3,501 Matching Annotations
  1. Aug 2018
    1. Quality of Green and Parks Very High 83.26 High 76.22 Contributors:227153Last Update:August 2018August 2018 $(function() { $( "#first_air_quality" ).progressbar({ value: 77.05 }); $( "#second_air_quality" ).progressbar({ value: 74.33 }); $( "#first_drinking_water_quality_accessibility" ).progressbar({ value: 86.58 }); $( "#second_drinking_water_quality_accessibility" ).progressbar({ value: 86.21 }); $( "#first_garbage_disposal_satisfaction" ).progressbar({ value: 75.82 }); $( "#second_garbage_disposal_satisfaction" ).progressbar({ value: 75.35 }); $( "#first_clean_and_tidy" ).progressbar({ value: 68.35 }); $( "#second_clean_and_tidy" ).progressbar({ value: 69.35 }); $( "#first_noise_and_light_purity" ).progressbar({ value: 57.91 }); $( "#second_noise_and_light_purity" ).progressbar({ value: 56.47 }); $( "#first_water_quality" ).progressbar({ value: 69.25 }); $( "#second_water_quality" ).progressbar({ value: 66.13 }); $( "#first_comfortable_to_spend_time" ).progressbar({ value: 80.32 }); $( "#second_comfortable_to_spend_time" ).progressbar({ value: 78.60 }); $( "#first_green_and_parks_quality" ).progressbar({ value: 83.26 }); $( "#second_green_and_parks_quality" ).progressbar({ value: 76.22 }); }); (adsbygoogle = window.adsbygoogle || []).push({}); About In the News Newsletter API Copyright © 2009-2018 Numbeo. Your use of this service is subject to our Terms of Use and Privacy Policy !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+'://platform.twitter.com/widgets.js';fjs.parentNode.insertBefore(js,fjs);}}(document, 'script', 'twitter-wjs'); (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.5&appId=182369865155656"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-10969791-1"); pageTracker._trackPageview(); } catch(err) {}

      83.26

    1. Garbage Disposal Satisfaction High 77.72 High 75.35 Clean and Tidy High 74.74 High 69.35 Quiet and No Problem with Night Lights High 73.28 Moderate 56.47 Water Quality High 72.80 High 66.13 Comfortable to Spend Time in the City Very High 85.61 High 78.60 Quality of Green and Parks Very High 86.17 High 76.22 Contributors:102153Last Update:July 2018August 2018 $(function() { $( "#first_air_quality" ).progressbar({ value: 87.75 }); $( "#second_air_quality" ).progressbar({ value: 74.33 }); $( "#first_drinking_water_quality_accessibility" ).progressbar({ value: 79.95 }); $( "#second_drinking_water_quality_accessibility" ).progressbar({ value: 86.21 }); $( "#first_garbage_disposal_satisfaction" ).progressbar({ value: 77.72 }); $( "#second_garbage_disposal_satisfaction" ).progressbar({ value: 75.35 }); $( "#first_clean_and_tidy" ).progressbar({ value: 74.74 }); $( "#second_clean_and_tidy" ).progressbar({ value: 69.35 }); $( "#first_noise_and_light_purity" ).progressbar({ value: 73.28 }); $( "#second_noise_and_light_purity" ).progressbar({ value: 56.47 }); $( "#first_water_quality" ).progressbar({ value: 72.80 }); $( "#second_water_quality" ).progressbar({ value: 66.13 }); $( "#first_comfortable_to_spend_time" ).progressbar({ value: 85.61 }); $( "#second_comfortable_to_spend_time" ).progressbar({ value: 78.60 }); $( "#first_green_and_parks_quality" ).progressbar({ value: 86.17 }); $( "#second_green_and_parks_quality" ).progressbar({ value: 76.22 }); }); (adsbygoogle = window.adsbygoogle || []).push({}); About In the News Newsletter API Copyright © 2009-2018 Numbeo. Your use of this service is subject to our Terms of Use and Privacy Policy !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+'://platform.twitter.com/widgets.js';fjs.parentNode.insertBefore(js,fjs);}}(document, 'script', 'twitter-wjs'); (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.5&appId=182369865155656"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-10969791-1"); pageTracker._trackPageview(); } catch(err) {}

      77.72

    1. (adsbygoogle = window.adsbygoogle || []).push({}); Crime > Australia > Sydney Crime in Sydney, Australia Compare Sydney with: jQuery(document).ready(function($) { jQuery('#city_selector_city_id1').autocomplete({ source: 'https://www.numbeo.com/common/CitySearchJson', minLength: 1, delay: 3, autoFocus: true, select: function(event, ui) { event.preventDefault(); $('#city_selector_city_id1').val(ui.item.label); $('#city_id1').val(ui.item.value); jQuery('#dispatch_form').submit(); }, focus: function(event, ui) { event.preventDefault(); } }) .keydown(function(e){ if (e.keyCode === 13){ if ($('#city_id1').val() == '') { e.preventDefault(); } var val = $('#city_selector_city_id1').val(); $('#name_city_id1').val(val); } }); // end autocompleter definition }); // end document ready Do you live in Sydney? Add data for Sydney Index Crime Index: 37.89 Safety Index: 62.11

