynein/dynactin and axonal transport. The results showing that dynein/dynactin can move long-range retrogradely in the axon are in good agreement with previous findings that dynein-driven cargo transport is highly processive, and the data suggesting that dynein and dynactin/NDEL1 are trafficked separately to the distal tip of the axon provide new insights into the regulatory mechanisms for the subcellular distribution and activity of molecular motors. Together these findings provide conceptual advances for understanding axonal transport. They will be of great interest to not only scientists in the field of intracellular transport but also those in cellular neurobiology.

    1. # Set the priority when loading # e.g., zsh-syntax-highlighting must be loaded # after executing compinit command and sourcing other plugins # (If the defer tag is given 2 or above, run after compinit command) zplug "zsh-users/zsh-syntax-highlighting", defer:2

      [!NOTE] zplug load 中,要设置加载优先级,可以使用?

      flashcard

      defer tag - If the defer tag is given 2 or above, run after compinit command

    1. Reviewer #2 (Public Review):

      Summary:<br /> The paper sought to determine the number of myosin 10 molecules per cell and localized to filopodia, where they are known to be involved in formation, transport within, and dynamics of these important actin-based protrusions. The authors used a novel method to determine the number of molecules per cell. First, they expressed HALO tagged Myo10 in U20S cells and generated cell lysates of a certain number of cells and detected Myo10 after SDS-PAGE, with fluorescence and a stained free method. They used a purified HALO tagged standard protein to generate a standard curve which allowed for determining Myo10 concentration in cell lysates and thus an estimate of the number of Myo10 molecules per cell. They also examined the fluorescence intensity in fixed cell images to determine the average fluorescence intensity per Myo10 molecule, which allowed the number of Myo10 molecules per region of the cell to be determined. They found a relatively small fraction of Myo10 (6%) localizes to filopodia. There are hundreds of Myo10 in each filopodia, which suggests some filopodia have more Myo10 than actin binding sites. Thus, there may be crowding of Myo10 at the tips, which could impact transport, the morphology at the tips, and dynamics of the protrusions themselves. Overall, the study forms the basis for a novel technique to estimate the number of molecules per cell and their localization to actin-based structures. The implications are broad also for being able to understand the role of myosins in actin protrusions, which is important for cancer metastasis and wound healing.

      Strengths:<br /> The paper addresses an important fundamental biological question about how many molecular motors are localized to a specific cellular compartment and how that may relate to other aspects of the compartment such as the actin cytoskeleton and the membrane. The paper demonstrates a method of estimating the number of myosin molecules per cell using the fluorescently labeled HALO tag and SDS-PAGE analysis. There are several important conclusions from this work in that it estimates the number of Myo10 molecules localized to different regions of the filopodia and the minimum number required for filopodia formation. The authors also establish a correlation between number of Myo10 molecules filopodia localized and the number of filopodia in the cell. There is only a small % of Myo10 that tip localized relative to the total amount in the cell, suggesting Myo10 have to be activated to enter the filopodia compartment. The localization of Myo10 is log-normal, which suggest a clustering of Myo10 is a feature of this motor.

      Weaknesses:<br /> One main critique of this work is that the Myo10 was overexpressed. Thus, the amount in the cell body compared to the filopodia is difficult to compare to physiological conditions. The amount in the filopodia was relatively small - 100s of molecules per filopodia so this result is still interesting regardless of the overexpression. However, the overexpression should be addressed in the limitations.<br /> The authors have not addressed the potential for variability in transfection efficiency. The authors could examine the average fluorescence intensity per cell and if similar this may address this concern.<br /> The SDS PAGE method of estimating the number of molecules is quite interesting. I really like this idea. However, I feel there are a few more things to consider. The fraction of HALO tag standard and Myo10 labeled with the HALO tagged ligand is not determined directly. It is suggested that since excess HALO tagged ligand was added we can assume nearly 100% labeling. If the HALO tag standard protein is purified it should be feasible to determine the fraction of HALO tagged standard that is labeled by examining the absorbance of the protein at 280 and fluorophore at its appropriate wavelength. The fraction of HALO tagged Myo10 labeled may be more challenging to determine, since it is in a cell lysate, but there may be some potential approaches (e.g. mass spec, HPLC).<br /> In Figure 1B, the stain free gel bands look relatively clean. The Myo10 is from cell lysates so it is surprising that there are not more bands. I am not surprised that the bands in the TMR fluorescence gel are clean, and I agree the fluorescence is the best way to quantitate.<br /> In Figure 3C, the number of Myo10 molecules needed to initiate a filopodium was estimated. I wonder if the authors could have looked at live cell movies to determine that these events started with a puncta of Myo10 at the edge of the cell, and then went on to form a filopodia that elongated from the cell. How was the number of Myo10 molecules that were involved in the initiation determined? Please clarify the assumptions in making this conclusion.<br /> It is stated in the discussion that the amount of Myo10 in the filopodia exceeds the number of actin binding sites. However, since Myo10 contains membrane binding motifs and has been shown to interact with the membrane it should be pointed that the excess Myo10 at the tips may be interacting with the membrane and not actin, which may prevent traffic jams.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer 1 major comments:

      The authors show one configuration of the E1-E2 heterodimer in Figure 4d. As shown, the E1 protein is exterior to the E2 protein and would suggest E1 is on the surface on the spike complex and virus surface. However, another configuration of the glycoproteins has E2 on the exterior of E1 and also on the exterior of the virus. The latter conformation is what has been observed in cryoEM studies of alphaviruses. The first configuration represents the E1-E2 between the three heterodimers which are important for spike assembly. The reason the orientation of the E2-E1 dimer is important is the authors speculate on the importance of the 6 CHIK residues not found in ONNV based on the structure, but the structural interpretation is, in my opinion, not correct.

      We thank reviewer 1 for pointing out the correct E2-E1 heterodimer configuration. To address this, we corrected the position of E2 and E1 in Figure 4 based on previous cryoEM study1, keeping E2 always on the exterior in the E2-E1 heterodimer. We also replaced the Indian Ocean Lineage (IOL) E2-E1 structure1 in the original Figure 4 with the CHIKV 181/clone 25 structure which was recently analyzed by Katherine Basore et al.2. In a single E2-E1 heterodimer, all six unique CHIKV positive selection sites are located on the outside of the structure after correcting the configuration. In addition, we investigated two of the unique CHIKV positively selected sites that are important for virion production, E2-V135 (V460 in the original manuscript version) and E1-V220 (V1029 in the original manuscript version), in trimerized structure of E2-E1 heterodimers. We found that the E2-V135 and E1-V220 residues in one heterodimer are facing E2 of the neighboring heterodimer on either side. Interestingly, while V135 is embedded between the E2 proteins of two different heterodimers, E1-V220 is partially embedded by E1 and the neighboring E2 and partially exposed to the outside. This suggests that even though both E2-V135 and E1-V220 might be crucial for CHIKV E2-E1 trimerization, E1-V220 provides an additional docking site for host factor interactions. We thank review 1 again for this important comment leading to these new findings. We have updated Figure 4F-4G and the corresponding result section (lines 201-209) in this partially revised manuscript.

      1. Validation of E1 interaction with SPSC3 and eIF3k needs to be stronger. Some concerns/questions are listed below. A myc tag was inserted between E3 and E2. How efficiently does furin cleave E3 from E2 in this virus and how are viral titers of the myc-tagged virus compared to the non-tagged virus? I ask because is the IP looking at what is being pulled down by E2 or E3-myc-E2 that could be part of the spike polyprotein? The authors found E2 interacts with E3, E1 and a list of other host proteins. These results suggest several interactions including E2-host factor, E2-E1, E2-E3, E2-E1-host factor, E2-E3-E1, E2-E3-host factor. In figure 6d, and the subsequent conclusions, the authors suggest E1 is interacting with the host factor and do not see E2 alone and very low amounts of E3-E2-6K-E1. based on how the IP was performed I am not sure how an interaction between E1 and SPCS3 alone, without E2, would be detected. I would also like to see a reciprocal pull down using E1 and also E2 to see if these host factors are pulled down.

      We thank the reviewer for these concerns. Given the low viral protein expression in macrophages (Figure 1A), we need an efficient system to enrich for large amounts of CHIKV glycoproteins for identifying host interactors through mass spectrometry. Adding tag/reporter proteins, such as mCherry, between E3 and E2 have been used to label alphavirus glycoproteins in previous study2, which is why we chose to use this myc tag labeling strategy coupled with myc Ab-conjugated agarose beads for AP-MS. However, like reviewer 1 speculated, inserting myc tag between E3 and E2 does attenuate CHIKV infectivity according to the reduced supernatant viral titers of 293T cells transfected with CHIKV/myc-E2 genomic RNA in comparison to those of cells transfected with unmodified CHIKV vaccine strain 181/clone 25 genomic RNA (shown in revision plan). Despite the attenuation, CHIKV/myc-E2 harvested from transfected 293T cells still reaches a titer over 108 pfu/ml, which allowed us to identify interactors by AP-MS.

      We further analyzed the cleavage efficiency of glycoproteins by comparing the expression levels of E3-E2-6K -E1, E3-E2 (p62), E2, and E3 in 293T cells transfected with unmodified CHIKV or CHIKV/myc-E2 genomic RNA (result shown in revision plan). We didn’t detect any uncleaved forms of glycoproteins in cells transfected with either unmodified CHIKV or CHIKV/myc-E2 RNA when we probed with E2 antibody. However, probing with E3 antibody prior to longer exposure of the immunoblot showed higher E3-E2-6k-E1 and E3-E2 (p62) levels in cells transfected with CHIKV/myc-E2 RNA, suggesting that both mature E2 and E2-containing precursor polyproteins are available to be pulled down. Overall, the expression levels of mature E2 detected by E2 antibody are similar.

      We thank reviewer 1 for providing a thorough dissection of all the possible interactions between the identified host factors and cleaved/uncleaved glycoproteins. This is a very interesting question. As reviewer 1 mentioned that E1 usually appears with E2 or E3-E2 in heterodimer forms, we were also surprised to find that E2 does not interact with either of the two host factors. To address this, we plan to conjugate E2 and E1 to protein A/G beads, respectively, for a reciprocal pulldown to validate CHIKV glycoprotein interactions with SPCS3 and eIF3k. Results from this experiment will be included in the fully revised manuscript.

      1. If CHIK E1 is interacting with the host factors and that is antagonizing the antiviral response of SPSC3 (as one example), then what do pull downs using ONNV structural proteins look like? One would expect reduced interactions because the different amino acid causes a different E2-E1 dimer or attenuates the E1-host factor binding site.

      We thank Reviewer 1 for this insightful suggestion. We agree that it would be informative to examine the interactions between ONNV glycoproteins and identified host factors (SPCS3 and eIF3k). Unfortunately, there is no commercial ONNV glycoprotein antibody available making this experiment unfeasible. Interestingly, we did observe reduced interactions between the host factors SPCS3 and eIF3k and the CHIKV E1-V220I mutant (V1029I in original manuscript version) where the positively selected site in E1 was mutated to the homologous ONNV residue (please refer to our response to Reviewer 3’s major comment #1). This result suggests that the ONNV glycoproteins likely have an attenuated E1-host factor binding site as the reviewer speculated.We have included this as Figure 7A in partially revised manuscript.

      1. E1 and E2 are thought to interact during polyprotein translation and the initial dimer forms in the ER. If E1 is interacting with SPSC3 in the ER, is E2 also present? Or is a population of E1 not interacting with E2 in order to inhibit SPSC3? I would love a model of how the authors see all these factors coming together for this new role of E1.

      We thank Reviewer 1 for proposing this interesting hypothesis. Given the unexpected absence of E2 in our validation of host factor-E1 pulldown, we speculate that a group of free E1 proteins with distinct function is interfering with host factors in the ER, which is a model worth further investigation and discussion. A great example of this is the alphavirus nonstructural protein 3 (nsP3) that plays essential roles in RNA replication, although depending on the alphavirus not all of the nsP3 in the cell colocalizes with dsRNA, suggesting there is a separate distinct pool of nsP3 outside of active viral replication complex that interacts with host factors in these observed larger cytoplasmic aggregates3. To address this, we plan to use laser confocal microscopy to observe the interactions between host factors (SPCS3, eIF3k), and CHIKV E2 and E1. We will include this result as well as our proposed model in the fully revised manuscript.

      Reviewer 1 minor comments:

      1. In Figure 1c, (-) RNA is shown but in the rest of the figures (+) RNA is shown. Show both or select one. I do find it interesting the (-) RNA levels are similar over time, even at 4 hours post transfection (early time). Related to this, ONNV has higher levels of (-) RNA but what is known about structural protein levels in ONNV and CHIK in macrophages? Are there comparable levels of CP and GP being produced?

      We thank Reviewer 1 for this comment. The (-) RNA is synthesized before the synthesis of subgenomic mRNA and therefore can reflect more accurately early viral replication and nonstructural protein functions. This is the reason why we consider the (-) RNA levels evaluated by specific nsP1 TaqMan probes to be more appropriate for determining early stage differences between ONNV and CHIKV replication in Figure 1 as the goal of that figure is to define the steps in CHIKV life cycle that are more efficient than those of ONNV in THP-1 derived macrophages. On the other hand, the (+) RNA evaluated by E1 primers that we used in the later figures monitors viral RNA synthesis over time in the reflection of genomic (+) RNA and subgenomic mRNA transcribed from (-) RNA templates. Similar levels of (+) RNA and contrasting virion titers really point the difference to the later stages of subgenomic mRNA translation, viral glycoprotein secretion, and assembly.

      We have generated ONNV/myc-E2 reporter virus and assessed viral glycoprotein expression through flow cytometry using a FITC -conjugated anti-myc antibody in the THP-1 derived macrophages transfected with CHIKV/myc-E2 and ONNV/myc-E2 (shown in revision plan). The results show that the expression of ONNV glycoproteins is more inhibited than that of CHIKV glycoproteins, though both of their expression levels in macrophages seem to be suppressed. Since there is no commercial ONNV antibody available, we were unable to compare capsid expression levels between the two viruses. Overall, differences in the myc-tagged glycoprotein expression levels of the two viruses reveals ONNV defect in either structural protein translation or glycoprotein maturation .

      1. Figure 2e and figure 3 have ONNV has the first bar followed by CHIK. In figure 1 and 2b, CHIK is first and then ONNV. helps the reader to have the controls in the same order.

      We thank Reviewer 1 for this suggestion. We have changed the order of ONNV and CHIKV bars in figure 2E and figure3 so the CHIKV bar consistently comes first in all the figures.

      1. Line 143-145 the authors discuss that when ONNV is the backbone and CHIK proteins are inserted the infection is more attenuated because of the E2 and E1 are from CHIK and ONNV, not the same virus (could also be E2-CP interactions are disrupted). However the chimeras made with the CHIK backbone (in Figure 2) have a mismatch between E2 and E1 as well.

      We thank Reviewer 1 for this informative comment. We agree that the incompatible E2-E1 heterodimer formation may not be the only reason that causes attenuation of ONNV/CHIKV E1 and ONNV/CHIKV E2. There may be multiple factors contributing to the fitness of the chimeras, which requires more in-depth mechanistic investigations and is out of the scope of this study. We have now removed the explanation “potentially due to incompatible heterodimer formation between ONNV E2 and CHIKV E1” in line 144.

      1. When discussing the residues that were found in the FEL and MEME analysis, the authors start the amino acid numbering from CP and continue along the polyprotein. Usually when discussing amino acids in the structural proteins, each protein starts at amino acid 1. So V460 would be E2-V135. It would also be useful to know what the residues in ONNV were at these positions to see if amino acids changed in charge, size, bond forming potential, etc. Showing these residues in the E2-E1 conformation found in the virion would also allow one to find adjacent residues that could explain differences in spike assembly and potentially where/how E1 is binding to a host protein.

      We thank Reviewer 1 for this comment. We revised the amino acid numbers in the manuscript to start from the beginning of each structural protein. To look more into these residues in ONNV, we aligned CHIKV and ONNV from different lineages and compared the 6 positively selected sites (refer to our response to Reviewer 1’s minor comment #5). We found that E2-135 and E1-220 which are essential for CHIKV production are valines in all the aligned CHIKV strains. For the aligned ONNV strains, E2-135 are all leucines and E1-220 are all isoleucines. While valine, leucine and isoleucine are all amino acids with hydrophobic side chains, valine has the shortest side chain. The length of the side chains may lead to different hydrophobic properties that affect protein folding, which warrants further structural analysis.

      1. How effective is a non-attenuated CHIK strain in infecting macrophages? Could you make a SINV-La Reunion chimeric virus (which is BSL2) to see if a higher percentage of macrophages are infected and is this potentially contributing to the increased pathogenesis of La Reunion? Also how different is 181/25 with a pathogenic strain in the E2 and E1 residues? and compared to ONNV?

      We thank Reviewer 1 for this question, which is also raised by Reviewer 2. In order to address this question, we plan to use the virulent CHIKV La Reunion strain to study the infection of THP-1 derived macrophages with non-attenuated CHIKV in BSL-3. We are getting trained in the BSL-3 facility and will soon be certified.

      We thank Reviewer 1 for this insightful suggestion on investigating the conservation of these positively selected sites in different strains. We have aligned the sequences of ONNV and CHIKV strains from different lineages, including CHIKV vaccine strain 181/clone 25 and Thai strain AF15561 (the parental strain of CHIKV 181/clone 25) (alignment shown in revision plan). We found that the two positively selected sites with negative effects on virion production, E2-135 and E1-220 (sites 460 and 1029 in original manuscript version), are very conserved in either CHIKV or ONNV strains. CHIKV E2-135 is always valine (V) regardless of the lineages, while ONNV E2-135 is always leucine (L). CHIKV E1-220 is always V, while ONNV E1-220 is always isoleucine (I).

      We also analyzed the amino acid heterogeneity of E2-135 and E1-220 in 397 CHIKV patient sequences from NCBI Virus database. Most of the amino acids at these 2 sites are V. The counts of each amino acid at E2-135 and E1-220 is summarized in table below. This result suggests that valine residues at E2-135 and E1-220 are crucial for CHIKV fitness and strongly selected during viral evolution. The sequence alignment and table will be included and discussed in the fully revised manuscript .

      E2-135

      E1-220

      Valine (V)

      394

      392

      Alanine (A)

      1

      3

      Methionine (M)

      1

      0

      Glutamic acid (E)

      0

      1

      Glycine (G)

      1

      0

      Isoleucine (I)

      0

      1

      1. When describing the last results section, "CHIKV E1 binding proteins exhibit potent anit-CHIV activities" the authors use macrophages. In the rest of the text they consistently use THP-1 macrophages or human primary monocyte derived macrophages. The details of the cell type are extremely useful to the reader and having those in the last results section would be great.

      We thank Reviewer 1 for pointing out the importance of cell type clarification in the last results section. We now consistently use “THP-1 derived macrophages” instead of “macrophages” in this section.

      1. The paper is well-written. There is a slight disconnect as the authors go from discussing results in Figure 4 to Figure 5.

      We thank Reviewer 1 for the comment regarding the disconnection of the last two figures in this paper which is also shared by the other reviewers. We have taken 3 approaches to address this comment: 1) We performed a pulldown of the host factors (SPCS3, eIF3k) identified in Figure 5 with CHIKV positively selected mutants examined in Figure 4 with deficient virion production. The result is presented in our response to Reviewer 3’ s major comment #1, suggesting that the positively selected site in E1 is essential for CHIKV glycoprotein interaction with host factors. 2) To complement our first experiment, we will also determine structural protein expression and processing of parental and E1 mutant CHIKV in eIF3k CRISPR knockout 293T cells. 3) Finally, we plan to perform CORUM analysis to identify high confidence functional protein complexes using our 14 hits found in both mass spec experiments, which will provide mechanistic insights into how these identified cellular complexes and processes might modulate CHIKV infection.

      Reviewer 2’s major comments

      The authors elegantly demonstrate that CHIKV structural proteins confer an advantage over ONNV structural proteins in a step in the replication cycle downstream of virus RNA synthesis, possibly virion assembly. This point would be strengthened determining the particle-to-PFU ratio of the parental viruses and the chimeras . Presumably, the ratio would increase in the chimeras containing CHIKV structural proteins.

      We thank Reviewer 2 for this comment. We agree that determining particle-to-PFU ratios of parental and chimeric viruses will strengthen this study. To obtain the particle-to-PFU ratio, we infected THP-1 derived macrophages with CHIKV, ONNV and chimeras containing CHIKV glycoproteins (Chimera I, and ONNV/CHIKV E2+E1) for 24 h. To quantify the secreted viral particles, we extracted viral RNA in the supernatant and detected (+) viral RNA through TaqMan assay with specific nsp1 probes. The released infectious virions were evaluated through plaque assay. The particle-to-PFU ratios are summarized in the table below. The results show that ONNV has the highest particle-to-PFU ratio (41398), suggesting defective ONNV genome encapsidated in particles leading to defective virion production. On the other hand, the particle-to-PFU ratio of CHIKV (747) is 55-fold lower than that of ONNV. Replacing E3-E2-6K-E1 of ONNV with CHIKV homologous proteins reduces the particle-to-PFU ratio by 8 fold to 4875. Replacing E2 and E1 of ONNV with the ones from CHIKV (ONNV/CHIKV E2+E1) reduces the particle-to-pfu ratio by 20 fold to 2017, suggesting that CHIKV glycoproteins enhance the infectivity of viral progenies produced by THP-1 derived macrophages. We have included the results in Figure 3D-3E in our partially revised manuscript and described in lines 149-158.

      1. Additionally, the authors should consider performing virion assembly blocking assays with a small molecule inhibitor to determine if this abrogates the virus production advantage of CHIKV structural proteins within the ONNV backbone.

      We thank Reviewer 2 for this insightful comment. As the secretory pathway is commonly important for alphavirus glycoprotein maturation and assembly, it will be informative to interrogate CHIKV glycoprotein trafficking and assembly through this pathway using specific inhibitors, such as dihydropyridine FLI-06 and golgicide A . Golgicide A is a reversible inhibitor of the cis-Golgi GBF1, which leads to rapid disassembly of the Golgi and trans-Golgi network (TGN)4. FLI-06 is a new inhibitor that interferes with cargo recruitment to ER-exit sites and disrupts Golgi without depolymerizing microtubules or interfering GBF15. We pretreated THP-1 derived macrophages with 10 uM FLI-06 or golgicide A for 30 mins prior to infection with CHIKV, ONNV, Chimera I, or ONNV/ CHIKV E2+E1. After 1 hour of virus adsorption in PBS with 1% FBS in the absence of the inhibitors, the cells were treated with the inhibitors at the same concentration (10uM) in complete medium for 24 h. The plaque assay result shows that all the viruses are sensitive to secretory pathway inhibition, however, the production of viruses containing CHIKV glycoproteins is significantly more attenuated by FLI-06 and golgicide A. This suggests that CHIKV glycoproteins-mediated trafficking and assembly is more heavily dependent on the host secretory pathway . We will include this result in the fully revised manuscript.

      1. Finally, the authors should perform competition experiments with the chimeric viruses and ONNV in macrophages to determine if the chimeras can outcompete the parental ONNV strain. Based on their data, the chimeric viruses should outcompete.

      We thank Reviewer 2 for this inspiring suggestion. The competition experiment is an innovative and informative way to evaluate whether CHIKV glycoproteins confer a selective advantage on virion production in THP-1 derived macrophages. We plan to infect THP-1 derived macrophages with ONNV and ONNV/CHIKV E2+E1 and detect the viral glycoproteins secreted in the supernatant by western blot, although there is a possibility that this experiment might not work due to superinfection exclusion. Given that there is no commercial antibody of ONNV available, we need to use tagged viruses for this competition experiment. We constructed ONNV/CHIKV myc-E2+E1 that has a myc tag at the N-terminus of CHIKV E2, and ONNV/HA-E2 that has a HA tag at the N-terminus of ONNV E2. Our first attempt at concentrating the viral progenies released by THP-1 derived macrophages infected with the two tagged viruses has not been successful. We performed sucrose gradient ultracentrifugation of the supernatant viral particles but the myc and HA tags were not detected in the expected sucrose layer. Next, we plan to use myc-Ab and HA-Ab conjugated beads to pull down the supernatant viral particles to detect the ratio of ONNV/CHIKV myc-E2+E1 and ONNV/HA-E2 secreted by THP-1 derived macrophages. This will determine whether ONNV containing CHIKV glycoproteins can outcompete ONNV in co-infected cells due to increased viral fitness.

      1. The authors use both primary macrophages and macrophage cell lines as their in vitro model system and make one of their major points (listed in the title) that the determinants they identified in the CHIKV structural proteins convert macrophages into dissemination vessels; however, they do not show: 1) an in vivo model that the CHIKV-ONNV chimeras disseminate more efficiently than the parental ONNV; and 2) that these chimeras generate virus more efficiently specifically in macrophages. It would be useful to show that ONNV and CHIKV have equivalent virion production in other cell lines and that the advantage conferred by CHIKV structural proteins in the ONNV backbone is specific to macrophages. The authors should also change their title to reflect that dissemination is not directly being addressed in their study; the implications of their in vitro experimentation in a mammalian host would be more appropriate for the discussion.

      We acknowledge the limitations of the study, which include a lack of direct demonstration of in vivo dissemination. To address these concerns, we will include further discussion of our in vitro findings in the context of viral dissemination in mammalian hosts in the fully revised manuscript. We are also testing ONNV, CHIKV, Chimera I and ONNV/CHIKV E2+E1 infections in 293T cells to investigate whether the advantage conferred by CHIKV glycoproteins are macrophage specific.

      We have also updated the title to accurately reflect the significance of this research: “Chikungunya virus glycoprotein targeting of host factors increases viral fitness in human macrophage”.

      Reviewer 2’s optional comments

      1. The authors use CHIKV-ONNV chimeras but it would be interesting to test other chimeras to determine if CHIKV structural proteins confer the same advantage in the backbone of other arthritogenic alphaviruses. The study would also be strengthened by using a pathogenic strain of CHIKV instead of the vaccine strain, as this is significantly attenuated in vivo.

      We thank Reviewer 2 for this suggestion which is also suggested by Reviewer 1 in their minor comment #5. We plan to use virulent CHIKV La reunion strain and carry out infection experiments in BSL-3 to strengthen this study. We are getting trained in the BSL-3 facility and will be certified soon.

      1. In Figure 4, the authors identify residues in the CHIKV structural proteins that appear to be under positive selection in human subjects and generate point mutants in these residues with the corresponding ONNV residues. They find that one mutation, V1029I located in E1, completely abolishes virion production in THP-1 macrophage cell lines. However, in their previous chimeric experiments, they find that neither CHIKV E1 or E2 was sufficient to increase virus production in the ONNV backbone. The authors should address this discrepancy, otherwise they should consider moving the data in their point mutation experiments to a supplementary figure. While worthy of reporting, especially given the patient data, these experiments do not buttress the points made in the previous figures.

      We thank Reviewer 2 for this insightful comment. According to previous studies, E2 and E1 always interact with each other from the step of the formation of single heterodimer in the ER to heterodimer trimerization before viral particle assembly. Although the E1-V220 site (previously called V1029) on the exterior of a single E2-E1 heterodimer appears to not be engaged in the E2-E1 interaction E1-V220 is partially exposed and protruding into the groove formed by E1 and the E2 of neighboring heterodimer, accessible to host factors. As such, mutating CHIKV E1-V220 to the ONNV residue (E1-V220I) may not only disrupt E2-E1 trimerization but also interfere viral glycoprotein interaction with host factors(presented in our response to Reviewer 1’s major comment #1). Similarly, solely swapping E2 or E1 with CHIKV substitute in the ONNV backbone would also affect the interaction between neighboring E2 and E1 in trimerized spike, which may explain why neither ONNV/CHIKV E2 or ONNV/CHIKV E1 rescues virion production in THP-1 derived macrophages . We have included this in the partially revised discussion section lines __ __296-313.

      1. The authors conclude their manuscript with an assessment of several host proteins, namely SPCS3 and eIF3k, that were identified by mass spectrometry and whose knockdown results in increased virion production. The authors speculate about the role of these proteins but do not provide any mechanistic detail on how they might be playing a role. It is unclear that the putative antiviral role of these proteins involves steps downstream of virus replication, especially given that the authors speculate translation might be affected by eIF3k which, if the case, RNA synthesis should also be expected to be affected.

      We thank Reviewer 2 for this comment. We acknowledge that we have yet a full mechanistic understanding of how SPCS3 and eIF3k impact virion production. We plan to investigate their antiviral roles in our follow-up studies. For our partial revision, we have constructed several single eIF3k knockout (KO) clones of 293T cells. The eIF3k sgRNA we designed targets exon 3 which would eliminate expression of all 3 splice isoforms of eIF3k (KO schematic and sequence verification of CRISPR KO shown in revision plan). Unfortunately, we failed to obtain single clones of 293T cells with SPCS3 complete KO, consistent with a previous study by Rong Zhang et al6 that were unable to recover SPCS3 KO clones likely due to the importance of SPCS3 in cell survival. We infected an eIF3k KO clone (clone 9) with CHIKV vaccine strain 181/clone 25, ONNV SG650, and SINV Toto1101. Interestingly, we found that the antiviral activity of eIF3k is specific to CHIKV as CRISPR KO of eIF3k increases CHIKV production by 2.5 fold but not ONNV or SINV production (shown in revision plan). We have included this in the partially revised manuscript in__ line 272-282 (Figure 7B-7D).__

      We presume that Reviewer 2’s inference of eIF3k’s potential effects on viral RNA synthesis is based on our speculation of its antiviral role in viral translation, which may affect viral nonstructural gene expression. We would like to clarify that eIF3k is not an initiation factor traditionally needed for cap-dependent translation. It is also not clear what translation process (nonstructural polyprotein translation from viral genomic RNA or structural polyprotein translation from viral subgenomic mRNA) involves eIF3k if it indeed affects viral protein expression. Notably, previous SINV studies imply that alphavirus structural polyprotein translation may employ unique mechanisms without the requirement of several crucial initiation factors4,5. It will be interesting to see whether eIF3k participates in viral subgenomic mRNA translation as that would affect viral glycoprotein expression leading to reduced virion production. We have now included additional discussion on eIF3k antiviral mechanisms in the partially revised manuscript in lines 345-353.

      1. Overall, while the initial chimeric virus and domain swap approach is strong, the manuscript would benefit with a more thorough examination of virion assembly steps and a mechanistic link to virion production. Otherwise, the authors should revise the structure of their manuscript by de-emphasizing points about virion assembly and leave room for other mechanistic explanations of their chimeric data that more clearly link the host antiviral factor/E1 binding studies.

      We thank the reviewer for these positive comments and suggestions. We have addressed this by further interrogating the production kinetics of CHIKV, ONNV, and the chimeras containing CHIKV glycoproteins through determining their particle-to-PFU ratios as well as treating infected cells with secretory pathway inhibitors (refer to our responses to Reviewer 2 major comments #1 and #2). We have also included additional discussion on eIF3k antiviral mechanisms specifically on how it may affect other steps of the viral life cycle in the partially revised manuscript in lines 345-353 (refer to our response to Reviewer 2 optional comment #3).

      Reviewer 3’s critique comments

      1. Overall, the manuscript is well written but in its current state it is more like two different stories because the effects of envelope proteins and list of interactors are not brought together in one story. A possible fix to this problem would be inclusion of ONNV and CHIKV containing env mutations that do and do not restore viral release from macrophages into the pulldown/association experiments shown in Figure 6.

      We thank Reviewer 3 for the insightful suggestions to better connect the first (CHIKV determinants) and second (CHIKV glycoprotein interactors) parts of the manuscript. In response to the Reviewer’s comment, we tested the binding of SPCS3 and eIF3k to CHIKV E1 with E1-V220I (V1029I in original manuscript version) mutation (shown in revision plan) which was shown to abrogate virion production in THP-1 derived macrophages in Figure 4E. We transfected plasmids expressing 3XFLAG-tagged SPCS3/eIF3k or empty vector for 24 h followed by transfection with plasmids expressing either the parental CHIKV vaccine strain 181/clone 25 poly-glycoproteins (E3-myc-E2-6K-E1) or poly-glycoproteins with the E1-V220I mutation. Interestingly, we found that mutating CHIKV E1-V220 to the homologous ONNV residue reduces the binding to either SPCS3 or eIF3k. This result strongly suggests that the positively selected E1-V220 is located in the interaction interface between E1 and SPCS3/eIF3k, confirming the genetic conflict between E1 and these host factors to be one of the major drivers of CHIKV evolution observed at site E1-V220. We have included this result in partially revised manuscript in Figure 7A and in lines 265-271.

      1. The other major issue is the lack of protein data for the viral mutants relative to WT ONNV and CHIKV and assessment of viral RNA in the supernatants to determine whether the block is release or an earlier event since viral RNA levels in the cell seems to be the same or at least normalized.

      We thank Reviewer 3 for pointing out the insufficient clarification of the block leading to defective CHIKV mutant virion production. We previously detected E2 expression from 293T cells transfected with poly-glycoproteins (E3-myc-E2-6K-E1) containing E2-V135L (V460L in original manuscript version), E2-A164T (A489T in original manuscript version), E2-A246S (A571S in original manuscript version) and E1-V220I (V1029I in original manuscript version). We found that only E2-V135L mutation can lead to unexpected E2 cleavage (shown in revision plan) as we mentioned but not shown in the original manuscript. This explains why E2-V135L mutation attenuates infectious CHIKV production.

      The E2 expression of E1-V220I appears to be not affected in 293T cells transfected with poly-glycoproteins with E1-V220I (shown in revision plan ). In addition, the E1-host factor binding result in our response to Reviewer 3’s major comment #1 showed that E1 with the positively selected site mutation V220I can also be successfully expressed in 293T cells after transfection with poly-glycoprotein. Based on these current data, E1-V220I mutation likely abrogates virion production without affecting glycoprotein expression.

      Our previous result of the ONNV particle-to-PFU ratio reveals that ONNV RNA is released but encapsidated in defective particles causing its attenuation in infected macrophages. Thus, even though the glycoproteins of E1-V220I can be expressed, the diminished virion production of CHIKV E1-V220I can still be ascribed to 1) blocked viral particle release and 2) production of defective particles like ONNV. Given that it is not feasible to obtain particle-to-PFU ratio of E1-V220I mutant which fails to form plaques, Reviewer 3’s suggestion to assess the supernatant viral RNA will be a nice approach to address this question. To further address this concern, we plan to transfect THP-1 derived macrophages with CHIKV E1-V220I mutant RNA to detect the intracellular viral glycoprotein expression and supernatant viral RNA levels through western blot and TaqMan assay, respectively.

      1. Lastly, knockdown experiments indicate an effect of things like OAS3 or other innate immune modulators. There are no controls to demonstrate that these are specific to CHIKV infection or if knockdown would assist growth of ONNV as well.

      We also thank Reviewer 3 for the suggestion to check whether the identified host factors specifically target CHIKV or inhibit the infection of ONNV as well. We previously tried but were facing some issues. Since only a small fraction of macrophages can be infected with CHIKV and even a smaller fraction can be infected with ONNV (Figure 1A), it is hard to elucidate the roles of these identified host factors in ONNV infection by siRNA knockdown. We decided to take a more rigorous approach to investigate the antiviral specificity of identified host factors, especially understudied SPCS3 and eIF3k, to different alphaviruses by generating complete knockout 293T single cell clones. Despite the fact that we did not successfully generate SPCS3 complete KO, we obtained an eIF3k KO single cell clone and infected it with CHIKV, ONNV and SINV (refer to our response to Reviewer 2 optional comment #3). We found that eIF3k only has antiviral activity against CHIKV with almost no effects on ONNV or SINV infection. We have included this in our partially revised manuscript in line 272-282 (Figure 7B-7D).

      Reviewer 3's minor comments:

      Other points to consider:

      1. The title does not fit the manuscript findings and should be modified.

      We thank Reviewer 3 for this important comment, which was also brought up by Reviewer 2. We have now changed our title to “Chikungunya virus glycoprotein targeting of host factors increases viral fitness in human macrophage”, which more accurately reflects the significance of our research.

      1. It is unclear why the authors show results for SINV and RRV in Figure 1. Either these should be removed or the viruses should be carried throughout the experiments described in the Figure. Better yet would be to add additional alphaviruses to this analysis to determine if there are additional viruses that act similarly to CHIKV.

      We apologize for the confusion caused by including SINV and RRV results in Figure 1. We intended to show the superiority of CHIKV in infecting primary monocyte derived macrophages among arthritogenic alphaviruses, which we speculate may provide the molecular basis for macrophage-mediated CHIKV dissemination and disease. We would like to keep the SINV and RRV infection results in Figure 1 to highlight the relative susceptibility of macrophages to CHIKV. To echo the additional alphaviruses tested in Figure 1 and bring the story full circle, we included the result of SINV infection of eIF3k CRISPR KO 293T cells in Figure 7B-7D. These results uncover inhibitory activities of eIF3k that are specific to CHIKV.

      1. Is the data presented in Figure 1A significant?

      We thank Reviewer 3 for this question. We infected both THP-1 derived macrophages and primary monocyte derived macrophages with EGFP-expressing alphaviruses each in duplicates for two independent times. The general low expression of EGFP in all virus-infected groups refrains us from drawing conclusions based on statistically significant differences observed with MFI, hence we chose to show representative scatter plots in the original manuscript. To address Reviewers 3's question, we plotted the infected cell (EGFP+) based on the percentages of the experimental duplicates (shown in revision plan), and found CHIKV infection to be the most significantly different from that of the other alphaviruses in primary monocyte derived macrophage . The numbers above the bar charts are the mean percentages of EGFP+ cells.

      1. The justification for inclusion of Figure 4A is lacking. It is unclear what this panel is supposed to be demonstrating.

      This is an excellent suggestion as the host factors identified by AP-MS not only contain interactors of CHIKV mature E2 but also those of uncleaved E2-containing precursor polyproteins. We modified Figure 4A to reflect all E2/E2-containing poly-glycoproteins present in CHIKV-infected cells (shown in revision plan).

      1. There is little justification for the candidates assessed in

      We understand Reviewer 3’s concern. Due to the nature of mass spectrometry studies which predict protein-protein interactions rather than direct functional validation, we acknowledge that we may miss some host candidates that have anti- or pro-CHIKV activities. Although justification of hit selection from mass spectrometry datasets is more difficult than that from CRISPR KO screen datasets, we set up specific criteria to identify host protein candidates with the greatest potential to functionally interact with CHIKV glycoproteins. Most of the proteins we chose to validate (Figure 6a) were identified in both of our independent AP-MS experiments, which both pass through a P-value threshold of 0.05 and log2 fold change of 0.

      1. Extended data Figure 3 is very difficult to read due to the small font size.

      We apologize for the small font in Extended data Figure 3. We plan to replace Figure EV3 ( Extended data 3 in unrevised version) with a CORUM protein-protein interaction network that centers on the significant hits identified by both AP-MS experiments, but includes hits from either one of the two experiments in these functional protein complexes. The figure will be more concise and centralized, and the font will be bigger.

      1. Just to be clear, the blots shown in Figure 6D are different from those depicted in Extended data Figure 4b, because some of them look very similar.

      We thank Reviewer 3 for this question. In Figure 6D, we expressed CHIKV glycoproteins through transfecting CHIKV genomic RNA into 293T cells, while, in Figure 4B, we expressed CHIKV glycoproteins through transfecting poly-glycoprotein plasmid (pcDNA3.1-E3-myc-E2-6K-E1) into 293T cells, which are complementary approaches to express CHIKV glycoproteins to validate their interactions with identified host factors. We have now added schematics to illustrate the different experimental strategies above the figures in this partially revised manuscript (shown in revision plan).

      References:

      Voss, J. E. et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709–712 (2010). Jose, J., Tang, J., Taylor, A. B., Baker, T. S. & Kuhn, R. J. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells. Viruses 7, 6182–6199 (2015). Götte, B., Liu, L. & McInerney, G. M. The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last. Viruses 10, 105 (2018). Saenz, J. B. et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat. Chem. Biol. 5, 157–165 (2009). Krämer, A. et al. Small molecules intercept Notch signaling and the early secretory pathway. Nat. Chem. Biol.9, 731–738 (2013). Zhang, R. et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535, 164–168 (2016).

