4,254 Matching Annotations
  1. Dec 2021
    1. SciScore for 10.1101/2021.12.07.471597: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells were incubated on ice for 15 minutes with anti- HA antibody (Invitrogen HA Tag Mouse anti-Tag, DyLight® 650 conjugate, Clone: 2-2.2.14; 1:100 dilution) and Streptavidin-PE (Thermo Fisher scientific; catalog number S866; 1:100 dilution).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti- HA</div><div>suggested: (Claes Örvel lab; Karolinska Institute Cat# anti-MuV rabbit 144, RRID:AB_2747378)</div></div><div style="margin-bottom:8px"><div>anti-Tag</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Competitive indirect enzyme linked immunoassay (competitive ELISA): Nunc™ MaxiSorp 96-well Immuno-Plates (Thermo Fisher Scientific, Illkirch, France) were coated with 200 μL/well of AffinityPure goat anti-mouse IgG+IgM (H+L) antibody (Jackson Immuno Research Laboratories Inc., Pennsylvania, USA) at 10 μg/mL in 50 mM potassium phosphate buffer, and incubated overnight (16h) at 22 ± 2 °C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-mouse IgG+IgM</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">HEK293 Freestyle™ were transiently transfected at a density of 2.5 106 cells/mL in 100mL Freestyle medium (Thermo-Fisher) by addition of 150 μg plasmid and 1.8 mL of linear polyethylenimine (PEI, 0.5 mg/ml) (Polysciences).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Then, the culture medium of each plate containing the VERO E6 cells is removed and 500 μL of each VHH/virus mixture is added to each well in duplicate.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>VERO E6</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Gap repair transformations were made in plasmid pNT VHH72 between restriction sites NheI and NotI with 1 μg of digested vector and a molar ratio of 12:1 (library/digested vector).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pNT</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Genes coding for the various RBD domains were cloned in the pCAGGS RBD-SARS-CoV-2 plasmid, which was a kind gift from Florian Krammer lab.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCAGGS RBD-SARS-CoV-2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Reads were demultiplexed and each sample was processed separately using the Galaxy platform (https://usegalaxy.org/) using the functions described in Blankenberg et al 45.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Galaxy</div><div>suggested: (Galaxy, RRID:SCR_006281)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After seven days at 37°C, 120 rpm, 8% CO2, supernatant was purified using HiTrap Protein A for VHH-Fc constructs or HisTrap Excel for RBD constructs, following the manufacturer’s instructions (GE Healthcare).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HisTrap Excel</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Affinity measurement by BioLayer Interferometry: Binding kinetics were determined using an Octet RED96 instrument (ForteBio).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BioLayer</div><div>suggested: (Harvard Medical School Center for Macromolecular Interactions Core Facility, RRID:SCR_018270)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The initial structure of VHH72 was built by homology modelling using the MODELLER software 46 and the coordinates of VHH72 in PDB structure 6WAQ as template 18.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MODELLER</div><div>suggested: (MODELLER, RRID:SCR_008395)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Analysis of the trajectories was achieved using in-house scripts written in the macrolanguage of CHARMM v42b153.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHARMM</div><div>suggested: (CHARMM, RRID:SCR_014892)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Figures were produced with PyMol [PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.] and Gnuplot 5.1.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMOL</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div><div style="margin-bottom:8px"><div>Gnuplot</div><div>suggested: (Gnuplot, RRID:SCR_008619)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      As a result, a second generation of antibodies might be required to overcome these limitations and could be obtained by reshaping the initial sequences by conferring them the necessary properties, such as affinity and selectivity, to have optimal therapeutic efficacy for treatment in humans. From this perspective, many teams have proposed a wide range of methods to generate candidates with the expected properties, mostly increased affinity.29-32 Affinity maturation aims at improving biological activity by adjusting the kinetic parameters of the binding to the target, which in turn may confer greater therapeutic efficacy.25,33 However, the magnitude of this effect depends largely on the epitope recognized by the antibody and the initial affinity along with the format of the antibody and its valence.25 In the context of the current COVID-19 pandemic, several studies have described affinity maturation of VHH or conventional antibodies to enhance their binding to SARS-CoV-2 antigens, by CDR-swapping approaches 34, saturation mutagenesis in CDRs 35,36 or light-chain shuffling36. In recent years, Deep Mutational Scanning (DMS) approaches have emerged as a powerful tool for understanding protein/protein interactions. Deep Mutational Scanning (DMS) explores in a selected protein all possible unique substitutions, i.e. all unique mutations for each position. DMS defines mutational landscape of the protein and helps to understand the interaction modalities as recently shown for the RBD...