      62.11

    1. Google also says location records stored in My Activity are used to target ads. Ad buyers can target ads to specific locations — say, a mile radius around a particular landmark — and typically have to pay more to reach this narrower audience. While disabling “Web & App Activity” will stop Google from storing location markers, it also prevents Google from storing information generated by searches and other activity. That can limit the effectiveness of the Google Assistant, the company’s digital concierge. Sean O’Brien, a Yale Privacy Lab researcher with whom the AP shared its findings, said it is “disingenuous” for Google to continuously record these locations even when users disable Location History. “To me, it’s something people should know,” he said.
    2. Google says that will prevent the company from remembering where you’ve been. Google’s support page on the subject states: “You can turn off Location History at any time. With Location History off, the places you go are no longer stored.” That isn’t true. Even with Location History paused, some Google apps automatically store time-stamped location data without asking. (It’s possible, although laborious, to delete it .)
    1. hus it becomes possible to see how ques-tions around data use need to shift from asking what is in the data, to include discussions of how the data is structured, and how this structure codifies value systems and social practices, subject positions and forms of visibility and invisi-bility (and thus forms of surveillance), along with the very ideas of crisis, risk governance and preparedness. Practices around big data produce and perpetuate specific forms of social engagement as well as understandings of the areas affected and the people being served.

      How data structure influences value systems and social practices is a much-needed topic of inquiry.

    2. Big data is not just about knowing more. It could be – and should be – about knowing better or about changing what knowing means. It is an ethico- episteme-ontological- political matter. The ‘needle in the haystack’ metaphor conceals the fact that there is no such thing as one reality that can be revealed. But multiple, lived are made through mediations and human and technological assemblages. Refugees’ realities of intersecting intelligences are shaped by the ethico- episteme-ontological politics of big data.

      Big, sweeping statement that helps frame how big data could be better conceptualized as a complex, socially contextualized, temporal artifact.

    3. Burns (2015) builds on this to investigate how within digital humanitarianism discourses, big data produce and perform subjects ‘in need’ (individuals or com-munities affected by crises) and a humanitarian ‘saviour’ community that, in turn, seeks answers through big data

      I don't understand what Burns is arguing here. Who is he referring to claims that DHN is a "savior" or "the solution" to crisis response?

      "Big data should therefore be be conceptualized as a framing of what can be known about a humanitarian crisis, and how one is able to grasp that knowledge; in short, it is an epistemology. This epistemology privileges knowledges and knowledge- based practices originating in remote geographies and de- emphasizes the connections between multiple knowledges.... Put another way, this configuration obscures the funding, resource, and skills constraints causing imperfect humanitarian response, instead positing volunteered labor as ‘the solution.’ This subjectivity formation carves a space in which digital humanitarians are necessary for effective humanitarian activities." (Burns 2015: 9–10)

    4. Crises are often not a crisis of information. It is often not a lack of data or capacity to analyse it that prevents ‘us’ from pre-venting disasters or responding effectively. Risk management fails because there is a lack of a relational sense of responsibility. But this does not have to be the case. Technologies that are designed to support collaboration, such as what Jasanoff (2007) terms ‘technologies of humility’, can be better explored to find ways of framing data and correlations that elicit a greater sense of relational responsibility and commitment.

      Is it "a lack of relational sense of responsibility" in crisis response (state vs private sector vs public) or is it the wicked problem of power, class, social hierarchies, etc.?

      "... ways of framing data and correlations that elicit a greater sense of responsibility and commitment."

      That could have a temporal component to it to position urgency, timescape, horizon, etc.

    5. In some ways this constitutes the production of ‘liquid resilience’ – a deflection of risk to the individuals and communities affected which moves us from the idea of an all-powerful and knowing state to that of a ‘plethora of partial projects and initiatives that are seeking to harness ICTs in the service of better knowing and governing individuals and populations’ (Ruppert 2012: 118)

      This critique addresses surveillance state concerns about glue-ing datasets together to form a broader understanding of aggregate social behavior without the necessary constraints/warnings about social contexts and discontinuity between data.

      Skimmed the Ruppert paper, sadly doesn't engage with time and topologies.

    6. Indeed, as Chandler (2015: 9) also argues, crowdsourcing of big data does not equate to a democratisation of risk assessment or risk governance:

      Beyond this quote, Chandler (in engaging crisis/disaster scenarios) argues that Big Data may be more appropriately framed as community reflexive knowledge than causal knowledge. That's an interesting idea.

      *"Thus, It would be more useful to see Big Data as reflexive knowledge rather than as causal knowledge. Big Data cannot help explain global warming but it can enable individuals and household to measure their own energy consumption through the datafication of household objects and complex production and supply chains. Big Data thereby datafies or materialises an individual or community’s being in the world. This reflexive approach works to construct a pluralised and multiple world of self-organising and adaptive processes. The imaginary of Big Data is that the producers and consumers of knowledge and of governance would be indistinguishable; where both knowing and governing exist without external mediation, constituting a perfect harmonious and self-adapting system: often called ‘community resilience’. In this discourse, increasingly articulated by governments and policy-makers, knowledge of causal connections is no longer relevant as communities adapt to the real-time appearances of the world, without necessarily understanding them."