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Review: In this manuscript the authors generated macrophages derived from the THP-1 cell line or human peripheral blood mononuclear cells stimulated with MCSF and infected them with alphaviruses some containing GFP expression cassettes. In Figure 1, they demonstrate that CHIKV infected these cells more robustly than RRV, SINV or the related ONNV. The authors generated an extensive array of CHIKV/ONNV chimeras to identify the viral proteins that dictate release from infected macrophages and narrowed it down to the envelop proteins E1 and E2. Fine mapping identified a couple of single mutations that affected macrophage infection outcomes. The authors then shifted their approach to identifying env protein interactors using a myc-tag pulldown methods followed by mass spectrometry. The assay identified a number of proteins including those involved in vesicular transport and interferon pathways. siRNA knockdown experiments were performed to identify interactors and many of them were shown to improve virus output.

      Critique: Overall, the manuscript is well written but in its current state it is more like two different stories because the effects of envelop proteins and list of interactors are not brought together in on one story. A possible fix to this problem would be inclusion of ONNV and CHIKV containing env mutations that do and do not restore viral release from macrophages into the pulldown/association experiments shown in Figure 6. The other major issue is the lack of protein data for the viral mutants relative to WT ONNV and CHIKV and assessment of viral RNA in the supernatants to determine whether the block is release or an earlier event since viral RNA levels in the cell seems to be the same or at least normalized. Lastly, knockdown experiments indicate an effect of things like OAS3 or other innate immune modulators. There are no controls to demonstrate that these are specific to CHIKV infection or if knockdown would assist growth of ONNV as well.

      Other points to consider:

      1. The title does not fit the manuscript findings and should be modified.
      2. It is unclear why the authors show results for SINV and RRV in Figure 1. Either these should be removed or the viruses should be carried throughout the experiments described in the Figure. Better yet would be to add additional alphaviruses to this analysis to determine if there are additional viruses that act similarly to CHIKV.
      3. Is the data presented in Figure 1A significant?
      4. The justification for inclusion of Figure 4A is lacking. It is unclear what this panel is supposed to be demonstrating.
      5. There is little justification for the candiates assessed in
      6. Extended data Figure 3 is very difficult to read due to the small font size.
      7. Just to be clear, the blots shown in Figure 6D are different from those depicted in Extended data Figure 4b, because some of them look very similar.

      Significance

      The study provides a fresh look at Alphavirus replication in macrophages. There are a number of issues that should be worked out that would enhance impact and interpretation of this study.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      In this work Yao et al. show CHIK is able to infect macrophages in contrast to other arthritogenic alphaviruses RRV, ONNV, and SINV. They use a series to chimeric viruses made with ONNV, the closest species to CHIK, and determine the E2-E1 proteins are important viral determinants which allow CHIK to replicate in machophages compared to ONNV. By comparing 397 CHIK sequences from infected patients, they identified 14 residues under pervasive and positive selection. Of these, 3 residues in E2 and 3 residues in E1 (amino acids) were different between CHIK and ONNV suggesting these residues contributed to the difference in macrophage tropism of CHIK compared to ONNV. The authors go on to determine what host factors the CHIK E2 protein is interacting with to presumably connect the viral and host determinants for CHIK infection in macrophages.

      Major concerns:

      1. The authors show one configuration of the E1-E2 heterodimer in Figure 4d. As shown, the E1 protein is exterior to the E2 protein and would suggest E1 is on the surface on the spike complex and virus surface. However, another configuration of the glycoproteins has E2 on the exterior of E1 and also on the exterior of the virus. The latter conformation is what has been observed in cryoEM studies of alphaviruses. The first configuation represents the E1-E2 between the three heterodimers which are important for spike assembly. The reason the orientation of the E2-E1 dimer is important is the authors speculate on the importance of the 6 CHIK residues not found in ONNV based on the structure, but the structural interpretation is, in my opinion, not correct.
      2. Validation of E1 interaction with SPSC3 and eIF3k needs to be stronger. Some concerns/questions are listed below. A myc tag was inserted between E3 and E2. How efficeintly does furin cleave E3 from E2 in this virus and how are viral titers of the myc-tagged virus compared to the non-tagged virus? I ask because is the IP looking at what is being pulled down by E2 or E3-myc-E2 that could be part of the spike polyprotein? The authors found E2 interacts with E3, E1 and a list of other host proteins. These results suggest several interactions including E2-host factor, E2-E1, E2-E3, E2-E1-host factor, E2-E3-E1, E2-E3-host factor. In figure 6d, and the subsequent conclusions, the authors suggest E1 is interacting with the host facor and do not see E2 alone and very low amounts of E3-E2-6K-E1. based on how the IP was performed I am not sure how an interaction between E1 and SPCS3 alone, without E2, would be detected. I would also like to see a reciprocal pull down using E1 and also E2 to see if these host factors are pulled down.
      3. If CHIK E1 is interacting with the host factors and that is antagonizing the antiviral response of SPSC3 (as one example), then what do pull downs using ONNV structural proteins look like? One would expect reduced interactions because the different amino acid causes a different E2-E1 dimer or attenuates the E1-host factor binding site.
      4. E1 and E2 are thought to interact during polyprotein translation and the initial dimer forms in the ER. If E1 is interacting wht SPSC3 in the ER, is E2 also present? Or is a population of E1 not interacting with E2 in order to inhibit SPSC3? I would love a model of how the authors see all these factors coming together for this new role of E1.

      Minor concerns:

      1. In Figure 1c, (-) RNA is shown but in the rest of the figures (+) RNA is shown. Show both or select one. I do find it interesting the (-) RNA levels are similar over time, even at 4 hours post transfection (early time). Related to this, ONNV has higher levels of (-) RNA but what is known about structural protein levels in ONNV and CHIK in macrophages? Are there comparable levels of CP and GP being produced?
      2. Figure 2e and figure 3 have ONNV has the first bar followed by CHIK. In figure 1 and 2b, CHIK is first and then ONNV. helps the reader to have the controls in the same order.
      3. Line 143-145 the authors discuss that when ONNV is the backbone and CHIK proteins are inserted the infection is more attenuated because of the E2 and E1 are from CHIK and ONNV, not the same virus (could also be E2-CP interactions are disrupted). However the chimeras made witht he CHIK backbone (in Figure 2) have a mismatch between E2 and E1 as well.
      4. When discussing the residues that were found in the FEL and MEME analysis, the authors start the amino acid numbering from CP and continue along the polyprotein. Usually when discussing amino acids in the structural proteins, each protein starts at amino acid 1. So V460 would be E2-V135. It would also be useful to know what the residues in ONNV were at these positions to see if amino acids changed in charge, size, bond forming potential, etc. Showing these residues in the E2-E1 conformation found in the virion would also allow one to find adjeacent residues that could explain differences in spike assembly and potentially where/how E1 is binding to a host protein.
      5. How effective is a non-attenuated CHIK strain in infecting macrophages? Could you make a SINV-La Reunion chimeric virus (which is BSL2) to see if a higher percentage of macrophages are infected and is this potentially contributing to the increased pathogenesis of La Reunion? Also how different is 181/25 with a pathogenic strain in the E2 and E1 resdiues? and compared to ONNV?
      6. When describing the last results section, "CHIK E1 binding proteins exhibit potent anit-CHIV activities" the authors use macrophages. In the rest of the text they consistently use THP-1 macrophages or human primary monocyte derived macrophages. The details of the cell type are extremely useful to the reader and having those in the last results section would be great.
      7. The paper is well-written. There is a slight disconnect as the authors go from discussing results in Figure 4 to Figure 5.

      Referees cross-commenting

      I agree with R#2 that having some Particle:PFU data would add some data to determine why such differences in titers/infectivity.

      I also see how this m/s could be split into two different m/s. One that focuses on the chimeric viruses and another that identifies the host factors important and goes in more depth with mechanism

      Significance

      Strengths:

      The authors have tackeled an intriguing question: why do some alphaviruses infect macrophages and others do not. They have used a chimeric approached to very systematically identify the viral determinants E2 and E1 as being important in macrophage infection. Using AP-MS they identify host factors that interact with E2 (possibly E2 and E1, see comments above) but if their findings that E1 has a role in attenuating a host antiviral factor, this would be fantastic.

      More and more examples of viral proteins having multiple roles during infection are in the literature. The idea that structural proteins also attenutate host antivirals is a developing field and vastly understudied. By fleshing out the results some more the authors might be onto something ery important in alphavirus virology.

      Limitations:

      The study has it is presented is limited in the validation of host factors and their interacting partners. I have many questions about the methodology, validation, and model from this last section.

    1. folgezettel pushes the note maker toward making at least one connection at the time of import.

      There is a difference between the sorts of links one might make when placing an idea into an (analog) zettelkasten. A folgezettel link is more valuable than a simple tag/category link because it places an idea into a more specific neighborhood than any handful of tags. This is one of the benefits of a Luhmann-artig ZK system over a more traditional commonplace one, particularly when the work is done up front instead of being punted to a later time.

      For those with a 1A2B3Z linking system (versus a pure decimal system), it may be more difficult to insert a card before other cards rather than after them because of the potential gymnastics of numbering and the natural tendency to put things into a continuing linear order.

      See also: - https://hypothes.is/a/ToqCPq1bEe2Q0b88j4whwQ - https://hyp.is/WtB2AqmlEe2wvCsB5ZyL5A/docdrop.org/download_annotation_doc/Introduction-to-Luhmanns-Zette---Ludecke-Daniel-h4nh8.pdf

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their careful reading of the document and feedback which will help us to improve our manuscript. We will go through their comments one by one.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This study would be much convincing if additional line of eukaryotic cells can be used to demonstrate the GEF-GAP synergy tis important for cell physiology. In addition, it would be best to demonstrate the spatiotemporal interaction of GEF-GAP using high-resolution live cell imaging.

      Response from the authors:

      The reviewer requests additional in vivo data to support our in vitro findings:

      (1) The reviewer requests in vivo data showing that GEF-GAP synergy is important for cell physiology. We believe that in order to show GEF-GAP synergy in vivo, Cdc42 cycling rates would need to be measured in vivo. For that single-molecule resolution is required – to track a single Cdc42 molecule and measure its GTPase cycling. We agree that such data would indeed be interesting, but are unaware of established techniques that would facilitate measurements of Cdc42 cycling rates in vivo.

      (2) The reviewer requests in vivo data showing the spatiotemporal interaction of GEF-GAP. Cdc24 and Rga2 are shown to interact (direct or mediated by another protein) (McCusker et al. 2007, Breitkreutz et al. 2010, Chollet et al. 2020). Cdc24 and Rga2 share 11 binding partners (https://thebiogrid.org/31724/table/saccharomyces-cerevisiae-s288c/cdc24.html, https://thebiogrid.org/32438/table/saccharomyces-cerevisiae-s288c/rga2.html) and have been found at the polarity spot (Gao et al. 2011). Live cell imaging of fluorescently tagged Cdc24 and Rga2 will show that they exhibit some interaction, but not specify the role of the interaction nor if the interaction is direct or mediated by one of the shared binding partners. In order to show a direct interaction between Cdc24 and Rga2, one could consider (A) super-resolution imaging or (B) FRET experiments: For both fluorescently tagged Cdc24 and Rga2 cell lines would need to be constructed.

      (A) Super-resolution imaging could show direct interaction between Cdc24 and Rga2, but even with the techniques available this would be on the limit. Further, it is usually done in fixed cells, and not in live cells (as requested from the reviewer).

      (B) To show a direct interaction of Cdc24 and Rga2 using FRET, suitable protein constructs would need to be engineered. We believe that the main obstacle in showing direct binding of Cdc24 and Rga2 using FRET is to design the fluorophore linker. The linker would need to be designed in such a way that it is flexible enough to give a FRET signal even if the two large proteins bind on the opposite sites of the fluorophore, but also is stiff/short enough to not show binding if both proteins are in close proximity through binding to a common binding partner.

      __We believe that an investigation of GEF GAP binding in vivo is beyond the scope of this study. Instead, we will further explore one possible mechanism underlying GEF GAP synergy - Cdc24 Rga2 binding - through conducting Size-Exclusion Chromatography Multi-Angle Light Scattering experiments with purified Cdc24 and Rga2 (alone and in combination). __

      Reviewer #1 (Significance (Required)):

      The revised study would provide first line evidence that GEF-GAP synergy to be general regulatory property in eukaryotic kingdom.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The study entitled, "The GEF Cdc24 and GAP Rga2 synergistically regulate Cdc42 GTPase cycling" by Tschirpke et al., uses an in vitro GTPase assay to examine the GTPase cycle of Cdc42 in combination with its GEF and GAP effectors. The authors find that the Cdc24 GEF activity scales non-linearly with its concentration and the GAP Rga2 has substantially weaker effect on stimulating Cdc42 GTPase activity. Not surprisingly, the combined addition of Cdc24 and Rga2 lead to a substantial increase in Cdc42 GTPase activity.

      **Referees cross-commenting**

      In Zheng, Y., Cerione, R., and Bender, A. (1994) J. Biol. Chem. 269: 2369-2372 (Fig. 3C), the authors show that Cdc24 combined with the GAP Bem3 lead to a large synergy in boosting Cdc42 GTPase activity.

      Reviewer #2 (Significance (Required)):

      There is very little new information in this manuscript. Previous studies (Rapali et al. 2017) have shown that the scaffold protein Bem1 enhances the GEF activity of Cdc24. It is expected that the reconstitution of a GEF and GAP protein promote the GTPase cycle and indeed Zheng et al. (1994) showed that that Cdc24 combined with the GAP Bem3 lead to a large synergy in boosting Cdc42 GTPase activity. Hence the only potentially interesting finding in this work is that, in solution Cdc24 activity scales non-linearly with its concentration. However as this GEF and Cdc42 are associated with the membrane, the relevance of solution studies are less clear and furthermore the mechanistic basis for the non-linearity is not explored in detail. Given the limited new information from this work, the findings are, in their current form, too preliminary.

      Response from the authors:

      __We appreciate the reviewer recognizing our work on the non-linear concentration-dependence of Cdc24’s activity. We disagree that this is the only new finding in our study: __

      We explore the effect of Cdc24 and Rga2 on Cdc42’s entire GTPase cycle and show that Cdc24 and Rga2 synergistically upregulate Cdc42 cycling. So-far Cdc42 effectors were only characterized in isolation (with the exception of Cdc24-Bem1 (Rapali et al. 2017)) and through how they affect a specific GTPase cycle step. The regulation of single GTPase cycle steps through an effector yields mechanistic insight into this specific GTPase cycle step. However, it does not show how the effector affects overall GTPase cycling of Cdc42 – a process Cdc42 constantly undergoes in vivo. Our approach allows us to study synergistic effects between proteins affecting different GTPase cycle steps. Synergies are another regulatory layer of the polarity system, adding further complexity: Which polarity proteins exhibit synergy, to which extend? The assay employed here, which studies the entire GTPase cycle, enables studying the effect of any GTPase cycle regulator, alone and in combination with another regulator.

      The reviewer states that the GEF GAP synergy is to be expected, as it was already shown in Zheng et al. 1994. In Fig. 3C Zheng et al. shows the time course of the GTPase activity of Cdc42 in presence of Cdc24, Bem3, and Cdc24 plus Bem3. Fig. 3C is the only data in which the combined effect of a GEF (Cdc24) and a GAP (Bem3) is investigated. The data indicates synergy, but is neither discussed as such in the text of the publication, nor analyzed quantitatively. Further, only one concentration of each effector (GEF/GAP) is used and the study uses a Bem3 peptide containing codons 751-1128 (30%) of the full-length BEM3 gene. Zheng et al. 1994 gives an early indication of GEF GAP synergy, but does not claim, discuss, or further investigate the synergy as such. In contrast, we use full-length Rga2 (not Bem3) as GAP, conduct several concentration-dependent assays, and analyze them quantitatively. We thank the reviewer for pointing out the pioneering character of Zheng et al.‘s study and will mention it more prominently in our report. However, we disagree that Zheng et al. sufficiently studied the GEF GAP interaction. To our awareness no theoretical studies include a GEF GAP synergy term, which we would expect if GEF GAP synergy is well-established in the field.

      The reviewer criticizes the relevance of bulk in vitro studies (lacking membranes) of proteins that bind to membranes in vivo. We agree that the presence of a membrane can affect the protein’s property, and we can not exclude that membrane-binding could alter the magnitude of a GEF GAP synergy. However, we believe that membrane-binding does not impede the GEF GAP synergy altogether. If membrane binding would influence GTPase properties that strongly, other studies on Cdc42’s GTPase activity and GEF and GAP activity, that do not include a membrane, would be inconclusive as well (e.g. Zheng et al. 1993, Zheng et al. 1994, Zheng et al. 1995, Zhang et al. 1997, Zhang et al. 1998, Zhang et al. 1999, Zhang et al. 2000, Zhang et al. 2001, Smith et al. 2002, Rapali et al. 2017). Both studies mentioned by the reviewer (Zheng et al. 1994, Rapali et al. 2017) were also conducted without membranes present.

      We believe that an inclusion of membrane-binding into reconstituted Cdc42 systems will enhance our understanding of Cdc42 and recognize it as a next step, which could be enabled by the assay used in our study.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This work reports a biochemical analysis of the effects of a recombinant yeast GEF (Cdc24) and GAP (Rga2) on Cdc42 GTPase cycling in vitro. The central conclusion is that the GEF and GAP act "synergistically", which occurs "due to proteins enhancing each other's effects". By this they appear to mean that the GEF enhances the GAP's activity and vice versa. I was not persuaded that this is correct, and was confused by many aspects of the approach and interpretation, as outlined below.

      1. GEF and GAP are expected to accelerate GTPase cycle synergistically even with no effect on each other's activity:

      The Cdc42 GTPase cycle is understood to occur via distinct steps (GDP release, GTP binding, and GTP hydrolysis): GDP release and GTP hydrolysis are intrinsically slow steps that are accelerated by GEFs (GDP release) and GAPs (GTP hydrolysis). This fundamental biochemistry was established in the 1990s using biochemical assays that measure each step independently. Here instead the authors use an assay that measures [GTP] decline in a mix with 5 uM starting GTP, 1 uM Cdc42, plus or minus some amount of GEF or GAP. They assume exponential decline of [GTP] with time, yielding a cycling "rate". If that is so, then one would expect that added GEF would accelerate only the first step, leaving a slow GTP hydrolysis step that limits the overall cycling rate, while added GAP would accelerate only the last step, leaving a slow GDP release step that limits the overall cycling rate. Adding both together would speed up both steps, and should therefore "synergistically" accelerate cycling. This would be expected based on previous work and does not imply that GEF or GAP are affecting each other's action (except trivially by providing substrate for the next reaction). If the authors wish to demonstrate that something more complex is indeed happening, they need to use assays that directly measure the sub-reaction of interest, as done by prior investigators.

      Response from the authors:

      The reviewer raises the point that we do not consider a simpler, rate-limiting model and that this rate-limiting model could explain our synergy between GAP and GEF in accelerating the GTPase cycle.

      We very much welcome this consideration of the reviewer! We will add a clarification to our manuscript to explain why a rate-limiting model/interpretation does not match our data.

      Intuitively, the rate-limiting model is appealing, as it permits interpretation of cycle rate increases in terms of individual biochemical steps. So, a consideration of this model is indeed relevant. However, as also noted by the reviewer in the next points, data from e.g., figure 3e are not compatible with a simple rate-limiting model with two steps (hydrolysis and nucleotide exchange). We will explain how the acceleration of the total rate by both GAP and GEF individually does not match the rate-limiting model, even if we assume maximal effects of adding GAPs and GEF to the cycle. For this purpose, we consider the rate-limiting model scenario where the sensitivity of the GTPase cycle to adding GAP/GEF is maximized, so the best case-scenario for the rate limiting step-model.

      In the rate-limiting step model, we assume that we have a GTPase cycle in which at least one of the three GTPase cycle steps is rate-limiting: (A) GTP binding, (B) GTP hydrolysis, and (C) GDP release.

      We assume that the addition of a GEF and GAP only accelerates GDP release and GTP hydrolysis respectively. Biochemically, all three steps in the GTPase cycle are expected to be relevant. However, here we will consider only the final two steps, as sensitivity to rate limitation by GAP/GEF is maximized when time spent in the GAP/GEF-independent step in the cycle (step A: GTP) is negligible (i.e. never rate-limiting). The two-step model thus consists of (1) a nucleotide exchange step (step C+A) which is dominated by GDP release (step C) and assumed to be accelerated exclusively by the GEF, and (2) a GTP hydrolysis step (step B) exclusively enhanced by the GAP.

      In the rate limiting step model GEF-GAP synergy can appear if one of the conditions applies:

      1. the addition of a GAP speeds up the GTP hydrolysis step so much that the hydrolysis step stops (or almost stops) being the rate-limiting step, or
      2. the addition of a GEF speeds up the GDP release step so much that the release step stops (or almost stops) being the rate-limiting step. In these conditions, the acceleration of the GTPase cycle, accomplished by adding only a GAP or adding only a GEF, is interdependent. Therefore, we consider the possible acceleration of the GTPase cycle by GAP and GEF individually, and compare these to our observations to determine whether the rate-limiting step model can explain our data.

      The GTPase cycle time Tc is thus composed of hydrolysis Th and nucleotide exchange time Te, and the rates r are connected through:

      1/rc=1/rh + 1/re

      If we compare the ratio of the rates with protein (GAP/GEF) added in the assay (index 1) with the basal rate without protein added (index 0), we obtain the cycle acceleration factor alpha:

      alpha=rc1/rc0=(1/rh0 + 1/re0)/(1/rh1 + 1/re1)=(re0 + rh0)/(re0*rh0/rh1 + rh0*re0/re1)

      Here, rc1 and rc0 are the total GTPase cycle rate with and without effector respectively, rh1 and rh0 are the GTP hydrolysis rate with and without effector respectively, and re1 and re0 are the nucleotide exchange rate with and without effectors respectively.

      There is indeed an interdependence created between how much the GAP and GEF can both accelerate the total cycle, if the GAP and GEF are assumed to only accelerate GTP hydrolysis and nucleotide exchange respectively. E.g., how much the total GTPase cycle rate rc is accelerated by an increase in GTP hydrolysis rate rh depends on and can be limited by the current nucleotide exchange rate re. However, this interdependence is too strict to match the data in Figure 3e, as we will explain in the next paragraphs:

      When we only add a GAP and the GAP accelerates only the GTP hydrolysis rate (re1=re0), then the maximal total GTPase cycle rate acceleration alphaGAP that the GAP can accomplish is when rh1>>rh0,re0:

      alphaGAP=rc1/rc0=(1/rh0 +1/re0)/(1/rh1+1/re0)=(re0+rh0)/(re0*rh0/rh1+rh0)

      ~(re0+rh0)/rh0=1+ re0/rh0

      We thus assume the GAP accelerates the cycle so much that the hydrolysis step is much faster than the exchange step, at which point the effect of adding more GAP would saturate. We note that we do not consider the GAP concentration regime where we see saturation, thus in reality the acceleration by the GAP is more restricted than predicted here.

      Analogously, if the GEF accelerates only the nucleotide exchange rate (rh1=rh0), then the maximum GTPase cycle rate ratio will be when re1>>re0,rh0 , yielding acceleration factor alphaGEF :

      alphaGEF= rc1/rc0=1+ rh0/re0

      Again, note we assume the GEF accelerates the cycle so much that the exchange step is much faster than the hydrolysis step, at which point the effect of adding more GEF would saturate. We note that we do not observe the GEF concentration regime where we see saturation, thus in reality the acceleration by the GEF is more restricted than predicted here.

      We see that the maximum gain in rates for GAP-only and GEF-only assays is limited by the same basal GTP hydrolysis and nucleotide exchange rates (rh0 and re0), leading to the following interdependence:

      alphaGAP=1+ 1/(alphaGEF -1)=alphaGEF/(AlphaGEF -1)

      In our GAP-only and GEF-only assays (Fig. 3e, Tab. 2), we see both a 2-fold and 100-fold increase in the total rate respectively. A 100-fold acceleration factor of the GEF would maximize the GAP acceleration factor to 1.01 (or alternatively, the 2-fold GAP acceleration would maximize the GEF acceleration to 2), which are both significantly lower than what we observe. So even though we made favorable assumptions for the rate-limiting model to maximize rate sensitivity to GAP/GEF, namely neglecting nucleotide binding and assuming GAP/GEF concentrations that saturate in their effects, we still cannot reproduce the acceleration factors in our GAP-only and GEF-only assays.

      Moreover, a rate-limiting step model would also imply saturation effects as stated in the next point of the reviewer. While we observe saturation in total rate acceleration for certain GAP concentrations, we use GEF and GAP concentrations in the combined protein assays for which no saturation effects were observed. Absence of saturation in both cycle steps simultaneously is also not reconcilable with the rate-limiting step model, as will be further discussed in the next point of the reviewer.

      In summary, this means that the rate-limiting model is not sufficient to explain our results: the GAP/GEF synergy we observe is not simply resulting from GEF and GAP independently lifting two different rate-limiting steps.

      Model-based interpretation of the GTPase assay is poorly supported:

      The assay employed measures overall GTP concentration with time. It is assumed (but not well documented-see below) that [GTP] declines exponentially, and that the rate constant for a particular condition can be fit by the sum of a series of terms that are linear or quadratic in the concentrations of Cdc42, GEF, and GAP. There is no theoretical derivation of this model from the elementary reactions, and the assumptions involved are not well articulated.

      As discussed in point 1 above, one would expect that a GEF or GAP alone could only accelerate the cycle to a certain point, where the other (slow) reaction becomes rate limiting. But that does not appear to be true for their phenomenological model, where slow steps (small terms in the sum) will always be overwhelmed by fast steps. This is not the traditional understanding of how GTPases operate.

      Response from the authors:

      The reviewer expresses the concern that because we do not derive our coarse-grained model from elementary reactions, we miss important effects that can occur when adding GAP and GEFs, particularly saturation.

      We understand the concern of the reviewer that if a rate-limiting step model is considered, saturation effects of GAP/GEF will limit the amount with which these effectors can speed up the total cycle. Our coarse-grained model indeed does not account for this saturation. However, as discussed in the previous point of the reviewer, we do not opt for the rate-limiting model interpretation, as the GAP and GEF effects are not compatible with the rate-limiting step model.

      Secondly, we agree that for high enough concentrations of GEF and GAPs, we would experience a saturation in the effect of adding the effectors. We are aware of this possibility, and we verify that we are not in saturation regimes with our added proteins by checking the plots of the individual protein titrations (see Figure 3a-d). If we enter the saturation regime, we expect a negative second derivative in the rate as function of protein concentration (the curve shallows off). We do not see this for any protein except for Rga2 at some point, as discussed in our main text of the manuscript. However, for this protein we only use the data in the linear regime for further analysis. In short, we understand the concern of the author but we empirically check that we are not in the saturation regime.

      Data that do not conform to expectation are not explained: Strangely, the data (as interpreted by the model assumptions) also appear inconsistent with the expectation of rate-limiting steps. GEF addition (alone) is said to accelerate cycling 100-fold, while GAP addition (alone) accelerates it 2-fold. But that would seem to imply that GDP release takes up >99% of the basal cycle (so accelerating that step alone reduces cycling time 100-fold), while GTP hydrolysis takes up >50% of the basal cycle (so accelerating that step alone reduces cycling time 2-fold). In the conventional understanding of GTPase cycles, these cannot both be be true (as the steps would then add to >100% of the basal cycle). There is no attempt to reconcile these findings with previous work.

      Response from the authors:

      The reviewer raises the point that our findings do not match the expectations of the rate-limiting model perspective.

      We fully agree with the reviewer that our data is not compatible with the rate-limiting step model. The 100-fold and 2-fold gain of the total cycle rates for GEF-only and GAP-only assays are one of our arguments against the rate-limiting model view, as described in the first point of the reviewer. Also, our lack of saturation as described in the previous point of the reviewer provides another argument against using expectations based on rate-limiting steps to interpret our findings.

      Lack of detailed timecourse data:

      The decline in [GTP] with time is stated to be exponential, allowing extraction of an overall cycling "rate". But this claim is supported only weakly (S3 Fig. 1 uses only 3 timepoints, is not plotted on semi-log axis, and does not report fit to exponential vs other models) and only for the Cdc42-alone scenario: no data at all are presented to support exponential decline in reactions with GEF or GAP. Most assays seem to measure only a single timepoint, so extraction of a "rate" is very heavily influenced by the unsupported assumption of exponential decline. And if the decline is not exponential, it becomes extremely difficult to interpret what a single timepoint means.

      Response from the authors:

      The reviewer requests additional timeseries data with GEF and GAP to support the assumption of an exponential decline of GTP in the assay and requests to plot it on a semi-log axis.

      We will add data for Cdc42 + Cdc24 and for Cdc42 + Rga2 with two to three time points, and plot it as requested on a semi-log axis.

      Other issues with interpretation of the data:

      (i) It is unclear why the authors chose to employ an assay that is much harder to interpret than the biochemical assays used by others. In biochemical studies, assays that report an output of multiple reactions are always harder to interpret than assays targeting a single reaction. As well-established assays are available for each individual step in GTPase cycles, any conclusions must be supported using such assays.

      Response from the authors:

      The reviewer wonders why an assay that investigates several GTPase steps at once was chosen over assays that investigate sub-steps of the GTPase cycle, given that these give more mechanistic insights.

      We agree that assays investigating GTPase cycle substeps can give more mechanistic insights into these specific steps. However, they do not allow to study how proteins affecting different steps act together. We were interested in investigating the overall GTPase cycle of Cdc42 and a possible interplay of GEFs and GAPs. Cdc42 GTPase cycling was found to be a requirement for polarity establishment (Wedlich-Soldner et al. 2004) and Cdc42 GTPase cycling is physiologically relevant. Ultimately, we hope that in vitro results provide stepping stones towards understanding the complex and less controlled in vivo environment. The in vivo environment often entails the output of many reactions combined, so there is every incentive to study aggregated effects of a full cycle which are not necessarily the sum of individual outputs.

      __We believe that both assay types – assays that investigate sub-steps and yield mechanistic details, and assays that investigate the entire cycle – are important and disagree that one assay type is superior to the other. Instead, we believe they complement each other. __

      (ii) The reported basal (and GEF/GAP-accelerated) rates are very slow, perhaps due to poor folding of recombinant proteins. This raises the possibility that much of the Cdc42 is inactive. If so, then accelerated GTP hydrolysis could come from increasing the active fraction of Cdc42, rather than catalyzing a specific step.

      Response from the authors:

      The reviewer wonders whether the reported rates are slow due to poor folding of recombinant Cdc42. We used S. cerevisae Cdc42, for which it has been shown that it has a significantly lower basal GTPase activity than Cdc42 of other organisms (see Zhang et al. 1999). Many other studies on Cdc42 were conducted with human Cdc42, which has a significantly higher basal GTPase activity (Zhang et al. 1999). We assessed the activity of several recombinantly expressed Cdc42 constructs previously (Tschirpke et al. 2023). We there observed that most constructs had a similar GTPase activity, only some purification batches and constructs had a significantly reduced GTPase activity (which might be linked to poor folding). The Cdc42 construct used here shows a similar activity as the active Cdc42 constructs in Tschirpke et al. 2023, and we therefore believe that it exhibits proper folding. If recombinant Cdc42 folds poorly, we would expect greater variations between Cdc42 constructs and purification batches (caused by different levels of folding/ a different fraction of active Cdc42) than what we observed previously (see Tschirpke et al. 2023).

      Tschirpke et al. 2023:

      Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)

      (iii) The GEF and GAP preparations include multiple partial degradation products and it is unclear whether the measured activities come from full-length proteins or more active fragments.

      Response from the authors:

      We agree with the reviewer that the Cdc24 and Rga2 preparations contain degradation products.

      It would be more ideal if the protein purifications were entirely pure, but this is experimentally very difficult to achieve for the used proteins (which are large and partially unstructured, making them prone to partial degradation). Further, it is not uncommon to use protein preparations where some degradation products were present (e.g. Zheng et al. 1993, Zheng et al. 1994). Other studies did not show their purified preparations.

      The vast majority of the Cdc24 preparation is the full-length protein. We therefore expect that the degradation fragments only contribute in a small extend to the overall protein behavior.

      The Rga2 preparation contains a higher amount of degradation product, but only larger size protein fragments (> 60kDa), suggesting that the fragments contain at least and more than 1/3 of the full-length protein (the protein fragments are thus the size or larger than of the GAP peptides used previously). The fragments could in principle have a higher or lower activity. We account for fragments of no/lower activity by comparing our cycling rates to those of BSA/Casein, which has no specific effect on Cdc42. The cycling rate Rga2 is almost an order of magnitude greater than that of BSA/Casein, suggesting that the effect of the full-length protein dominates. We could only imagine that a Rga2 fragment has a higher GAP activity if the fragment consists mainly of the GAP domain and if in Rga2 the activity of the GAP domain is downregulated. Nevertheless, we will do an additional experiment using a purified GAP domain peptide to assess that if a GAP domain by itself has a higher GAP activity than our Rga2 preparation. Using that data, we will discuss possible implication of the GAP fragments in our manuscript.

      (iv) Cdc42 cycling is also accelerated by BSA and casein, suggesting that there are poorly understood aspects of the assay and that GEF and GAP actions may (like BSA and casein) involve non-canonical effects on Cdc42. As GEF and GAP are expected to interact better with Cdc42 than BSA or casein, these effects could dominate the observed changes in GTP levels.

      Response from the authors:

      The reviewer raises the concern that the effects of the added effector proteins on the rates could be caused by non-canonical effects. We do not believe non-canonical effects play a relevant role in our assays. While BSA and casein accelerate the GTPase cycle in our assays, the GAP effect and GEF effect are orders of magnitude stronger.

      (v) Cdc42-alone cycling assays are said to be reproducible. However, assays with added GEF/GAP/BSA/Casein yield rates that vary almost an order of magnitude between replicates. This poor reproducibility further reduces confidence in the findings.

      Response from the authors:

      The reviewer is concerned about the variations in Cdc42 effector rates.

      __We disagree that the variations are concerning and believe to have accounted for them in our analysis: __The Cdc42 (Cdc42 alone) data is very reproducible (see Tschirpke et al. 2023). The GTPase assay is generally sensitive to small concentration changes and errors introduced through pipetting small volumes (as required for the assay). We believe that the small variation observed for Cdc42 alone is because Cdc42 has such a low basal rate and therefore the small concentration changes due to pipetting have a smaller effect. Once other effectors are added, especially highly GTPase stimulating ones as Cdc24, small concentration changes due to pipetting can lead to larger variations between assays (small variations in Cdc24 concentration lead to larger changes in remaining GTP due to Cdc24’s strong and non-linear effect on Cdc42). We conduct the assays multiple times to account for these variations. In our analysis we do not compare single rate numbers but the orders of magnitude of the rate, and report the variations present. Even given the present variations, the differences in effect sizes are still significant. We map and discuss assay variation in (Tschirpke et al. 2023), to which we refer to several times throughout the manuscript.

      Tschirpke et al. 2023:

      Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)

      (vi) It is unclear what timepoint was used for the different assays. 1.5 h at 30 degrees seems to be the standard here for the Cdc42-alone assays, but I assume that cannot be what was measured to assess GTP decline for GEF-containing assays as there would be very little GTP left at 1.5 h.

      Response from the authors:

      We used 60-100 min as incubation times for all assays. The assay data will be published on a data server, where all these numbers can be checked. We further added a clarification to the materials and methods section. In order to still have remaining GTP for the Cdc42 GEF mixtures after 60-100 min, we lowered the used protein concentrations.

      (vii) The graph reporting GEF activity is plotted only for [GEF]Response from the authors:

      The graphs show the full range of protein concentrations used.

      In order to calculate K1, K2, K3,Cdc24, K3,Rga2, K3,Cdc24,Rga2 from k1, k2, k3,Cdc24, k3,Rga2, k3,Cdc24,Rga2, …, a protein concentration has to be included in the term (as K1 = k1 [Cdc42], ….). In order to make K comparable, we chose to use 1uM for all protein concentrations. This was done to compare the cycling rate values of different proteins. 1uM was a choice, in the same fashion 0.2uM could have been chosen.

      __We will further discuss in the manuscript how the choices in protein concentration affect the effector strength on Cdc42. __

      (viii) S8 Data with casein seems very noisy and it is no longer at all clear that the quadratic fit for [Cdc24] is justified. Also, the symbol colors are very similar so it is hard to tell what data corresponds to what condition. The synergy between Cdc24 and Rga2 is also very noisy and the fits seem arbitrary.

      Response from the authors:

      The reviewer is concerned with (1) the noise in the S8 data, and (2) the Cdc42-Cdc24-Rga2 fits.

      (1) We acknowledge in the manuscript that the S8 data is noisy and should be viewed with caution. We do not put much emphasis on these data sets and their interpretation and show them only in the supplement.

      (2) We disagree that the Cdc42-Cdc24-Rga2 fits are arbitrary. The fits contain several data points per protein, and reproduce the rate values from Cdc42-Cdc24 and Cdc42-Rga2 assays well.

      The reviewer is concerned with the color scheme choice in the fits.

      __We will adapt the color scheme of the fits to make the colors more distinguishable. __

      (ix) It is disturbing that different Cdc42 constructs behave quite differently (S4). This suggests that protein behavior is influenced by the various added epitope tags and protease cleavage sites (they also leave the C-terminal CAAX box rather than removing the AAX as would happen in vivo). These features raise the concern that these findings may not be directly relevant to the situation with endogenous yeast Cdc42. Of course, it is also the case that relevant Cdc42 biochemistry occurs with prenylated Cdc42 on membranes.

      Response from the authors:

      The reviewer is concerned that the behavior of the Cdc42 constructs is influenced by their tags. In a previous manuscript (Tschirpke et al. 2023) we explored the effect of various N- and C-terminal tags on Cdc42, by comparing it to Cdc42 that is not tagged in that position. We found that most tags, including the tags present in the Cdc42 construct used here, do not affect Cdc42’s properties.

      Instead, we found a general, tag independent, heterogeneity in Cdc42 behavior (which can occur between purification batches and between constructs (but not between different assays)): in some batches GTPase activity depended quadratically on its concentration, others showed a linear relationship. Most batches exhibited a mixed behavior. The differences between the batches are generally small, and only visible in the activity to concentration plots and because of the assay’s high accuracy. We use a two-parameter fit (k1 [Cdc42] + k2 [Cdc42]2) to phenomenologically account for this heterogeneity, and to estimate the basal Cdc42 GTPase activity. We do not interpret this heterogeneity, as more research is needed. We believe that Cdc42 still has unexplored properties, of which this heterogeneous behavior can be one. We speculate in Tschirpke et al. 2023 that it is linked to Cdc42 dimerization mediated by its polybasic region, a relationship that is far from being fully understood yet. __We believe that it is of scientific interest to point out heterogeneous behaviors to encourage more research. __

      Tschirpke et al. 2023:

      Tschirpke et al. A guide to the in vitro reconstitution of Cdc42 activity and its regulation (2023) BioRxiv. (https://doi.org/10.1101/2023.04.24.538075) (in submission at Current Protocols)

      The reviewer is concerned that our findings are biologically not relevant, as our experiments (1) included Cdc42 that was not prenylated and (2) did not include membranes.

      (1) We here used recombinantly purified proteins, which do not contain posttranslational modifications, such as prenylations. So-far Cdc42’s prenyl group, which is responsible for binding it to membranes, has not been linked to its GTPase properties. We therefore believe that unprenylated Cdc42 is an equal choice to prenylated Cdc42 when studying Cdc42’s GTPase cycle. Further, the use of recombinantly purified proteins can be of advantage: when proteins are purified from their native host, the post-translationally modified protein is purified. However, many proteins contain a multitude of post-translational modifications (PTMs). Thus, the purified protein is a mixture of protein with different PTMs. For example, S. cerevisae Cdc42 undergoes ubiquitinylation (Swaney et al. 2013, Back, Gorman, Vogel, & Silva 2019), phosphorylation (Lanz et al. 2021), farnesylation and geranyl-geranylation (Caplin, Hettich, & Marshall 1994). We here used protein preparations that do not contain PTMs, and show how they behave. Natively purified proteins would be mixtures of various PTMs, and the observed protein behavior would be that of the mixture. If Cdc42’s PTMs affect it’s GTPase behavior, the observed behavior of natively purified Cdc42 would represent the average behavior of the mixture. It then would require additional work to disentangle which PTMs affect the GTPase cycling in which way. The use of recombinantly expressed Cdc42 does not require this work, and can set the baseline for how Cdc42 without PTMs behaves. If in the future a link between Cdc42’s GTPase behavior and PTMs are found, the work here could be used as a baseline for Cdc42’s behavior when it is without PTMs.

      (2) The concern about missing membranes was also raised by reviewer 2 (significance), and we like to refer to our response there.