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. On top of biredictional links, it also has the #tag functionality, which creates a further network layer

      enlaces crean redes "fisicas"; tags crean redes "logicas"

    1. Según leemos en el artículo «Beethoven and Indian Philosophy»[1], en un texto escrito, y en realidad copiado por Beethoven, y que es mencionado, incluido y comentado en el libro Beethoven’s Letters with explanatory notes by Dr. A.C. Kalischer (trans. J. S. Shedlock), 1926, se muestran dos textos de filosofía de la India que, aunque no especifica de dónde son, es casi evidente que son de los Upanishads y de un himno védico respectivamente, no identificados en esta obra

      "siguiendo la pista": referencia externa link

    1. Beethoven’s Letters with explanatory notes by Dr. A.C. Kalischer, J.M. Dent & Sons, Ltd., London & Toronto, 1926, pp.393-394

      "fuente original (secundaria)"; now, come back to esfinge

    1. Alejandro tenía el hábito de inclinar ligeramente la cabeza sobre el hombro derecho, de baja estatura con cutis blanco, cabello ondulado de color castaño claro y ojos heterócromos, el izquierdo marrón y el derecho gris, que no se sabe si eran de nacimiento o por un traumatismo craneal.

      citation needed

    1. SciScore for 10.1101/2021.12.05.471263: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The absence of the polyhistidine tag in the purified protein was verified by western blot using antihistidine antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>antihistidine</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 96-hr culturing (27°C, orbital shaking at 125 rpm) and centrifugation, the high-titre baculovirus supernatant produced was collected and used to infect Sf9 cells at a density of 3 × 106 Sf9 cells/ml by 1:8 dilution of the supernatant virus stock.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Sf9</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The [S:A222V + S:D614G]-1-up, [S:A222V + S:D614G]-2-up, [S:A222V + S:D614G]-3-down, S:D614G-1-up and S:D614G-2-up cryo-EM density maps were deposited in the EM Data Bank with codes EMD-13916, EMD-13917, EMD-13918, EMD-13919 and EMD-13920, respectively.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>S:A222V + S:D614G]-1-up, [S:A222V + S:D614G]-2-up</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plasmid pSPIKE (a generous gift from Cesar Santiago, CNB-CSIC) was designed to include the region encoding the SARS-CoV-2 protein S ectodomain (residues 15-1213) with substitutions to proline at residues 986 and 987 and of 668RRAR671 furin cleavage site to alanine, with a N-terminal gp67 signal peptide for secretion, and C-terminal foldon trimerization motif, a thrombin protease recognition site and 9x His and Myc tags, into the insect expression plasmid pFastBac.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pSPIKE</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pFastBac</div><div>suggested: RRID:Addgene_1925)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plasmid pACE2TEV was prepared from that previously used to express the N-terminal peptidase domain of human ACE2 (Lan et al. 2020), by including a cleavage site for TEV protease, to allow removing the C-terminal 6×His tag in an additional purification step.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pACE2TEV</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plots, curve fittings and numerical calculations were performed with the program GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">2D classification was performed in cryoSPARC (Punjani et al. 2017) and 310,162 and 165,304 particles were selected.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>cryoSPARC</div><div>suggested: (cryoSPARC, RRID:SCR_016501)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After several rounds of refinement in Refmac and model building in Coot, acceptable refinement metrics were obtained.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Point mutations at position 222 (A-->V) of the S1-NTD domain (residues 13-305) and 614 (D-->G) of the S1/S2 furin cleavage site were introduced by using the mutagenesis tool of PyMol 2.0 (glycan-free) or an in-house topology editing tool (glycosylated; see gitlab.com/KomBioMol/gromologist).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMol</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a protocol registration statement.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