      "Rather than engaging in external understandings of causality in the world, Big Data works on changing social behaviour by enabling greater adaptive reflexivity. If, through Big Data, we could detect and manage our own biorhythms and know the effects of poor eating or a lack of exercise, we could monitor our own health and not need costly medical interventions. Equally, if vulnerable and marginal communities could ‘datafy’ their own modes of being and relationships to their environments they would be able to augment their coping capacities and resilience without disasters or crises occurring. In essence, the imaginary of Big Data resolves the essential problem of modernity and modernist epistemologies, the problem of unintended consequences or side-effects caused by unknown causation, through work on the datafication of the self in its relational-embeddedness.42 This is why disasters in current forms of resilience thinking are understood to be ‘transformative’: revealing the unintended consequences of social planning which prevented proper awareness and responsiveness. Disasters themselves become a form of ‘datafication’, revealing the existence of poor modes of self-governance."*

      Downloaded Chandler paper. Cites Meier quite a bit.

    7. However, with these big data collections, the focus becomes not the individu-al’s behaviour but social and economic insecurities, vulnerabilities and resilience in relation to the movement of such people. The shift acknowledges that what is surveilled is more complex than an individual person’s movements, communica-tions and actions over time.

      The shift from INGO emergency response/logistics to state-sponsored, individualized resilience via the private sector seems profound here.

      There's also a subtle temporal element here of surveilling need and collecting data over time.

      Again, raises serious questions about the use of predictive analytics, data quality/classification, and PII ethics.

    8. Andrejevic and Gates (2014: 190) suggest that ‘the target becomes the hidden patterns in the data, rather than particular individuals or events’. National and local authorities are not seeking to monitor individuals and discipline their behaviour but to see how many people will reach the country and when, so that they can accommodate them, secure borders, and identify long- term social out-looks such as education, civil services, and impacts upon the host community (Pham et al. 2015).

      This seems like a terribly naive conclusion about mass data collection by the state.

      Also:

      "Yet even if capacities to analyse the haystack for needles more adequately were available, there would be questions about the quality of the haystack, and the meaning of analysis. For ‘Big Data is not self-explanatory’ (Bollier 2010: 13, in boyd and Crawford 2012). Neither is big data necessarily good data in terms of quality or relevance (Lesk 2013: 87) or complete data (boyd and Crawford 2012)."

    9. as boyd and Crawford argue, ‘without taking into account the sample of a data set, the size of the data set is meaningless’ (2012: 669). Furthermore, many tech-niques used by the state and corporations in big data analysis are based on probabilistic prediction which, some experts argue, is alien to, and even incom-prehensible for, human reasoning (Heaven 2013). As Mayer-Schönberger stresses, we should be ‘less worried about privacy and more worried about the abuse of probabilistic prediction’ as these processes confront us with ‘profound ethical dilemmas’ (in Heaven 2013: 35).

      Primary problems to resolve regarding the use of "big data" in humanitarian contexts: dataset size/sample, predictive analytics are contrary to human behavior, and ethical abuses of PII.

    1. There is also a need for mechanisms to support transformations and processesover time, both for scientific data and scientific ideas. These mechanisms should not only help the user visualize but also express time and change.

      This is still true today. Is the problem truly a technical one or an opportunity to re-imagine the human process of representing time as an attribute and time as a function of evolving data?

    2. Contrary to paper notes, computer files do not display the traces or versions that led to their final state.

      This seems weirdly overstated. How do paper notes maintain versions and traces? Electronic documents contain rich sources of meta data for trace analysis, as well as various options to explicitly demonstrate temporal order and change through formatting.

    3. This is related to the fact that biology researchers are in a creative process and reflect on their decisions in order to explore new leads or justify their decisions. Paper laboratory notebooks show this temporality ofthoughts.

      The iterative self-reflection process described in biology research seems relatively undeveloped in DHN work. I don't know that I've seen much negotiation/reflection/critical analysis take place between the moment the data is collected by volunteers and the maps/viz/data/after-action reports created after the fact by the Core Team.

      Perhaps that's a missing element that should be more deeply explored in thinking about data having both a time attribute and being in a state of change? Is there a needed intermediate validation step between data cleaning and creating a data analysis product.