      Reviewer #3 (Significance (Required)):

      The basic biochemistry of Cdc42 cycles was figured out about 30 years ago. However, those studies did not examine how combinations of Cdc42 regulators (as opposed to individual regulators) might interact to produce effects not expected from combining their individual actions. Recently, this combination approach did lead to interesting findings by Rapali et al. This approach is worthwhile and addresses a major question of interest to the broader field of GTPase biochemistry.

      One main limitation of this study is technical: the main assay is less informative (though perhaps easier) than traditional assays, and it is unclear whether the recombinant proteins employed retain their normal activities. Another limitation is the model-based interpretation of the assay that does not include the potential for rate-limiting steps.

      Response from the authors:

      We thank the reviewer for the detailed comments.

      One important point of confusion originated from our lack of discussion concerning a rate-limiting step model, which is an obvious starting point for modelling the GTPase cycle. We thank the reviewer for pointing this out, and we will include an explanation in our manuscript why we reject this model and instead opt for a coarse-grained model.

      Firstly, a rate-limiting model would generate saturation effects that we would observe when adding GEF and/or GAPs. In assays exploring GEF GAP synergy we use GEF and GAP concentrations for which no saturation effects were observed.

      Secondly, in our data we observed a two-fold increase of the total GTPase cycling rate when adding a GAP and a 100-fold rate increase when a GEF is added. These increases are not compatible with a model where either hydrolysis or nucleotide exchange limits the GTPase cycle. While a synergy could arise from the rate-limiting model perspective, the incompatibility of the rate-limiting model with the GAP-only and GEF-only assay data excludes this synergy explanation. Finally, through coarse-graining our model we avoid using single step parameters from literature which are incompatible in terms of proteins/buffers used. (For example; the mayor studies that kinetically characterized the individual GTPase steps of Cdc42 used human Cdc42 (Zhang et al. 1997, Zhang et al. 2000). Because human Cdc42 exhibits a higher basal GTPase activity (Zhang et al. 1999) we are skeptical how useful it is to transfer these parameters to S. cerevisae Cdc42.)

      At the same time, coarse-graining our model permits absorbing unidentified molecular details which is essential when we wish to incorporate BSA and casein rate contributions.

      The reviewer finds our assay, which investigates the GTPase cycle as a whole, less informative. Assays investigating single GTPase cycle sub-steps give more mechanistic insights into these steps. We opted for an assay that studies GTPase cycling as a whole instead, as we were interested in studying how proteins effecting different steps act together. We believe that both assay types are important as they complement each other.

      The reviewer is concerned about our use of recombinant proteins, and whether they retain their normal activities. We assessed Cdc42’s GTPase activity and the influence of added purification tags extensively (Tschirpke et al. 2023), and found that added tags do not affect Cdc42’s GTPase properties. We checked Cdc24’s GEF activity using the GTPase assay and found that it bound strongly to Bem1, as expected (Tschirpke et al. 2023). The Cdc24 concentrations needed to affect Cdc42’s GTPase activity were similar to those used previously (Rapali et al. 2017), suggesting that it is fully active. A similar comparison for Rga2 was not possible, as so-far only domains of Rga2 were used (Smith et al. 2002). We here used recombinantly purified proteins, which do not contain posttranslational modifications (PTMs). To our knowledge the PTMs of the herein used proteins are not linked to their GTPase/GEF/GAP properties. Thus, a lack of PTMs does not diminish our findings. Further, when proteins are purified from their native host, the post-translationally modified protein is purified. However, many proteins contain a multitude of post-translational modifications in vivo. Natively purified proteins would be mixtures of various PTMs, and the observed protein behavior would be that of the mixture. We here used protein preparations that do not contain PTMs, and show how they behave, setting the baseline for proteins without PTMs behaves. If in the future a link between GTPase behavior and PTMs are found, the work here could be used as a baseline for the proteins behavior when it is without PTMs.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary

      The GTPase cdc42 is a key determinant of yeast polarization. Its activity is amplified at the site of polarization through a poorly defined positive feedback mechanism, and depends on numerous GAPs regulating GTP hydrolysis and the GEF cdc24 that regulates GDP release. These components have previously been evaluated for their quantitative effects on the individual steps in the GTPase cycle that they modulate, but potential interactions between the cdc24 GEF and any GAP could not be examined based on these assays. The authors validate and employ a bulk assay of the total GTPase cycle based on GTP consumption to study the activities of and potential interactions between cdc24 and the GAP Rga2. Fitting their data to a mathematical model, they come to three central conclusions: (1) the activating activity of cdc24 to activate cdc42 GTPase activity is nonlinear, showing a quadratic relationship, (2) Rga2 shows a much lower activating activity that is linear at low levels before saturating, and (3) there is a strongly synergistic interaction between the activating activities of cdc24 and Rga2. Some hypotheses for the mechanistic bases of these findings are hypothesized, but not further investigated. Their conclusions are well supported by the data which appears to be of sufficient rigor.

      Major comments

      The three main conclusions of the manuscript are well supported by the data and associated modeling.

      One unresolved issue is the discrepancy between the authors' conclusion that the non-linear activation by cdc24 is likely a result of oligomerization, whereas Mionnet et al 2008 reach the opposite conclusion. It seems that the authors wish to discount the Mionnet results because they used truncated constructs to test deficient oligomerization and an engineered construct to test induced oligomerization. If the authors are correct, then a relatively easy test would be to introduce the oligomerization deficient mutants defined by Mionnet into their fuill length construct and compare to wild type protein. While the authors' measured results don't depend on the offered mechanism and this experiment is therefore optional, their explanation is quite unsatisfying, especially since an experiment to resolve the difference is entirely feasible and not very strenuous.

      Response from the authors:

      __The reviewer suggests to conduct experiments with oligomerization deficient Cdc24 mutants to test our hypothesis that the non-linear concentration dependence of Cdc24’s activity is due to Cdc24 oligomerization. __

      We agree that this is an insightful experiment, and will conduct it. In order to observe the effect in our GTPase assays, we require a mutant that is oligomerizes substantially less than wild-type protein. Mionnet et al. constructed several Cdc24 mutants, but none were entirely oligomerization deficient. However, the DH5 (L339A/E340A) mutant showed a 10-fold reduction in oligomerization and the DH3 (F322A) mutant exhibited 2.5-fold reduction in oligomerization. We will therefore use the DH5 and DH3 mutant for two additional experiments.

      Minor comments

      The results in Fig S4 serve as assay validation, and this should be pointed out early in the Results section. I was initially concerned when the assay was described as based on consumption of GTP that a significantly diminished pool would alter the rate and thereby distort results, and being made aware of the S4 result would have alleviated that concern as I read further.

      Response from the authors:

      We believe that the reviewer refers to S3 (not S4). We appreciate this suggestion and now mention it earlier.

      On page 4 and Fig S4 the authors mention several cdc42 constructs, some of which show linear activity curves and others slightly non-linear curves. I was unable to find where these constructs or their differences are discussed. The authors should also tell us if the construct used for the remaining experiments was one of the two shown in S4, or a different one.

      Response from the authors:

      We added the requested information and explanations to the manuscript.

      It seems that in Fig 4 and Fig S8, some points are missing from the graphs. Were all concentrations for each condition not always assayed, or is some data omitted for some reason? For example, for the 0.125 microM Rga2 condition, only two points are shown vs 4 for some other conditions, and the two missing ones are expected to not be excluded by the >5% GTP remaining criterion.

      Response from the authors:

      The reviewer wonders whether Fig.4 and Fig. S8 miss data points. This is not the case, and __we added clarifying information to the manuscript. __

      In detail: Not all assays contain the same amount of data points/ concentrations for each protein. We first assessed Cdc42 alone using several Cdc42 concentration. We then examined the individual Cdc42 – effector mixtures, using a larger number of effector concentrations. We included a reduced number of effector concentrations in the assays containing two effectors and Cdc42. It would be ideal to include more concentrations, but this is not always feasible: The assay involves a multitude of pipetting steps and is sensitive to any pipetting errors. Further, assays can vary slights from each other, therefore all samples that ought to be compared need to be included in each assay.

      Each three-protein assay contains samples shown (Cdc42, Cdc42 + effector 1, Cdc42 + effector 2, Cdc42 + effector 1 + effector 2) and additional ‘buffer’ wells used for normalization. Each data point shown corresponds to the average of 3-4 replica samples per assay. We therefore did not include all concentrations in all conditions. As pointed out, Fig. 4a only shows two data points for the 0.125uM Rga2 axis (Rga2 + Cdc42 and Rga2 + Cdc24 + Cdc42). The rational was the following: We included three Cdc24 concentrations (for proper fitting for K3,Cdc24), three Rga2 concentrations (for proper fitting for K3,Rga2), and 5 mixtures of the used Cdc24 and Rga2 concentrations (for proper fitting for K3,Cdc24,Rga2).

      The Cdc42-Rga2-BSA and Cdc42-Rga2-Casein data is rather sparse and would benefit from additional data points. However, we only use those as control experiments and are cautious in their interpretation.

      In these graphs, a diamond symbol of slightly varying color is used for the different conditions. The different colors are hard to distinguish. Please use different shape symbols for the different conditions, and choose colors that are more distinct.

      Response from the authors:

      We will adapt the color scheme of the fits to make the colors more distinguishable.

      There are a few sentences that are of unclear meaning, for example on page 10, "It was suggested that each GAP plays a distinct role in Cdc42 regulation, of which the level of GAP activity could be a part of [Smith et al., 2002]." There are also typos and grammatical errors that should be fixed.

      Response from the authors:

      __We will further check the document for potentially unclear sentences and will try to clarify them, as well as further check for grammatical and spelling errors. __

      Reviewer #4 (Significance (Required)):

      Significance

      The most novel and important finding is the strong synergy observed between cdc24 and Rga2 in activating cdc42 GTPase activity. This is undoubtedly an important mechanism underlying positive feedback in polarization. The measured non-linear activity of cdc24 alone is also quite important given that availability of cdc24 is thought to be a critical in vivo stimulus for polarization. However, the unexplained discrepancy between this result and that of Mionnet leaves one to wonder which result is more reliable. Only Mionnet attempts to directly test whether oligomerization is important in cdc24 activity.

      The conclusions are of importance to a broad audience of cell biologists, though the lack of any mechanism for the synergy or the non-linearity of cdc24 activity somewhat diminishes significance.

      Note that my expertise and that of my co-reviewer is in the biology, and while we are able to follow the contributions of the modeling, we do not have the expertise to critically evaluate for potential errors or weaknesses in the modeling itself.

      The reviewer wonders whether our data or the data of Mionnet et al. on the link between Cdc24 oligomerization and its GEF activity is more reliable and suggests to conduct experiments with oligomerization deficient Cdc24 mutants.

      We thank the reviewer for this recommendation and we will do the suggested experiments to resolve the seemingly contradicting observations by us and Mionnet et al..

      The reviewer would find mechanistic insights into (2) the non-linear concentration dependence of Cdc24’s activity and (2) the Cdc24-Rga2 synergy useful.

      (1) We will conduct experiments with partially oligomerization deficient Cdc24 mutants, as suggested by the reviewer.

      (2) We speculate that Cdc24-Rga2 binding could lead to the synergy. ____We will add data on Cdc24 – Rga2 binding (in vitro: Size-Exclusion Chromatography Multi-Angle Light Scattering) to this study.

    1. Reset Background color CSS Ask Question Asked 7 years, 11 months ago Modified 7 years, 11 months ago Viewed 5k times Report this ad This question shows research effort; it is useful and clear 2 This question does not show any research effort; it is unclear or not useful Save this question. Show activity on this post. I am developing a project where I am supposed to make a particular part of div flash, (or blink only once) The HTML : <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink" >Current Price</p> and the CSS <style> #divtoBlink{ background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; } @keyframes blink { from { opacity: 1; } to { opacity: 0; } } </style> It blinks, and changes colour to green. But the color stays green. I want to reset the background: #008800; to white or transparent again. Is there a property or tweak that I can use? Any help is appreciated. htmlcsscss-animations ShareShare a link to this question Copy linkCC BY-SA 3.0 Follow Follow this question to receive notifications edited Oct 5, 2015 at 12:08 Harry 87.6k2525 gold badges203203 silver badges215215 bronze badges asked Oct 5, 2015 at 11:58 ShahsaysShahsays 42111 gold badge77 silver badges2525 bronze badges 3 why not use jquery ? – Farrukh Faizy Oct 5, 2015 at 12:00 6 @MuhammadFarrukhFaizy: Because these sort of things can be handled without using jQuery. – Harry Oct 5, 2015 at 12:01 @MuhammadFarrukhFaizy Why not use Assembler? Yes right, because it is much to complicated to get such a task done using Asembler. Or a scripting language incl. a complete application framework (like jQuery)… – feeela Oct 5, 2015 at 12:19 Add a comment  |  2 Answers 2 Sorted by: Reset to default Highest score (default) Trending (recent votes count more) Date modified (newest first) Date created (oldest first) This answer is useful 5 This answer is not useful Save this answer. Show activity on this post. I think what you need is only for the background to become transparent after blink and for the text to remain visible. If that is the case, use the below snippet. When opacity is animated from 1 to 0, the whole element along with its content would become invisible. Instead, animating just the background should be enough. #divtoBlink { background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; animation-fill-mode: forwards; } @keyframes blink { from { background: #008800; } to { background: transparent; } } <script src="https://cdnjs.cloudflare.com/ajax/libs/prefixfree/1.0.7/prefixfree.min.js"></script> <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink">Current Price</p> Run code snippetHide resultsExpand snippet Original Answer: All that is needed is to add animation-fill-mode: forwards so that the element holds the state as at its final keyframe (which is opacity: 0 or transparent). Currently the animated element reverts back to its original state (background: #008800) once the animation is complete. #divtoBlink { background: #008800; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; animation-fill-mode: forwards; } @keyframes blink { from { opacity: 1; } to { opacity: 0; } } <script src="https://cdnjs.cloudflare.com/ajax/libs/prefixfree/1.0.7/prefixfree.min.js"></script> <p style="color:#f47321; font-size:16px; font-weight:bold;" id="divtoBlink">Current Price</p> Run code snippetHide resultsExpand snippet ShareShare a link to this answer Copy linkCC BY-SA 3.0 Follow Follow this answer to receive notifications edited Oct 5, 2015 at 12:15 answered Oct 5, 2015 at 12:04 HarryHarry 87.6k2525 gold badges203203 silver badges215215 bronze badges 4 Well,after blinking it faded out everything inside the div tag. – Shahsays Oct 5, 2015 at 12:10 1 @FaizanShah: Yes, isn't that what you wanted? If not, can you please clarify more. (Edit: I think you are maybe looking for only the background to become transparent but content to be visible. If yes, please refer the first snippet in my answer now.) – Harry Oct 5, 2015 at 12:11 You see this is a label which is supposed to say Current Price. applying css, the color changes to green, but stays green. applying your method, it removes the green AND the current price. – Shahsays Oct 5, 2015 at 12:14 @FaizanShah: Glad to be of help. Please don't forget to accept the answer (click on the hollow tick mark below the voting icon). – Harry Oct 5, 2015 at 12:19 Add a comment  |  Report this ad This answer is useful 1 This answer is not useful Save this answer. Show activity on this post. I think in your situation it is easier to change the pattern. the initial color is white, then let it blink to green and reset again to your wished color (white or transparent). easy solution via custom defined keyframes. (look at the fiddle) #divtoBlink{ background: #fff; animation-duration: 1000ms; animation-name: blink; animation-iteration-count: 1; animation-direction: alternate; } @keyframes blink { 0% { background: #008800;} 50% { background: #fff;} // optional sugar any color between.. 100% { background: #fff; } } http://jsfiddle.net/a2pg246h/ ShareShare a link to this answer Copy linkCC BY-SA 3.0 Follow Follow this answer to receive notifications answered Oct 5, 2015 at 12:14 MarcMarc 2,66933 gold badges3434 silver badges4141 bronze badges 0 Add a comment  |  Your Answer StackExchange.ifUsing("editor", function () { StackExchange.using("externalEditor", function () { StackExchange.using("snippets", function () { StackExchange.snippets.init(); }); }); }, "code-snippets"); StackExchange.ready(function() { var channelOptions = { tags: "".split(" "), id: "1" }; initTagRenderer("".split(" "), "".split(" "), channelOptions); StackExchange.using("externalEditor", function() { // Have to fire editor after snippets, if snippets enabled if (StackExchange.settings.snippets.snippetsEnabled) { StackExchange.using("snippets", function() { createEditor(); }); } else { createEditor(); } }); function createEditor() { StackExchange.prepareEditor({ useStacksEditor: false, heartbeatType: 'answer', autoActivateHeartbeat: false, convertImagesToLinks: true, noModals: true, showLowRepImageUploadWarning: true, reputationToPostImages: 10, bindNavPrevention: true, postfix: "", imageUploader: { brandingHtml: "Powered by \u003ca href=\"https://imgur.com/\"\u003e\u003csvg class=\"svg-icon\" width=\"50\" height=\"18\" viewBox=\"0 0 50 18\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\"\u003e\u003ctitle\u003eImgur Logo\u003c/title\u003e\u003cpath d=\"M46.1709 9.17788C46.1709 8.26454 46.2665 7.94324 47.1084 7.58816C47.4091 7.46349 47.7169 7.36433 48.0099 7.26993C48.9099 6.97997 49.672 6.73443 49.672 5.93063C49.672 5.22043 48.9832 4.61182 48.1414 4.61182C47.4335 4.61182 46.7256 4.91628 46.0943 5.50789C45.7307 4.9328 45.2525 4.66231 44.6595 4.66231C43.6264 4.66231 43.1481 5.28821 43.1481 6.59048V11.9512C43.1481 13.2535 43.6264 13.8962 44.6595 13.8962C45.6924 13.8962 46.1709 13.2535 46.1709 11.9512V9.17788Z\"/\u003e\u003cpath d=\"M32.492 10.1419C32.492 12.6954 34.1182 14.0484 37.0451 14.0484C39.9723 14.0484 41.5985 12.6954 41.5985 10.1419V6.59049C41.5985 5.28821 41.1394 4.66232 40.1061 4.66232C39.0732 4.66232 38.5948 5.28821 38.5948 6.59049V9.60062C38.5948 10.8521 38.2696 11.5455 37.0451 11.5455C35.8209 11.5455 35.4954 10.8521 35.4954 9.60062V6.59049C35.4954 5.28821 35.0173 4.66232 34.0034 4.66232C32.9703 4.66232 32.492 5.28821 32.492 6.59049V10.1419Z\" /\u003e\u003cpath fill-rule=\"evenodd\" clip-rule=\"evenodd\" d=\"M25.6622 17.6335C27.8049 17.6335 29.3739 16.9402 30.2537 15.6379C30.8468 14.7755 30.9615 13.5579 30.9615 11.9512V6.59049C30.9615 5.28821 30.4833 4.66231 29.4502 4.66231C28.9913 4.66231 28.4555 4.94978 28.1109 5.50789C27.499 4.86533 26.7335 4.56087 25.7005 4.56087C23.1369 4.56087 21.0134 6.57349 21.0134 9.27932C21.0134 11.9852 23.003 13.913 25.3754 13.913C26.5612 13.913 27.4607 13.4902 28.1109 12.6616C28.1109 12.7229 28.1161 12.7799 28.121 12.8346C28.1256 12.8854 28.1301 12.9342 28.1301 12.983C28.1301 14.4373 27.2502 15.2321 25.777 15.2321C24.8349 15.2321 24.1352 14.9821 23.5661 14.7787C23.176 14.6393 22.8472 14.5218 22.5437 14.5218C21.7977 14.5218 21.2429 15.0123 21.2429 15.6887C21.2429 16.7375 22.9072 17.6335 25.6622 17.6335ZM24.1317 9.27932C24.1317 7.94324 24.9928 7.09766 26.1024 7.09766C27.2119 7.09766 28.0918 7.94324 28.0918 9.27932C28.0918 10.6321 27.2311 11.5116 26.1024 11.5116C24.9737 11.5116 24.1317 10.6491 24.1317 9.27932Z\"/\u003e\u003cpath d=\"M16.8045 11.9512C16.8045 13.2535 17.2637 13.8962 18.2965 13.8962C19.3298 13.8962 19.8079 13.2535 19.8079 11.9512V8.12928C19.8079 5.82936 18.4879 4.62866 16.4027 4.62866C15.1594 4.62866 14.279 4.98375 13.3609 5.88013C12.653 5.05154 11.6581 4.62866 10.3573 4.62866C9.34336 4.62866 8.57809 4.89931 7.9466 5.5079C7.58314 4.9328 7.10506 4.66232 6.51203 4.66232C5.47873 4.66232 5.00066 5.28821 5.00066 6.59049V11.9512C5.00066 13.2535 5.47873 13.8962 6.51203 13.8962C7.54479 13.8962 8.0232 13.2535 8.0232 11.9512V8.90741C8.0232 7.58817 8.44431 6.91179 9.53458 6.91179C10.5104 6.91179 10.893 7.58817 10.893 8.94108V11.9512C10.893 13.2535 11.3711 13.8962 12.4044 13.8962C13.4375 13.8962 13.9157 13.2535 13.9157 11.9512V8.90741C13.9157 7.58817 14.3365 6.91179 15.4269 6.91179C16.4027 6.91179 16.8045 7.58817 16.8045 8.94108V11.9512Z\"/\u003e\u003cpath d=\"M3.31675 6.59049C3.31675 5.28821 2.83866 4.66232 1.82471 4.66232C0.791758 4.66232 0.313354 5.28821 0.313354 6.59049V11.9512C0.313354 13.2535 0.791758 13.8962 1.82471 13.8962C2.85798 13.8962 3.31675 13.2535 3.31675 11.9512V6.59049Z\" /\u003e\u003cpath d=\"M1.87209 0.400291C0.843612 0.400291 0 1.1159 0 1.98861C0 2.87869 0.822846 3.57676 1.87209 3.57676C2.90056 3.57676 3.7234 2.87869 3.7234 1.98861C3.7234 1.1159 2.90056 0.400291 1.87209 0.400291Z\" fill=\"#1BB76E\"/\u003e\u003c/svg\u003e\u003c/a\u003e", contentPolicyHtml: "User contributions licensed under \u003ca href=\"https://stackoverflow.com/help/licensing\"\u003eCC BY-SA\u003c/a\u003e \u003ca href=\"https://stackoverflow.com/legal/content-policy\"\u003e(content policy)\u003c/a\u003e", allowUrls: true }, onDemand: true, discardSelector: ".discard-answer", enableTables: true, isStacksEditorPreviewEnabled: false ,immediatelyShowMarkdownHelp:true,enableTables:true,enableSnippets:true }); } }); Thanks for contributing an answer to Stack Overflow!Please be sure to answer the question. Provide details and share your research!But avoid …Asking for help, clarification, or responding to other answers.Making statements based on opinion; back them up with references or personal experience.To learn more, see our tips on writing great answers. Draft saved Draft discarded Sign up or log in StackExchange.ready(function () { StackExchange.helpers.onClickDraftSave('#login-link'); }); Sign up using Google Sign up using Facebook Sign up using Email and Password Submit Post as a guest Name Email Required, but never shown StackExchange.ready( function () { StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f32948073%2freset-background-color-css%23new-answer', 'question_page'); } ); <h3 class="flex--item fs-title">Post as a guest</h3> <div class="flex--item"> <div class="d-flex gs4 gsy fd-column"> <label class="s-label" for="display-name">Name</label> <div class="d-flex ps-relative"> <input class="s-input" id="display-name" name="display-name" maxlength="30" type="text" value="" tabindex="105" placeholder="" /> </div> </div> </div> <div class="flex--item"> <div class="d-flex gs4 gsy fd-column"> <div class="flex--item"> <div class="d-flex gs2 gsy fd-column"> <label class="flex--item s-label" for="m-address">Email</label> <p class="flex--item s-description">Required, but never shown</p> </div> </div> <div class="d-flex ps-relative"> <input class="s-input js-post-email-field" id="m-address" name="m-address" type="text" value="" size="40" tabindex="106" placeholder="" /> </div> </div> </div> Post Your Answer Discard By clicking “Post Your Answer”, you agree to our terms of service and acknowledge that you have read and understand our privacy policy and code of conduct. Not the answer you're looking for? Browse other questions tagged htmlcsscss-animations or ask your own question.

      how are you doing this

    1. Reviewer #1 (Public Review):

      In this study, the authors aim to understand why decision formation during behavioural tasks is distributed across multiple brain areas. They hypothesize that multiple areas are used in order to implement an information bottleneck (IB). Using neural activity recorded from monkey DLPFC and PMd performing a 2-AFC task, they show that DLPFC represents various task variables (decision, color, target configuration), while downstream PMd primarily represents decision information. Since decision information is the only information needed to make a decision, the authors point out that PMd has a minimal sufficient representation (as expected from an IB). They then train 3-area RNNs on the same task and show that activity in the first and third areas resemble the neural representations of DLPFC and PMd, respectively. In order to propose a mechanism, they analyse the RNN and find that area 3 ends up with primarily decision information because feedforward connections between areas primarily propagate decision information.

      The paper addresses a deep, normative question, namely why task information is distributed across several areas.

      Overall, it reads well and the analysis is well done and mostly correct (see below for some comments). My major problem with the paper is that I do not see that it actually provides an answer to the question posed (why is information distributed across areas?). I find that the core problem is that the information bottleneck method, which is evoked throughout the paper, is simply a generic compression method. Being a generic compressor, the IB does not make any statements about how a particular compression should be distributed across brain areas - see major points (1) and (2).

      If I ignore the reference to the information bottleneck and the question of why pieces of information are distributed, I still see a more mechanistic study that proposes a neural mechanism of how decisions are formed, in the tradition of RNN-modelling of neural activity as in Mante et al 2013. Seen through this more limited sense, the present study succeeds at pointing out a good model-data match. I point out some suggestions for improvement below.

      Major points<br /> (1) It seems to me that the author's use of the IB is based on the reasoning that deep neural networks form decisions by passing task information through a series of transformations/layers/areas and that these deep nets have been shown to implement an IB. Furthermore, these transformations are also loosely motivated by the data processing inequality.

      However, assuming as a given that deep neural networks implement an IB does not mean that an IB can only be implemented through a deep neural network. In fact, IBs could be performed with a single transformation just as well. More formally, a task associates stimuli (X) with required responses (Y), and the IB principle states that X should be mapped to a representation Z, such that I(X;Z) is minimal and I(Y,Z) is maximal. Importantly, the form of the map Z=f(X) is not constrained by the IB. In other words, the IB does not impose that there needs to be a series of transformations. I therefore do not see how the IB by itself makes any statement about the distribution of information across various brain areas.

      A related problem is that the authors really only evoke the IB to explain the representation in PMd: Fig 2 shows that PMd is almost only showing decision information, and thus one can call this a minimal sufficient representation of the decision (although ignoring substantial condition independent activity). However, there is no IB prediction about what the representation of DLPFC should look like. Consequently, there is no IB prediction about how information should be distributed across DLPFC and PMd.

      (2) Now the authors could change their argument and state that what is really needed is an IB with the additional assumption that transformations go through a feedforward network. However, even in this case, I am not sure I understand the need for distributing information in this task. In fact, in both the data and the network model, there is a nice linear readout of the decision information in dPFC (data) or area 1 (network model). Accordingly, the decision readout could occur at this stage already, and there is absolutely no need to tag on another area (PMd, area 2+3).

      Similarly, I noticed that the authors consider 2,3, and 4-area models, but they do not consider a 1-area model. It is not clear why the 1-area model is not considered. Given that e.g. Mante et al, 2013, manage to fit a 1-area model to a task of similar complexity, I would a priori assume that a 1-area RNN would do just as well in solving this task.

      I think there are two more general problems with the author's approach. First, transformations or hierarchical representations are usually evoked to get information into the right format in a pure feedforward network. An RNN can be seen as an infinitely deep feedforward network, so even a single RNN has, at least in theory, and in contrast to feedforward layers, the power to do arbitrarily complex transformations. Second, the information coming into the network here (color + target) is a classical xor-task. While this task cannot be solved by a perceptron (=single neuron), it also is not that complex either, at least compared to, e.g., the task of distinguishing cats from dogs based on an incoming image in pixel format.

      (3) I am convinced of the author's argument that the RNN reproduces key features of the neural data. However, there are some points where the analysis should be improved.

      (a) It seems that dPCA was applied without regularization. Since dPCA can overfit the data, proper regularization is important, so that one can judge, e.g., whether the components of Fig.2g,h are significant, or whether the differences between DLPFC and PMd are significant.

      (b) I would have assumed that the analyses performed on the neural data were identical to the ones performed on the RNN data. However, it looked to me like that was not the case. For instance, dPCA of the neural data is done by restretching randomly timed trials to a median trial. It seemed that this restretching was not performed on the RNN. Maybe that is just an oversight, but it should be clarified. Moreover, the decoding analyses used SVC for the neural data, but a neural-net-based approach for the RNN data. Why the differences?

      (4) The RNN seems to fit the data quite nicely, so that is interesting. At the same time, the fit seems somewhat serendipitous, or at least, I did not get a good sense of what was needed to make the RNN fit the data. The authors did go to great lengths to fit various network models and turn several knobs on the fit. However, at least to me, there are a few (obvious) knobs that were not tested.

      First, as already mentioned above, why not try to fit a single-area model? I would expect that a single area model could also learn the task - after all, that is what Mante et al did in their 2013 paper and the author's task does not seem any more complex than the task by Mante and colleagues.

      Second, I noticed that the networks fitted are always feedforward-dominated. What happens when feedforward and feedback connections are on an equal footing? Do we still find that only the decision information propagates to the next area? Quite generally, when it comes to attenuating information that is fed into the network (e.g. color), then that is much easier done through feedforward connections (where it can be done in a single pass, through proper alignment or misalignment of the feedforward synapses) than through recurrent connections (where you need to actively cancel the incoming information). So it seems to me that the reason the attenuation occurs in the inter-area connections could simply be because the odds are a priori stacked against recurrent connections. In the real brain, of course, there is no clear evidence that feedforward connections dominate over feedback connections anatomically.

      More generally, it would be useful to clarify what exactly is sufficient:

      (a) the information distribution occurs in any RNN, i.e., also in one-area RNNs<br /> (b) the information distribution occurs when there are several, sparsely connected areas<br /> (c) the information distribution occurs when there are feedforward-dominated connections between areas

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary

      The VAP proteins are well established as tail anchored proteins of the ER membrane. VAPs mediates co-operation between the ER and other organelles by creating a transient molecular tether with binding partners on opposing organelles to form a membrane contact site over which lipids and metabolites are exchanged. Proteins which bind VAPs generally contain a short FFAT motif, of varying sequence which binds the MSP domain of VAP. More recently the FFAT motif has been more extensively analysed in multiple different proteins and differential phosphorylation of the FFAT motif has been shown to either enhance or block VAP binding depending on the position of the phosphosite.

      Recent work conducted by the authors demonstrated that a small population of VAPB is not exclusively localised to the ER and can also reach the inner nuclear membrane. They also identified ELYS as a potential interaction partner of VAPB in a screening approach. ELYS is a nucleoporin that can be found at the nuclear side of the nuclear envelope where it forms part of nuclear pore complexes. During mitosis, ELYS serves as an assembly platform that bridges an interaction between decondensing chromosomes and recruited nucleoporin subcomplexes to generate new nuclear pore complexes for post-mitotic daughter cells. In this manuscript, James et al seek to explore this enigmatic potential interaction between ELYS and VAPB to address why VAPB may be found at the inner nuclear membrane.

      Peptide binding assays and some co-immunoprecipitation experiments are used to demonstrate that interactions occur via the MSP-domain of VAPB and FFAT-like motifs within ELYS. In addition, it is demonstrated that, for the ELYS FFAT peptides, the interaction is dependent on the phosphorylation status of serine residues of a particular FFAT-motif that can either promote or reduce its affinity to VAPB. Of most relevance is a serine in the acidic tract (1314) which, when phosphorylated increases VAPB binding. This is completely in line with what is already known about the FFAT motif and so is not surprising, in particular when using a peptide in an in vitro assay.

      The authors then utilise cell synchronisation techniques to provide evidence that both phosphorylation of ELYS and its binding to VAPB are heightened during mitosis. Immunofluorescence and proximity ligation assays are used to demonstrate that the proteins co-localise specifically during anaphase and at the non-core regions of segregating chromosomes.

      The manuscript is concluded by investigating the effect of VAPB depletion on mitosis with some evidence to suggest that transition from meta-anaphase is delayed and defects such as lagging chromosomes are observed.

      Major comments

      Overall, this manuscript is well written and the data presented in Figures 1-3 convincingly show the nature of the interaction between ELYS and VAPB. Clearly the proteins interact via FFAT motifs and this interaction appears to be enhanced during mitosis. However, the work as is, relies heavily on peptide binding assays and would benefit from additional experiments to further support the results. The authors need to more clearly show that this specific phosphorylation happens during mitosis, they may have this data but it is not clearly explained. In addition, the data that VAPB-ELYS interaction contributes to temporal progression of mitosis (as per the title) is not sufficiently clear. VAPB silencing appears to have some impact on mitosis but this is not the same thing. So this section needs to be strengthened before this statement can be made.

      The authors claim that the study "suggests an active role of VAPB in recruiting membrane fragments to chromatin and in the biogenesis of a novel nuclear envelope during mitosis". Given the data presented in Figures 4 and 5, this appears to be rather speculative with little evidence to support it, so data should be provided or this statement toned down. Currently, without additional supporting data the authors may wish to revise the overarching conclusions of the study and change the title.

      Specific points.

      Peptide pull down assays clearly show which FFAT-like motifs are important in facilitating binding. The co-immunoprecipitation systems used in Figure 2 also provide useful information on the interaction in a cell context. The authors should combine these findings by introducing full length ELYS mutants with altered FFAT-like motifs into their stably expressing GFP-VAPB HeLa cell line and then performing Co-IPs to help identify which FFAT motif/s drive the mitotic interaction. Other mutants of ELYS harbouring either phosphomimetic or phospho-resistant residues may also be introduced to further investigate mechanisms of the molecular switch in a cellular environment to support the work currently done with peptides alone. This is an obvious gap in the work which, based on the other data the authors have shown, should presumably be straightforward and would also lead directly into the next major point.

      • Whilst silencing VAPB does appear to delay mitosis, no reference is made to ELYS throughout Figure 5 nor as part of its associated discussion. Given that VAPB has more than 250 proposed binding partners, the observed aberration of mitotic progression could result from a huge number of indirect processes. Further work is needed to link the experiment specifically to the VAPB-ELYS interaction and not just loss of VAPB. We would suggest generating a complementation system where ELYS is either knocked out or silenced and then wild-type ELYS and an ELYS FFAT mutant (which cannot interact with VAPB),and/or a phospho mutant (whose interaction cannot be regulated during mitosis) are introduced. Then the observed effects can be better attributed to the VAPB-ELYS interaction and not just loss of VAPB.
      • The immunofluorescence and PLA results in Figure 4 could be strengthened by including other ER markers. This would show that co-localisation of ELYS at the non-core region is specific to VAPB protein, not any ER protein or rather than an artefact of the ER being pushed out of the organelle exclusion zone during mitosis and therefore 'bunching' at the periphery of the nuclear envelope. It would be worthwhile repeating these experiments with candidates such as VAPA, other ER membrane proteins or at least GFP-KDEL, to make this phenomenon more convincing. As part of this the authors should ideally generate a complemented ELYS KO (see point above) to avoid the residual activity attributed to endogenous background in the PLA Figure 4E.
      • Authors should clarify if the phosphorylation events (in particular S1314) only occur or are increased during mitosis. This may be data they have from the MS experiment in Figure 3 or it could also be shown using a phospho-antibody (although this can be challenging if a suitable antibody cannot be made).
      • The authors should clarify why they need to do these semi in-vitro assays with purified GST-VAPB-MSP on beads and then lysates added and not just a standard co-IP. If this is simply signal intensity due to a very small proportion of VAPB binding to ELYS then this is fine but this should be stated and it should be made clear that ELYS is not a major binding partner - most of VAPB is on the ER. Otherwise, this is misleading.

      I estimate that the suggested alterations above would incur approximately 3-6 months of additional experimental work, depending on if KO cell lines were required.

      Minor comments

      • To show that the observed interactions and potential role of VAPB-ELYS interaction is universal it would be useful to have at least a subset of experiments also shown in another cell line or system - this is now also a requirement for some journals.
      • Consider re-wording the title of the manuscript to better reflect the data presented within the study. Alternatively, provide further evidence that VAPB-ELYS interactions directly affect temporal progression of mitosis to validate this claim, as discussed above.
      • Quantification of blots in Figure 2A could allow measurement of relative binding affinities between VAPB-ELYS throughout the cell cycle. The same could be applied to the effect of phosphorylation on binding affinity in Figure 2D.
      • The cells used are never clearly mentioned in the text - I assume this is always in HeLa but this should be added in all cases for clarity
      • Page 8: "As shown in Fig. 2A,a large proportion of GFP-VAPB was precipitated under our experimental conditions." - I don't understand how this is shown in this figure as the non-bound fraction is not shown?
      • Please provide some controls to demonstrate the extent to which the samples used are asyn, G1/M or M.
      • Page 9 - why are Phos-tag gels not shown as this would make this result more convincing?
      • Figure 3A - I find the SDS-PAGE gel confusing. Why not show the whole gel and why is the band size apparently reduced in the mitotic fraction when previously it was increased (by phosphorylation)? It would also be useful to see if there were any other band shifts.
      • "FFAT-2 of ELYS is regulated by phosphorylation" The way you have setup the experiment leads the reader to think you are going to show which sites are differentially phosphorylated in mitosis, but then this is not the case - so there seems no purpose to doing the experiment this way. If you used TMT MS approach you would be able to potentially quantify the change in phosphorylation at the FFAT motif sites in mitosis. Otherwise what is the purpose of using these 2 samples, mitotic and AS?
      • For all of the antibodies used, in particular for the PLA, please provide evidence of validation of the antibodies.
      • Just a minor point to consider - In the methods for your lysis buffer you use 400mM NaCl - might this slightly reduce the VAPB-FFAT interaction? Worth considering reducing this?
      • "The rather small difference observed between the wild-type and the mutant protein observed in this experiment probably results from the presence of endogenous VAPB in the stable cell lines, which could form dimers with the exogeneous HA-tagged versions." If this is the case then please demonstrate that this is happening, or use the KO approach in the major points above.
      • "we now show that the proteins can indeed interact with each other, without the need for additional bridging factors (Figs. 1 and 3)." You show that the peptides can bind - but this is not the same thing as the peptide in the full context of the protein - so this should be toned down or removed.
      • "Remarkably, this region is highly conserved between species, suggesting that it is important for protein functions (data not shown)". Please show the alignments so the reader can judge for themselves. It is conserved in ALL species and the phosphosites are also conserved??
      • "In our experiments, knockdown of VAPA alone did not lead to a delay in mitosis (data not shown). " Why not show this data - as this is a very interesting and potentially important observation? Also add the validation of knockdown of VAPA.
      • I find the end to the discussion to the paper rather abrupt. It would be interesting to discuss further how VAPB, but not apparently VAPA reaches the INM and if so why this function is required of an ER adaptor and not another more obvious adaptor protein. In short - why would VAPB be performing this role?

      Referees cross-commenting

      I agree with the comments of the other reviewers, and they are very much in line with my own review. We all seem convinced that VAPB binds ELYS via a pFFAT, and that this interaction is enhanced during mitosois. However the role of this interaction in mitotic progression remains unclear and based on this data should not be claimed in the title or discussion of the paper.

      Significance

      Overall, if the manuscript could be improved with the suggested changes, then this could be a considerable conceptual advance in how we understand the VAP proteins, showing functions beyond those as an ER adaptor. This would be significant for the field.

      In the context of the existing literature the work does not advance our knowledge of FFAT-VAP interactions, this has already been shown, but it would give a nice example of how this can be regulated during mitosis and how VAP can contribute beyond just as an ER adaptor at membrane contact sites.

      There would be a wide audience in the cell biology field and more widely as mutations in VAPB cause a form of ALS, and many people are working in this area.

      My field of expertise is in organelle cell biology and membrane contact sites.

    1. (1:20.00-1:40.00) What he describes is the following: Most of his notes originate from the digital using hypothes.is, where he reads material online and can annotate, highlight, and tag to help future him find the material by tag or bulk digital search. He calls his hypothes.is a commonplace book that is somewhat pre-organized.

      Aldrich continues by explaining that in his commonplace hypothes.is his notes are not interlinked in a Luhmannian Zettelkasten sense, but he "sucks the data" right into Obsidian where he plays around with the content and does some of that interlinking and massage it.