      • If a file contains only PHP code, it is preferable to omit the PHP closing tag at the end of the file;
      • but if you are embedding php with html then enclose php code with opening and closing tag;
      • The type of a variable is not usually set by the programmer; rather, it is decided at runtime by PHP depending on the context in which that variable is used;
    1. SciScore for 10.1101/2021.11.29.21267000: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: All methods and procedures were performed following the relevant guidelines and regulations approved by the Ethics Committee of the Universidad de Santiago of Chile.<br>Consent: Informed consent was obtained from all participants and/or their legal guardians.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The Taq DNA Polymerase (pET-28a_6H-TAQ_E602D) was obtained from Dr. Robert Tjian</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET-28a_6H-TAQ_E602D</div><div>suggested: RRID:Addgene_166944)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In addition, NdeI and BamHI were used to clone it in a pET-19 vector with N-terminal 10x His-tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET-19</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The analysis was performed using GraphPad Prism 8 software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.12.06.21267328: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: This study was approved by Thomas Jefferson University Institutional Review Board as minimal risk, and each participant provided written consent.<br>Consent: This study was approved by Thomas Jefferson University Institutional Review Board as minimal risk, and each participant provided written consent.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Cohort Selection: This is a prospective cohort of pregnant patients consented for collection of samples at delivery, including maternal blood on admission and cord blood at delivery as part of an ongoing delivery cohort biorepository.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The detection antibody, SULFO-TAG either with anti-human IgG (or anti-human IgM antibody (was diluted to 2 μg/ml in Diluent 100 (MSD) and added to the wells and incubated at RT for 1h on a plate shaker.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: (RevMAb Biosciences Cat# 31-1019-MK, RRID:AB_2783627)</div></div><div style="margin-bottom:8px"><div>anti-human IgM</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Additional serological outcomes included: correlation between epitope levels, relation between antibody epitopes and latency to delivery Statistical Analysis: Statistical analysis conducted using SPSS v.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SPSS</div><div>suggested: (SPSS, RRID:SCR_002865)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Figures were generated using the stats, ggplot2, and corrplot packages in R.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ggplot2</div><div>suggested: (ggplot2, RRID:SCR_014601)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      The limited positive serology reported (65-70% of PCR+ mothers) demonstrates the limitations of examining isolated antibody epitopes, and specifically of RBD only epitope. SARS CoV-2 Immunity: While prior studies have focused on SARS-CoV-2 spike protein, we evaluated a range of epitopes. Our results demonstrated high sensitivity of our platform with detection of spike (full length)- IgM and IgG in ∼90% of documented PCR infection. We found that, as in non-pregnant patients, high levels of N-IgG and IgM titers in those with a history of COVID-1923. Studies in non-pregnant individuals identified IgM peaks in N and S epitopes in second week of infection24. We found that maternal nucleocapsid antibodies demonstrated the highest specificity for documented COVID-19 infection and were highly expressed in both maternal and cordblood samples. Nucleocapsid proteins of many coronaviruses are highly immunogenic and highly expressed during acute infection25. While the focus of vaccine and monoclonal antibody therapeutics have been on spike antigen, these results, consistent with other studies in non-pregnant adults, highlights the potential import of N-antibodies in SARS-CoV-2 immunity and target for therapy. Finally, similar to the reports cited above18,19,22, we found a high degree of correlation and a linear fit with a slope of 1.0, between maternal and cordblood IgG with cordblood IgG concentrations, indicating highly efficient transfer of CoV-2 IgG antibodies. Finally, in examining s...