    1. City Data Exchange is a public-private partnership that explores the possibilities of data exchange. The project investigates the purchase, sale and sharing of a wide variety of data types between different types of users in the city - citizens, public institutions and private companies. The project is a collaboration between the City of Copenhagen, the Capital Region, CLEAN and Hitachi. The idea behind the cooperation is to create a data hub that supports innovation, and which improves the quality of life in the Copenhagen area. The project aims at establishing a marketplace for data owned by both public authorities and private companies. In this way, the project aims to enable large, small and medium-sized enterprises, start-up companies, universities and the public sector to collaborate by consolidating several sources of information. So far, the project has conducted several experiments aimed at organizational and technical setup of a computer market. The technical part of this can be seen on the platform developed by Hitachi, citydataexchange.com .
    1. Open Data DK is a union consisting of a number of Danish municipalities and regions aimed at making public data open and accessible for citizens and businesses. The goal is to increase transparency in public administration and support data-driven growth. The Copenhagen portal for city data contains information about infrastructure, traffic, cultural events and much more. You can find the portal here .
    1. Although the spatio-temporal variation in rumor quantity and content has long been of interest to thefield, collecting data that accounts for temporalandspatial characteristics of rumoring has been extraordinarily difficult to dowith any degree of precision. Some have been able to capture rumoring data with some degree of temporal precision (Bordiaand Rosnow, 1998; Danzig, 1958; Greenberg, 1964) or with some spatial precision (Larsen, 1954), but bridging the two hasbeen difficult. Synthesizing temporal and spatial rumoring data across a wide variety of events had long been beyond thecapabilities of researchers. Simply gathering reliable data on rumoring was already fraught with challenges.

      Check these citations on difficulty of temporal data capture. Since they are all quite old studies (between 20-60 years old), I question how relevant they are to current behavior -- either offline or online.

  2. Jul 2018
    1. where applicable, any rating in the form of a data trust score that may be assignedto the data fiduciary under section 35;and

      A Data Trust score. Thankfully, it isn't mandatory to have a data trust score, which mean that apps and services can exist without there being a trust score

    2. the period for which the personal data will beretained in terms of section 10 or where such period is not known, the criteria for determining such period;

      This defines the terms for data retention. From a company perspective, they are likely to keep this as broad as possible.

    3. Upon receipt of notification, the Authority shall determine whether such breach should be reported by the data fiduciaryto the data principal, taking into account the severity of the harm that may be caused to such data principal or whether some action is required on the part of the data principal to mitigate suchharm.

      This means that users aren't always informed about a breach of data. That's the prerogative of the Data Protection Authority, and not mandatory, in the interest of the user.

    4. “Personal data breach”means any unauthorised or accidental disclosure, acquisition, sharing, use, alteration, destruction, loss of access to, of personal data that compromises the confidentiality, integrity or availability of personal data to a data principal;

      Personal data breach here includes "accidental disclosure" as well.

    1. We noticed that the people who use the data are usually not the same people who produce the data, and they often don’t know where to find the information about the data they try to use. Since the Schematizer already has the knowledge about all the schemas in the Data Pipeline, it becomes an excellent candidate to store information about the data. Meet our knowledge explorer, Watson. The Schematizer requires schema registrars to include documentation along with their schemas. The documentation then is extracted and stored in the Schematizer. To make the schema information and data documentation in the Schematizer accessible to all the teams at Yelp, we created Watson, a webapp that users across the company can use to explore this data. Watson is a visual frontend for the Schematizer and retrieves its information through a set of RESTful APIs exposed by the Schematizer.
    1. Mayor de Blasio and his administration have made progress in meeting their goal of building 200,000 affordable units over the span of a decade, as 21,963 new units were added in 2016, the most in 27 years. However, there continues to be a shortage in East Harlem. Out of the nearly 20,000 affordable units, the city brought to all five boroughs, just 249 units have been built in East Harlem, according to a new report by the Department of Housing and Preservation Development (HPD). To better accommodate these residents, the city plans on expediting the construction of 2,400 units of affordable housing over the next few years, as DNA Info reported.
    1. Furthermore, and differentiating digital time from clock time, he suggests that a lack of adherence to chronological time is compounded by the fact that digital technologies connect with a flow of information that is al-ways and instantly available. He argues that continual change, which is bound up with web services such as social network sites, blogs and the news, is central to the experi-enced need for constant connectivity.

      Q: How does this idea of time vs information flow affect the data harvested during a digital crowdwork process in humanitarian emergencies?

      Q: How does this idea of time vs information flow manifest when the information flow is not chronological due to content throttling or algorithmic decisions on what content to deliver to a user?

    1. But, while Kahneman calls for large-scale replications of priming studies, the argument here is not that we need more studies or data to verify that people indeed miss blatantly obvious gorillas. Instead, we need better interpretation and better theories.

      More data vs more theories

      Humans are biased by our theories (though not totally). But isn't that the goal of science, to collectively question our assumptions and experiments? We need to attempt to falsify our theories not only by questioning the experiments and repeating them, but also by questioning the theories used to interpret data.

  3. Jun 2018
    1. LinkedIn apart from being the best recruitment platform is also a sought-after social networking website by marketers to execute their marketing campaigns. This service contributes to over 18% of the total revenue of the company and offers features which let companies to not only create a company page but also enhance their marketing efforts by creating sponsored content, sponsored InMails and text advertisements.
    1. About 600,000 people visit News Genius a month, Lehman said, a figure that had grown 10 times since before President Donald Trump was inaugurated. And the number of people who annotate a post on Genius each month is now at 10,000, up 30 percent from the start of the year. “More people are using News Genius now than ever,” Lehman said. Meanwhile, overall traffic to the website and apps has grown to 62 million a month.
    1. Right now, they estimate the global taxi market is worth $108 billion, which is triple the size of the $36-billion ride-hailing market. At the same time, they calculate an average of 15 million ride-hailing trips a day globally, which they expect to increase to 97 million by 2030.
    1. Recent studies have indicated that Uber’s U.S. driver churn has sharply increased this year, to rates as high as 96%. Needless to say, it’s hard (and costly) to maintain double-digit growth rates, when only 4% of mission critical, de facto employees stay on the job for more than a year.
    1. Figure 9. Constraint plots

      This is another example of a form of online data we support for our authors. In this case the 83 objects analyzed in this paper each had graphical representations of the model fits. All 83 elements can be viewed in the online journal via a filmstrip UI element. Readers can read individual captions for each element, download individual plots, or the entire set.