      Then, the best of the best material, or that which he is most interested in working with, writing about, etc., converted into a more Luhmannesque type Zettelkasten where it is much more densely interlinked. He emphasizes that his Luhmann zettelkasten is mostly consisting of his own thoughts and is very well-developed, to the point where he can "take a string of 20 cards and ostensibly it's its own essay and then publish it as a blog post or article."

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to thank all reviewers for taking the time to evaluate our manuscript. Many helpful suggestions and discussion points were raised. These comments were instrumental to provide more data that strengthen our conclusion about the relevance of centrin condensation in vivo, expand our findings to other organisms, and improve the manuscript in general. Details are given in the following individual replies.

      Reviewer #1 (Evidence, reproducibility and clarity):

      Voss and colleagues show calcium-dependent assembly of Plasmodium falciparum centrins in vitro and in parasites. This assembly is dependent on the EF-hands of centrin and an N-terminal disordered region.

      Major concerns:

      1. The very definitive title is not wholly supported by the data. This should be qualified by specifying the conditions under which the centrins can accumulate in this way.

      We understand this comment by the reviewer. There are multiple dimensions to the potential of centrins to condensate, such as the specific centrin family member, in vivo vs in vitro situation, and media conditions. Naturally it is difficult to represent these various conditions in a concise and compelling title but in line with the suggestion by Reviewer 2 we are changing the title to “Malaria parasite centrins can assemble by Ca2+-inducible condensation” to reflect the conditionality of this process.

      1. A major concern is whether this behaviour of centrins represents a biologically relevant mechanism in centriolar plaque formation. Is this limited to high overexpression conditions or in vitro high concentrations? Or is it a result of the tagging of the P. falciparum centrins?...

      Centrin accumulation at the centriolar plaque and assembly of the centriolar plaque itself must be differentiated. Although compelling we are already very careful in the text about extrapolating our findings about centrin accumulation in cells to centriolar plaque or centrosomal assembly in general. We, however, thank the reviewer for this important comment and now have carried out hexanediol treatment of wild type parasites to test the effect on centrin in a native context. After IFA staining we failed to detect any centrin foci at the centriolar plaques, suggesting that they can be resolved by inhibiting weak hydrophobic interactions that are typical for phase separation (now Fig. 6, lines 283ff).

      Concerning the effect of tagging we have generated new data of cells overexpressing an untagged version of PfCen1 in parasites, which still shows formation of ECCAs as revealed by IFA (now Fig. 4H-K, lines 243ff). This significantly alleviates the concern that the observed phenomenon is only a consequence of GFP-tagging. Our in vitro data already showed that native and tagged PfCentrin1 & 3 can undergo condensation.

      Concerning the critical concentration of our in vitro assay we find it to be around 10-15 µM without the addition of crowding agents such as PEG (now Fig. S3C, lines 120ff). To our understanding it is challenging to select an in vitro concentration that is adequate to define a threshold for “biological relevance” due to so many additional factors playing a role in vivo. Those factors can also favor a phase separation locally when total saturation concentration is not reached as we now discuss in more detail (lines 440ff). For reference the critical concentration of FUS, which is one of the most studied phase separating proteins in model system, is around 2 µM, but concentrations below 15 µM are well within the range of what is observed for in vitro LLPS. Additionally, it is important to consider that we find Cen1/3 and HsCen2 LLPS is inducible and reversible and that very homologous proteins i.e. Cen2 and 4 serve as an adequate internal control.

      … A convincing approach to addressing this issue would be to knock-in a fluorescent tag to the centrin loci. Roques et al. (ref. 12 in this submission) report the GFP tagging of centrin-4 in P. berghei, although they note that centrins-1 to -3 were refractory to tagging in this organism. It is unclear whether Voss et al. attempted this tagging in P. falciparum. This should be clarified and relevant data presented.

      We indeed attempted several unsuccessful iterations of tagging Cen1/3 with HA and GFP tag and now explain this in the text more clearly (lines 81ff). We did not attempt tagging Cen2 and 4 as they do not display phase separation in vitro or carry IDRs.

      If the tagged molecules used in the biochemical parts of this study are functional, it is challenging to understand why the centrins cannot be tagged in P. falciparum. If the tags render the P. falciparum centrins dysfunctional, the study becomes significantly less useful.

      Our data shows that in vitro Cen1-GFP can undergo Ca2+-inducible and reversible LLPS and that GFP-tagged centrins can still localize to the centriolar plaque. Centrin function, however, certainly goes beyond its ability to condensate and localize. It is easily conceivable that interaction with critical binding partners at the centriolar plaque is inhibited by tagging a protein as small as centrin, which prohibits tagging the endogenous version, while its ability to phase separate remains unaltered. To dynamically study a protein in cells tagging is, however, unavoidable. Even though tagging affects any proteins function to highly variable degree we are still convinced that studying those proteins still provides useful information. Our mutant versions of PfCen1 in vivo shows that non-condensating version display different localization. Importantly, as mentioned above, we now provide images of cells overexpressing an untagged Cen1 version, which still causes ECCA formation (Fig. 5H-K). Ultimately, even though tagged versions might not be fully functional, our observations are compatible with the ability of centrins to condensate in vivo.

      1. If a knock-in cannot be achieved, it must be shown that the transgenic expression of tagged Plasmodium centrins does not confound the analysis of centrin behaviour. It is known that these proteins can behave anomalously when overexpressed (Yang et al. 2010, PMID: 20980622; Prosser et al. 2009, PMID: 19139275), at least in other species.

      Thank you for this comment. Transgenic expression of proteins can in principle influence their behavior. In the context of this study the overexpression is, however, used intentionally since protein concentration correlates with the phase separation. Here, transgenic overexpression is used as a tool, rather than being a confounding factor, and ECCA formation can be used as quantifiable phenotype. The observation that ECCAs appear significantly earlier the higher they are expressed is in our opinion one of the stronger points of evidence that this result from phase separation in vivo. Yet centrins maintain their centriolar plaque localization and no significant impact on growth is observed. To definitely answer whether phase separation of endogenous centrin is occurring during centriolar plaque accumulation is challenging. These challenges and limitations are now addressed in the significantly extended discussion. As explained above untagged Cen1 also forms ECCAs.

      A previous description of centriolar plaque from the authors' lab (Simon et al. 2021, PMID: 34535568) shows an organized structure of an established size. It should be demonstrated whether the structures formed with the GFP tagged centrins show the same dimensions and dynamics as those in wild-type parasites. The extent of the overexpression of the GFP-tagged centrins should also be demonstrated.

      We thank the reviewer for this suggestion. We have now added spatial measurements of the centrin signal dimensions at the centriolar plaque of mitotic spindle containing nuclei in PfCen1-GFP overexpressing vs non-induced cell lines. We found that the width of the centrin-signal at the centriolar plaque was unaltered while the height only increased by 11% (Fig. S9). Further, we found no significant growth phenotype in overexpressing parasites, which indicates that the centriolar plaque is functional.

      Due to several confounding factors, we were, unfortunately, unable to clearly quantify the extent of overexpression. Most notably the induction of overexpression only works in about 50% of the cells (Fig. S6). The mean intensity after induction further displays quite some variability. Furthermore, the expression kinetics along the IDC of endogenous centrin and our overexpression system that we use as a tool differ. Lastly, our centrin antibodies display crossreactivity (see also Fig. S12) making it impossible to identify how much of the endogenous pool we are labeling in comparison to the GFP- tagged Cen1 protein.

      1. It would also be useful to remove the His tag from the recombinantly expressed and purified centrins for the in vitro analyses, particularly if concern remains about the impact of tags on Plasmodium centrin behaviour.

      Based on the published in vitro studies on other centrins, we did not anticipate the His-tag to change LLPS properties. Also, Cen1 and 3 and Cen2 and 4 would need to be differentially affected by the tag. We further have experimented with N-terminally tagged 6His-Cen3 protein and found no significant differences in our turbidity assays. Nevertheless, we expressed new versions of the recombinant PfCen1-4 proteins with a TEV cleavage site inserted after the His-tag to purify untagged proteins and found no fundamental differences in our LLPS assay aside some slight variation in the kinetics (Fig. S3E).

      1. The discussion is very short and does not consider the findings presented here in the context of the literature, with respect to centrins, Plasmodium MTOC assembly mechanisms, or to general considerations around biological condensates. Andrea Musacchio's recent commentary (ref. 44 in the current submission) advocates caution in ascribing phase separation as an assembly mechanism for organelles in vivo, particularly on the basis of in vitro experiments with high concentrations of homogeneous protein. It is not clear that the concentration dependence of extracentrosomal centrin accumulations (ECCAs) at the onset of schizogony provides sufficient justification of a phase separation model in vivo. The authors' recent description of the involvement of an SFI1-like protein, SIp (Wenz et al. 2023 PMID: 37130129), in the centriolar plaque makes a case for non-homotypic interactions also driving assembly and alternative models for ECCA are not convincingly excluded. The absence of a robust discussion of such considerations is unhelpful to the reader.

      We very much thank the reviewer for this suggestion, which helped to significantly improve the manuscript. We have purposefully included the commentary by Andrea Musacchio to highlight a different (possibly the most antipodal) point of view on the role of biomolecular condensation in membraneless organelle formation for the unfamiliar readers that might be just getting to know the field of phase separation. In the absence of word limitations, the reviewer is right to point out the lack of more extensive discussion. We now have significantly extended this section and address the suggested points including the potential role of the novel centriolar plaque protein Slp, which was not published upon submission of our previous version (lines 450ff.)

      1. It is also unclear whether the analysis of human centrin is suggested to indicate a phase separation mechanism for centrins in human cells. As this is readily testable, this notion could be considered further. Although its experimental examination may lie outside the theme of this study, one would expect some discussion of the significance of the data presented in the study.

      Since it is the first description of phase separation of centrin, it would indeed be interesting to explore the functional relevance in other organisms such as humans. We are considering approaching this in the future. We have, as requested above, significantly extended the discussion and now also include this aspect. Earlier reports have e.g. shown centriole overduplication in human cells upon centrin overexpression.

      Minor points

      1. There are only three centrins in humans. Centrin 4 is a pseudogene (Gene ID: 729338 on NCBI).

      Thank you for detecting this error, which we now corrected (line 60). Centrin 4 seems only to be an expressed gene in mice.

      1. Line 175 should say 'temporally', rather than 'temporarily. The Abstract should say 'evolutionarily conserved', rather than 'evolutionary conserved'. 'To condensate' is not ideal as a phrase- 'to form a condensate' would be clearer.

      Thank you for those suggestions. The text has been modified accordingly.

      Referees cross-commenting

      I think the other 2 reviewers have made fair, cogent and constructive points. There is good convergence between the reviewers on the significant issues around the study. These concern in vivo and in vitro effects of tagging and of high concentrations.

      Reviewer #1 (Significance):

      The biology of the Plasmodium centriolar plaque is of great interest as an alternative MTOC structure, with obvious additional interest deriving from the role of this organism in malaria. Much remains to be learned about this structure, so the topic of this paper is likely to attract a broad readership. Furthermore, the centrins are a widely-expressed and evolutionarily conserved family of eukaryotic proteins, with multiple roles; a new model for their behaviour, such as is suggested here, would be of interest to many cell biologists.

      With that in mind, significant additional data should be provided to substantiate the model proposed by the authors.

      We appreciate that the reviewer considers our manuscript of interest for a broad audience. We feel that our modifications of the text including a more thorough contextualization and addition of some new experimental data now sufficiently supports our claims.

      Reviewer #2 (Evidence, reproducibility and clarity):

      The authors analyzed the properties of the four Centrin proteins of the malaria parasite using a combination of in vitro and in vivo approaches. Their findings indicate that two of the four Plasmodium Centrin proteins, PfCen1 and PfCen3, as well as the human Centrin protein HsCen2, exhibit features of biomolecular condensates. Moreover, analysis of cells overexpressing PfCen1 indicates that such biomolecular condensates become more numerous as cells approach mitosis and are dissolved thereafter.

      Major comments

      A) A critical point that requires clarification is how the protein concentrations used in the in vitro and in vivo assays (20-200 microM in vitro, and not estimated in vivo) compare to that of the endogenous components. This is important because it may well be that 6His-tagged PfCen1, PfCen3 and HsCen2 can form biomolecular condensates when present in vast excess, but not when present in physiological concentrations. The authors should report the estimated cellular concentration of PfCen1-4, as well as that achieved upon PfCen1-GFP overexpression (on top of endogenous PfCen1), for instance using semi-quantitative immunoblotting analysis. Given this limitation, the authors may also want to temper their title by introducing the word "can" after "centrins".

      In the context of phase separation, protein concentration is of course a critical metric. However, in vitro and in vivo concentrations cannot be directly compared as the composition of the surrounding solute has a significant impact on the effective saturation concentration. In vitro we find a saturation concentration for Cen1 of 10-15 µM (Fig. S3C), which is within a range that is frequently found other in vitro studies as listed in the in vitro LLPS data base (PMID: 35025997). We now more explicitly discuss this in the text (lines 422ff). At this point, unfortunately, we have no means of investigating the absolute concentrations of centrin in vivo and to our knowledge no such data is available for apicomplexan. Additionally, one has to keep in mind the presence of other centrin family members in the cell which can interact and co-condensate as well as other centriolar plaque proteins, like PfSlp, but are difficult to separate through analysis. Further we now discuss several contexts that modify the saturation concentration in vivo (lines 440ff).

      As explained above in a response to Reviewer 1, we were not able to produce a satisfactory quantification of the overexpression levels. We are repasting the previous response here:

      “Due to several confounding factors we were, unfortunately, unable to clearly quantify the extent of overexpression. Most notably the induction of overexpression only works in about 50% of the cells (Fig. S6). The mean intensity after induction further displays quite some variability. Lastly the expression kinetics along the IDC of endogenous centrin and our overexpression system that we use as a tool differ. Lastly, our centrin antibodies display crossreactivity (see also Fig. S12) making it impossible to identify how much of the endogenous pool we are labeling in comparison to the GFP- tagged Cen1 protein. “

      Concerning the title, as explained above, we followed the suggestion and added the word “can”.

      B) Movies S1 and S2 (and the related Fig. 1D and 1E) are not the most convincing to support the notion that the observed assemblies are biomolecular condensates, as not much activity is going on during the recordings. Likewise, Movies S3, and even more so Movie S4, as out of focus for a large fraction of the time, making it difficult to assess what happens at the beginning of the process. Moreover, it appears that fusion events, while occurring, are rather rare. The movies should be exchanged for ones that are in focus, and ideally a rough quantification of fusion events as a function of biomolecular condensate size provided.

      We thank the reviewer for requesting clarification. Movies S1 and S2 are by no means direct evidence for biomolecular condensation and we do not claim them to be but rather say that they are “…reminiscent of biomolecular condensates…”. We think that this is an appropriate entry into the subsequent analyses. For Movie S1 it is noteworthy that the shape of the accumulation, which can only be resolved by super-resolution microscopy in live cells, is round as would be expected for a liquid condensate in the absence of forces and on these short time scales. Nevertheless, the centriolar plaque must be duplicated which might be the process partly depicted in Movie S2. The observation that centrin can be still change its shape at least suggests that it is not a solid aggregate. In the context of centriolar plaque biology and the technological advance of applying live cell STED in P. falciparum, we think these data are still worth reporting.

      Concerning Movies S3 and S4 we have carefully selected the focal plane to highlight all the hallmarks of LLPS. Since the protein droplets freely move in 3D throughout the entire imaged liquid volume there is no z-plane that is in focus. Our positioning of the focal plane presents the best compromise between showing round droplet shape, droplet fusion events, and surface wetting. All those observations demonstrate the liquid nature of the condensates. Fusion events are indeed relatively rare, and we do not go beyond this qualitative statement that it can be seen.

      C) An important control is missing from Fig. 2, namely assaying PfCen1-4 without the 6His tag, to ensure that the tag does not contribute to the observed behavior (although it can of course not be sufficient as evidenced by the lack of biomolecular condensates for PfCen2 and PfCen4).

      Thank you for this suggestion. Since reviewer 1 made a similar comment, I’m reiterating our previous reply here: Generally speaking, and based on the published in vitro studies on other centrins, we didn’t anticipate the very small His-tag to change LLPS properties. Also, Cen1 and 3 and Cen2 and 4 would need to be differentially affected by the tag. We further have experimented with N-terminally tagged 6xHis-Cen3 protein and found no significant differences in our turbidity assays. However, we expressed new versions of the recombinant PfCen1-4 proteins with a TEV cleavage site inserted after the His-tag to purify untagged proteins and found no significant differences in our LLPS assay (Fig. S3E).

      D) The authors should test whether the assemblies formed by PfCen1 and PfCen3 are sensitive to 1,6-hexanediol treatment, as expected for biomolecular condensates.

      This is an interesting and helpful suggestion. We now tested 1,6-hexanediol addition to recombinant PfCen1 and wildtype parasites (now Fig. 6). Interestingly the dissolving effect of hexanediol on PfCen1 in vitro was moderate, which we attribute to the polar component in centrin assembly, which has been documented earlier (Tourbez et al. 2004). In vivo, however, only 5 min of treatment caused a striking dissolution of most centrin foci in wild type parasites, which is compatible with the interpretation that centrin or centriolar plaque assembly could be driven by biomolecular condensation.

      E) The fact that HsCen2 also forms biomolecular condensates is very intriguing, but further investigation would be needed to assess the generality of these findings. For instance, the authors could test in vitro also S. cerevisiae Cdc31, the founding member of the Centrin family of proteins to further enhance the impact of their study.

      We thank the reviewer for this suggestion. It would of course be exciting to investigate in more detail how widely this biochemical property of some centrins is conserved. To take a first step in that direction, we have recombinantly expressed centrins containing some N-terminal IDRs from C. reinhardtii, T. brucei and S. cerevisiae to represent organism of significant evolutionary distance. Using our in vitro phase separation assays, we found a very similar behavior to PfCen1 for two centrins while yeast Cdc31, although forming droplets, had a much higher saturation concentration, which could be explained by the significantly lower intrinsic disorder in its sequence (now new Fig. 3).

      Minor comments

      1) For the experiments reported in Fig. 3D, the same concentrations as those used in Fig. 3A-C (namely 10 microM, and not 30 microM as in Fig. 3D) should be used. Moreover, it would be informative to test whether PfCen2 and PfCen4 as PfCen3 when added to PfCen1.

      Unfortunately, this experiment is not feasible since Cen3 does not produce droplets at 10 µM. Hence, in Fig. 3D we aimed to test if Cen1 is incorporated into preformed droplets i.e. whether there is still some interaction between them. We have, however, tested the addition of Cen2 to Cen1 and Cen3 and as expected from the inability PfCen2 to condensate we did not find the same synergistic effect as for Cen1 and 3 together (now Fig. S6). The combination of Cen1/2/3 still enabled co-condensation while addition of Cen4 did not further improve droplet formation. Taken together this strongly suggests that only Cen1 and 3 contribute to the phase separation in vitro (lines 184ff).

      2) The authors mention that the effect of Calcium in inducing biomolecular condensates is specific, as Magnesium was not effective (lines 94-95). However, an examination of Fig. S3B indicates that the Magnesium also exhibits some activity, albeit less potent than Calcium. The authors should discuss this point and rectify the wording in the main text.

      Thank you for pointing this out. While PfCen1 is not reactive to Magnesium, PfCen3 and HsCen2 do display a small reaction, which we now more clearly mention in the text (lines 118ff). Of note Mg2+ and other divalent cation are known to generally promote phase separation.

      3) Do the authors think that PfCen2 and PfCent4 localize to the centriolar plaque in vivo using another mechanism that deployed by PfCen1 and PfCent3? It would be good to discuss this point.

      This is indeed a point worth discussing. Centrins can of course still interact in the absence of biomolecular condensation and their localization to the centriolar plaque is not dependent on their ability to phase-separate as seen for PfCen2 and 4. We have recently described a novel centriolar plaque protein PfSlp that interacts with centrins and might assist recruitment (Wenz et al. 2023). Cellular condensates are, however, often separated into scaffold proteins, which actually phase separate and client protein which get recruited into those condensates. It is easily conceivable that Cen1 and 3 participate in formation of the biomolecular condensate into which Cen2 and 4 as well as other centriolar plaque proteins might be recruited. Unfortunately, we were not yet able to establish a recruitment hierarchy by e.g. dual-labeling of centrins to test whether PfCen1 and 3 might appear prior to PfCen2 and 4. We now include those aspects in the extended discussion.

      4) Given that the EFh-dead mutant exhibits no activity in vitro and fails to localize in vivo, one potential concern is that the protein is misfolded. The authors should conduct a CD spectrum to investigate this.

      Thank you for suggesting this relevant control experiment. We have carried out CD spectroscopy of wild type and EFh-dead PfCen1 and find no difference in secondary structure distribution. We now added these data to the supplemental information (now Fig. S14).

      5) It is not entirely clear from the main text in lines 103-104, as well as from the legend, what Fig. S3B shows. When was EDTA added in this case?

      Thank you for requesting clarification. We will assume the reviewer is referring to Fig S4B. We wanted to show that contrary to PfCen3 that PfCen1 droplets can still be resolved after an elongated period of incubation with calcium but forgot to mark the timepoint of EDTA addition at 180 min in the graph. We have now corrected this and further reworded the sentence for more clarity (lines 132ff).

      6) Fig. S7: the correlation between PfCen1-GFP expression levels and ECCA appearance is modest at best. What statistical test was applied? This should be spelled out. Moreover, the authors should combine the two data sets, as this will provide further statistical power to assess whether a correlation is truly present.

      Indeed, the correlation is modest but statistically significant, which is why we decided to place this data in the supplemental information. The used statistical test was an F-test provided by Prism, which compares two competing regression models, which we now mention in the legend. Combining the two data sets is unfortunately not possible since they arise from two independent sets of measurements where different imaging settings had to be used to adjust for the very different fluorescent protein levels in both lines after induction.

      7) The authors may want to discuss how their findings can be reconciled with the notion that Centrin assemble into a helical polymer on the inside of the centriole (doi: 10.1126/sciadv.aaz4137).

      This is an interesting point. Although centrin does localize to the inside of the centriole (https://doi.org/10.15252/embj.2022112107), more precisely one pool at the distal part and one pool at the core, there is no evidence that it is itself part of the helical inner scaffold described by the authors even though it might localize in close proximity to it. Further, there are several examples where polymers such as microtubules act as seeding point for biomolecular condensates or the other way around, and our work suggest this could be a potential working model for centrins. We have discussed our results extensively with the two corresponding authors of the aforementioned study (i.e. Virginie Hamel and Paul Guichard) and agreed that our data are not conflicting. Nevertheless, we include the inner centriole localization and potential association with polymer structures of centrin in our extended discussion.

      9) Likewise, the authors may want to speculate regarding what their findings signify for the role of Centrin proteins in detection of nucleotide excision repair (doi: 10.1083/jcb.201012093).

      We appreciate the comment by the reviewer. Centrins seem to have many different potential roles that remain to be clarified. While we are excited about this, we think it is too early to speculate about the impact of centrin condensation on less well studied aspects of centrins such as nucleotide excision repair. We, however, now cite this study in the discussion to highlight the functional diversity of centrins.

      Small things

      • Fig. 1A: change color for microtubules as red on red is difficult to discern.

      Throughout our publications we use this shade of magenta to label microtubules in schematics and have therefore opted to use a slightly brighter shade of red for the RBCs instead to improve visibility.

      • Fig. 1C: the indicated boxes in the top row do not seem to correspond exactly to the insets shown in the bottom row.

      We have verified the position of the boxes and found them to be accurate. Possibly the different imaging modality used for both panels (confocal vs STED) creates this impression.

      • line 266: typo, promotor > promoter.

      Has been corrected.

      • line 360: a reference should be provided for the GFP-booster, including the concentration at which it was used.

      Has been added.

      • line 363: "an" missing before "HC".

      Has been corrected.

      • line 428: it would be best to deposit the macros on Github or an analogous repository.

      Macros have been deposited on https://github.com/SeverinaKlaus/ImageJ-Macros (line 737)

      • line 461: "to the" is duplicated.

      Has been corrected.

      • Fig. S5A: maybe draw the lines in red (as red in Fig. S5B correspond to the proteins that do not have IDRs).

      Since we cannot easily change the line colors of the IDR graphs, we have inverted the font color for Fig. S5B instead.

      • Movie S7, legend: left frames shows PfCen1-GFP, not microtubules as currently stated.

      Has been corrected.

      Reviewer #2 (Significance):

      This is a provocative study that extends initial observations regarding self-assembly properties of Centrin proteins, and posits that some members of this evolutionarily conserved family can form biomolecular condensates. After the above outstanding issues have been properly addressed, these data could have important implications for understanding Centrin function in centriole biology and DNA repair. Therefore, these findings will be of interest to a cell biology audience.

      Field of expertise: cell biology.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary:

      The authors have provided a comprehensive characterisation of centrin proteins in Plasmodium falciparum. Through expression of episomal GFP-tagged centrin for in vitro, they were able to observe co-localisation of centrin with centriolar plaques during the replicative stage of the parasite. They also utilised live cell STED microscopy to track dynamic changes in centrin morphology. They have also demonstrated calcium-dependent phase separation dynamics in bacterially-expressed P. falciparum centrin and human centrin 2. The formation of liquid-liquid phase separation in PfCen1, 3 and HsCen2 tied well with IUPred3 predictions of intrinsically disordered regions in these proteins. Using an inducible DiCre overexpression system with two promoters of varying strengths, the authors have shown accumulation of centrin1 outside of centrosomes and premature appearance of centriolar plaques. Finally, changes on the centrin1 protein, i.e., N-terminal deletion, and mutations in calcium binding sites in the EFh domains, have shown a reduction in the formation of ECCAs during overexpression and inability to form LLPS in vitro, respectively.

      Major comments:

      1. Given that parasites cannot tolerate endogenous C-terminal tagging of some centrins (but not all, as PbCen4 was successfully tagged), has N-terminal tagging been attempted either by the authors or in previous publications? Note that this is not a request for further experimentation; rather, maybe this can be noted in the manuscript; and line 62 can be rephrased for transparency.

      We have not attempted N-terminal tagging ourselves but through personal communication with Rita Tewari we were informed that neither N- nor C-terminal tagging for PbCen1-3 was successful in the context of the study published by Roques et al 2018. We have only unsuccessfully attempted C-terminal tagging in several iterations. Due to importance of N-terminus for interaction and function in other organisms it is plausible that N-terminal tagging is even more unlikely to work. Since we have not exhaustively attempted every tagging strategy on every centrin we, as suggested, rephrased the text accordingly (lines 81ff).

      1. Is there a possibility that by adding a C-terminal tag, centrin may lose a specific function or cause change in the physicochemical properties of the protein (thus making C-terminal tagging lethal)? Was His tag removal attempted so the native protein can be used in the LLPS experiments? IUPred3 analysis showed potential IDR at the C-terminal end of PfCen4. Could the C-terminal tag have caused the protein to not form droplets in the presence of Ca2+?

      As we could show for PfCen1-GFP, the tag did not impair its ability to undergo LLPS which is at least partly mediated by the N-terminus, and that it could still properly localizes to the centriolar plaque. The fact that some endogenous centrins cannot be tagged suggest that there is a functional relevance to the C-terminus that could e.g. be an interaction with other essential centriolar plaque components. As suggested in a reply to Reviewer 1, we consider a substantial and centrin-specific effect of the small His-tag on phase separation unlikely. To be sure, we have repeated our turbidity assays with tag-free versions of PfCen1-4 and found no change in phase separation properties (now Fig. S3E).

      1. It has been shown by the authors that different tagged centrins co-condense which may support the localisation data (Figure 1C). However, is there a way to show that the episomally- and endogenously-expressed centrin co-localise with each other (e.g., confocal microscopy with anti-centrin vs anti-gfp in PfCen-GFP lines, that is if the authors have access to anti-centrin antibodies)? Has endogenous centrin been demonstrated to form ECCAs (in previous publications or by the authors)?

      These are important questions by the reviewer. Due to the high sequence homology centrin antibodies, even if raised against a specific centrin (such as PfCen3 in this study), will likely cross-react with other centrins. So far, we have not been able to produce a staining were the anti-GFP-positive foci are devoid of anti-centrin3 staining, which limits the interpretation of these data. The outer centriolar plaque compartment containing centrin is, however, well defined by now and the localization pattern of endogenous centrin and Centrin1 and 4-GFP seems identical. In a more recent study from our lab Cen1-GFP IP has identified other endogenous centrins as interaction partners (Wenz et al 2023), like the Roques et al. 2018 study did for PbCen4-GFP indicating that the tag does not abolish interaction between centrins. So far, we have never detected any ECCAs, nor have we identified any similar structure in the literature. This suggest that this is indeed a consequence of excessive centrin concentration. Importantly we now have added data from a new parasite line overexpressing untagged PfCen1 using the T2A skip peptide (pFIO+_GFP-T2A-Cen1) which displays ECCAs upon induction, showing that this effect is not a mere consequence of tagging (now Fig. 5H-K).

      Minor comments:

      1. How were the times (post addition of Ca2+) presented in Figure 2A determined?

      We noted down the time of calcium addition and cross-referenced it with the timestamps available in the metadata of the movie files (e.g. file creation timepoint marks the start of the movie). We now mention this in the legend.

      1. Line 126: Figure 1B should be Figure 1C

      2. Line 145: Figure 1C-D should be Figure 1D-E

      3. Line 151: Figure 3A should be Figure 4A

      Thank you for spotting these mistakes, which now have been corrected.

      1. Line 152: Suggest rephrasing "placing the gene of interest in front of the promoter" to "placing the gene of interest immediately downstream of the promoter" or something similar

      Thank you for this good suggestion.

      1. Any growth phenotype changes observed in the overexpressors?

      The parasite lines seem to silence the Cen1-4-GFP expression plasmids readily, which suggest that there might be a growth disadvantage. However, repeated attempts to quantify a growth phenotype were unsuccessful due to high variability in the data, which might be partly connected to the fact that the fraction of GFP positive cells after induction can vary between lines and replicas.

      1. How often are ECCAs observed in pARL strains, or are they not observed at all? This might be good to mention.

      ECCAs in the pArl strains have been observed on very limited instances but are too rare to be quantified. We now mention this in the text (lines 217ff).

      1. Line 192 and Figure S8: n {less than or equal to} 33 (either a typographical error and should have been {greater than or equal to}, otherwise, it may be expressed as a range)

      It was indeed a typographical error that was now corrected.

      1. Line 258: Methods on the generation of FIO/FIO+ was a bit difficult to understand. Maybe a simple plasmid schematic with the restriction sites (at least for the original plasmid) in the supplementary may help clarify this.

      Cloning strategy has been expanded with additional information for clarity.

      1. Line 295: include abbreviation of cRPMI here rather than in Line 303

      Has been corrected.

      1. Line 322: typographical error on WR99210 working concentration?

      Has been corrected.

      1. Line 372: Last sentence on area and raw integrated density measurement is unclear.

      We have reformulated the sentence for more clarity.

      1. Line 461: typographical error in last sentence

      Has been corrected.

      1. Line 532: Figure 4E should be Figure 4F

      Has been corrected.

      Reviewer #3 (Significance):

      DNA replication is vital to the survival of malaria parasites. A deeper understanding on their unusual form of replication may be exploited to find drug targets uniquely directed to the parasite. Biological insights from this work can also provide a jump-off point for unravelling unusual replication in other organisms. Data on the physicochemical analysis of centrin is not just of great interest for those in the field of parasitology, but also for those in the much wider fields of biology, physics and chemistry. Techniques presented in this work (e.g., DiCre overexpression with different promoters) can definitely be utilised for the elucidation of protein function within and outside the field of parasitology.

      My field of expertise is in Plasmodium spp., particularly in parasite replication, molecular and cellular biology, and epigenetics.

      We thank the reviewer for the appreciation of our work in terms of insight and technology development.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      The authors have provided a comprehensive characterisation of centrin proteins in Plasmodium falciparum. Through expression of episomal GFP-tagged centrin for in vitro, they were able to observe co-localisation of centrin with centriolar plaques during the replicative stage of the parasite. They also utilised live cell STED microscopy to track dynamic changes in centrin morphology. They have also demonstrated calcium-dependent phase separation dynamics in bacterially-expressed P. falciparum centrin and human centrin 2. The formation of liquid-liquid phase separation in PfCen1, 3 and HsCen2 tied well with IUPred3 predictions of intrinsically disordered regions in these proteins. Using an inducible DiCre overexpression system with two promoters of varying strengths, the authors have shown accumulation of centrin1 outside of centrosomes and premature appearance of centriolar plaques. Finally, changes on the centrin1 protein, i.e., N-terminal deletion, and mutations in calcium binding sites in the EFh domains, have shown a reduction in the formation of ECCAs during overexpression and inability to form LLPS in vitro, respectively.

      Major comments:

      1. Given that parasites cannot tolerate endogenous C-terminal tagging of some centrins (but not all, as PbCen4 was successfully tagged), has N-terminal tagging been attempted either by the authors or in previous publications? Note that this is not a request for further experimentation; rather, maybe this can be noted in the manuscript; and line 62 can be rephrased for transparency.
      2. Is there a possibility that by adding a C-terminal tag, centrin may lose a specific function or cause change in the physicochemical properties of the protein (thus making C-terminal tagging lethal)? Was His tag removal attempted so the native protein can be used in the LLPS experiments? IUPred3 analysis showed potential IDR at the C-terminal end of PfCen4. Could the C-terminal tag have caused the protein to not form droplets in the presence of Ca2+?
      3. It has been shown by the authors that different tagged centrins co-condense which may support the localisation data (Figure 1C). However, is there a way to show that the episomally- and endogenously-expressed centrin co-localise with each other (e.g., confocal microscopy with anti-centrin vs anti-gfp in PfCen-GFP lines, that is if the authors have access to anti-centrin antibodies)? Has endogenous centrin been demonstrated to form ECCAs (in previous publications or by the authors)?

      Minor comments:

      1. How were the times (post addition of Ca2+) presented in Figure 2A determined?
      2. Line 126: Figure 1B should be Figure 1C
      3. Line 145: Figure 1C-D should be Figure 1D-E
      4. Line 151: Figure 3A should be Figure 4A
      5. Line 152: Suggest rephrasing "placing the gene of interest in front of the promoter" to "placing the gene of interest immediately downstream of the promoter" or something similar
      6. Any growth phenotype changes observed in the overexpressors?
      7. How often are ECCAs observed in pARL strains, or are they not observed at all? This might be good to mention.
      8. Line 192 and Figure S8: n {less than or equal to} 33 (either a typographical error and should have been {greater than or equal to}, otherwise, it may be expressed as a range)
      9. Line 258: Methods on the generation of FIO/FIO+ was a bit difficult to understand. Maybe a simple plasmid schematic with the restriction sites (at least for the original plasmid) in the supplementary may help clarify this.
      10. Line 295: include abbreviation of cRPMI here rather than in Line 303
      11. Line 322: typographical error on WR99210 working concentration?
      12. Line 372: Last sentence on area and raw integrated density measurement is unclear.
      13. Line 461: typographical error in last sentence
      14. Line 532: Figure 4E should be Figure 4F

      Significance

      DNA replication is vital to the survival of malaria parasites. A deeper understanding on their unusual form of replication may be exploited to find drug targets uniquely directed to the parasite. Biological insights from this work can also provide a jump-off point for unravelling unusual replication in other organisms. Data on the physicochemical analysis of centrin is not just of great interest for those in the field of parasitology, but also for those in the much wider fields of biology, physics and chemistry. Techniques presented in this work (e.g., DiCre overexpression with different promoters) can definitely be utilised for the elucidation of protein function within and outside the field of parasitology.

      My field of expertise is in Plasmodium spp., particularly in parasite replication, molecular and cellular biology, and epigenetics.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The authors analyzed the properties of the four Centrin proteins of the malaria parasite using a combination of in vitro and in vivo approaches. Their findings indicate that two of the four Plasmodium Centrin proteins, PfCen1 and PfCen3, as well as the human Centrin protein HsCen2, exhibit features of biomolecular condensates. Moreover, analysis of cells overexpressing PfCen1 indicates that such biomolecular condensates become more numerous as cells approach mitosis and are dissolved thereafter.

      Major comments

      • A) A critical point that requires clarification is how the protein concentrations used in the in vitro and in vivo assays (20-200 microM in vitro, and not estimated in vivo) compare to that of the endogenous components. This is important because it may well be that 6His-tagged PfCen1, PfCen3 and HsCen2 can form biomolecular condensates when present in vast excess, but not when present in physiological concentrations. The authors should report the estimated cellular concentration of PfCen1-4, as well as that achieved upon PfCen1-GFP overexpression (on top of endogenous PfCen1), for instance using semi-quantitative immunoblotting analysis. Given this limitation, the authors may also want to temper their title by introducing the word "can" after "centrins".
      • B) Movies S1 and S2 (and the related Fig. 1D and 1E) are not the most convincing to support the notion that the observed assemblies are biomolecular condensates, as not much activity is going on during the recordings. Likewise, Movies S3, and even more so Movie S4, as out of focus for a large fraction of the time, making it difficult to assess what happens at the beginning of the process. Moreover, it appears that fusion events, while occurring, are rather rare. The movies should be exchanged for ones that are in focus, and ideally a rough quantification of fusion events as a function of biomolecular condensate size provided.
      • C) An important control is missing from Fig. 2, namely assaying PfCen1-4 without the 6His tag, to ensure that the tag does not contribute to the observed behavior (although it can of course not be sufficient as evidenced by the lack of biomolecular condensates for PfCen2 and PfCen4).
      • D) The authors should test whether the assemblies formed by PfCen1 and PfCen3 are sensitive to 1,6-hexanediol treatment, as expected for biomolecular condensates.
      • E) The fact that HsCen2 also forms biomolecular condensates is very intriguing, but further investigation would be needed to assess the generality of these findings. For instance, the authors could test in vitro also S. cerevisiae Cdc31, the founding member of the Centrin family of proteins to further enhance the impact of their study.

      Minor comments

      1. For the experiments reported in Fig. 3D, the same concentrations as those used in Fig. 3A-C (namely 10 microM, and not 30 microM as in Fig. 3D) should be used. Moreover, it would be informative to test whether PfCen2 and PfCen4 as PfCen3 when added to PfCen1.
      2. The authors mention that the effect of Calcium in inducing biomolecular condensates is specific, as Magnesium was not effective (lines 94-95). However, an examination of Fig. S3B indicates that the Magnesium also exhibits some activity, albeit less potent than Calcium. The authors should discuss this point and rectify the wording in the main text.
      3. Do the authors think that PfCen2 and PfCent4 localize to the centriole plaque in vivo using another mechanism that deployed by PfCen1 and PfCent3? It would be good to discuss this point.
      4. Given that the EFh-dead mutant exhibits no activity in vitro and fails to localize in vivo, one potential concern is that the protein is misfolded. The authors should conduct a CD spectrum to investigate this.
      5. It is not entirely clear from the main text in lines 103-104, as well as from the legend, what Fig. S3B shows. When was EDTA added in this case?
      6. Fig. S7: the correlation between PfCen1-GFP expression levels and ECCA appearance is modest at best. What statistical test was applied? This should be spelled out. Moreover, the authors should combine the two data sets, as this will provide further statistical power to assess whether a correlation is truly present.
      7. The authors may want to discuss how their findings can be reconciled with the notion that Centrin assemble into a helical polymer on the inside of the centriole (doi: 10.1126/sciadv.aaz4137).
      8. Likewise, the authors may want to speculate regarding what their findings signify for the role of Centrin proteins in detection of nucleotide excision repair (doi: 10.1083/jcb.201012093).

      Small things

      • Fig. 1A: change color for microtubules as red on red is difficult to discernn.
      • Fig. 1C: the indicated boxes in the top row do not seem to correspond exactly to the insets shown in the bottom row.
      • line 266: typo, promotor > promoter.
      • line 360: a reference should be provided for the GFP-booster, including the concentration at which it was used.
      • line 363: "an" missing before "HC".
      • line 428: it would be best to deposit the macros on Github or an analogous repository.
      • line 461: "to the" is duplicated.
      • Fig. S5A: maybe draw the lines in red (as red in Fig. S5B correspond to the proteins that do not have IDRs).
      • Movie S7, legend: left frames shows PfCen1-GFP, not microtubules as currently stated.

      Significance

      This is a provocative study that extends initial observations regarding self-assembly properties of Centrin proteins, and posits that some members of this evolutionarily conserved family can form biomolecular condensates. After the above outstanding issues have been properly addressed, these data could have important implications for understanding Centrin function in centriole biology and DNA repair. Therefore, these findings will be of interest to a cell biology audience.