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.12.05.471310: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells and pseudotype assay: 293T, Huh-7 (human liver cells), and BHKs were maintained under standard cell culture conditions in DMEM with L-glutamine, antibiotics, and 10</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Huh-7</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Westernblot: Viral pseudotypes were concentrated and 293T producer cells were lysed in 1% SDS and clarified as described previously1.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: KCB Cat# KCB 200744YJ, RRID:CVCL_0063)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Spike sequences from HCoV-229E (AB691763.1), MERS-CoV (JX869059.2), and SARS-CoV-1 (AY278741) were codon-optimized, appended with a carboxy-terminal FLAG tag sequence separated by a flexible poly-glycine linker and cloned into pcDNA3.1+ as previously described1.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3.1+</div><div>suggested: RRID:Addgene_117272)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Amino acid sequences for the receptor binding domain of the spike glycoprotein were aligned using ClustalW multiple sequence alignment with default parameters.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ClustalW</div><div>suggested: (ClustalW, RRID:SCR_017277)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A maximum likelihood phylogenetic tree was inferred with PhyML v.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PhyML</div><div>suggested: (PhyML, RRID:SCR_014629)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The final tree was then visualized as a cladogram with FigTree v1.4.4 (https://github.com/rambaut/figtree).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FigTree</div><div>suggested: (FigTree, RRID:SCR_008515)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • No funding statement was detected.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Except that the creator of Birds Aren’t Real and the movement’s followers are in on a joke: They know that birds are, in fact, real and that their theory is made up.

      Linking to a New York Times tag archive would not be considered evidence by any self-respecting conspiracy theorist.

    1. SciScore for 10.1101/2021.12.04.471219: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Soluble detergent extracts were incubated with Glutathione resins for 2 hr at 4°C prior to washing three times with PBS supplemented with NaCl 200 mM and 0.1% Triton and processed for western blot analysis with GFP antibody (Novus NB600-313).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GFP</div><div>suggested: (Novus Cat# NB600-313, RRID:AB_10002194)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">HEK 293 cells were transiently transfected with the GFP tagged constructs using the phosphate calcium method.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK 293</div><div>suggested: CLS Cat# 300192/p777_HEK293, RRID:CVCL_0045)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">4.6 Immunofluorescence: HeLa cells were transfected using the Genejuice transfection reagent (Novagen) according to the manufacturer protocol.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HeLa</div><div>suggested: CLS Cat# 300194/p772_HeLa, RRID:CVCL_0030)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The PDZ domains were cloned into pETG-41A plasmid vectors as an N-terminal fusion to a histidine tag and a maltose-binding protein (His-MBP-tag).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pETG-41A</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Invitrogen), PDZ domains of ZO-1, LNX2 and PARD3 were subcloned into pDEST™17 vector and MPP5-PDZ into pDEST™15 vector, allowing the production of recombinant proteins as a fusion to an N-terminal histidine and GST tag, respectively.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pDEST™17</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pDEST™15</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The pCMV ALFA E vector was constructed as follows: DNA sequence encoding the ALFA tag (MSRLEEELRRRLTE) followed by a linker (GGGGS) fused to the sequence corresponding to the alpha-variant of SARS-CoV2 E cDNA (GenBank: BCM16077.1) synthetized by Eurofins.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV ALFA</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The ALFA-linker-E sequence was subsequently cloned into a pCMV backbone vector using ClaI and XhoI.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV</div><div>suggested: RRID:Addgene_16459)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The sequences corresponding to the PDZ domains were cloned into the pCMV GFP vector using EcoRI and XhoI sites.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV GFP</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Models were rebuilt using COOT (Emsley et al., 2010), and refinement was done with phenix.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>COOT</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">refine of the PHENIX suite (Adams et al., 2010).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PHENIX</div><div>suggested: (Phenix, RRID:SCR_014224)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All structural figures were generated with the PyMOL Molecular Graphics System, Version (Schrödinger).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMOL</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 24. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. To use inline tagging, simply add the note .probability in addition to the highlight. When it's imported into Readwise, the passage will be tagged accordingly.