    2. Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

      This is an example of one of the Journal's machine readable tables. The reader clicks from the a shortened "example" version of the table inline to the main article to an ASCII text file that they can download and reuse. One of the Journal's data editors built this full ASCII text file from data provided by the author. This process includes standardizing formats, units and column explanations, which are all proofed by the author after the paper has been accepted.

    3. Our posterior samples are available online (10.5281/zenodo.162965).

      This is an example of our current data linking markup. Data links are inline to the text through a parenthetical anchored link to the DOI resource.

      There is a bug in the current version of the article. Our formal practice is to include this in the "Article Data" tab, which didn't happen this time. We will have to do some more work standardizing our production practices. We are also still thinking about how best to markup the anchored text.

      We have not yet adopted a formal XML schema for including data links. We are working on this, which may be made easier when we adopt the most recent JATS schema.

    1. Acero F., Ackermann M., Ajello M. et al (Fermi-LAT) 2015 arXiv:1501.02003Preprint

      Starting in 2014-2015, AAS/IOP started linking to preprints in reference lists if they were the version cited by the author and an accepted manuscript did not at that time exist.

      Thus we now have built in "categories" for references, which could be expanded to include data/software sections.

    1. The catalog of fakes used to generate the efficiency grids in Section 3 are available in a persistent directory: doi:10.5258/SOTON/D0030.

      This is the dataset related to this article. It contains reproducibility and reusable data for readers.

      Our "article data" tab is suppose to show this entry, but the article data tab is currently linked to the wrong DOI (the Zenodo one highlighted below).

      We do not yet submit this type of data citation as CrossRef metadata. We are still discussing how data citations should appear and be acknowledged in the text.

    1. 1- 13 A13 --- Planet Planet 15- 15 I1 --- robust Robust flag (1) 17- 23 F7.3 d Per Orbital period 25- 28 F4.1 Rgeo Rad Planet radius 30- 33 F4.2 Rgeo E_Rad 1{sigma} upper error bound on Rad 35- 38 F4.2 Rgeo e_Rad 1{sigma} lower error bound on Rad 40- 40 A1 --- r_Rad Source of planet-star radius ratio (2) 42- 44 F3.1 solMass Mstar Mass of host star 46- 49 F4.2 solMass E_Mstar 1{sigma} upper error bound on Mstar 51- 54 F4.2 solMass e_Mstar 1{sigma} lower error bound on Mstar 56- 56 I1 --- l_Md Md upper limit flag (3) 58- 63 F6.2 Mgeo Md Planet mass from default prior 65- 69 F5.2 Mgeo E_Md ?="" 1{sigma} upper error bound on Md 71- 74 F4.2 Mgeo e_Md ?="" 1{sigma} lower error bound on Md 76- 81 F6.2 g/cm3 rhod Planet density from default prior 83- 87 F5.2 g/cm3 E_rhod ?="" 1{sigma} upper error bound on rhod 89- 92 F4.2 g/cm3 e_rhod ?="" 1{sigma} lower error bound on rhod 94- 94 I1 --- l_Mh Mh upper limit flag (3) 96-100 F5.1 Mgeo Mh Planet mass from high mass prior 102-107 F6.2 Mgeo E_Mh ?="" 1{sigma} upper error bound on Md 109-112 F4.2 Mgeo e_Mh ?="" 1{sigma} lower error bound on Md 114-119 F6.2 g/cm3 rhoh Planet density from high mass prior 121-126 F6.2 g/cm3 E_rhoh ?="" 1{sigma} upper error bound on rhod 128-131 F4.2 g/cm3 e_rhoh ?="" 1{sigma} lower error bound on rhod 133-155 A23 --- Ref References (4)

      This is the main header block of the AAS Journal's "Machine Readable Format" for structured tables. It is based on the CDS table format, and follows their structuring rules. There are columns for the numerical format, units, labels, and explanations for each column.

  4. May 2018

    Tags

    Annotators

    1. We showhow the rise of large datasets, in conjunction with arising interest in data as scholarly output, contributesto the advent of data sharing platforms in a field trad-itionally organized by infrastructures.

      What does this paper mean by infrastructures? Perhaps this is a reference to the traditional scholarly journals and monographs.