      Field of expertise: cell biology.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Voss, Reinert and colleagues show calcium-dependent assembly of Plasmodium falciparum centrins in vitro and in parasites. This assembly is dependent on the EF-hands of centrin and an N-terminal disordered region.

      Major concerns:

      1. The very definitive title is not wholly supported by the data. This should be qualified by specifying the conditions under which the centrins can accumulate in this way.
      2. A major concern is whether this behaviour of centrins represents a biologically relevant mechanism in centriolar plaque formation. Is this limited to high overexpression conditions or in vitro high concentrations? Or is it a result of the tagging of the P. falciparum centrins? A convincing approach to addressing this issue would be to knock-in a fluorescent tag to the centrin loci. Roques et al. (ref. 12 in this submission) report the GFP tagging of centrin-4 in P. berghei, although they note that centrins-1 to -3 were refractory to tagging in this organism. It is unclear whether Voss et al. attempted this tagging in P. falciparum. This should be clarified and relevant data presented.

      If the tagged molecules used in the biochemical parts of this study are functional, It is challenging to understand why the centrins cannot be tagged in P. falciparum. If the tags render the P. falciparum centrins dysfunctional, the study becomes significantly less useful.<br /> 3. If a knock-in cannot be achieved, it must be shown that the transgenic expression of tagged Plasmodium centrins does not confound the analysis of centrin behaviour. It is known that these proteins can behave anomalously when overexpressed (Yang et al. 2010, PMID: 20980622; Prosser et al. 2009, PMID: 19139275), at least in other species.

      A previous description of centriolar plaque from the authors' lab (Simon et al. 2021, PMID: 34535568) shows an organized structure of an established size. It should be demonstrated whether the structures formed with the GFP tagged centrins show the same dimensions and dynamics as those in wild-type parasites. The extent of the overexpression of the GFP-tagged centrins should also be demonstrated.<br /> 4. It would also be useful to remove the His tag from the recombinantly expressed and purified centrins for the in vitro analyses, particularly if concern remains about the impact of tags on Plasmodium centrin behaviour.<br /> 5. The discussion is very short and does not consider the findings presented here in the context of the literature, with respect to centrins, Plasmodium MTOC assembly mechanisms, or to general considerations around biological condensates. Andrea Musacchio's recent commentary (ref. 44 in the current submission) advocates caution in ascribing phase separation as an assembly mechanism for organelles in vivo, particularly on the basis of in vitro experiments with high concentrations of homogeneous protein. It is not clear that the concentration dependence of extracentrosomal centrin accumulations (ECCAs) at the onset of schizogony provides sufficient justification of a phase separation model in vivo. The authors' recent description of the involvement of an SFI1-like protein, SIp (Wenz et al. 2023 PMID: 37130129), in the centriolar plaque makes a case for non-homotypic interactions also driving assembly and alternative models for ECCA are not convincingly excluded. The absence of a robust discussion of such considerations is unhelpful to the reader.<br /> 6. It is also unclear whether the analysis of human centrin is suggested to indicate a phase separation mechanism for centrins in human cells. As this is readily testable, this notion could be considered further. Although its experimental examination may lie outside the theme of this study, one would expect some discussion of the significance of the data presented in the study.

      Minor points

      1. There are only three centrins in humans. Centrin 4 is a pseudogene (Gene ID: 729338 on NCBI).
      2. Line 175 should say 'temporally', rather than 'temporarily. The Abstract should say 'evolutionarily conserved', rather than 'evolutionary conserved'. 'To condensate' is not ideal as a phrase- 'to form a condensate' would be clearer.

      Referees cross-commenting

      I think the other 2 reviewers have made fair, cogent and constructive points. There is good convergence between the reviewers on the significant issues around the study. These concern in vivo and in vitro effects of tagging and of of high concentrations.

      Significance

      The biology of the Plasmodium centriolar plaque is of great interest as an alternative MTOC structure, with obvious additional interest deriving from the role of this organism in malaria. Much remains to be learned about this structure, so the topic of this paper is likely to attract a broad readership. Furthermore, the centrins are a widely-expressed and evolutionarily conserved family of eukaryotic proteins, with multiple roles; a new model for their behaviour, such as is suggested here, would be of interest to many cell biologists.

      With that in mind, significant additional data should be provided to substantiate the model proposed by the authors.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Radial spokes are evolutionarily conserved protein complexes that are important for cilia motility. So far, the composition of certain radial spokes was investigated in the algae Chlamydomonas, mice, and humans. This work by Bicka et al. investigated the composition of radial spokes in the ciliate Tetrahymena by analyzing knockouts and strains that express tagged radial spoke proteins, using mass spectrometry and cryo-electron tomography. While three specific types of radial spokes have been reported thus far, this study suggests that in Tetrahymena, there is another layer to the variability in radial spokes. Additionally, many proteins with predicted enzymatic folds have now been assigned to radial spokes. The comparison of ciliary complexes between species is important to define the basic principles that govern cilia motility, as well as to reveal the differences that enable cilia of various organisms to beat in diverse environments.

      Strengths:<br /> The manuscript includes a thorough bioinformatic analysis of radial spoke proteins in Tetrahymena and reveals the presence of multiple orthologs to certain algae and mammalian radial spoke proteins. The mass spectrometry analysis and cryo-electron tomography experiments are solid and informative. This work provides a lot of important data and thus, opens the door to resolve the exact composition and structures of radial spokes in Tetrahymena and perhaps other species.

      Weaknesses:<br /> The assignment of the three RSP3 orthologs to RS1, RS2, and RS3 is based only on missing structures in the knockouts. Although this method is informative, it is not sufficient to draw conclusions regarding the positions of the missing proteins. There are numerous examples where a structure was missing, but the absent protein was localized elsewhere (i.e., absence of central pair protrusions in patients with mutations in radial spoke proteins). To directly demonstrate the position of an RSP3 ortholog in a certain radial spoke, the protein can be labeled with a tag that is visualized in subtomogram averages (as was done in Oda et al., 2014 and other studies). Relying on the data from knockouts alone, the model for radial spoke composition in Tetrahymena (Fig. 6) may be incomplete.

      The control for the bio-ID experiment was WT cells. Since there are many hits in the experiment, a better control would have been a strain with free BirA, or BirA fused to a protein that is distant from the radial spokes, such as one of the outer-dynein arm proteins, or a ciliary membrane protein.

    2. Author Response

      We thank Editors and Reviewers for their positive evaluation of our work and appreciation of new findings and applied interdisciplinary approaches. We also thank for pointing out manuscript weaknesses as well as for all suggestions and advices that can strengthen this manuscript. We apologise for mistakes, overstatements or discrepancies in citing figures as well as omitted references.

      The first part of the manuscript focuses on the Tetrahymena RSP3 genes mutants.  Tetrahymena genome encodes three RSP3 paralogs that are the components of different radial spokes and likely form homo- and heterodimers. Thus, the proteomic analyses of Tetrahymena radial spokes are more complicated compared to the similar analyses in organisms having a single RSP3 protein.

      Next, we attempted to identify proteins specific for each RS type. Conducting this research, we took advantage of six different radial spoke knockout mutants (RSP3A-KO, RSP3B-KO, RSP3C-KO, CFAP206-KO, CFAP61-KO, and CFAP91-KO) and compared wild-type and mutants’ ciliomes using two methods, LFQ and TMT (for each mutant the experiment was repeated three times). Comparative analyses of the wild-type and mutants ciliomes allowed us to identify Tetrahymena radial spoke proteins, in the case of RS1 (WT versus RSP3A-KO), RS2 (WT versus RSP3B-KO, RSP3C-KO, and CFAP206-KO), and RS3 (wild-type versus  CFAP61-KO and CFAP91-KO). The extensive proteomic analyses were combined with detailed bioinformatics studies and co-immunoprecipitation and BioID assays to verify the presence of identified proteins in RS complexes. 

      Importantly, in the case of RS1 and RS2 spokes, our findings are in agreement with data obtained for Chlamydomonas and mammalian radial spokes. Thus, it is very likely, that newly discovered RS1 and RS2 proteins as well as identified Tetrahymena RS3 proteins are also true RS subunits.

      As an outcome of this part, we propose a model of the RS protein composition in a ciliate Tetrahymena. We agree that this model requires further experimental verification (for example by pull-down experiments).  However, considering the number of identified proteins, this is a considerable amount of additional work that we would like to publish as separate papers. We would like to add that our current analyses of additional RS3 mutant (that will be published separately) support findings regarding RS3 proteomic composition.

      Reviewer 2:

      The control for the bio-ID experiment was WT cells. Since there are many hits in the experiment, a better control would have been a strain with free BirA, or BirA fused to a protein that is distant from the radial spokes, such as one of the outer-dynein arm proteins, or a ciliary membrane protein.

      The BirA* tag is approximately 30 kDa protein and thus it can be transported to cilia by diffusion. BirA* ligase present throughout the cilia could randomly biotinylate proteins including radial spoke proteins. Thus, expression of the BirA* alone is not the best control. We have performed numerous BioID experiments in which BirA* tag was fused with T/TH subunits (CFAP43, CFAP44, Urbanska et al., 2018), subunits of the small complex positioned parallel to N-DRC (CCDC113, CCDC96, Bazan et al., 2021), CFAP69, SPEF2A (C1b central apparatus complex, Joachimiak et al., 2021), N-DRC proteins (Ghanaeian et al., Biorxiv, 2023) and subunits of other ciliary complexes (our unpublished data). The comparison of the earlier obtained BioID data with RSP BioID data, prove that identified proteins are specifically associated with radial spokes. Therefore, in our model, wild-type cells are a good control for BioID experiments.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful and positive evaluation of our work. Below, we have addressed all of the essential revisions and provide point-by-point responses to all of the reviewer comments. Additionally, we include with this resubmission quantification microneme localization, determined by expansion microscopy, which further validates the central role of HOOK in microneme trafficking.

      Suggested revisions:

      1. Please confirm the interaction between CDPK1 and ROM4 by reciprocal IP.

      Prompted by the reviewers suggestions we examined more closely the pulldowns of WT and myristoylation-deficient CDPK1 (cMut). ROM4 had been identified as differentially enriched in the cMut pulldown; however, upon closer examination we realized that the abundance of ROM4 is actually even greater in the untagged control and therefore likely a variable contaminant in the pulldowns. We have re-analyzed the results of those pulldowns to focus on proteins significantly enriched in association with either WT or cMut CDPK1, relative to untagged controls. Among this set of 16 enriched proteins, only three proteins appeared differentially enriched between WT and cMut. None of the proteins associated with CDPK1 inform pathways related to parasite motility and were therefore not pursued further in this study.

      2. Please compare the expression of the tagged and complemented (cWT and cMut) CDPK1 with the endogenous expression of the non-tagged and non-complemented gene.

      We compared expression levels of CDPK1 using immunoblot with an anti-CDPK1 antibody comparing TIR1, CDPK1-AID, cWT and cMut parasites, which we have included in panel G of Figure 2–figure supplement 1. Endogenous AID tagging of CDPK1 resulted in a decrease in the abundance of CDPK1. cWT and cMut complementation result in similar expression levels to the AID-tagged iKD CDPK1, albeit the cMut complement has marginally higher expression. Since CDPK1 is essential for the lytic cycle, insufficient levels of the cWT expression would have displayed defects in our plaque assays. We have updated our results to reflect this new data:

      “Additionally, we compared endogenous CDPK1 expression to mAID-tagged, cWT, and cMut strain (Figure 2–figure supplement 1). Introduction of a mAID tag to CDPK1 led to a reduction in CDPK1 levels, but these levels were equivalent to complementation products in cWT and cMut parasites.”

      3. Please attempt to confirm that aerolysin treatment does not impact myristoylation-dependent subcellular partitioning of CDPK1.

      The kinase activity in aerolysin-treated parasites was unaffected by the 1B7 inhibitory nanobody, demonstrating that parasites remain impermeable to proteins as small as 15 kDa.  Furthermore, we localize CDPK1 by immunofluorescence in aerolysin-treated parasites to show that the localization of CDPK1 is indistinguishable from that of vehicle-treated parasites, suggesting that overall CDPK1 localization is unaffected by aerolysin treatment. We include this data in panel B in Figure 3–figure supplement 1. Nevertheless, in the manuscript we discuss the limitations of the thiophosphorylation experiment:

      “While our approach largely maintains kinases in their subcellular context, aerolysin treatment disrupts native ion concentrations and detaches the plasma membrane from the inner membrane complex (IMC) (Wichroski et al., 2002).”

      Because of these limitations we rely on the overlap of CDPK1-dependent targets between our thiophosphorylation and time course experiments.

      4. Please confirm the interaction of TGGT1_306920 and TGGT1_316650 with the HOOK and FTS proteins.

      In response to this suggestion, we tagged the C termini of TGGT1_306920 and TGGT1_316650 with 3xHA epitopes. Although immunoprecipitation of TGGT1_316650 was unsuccessful, immunoprecipitation of TGGT1_306920 identified HOOK and FTS as significantly enriched proteins. We include this new data in panel C of Figure 5 and have updated our results:

      “To further confirm the interaction, we fused a 3xHA tag to the C terminus of TGGT1_306920, performed IP-MS and compared protein enrichment to the HOOK-3xHA IP (Figure 5C). HOOK, FTS, and TGGT1_306920 were significantly enriched across both IP-MS experiments, whereas TGGT1_316650 is only significantly enriched in HOOK and FTS pulldowns. This suggests the presence of multiple HOOK complexes composed of the core HOOK and FTS proteins that bind with either TGGT1_316650 or TGGT1_306920.”

      While further interactions with other members of the complex still need to be validated it is not the standard of the field to validate every member of a protein complex by reciprocal IP. Our HOOK and FTS IP-MS results each identified HOOK, FTS, TGGT1_306920, and TGGT1_316650 and our TGGT1_306920 IP-MS identified all members except TGGT1_316650. These interaction partners were found significantly enriched compared to parental controls, which make the observation of the complex robust.

      Reviewer #1 (Recommendations For The Authors):

      I have only a few minor comments:

      1. In the supplemental data section I would include a document of code ( R script) used for the analysis. If this is too cumbersome then I would instead suggest that like done with proteomic data, the code should be deposited in a database that provides a DOI for access, instead of only being provided on request. This can be done by use of an electronic laboratory notebook or via Github.com or a similar service.

      Zip files containing R code and CSVs have been included for the sub-minute resolution phosphoproteomics (Supplementary File 11) and thiophosphorylation (Supplementary File 12).

      2. It would be useful to expand the discussion of the other 2 proteins identified in the HOOK complex TGGT1_316650 and 306920. Do these have homologs to proteins in other organisms? Based on HOOK in other eukaryotes can you provide a model of the 4 proteins in the complex that you identified? Was any work done on 316650 and 306920 with regards to genetic KO or auxin regulation to see if they also provided a similar phenotype to what was described with HOOK and FTS?

      We have included the following information in our discussion:

      “It also remains unknown how the HOOK complex binds to micronemes. In H. sapiens and D. melanogaster, RAB5 on vesicles interacts with FHIP in the HOOK complex(Bielska et al., 2014; Gillingham et al., 2014; Guo et al., 2016; Xu et al., 2008; Yao et al., 2014). We speculate that TGGT1_306920 may serve the role of FHIP within the HOOK complex as it is fitness conferring whereas TGGT1_316650 appears dispensable but the complex's binding partner on micronemes remains unknown. RAB5A and RAB5C have been implicated in the biogenesis of micronemes, but their roles during exocytosis have not been explored(Kremer et al., 2013). Understanding how micronemes are recognized may elucidate how cargo specificity is achieved and regulated.”

      TGGT1_306920 is conserved amongst coccidians and shares similar localization to HOOK and FTS. TGGT1_316650 is conserved amongst apicomplexans and more broadly in subsets of other eukaryotic phyla. Given our IP-MS data, HOOK and FTS form a core complex that is either bound to TGGT1_316650 or TGGT1_306920. Given that TGGT1_306920 appears to be important for parasite fitness, based on genome-wide screening data (Sidik, Huet, et al. 2016), we speculate this could function to mediate the linkage to microneme organelles. At this time, we have no additional data to present on 316650 and 306920. Additional biochemical studies will be needed to characterize the stoichiometry of complexes and their function; however, we propose that HOOK and FTS are interacting as previously described in opisthokonts (Bielska et al., 2014, Guo et al., 2016 and Zhang et al., 2014). 

      3. The myristoylation data section ended with "additional studies will be required to understand how myristoylation influences CDPK1 activity". What studies are required to further this understanding? I assume these studies are difficult and that is why they were not part of this outstanding paper.

      The effect of myristoylation is modest during acute phenotypes like egress (see Figure 2H). Moreover there were no significant differences between cWT and cMut that could explain the impact of CDPK1 on microneme secretion, which was the purpose of this study. Further studies would require a phosphoproteomic workup of the cWT and cMut, which is beyond the scope of the present study.

      4. In the key resource table, in the first column reagent type I suggest you indicate this as T. gondii RH strain to make it clear the background strain (I know it is encoded in additional information but the first column should also be clear).

      We have updated the key resources table to indicate the T. gondii strains used are of RH background.

      Reviewer #2 (Recommendations For The Authors):

      I have a few minor comments that could be addressed by modification of the current version of the manuscript.

      Line 290, where authors classify proteins phosphorylated in CDPK1 dependent manner into five groups, it would be helpful to list at least class 1 (five proteins) and class 2 (four proteins) in the text of the results section. Further since in the same paragraph, the authors are also describing figure 3G, it would be helpful if the groups are identified with roman numerals or as class A, B, C, D, and E. Currently, in fig 3G, the three columns (CDPK1 dependent, CDPK1 independent and fitness scores) are also identified as 1, 2 and 3 and these nomenclatures could be confused with the five different classes of putative substrates.

      We thank the reviewer for their helpful suggestion. We have renamed the classes of CDPK1 targets using roman numerals I, II, III, IV, and V. We have also listed out the proteins in Class I and Class II in the results section as follows:

      “Class I contains five proteins for which the same phosphorylated site was identified in both the time course and thiophosphorylation experiments and include: TGGT1_227610, TGGT1_221470, TGGT1_235160, TGGT1_273560 (KinesinB), and TGGT1_310060. Class II contains four proteins for which phosphorylated sites identified across both approaches were within 50 amino acid residues of one another and include: TGGT1_289100 (MIC18), TGGT1_309190 (AIP), TGGT1_254870, and TGGT1_259630.”

      Line 398, the expansions of the abbreviations FTS and FHIP should be included.

      We have included the expansions of the abbreviations for FTS and FHIP:

      “In D. melanogaster and mammals, HOOK proteins have been shown to form dimers and bind Fused Toes (FTS) and FTS and HOOK-interacting protein (FHIP) via a C-terminal region that interacts with vesicular cargo (Christensen et al., 2021; Krämer and Phistry, 1996; Lee et al., 2018; Xu et al., 2008).”

      The HOOK protein shows CDPK1-dependent phosphorylation at multiple sites S167, S177, and S189-191. In the discussion section, it would be helpful if the authors can speculate about the importance of these phosphorylated residues on the functioning of HOOK.

      Prior to engaging parasite motility, micronemes are positioned at the apical third of the parasite, but after an increase in intracellular Ca_2+_, micronemes rapidly traffic to the apical tip of the parasite. Our results indicate that both CDPK1 kinase activity and HOOK are required for microneme trafficking. Given the association of micronemes with tubulin-based structures such as the cortical microtubules and conoid, activation of trafficking along such structures must be rapid, on the time scale of seconds. Cell-free reconstitution assays generated from opisthokonts indicate that activating adaptors like HOOK are necessary to activate processive dynein trafficking along microtubules in addition to conferring cargo selectivity. In intracellular non-motile parasites, HOOK is expressed and localized to the apical end and cytosol prior to the activation of rapid microneme trafficking, consistent with regulation of HOOK activity. We have included reference to this type of regulation and our expectation that CDPK1 activates the HOOK complex as part of the Discussion:

      “Phosphorylation has been reported to regulate the function of activating adaptors. In HeLa cells, phosphorylation of BICD2 facilitates recruitment of dynein and dynactin (Gallisà-Suñé et al. 2023). Analogously, phosphorylation of JIP1 mediates the switch between kinesin and dynein motility of autophagosomes in murine neurons (Fu et al. 2014). We therefore speculate that phosphorylation of HOOK by CDPK1 may activate the adaptor by promoting its interaction with dynein and dynactin to initiate trafficking of micronemes.”

      Reviewer #3 (Recommendations For The Authors):

      1. CDPK1 myristoylation. The loss of myristoylation of CDPK1 appears to increase its interaction with ROM4 which also becomes cytosolic instead of localizing to the plasma membrane. As ROM4 is necessary for microneme discharge after proteolysis it would be interesting to investigate the specific relation between CDPK1 and ROM4 and to confirm the interaction by reciprocal IP.

      Please see our response to Suggested Revision #1.

      2. CDPK1 myristoylation, Figure 2D. It would be useful to compare the expression of the tagged and complemented (cWT and cMut) CDPK1 with the endogenous expression of the non-tagged and non-complemented gene.

      Please see our response to Suggested Revision #2.

      3. Thiophosphorylation. The authors used the bacterial toxin aerolysin to semi-permeabilize parasite membranes by forming 3-nm pores. Aerolysin affects the membrane integrity, however, the authors demonstrated that CDPK1 is possibly associated with membrane structures (Figure 2E/F). Could it be possible to transiently destabilize the membrane before to treat with KTPγS or ATP? If not, it would be necessary to confirm that aerolysin treatment does not impact myristoylation-dependent subcellular partitioning of CDPK1 before identifying proteins specifically labelled by CDPK1G and not by CDPK1M (Figure 3C).

      Please see our response to Essential Revision #3.

      4. IP-MS on HOOK-3xHA parasites. The authors' results suggest that HOOK and FTS form a functional complex implicated in microneme exocytosis. It would be interesting to know if HOOK knockdown can have an effect on FTS expression or localization and reciprocally.

      While we agree with the reviewer that this is an interesting question, we focused this paper on the discovery of the complex in relation to CDPK1. Understanding the regulation and interaction of the complex components is the focus of ongoing work and will require generation of new strains and additional mass spectrometry. For those reasons we find these experiments fall beyond the scope of the present study.

      5. FTS-Turbo-ID. (Line 443-444) Authors should confirm the interaction of TGGT1_306920 and TGGT1_316650 with the HOOK and FTS proteins, it will give strength to their conclusion. In fact, without confirmation, everything is based on suggestions that were also formulated but not confirmed in humans. The physical existence of this putative complex should be demonstrated by co-IP experiments. In addition, the missing player is a dynein candidate itself, which leaves the model vulnerable. Short of pursuing this experimentally, it should at least be commented on in the Discussion.

      Please see our response to Sugegsted Revision #4. Our IP-MS experiments of HOOK-3xHA and FTS-3xHA indicate interactions with HOOK, FTS, TGGT1_316650, and TGGT1_306920. Our FTS-TurboID experiments also suggest an interaction between FTS, HOOK, TGGT1_316650 and TGGT1_306920. Furthermore, our TGGT1_306920 IP-MS data identifies HOOK and FTS, but not TGGT1_316650, suggesting distinct complexes with HOOK and FTS as core components.

      6. MIC2 secretion (Fig 5J). The rep represented by the grey dot with a white outline seems like an outlier result compared to the other 2 reps. Basically, without this rep there at least is a strong trend that there is a difference in secretion without EtOH stimulation. That is what actually would be expected, for constitutive secretion! Please carefully reconsider these data - e.g. check for outlier statistics and/or add reps.

      We present three independent biological replicates, showing a significant difference in microneme secretion following depletion of CDPK1, HOOK, or FTS. It is expected, based on our prior experience, that microneme secretion will vary day to day. However, the expected trend can be observed in all replicates. We are unclear what the reviewer means by constitutive secretion since some low-level of calcium-dependent microneme discharge is expected even in the absence of stimulation, barring BAPTA-AM treatment. Even in the absence of EtOH stimulation (left graph in Fig. 5J), the trend of diminished basal MIC2 release holds when CDPK1, HOOK, or FTS is knocked down.

      7. Apical accumulation of micronemes. A similar observation was made upon manipulation of Ferlin1, which is a manuscript on BioRXivs. Since other BioRXiv manuscripts are cited in the presented work, this is an omission.

      We apologize for this omission and have updated the manuscript accordingly:

      “It therefore appears that the initial round of microneme discharge during egress depends on CDPK1, and only subsequent rounds require the HOOK complex. Indeed, a fraction of micronemes are already found docked at the apical complex prior to the transition from the replicative to the motile stages, and may constitute the first round of microneme exocytosis (Mageswaran et al., 2021; Sun et al., 2022). Ferlin 1 (FER1) was recently shown to be involved in microneme positioning and overexpression of FER1 was sufficient to initiate an initial round of microneme exocytosis and induce egress (Tagoe et al. 2020).”

      Minor comments:

      1. Concerning the expression of the HOOK protein in Figures 4B, and C, could the author indicate why they performed the IFA after 24h of auxin treatment and the WB after 40h of treatment?

      The difference in timing was for technical reasons. Our immunoblots and additional assays such as microneme secretion require more parasites, such that we harvest at the end of the lytic cycle to increase yields. For the IFAs, we perform these at 24 hrs, which allows for depletion and replication, but captures parasites in small vacuoles that show clear localization patterns. Furthermore, our microneme relocalization studies in Figure 6 were also performed after 24 hrs of auxin treatment, yet exhibit a trafficking defect following  24 hr HOOK depletion.

      2. Fig 4H. The color of CDPK1-AID on the left and the HA on the top (HOOK) do correspond but indicate different proteins. Please label HOOK text in teal, not CDPK1.

      We have changed the text color of the strain names on 4H to black to avoid confusion with the IFA channel labels.

      3. I would like to suggest adding the "Key resources tables" in the supplementary data because it makes the materials & methods harder to read.

      The key resources table was included at the beginning of the Materials and Methods section as indicated in eLife’s instructions to the authors.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study expands on current knowledge of allosteric diversity in the human kinome by C-terminal splicing variants using as a paradigm DCLK1. The authors provide solid evolutionary and some mechanistic evidence how C-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as protein-protein interactions. The data will be of interest to researchers in the kinase and signal transduction field.

      We thank the editor for coordinating the review of our manuscript and the reviewers for their valuable feedback. We have significantly revised the manuscript in response to the reviewer’s comments. Our point-by-point response to each comment is present below. We have uploaded both a clean draft of our revised manuscript as well as a version with the revisions highlighted in yellow. We hope the revised manuscript is now acceptable for publication in eLife. We have additionally updated the preprint on bioRxiv and have included the link: We thank the editor for coordinating the review of our manuscript and the reviewers for their valuable feedback. We have significantly revised the manuscript in response to the reviewer’s comments. Our point-by-point response to each comment is present below. We have uploaded both a clean draft of our revised manuscript as well as a version with the revisions highlighted in yellow. We hope the revised manuscript is now acceptable for publication in eLife. We have additionally updated the preprint on biorxiv and have included the link here: https://www.biorxiv.org/content/10.1101/2023.03.29.534689v2.

      Reviewer #1

      Summary

      In the study by Venkat et al. the authors expand the current knowledge of allosteric diversity in the human kinome by c-terminal splicing variants using as a paradigm DCLK1. In this work, the authors provide evolutionary and some mechanistic evidence about how c-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as interfering with protein-protein interacting interfaces that altogether provides evidence of c-terminal isoform specific regulation of the catalytic activity in protein kinases.

      The paper is overall well written, the rationale and the fundamental questions are clear and well explained, the evolutionary and MD analyses are very detailed and well explained. The methodology applied in terms of the biochemical and biophysical tools falls a bit short in some places and some comments and suggestions are given in this respect. If the authors could monitor somehow protein auto-phosphorylation as a functional readout would be very useful by means of using phospho-specific antibodies to monitor activity. Overall I think this is a study that brings some new aspects and concepts that are important for the protein kinase field, in particular the allosteric regulation of the catalytic core by c-terminal segments, and how evolutionary cues generate more sophisticated mechanisms of allosteric control in protein kinases. However a revision would be recommended.

      Major Comments

      The authors explain in the introduction the role of T688 autophosphorylation site in the function of DCLK1.2. This site when phosphorylated have a detrimental impact on catalytic activity and inhibits phosphorylation of the DCX domain. allowing the interaction with microtubules. In the paper they show how this site is generated by alternative splicing and intron skipping in DCLK1.2. However there is no further functional evidence along the functional experiments presented in this study.

      1) What is the effect of a non-phosphorylable T688 mutant in terms of stability and enzymatic activity? What would be the impact of this mutant in the overall auto-phosphorylation reaction?

      The role of T688 phosphorylation on DCLK1 functions has been explored in previous studies (Agulto et al, 2020: PMID: 34310279), although only relevant to DCLK1.2 splice variants, since this site is lacking in DCLK1.1. These studies showed that mutation of T688 to an alanine increases total kinase autophosphorylation (ie autoactivity) and the subsequent phosphorylation of DCX domains, which in turn decreases microtubule binding. Given this information, our goal was to use an evolutionary perspective to investigate this, alongside less-well characterized aspects of DCLK autoregulation, including co-conserved residues in the catalytic domain and C-terminal tail. However, to address the reviewers question of a non-phosphorylatable T688 mutant, we performed MD simulations of T688A and T688E (a phosphomimic) mutant and include a new supplementary figure (Figure 5-supplement 3) which show the two mutants slightly destabilize the C-tail relative to wt (1 and 2 angstrom increase in RMSF for T688E and T688A respectively), but by themselves cannot dislodge the C-tail from the ATP binding pocket. Thus, other co-conserved interactions as revealed by our analysis, are likely to contribute to the autoregulation of the kinase domain by the C-terminal tail. We have incorporated these observations into the revised results section.

      Furthermore, to address the reviewer’s question in terms of site-specific autophosphorylation as a marker of DCLK1.2 activity, we have now performed a much-more detailed phosphoproteomic analysis of a panel of purified DCLK1.2 proteins after purification from E.coli (Figure 8-figure supplement 2). This showed that we are only able to detect Thr 688 phosphorylated in our ‘activated’ DCLK1.2 mutants, and not in the autoinhibited WT DCLK1.2 version of the protein. This apparent contradiction does not necessary discount Thr 688 as an important regulatory hotspot, but, together with the MD simulations, may imply a decreased contribution of pThr 688 in facilitating/maintaining DCLK1.2 auto-inhibition than previously anticipated, especially in the context of the numerous other stabilizing amino acid contacts that we describe between the C-tail and the ATP-binding pocket. We do, however, propose a mechanism for pThr688 as a potential ATP mimic based on MD analysis. However, we only found MS-based evidence for phosphorylation at this (and other sites in the same peptide) in highly active DCLK1.2 mutants, in which the C-tail remains uncoupled from the ATP-binding site, even in the presence of this regulatory PTM. We acknowledge that better understanding of DCLK biology will require a detailed appraisal of how the DCLK auto-inhibited states are subsequently physiologically regulated (PTMs, protein-protein interaction etc.), but this is beyond the scope of our current evolutionary investigation, and the absence of phosphospecific antibodies makes this challenging currently. We intend to expand upon our current work by assessing the relative contribution of multiple DCLK phosphorylation sites (including, but not limited to, Thr 688) with regard to cellular DCLK auto-regulation in future studies, in part by generating such site-specific phospho-antibodies.

      2) Have the authors made an equivalent T687/688 tanden in DCLK1.1 instead of the two prolines?

      This is a good point. We have not considered introducing a T687/688 tandem mutation into DCLK1.1 (at the equivalent position to that of DCLK1.2), primarily because the amino acid composition of their respective C-tail domains are so highly divergent across the tail (due to alternative splicing, as discussed in our paper). As discussed in our present study, there are numerous contacts made between specific amino acids in the regulatory C-tail and the kinase domain of DCLK1.2, which functionally occlude ATP binding, and thus change catalytic output. It is these contacts, which are determined by the specific amino acid sequence identity, and not the extended length of the DCLK1.2 C-tail per se, that drives autoinhibition. The alternate amino acid sequence identity of the C-tail of DCLK1.1 does not enable such contacts to form, which we believe explains the different activities of the two isoforms.

      Furthermore, our mutational analysis reveals clearly that Thr688 and several other sites are more highly autophosphorylated in the artificially activated DCLK1.2 constructs than WT DCLK1.2, and as such it remains our hypothesis that introduction of the tandem phosphorylation sites into DCLK1.1 is unlikely to be sufficient to impose an auto-inhibitory conformation of the enzyme.

      3) Could T688 autophosphorylation be used as a functional readout to evaluate DCLK1.2 activity?

      We agree with the reviewer’s suggestion about using autophosphorylation (including potentially Thr688 for DCLK1.2) as a functional read out for DCLK1 activity. In our present study, we identify phosphorylated peptides containing pThr688 only in the mutationally activated DCLK1.2 variants. We have now taken this analytical approach further and performed a detailed comparative phosphoproteomic characterisation of all of our DCLK1 constructs, where we observe marked differences in the overall phosphorylation profiles of the mutant DCLK1.2 (and DCLK1.1) proteins relative to the less phosphorylated WT DCLK1.2 kinase. This manifests as a depletion in the total number of confidently assigned phosphorylation sites within the kinase domain and C-tail of WT DCLK1.2, and also as a depletion in the abundance of phosphorylated peptides for a given site. To help visualise this, individual phosphorylation sites have been schematically mapped onto DCLK1, which has been included as a new extended supplementary figure (Figure 8-figure supplement 2). For comparative analysis of phosphosite abundance, we could only select peptides that could be directly compared between all mutants (identical amino acid sequences) and those found to be phosphorylated in all proteins (these are Ser660 and Thr438); these are now shown in figure supplement 2 as a table. These site occupancies follow what we see with respect to the increased catalytic activity between DCLK1.1 and DCLK1.2 mutants versus DCLK1.2. We also detect increased phosphorylation of DCLK1.1 and activated DCLK1.2 mutants in comparison to (autoinhibited) DCLK1.2, supporting the hypothesis that these mutants are relieving the autoinhibited conformation.

      4) What are the evidences of the here described c-terminal specific interactions to be intra-molecular rather than inter-molecular? Have the authors looked at the monodispersion and molecular mass in solution of the different protein evaluated in this study? Basically, are the proteins in solutions monomers or dimers/oligomers?

      Analysis of symmetry mates in the crystal structure of DCLK1.2 (PDB ID: 6KYQ) provide no evidence for inter-molecular interactions. Furthermore, to evaluate oligomerization status in solution, we conducted an analytical size exclusion chromatography (SEC) and our analysis reveals that both DCLK1.1 and DCLK1.2 predominantly exist as monomers in solution (Figure 3-Supplements 1-3). These results suggest that the C-terminal tail interactions are primarily intra-molecular.

      5) (Figure 3) Did the authors look at the mono-dispersion of the protein preparation? The sec profile did result in one single peak or multiple peaks? Could the authors show the chromatogram? how many species do you have in solution? Was the tag removed from the recombinant proteins or not?

      Yes, as mentioned above, the SEC profile resulted in a single peak for both DCLK1.1 and DCLK1.2, which was confirmed as DCLK1 by subsequent SDS-PAGE. We have included the chromatogram and gels in supporting data (Figure 3-supplements 1-3) in the revised manuscript and updated the Methods section. ‘The short N-terminal 6-His affinity tag present on all other DCLK1 proteins described in this paper was left in situ on recombinant proteins, since it does not appear to interfere with DSF, biochemical interactions or catalysis.’

      6) Authors should do Michaelis-Menten saturation kinetics as shown in Figure 3C with the WT when comparing all the functional variant analysed in the study. So we can compared the catalytic rates and enzymatic constants (depicted in a table also) kcat, Km and catalytic efficiency constants (kcat/Km)

      Thank you for your suggestion. We have performed the requested comparative kinetics analyses for selected functional DCLK1 variants at the same concentration as suggested, using our real-time assay to determine Vmax for peptide phosphorylation as a function of ATP, but at a fixed substrate concentration (we are unable to assess Vmax above 5 µM peptide for technical reasons). The results of these analyses have been included in the revised version of Figure 8-Supplement 1, where they support differences in both Vmax and Km[ATP]; the ratio of these values very clearly points to differences in activities falling into ‘low’ or ‘high’. This kinetic analysis fully supports our initial activity assays, where mutations predicted to uncouple the auto-inhibitory C-tail rescue DCLK1.2 activity to levels similar to DCLK1.1 towards a common substrate.

      Minor Comments

      It is very interesting how the IBS together with the pT688 mimics ATP in the case of DCLK1.2 to reach full occupancy of the active site. On Figure 8 you evaluate residues of the GRL and IBS interface to probe such interactions.

      1) Did the authors look at the T688 non-phosphorylable mutant?

      See our response to Major Comment 1 above. In addition, due to the absence of T688 in DCLK1.1, we did not look at the T688A mutant of DCLK1.2 biochemically, partially because it has been characterized in previous studies, but partially because this site is preceeded by another Thr residue. The lack of a selective antibody towards this site makes it difficult to evaluate the role of T688 phosphorylation specifically with respect to DCLK cellular functions and interactions. Therefore, we focused our in vitro efforts to understand how mutations in the IBS impact the catalytic activity of DCLK1.2 by comparing different variants to DCLK1.1.

      2) Classification of DCLK C-terminal regulatory elements.

      It would be useful to connect the different regulatory elements described in this study to a specific functional and biological setting where these different switches play a role e.g. microtubule interactions and dynamics, cell cycle, cancer, etc..

      While the primary focus of our paper is on the mechanism of allosteric regulation of DCLK1, we have indeed touched upon the potential implications of the various regulatory elements of the tail on functions such as microtubule binding and phenotypic effects like cancer progression. However, we acknowledge that a comprehensive understanding of these effects would necessitate a more detailed investigation. This could potentially involve the integration of RNA-seq data with extensive cell assays to evaluate phenotypic effects. We believe that such a future study would be a valuable extension of our current work and could provide further insights into the functional roles of DCLK1.

      3) (Figure 3) Could the authors explain the differences in yield between the WT and the D531A mutant. Apparently, it [the yield] does not appear to be caused by a lower stability as indicated by the Tm. Could the authors comment on this? It is important to compare different samples in parallel, in the same experiment and side by side. This applies to the thermal shift data comparing WT and a D531A mutant on panel D and also on panel C a comparison between WT and D531A as negative control should be shown.

      WT and D533A (kinase-dead) were indeed analysed in parallel, but have been split in two panels to make the data easier to interpret. The modest differences in yield is likely explained by experimental prep-to-prep variations. Our experience shows that many protein kinase yields vary between kinase and kinase-dead variants, likely due to bacterial toxicity related to enzyme activity. In regards to thermal stability, we would like to emphasize that Differential Scanning Fluorimetry (DSF) is to our mind a more informative and quantitative measure of protein stability than yield from bacteria, because both assess purified proteins at the same concentration. We believe that the DSF data provide a more accurate representation of the real stability differences between the WT and D533A mutant.  

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all three Reviewers for their thorough assessment of our manuscript and their constructive comments and suggestions.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this study, the authors generate several variants of actin that are internally tagged with short peptide tags. They identify one particular position that is able to tolerate various tags of 5-10 amino acids and still shows largely unaltered behavior in cells. They study incorporation of their tagged actins into filaments, characterize the interactions of G-actin variants with different associated proteins and show that retrograde actin flow in lamellipodia and the wound healing response of epithelial cells is not affected by the tagged variants. They then apply the tagged actin to study subcellular distribution of different actin isoforms in mammalian and yeast cells.

      The identification of a specific site in the actin protein that tolerates variable peptide insertions is very exciting and of fundamental interest for all research fields that deal with cytoskeletal rearrangements and cellular morphogenesis. The result demonstrating the functionality of actin variants with peptides inserted between aa 229 and 230 are generally convincing and well done. In particular, the generation of CRISPR/Cas9 genome edited versions of beta- and gamma actin are impressive. I therefore generally support publication of this study. There are however several technical and conceptual issues that should be addressed to improve quality and scope of the study. I listed some specific comments below:

      We thank the Reviewer for their constructive comments and general support for publication of our study.

      Major points

      - The biggest issue I have is the last section on the application of tagged actins to study isoform functions. In principle the application is very clear as there are simply no alternative ways to study isoform distribution in live cells. However, the experimental data are simply not convincing. What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers. I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers. It seems to me that the beta-actin staining has as higher cytosolic background and is generally weaker (gamma nicely labels transverse arcs), which reduces signal/noise and therefore yields a relatively increased level in areas with less-bundled actin. My suggestion is to select more clearly defined actin structures and to use micro-patterned cells to normalize the otherwise obstructing variability in actin organization. Possible structures would be cortical arcs in bow-shaped cells, lamellipodial edges (HT1080 seem to make very nice and large lamellipodia) or cell-cell contacts (confluent monolayer, provided cells don´t grow on top of each other). Stress fibers are possible but need to be segmented very precisely and I did not see any details on this in the methods section. For Fig. 5D: I assume cells were used where only one isoform was tagged? This is technical weak and the double-normalization is probably blurring any difference that might be occurring. Why not use a double-tagging strategy with ALFA/FLAG or ALFA/AU5 tags to exploit the constructs introduced in the previous figures? Also, the unique selling point of the strategy is the possibility of actual live imaging of specific isoforms. Cells that have stably integrated double tags and then transiently express nanobodies for ALFA and either AU5 or FLAG (or other if those don't exist) would make this possible. Considering the work already done in this manuscript, such an approach should actually be possible - did the authors attempt this or is there are reason it is not discussed? If double tagged cells are not possible for some reason it should at the very least be possible to combine ALFA-detection with the specific antibody against the other isoform and get rid of the double normalization.

      We thank the Reviewer for the various suggestions regarding the comparison between the localization of the tagged and native isoforms. In our reply below, we will separately discuss the possibilities and our considerations for fixed samples and live cell imaging. We apologize for the lengthy response but for transparency reasons, we would like to give a thorough overview of our efforts for isoform-specific localization in cells, something for which we have limited space in the manuscript.

      Fixed samples:

      It was a significant experimental challenge to comparing the labeling of the β- and γ-actin specific antibodies with our internally tagged actin system (Fig. 5A-D). The reason for this is that the labeling of the samples with the β- and γ-actin specific antibodies requires treatment with methanol (Dugina et al., J Cell Sci, 2009), most likely to disturb the interaction of actin with actin-binding proteins that prevent the binding of the antibodies due to steric hindrance. Methanol treatment, however, precludes the co-labeling with phalloidin, likely due to changes in the tertiary/quaternary protein structure of F-actin. Initially, we have put a lot of effort in trying to simultaneously label phalloidin with the actin specific antibodies but even very brief methanol treatment (seconds), before or after phalloidin labeling, completely prevents/reverses the binding of phalloidin. Importantly, also the ALFA tag labeling was suboptimal after methanol treatment.

      The fact that we could not perform these double labelings led us to perform different ratio calculations for the β- and γ-actin antibody and the ALFA tag labeling. In the case of the antibody immunofluorescence labeling, we simply divided the signal of the β-actin and γ-actin since we could simultaneously label the isoforms in the same cell. In the case of the ALFA tag labeling, we used phalloidin for independent signal normalization and then performed a second normalization. Although this complicates the normalization procedure (ALFA tag signal of β- and γ-actin is first normalized to total F-actin and then a ratio is calculated) and understandably leads to some confusion, this was the only way forward to obtain the results presented in the manuscript.

      The Reviewer points out that “What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers.”. In our images, we observe very little cytosolic background from both antibody stainings. More importantly, for the quantitative analysis, the fluorescence intensity values were corrected for the background values observed in cytosolic areas so even if the signal is present, it should not affect our analysis. We do admit though that we could have been more careful with the term “cortex” since the observed signal could indeed be a mix of radial fibers and the actin cortex. The reviewer further states that “I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers.” Although the differences are small, we consistently observe a differential fluorescence intensity of β- and γ-actin in actin-based structures with a relatively stronger signal of γ-actin in stress fibers (Fig. 5C). Since we always normalize the fluorescent signal intensity per cell, this strongly indicates a genuine accumulation of one isoform over the other in specific actin-based structures. This observation is very consistent in our experiments and also aligns with many published studies where differences in the localization of β- and γ-actin are reported in various cell types (Pasquier et al., Vasc Cell, 2015; van den Dries et al., Nat Comms, 2019; Malek et al., Int J Mol Sci, 2020). As for the segmentation, we mentioned in the Methods section that we selected small regions (0.5x0.5mm) that exclusively contain stress fiber or “cortex” regions. The regions shown in Fig. 5B are therefore larger than the analyzed regions, something which we will better indicate in the revised manuscript.

      Planned revision: We will provide a more detailed explanation of our quantitative analysis in the Methods section such that it is more clear how our normalization procedure was performed. Furthermore, we will adapt Fig. 5A-B such that it better visualizes how we defined the regions for quantification. As per the Reviewer’s suggestion, we will also apply a different experimental method to show that the tagged isoforms properly localize to actin-based structures. For this, we will attempt to use micropatterned cells to induce clearly define actin-bases structures (the crossbows as suggested by the Reviewer) and also explore the possibilities of investigating the differential localization in double-tagged cells. We will also reconsider the use of the term “cortex” for the region that is pointed out in Fig. 5A-B.

      Live cell imaging:

      We agree with the Reviewer that it would be very valuable to attempt simultaneous live cell imaging of two isoforms. Yet, for this, we would need two tag/fluorophore systems that allow the visualization of internally tagged isoforms in living cells. As presented in our original manuscript, we have successfully inserted many different epitope tags (FLAG/AU1/AU5/ALFA) in the T229/A230 position to demonstrate the versatility of our tagging approach. Yet, despite significant efforts to identify a second tag/fluorophore system that would allow isoform-specific live cell imaging, we only succeeded in designing one strategy to perform live cell imaging, i.e. with the ALFA tag (Götzke, Nat Comms, 2019). Part of the reason for this is that so far, no high affinity nanobodies have been generated against the classical epitope tags (FLAG, AU5 etc.). This is an established challenge since classical epitope tags are typically linear/unstructured while nanobodies require folded secondary structures for epitope recognition such as alpha helices (the ALFA tag was specifically designed as such).

      Besides the successful ALFA tag approach we have tried the following additional approaches for live cell imaging: 1) __full-length GFP, 2) full-length GFP with linker, 3) GFP11 (to complement with GFP1-10 (Cabantous et al., Nat Biotech, 2005) 4) GFP11 with linker 5) FLAG Frankenbodies (Zhao et al., Nat Comms, 2019; Liu et al., Genes Cells, 2021) in FLAG IntAct cells and 6) __Tetracysteine/FlAsH labeling. Importantly, each of these additional internally tagged actins, except for those that contained full-length GFP, showed a high colocalization with the cytoskeleton, again demonstrating the versatility of the T229/A230 position to tag actin. Unfortunately, none of these approaches satisfactorily visualized the actin isoforms in living cells. We will therefore briefly summarize our findings here.

      (1-2, integration of full-length GFP and GFP with linker) Probably not surprisingly, but integrating the entire coding sequence of GFP or GFP flanked by linkers (each 5AA in length) within the T229/A230 position did not results in a proper localization of actin.

      (3-4, integration of GFP11 and GFP11 with linker) Next, we assessed the localization of the GFP11 tagged actin versions (GFP11: 16AA, GFP11+linker: 26AA). Because GFP11 is not visible without GFP1-10 complementation, we also tagged actin at the N-terminus simply for proof of concept where the internally tagged actins would end up. Interestingly, both GFP11-actin and GFP11+linker-actin properly integrated within the cytoskeleton as demonstrated by the FLAG staining. This again demonstrates the versatility of the T229/A230 position and strongly suggests that even the integration of 26AA within this position does only minimally affect the polymerization of actin into the cytoskeleton.

      (3-4) After confirmation of the proper integration of GP11-actin and GFP+linker-actin we continue to express the GFP1-10 in these cells. Unfortunately, this resulted in no or only very minimal localization of the actin to the cytoskeleton, demonstrating that GFP-complementation hampers the integration into the cytoskeleton.

      (5, use of FLAG Frankenbodies) We also expressed FLAG Frankenbodies into our FLAG IntAct cells in an attempt to visualize the isoforms in living cells. FLAG Frankenbodies are single chain antibodies fused to GFP and can be expressed in cells to visualize FLAG-tagged proteins (Liu et al., Genes Cells, 2021). Although a cytoskeletal labeling was indeed discernable in some cells, the FLAG Frankenbody signal overlapped much less with the total actin signal as compared to the FLAG immunofluorescence labeling, indicating that the incorporation of the FLAG-tagged actin was much less in the presence of the FLAG Frankenbody. Also, a significant fraction of the cells demonstrated a homogenous cytosolic signal.

      (6, Use of tetracysteine/FlAsH) Although the tetracysteine tag/FlAsH system is widely known to induce artefacts, we still aimed to evaluate if for live cell imaging of IntAct actins. Similar to GFP11, we first determined the integration of tetracysteine-actin into the cytoskeleton with the use of an additional N-terminal FLAG tag and demonstrate that it was properly integrated into the actin cytoskeleton. Unfortunately, after brief incubation with FlAsH-EDT2, we noted 1) a significant amount of background fluorescence, preventing proper actin visualization and 2) that the cell became static indicating toxicity of the FlAsH-EDT2 compound. Titrating down the amount of FlAsH-EDT2 did not alleviate these drawbacks and only resulted in less fluorescence.

      Overall, based on these experiments, we concluded that the T229/A230 position itself is very versatile, as demonstrated by the proper localization of the GFP11-actin variants and the TetraCys-actin. At the same time, none of these tag/fluorophore systems properly visualized actin in living cells. Although we are unsure what the reason is for this, it is easily imaginable that the on/off kinetics of the split GFP system and the FLAG Frankenbodies are suboptimal to allow for the rapid and continuous integration of actin monomers into the F-actin cytoskeleton. We therefore also concluded that currently, the ALFA tag/nanobody system is apparently unique in its ability to visualize epitope tagged actin in living cells (as shown in the manuscript). For simultaneous visualization of multiple isoforms, we rely on progress on the development of novel nanobody-based tags, something we hope the Reviewer will agree is outside the scope of the current work.

      *- The authors make a point of comparing the internally tagged actin to N-terminal tags that are mostly functional but have been shown to affect translational efficiency. I would strongly suggest to include N-terminally tagged actin as control for all assays in this study. Also for the physiological assays (retrograde flow, wound healing), a positive control is missing that shows some effect. Previous studies showed defects with transiently expressed actin with an N-terminal GFP. As retrograde flow measurements are very sensitive to the exact position of the kymographs and wound healing assays is a very crude and indirect readout, such a positive control is essential. *

      We acknowledge that N-terminally tagged actin has been used extensively for actin research (especially before the introduction of Lifeact). For our studies, however, we were specifically interested in whether the internally tagged actins show similar characteristics as compared to wildtype actin. We have not included N-terminally tagged actin in all of our experiments, since this would not affect our conclusions with respect to the functionality of our internally tagged actins. We expect that for future investigations to for example further establish the importance of actin N-terminal modifications in the differential regulation of actin isoforms, the comparison between internally and N-terminally tagged actins could be very instrumental. Yet, we consider this comparison outside the scope of the current manuscript. For now, the results in the manuscript provide evidence that our approach is unique with respect to the fact that it allows isoform-specific tagging without manipulating the N-terminus. As such, our internal tagging system complements the already existing repertoire of actin reporting methods (N-terminal fusion, Lifeact, F-Tractin, actin nanobodies) and allows researchers to study so far unknown properties of actin variants.

      *- Expression of tagged actins in yeast is a very nice idea but it would be far more informative to express the tagged forms as the only copy of actin. This can either be done by directly replacing endogenous actin gene in S. cerevisiae, or (if the tagged versions are not viable) - using the established plasmid shuffle system (express actin on counter-selectable plasmid, then knock out endogenous copy and introduce additional plasmid with tagged actin, then force original plasmid out). In the presence of endogenous S. cerevisiae actin the shown effects are very hard to interpret as nothing is known about relative protein levels (endogenous vs. introduced). Also, if constitutive expression of the ALFA nanobody is harmful for integration into cables, why not perform inducible expression of the nanobody and observe labeling after induction. For the live imaging a robust cable marker is needed, like Abp140-GFP. Finally, indicate the sequence differences between the used actin forms in yeast (supplementary figure with sequence alignment and clear indication of all variations) *

      We thank the reviewer for their positive comments and feedback regarding expression of IntAct variants in yeast. Currently, we have expressed IntAct as an extra copy in the presence of native Act1 of S. cerevisiae. All the IntAct variants have been expressed under a commonly used constitutive TEF1 promoter. We agree with the Reviewer that it would be valuable to attempt to express the tagged forms as the only copy of actin.

      Planned revisions:

      1) As per the Reviewer’s suggestion, we will attempt to make yeast strains with IntAct as the sole expressing actin copy by using the well-established 5-FOA-based plasmid shuffle system in yeast. We will use a ∆act1 strain containing wildtype act1 in a centromeric ura-plasmid described in Harrer et. al, 2007 (generously shared by Prof. Jessica and Prof. Amberg at Upstate Medical University of New York, USA) and express IntAct exogenously via additional plasmids. Shuffling of these strains on 5-FOA will cause the loss of ura-plasmid containing the wildtype act1 copy and will determine whether yeast cells will be able to survive with IntAct as the sole source of actin. If the cells do survive with IntAct as a sole copy, we will perform subsequent analysis for assessing actin cytoskeleton organization under these conditions.

      2) As the reviewer has mentioned, expression of NbALFA during live-cell imaging experiments hindered incorporation of IntAct into linear actin cables in yeast (Suppl. Fig. S13). As per the reviewer’s suggestion, we will now try to create an inducible-expression system for the NbALFA-mNG and observe its effects on incorporation into formin-made actin cables after induction. We have already created NbALFA-mNG constructs under galactose-inducible GALS and GAL1 promoters and are currently constructing yeast strains for these experiments.

      __3) __We will add an extra supplementary Figure to indicate the sequence differences of the various actin variants that we have expressed in yeast.

      - As the authors clearly show good integration of several tagged actins into filaments I would expand the structural characterization: perform alpha fold predictions of actin monomer structures including the various tags to show the expected orientation. It is striking that the only integration site that seems to work well is at the last position of a short helix, indicating that the orientation of the integrated peptide might be fixed in space and be optimal to minimize interference. Also, a docking of the tag onto the recently published cryoEM structures of the actin filament should be shown to indicate where it resides compared to tropomyosin or the major groove where most side binding proteins seem to bind.

      We already performed AlphaFold predictions of the tagged actin monomers, but we have decided to not include these predictions in the manuscript because of two reasons. First and foremost, while the prediction confidence of the non-tagged region is very high (pLDDT > 90), the prediction confidence of the tagged region is very low (pLDDT https://alphafold.ebi.ac.uk/faq), pLDDT values below 70 should be treated with caution and values below 50 should not be interpreted. Intriguingly, the low confidence aligns with the fact that for both tags, the prediction does not match with known features of the tag. The FLAG tag should be a linear/unstructured region in order to be recognized by the antibody and the ALFA tag should organize into an alpha helix (Götzke et al., Nat Comms, 2019). Yet, in the prediction, the FLAG tag partially continues as an alpha helix and the ALFA tag is only a small helix with part of the tag being unstructured. Second, more minor, reason for not including the predictions is that AlphaFold does not predict to what extend the tag is flexible, which means that even if the tagged region is predicted correctly, it is difficult to say whether the regions will interfere with binding of proteins.

      Despite the low prediction confidence, we used the published actin-tropomyosin cryoEM structure (von der Ecken et al., Nature, 2015) to replace WT actin with ALFA tag actin and the results are shown below. Again, although results should be interpreted with caution, the tag does not seem to obstruct monomer-monomer interactions within an F-actin filament and also the tropomyosin binding surface is relatively distant from the tag region, suggesting that these interactions are likely not disturbed by introducing the tag.

      - For any claims regarding usability of tagged variants for isoform research it would be very important to characterize the known posttranslational modifications of tagged actin variants - are the differences between beta and gamma maintained on this level as well?

      Planned revision: Following the Reviewer’s suggestion, we will perform a western blot analysis to compare posttranslational modification (arginylation) of tagged and wildtype actins.

      Technical issues

      - There is no scale for the color coding in Fig. 5A, B

      We deliberately did not add a numerical scale because the images are normalized which means that presenting the actual numbers might be misleading. The numbers could be interpreted as if they actually present the amount of β-actin relative to γ-actin which is not the case due to staining differences and the normalization procedure.

      - The y-scales for Fig. 5C and D need to be identical to allow direct comparison

      Planned revision: We will adapt the scale of Fig. 5D to make it identical to Fig. 5C. Following the other suggestions of the reviewer, we will also critically evaluate our normalization procedure and present those numbers in Fig. 5C-D if the values turn out to be different.

      - Pearson coefficient should not be normalized to a control value as its already a dimensionless parameter. Always report actual R-value - also remove R2 values for Pearson as this makes no sense in this context (not sure if it was a typo or intended).

      We normalized the Pearson coefficient values for visual representation of the results. The majority of the raw coefficient values (more than 80%) are between 0.20 and 0.75 (see raw values in the associated excel file). Theoretically, Pearson coefficient values are possible between 1 (or-1 for negative correlations) and 0. The much smaller window in our values as compared to the theoretical window (0.55 vs 1) led us to normalize the values such that they can be presented on a scale from “maximum expected colocalization” to “minimum expected colocalization”. In this way, the differences between the various tagged actins are much better appreciated in the Figure. As to reporting the R2, the Reviewer is correct. Reporting the R2 is an inadvertent mistake from our side and we will correct it.

      Planned revision: We will change the R2 in the text to PCC or Pearson Correlation Coefficient.

      *- All values on subcellular regions (like stress fiber or cortex) dependet critically on the way thesese regions were thresholded or identified. Provide all details on how this was done in the methods section and ensure that adequate background subtraction and normalization is applied. Optimally, an unbiased (AI or automated) approach based on simple image statistics is used for this to avoid personal bias. *

      Planned revision: As also indicated above, we will add new experiments to better compare the localization of the isoforms in tagged and parental cells. These new experiments will also be accompanied by a more detailed explanation of how the regions were selected and quantified.

      - In Fig. 2A only heterozygous FLAG-actin cells are used. Why not use a homozygous line (for both beta and gamma actin)? The nice band shift of the FLAG version would allow the precise quantification of the fraction of total actin covered by beta and gamma actin, which then could provide some additional info for the apparently weaker beta staining in Fig. 5 (if beta expression is simply weaker). This would be a very simple and useful advantage of the internal tags that could be widely applied.

      In Fig. 2A, we used the heterozygous FLAG-actin cells to directly compare the production of β-actin from the knock-in allele and the wildtype allele in the same cells. The fact that the two bands observed in this western blot analysis (upper and lower) are almost the same (with the FLAG band being a bit more intense) provides the strongest indication that the tag does not interfere with the expression of actin. In Suppl. Fig. 5D, we show that the expression of β-actin is also unaffected in the hemizygous FLAG actin cells, which exclusively express tagged actin.

      Planned revision: As per the Reviewer’s suggestion, we will also add a western blot analysis on the expression of both actin isoforms and total actin in hemizygous cells.

      *- Fig. 3: control with N-terminal tag is missing. Also, why is it not possible to assay filament binding factors like Myosin, Filamin or alpha actinin - instead of co-IP a simple co-sedimentation assay with cell extracts in F-buffer should pick up any major difference in decoration of filaments containing the ALFA tag. Using two speeds for centrifugation it might even be possible to observe effects on filament bundling. The best approach for this would of course be to purify tagged actins and perform in vitro assays but this is clearly beyond the scope of what the authors intended here. I personally think that a broad acceptance of the marker will only come once the biochemistry has been sufficiently characterized so this is a future direction I would strongly encourage. *

      We kindly refer to our response on Page 5/6 for why we have not included the N-terminal control.

      Planned revision: The co-sedimentation assay is an excellent suggestion by the reviewer. Following the Reviewer’s suggestion, we will perform F/G-actin fractionation and assess the presence of several F-actin associated proteins in the F-actin fraction.

      - Fig. 2A has no loading control

      We show this western blot to indicate that the WT actin and tagged actin are expressed at similar levels in the heterozygous knock-in cells. For this, no loading control is needed because we only compare the intensity of the upper band (tagged actin) with the lower band (WT actin).

      - The RPE-1 data are confusing as several constructs show very different localization (completely cytosolic) to HT1080 cells and there is no possible explanation given for this. Maybe simply remove this data set?

      We agree with the reviewer that the differences in the localization between some of the internally tagged actins between the HT1080 and RPE1 cells might be confusing, especially for the A230-A231 variant for example. Yet, the fact that also in these cells, the T229-A230 variant performs equally well as compared to N-terminally tagged actin is an important confirmation that this variant is properly integrated into actin-based structures, independent of cell type. This makes the support for choosing this variant to continue with our studies stronger. A possible explanation for the differences is that RPE1 cells in general tend to form more stress fibers as compared to the HT1080. Since the localization to stress fibers is different between the internally tagged actins, this may explain the differences observed in colocalization.

      __Planned revision: __We will add a short text, in the Results or the Discussion, on the differences between the colocalization values between HT1080 and RPE1 cells.

      *- The angel measurements for lamellipodial actin is not very meaningful: the angel is determined for the radial bundles, which do not correspond to the Arp2/3 angel of single filaments and is likely the results of different nucleation factors, I would suggest to remove this. If angel measurement are really intended, cryoEM needs to be performed. *

      We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.

      Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.

      - Replace all SEM with SD values - use at least 3 biological replicates (4D SEM of n=2)

      Planned revision: We will carefully check our statistics and revise where appropriate.

      Minor points

      - Intro: after listing all the details already understood on actin isoforms it is not very convincing to simply state the molecular principles remain largely unclear (l 34) - maybe better "there is no way to study actin dynamics due to current limitations of specific antibodies to fixed samples. Interesting option would be actually to develop nanobodies that are isoform specific.

      We will rephrase the text in the introduction. Regarding the development isoform-specific nanobodies. Although this sounds like a promising way forward, this would likely not result in isoform-specific targeting in living cells. Similar to the antibodies, isoform-specific nanobodies would have to be generated against the N-terminus which, under native conditions, is likely not available due to the occupation with actin-binding protein. Also, since the N-terminus is not structured, it may be extremely challenging to generate nanobodies against these epitopes.

      *- L 71: "involved" in the kinetics is not a good term - maybe affects or regulates.... *

      We will rephrase the text.

      - L148: "suspect" instead of "expect" - this clonal variation is actually a big danger of the employed approach as possible defects in actin organization could be masked by compensatory changes - it would generally be good to show critical data for at least 3 independent clones to rule out dominant selection effects.

      We will rephrase. We agree that clonal variation could be a danger if actin levels are to be investigated. For future follow-up studies, we plan to make additional cell lines to avoid clone-specific conclusions.

      ***Referees cross-commenting** *

      *I completely agree with the comments by reviewer 2 on the various missing controls - adding several or all of those will make the results much more convincing. The key for the adaptation of any new actin probe will be the level of confidence researchers have on the doumented effects. Even some negative effects on actin behavior (I am sure there will be some) should not prevent usage of the strategy as long as there is robust and convincing documentation of those effects. I also agree that including some basic in vitro characterization will go a long way to convince people dierectly working on actin (there is a very high level of biochemical understanding in that field). *

      Planned revision: We will perform the essential controls as suggested by Reviewer 2. Furthermore, for future experiments, we do envisage the production and purification of internally tagged actins and investigate their binding properties in in vitro reconstitution assays. We have already started with optimizing these approaches through our ongoing collaboration (KD, SP).

      Reviewer #1 (Significance (Required)):

      *Significance: Very useful finding that can be applied to any question related to actin-dependent cellular processes (morphogenesis, cell division, cell polarization, cell migration etc.) *

      *Strength: main finding convincing, strong genome edited cell lines *

      *Limitations: application to study of isoforms very limited and data not convincing, statistics and image quantifications need improvement *

      *Advance: identify new location for integral tagging of actin, which was not really possible before. The main relevance is for fundamental cell biology but the approach can also be applied to the study of disease variants in actin. *

      Audience: general cell biology - very broad interest

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      Actin is highly sensitive to modifications, and tagging it with fluorescent proteins or even smaller motifs can affect its function. The most well-known example of this is that fission yeast where actin has been replaced with GFP-actin are inviable (Wu and Pollard, Science 2005) because the labeled actin cannot incorporate into the formin-dependent filaments that make up the cytokinetic ring. Subsequent experiments revealed that formins filter out GFP-actin monomers, as well as monomers that are labeled with smaller fluorescent motifs (Chen et al, J. Structural Biology 2012). Further, attempts to make mammalian cells lines where GFP-beta-actin was knocked into one allele resulted in extreme down-regulation of the GFP-labeled actin, indicating that there is some implicit toxicity with the labeled version. To my knowledge, all attempts at making homozygous GFP-actin knock-ins have been unsuccessful. Therefore, while GFP-actin or other labeled variants can be over-expressed in many different cell types with some success, there is always the question of how faithful the labeled actin represents bona fide actin localization and dynamics.

      To address this van Zwam et al. have developed a clever strategy of screening actin for internal motifs that can tolerate incorporation of a tag without affecting its function. They appear to have found a good candidate, named IntAct, and provide evidence that this tagging position allows the actin to be functional in both human and yeast cells. The work is very promising, and many of the assays performed satisfy the criteria of rigor and reproducibility. Importantly, the authors have created knock-in human cell lines where the tagged actin is expressed at normal levels, including a double allele knock-in that is viable and has normal proliferation and motility. Additionally, the authors show that labeled S. cerevisiae actin can incorporate into actin cables, which are formin dependent. IntAct constructs were shown to interact with several well-known actin binding proteins and localized well to many different actin structures. There was also interesting data obtained from tagging both beta and gamma actin in human cells. However, as an actin scientist eager for new probes to visualize actin in cells, there are still questions about the functionality of these probes. Addressing these issues, listed below, would alleviate the concerns I still have about IntActs after going through the manuscript. IntActs have the potential to have a large impact on cytoskeletal research if it can be rigorously documented that they are functionally as close to unlabeled actin as possible.

      We thank the Reviewer for their constructive comments and general positive evaluation of our study.

      *Reviewer #2 (Significance (Required)): *

      Concerns:

      1. There are no negative controls performed for either the fixed or live-cell imaging of IntAct. Since the fixed cell data is heavily reliant on the presence of flag-labeled puncta at actin filaments, it is important to show that the immunocytochemistry protocol doesn't produce anything that would mimic the localization of actin. For the live cell data, there has been no effort made to show that the binding of the nanobody to the ALFA tag on InAct is specific.

      Planned revision: __We will add the following controls to exclude that any of the labeling procedures produces anything that would mimic the localization of actin: 1) Immunofluorescence staining of the used tags (FLAG/ALFA) in cells that do not have tagged actins 2) Expression of ALFA-Nb-GFP and ALFA-Nb-mScarlet in cells that do not have tagged actins 3)__ Expression of free GFP in cells that have tagged actins. We will co-stain these cells with phalloidin to visualize F-actin and determine if any signal is specifically localized to the actin cytoskeleton.

      2. The homozygous ALFA-tagged IntAct cells have a 50% reduction in the amount of actin expression (Fig. 2D). What is the F:G ratio in these cells? The F:G measurement is only shown for the FLAG-tagged heterozygous IntAct cells, which have the worst co-localization with phalloidin (Fig. 2F) and were not used for subsequent figures. I appreciate that motility and proliferation were measured and shown to not be affected (Fig. 4D,E) , but in our lab reducing the amount of polymerized actin by 50% (which may be more in ALFA-tagged IntAct cells if the F:G changes) has catastrophic effects on other cytoskeletal and organelle systems. Since the homozygous ALFA IntAct cells are the main ones used in the manuscript, they should be the ones that are fully characterized.

      We would like to point out that the reduction is only 20-25 percent depending on the specific western blot analysis and the loading control. Still, the Reviewer is correct about the necessity of the F:G actin measurements of the ALFA-tagged IntAct cells and we therefore included those as Suppl. Fig. 9 in the original manuscript (text on page 9). The quantification of these assays clearly demonstrated that the F-G actin ratio in the ALFA-tagged IntAct cells is the same as in parental cells.

      3. It is not addressed if expressing the ALFA-Nb-GFP construct in ALFA-IntAct cells alter actin properties? This is essential information for live cell imaging experiments.

      Planned revision: We have already performed proliferation and migration experiments in cells that stably express the ALFA-Nb-GFP. These data indicated that proliferation and migration are not affected by the presence of the nanobody and these data will be included in the revised manuscript. To note, in the original manuscript, we already showed that treadmilling of actin at the lamellipodia is not affected by the presence of the ALFA-Nb-GFP.

      4. It is not addressed how much of the ALFA-IntAct gets labeled with ALFA-Nb-GFP and how uniform the labelling.

      We do not understand this specific request of the Reviewer. To our knowledge, it is not possible to assess how much of a probe (in this case the ALFA-Nb-GFP) binds the target (in this case the ALFA-IntAct actins) in living cells. This is not only the case for the ALFA-Nb-GFP but also for any other probe. As an example, when expressing Lifeact, we also do not know how much of the actin molecules within F-actin get labeled with Lifeact and how uniform the labeling is. From the results of the live-cell imaging we can only conclude that the binding is at least so effective that we can readily observe and discern all the actin-based structures that are also observed by Lifeact (see Suppl. Fig. 8 for Lifeact-GFP/ALFA-Nb-mScarlet cotransfection). Whether the regions that do not have F-actin only contain ALFA-Nb-GFP that is bound to actin monomers or also contains a significant fraction of free ALFA-Nb-GFP seems an issue that cannot be addressed.

      5. To assess lamellapodia architecture, "branched actin angle" is measured using AiryScan imaging of actin filaments. This type of microscopy does not offer the ability to image individual actin filaments; what is actually being measured is the orientation of actin bundles to each other. It should be impossible to image the orientation of actin filaments in Arp2/3 dendritic networks and it is surprising that the measurements average to 70 degrees. A suitable substitute for this would be to measure the size and amount of F-actin in phalloidin-stained lamellipodia using kymograph analysis.

      We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.

      Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.

      6. Was it possible to make an IntAct gene substitution in yeast?

      Planned revision: We thank the reviewer for this interesting question and as also suggested by Reviewer 1, we are now constructing yeast strains with IntAct as the sole expressing actin copy by using the well-established plasmid shuffle system in yeast. The results of these experiments will determine the ability of IntAct to completely substitute actin function in yeast.

      Also, while this is not necessary for this manuscript, making a fission yeast strain where actin has been substituted with IntAct and demonstrating that IntAct gets incorporated into the cytoplasmic ring and into Cdc12p-polymerized filaments would alleviate MANY potential concerns people would have about these probes by directly assessing situations were other labeled actins have been documented to fail. Along the same lines, it would have been nice to see a comparison in some of the assays of ALFA-IntAct and GFP-actin or another labeled actin variant.

      We appreciate the reviewer for their constructive feedback and completely agree that it is important to document how IntAct behaves in scenarios where other labelled actins have failed. As a proof of principle, IntAct incorporates into both formin- and Arp2/3- made linear and branched actin filaments in yeast (Fig.5E, Suppl. Fig. 14) and this data shows that IntAct labelling strategy is the first to achieve good integration into both these structures as previous efforts with labelled actin such as GFP-Actin fail to incorporate into formin-made actin filaments (Doyle et al., PNAS, 1996). Thus, we believe that IntAct does perform better than other labelled actins in yeast, although, further optimizations are required to overcome limitations regarding incorporation into actin cables in the presence of the ALFA nanobody.

      Planned revision: We have already extended applicability of IntAct to another well-known fungal model system, the fission yeast Schizosaccharomyces pombe (S. pombe). We expressed IntAct variants of human β- and γ- actin, budding yeast actin (Sc-IntAct) and fission yeast actin (Sp-IntAct) from an exogenous plasmid under the native S. pombe actin promoter in an S. pombe strain that constitutively expresses the Nb-ALFA-mNG. Live-cell microscopy of S. pombe cells expressing these proteins revealed that all IntAct variants localize to actin patch-like structures located at the cell poles and cell division site (during cytokinesis). These structures show similar dynamics as reported for actin patches of S. pombe previously (Pelham et al., Nat Cell Biol, 2001). These preliminary results suggest that IntAct proteins show a similar localization pattern to only branched actin networks found in the actin patches of S. pombe like we had previously observed for the budding yeast, S. cerevisiae (Fig. S13 in manuscript). The underlying mechanism for this exclusion from linear actin cable network from both budding and fission yeast remain unknown and may represent an inherent specificity and sensitivity of yeast formins. Our current and future experiments will express IntAct variants in absence of the ALFA nanobody and determine the level of incorporation into actin cables, patches, and actomyosin ring.

      Planned revision: We have also already performed a quantitative analysis to ascertain the effect of Sc-IntAct expression of cortical actin patch dynamics which represent sites of endocytosis in yeast (Young et al., J Cell Biol, 2004; Winter et al., Curr Biol, 1997). We compared actin cortical patch lifetimes between wildtype cells and cells expressing Sc-Act1 or Sc-IntAct as an extra copy. We used Abp1-3xmcherry as a marker for actin patches and quantified the time window between the appearance and disappearance of a patch (actin patch lifetime) from time-lapse microscopy experiments. Our preliminary results indicate that actin patch lifetimes are unaffected by exogenous expression of both Sc-Act1 or Sc-IntAct suggesting that IntAct does not negatively influence or alter actin patch dynamics. These observations suggest its applicability as a direct visualization strategy for actin at the cortical patches in budding yeast alongside existing surrogate markers like Abp1, Arc15, etc (Goode et al., Genetics, 2015; Wirshing et al., J Cell Biol, 2023).

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      *Summary: *

      This paper tackles a new strategy to tag actin in cells, by identifying that incorporation of a tag of moderate size in subdomain 4 of actin minimally affects actin dynamics in cells, and does not perturb its interaction with known partners, as observed in pull-down assays.

      *Major comments: *

      The paper is interesting and experiments are convincing.

      *My main concerns are the following : *

      - Varland et al, is reporting a phosphorylation on Thr229 : I think the authors should mention and discuss this potential PTM that could be affected in IntAct.

      We thank the Reviewer for pointing this out. We are aware of this review that includes phosphorylation on Thr229 as a possible PTM. Yet, this PTM is only reported in one of the Tables of the Review and not further discussed in the text. It is also unclear how the authors determined that Thr229 is a possible phosphorylation site except for the notion that this residue is a threonine and exposed at the surface of the actin molecule. Together with the fact that there is no evidence from primary studies that Thr229 is phosphorylated, we therefore decided to not include it in our discussion.

      - The sequence in subdomain 4 (the alpha helix containing T229A230) is extremely conserved in animals, as well as in between the 6 human actin isoforms. This usually indicates a strong selection pressure on the residues. I think the authors should discuss how surprising it is that the T229A230 position can accomodate various tags while it is probably the place of interaction with other proteins and is playing an important role in the mechanical structural integrity of the actin itself.

      We thank the Reviewer for bringing up this important point. To a certain extent, the conservation argument is true for all of the residues/domains in actin. Any manipulation will change a conserved part of the actin molecule in one way or another and thereby potentially modify its function. This is also evident from the fact that for most of the internally tagged actins, we observed a very poor colocalization with the actin cytoskeleton (Fig. 1). While for the T229/A230, we have not observed any major effects yet, this certainly does not mean that no further changes or defects will be uncovered in future experiments. Nonetheless, since our approach is unique with respect to the fact that it allows isoform-specific tagging without manipulating the N-terminus, our internal tagging system complements the already existing repertoire of actin reporting methods (N-terminal fusion, Lifeact, F-Tractin, actin nanobodies) and allows researchers to study so far unknown properties of actin variants. We have already included in the discussion that, at this point, we can only speculate as to why this variant performs much better than the others (Page 16 of the manuscript) and that possible explanations are the location at the inner domain and the higher structural plasticity of this region as compared to the rest of the molecule, as found during an alanine mutagenesis screen (Rommelaere et al., Structure, 2003).

      - It is now well established that actin plays active and important roles in the nucleus : is ALFA-actin correctly translocated to the nucleus ?

      Planned revision: This is an interesting suggestion. We will perform nuclear-cytosol fractionation experiments and determine whether ALFA-actin is still correctly translocated to the nucleus.

      *- OPTIONAL: one may regret that there is no classical in vitro assays, such as pyrene assays to assess some kinetcis parameters on epitope-tagged actins. I guess this would make the paper a bit too large. Although, it will prove useful to better understand how much formin activity is affected (see below) *

      For further biochemical characterization and a detailed investigation of the precise assembly kinetics of the tagged actins, we (KD, SP) are already working together to set up in vitro reconstitution experiments. Yet, as also indicated by the Reviewer, we consider these experiments outside of the scope of the current work.

      *Minor comments: *

      Below are points that could be addressed by the authors to improve the manuscript readability and highlight some important points that are sometimes missing or are not properly discussed:

      -line 40 "...but the distinct N-terminal epitope is not available under native conditions preventing" is a bit too obscure. Can the authors say clearly what is meant by 'native conditions'?

      In our understanding, the term ‘native’ is generally used when referring to conditions in which proteins are in their natural state, without alterations due to heat or denaturants, and possibly also still interacting with their binding partners. We will rephrase to better indicate that in this specific case, we mean that the region that harbors the N-terminus is usually occupied by actin-binding proteins, preventing the binding of the antibody due to steric hindrance.

      - figure 1A : make a clearer correspondance between the number shown in panel A and the amino acid numbers displayed in panel C and G.

      Planned revision: This is a good point, we will add extra annotation in the graph to better link the panels with each other. We will also add additional annotation in Fig. 1D-F for the same purpose.

      - figure 1A : it could be informative to indicate subdomains in this panel.

      Planned revision: We will add the numbers for the subdomains in Fig. 1A.

      - figure 1C : normalized correlation cell : I am not sure I understand how the normalization of the Pearson coefficient is done. It is therefore not clear how can it >1 or >-1 ? This should be clearly explained in the method section of the paper.

      __Planned revision: __We will better explain the normalization procedure in the Methods section.

      - figure S4 : comes a bit too early when ALFA-actin has not been yet introduced in the main text. Please, reposition this part or provide data with the FLAG-tag version.

      Planned revision: This is a good point and completely overlooked by us. We will introduce this Figure later such that the ALFA tag is already introduced.

      - section starting line 121 : this section should be better motivated = Why are different tags being tested ? This comes later in the discussion, but the reader fails at following the reasoning/motivation here.

      Planned revision: We will add extra motivation for why we added multiple tags.

      - figure 2D, line 145 "We also evaluated actin protein expression in the homozygous ALFA-β-actin cells and this showed that the total amount of β-actin was slightly lower in the ALFA-β-actin cells compared to parental HT1080 cells (Fig. 2C-D)." 'Slightly' is not a very quantitative nor accurate term. please rephrase. Besides, a statistical test for the paired data would also be informative. Besides, data in figure S6B-D indeed show a correlated increase in the expression of Gamma-actin that compensate for the decrease in the Beta-actin level in ALFA-Beta-actin. Can the authors explain why they conclude otherwise?

      Planned revision: This indeed is an important point and we will change the phrasing of this section to provide a more quantitative and accurate description of the western blot quantifications.

      - figure S7B: I am not ure anyone has ever reported measurement of angle of branched actin filament using epifluorescence microscopy. I would remove this panel, or the authors should explain how this measurement can be done objectively.

      We apologize for this misapprehension from our side which is also noted by the other two reviewers. In the treadmilling videos of the lamellipodia in HT1080 cells, which were obtained using Airyscan super-resolution microscopy, we clearly observe a consistent filament formation at a constant angle, something which we interpreted as the angle between the mother filament and the daughter filament. After consulting the literature, we indeed have to admit that this cannot be interpreted as such and we will remove these datasets.

      Planned revision: We will remove the datasets with the angle measurements (Suppl. Fig. 7A-B) from our manuscript.

      *- Figure 2F : can the authors comment on the (significant ?) lower value for FLAG-tag actin ? *

      The lower value for FLAG-tag actin has likely to do with the properties of the antibody and suitability for immunofluorescence. For reason that we do not know, we usually detect more background for the FLAG tag antibody as compared to the other antibodies/ALFA tag nanobody. Since the Pearson correlation coefficient quickly decreases with suboptimal labeling, this is likely the reason that the values for FLAG-actin are lower as compared to the other tagged actins. Importantly, in our biochemistry experiments (F/G-actin), we detect no difference between FLAG-actin and ALFA-actin indicating that it is rather the immunofluorescence and sensitive Pearson correlation analysis than the integration of actin that causes this difference.

      - line 205 "The results from these experiments show that both DIAPH1 and FMNL2 associate with ALFA-β-actin (Fig. 3D),". It is not so obvious that these formins directly interact with monomeric actin via their FH2 domains in co-immunoprecipitation assays. It might very well be mediated by the interaction with profilin, that in turn bind to the FH1 domain of formins. For me, this assay does not make a correct proof that epitope-labelled actin do not interfere with formin activity.