    1. Negative values included when assessing air quality In computing average pollutant concentrations, EPA includes recorded values that are below zero. EPA advised that this is consistent with NEPM AAQ procedures. Logically, however, the lowest possible value for air pollutant concentrations is zero. Either it is present, even if in very small amounts, or it is not. Negative values are an artefact of the measurement and recording process. Leaving negative values in the data introduces a negative bias, which potentially under represents actual concentrations of pollutants. We noted a considerable number of negative values recorded. For example, in 2016, negative values comprised 5.3 per cent of recorded hourly PM2.5 values, and 1.3 per cent of hourly PM10 values. When we excluded negative values from the calculation of one‐day averages, there were five more exceedance days for PM2.5 and one more for PM10 during 2016.
    1. Traditional approaches to information processing present ‘‘information’’as given, well-defined and stable.

      This assumption about information attributes runs completely counter to humanitarian crisis data, broadly spreaking, and SBTF data collection/analysis, in general. In fact, this couldn't further from the truth.

  5. Apr 2018
    1. Data Re-Use. Contractor agrees that any and all Institutional Data exchanged shall be used expressly and solely for the purposes enumerated in the Agreement. UH Institutional Data shall not be distributed, repurposed or shared across other applications, environments, or business units of the Contractor. The Contractor further agrees that no Institutional Data of any kind shall be revealed, transmitted, exchanged or otherwise passed to other vendors or interested parties except on a case-by-case basis as specifically agreed to in writing by a University officer with designated data, security, or signature authority.

      Like this clause. Wonder if this is the exception or the rule in Uni procurement deals these days?

  6. Mar 2018
    1. For the past 100 years we have been chasing visions of data with a singular passion. Many of the best minds of each new generation have devoted themselves to delivering on the inspired data science promises of their day: intelligence testing, building the computer, cracking the genetic code, creating the internet, and now this. We have in the course of a single century built an entire society, economy and culture that runs on information. Yet we have hardly begun to engineer data ethics appropriate for our extraordinary information carnival. If we do not do so soon, data will drive democracy, and we may well lose our chance to do anything about it.

      We have hardly begun to engineer data ethincs approriate for our extraordinary information carnival.

  7. Feb 2018
    1. Dentro de esta propuesta, bien llamada ‘investigación desde la acción colectiva’ (IAC), “las comunidades hacen parte de la producción del conocimiento como investigadoras y los investigadores e investigadoras hacen parte de las acciones colectivas [de transformación social]”

      [...] plantear la desjerarquización y deselitización del conocimiento, es decir, a la descolonización epistémica como elemento integral de estas visiones.

      La hackatón en ese sentido tendría que diversificarse, para admitir más saberes. Aún nos falta, pero estamos abriéndonos a saberes bibliotecarios, editoriales y periodísticos, desde las prácticas y convocatorias que realiza el Data Week. Los diplomados podrían extender esto.

    2. ‘caminar la palabra’, un concepto desarrollado por la minga social y comunitaria de los nasa para señalar la necesidad de hacerse visible, denunciar y tejer conocimientos, resistencias y estrategias de manera colectiva con otros movimientos. Las alianzas requieren la creación de inter-conocimiento y traducción entre movimientos y mundos para permitir la inteligibilidad y una medida de coordinación (
    3. . Cambiar la forma de cambiar para cambiar de manera autónoma y construir una nueva realidad (comunidad, región, nación) desde abajo y a la izquierda, como los zapatistas gustan decir. La autonomía no se logra por medio de la ‘captura del Estado’ sino recuperando del Estado las áreas claves de la vida social que ha colonizado. Crea ámbitos de acción que son autónomos del Estado y nuevos arreglos institucionales con ese propósito (como las conocidas juntas de buen gobierno en los territorios zapatistas). La autonomía pretende el establecimiento de nuevas bases para la vida social.

      Para compartir el comienzo del Data Week.

      Como la tecnología nos cambia, cambiamos la forma de cambiarnos.

    4. Maestría en Estudios Interdisciplinarios del Desarrollo de la Universidad del Cauca (un bastión del pensamiento decolonial en América Latina, a pesar de su referencia al desarrollo), busca ser una cátedra abierta en la que pueda tener lugar un diálogo inter-epistémico entre académicos, intelectuales y activistas. Tramas y mingas, al que asisten varios cientos de participantes, en gran parte de movimientos sociales y comunidades de base del suroccidente colombiano, es un maravilloso espacio de conversación entre mundos y conocimientos.

      ¿Podríamos hacer algo así en el SLUD, las JSL o el FLISoL o incluso en el Data Week? ¿Articular trueques de saberes, experiencias y diálogos desde la diversidad en favor del pluriverso y los bines comunes y ligados a los territorios? Salir de una mirada muy particular y tecnocéntrica de lo hacker, y pensarnos/actuarnos/encontrarnos de modos más incluyentes?¿Cómo lograrlo?

    5. . La ICT tiene conexiones directas con los movimientos de intelectuales y activistas en torno a las nociones de ‘decrecimiento’ y la defensa de los comunes. La ICT, el decrecimiento y los comunes en conjunto constituyen un espacio unificado para el futuro desarrollo de la teoría y la práctica del diseño para la transición. En la siguiente sección voy a proponer unconjunto similar de nociones provenientes de América Latina, incluyendo el post-desarrollo, el buen vivir, los derechos de la naturaleza y las transiciones al post-extractivismo como espacios importantes para profundizar el diseño para la transici

      ¿Cómo esto podría experimentarse desde escalas locales, en un hackerspace, barrio o pequeña ciudad tensionada por el crecimiento, como Cajicá?