      Planned revision: The point that the co-immunoprecipitation does not demonstrate direct interactions between formins and actin is well taken. We, however, do not claim that this assay proofs that formin activity, or formin-based integration of actin monomers, is similar with tagged actin as compared to wildtype actin. Nonetheless, we will critically re-evaluate the relevant passages and rephrase the text to avoid any confusion.

      - figure 5C&D : both graph should use the same scale for the y-axis for easier comparison.

      Planned revision: We will adapt the scale of Fig. 5D to make it identical to Fig. 5C. Following the other suggestions of the Reviewer (and of Reviewer #1), we will also critically evaluate our normalization procedure and present those numbers in the Figures if the values turn out to be different.

      - figure 5D: I think the way the ratio is performed is misleading. Why not look at the Beta/Gamma ratio using the isoform specific antibodies used in parental cells, and show the results for ALFA-Beta-actin and for ALFA-Gamma-actin separately ?

      We kindly refer to our answer to Reviewer #1 on Page 2 for a detailed explanation on the experimental challenge of comparing the localization of wildtype and tagged actin isoforms.

      Planned revision: We will critically evaluate our normalization procedure and present those numbers in the Figures if the values turn out to be different. Furthermore, we will add a different experimental method to show that the tagged isoforms properly localize to actin-based structures. For this, we will attempt to use micropatterned cells to induce clearly define actin-bases structures and also explore the possibilities of investigating the differential localization in double-tagged cells.

      *- The limitation observed for unbranched cables in yeast that nanobody-tagged ALFA-actin does not incorporate correctly should be discussed and stressed further in the discussion, as it might prove to be a strong limitation for live-cell imaging to reliably study any type of actin networks. *

      We acknowledge the reviewer’s concern regarding the inability of ALFA-tagged actin to incorporate into yeast actin cables when NbALFA is co-expressed and will discuss this point further in the revised manuscript. We have now observed the same limitation for fission yeast actin cables as well and combined, these observations may represent a tighter control and sensitivity of yeast formins towards any perturbations in actin size (since NbALFA binds to ALFA tag with picomolar affinity). To address this issue and as also suggested by Reviewer 1, we are now creating yeast strains with inducible control of NbALFA expression under GALS/GAL1 promoters and observe the labelling of actin structures after this approach. Additionally, expression of variants of NbALFA with high dissociation rates may also allow labelling of actin cables and would be certainly worth a try in the future. A structural comparison between mammalian and yeast formins may be required to shed some light on the molecular basis of this fundamental difference.

      However, since in the absence of the nanobody, this limitation is overcome (Fig. 5E, Suppl. Fig. 14), we believe that with additional modifications and fast developments in imaging technologies, this limitation can be overcome in the future. Thus, IntAct as a labeling strategy represents an advancement over existing labelled actins with the most important aspect being the identification of the T229/A230 residue pair to be permissive for integration of various tags even as large as GFP11 fragment including a linker (26AA) (Reviewer Fig. 2). Importantly, the T229/A230 site is conserved across many organisms (such as Chlamydomonas reinhardatii, Cryptococcus neoformans, etc) and may act as a framework to study the actin cytoskeleton especially in organisms where known surrogate markers like phalloidin and Lifeact may not work or work only sub optimally.

      *Reviewer #3 (Significance (Required)): *

      *General assessment: *

      *This paper provides a new tagging strategy to monitor actin activity in cells, by specifically inserting the tag along the amino acid sequence. *

      *Advance: *

      *This is a very useful tool, as most existing available probes bind to actin in regions that are common to many other actin binding proteins. The authors provide extensive experiments to validate that tagged-actin are functional and do not perturb the actin expression level, actin network architecture nor dynamics. *

      *Audience: *

      *This research paper will be of interest to a rather broad audience (many cell biologists) that are either sutyding actin dynamics or know that actin is involved in the cell functions they study. *

      *Expertise: *

      *My expertise is in vitro actin biochemistry. *

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary:

      This paper tackles a new strategy to tag actin in cells, by identifying that incorporation of a tag of moderate size in subdomain 4 of actin minimally affects actin dynamics in cells, and does not perturb its interaction with known partners, as observed in pull-down assays.

      Major comments:

      The paper is interesting and experiments are convincing.

      My main concerns are the following :

      • Varland et al, is reporting a phosphorylation on Thr229 : I think the authors should mention and discuss this potential PTM that could be affected in IntAct.
      • The sequence in subdomain 4 (the alpha helix containing T229A230) is extremely conserved in animals, as well as in between the 6 human actin isoforms. This usually indicates a strong selection pressure on the residues. I think the authors should discuss how surprising it is that the T229A230 position can accomodate various tags while it is probably the place of interaction with other proteins and is playing an important role in the mechanical structural integrity of the actin itself.
      • It is now well established that actin plays active and important roles in the nucleus : is ALFA-actin correctly translocated to the nucleus ?
      • OPTIONAL: one may regret that there is no classical in vitro assays, such as pyrene assays to assess some kinetcis parameters on epitope-tagged actins. I guess this would make the paper a bit too large. Although, it will prove useful to better understand how much formin activity is affected (see below)

      Minor comments:

      Below are points that could be addressed by the authors to improve the manuscript readability and highlight some important points that are sometimes missing or are not properly discussed :

      • line 40 "...but the distinct N-terminal epitope is not available under native conditions preventing" is a bit too obscure. Can the authors say clearly what is meant by 'native conditions' ?
      • figure 1A : make a clearer correspondance between the number shown in panel A and the amino acid numbers displayed in panel C and G.
      • figure 1A : it could be informative to indicate subdomains in this panel.
      • figure 1C : normalized correlation cell : I am not sure I understand how the normalization of the Pearson coefficient is done. It is therefore not clear how can it >1 or >-1 ? This should be clearly explained in the method section of the paper.
      • figure S4 : comes a bit too early when ALFA-actin has not been yet introduced in the main text. Please, reposition this part or provide data with the FLAG-tag version.
      • section starting line 121 : this section should be better motivated = Why are different tags being tested ? This comes later in the discussion, but the reader fails at following the reasoning/motivation here.
      • figure 2D, line 145 "We also evaluated actin protein expression in the homozygous ALFA-β-actin cells and this showed that the total amount of β-actin was slightly lower in the ALFA-β-actin cells compared to parental HT1080 cells (Fig. 2C-D)." 'Slightly' is not a very quantitative nor accurate term. please rephrase. Besides, a statistical test for the paired data would also be informative. Besides, data in figure S6B-D indeed show a correlated increase in the expression of Gamma-actin that compensate for the decrease in the Beta-actin level in ALFA-Beta-actin. Can the authors explain why they conclude otherwise ?
      • figure S7B: I am not ure anyone has ever reported measurement of angle of branched actin filament using epifluorescence microscopy. I would remove this panel, or the authors should explain how this measurement can be done objectively.
      • Figure 2F : can the authors comment on the (significant ?) lower value for FLAG-tag actin ?
      • line 205 "The results from these experimentsshow that both DIAPH1 and FMNL2 associate with ALFA-β-actin (Fig. 3D),". It is not so obvious that these formins directly interact with monomeric actin via their FH2 domains in co-immunoprecipitation assays. It might very well be mediated by the interaction with profilin, that in turn bind to the FH1 domain of formins. For me, this assay does not make a correct proof that epitope-labelled actin do not interfere with formin activity.
      • figure 5C&D : both graph should use the same scale for the y-axis for easier comparison.
      • figure 5D: I think the way the ratio is performed is misleading. Why not look at the Beta/Gamma ratio using the isoform specific antibodies used in parental cells, and show the results for ALFA-Beta-actin and for ALFA-Gamma-actin separately ?
      • The limitation observed for unbranched cables in yeast that nanobody-tagged ALFA-actin does not incorporate correctly should be discussed and stressed further in the discussion, as it might prove to be a strong limitation for live-cell imaging to reliably study any type of actin networks.

      Significance

      General assessment:

      This paper provides a new tagging strategy to monitor actin activity in cells, by specifically inserting the tag along the amino acid sequence.

      Advance:

      This is a very useful tool, as most existing available probes bind to actin in regions that are common to many other actin binding proteins. The authors provide extensive experiments to validate that tagged-actin are functional and do not perturb the actin expression level, actin network architecture nor dynamics.

      Audience:

      This research paper will be of interest to a rather broad audience (many cell biologists) that are either sutyding actin dynamics or know that actin is involved in the cell functions they study.

      Expertise:

      My expertise is in vitro actin biochemistry.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Actin is highly sensitive to modifications, and tagging it with fluorescent proteins or even smaller motifs can affect its function. The most well-known example of this is that fission yeast where actin has been replaced with GFP-actin are inviable (Wu and Pollard, Science 2005) because the labeled actin cannot incorporate into the formin-dependent filaments that make up the cytokinetic ring. Subsequent experiments revealed that formins filter out GFP-actin monomers, as well as monomers that are labeled with smaller fluorescent motifs (Chen et al, J. Structural Biology 2012). Further, attempts to make mammalian cells lines where GFP-beta-actin was knocked into one allele resulted in extreme down-regulation of the GFP-labeled actin, indicating that there is some implicit toxicity with the labeled version. To my knowledge, all attempts at making homozygous GFP-actin knock-ins have been unsuccessful. Therefore, while GFP-actin or other labeled variants can be over-expressed in many different cell types with some success, there is always the question of how faithful the labeled actin represents bona fide actin localization and dynamics.

      To address this van Zwam et al. have developed a clever strategy of screening actin for internal motifs that can tolerate incorporation of a tag without affecting its function. They appear to have found a good candidate, named IntAct, and provide evidence that this tagging position allows the actin to be functional in both human and yeast cells. The work is very promising, and many of the assays performed satisfy the criteria of rigor and reproducibility. Importantly, the authors have created knock-in human cell lines where the tagged actin is expressed at normal levels, including a double allele knock-in that is viable and has normal proliferation and motility. Additionally, the authors show that labeled S. cerevisiae actin can incorporate into actin cables, which are formin dependent. IntAct constructs were shown to interact with several well-known actin binding proteins and localized well to many different actin structures. There was also interesting data obtained from tagging both beta and gamma actin in human cells. However, as an actin scientist eager for new probes to visualize actin in cells, there are still questions about the functionality of these probes. Addressing these issues, listed below, would alleviate the concerns I still have about IntActs after going through the manuscript. IntActs have the potential to have a large impact on cytoskeletal research if it can be rigorously documented that they are functionally as close to unlabeled actin as possible.

      Significance

      Concerns:

      1. There are no negative controls performed for either the fixed or live-cell imaging of IntAct. Since the fixed cell data is heavily reliant on the presence of flag-labeled puncta at actin filaments, it is important to show that the immunocytochemistry protocol doesn't produce anything that would mimic the localization of actin. For the live cell data, there has been no effort made to show that the binding of the nanobody to the ALFA tag on InAct is specific.
      2. The homozygous ALFA-tagged IntAct cells have a 50% reduction in the amount of actin expression (Fig. 2D). What is the F:G ratio in these cells? The F:G measurement is only shown for the FLAG-tagged heterozygous IntAct cells, which have the worst co-localization with phalloidin (Fig. 2F) and were not used for subsequent figures. I appreciate that motility and proliferation were measured and shown to not be affected (Fig. 4D,E) , but in our lab reducing the amount of polymerized actin by 50% (which may be more in ALFA-tagged IntAct cells if the F:G changes) has catastrophic effects on other cytoskeletal and organelle systems. Since the homozygous ALFA IntAct cells are the main ones used in the manuscript, they should be the ones that are fully characterized.
      3. It is not addressed if expressing the ALFA-Nb-GFP construct in ALFA-IntAct cells alter actin properties? This is essential information for live cell imaging experiments.
      4. It is not addressed how much of the ALFA-IntAct gets labeled with ALFA-Nb-GFP and how uniform the labelling.
      5. To assess lamellapodia architecture, "branched actin angle" is measured using AiryScan imaging of actin filaments. This type of microscopy does not offer the ability to image individual actin filaments; what is actually being measured is the orientation of actin bundles to each other. It should be impossible to image the orientation of actin filaments in Arp2/3 dendritic networks and it is surprising that the measurements average to 70 degrees. A suitable substitute for this would be to measure the size and amount of F-actin in phalloidin-stained lamellipodia using kymograph analysis.
      6. Was it possible to make an IntAct gene substitution in yeast?

      Also, while this is not necessary for this manuscript, making a fission yeast strain where actin has been substituted with IntAct and demonstrating that IntAct gets incorporated into the cytoplasmic ring and into Cdc12p-polymerized filaments would alleviate MANY potential concerns people would have about these probes by directly assessing situations were other labeled actins have been documented to fail. Along the same lines, it would have been nice to see a comparison in some of the assays of ALFA-IntAct and GFP-actin or another labeled actin variant.

    4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this study, the authors generate several variants of actin that are internally tagged with short peptide tags. They identify one particular position that is able to tolerate various tags of 5-10 amino acids and still shows largely unaltered behavior in cells. They study incorporation of their tagged actins into filaments, characterize the interactions of G-actin variants with different associated proteins and show that retrograde actin flow in lamellipodia and the wound healing response of epithelial cells is not affected by the tagged variants. They then apply the tagged actin to study subcellular distribution of different actin isoforms in mammalian and yeast cells.

      The identification of a specific site in the actin protein that tolerates variable peptide insertions is very exciting and of fundamental interest for all research fields that deal with cytoskeletal rearrangements and cellular morphogenesis. The result demonstrating the functionality of actin variants with peptides inserted between aa 229 and 230 are generally convincing and well done. In particular, the generation of CRISPR/Cas9 genome edited versions of beta- and gamma actin are impressive. I therefore generally support publication of this study. There are however several technical and conceptual issues that should be addressed to improve quality and scope of the study. I listed some specific comments below:

      Major points

      • The biggest issue I have is the last section on the application of tagged actins to study isoform functions. In principle the application is very clear as there are simply no alternative ways to study isoform distribution in live cells. However, the experimental data are simply not convincing. What the authors define as "cortex" in Fig. 5A seems to rather represent cytosolic background mixed with radial fibers. I am not convinced that even the antibody staining with a relatively clear differential distribution of beta and gamma really shows a genuine accumulation of one isoform on stress fibers. It seems to me that the beta-actin staining has as higher cytosolic background and is generally weaker (gamma nicely labels transverse arcs), which reduces signal/noise and therefore yields a relatively increased level in areas with less-bundled actin. My suggestion is to select more clearly defined actin structures and to use micro-patterned cells to normalize the otherwise obstructing variability in actin organization. Possible structures would be cortical arcs in bow-shaped cells, lamellipodial edges (HT1080 seem to make very nice and large lamellipodia) or cell-cell contacts (confluent monolayer, provided cells don´t grow on top of each other). Stress fibers are possible but need to be segmented very precisely and I did not see any details on this in the methods section. For Fig. 5D: I assume cells were used where only one isoform was tagged? This is technical weak and the double-normalization is probably blurring any difference that might be occurring. Why not use a double-tagging strategy with ALFA/FLAG or ALFA/AU5 tags to exploit the constructs introduced in the previous figures? Also, the unique selling point of the strategy is the possibility of actual live imaging of specific isoforms. Cells that have stably integrated double tags and then transiently express nanobodies for ALFA and either AU5 or FLAG (or other if those don't exist) would make this possible. Considering the work already done in this manuscript, such an approach should actually be possible - did the authors attempt this or is there are reason it is not discussed? If double tagged cells are not possible for some reason it should at the very least be possible to combine ALFA-detection with the specific antibody against the other isoform and get rid of the double normalization.
      • The authors make a point of comparing the internally tagged actin to N-terminal tags that are mostly functional but have been shown to affect translational efficiency. I would strongly suggest to include N-terminally tagged actin as control for all assays in this study. Also for the physiological assays (retrograde flow, wound healing), a positive control is missing that shows some effect. Previous studies showed defects with transiently expressed actin with an N-terminal GFP. As retrograde flow measurements are very sensitive to the exact position of the kymographs and wound healing assays is a very crude and indirect readout, such a positive control is essential.
      • Expression of tagged actins in yeast is a very nice idea but it would be far more informative to express the tagged forms as the only copy of actin. This can either be done by directly replacing endogenous actin gene in S. cerevisiae, or (if the tagged versions are not viable) - using the established plasmid shuffle system (express actin on counter-selectable plasmid, then knock out endogenous copy and introduce additional plasmid with tagged actin, then force original plasmid out). In the presence of endogenous S. cerevisiae actin the shown effects are very hard to interpret as nothing is known about relative protein levels (endogenous vs. introduced). Also, if constitutive expression of the ALFA nanobody is harmful for integration into cables, why not perform inducible expression of the nanobody and observe labeling after induction. For the live imaging a robust cable marker is needed, like Abp140-GFP. Finally, indicate the sequence differences between the used actin forms in yeast (supplementary figure with sequence alignment and clear indication of all variations)
      • As the authors clearly show good integration of several tagged actins into filaments I would expand the structural characterization: perform alpha fold predictions of actin monomer structures including the various tags to show the expected orientation. It is striking that the only integration site that seems to work well is at the last position of a short helix, indicating that the orientation of the integrated peptide might be fixed in space and be optimal to minimize interference. Also, a docking of the tag onto the recently published cryoEM structures of the actin filament should be shown to indicate where it resides compared to tropomyosin or the major groove where most side binding proteins seem to bind.
      • For any claims regarding usability of tagged variants for isoform research it would be very important to characterize the known posttranslational modifications of tagged actin variants - are the differences between beta and gamma maintained on this level as well?

      Technical issues

      • There is no scale for the color coding in Fig. 5A, B
      • The y-scales for Fig. 5C and D need to be identical to allow direct comparison
      • Pearson coefficient should not be normalized to a control value as its already a dimensionless parameter. Always report actual R-value - also remove R2 values for Pearson as this makes no sense in this context (not sure if it was a typo or intended).
      • All values on subcellular regions (like stress fiber or cortex) dependet critically on the way thesese regions were thresholded or identified. Provide all details on how this was done in the methods section and ensure that adequate background subtraction and normalization is applied. Optimally, an unbiased (AI or automated) approach based on simple image statistics is used for this to avoid personal bias.
      • In Fig. 2A only heterozygous FLAG-actin cells are used. Why not use a homozygous line (for both beta and gamma actin)? The nice band shift of the FLAG version would allow the precise quantification of the fraction of total actin covered by beta and gamma actin, which then could provide some additional info for the apparently weaker beta staining in Fig. 5 (if beta expression is simply weaker). This would be a very simple and useful advantage of the internal tags that could be widely applied.
      • Fig. 3: control with N-terminal tag is missing. Also, why is it not possible to assay filament binding factors like Myosin, Filamin or alpha actinin - instead of co-IP a simple co-sedimentation assay with cell extracts in F-buffer should pick up any major difference in decoration of filaments containing the ALFA tag. Using two speeds for centrifugation it might even be possible to observe effects on filament bundling. The best approach for this would of course be to purify tagged actins and perform in vitro assays but this is clearly beyond the scope of what the authors intended here. I personally think that a broad acceptance of the marker will only come once the biochemistry has been sufficiently characterized so this is a future direction I would strongly encourage.
      • Fig. 2A has no loading control -
      • The RPE-1 data are confusing as several constructs show very different localization (completely cytosolic) to HT1080 cells and there is no possible explanation given for this. Maybe simply remove this data set?
      • The angel measurements for lamellipodial actin is not very meaningful: the angel is determined for the radial bundles, which do not correspond to the Arp2/3 angel of single filaments and is likely the results of different nucleation factors, I would suggest to remove this. If angel measurement are really intended, cryoEM needs to be performed.
      • Replace all SEM with SD values - use at least 3 biological replicates (4D SEM of n=2)

      Minor points

      • Intro: after listing all the details already understood on actin isoforms it is not very convincing to simply state the molecular principles remain largely unclear (l 34) - maybe better "there is no way to study actin dynamics due to current limitations of specific antibodies to fixed samples. Interesting option would be actually to develop nanobodies that are isoform specific 
      • L 71: "involved" in the kinetics is not a good term - maybe affects or regulates....
      • L148: "suspect" instead of "expect" - this clonal variation is actually a big danger of the employed approach as possible defects in actin organization could be masked by compensatory changes - it would generally be good to show critical data for at least 3 independent clones to rule out dominant selection effects.

      Referees cross-commenting

      I completely agree with the comments by reviewer 2 on the various missing controls - adding several or all of those will make the results much more convincing. The key for the adaptation of any new actin probe will be the level of confidence researchers have on the doumented effects. Even some negative effects on actin behavior (I am sure there will be some) should not prevent usage of the strategy as long as there is robust and convincing documentation of those effects. I also agree that including some basic in vitro characterization will go a long way to convince people dierectly working on actin (there is a very high level of biochemical understanding in that field).

      Significance

      Significance: Very useful finding that can be applied to any question related to actin-dependent cellular processes (morphogenesis, cell division, cell polarization, cell migration etc.)

      Strength: main finding convincing, strong genome edited cell lines

      Limitations: application to study of isoforms very limited and data not convincing, statistics and image quantifications need improvement

      Advance: identify new location for integral tagging of actin, which was not really possible before. The main relevance is for fundamental cell biology but the approach can also be applied to the study of disease variants in actin.

      Audience: general cell biology - very broad interest

  6. Aug 2023
    1. Der indische Konzern Adani, der von der gleichnamigen Familie kontrolliert wird, hat offenbar über Jahre in seine eigenen Aktien investiert, um die Kurse hochzutreiben. Adani gehört zu den Firmen, die durch Investitionen in Kohle und Flughäfen maßgeblich zum Wachstum der Emissionen beitragen. Sie hat enge Beziehungen zum indischen Präsidenten Modi, dessen Regierung Schutz der Interessen von Adani vorgeworfen wird. https://www.theguardian.com/world/2023/aug/31/modi-linked-adani-family-secretly-invested-in-own-shares-documents-suggest-india

      Mehr zu Adani: https://hypothes.is/search?q=tag%3A%22actor%3A%20Adani%22

    1. Reviewer #1 (Public Review):

      Summary: Cullinan et al. explore the hypothesis that the cytoplasmic N- and C-termini of ASIC1a, not resolved in x-ray or cryo-EM structures, form a dynamic complex that breaks apart at low pH, exposing a C-terminal binding site for RIPK1, a regulator of necrotic cell death. They expressed channels tagged at their N- and C-termini with the fluorescent, non-canonical amino acid ANAP in CHO cells using amber stop-codon suppression. Interaction between the termini was assessed by FRET between ANAP and colored transition metal ions bound either to a cysteine reactive chelator attached to the channel (TETAC) or metal-chelating lipids (C18-NTA). A key advantage to using metal ions is that they are very poor FRET acceptors, i.e. they must be very close to the donor for FRET to occur. This is ideal for measuring small distances/changes in distance on the scales expected from the initial hypothesis. In order to apply chelated metal ions, CHO cells were mechanically unroofed, providing access to the inner leaflet of the plasma membrane. At high pH, the N- and C- termini are close enough for FRET to be measured, but apparently too far apart to be explained by a direct binding interaction. At low pH, there was an apparent increase in FRET between the termini. FRET between ANAP on the N-and C-termini and metal ions bound to the plasma membrane suggests that both termini move away from the plasma membrane at low pH. The authors propose an alternative hypothesis whereby close association with the plasma membrane precludes RIPK1 binding to the C-terminus of ASIC1a.

      Strengths: The findings presented here are certainly valuable for the ion channel/signaling field and the technical approach only increases the significance of the work. The choice of techniques is appropriate for this study and the results are clear and high quality. Sufficient evidence is presented against the starting hypothesis.

      Weaknesses: I have a few questions about certain controls and assumptions that I would like to see discussed more explicitly in the manuscript.

      --My biggest concern is with the C-terminal citrine tag. Might this prevent the hypothesized interaction between the N- and C-termini? What about the serine to cysteine mutations? The authors might consider a control experiment in channels lacking the C-terminal FP tag.

      --Figure 2 supplement 1 shows apparent read-through of the N-terminal stop codons. Given that most of the paper uses N-terminal ANAP tags, this figure should be moved out of the supplement. Do N-terminally truncated subunits form functional channels? Do the authors expect N-terminally truncated subunits to co-assemble in trimers with full-length subunits? The authors should include a more explicit discussion regarding the effect of truncated channels on their FRET signal in the case of such co-assembly.

      --As the epitope used for the western blots in Figure 2 and supplements is part of the C-terminal tag, these blots do not provide an estimate of the fraction of C-terminally truncated channels (those that failed to incorporate ANAP at the stop codon). What effect would C-terminally truncated channels have on the FRET signal if incorporated into trimers with full-length subunits?

      --Some general discussion of these results in the context of trimeric channels would be helpful. Is the putative interaction of the termini within or between subunits? Are the distances between subunits large enough to preclude FRET between donors on one subunit and acceptor ions bound on multiple subunits?

      --The authors conclude that the relatively small amount of FRET between the cytoplasmic termini suggests that the interaction previously modeled in Rosetta is unlikely. Is it possible that the proposed structure is correct, but labile? For example, could it be that the FRET signal is the time average of a state in which the termini directly interact (as in the Rosetta model) and one in which they do not?

    Tags

    Annotators

    1. For context, I don't use a traditional Zettelkasten system. It's more of a commonplace book/notecard system similar to Ryan HolidayI recently transitioned to a digital system and have been using Logseq, which I enjoy. It's made organizing my notes and ideas much easier, but I've noticed that I spend a lot of time on organizing my notesSince most of my reading is on Kindle, my process involves reading and highlighting as I read, then exporting those highlights to Markdown and making a page in Logseq. Then I tag every individual highlightThis usually isn't too bad if a book/research article has 20-30 highlights, but, for example, I recently had a book with over 150 highlights, and I spent about half an hour tagging each oneI started wondering if it's overkill to tag each highlight since it can be so time consuming. The advantage is that if I'm looking for passages about a certain idea/topic, I can find it specifically rather than having to go through the whole bookI was also thinking I could just have a set of tags for each book/article that capture what contexts I'd want to find the information in. This would save time, but I'd spend a little more time digging through each document looking for specificsCurious to hear your thoughts, appreciate any suggestions

      reply to m_t_rv_s__n/ at https://www.reddit.com/r/Zettelkasten/comments/164n6qg/is_this_overkill/

      First, your system is historically far more traditional than Luhmann's more specific practice. See: https://boffosocko.com/2022/10/22/the-two-definitions-of-zettelkasten/

      If you're taking all the notes/highlights from a particular book and keeping them in a single file, then it may be far quicker and more productive to do some high level tagging on the entire book/file itself and then relying on and using basic text search to find particular passages you might use at a later date.

      Spending time reviewing over all of your notes and tagging/indexing them individually may be beneficial for some basic review work. But this should be balanced out with your long term needs. If your area is "sociology", for example, and you tag every single idea related to the topic of sociology with #sociology, then it will cease to have any value you to you when you search for it and find thousands of disconnected notes you will need to sift through. Compare this with Luhmann's ZK which only had a few index entries under "sociology". A better long term productive practice, and one which Luhmann used, is indexing one or two key words when he started in a new area and then "tagging" each new idea in that branch or train of though with links to other neighboring ideas. If you forget a particular note, you can search your index for a keyword and know you'll find that idea you need somewhere nearby. Scanning through the neighborhood of notes you find will provide a useful reminder of what you'd been working on and allow you to continue your work in that space or link new things as appropriate.

      If it helps to reframe the long term scaling problem of over-tagging, think of a link from one idea to another as the most specific tag you can put on an idea. To put this important idea into context, if you do a Google search for "tagging" you'll find 240,000,000 results! If you do a search for the entirety of the first sentence in this paragraph, you'll likely only find one very good and very specific result, and the things which are linked to it are going to have tremendous specific value to you by comparison.

      Perhaps the better portions of your time while reviewing notes would be taking the 150 highlights and finding the three to five most important, useful, and (importantly) reusable ones to write out in your own words and begin expanding upon and linking? These are the excerpts you'll want to spend more time on and tag/index for future use rather than the other hundreds. Over time, you may eventually realize that the hundreds are far less useful than the handful (in management spaces this philosophy is known as the Pareto principle), so spending a lot of make work time on them is less beneficial for whatever end goals you may have. (The make work portions are often the number one reason I see people abandoning these practices because they feel overwhelmed working on raw administrivia instead of building something useful and interesting to themselves.) Naturally though, you'll still have those hundreds sitting around in a file if you need to search, review, or use them. You won't have lost them by not working on them, but more importantly you'll have gained loads of extra time to work on the more important pieces. You should notice that the time you save and the value you create will compound over time.

      And as ever, play around with these to see if they work for you and your specific needs. Some may be good and others bad—it will depend on your needs and your goals. Practice, experiment, have fun.

      Meme image from Office Space featuring a crowd of office employees standing in front of a banner on the wall that reads: Is this Good for the Zettelkasten?

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Review of: "An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans"<br /> Authors: Cristina Tocchini and Susan Mango

      The MS2-MCP imaging platform is an essential imaging system that enables dynamic quantification of mRNA transcription, abundance, location, and turnover in living biological systems. In the last ten or so years, this approach has been used in extremely successful ways in Drosophila embryos to dissect both the regulatory logic underpinning early transcriptional organization and activation with unprecedented resolution and, furthermore, how active mRNA localization outside of the nucleus impacts pattern formation. The authors correctly point out that full implementation of this tool has been suspiciously lacking in the C. elegans community for some time (aside from a few noted implementations).

      In this manuscript, Tocchini and Mango directly approach this deficit in a thoughtful study where many of the salient features of MS2 epitope tagging are systematically measured. Specifically, the authors use CRISPR genomic engineering to tag two separate dosage-sensitive, developmental genes and study the expression and function of these genes within the context of the MS2/MCP-GFP system. The authors demonstrate that the location of the MS2 epitope insertion within the endogenous 3'UTR is an important design consideration for functional, downstream implementation of the imaging system. In both cases, insertion of the MS2 hairpins near the end of the open reading frame of either gene results in overt and specific developmental phenotypes that phenocopy previously characterized loss of function alleles of each gene. The design of these experiments is high in quality in that they measure both the levels of cytoplasmic abundance of the various epitope-tagged mRNAs as well as the protein expression levels for these transgenes (by monitoring the levels of GFP expression (each MS2-tagged gene encodes a functional GFP-tagged allele). In two clear transgene examples, they demonstrate that the loss of function phenotypes of the proximally-tagged (closest to the ORF) transgenes disrupt mRNA levels and expression and reduce the proper localization of these mRNAs. This may be why previous attempts at implementing this important imaging system have failed.

      The authors then characterize the cellular systems that cause the differential expression of MS2-tagged transgenes. The authors note that previous studies on simpler systems and in C. elegans have suggested that the nonsense-mediated mRNA decay (NMD) pathway limits the expression of mRNAs with exceptionally long 3'UTRs. Tocchini and Mango then use C. elegans NMD mutants to demonstrate that ablation of this natural RNA degradation system corrects the developmental and gene expression defects associated with the reduction of function MS2 insertion alleles. These experiments are complete and compelling as they are validated at all levels (GFP expression (via quantification of GFP expression) and mRNA expression, and mRNA localization levels (via in situ hybridization).

      The authors then make the case that the type and expression levels of the MCP-GFP fusion protein are also essential features that need to be optimized for an effective imaging system. The authors suggest that optimal visualization of endogenous genes requires the surprisingly low-level expression of the MCP-GFP fusion protein. The authors use a novel transgene that differs from the conventional system. Specifically, the Tocchini system employs a 2xMCP ORF fused to 2xmCherry ORFs fusion. This transgene lacks the NLS typically used to localize exported mRNAs in the cytoplasm and also encodes two MCPs that may or may not facilitate dimerization on the MS2 hairpins. They demonstrate that endogenous, epitope-tagged transgenes can be visualized in developing embryos and that tethering this 2xMCP fusion to the reporter transcript does not alter RNA expression levels. While the authors demonstrate that visualization is possible with this system, it is hard to tell if this fusion protein dramatically improves over other available systems without a direct comparison. For instance, measuring the signal-to-noise (S/N) ratio of localized 2xMCP-2xmCherry would be a good addition and support the author's claims. If it were an exceptional system, these calculations should exceed the well-characterized and quantified MCP-GFP system described in Lee et al. 2019 ((Lee et al., 2019). It is just too hard to know if this is a dramatic element that should now be included in future RNA localization experiments.

      Minor critiques:

      1. The authors should provide more details in the experimental description of the MS2-tagged alleles (or in the figure images). It needs to be clarified in the main text how many MS2 hairpins there are, though this can be found in the materials and methods. In addition, it would be nice to know if these were any of the variations of MS2 hairpins that have already been optimized in some other way to increase or decrease structure or RNA metabolism defects in other systems. Specifically, are these hairpins the newest versions, V6 or V7, described in manuscripts from the Singer laboratory (e.g., (Tutucci et al., 2018))? For aficionados of this imaging system, it would be important to qualify each of the potential new features that make the results in this manuscript so clear and important.
      2. For people that are colorblind (or have reduced ability to distinguish some colors from others (like me, a reviewer)), it would be nice to have the MS2 illustrations in Figures 1A and B not have that color within the black, normal UTR. It's picky, but I had to ask someone what color that was.

      References:

      Lee, C., Shin, H., and Kimble, J. (2019). Dynamics of Notch-Dependent Transcriptional Bursting in Its Native Context. Dev Cell 50, 426-435 e424.

      Tutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., and Singer, R.H. (2018). An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15, 81-89.

      Significance

      In summary, this is a well-written and critical addition to the literature that will hopefully increase the implementation of this system in C. elegans research. The systematic approach to getting a new experimental platform up and running certainly has a place in the canon. Aside from the missing elements regarding the putative improvements and/or direct comparisons between different MCP fusion proteins, the manuscript is solid, important, and nearly ready to go.

      It is an advance and will, as noted above, likely serve to help implement this system by other C. elegans reserachers.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1) The authors need to validate that RAP1-HA still retains its essential function. As indicated above, if RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. These cells should also have the WT VSG expression pattern, and RAP1-HA should still interact with TRF.

      We demonstrated that C-terminally HA-tagged RAP1 co-localizes with telomeres by a combination of immunofluorescence and fluorescence in situ hybridization (Cestari and Stuart, 2015, PNAS), and co-immunoprecipitate telomeric and 70 bp repeats (Cestari et al. 2019 Mol Cell Biol). We also showed by immunoprecipitation and mass spectrometry that HA-tagged RAP1 interacts with nuclear and telomeric proteins, including PIP5Pase (Cestari et al. 2019). Others have also tagged T. brucei RAP1 with HA without disrupting its nuclear localization (Yang et al. 2009, Cell), all of which indicate that the HA-tag does not affect protein function. As for the suggested experiment, there is no guarantee that cells lacking one allele of RAP1 will behave as wildtype, i.e., normal growth and repression of VSGs genes. Also, less than 90% of T. brucei TRF was reported to interact with RAP1 (Yang et al. 2009, Cell), which might be indirect via their binding to telomeric repeats rather than direct protein-protein interactions.

      2) The authors need to remove the His6 tag from the recombinant RAP1 fragments before the EMSA analysis. This is essential to avoid any artifacts generated by the His6-tagged proteins.

      Our controls show that the His-tag is not interfering with RAP1-DNA binding. We show in Fig 3CG by EMSA and in Fig S5 by EMSA and microscale thermophoresis that His-tagged full-length rRAP1 does not bind to scrambled telomeric dsDNA sequences, which demonstrates that His-tagged rRAP1 does not bind unspecifically to DNA. Moreover, in Fig 3G and Fig S5, we show that His-tagged rRAP11-300 also does not bind to 70 bp or telomeric repeats. In contrast, the full-length His-tagged rRAP1, rRAP1301-560, or rRAP1561-855 bind to 70 bp or telomeric repeats (Fig 3C-G). Since all proteins were His-tagged, the His tag cannot be responsible for the DNA binding. We have worked with many different His-tagged proteins for nucleic acid binding and enzymatic assays without any interference from the tag (Cestari and Stuart, 2013; JBC; Cestari et al; 2013, Mol Cell Biol; Cestari and Stuart, 2015, PNAS; Cestari et al. 2016; Cell Chem Biol; Cestari et al. 2019 Mol Biol Cell).

      3) More details need to be provided for ChIPseq and RNAseq analysis regarding the read numbers per sample, mapping quality, etc.

      Table S3 includes information on sequencing throughput and read length. Mapping quality was included in the Methods section “Computational analysis of RNA-seq and ChIP-seq”, starting at line 499. In summary, we filtered reads to keep primary alignment (eliminate supplementary and secondary alignments). We also analyzed ChIP-seq with MAPQ ≥20 (99% probability of correct alignment) to distinguish RAP1 binding to specific ESs, including silent vs active ES (ChIP-seq). We included Fig S4 to show the effect of filtering alignments on the active vs silent ESs. We used MAPQ ≥30 to analyze RNA-seq mapping to VSG genes, including those in subtelomeric regions. Our scripts are available at https://github.com/cestari-lab/lab_scripts. We also included in the Methods, lines 522-524: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestarilab/VSG-Bar-seq.”

      4) The authors should revise the Discussion section to clearly state the authors' speculations and their working models (the latter of which need solid supporting evidence). Specifically, statements in lines 218 - 219 and lines 224-226 need to be revised.

      The statement “likely due to RAP1 conformational changes” in line 228 discusses how binding of PI(3,4,5)3 could affect RAP1 Myb and MybL domains binding to DNA. We did not make a strong statement but discussed a possibility. We believe that it is beneficial to the reader to have the data discussed, and we do not feel this point is overly speculative. For lines 224-226 (now 234-235), the statement refers to the finding of RAP1 binding to centromeric regions by ChIP-seq, which is a new finding but not the focus of this work. To make it clear that it does not refer to telomeric ESs, we edited: “The finding of RAP1 binding to subtelomeric regions other than ESs, including centromeres, requires further validation.” Since RAP1 binding to centromeres is not the focus of the work, future studies are necessary to follow up, and we believe it is appropriate in the Discussion to be upfront and highlight this point to the readers.

      Our model is based on the data presented here but also on scientific literature. We have reviewed the Discussion to prevent broad speculations. When discussing a model, we stated (line 245): “The scenario suggests a model in which …”, to state that this is a working model. Similarly, in Results (line 201) we included: “Our data suggest a model in which…”.

      5) The authors should revise the title to reflect a more reasonable conclusion of the study.

      We agree that the title should be changed to imply a direct role of PI(3,4,5)P3 regulation of RAP1, which is not captured in the original title. This will provide more specific information to the readers, especially those broadly interested in telomeric gene regulation and RAP1. The new title is: PI(3,4,5)P3 allosteric regulation of repressor activator protein 1 controls antigenic variation in trypanosomes

      6) The authors are recommended to provide an estimation of the expression level of the V5-tagged PIP5pase from the tubulin array in reference to the endogenous protein level.

      The relative mRNA levels of the exclusive expression of PIP5Pase mutant compared to the wildtype is available in the Data S1, RNA-seq. The Mut PIP5Pase allele’s relative expression level is 0.85fold to the WT allele (both from tubulin loci). We also showed by Western blot the WT and Mut PIP5Pase protein expression (Cestari et al. 2019, Mol Cell Biol). Concerning PIP5Pase endogenous alleles, we compared normalized RNA-seq counts per million from the conditional null PIP5Pase cells exclusively expressing WT or the Mut PIP5Pase alleles (Data S1, this work) to our previous RNA-seq of single-marker 427 strain (Cestari et al. 2019, Mol Cell Biol). We used the single-maker 427 because the conditional null cells were generated in this strain background. The PIP5Pase WT and Mut mRNAs expressed from tubulin loci are 1.6 and 1.3-fold the endogenous PIP5Pase levels in single-marker 427, respectively. We included a statement in the Methods, lines 275-278: “The WT or Mut PIP5Pase mRNAs exclusively expressed from tubulin loci are 1.6 and 1.3-fold the WT PIP5Pase mRNA levels expressed from endogenous alleles in the single marker 427 strain. The fold-changes were calculated from RNA-seq counts per million from this work (WT and Mut PIP5Pase, Data S1) and our previous RNA-seq from single marker 427 strain (24).”

      7) The authors are recommended to provide more detailed EMSA conditions such as protein and substrate concentrations. Better quality EMSA gels are preferred.