      Una de las posibilidades sería transparentar el discurso y acción política en pequeñas ciudades y barrios a partir de las prácticas ocurridas desde el hackerspace y/o la biblioteca pública., extendiendo y conectando lo que ocurre en los planos simbólicos y del código, con los de los planos físicos y el diálogo cotidiano. Los Data Selfies son un prototipo en esa línea.

    6. El énfasis en la construcción de lugar y en la práctica colaborativa, así como en el arraigo inequívoco del diseño para la transición a una visión ecológica, constituye, sin duda, una intervención ontológica —una ontología política del diseño

      El Data Week, ayuda en esa construcción de lugar, en la medida en que es una práctica sostenida de HackBo, lo da a conocer hacia afuera y ha llevado a participantes a vincularse de manera permanente al espacio como miembros del mismo.

    7. desde esta perspectiva las organizaciones constituyen conversaciones para la acción. Hay un cierto grado de recurrencia y formalización en estas conversaciones, que Winograd y Flores (1986) caracterizan en términos de actos lingüísticos distintivos. Las organizaciones son redes de compromisos que operan a través de actos lingüísticos, como las promesas y

      las peticiones. [...] En última instancia la característica central de las organizaciones y su diseño es el desarrollo de competencias comunicativas en un ámbito abierto para la interpretación, de manera que los compromisos sean transparentes

      [...] Una parte importante del marco de Winograd y Flores es el desarrollo de un enfoque lingüístico para el trabajo de las organizaciones sobre la base de ‘directivas’ (pedidos, solicitudes, consultas y ofertas) y ‘comisiones’ (promesas, aceptaciones y rechazos). En la década de 1980 Flores desarrolló un software para organizaciones, llamado El coordinador, basado en la idea de que las organizaciones son redes de compromisos que operan en el lenguaje. Véanse Winograd y Flores (1986, capítulos 5 y 11) y Flores y Flores (2013). Su objetivo era “hacer las interacciones transparentes [...] en el dominio de las conversaciones para la acción”

      La interacción entre organizaciones institucionalizadas y conviviales está ocurriendo para casos del hacktivismo en términos de peticiones (derechos de petición, entradas al blog) y promesas (hackatones, respuestas, proyectos).

      Una de las preguntas actuales es cómo hacer que las dinámicas de gobernanza propias de las organizaciones conviviales puedan ser coherentes y escalables a nivel barrio o ciudad. Qué infraestructuras favorecerían dichas posibilidades de acuerdos transparentes en red.

      Interesante reencontrar el software de Windograd y Flores y revisar cómo se adecuan o no a sistemas como wikis y repositorios de código y cómo el diálogo entre ellos podría alentar estas ideas de software para acciones transparentes.

    8. Las rupturas son momentos en los que se interrumpe el modo habitual de ser-en-el-mundo; cuando ocurre una descomposición de este tipo nuestras prácticas consuetudinarias y el papel de nuestras herramientas en su mantenimiento quedan expuestas y aparecen nuevas soluciones de diseño;

      [...] avanzan hacia una perspectiva de interacciones sociales modeladas y contextualizadas —es decir, una perspectiva que destaca nuestra participación activa en ámbitos de interés común

      Al proponer nuevas metáforas y artefactos (cfg: [artículo][gf-primer-articulo]) se instauran estas rupturas metodológicas.

      [gf-primer-articulo]: http://mutabit.com/repos.fossil/grafoscopio/doc/tip/Docs/Es/Articulos/Libertadores/bootstrapping-objeto-investigacion.pdf

  8. Jan 2018
    1. Diseñar, por lo tanto, se convierte en una práctica crítica localizada, que vincula la dimensión abierta (open source) de la tecnología con la práctica cultural del diseño.9Como lo anuncia un reciente texto sobre metodologías de diseño, este tiene lugaren términos de conocimientos, contextos, acciones, y aprendizajes situados, ya no neutrales ni universales (Simonsen et al. 2014). A partir de este debate es importante destacar la relevancia que estos diseñadores dan a las preguntas sobre el lugar, la localidad y la comunidad en su revisión de la práctica del diseño como un correctivo a la aceptación acrítica de las tecnologías digitales móviles y como una manera de redefinir su papel en la vida cotidiana.
    2. La buena noticia, sin embargo, es que ya están sucediendo cosas más allá de lo usual en muchos ámbitos sociales, políticos y tecnológicos (como veremos más adelante, las transiciones civilizatorias ya están surgiendo); la mala noticia es que quizás no están sucediendo con la rapidez suficiente, si nos atenemos a los criterios de científicos y activistas del cambio climático

      o con el grado de propósito requerido. Más preocupante aún, la mayor parte de las políticas de diseño que continúan a nivel de la economía y el Estado descansan, cómodamente, en el mismo orden epistémico y cultural que creó los problemas que buscan resolver. Por eso una de las cuestiones más importantes que tiene que abordar el pensamiento radical del diseño es cómo ir más allá de las aporías causadas por el hecho de que enfrentamos problemas modernos para los cuales no existen soluciones modernas (Santos 2014).