      All concentrations were already provided in the Methods section. See line 356, in topic Electrophoretic mobility shift assays: “100 nM of annealed DNA were mixed with 1 μg of recombinant protein…”. For microscale thermophoresis, also see lines 375-376 in topic Microscale thermophoresis binding kinetics: “1 μM rRAP1 was diluted in 16 two-fold serial dilutions in 250 mM HEPES pH 7.4, 25 mM MgCl2, 500 mM NaCl, and 0.25% (v/v) N P-40 and incubated with 20 nM telomeric or 70 bp repeats…”. Note that two different biochemical approaches, EMSA and microscale thermophoresis, were used to assess rRAP1-His binding to DNA. Both show agreeable results (Fig 3 and 5, and Fig S5. Microscale thermophoresis shows the binding kinetics, data available in Table 1). The EMSA images clearly show the binding of RAP1 to 70 bp or telomeric repeats but not to scramble telomeric repeat DNA.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      Figures

      All figures should have their axes properly labeled and units should be indicated. For many of the ChIPseq datasets it is not clear whether the authors show a fold enrichment or RPM and whether they used all reads or only uniquely mapping reads. Especially the latter is a very important piece of information when analyzing expression sites and should always be reported. The authors write, that all RNA-seq and ChIP-seq experiments were performed in triplicate. What is shown in the figures, one of the replicates? Or the average?

      ChIP-seq is shown as fold enrichment; we clarified this in the figures by including in the y-axis RAP1-HA ChIP/Input (log 2). We included in figure legends, see line 710: “Data show fold-change comparing ChIP vs Input.”. For quantitative graphs (Fig 2B, D, and E, and Fig 5F and G), data are shown as the mean of biological replicates. Graphs generated in the integrated genome viewer (IGV, qualitative graphs) is a representative data (Fig 2A, C, and F, and Fig 5D-E). All statistical analyses were calculated from the three biological replicates. Uniquely mapped reads were used. We also included ChIP-seq analysis with MAPQ ≥10 and 20 (90% and 99% probability of correct alignment, respectively) to distinguish RAP1 binding to ESs. Fig S4 shows the various mapping stringency and demonstrates the enrichment of RAP1-HA to silent vs active ES.

      Figure 1 is very important for the main argument of the manuscript, but very difficult (impossible for me) to fully understand. It would be great if the author could make an effort to clarify the figure and improve the labels. Panel Fig 1E. Here it is impossible to read the names of the genes that are activated and therefore it is impossible to verify the statements made about the activation of VSGs and the switching.

      We have edited Fig 1E to include the most abundant VSGs, which decreased the amount of information in the graph and increased the label font. We also re-labeled each VSG with chromosome or ES name and common VSG name when known (e.g., VSG2). We included Table S1 in the supplementary information with the data used to generate Fig 1E. In Table S1, the reader will be able to check the VSG gene IDs and evaluate the data in detail. We included in the legend, line 700: “See Table S1 for data and gene IDs of VSGs.”

      Figure 1F: This panel is important and should be shown in more detail as it distinguishes VSG switching from a general VSG de-repression phenotype. VSG-seq is performed in a clonal manner here after PIP5Pase KD and re-expression. To show that proper switching has occurred place in the different clones, instead of a persistent VSG de-repression, the expression level of more VSGs should be shown (e.g. as in panel E) to show that there is really only one VSG detected per clone. For example, it is not clear what the authors 'called' the dominant VSG gene.

      We showed in supplementary information Fig S1 B-C examples of reads mapping to the VSGs. Now we included a graph (Fig S1 D) that quantifies reads mapped to the VSG selected as expressed compared to other VSG genes considered not expressed). The data show an average of several clones analyzed. Other VSGs (not selected) are at the noise level (about 4 normalized counts) compared to >250 normalized counts to the selected as expressed VSGs.

      As mentioned in the public comments, I don't see how the data from Fig 1E and 1F fit together. Based on Fig 1E VSG2 is the dominant VSG, based on Fig 1F VSG2 is almost never the dominant VSG, but the VSG from BES 12.

      In Fig 1E, the VSG2 predominates in cells expressing WT PIP5Pase, however, in cells expressing Mut PIP5Pase, this is not the case anymore. Many other VSGs are detected, and other VSG mRNAs are more abundant than VSG2 (see color intensity in the heat map). The Mut cells may also have remaining VSG2 mRNAs (from before switching) rather than continuous VSG2 expression. This is the reason we performed the clonal analysis shown in Fig 1F, to be certain about the switching. While Fig 1F shows potential switchers in the population, Fig 1E confirms VSG switching in clones.

      Many potential switchers were detected in the VSG-seq (Fig 1F, the whole cell population is over 107 parasites), but not all potential switchers were detected in the clonal analysis because we analyzed 212 clones total, a fraction of the over 107 cells analyzed by VSG-seq (Fig 1E). Also, it is possible that not all potential switchers are viable. A preference for switching to specific ESs has been observed in T. brucei (Morrison et al. 2005, Int J Parasitol; Cestari and Stuart, 2015, PNAS), which may explain several clones switching to BES12.

      Note that in Fig 1F, tet + cells did not switch VSGs at all; all 118 clones expressed VSG2. We relabeled Fig 1F for clarity and included the VSG names. We added gene IDs in the Figure legends, see line 702 “ BES1_VSG2 (Tb427_000016000), BES12_VSG (Tb427_000008000)…”

      Statements in Introduction / Discussion

      The statement in lines 82/83 is very strong and gives the impression that the PIP5Pase-Rap1 circuit has been proven to regulate antigenic variation in the host. However, I don't think this is the case. The paper shows that the pathway can indeed turn expression sites on and off, but there is no evidence (yet) that this is what happens in the host and regulates antigenic variation during infection. The same goes for lines 214/215 in the discussion.

      We agree with the reviewer, and we edited these statements. The statement lines 82-83: “The data provide a molecular mechanism…” to “The data indicates a molecular mechanism…” For lines 224225: “and provides a mechanism to control…” to “and indicates a mechanism to control…”. We also included in lines 261-262: “It is unknown if a signaling system regulates antigenic variation in vivo.” Also edited lines 262-263: “…the data indicate that trypanosomes may have evolved a sophisticated mechanism to regulate antigenic variation...”.

      New vs old data

      In general, for Figures 1 - 4, it was a bit difficult to understand which panels showed new findings, and which panels confirmed previous findings (see below for specific examples). In the text and in the figure design, the new results should be clearly highlighted. Authors: All data presented is new, detailed below.

      Figure 1: A similar RNA-seq after PIP5Pase deletion was performed in citation 24. Perhaps the focus of this figure should be more on the (clone-specific) VSG-seq experiment after PIP5Pase re-introduction.

      This is the first time we show RNA-seq of T. brucei expressing catalytic inactive PIP5Pase, which establishes that the regulation of VSG expression and switching, and repression of subtelomeric regions, is dependent on PIP5Pase enzyme catalysis, i.e., PI(3,4,5)P3 dephosphorylation. Hence, the relevance and difference of the RNA-seq here vs the previous RNA-seq of PIP5Pase knockdown.

      Figure 2: A similar ChIP-seq of RAP1 was performed in citation 24, with and without PIP5Pase deletion. Could new findings be highlighted more clearly?

      Our and others’ previous work showed ChIP-qPCR, which analyses specific loci. Here we performed ChIP-seq, which shows genome-wide binding sites of RAP1, and new findings are shown here, including binding sites in the BES, MESs, and other genome loci such as centromeres. We also identified DNA sequence bias defining RAP1 binding sites (Fig 2A). We also show by ChIP-seq how RAP1-binding to these loci changes upon expression of catalytic inactive PIP5Pase. To improve clarity in the manuscript, we edited lines 129-130: “We showed that RAP1 binds telomeric or 70 bp repeats (24), but it is unknown if it binds to other ES sequences or genomic loci.”

      Figure 4: Binding of Rap1 to PI(3,4,5)P3, but not to other similar molecules, was previously shown in citation 24. Could new findings be highlighted more clearly?

      We published in reference 24 (Cestari et al. Mol Cell Biol) that RAP1-HA can bind agarose beadsconjugated synthetic PI(3,4,5)P3. Here, we were able to measure T. brucei endogenous PI(3,4,5)P3 associated with RAP1-HA (Fig 4F). Moreover, we showed that the endogenous RAP1-HA and PI(3,4,5)P3 binding is about 100-fold higher when PIP5Pase is catalytic inactive than WT PIP5Pase. The data establish that in vivo endogenous PI(3,4,5)P3 binds to RAP1-HA and how the binding changes in cells expressing mutant PIP5Pase; this data is new and relevant to our conclusions. To clarify, we edited the manuscript in lines 180-182: “To determine if RAP1 binds to PI(3,4,5)P3 in vivo, we in-situ HA-tagged RAP1 in cells that express the WT or Mut PIP5Pase and analyzed endogenous PI(3,4,5)P3 levels associated with immunoprecipitated RAP1-HA”.

      Sequencing.<br /> I really appreciate the amount of detail the authors provide in the methods section. The authors do an excellent job of describing how different experiments were performed. However, it would be important that the authors also provide the basic statistics on the sequencing data. How many sequencing reads were generated per run (each replicate of the ChIP-seq and RNA-seq assays)? How long were the reads? How many reads could be aligned?

      The sequencing metrics for RNA-seq and ChIP-seq for all biological replicates were included in Table S3 (supplementary information). The details of the analysis and sequencing quality were described in the Methods section “Computational analysis of RNA-seq and ChIP-seq”. To be clearer about the analysis, we also included in Methods, lines 522-524: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestari-lab/VSG-Bar-seq.”.

      Minor comments:

      Figure 1B: I would recommend highlighting the non-ES VSGs and housekeeping genes with two more colors in the volcano plot, to show that it is mostly the antigen repertoire that is deregulated, and not the Pol ll transcribed housekeeping genes. This is not entirely clear from the panel as it is right now.

      The suggestion was incorporated in Fig 1B. We color-coded the figure to include BES VSGs, MES VSGs, ESAGs, subtelomeric genes, core genes (typically Pol II and Pol III transcribed genes), and Unitig genes, those genes not assembled in the 427-2018 reference genome.

      Were the reads in Figure 2a filtered in the same way as those in Figure 2C? To support the statements, only unique reads should be used.

      Yes, we also added Fig S4 to make more clear the comparison between read mapping to silent vs active ES.

      It would be good if the authors could add a supplementary figure showing the RAP1 ChIP-seq (WT and cells lacking a functional PIP5Pase) for all silent expression sites.

      We had RAP1 ChIP-seq from cells expressing WT PIP5Pase already. We have it modified to include data from the Mutant PIP5Pase. See Fig S3 and S5.

      In Figure 5D, after depletion of PIP5Pase, RAP1 binding appears to decrease across ESAGs, but ESAG expression appears to increase. How can this be explained with the model of RAP1 repressing transcription?

      We included in the Results, lines 208-212: “The increased level of VSG and ESAG mRNAs detected in cells expressing Mut PIP5Pase (Fig 5D) may reflect increased Pol I transcription. It is possible that the low levels of RAP1-HA at the 50 bp repeats affect Pol I accessibility to the BES promoter; alternatively, RAP1 association to telomeric or 70 bp repeats may affect chromatin compaction or folding impairing VSG and ESAG genes transcription.”.

      Reviewer #3 (Recommendations For The Authors):

      Line 114 - typo? Procyclic instead of procyclics:

      Fixed, thanks.

      Line 233 - the phrasing here is confusing, may want to replace "whose" with "which" (if I am interpreting correctly):

      Thanks, no changes were needed. I have had the sentence reviewed by a Ph.D.-level scientific writer.

      Methods - there is no description of VSG-seq analysis in the methods. Is it done the same way as the RNA-seq analysis? Is the code for analysis/generating figures available online?

      The procedure is similar. We included an explanation in Methods, lines 503-504: “RNA-seq and VSG-seq (including clonal VSG-seq) mapped reads were quantified…”. Also, in lines 522-54: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestarilab/VSG-Bar-seq.”.

      Fig 1H - Is this from RNA-seq or VSG-seq analysis of procyclics?

      The procyclic forms VSG expression analysis was done by real-time PCR. To clarify it, we included it in the legend “Expression analysis of ES VSG genes after knockdown of PIP5Pase in procyclic forms by real-time PCR”. We also amended the Methods, under the topic RNA-seq and real-time PCR, line 402-407: “For procyclic forms, total RNAs were extracted from 5.0x108 T. brucei CN PIP5Pase growing in Tet + (0.5 µg/mL, no knockdown) or Tet – (knockdown) at 5h, 11h, 24h, 48h, and 72h using TRIzol (Thermo Fisher Scientific) according to manufacturer's instructions. The isolated mRNA samples were used to synthesize cDNA using ProtoScript II Reverse Transcriptase (New England Biolabs) according to the manufacturer's instructions. Real-time PCRs were performed using VSG primers as previously described (23).”

      Fig 2 A - Where it says "downstream VSG genes" I assume "downstream of VSG genes" is meant? the regions described in this figure might be more clearly laid out in the text or the legend

      Fixed, thanks. We included in the text in Results, line 140: “… and Ts and G/Ts rich sequences downstream of VSG genes”.

      Fig 2E - what does "Flanking VSGs" mean in this context?

      We added to line 705, figure legends: “Flanking VSGs, DNA sequences upstream or downstream of VSG genes in MESs. “

      Fig 2H - Why is the PIP5Pase Mutant excluded from the Chr_1 core visualization?

      We did not notice it. We included it now; thanks.

    2. Reviewer #1 (Public Review):

      Comments on the original submission:

      Trypanosoma brucei undergoes antigenic variation to evade the mammalian host's immune response. To achieve this, T. brucei regularly expresses different VSGs as its major surface antigen. VSG expression sites are exclusively subtelomeric, and VSG transcription by RNA polymerase I is strictly monoallelic. It has been shown that T. brucei RAP1, a telomeric protein, and the phosphoinositol pathway are essential for VSG monoallelic expression. In previous studies, Cestari et al. (ref. 24) has shown that PIP5pase interacts with RAP1 and that RAP1 binds PI(3,4,5)P3. RNAseq and ChIPseq analyses have been performed previously in PIP5pase conditional knockout cells, too (ref. 24). In the current study, Touray et al. did similar analyses except that catalytic dead PIP5pase mutant was used and the DNA and PI(3,4,5)P3 binding activities of RAP1 fragments were examined. Specifically, the authors examined the transcriptome profile and did RAP1 ChIPseq in PIP5pase catalytic dead mutant. The authors also expressed several C-terminal His6-tagged RAP1 recombinant proteins (full-length, aa1-300, aa301-560, and aa 561-855). These fragments' DNA binding activities were examined by EMSA analysis and their phosphoinositides binding activities were examined by affinity pulldown of biotin-conjugated phosphoinositides. As a result, the authors confirmed that VSG silencing (both BES-linked and MES-linked VSGs) depends on PIP5pase catalytic activity, but the overall knowledge improvement is incremental. The most convincing data come from the phosphoinositide binding assay as it clearly shows that N-terminus of RAP1 binds PI(3,4,5)P3 but not PI(4,5)P2, although this is only assayed in vitro, while the in vivo binding of full-length RAP1 to PI(3,4,5)P3 has been previously published by Cestari et al (ref. 24) already. Considering that many phosphoinositides exert their regulatory role by modulate the subcellular localization of their bound proteins, it is reasonable to hypothesize that binding to PI(3,4,5)P3 can remove RAP1 from the chromatin. However, no convincing data have been shown to support the author's hypothesis that this regulation is through an "allosteric switch".

      Comments on revised manuscript:

      In this revised manuscript, Touray et al. have responded to reviewers' comments with some revisions satisfactorily. However, the authors still haven't addressed some key scientific rigor issues, which are listed below:

      1. It is critical to clearly state whether the observations are made for the endogenous WT protein or the tagged protein. It is good that the authors currently clearly indicate the results observed in vivo are for the RAP1-HA protein. However, this is not as clearly stated for in vitro EMSA analyses. In addition, in discussion, the authors simply assumed that the c-terminally tagged RAP1 behaves the same as WT RAP1 and all conclusions were made about WT RAP1.

      There are two choices here. The authors can validate that RAP1-HA still retains RAP1's essential function as a sole allele in T. brucei cells (as was recommended previously). Indeed, HA-tagged RAP1 has been studied before, but it is the N-terminally HA-tagged RAP1 that has been shown to retain its essential functions. Adding the HA tag to the C-terminus of RAP1 may well cause certain defects to RAP1. For example, N-terminally HA-tagged TERT does not complement the telomere shortening phenotype in TERT null T. brucei cells, while C-terminally GFP-tagged TERT does, indicating that HA-TERT is not fully functional while TERT-GFP likely has its essential functions (Dreesen, RU thesis). Although RAP1-HA behaves similar to WT RAP1 in many ways, it is still not fully validated that this protein retains essential functions of RAP1. By the way, it has been published that cells lacking one allele of RAP1 behave as WT cells for cell growth and VSG silencing (Yang et al. 2009, Cell; Afrin et al. 2020, mSphere). In addition, although RAP1 may interact with TRF weakly, the interaction is direct, as shown in yeast 2-hybrid analysis in (Yang et al. 2009, Cell).

      Alternatively, if the authors do not wish to validate the functionality of RAP1-HA, they need to add one paragraph at the beginning of the discussion to clearly state that RAP1-HA may not behave exactly as WT RAP1. This is important for readers to better interpret the results. In addition, the authors need to tune down the current conclusions dramatically, as all described observations are made on RAP1-HA but not the WT RAP1.

      For a similar reason, the current EMSA results truly reflect how C-terminally His6-tagged RAP1 and RAP1 fragments behave. If the authors choose not to remove the His6 tag, it is essential that they use "RAP1-His6" to refer to these recombinant proteins. It is also essential for the authors to clearly state in the discussion that the tagged RAP1 fragments bind DNA, but the current data do not reveal whether WT RAP1 binds DNA. In addition, the authors incorrectly stated that "disruption of the MybL domain sequence did not eliminate RAP1-telomere binding in vivo" (lines 165-166). In ref 29, deletion of Myb domain did not abolish RAP1-telomere association. However, point mutations in MybL domain that abolish RAP1's DNA binding activities clearly disrupted RAP1's association with the telomere chromatin. Therefore, the current observation is not completely consistent with that published in ref 29.

      2. There is no evidence, in vitro or in vivo, that binding PI(3,4,5)P3 to RAP1 causes conformational change in RAP1. The BRCT domain of RAP1 is known for its ability to homodimerize (Afrin et al. 2020, mSphere). It is therefore possible that binding of PI(3,4,5)P3 to RAP1 simply disrupts its homodimerization function. The authors clearly have extrapolated their conclusions based on available data. It is therefore important to revise the discussion and make appropriate statements.

  7. cybermental.github.io cybermental.github.io
    1. Only tags present on the page are shown; to interact with tags from elsewhere, use Tag Lookup

      This works as the info or trend button. It is configured on in the Page editor and shows only specific tags for that page. But it not restricted to tags in the page itself but configured in the page editor.

    1. Outer alignment asks the question - "What should we aim our model at?" In other words, is the model optimizing for the correct reward such that there are no exploitable loopholes? It is also known as the reward misspecification problem.

      [!NOTE] Outer Alignment / Reward Misspecification Promblem 是指什么?

      flashcard

      模型是否在向人类真正的目标优化

    1. Inner alignment asks the question - “Is the model trying to do what humans want it to do?”, or in other words can we robustly aim our AI optimizers at any objective function at all?

      [!NOTE] Inner Alignment 的基本思想是?

      flashcard

      确保模型确实在向特定目标优化

    1. AI Boxing is attempts, experiments, or proposals to isolate ("box") a powerful AI (~AGI) where it can't interact with the world at large, save for limited communication with its human liaison. It is often proposed that so long as the AI is physically isolated and restricted, or "boxed", it will be harmless even if it is an unfriendly artificial intelligence (UAI).

      [!NOTE] 将 AI 隔绝在“容器”中的做法在英语中可以称为?

      flashcard

      AI Boxing/Containment

    1. The Capitalocene challenges the Popular Anthropocene’s Two Century model of modernity – a model that has been the lodestar of Green Thought since the 1970s (Moore 2017a).

      It thus sees modernity as a longer phenomenon, that goes well beyond the IR

    1. Reviewer #1 (Public Review):

      Anderson, Henikoff, Ahmad et al. performed a series of genomics assays to study Drosophila spermatogenesis. Their main approaches include (1) Using two different genetic mutants that arrest male germ cell differentiation at distinct stages, bam and aly mutant, they performed CUT&TAG using H3K4me2, a histone modification for active promoters and enhancers; (2) Using FACS sorted pure spermatocytes, they performed CUT&TAG using antibodies against RNA PolII phosphorylated Ser 2, H4K16ac, H3K9me2, H3K27me3, and ubH2AK118. They also compare these chromatin profiling results with the published single-cell and single-nucleus RNA-seq data. Their analyses are across the genome but the major conclusions are about the chromatin features of the sex chromosomes. For example, the X chromosome is lack of dosage compensation as well as inactivation in spermatocytes, while Y chromosome is activated but enriched with ubH2A in spermatocytes. Overall, this work provides high-quality epigenome data in testes and in purified germ cells. The analyses are very informative to understand and appreciate the dramatic chromatin structure change during spermatogenesis in Drosophila. Some new analyses and a few new experiments are suggested here, which hopefully further take advantage of these data sets and make some results more conclusive.

      Major comments:

      1). The step-wise accumulation of H3K4me2 in bam, aly and wt testes are interesting. Is it possible to analyse the cis-acting sequences of different groups of genes with distinct H3K4me2 features, in order to examine whether there is any shared motif(s), suggesting common trans-factors that potentially set up the chromatin state for activating gene expression in a sequential manner?

      2). Pg. 4, line 141-142: "we cannot measure H3K4me2 modification at the bam promoter in bam mutant testes or at the aly promoter in aly mutant testes", what are the allelic features of the bam mutant and aly mutant? Are the molecular features of these mutations preventing the detection of H3K4me2 at the endogenous genes' promoters? Also, the references cited (Chen et al., 2011) and (Laktionov et al., 2018) are not the original research papers where these two mutants were characterized.

      3). The original paper that reported the Pc-GFP line and its localization is: Chromosoma 108, 83 (1999). The Pc-GFP is ubiquitously expressed and almost present in all cell types. In Figure 6B, there is no Pc-GFP signals in bam and aly mutant cells. According to the Method "one testis was dissected", does it mean that only one testis was prepared for immunostaining and imaging? If so, definitely more samples should be used for a more confident conclusion. Also, why use 3rd instar larval testes instead of adult testes? Finally, it is better to compare fixed tissue and live tissue, as the Pc-GFP signal could be lost during fixation and washing steps. Please refer to the above paper [Chromosoma 108, 83 (1999)] for Pc-GFP in spermatogonial cells and Development 138, 2441-2450 (2011) for Pc-GFP localization in aly mutant.

      4). Ubiquitinylation of histone H2A is typically associated with gene silencing, here it has been hypothesized that ubH2A contributes to the activation of Y chromosome. This conclusion is strenuous, as it entirely depends on correlative results. For example, the lack of co-localization of ubH2A immunostaining and Pc-GFP are not convincing evidence that ubH2A is not resulting from PRC1 dRing activity. It would be a lot stronger conclusion by using genetic tools to show this. For example, if dRing is knocked down (using RNAi driven by a late-stage germline driver such as bam-Gal4) or mutated in spermatocytes (using mitotic clonal analysis), would they detect changes of ubH2A levels?

      5). Regarding "X chromosome of males is thought to be upregulated in early germline cells", it has been shown that male-biased genes are deprived on the X chromosome [Science 299:697-700 (2003); Genome Biol 5:R40 (2004); Nature 450:238-241 (2007)], so are the differentiation genes of spermatogenesis [Cell Research 20:763-783 (2010)]. It would be informative to discuss the X chromatin features identified in this work with these previous findings. For example, the lack of RNAPII on X chromosome in spermatocytes could be due to a few differentiation genes expressed in spermatocytes located on the X chromosome.

    1. The value of provenance information  Adding provenance information to media to combat misinformation is not a new idea, and early research seems to show that it could be promising: one project from a master’s student at the University of Oxford, for example, found evidence that users were less susceptible to misinformation when they had access to provenance information about content.

      How computationally expensive is this to tag content in this way?

    1. ```js // Create a portal with the wikipedia page, and embed it // (like an iframe). You can also use the <portal> tag instead. portal = document.createElement('portal'); portal.src = 'https://en.wikipedia.org/wiki/World_Wide_Web'; portal.style = '...'; document.body.appendChild(portal);

      // When the user touches the preview (embedded portal): // do fancy animation, e.g. expand … // and finish by doing the actual transition. // For the sake of simplicity, this snippet will navigate // on the onload event of the Portals element. portal.addEventListener('load', (evt) => { portal.activate(); });

      // Adding some styles with transitions const style = document.createElement('style'); style.innerHTML = portal { position:fixed; width: 100%; height: 100%; opacity: 0; box-shadow: 0 0 20px 10px #999; transform: scale(0.4); transform-origin: bottom left; bottom: 20px; left: 20px; animation-name: fade-in; animation-duration: 1s; animation-delay: 2s; animation-fill-mode: forwards; } .portal-transition { transition: transform 0.4s; } @media (prefers-reduced-motion: reduce) { .portal-transition { transition: transform 0.001s; } } .portal-reveal { transform: scale(1.0) translateX(-20px) translateY(20px); } @keyframes fade-in { 0% { opacity: 0; } 100% { opacity: 1; } }; const portal = document.createElement('portal'); // Let's navigate into the WICG Portals spec page portal.src = 'https://wicg.github.io/portals/'; // Add a class that defines the transition. Consider using // prefers-reduced-motion media query to control the animation. // https://developers.google.com/web/updates/2019/03/prefers-reduced-motion portal.classList.add('portal-transition'); portal.addEventListener('click', (evt) => { // Animate the portal once user interacts portal.classList.add('portal-reveal'); }); portal.addEventListener('transitionend', (evt) => { if (evt.propertyName == 'transform') { // Activate the portal once the transition has completed portal.activate(); } }); document.body.append(style, portal); ```

      ```js // Feature detection

      if ('HTMLPortalElement' in window) { // If this is a platform that have Portals... const portal = document.createElement('portal'); ... } ```

      js // Detect whether this page is hosted in a portal if (window.portalHost) { // Customize the UI when being embedded as a portal }

      ```js // Send message to the portal element const portal = document.querySelector('portal'); portal.postMessage({someKey: someValue}, ORIGIN);

      // Receive message via window.portalHost window.portalHost.addEventListener('message', (evt) => { const data = evt.data.someKey; // handle the event }); ```

    1. Author Response

      Reviewer #1 (Public Review):

      The Authors of this study have investigated the consequence of knocking out protein 4.1B on hippocampal interneurons. They observed that in 4.1B KO mice, the myelinization of axons of PV and SST interneurons was altered. In addition, the molecular organization of the nodal, heminodal, and juxtaparanodal parts of the interneuron axons was disrupted in 4.1B KO mice. Further, the authors found some changes in spiking features of SST, but not PV interneurons as well as synaptic inhibition recorded in CA1 pyramidal cells. Lastly, 4.1B KO mice showed some impairment in spatial memory.

      Strengths

      One of the strengths of this MS is the multilevel approach to the question of how myelinization of interneuron axons can contribute to hippocampal functions. Further, the cell biological results support the claim of the reorganization of channel distributions at axonal nodes.

      Weaknesses

      1) Although the authors acknowledge that SST is expressed in different GABAergic cell types in the hippocampus, they claim that OLM cells, which express SST are subject to changes in 4.1B KO mice. However, this claim is not supported by data. Both OLM cells and GABAergic projection cells expressing SST have many long-running axons in the stratum radiatum, where the investigations have been conducted (e.g. Gulyas et al., 2003; Jinno et al., 2007). Thus, the SST axons can originate from any of these cell types. In addition, both these GABAergic cells have a sag in their voltage responses upon negative current injections (e.g. Zemankovics et al., 2010), making it hard to separate these two SST inhibitory cell types based on the single-cell features. In summary, it would be more appropriate to name the sampled interneurons as SST interneurons. Alternatively, the authors may want to label intracellularly individual interneurons to visualize their dendrites and axons, which would allow them to verify that the de-myelinization occurs along the axons of OLM cells, but not SST GABAergic projection neurons.

      We agree and named the sampled interneurons as SST interneurons throughout the text. We acknowledge that SST GABAergic projection cells have long-running axons in the stratum radiatum (Gulyas et al., 2003; Jinno et al., 2007) that may be also dysmyelinated. See Results lanes 200 and 350.

      2) Although both the cellular part and the behavioral part are interesting, there is no link between them at present. The changes observed in spatial memory tests may not be caused by the changes in the axonal de-myelinization of hippocampal interneurons. Such a claim can be made only using rescue experiments, since changes in 4.1B KO mice leading to behavioral alterations may occur i) in other cell types and ii) in other regions, which have not been investigated.

      Alteration of spatial memory has not been previously reported in the 4.1B KO mice. Our results leave open the possibility that dysmyelination of inhibitory interneurons in the hippocampus may induce impaired cognitive ability (see preprint). We agree that future studies investigating a putative rescue of spatial memory by means of virus-mediated expression of 4.1B in hippocampal Lhx6 interneurons would be very informative.

      Reviewer #2 (Public Review):

      In this study, Pinatel et al. address the role of interneuron myelination in the hippocampus using a 4.1B protein mouse knockout model. They show that deficiency in 4.1B significantly reduces myelin in CA1 stratum radiatum, specifically myelin along axons of parvalbumin and somatostatin hippocampal interneurons. In addition, there are striking defects in the distribution of ion channels along myelinated axons, with misplacement of Na channel clusters along the nodes of Ranvier and the heminodes, and a pronounced decrease in potassium channels (Kv1) at juxtaparanodes. The axon initial segments of SST are also shorter. Because the majority of myelinated axons in the stratum radiatum of the hippocampus belong to PV and SST interneurons such profound changes in myelination are expected to affect interneuronal function. Interestingly, the authors show that PV basket cells' properties appear largely unaffected, while there are substantial changes in stratum oriens O-LM cells. Inhibitory inputs to pyramidal neurons are also changed. Behaviorally, the 4.1B KO mice exhibit deficits in spatial working memory, supporting the role of interneuronal myelination in hippocampal function. This study provides important insights into the role of myelination for the function of inhibitory interneurons, as well as in the mechanisms of axonal node development and ion channel clustering, and thus will be of interest to a broad audience of circuit and cellular neuroscientists. However, the claims of the specificity of the reported changes in myelination need to be better supported by evidence.

      Strengths:

      The authors combine a wide array of genetic, immunolabeling, optical, electrophysiological, and behavioral tools to address a still unresolved complex problem of the role of myelination of locally projecting inhibitory interneurons in the hippocampus. They convincingly show that changing myelination and ion channel distribution along nodes and heminodes significantly impairs the function of at least some interneuron types in the hippocampus and that this is accompanied by behavioral deficits in spatial memory.

      Regarding the organization of myelinated axons, the lack of 4.1B causes striking changes at the nodes of Ranvier that are convincingly and beautifully presented in the Figures. While the reduction in Kv1 in 4.1B KO mice has been previously reported, the mislocalization of sodium channels at the nodes and heminodes had only been observed in developing but not adult spinal cords. This difference in the dependence of the sodium channel distribution on 4.1B in adult hippocampus vs spinal cord may hold important clues for the varying role of myelin along axons of different neuronal types.

      The manuscript is very well written, the discussion is comprehensive, and provides detailed background and analysis of the current findings and their implications.

      Weaknesses:

      Because of the wide diversity of interneuron types in the hippocampus, and also the presence of myelinated axons from other neuron types as well, including pyramidal neurons, it is very difficult to disentangle the effects of the observed changes in the 4.1 B KO mouse model. While the authors have been careful to explore different possibilities, some of the claims of the specificity of the reported changes in myelination are not completely founded. For example, there is no compelling evidence that the myelination of axons other than the local interneurons is unchanged. The evidence strongly supports the claims of changes in interneuronal myelination, but it leaves open the question of whether 4.1B lack affects the myelination of hippocampal pyramidal neurons or of long-range projections.

      This is an important question also raised by Reviewer 1. We have now quantified the density of paranodes in the alveus as shown in Figure 1I. Paranode density was not affected in the alveus nor in the stratum lacunosum-moleculare suggesting that myelinated axons connecting extra-hippocampal areas may be preserved. In particular, this is an indication that the axons of pyramidal neurons that run into the alveus should be properly myelinated.

      To be able to better interpret the changes in the 4.1B KO mice, knowledge of the distribution of 4.1B in the hippocampus of control mice will be very helpful. The authors state that 4.1B is observed in PV neurons but not in pyramidal neurons, however, the evidence is not convincing. Thus, the lack of immunolabeling at the pyramidal neuron cell bodies does not indicate that 4.1B is missing at the axonal level. The analysis also leaves out the question of whether 4.1 B is seen in the axons of somatostatin neurons.

      We agree and do not exclude that 4.1B may be expressed along the axons of pyramidal neurons. We performed double-staining for SST and 4.1B to show that 4.1B is localized along the internode and enriched at the paranodes of SST axons as observed for PV axons (Figure 4F). The enrichment of 4.1B in GABAergic neurons was previously observed in premyelinated hippocampal cell culture (Bonetto et al. 2019).

      Reviewer #3 (Public Review):

      Pinatel and colleagues addressed a currently understudied topic in neurobiology, namely, the architecture and function of myelination in subsets of Parvalbumin (PV)- and Somatostatin (SST)-positive GABAergic hippocampal interneurons and its dependence on juxtaparanodal organizer proteins. In order to elucidate the structural and functional implications of interneuron myelination, the authors visualized inhibitory neurons by utilizing a Lhx2-Lhx6 tdTomato reporter line in combination with mutants for crucial membrane and cytoskeletal linker proteins such as Contactin2/TAG-1, Caspr2, and Protein 4.1B. They then applied a comprehensive set of histological, electrophysiological, and behavioral experiments to dissect the role these proteins play in proper myelination and function of PV- and SST-interneurons.

      The bulk of the study's data is based on immunofluorescence, which is presented in a number of figures comprised of high-quality images. As much as this is a strength of the study, the underlying image analysis as described in the methods falls short. All structural data rely on the measurements of physical parameters such as length of internodes, the distance between (juxta)paranode and node, the distance between node and myelin sheath, length of the axon initial segment (AIS), etc. In light of this, and considering the small physical dimensions of the nodal region in general, the methods remain unclear about the depth of 3D reconstruction/deconvolution applied to the samples. Measurements presented in the results show significant differences in sub-micrometer dimension, which at least according to the stated methods, are unlikely to be precise given that the confocal imaging parameters do not seem to reach Nyquist conditions. For a study in which a third of all data is aimed at elucidating (sub)micrometer changes, this is crucial and the study would benefit from a more rigorous method description by the authors.

      Another methodological weakness is the somewhat small n, and its incoherence across the experiments and therefore, the statistics performed in some of the experiments. Statistics are based on either n for animals, or n for individual data points from several animals. Why is not all data represented as mean/animal? Also, the sampling in general with n = 3 animals is borderline acceptable; in some cases, it seems that only 2 animals were used, and in others, no number is given at all (please refer to author comments for details). This needs to be addressed, either by explaining why so few animals were used, or by adding more data from individual animals.<br /> Assigning structures (AIS, nodes) as n results in overstating effects, since especially for AIS, there is significant heterogeneity in the length across neurons from the same type, and this is masked when 100 AIS are considered as individual n instead 100 AIS per animal, and the animal is (correctly) the n.

      Since the study seems to switch back and forth between these assignments, it would be helpful to level these data across all experiments unless there are specific reasons not to do so, which then need to be explained. As outlined in the methods, all values are given as means {plus minus} SEM; this needs to be corrected for those cases where the standard deviation is the appropriate choice (e.g. all graphs showing n = individual structure, and not the mean of an animal).

      As far as the analysis of geometrical AIS changes is concerned, the method section should be extended to address how, if at all, AIS length and position were analyzed in 3D, also considering the somewhat "spotty" immunosignal outlined in Fig. 8D.

      We agree with all these comments. We improved Fig.1 I and J by adding more data (n=4 mice). We would like to point out that the phenotype of the 4.1B KO mice is highly penetrant. The selective loss of myelin in the hippocampus was observed in the two different genetic background (4.1B-/- and 4.1B-/-;Lhx6;tdTomato mice) and at all the ages examined (P25P180).

      For the quantitative morphological analysis: We considered “n=number of animals” in Figure 1 to describe the massive and selective alteration of myelin in the hippocampus of 4.1B KO mice. In the following Figures, we considered n=ROIs (Figure 2, Figure 3, Figure 6) for the density of SST and PV interneurons or oligodendroglial cells and n=individual structures (Figure 4, Figure 5, Figure 8) for a more precise sampling of the structure heterogeneity (internode, node, AIS). Means ± SEM are indicated in the text corresponding to plot boxes and distribution plots in the Figures.

      Concerning AIS measurements, we considered “n” as individual AIS in a coherent manner with the electrophysiological recordings in which “n” is the individual cells. We hope that we have now better illustrated the AIS of SST cells in the stratum oriens in the new Figure 8 with single channel images. In contrast to the AIS of pyramidal neurons that display sinuous feature, the AIS of SST neurons (and especially O-LM cells which axons run straight across the stratum radiatum) show a rather straight organization.

      We improved our measurements of the AIS structural parameters (onset, length) of SST neurons of the stratum oriens using confocal imaging with a 20x objective, 0.54 µm steps, Nyquist conditions. Indeed, these new measurements confirmed that the AIS of SST neurons was significantly shorter in the 4.1B KO mice.

      The observed AIS length change is then discussed in the context of a study conducted in a pharmacological model of myelin loss, however, that particular study (Hamada & Kole, 2015) found not only a length change but a position change after cuprizone-induced AIS plasticity. The authors should therefore discuss this finding in a bit more detail than simply stating "Adaptation of the AIS has been reported in the cuprizone chemical model of demyelination" (p. 14, ll. 512).

      We added these sentences in the Discussion:

      Lane 527: Supporting this notion, previous studies have reported an adaptive response of the AIS of cortical pyramidal neurons in the cuprizone chemical model of demyelination. Specifically, it was observed that the length of the AIS is reduced together with a more proximal site of the onset. These changes reduce the AIS excitability suggesting a compensatory mechanism to ectopic action potentials generated in demyelinated axons (Hamada and Kole, 2015).

      Lane 556: Interestingly, in cortical pyramidal neurons, demyelination induced by cuprizone causes the restructuring of AIS and reduces excitability at this site. “Acute demyelination leads to a more proximal onset of AIS without a change in the length of ßIV spectrin expression. However, the AIS of these acutely demyelinated axons display a reduced length of Nav1.6 channel expression and extended Kv7.3 channel expression at the distal site (Hamada and Kole, 2015).”

      Similarly to the points made about structural data above, the data from electrophysiological recordings should be presented in such a way that e.g. the number of cells and/or animals is readily accessible from the graph or legend. In its current form, this information - while available - needs to be pieced together from in-text information supplemented by figure legends. Sometimes, the authors do not include the number of animals behind individual cell data (for details please see author comments). Please carefully review all figures and edit accordingly.

      The behavioral data presented in the study is interesting, but the conclusions drawn are not supported by the data presented, as many unknown factors remain in place that could contribute to the observed phenotype.

    1. Reviewer #1 (Public Review):

      In this manuscript, Kipfer et al describe a method for a fast and accurate SARS-CoV2 rescue and mutagenesis. This work is based on a published method termed ISA (infectious subgenomic amplicons), in which partially overlapping DNA fragments covering the entire viral genome and additional 5' and 3' sequences are transfected into mammalian cell lines. These DNA fragments recombine in the cells, express the full length viral genomic RNA and launch replication and rescue of infectious virus.

      CLEVER, the method described here significantly improves on the ISA method to generate infectious SARS-CoV2, making it widely useful to the virology community.

      Specifically, the strengths of this method are:<br /> 1) The successful use of various cell lines and transfection methods.<br /> 2) Generation of a four-fragment system, which significantly improves the method efficiency due to lower number of required recombination events.<br /> 3) Flexibility in choice of overlapping sequences, making this system more versatile.<br /> 4) The authors demonstrated how this system can be used to introduce point mutations as well as insertion of a tag and deletion of a viral gene.<br /> 5) Fast-tracking generation of infectious virus directly from RNA of clinical isolates by RT-PCR, without the need for cloning the fragments or using synthetic sequences.<br /> One weakness of the latter point, which is also pointed out by the authors, is that the direct rescue of clinical isolates was not tested for sequence fidelity.

      The manuscript clearly presents the findings, and the proof-of-concept experiments are well designed.

      Overall, this is a very useful method for SARS-CoV2 research. Importantly, it can be applicable to many other viruses, speeding up the response to newly emerging viruses than threaten the public health.