      ¿Podríamos, de modo casi que paradójico, acelerar el diseño para las transiciones? Por supuesto, esto no tendría que ver con las dinámicas angustiantes del aceleracionismo de la singularidad y otras maquinaciones, sino con brindarnos infraestructuras y prácticas potentes que nos conecten y articulen a escalas más complejas para un mundo más humano.

      Algo similar a lo que hacemos en los Data Rodas y Data Weeks, con Grafoscopio, en los que un pequeño grupo de activistas puede editar obras completas y complejas en dos fines de semana, y aumentar la capacidad de enunciación y apertura de aquello que crea y construir sobre lo construido.

      Allí puede haber una clave sobre cómo acelerar la transición, cambiando de modelos epistémicos hacia ideas sobre bienes comunes soportados por infraestructuras comunitarias y de bolsillo. El tema es cómo escalar esto.

    3. el metarrelato del ‘razonamiento abstracto’ del conocimiento ignora una característica muy importante de la producción de conocimiento que el pensamiento de diseño no olvida: el hecho de que la creación es siempre emergente, en los dos sentidos del término, es decir, auto-organizada y ‘alter-organizada’. Este último calificativo significa que el académico/diseñador también establece elementos y toma decisiones que permiten que la dinámica de auto-organización despegue y haga su trabajo.

      ¿Hasta qué punto el Data Week y las Data Rodas han permitido alter-organizaciones?

    1. reliability and accessibility of big data will help facilitate increased reliance upon outcomes-based contracting and alternative payment models.

      reliability and accessibility of big data will help facilitate increased reliance upon outcomes-based contracting and alternative payment models.

    1. . Skill, effort and practice are regarded necessary elements in the process by which an actor becomes taken-for-granted (Bourdieu 2000). Accordingly, legitimacy is not simply out there for the asking, but has to be created as well as exploited by actors who seek to gain legitimation.

      ¿Cómo ocurre esto en el caso de las Data Rodas y Data Weeks, dado su carácter recurrente y orientado a la creación de capacidad en la base?

  9. Dec 2017
    1. t from day one the Club complemented its hacks with outward-oriented com-munication aimed to make the hackers’ findings comprehensible and its political demands visible to the largest possible public. The Btx hack itself, for example, would not have been overly effectual if news media had not picked up the story. As news media reported widely on the hack and were largely in support of the hackers’ criticism, the hack gained an event character. Following the Btx hack, the CCC was recognized as a collective actor that had something relevant to say about the communi-cation and information landscape in Germany. The CCC was invited to speak on the main television news magazine of public broadcaster ZDF, the advice of Club members was frequently sought by national newspa-pers, they were asked by corporations to speak on data security and were requested by the newly established Green Party to write a report on the Party’s potential use of networked computing. one of the important details here is that instead of only being the subject of media coverage, the CCC had the opportunity to communicate its point of view to differ-ent audiences

      En nuestro caso eso no ocurrió. El impacto mediático ha sido bajo (ver comentario anterior) y cuando se han entrevistado miembros de la comunidad, por ejemplo en el caso d RedPaTodos y la Ley Lleras, estos espacios mediáticos han sido usados para hablar desde lo indvidual y las fundaciones y no para visibilizar a las comunidades de base que eran cercanas a sus luchas.y consginas y que las empoderaron y posicionaron originalmente.

      El tema de los data selfies intentará lograr mayor visibilidad estratégica en periodos pre-electorales (supeditado a la terminación de la tesis doctoral) y una manera más articulada de recorrer el camino entre comunidades de base e instituciones circundantes).

    2. a lower number of partici-pating members also meant a lower number of differing opinions; which, in turn, enabled the group to keep the frames of relevance more focused and to make decisions in a timely manner. Accordingly, performing direct digital action in the form of hacking was directly related to com-municative practices, as they later played an important role in relation to organizing, coordinating and executing the Club’s political project

      [...] This communicative figuration within the hacker organization formed the Club’s basis for executing well-orchestrated hacks, emphasizing that for the hacker organization media technologies and infrastructures are not simply instruments for acting politically but are political matters in themselves

      El tamaño pequeño de la comunidad y la recurrencia de algunos de sus miembros en los eventos tipo Data Week y Data Rodas nos ha dado una agilidad de acción/reacción similar, así como la madurez progresiva de las infraestructuras, lo cual se refleja en los cortos tiempos en los que asumimos proyectos relativamente más complejos, como el Manual de Periodismo de Datos y la hackatón de Biblioteca Digital de Bogotá, usando saberes, prácticas e infraestructuras desarrolladas en nuestros encuentros previos cara a cara y cristalizados progresivamente en las infraestructuras.

      La siguiente fase estará relacionada con diversificar los caminos recorridos por los asistentes a los encuentros para cristalizar sus saberes y aportar desde los mismos, con un currículo que incluya más prontamente los espectros de licenciamiento y uso de repositorios y documentación, además de los habituales temas de visualización de datos.

      A pesar del incremente de la agilidad, hay un desafío permanente respecto a la visibilidad y alcance de estas iniciativas.