      .ReadWise

  2. update.lib.berkeley.edu update.lib.berkeley.edu
    1. Do you … ? … save random URLs in a Word or Google Doc? … save article PDFs on your desktop and as email attachments? … have a pile of article printouts sitting on your desk? … write down citations on sticky notes and post them to your monitor? … stay up late the night before a paper is due reconstructing your citations? If you answered yes to any of the above … the answer is YES,  you need Zotero

      zotero

    1. We recently faced a similar problem and ended up writing our own parser based on ParsCit but using Wapiti instead of CRF++ for the conditional random fields model. Like Mike mentions above, the problem with ML-based parsers is getting good tagged training data; for this we wrote a visual editor that lets you tag the results (and save them as training data). This approach works pretty well for parsing bibliographies. If anyone is interested, we've made both parser and editor available here at anystyle.io.
    1. Chuckle123VIP12d@SamAdams, I added tags to the frontmatter, and use them to denote project details. I use Templater for templates, and it gives me the ability to dynamically populate the Path tag. I use Dataview to display the status of my projects on my Workbench. This may not be the intended purpose, but the ability to add tags to the frontmatter allows me to use it as I see fit. — Aliases: Tags: Project Path: <% tp.file.folder(true) %> Status: _Open Priority: 1 — ```dataview Table replace(Path, “Projects/”, “”) as Project, Status, Priority From #Project Where Status = “Open” Sort Priority, Project ``` ce

      answer

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer 1

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      *The manuscript by Wibisana et al. describes an impressive set of experiments that analyse the NFkB response at the single-cell level, using a variety of cutting-edge techniques (live cell imaging, single-cell RNA-seq, single-molecule RNA FISH, and single-cell ATAC-seq) in chicken DT40 B-cells.

      In the fist half of the paper, the authors perform a detailed characterization of the cell-to-cell variation arising from a homogeneous stimulation with various doses of anti-IgM. They observe that the NFKB TF RelA forms clear nuclear 'foci' upon stimulation in DT40 cells: this was anecdotally shown in a different cell-type by the same authors in ref 7, but (to my knowledge) has never been systematically studied. This allows them to quantitatively analyse the foci formed in response to stimulation, and they show that this is dose-dependent, heterogeneous and biomodal, and exhibits properties of cooperativity. In parallel, the authors analyse the resulting stimulus-driven changes in gene expression, first using single-cell RNA-seq, and then, elegantly, using RNA FISH, which allows them to directly compare the number of RelA foci to gene expression in individual cells. Like the RelA foci, they find that cell-to-cell gene expression is heterogeneous and bimodal (this has been described before). Interestingly, though, they are able to show that individual stimulus-responsive genes exhibit distinct patterns of cell-to-cell hetereogeneity: they can categorize 4 clusters of responding genes according to different patterns of cell-to-cell variation at distinct stimulus doses, and moreover they show that while the heterogeneity of NFKBIA arises due to bimodal expression levels, that of CD83 is simply due to broad variation between cells. Although focused on NFkB, there is a lot of information here with some important (and non-intuitive) implications that could apply to many other stimulus-driven or developmental responses that exhibit heterogeneous patterns of gene expression. A more in-depth analysis of the single-cell datasets would certainly be very worthwhile and fruitful.

      In the second half of the paper, the authors attempt to use their single-cell data, alongside ATAC-seq genomic analyses, to draw inferences about how or whether the model genes NFKBIA and CD83 are regulated by super-enhancers (SEs). Both of these genes are associated with SEs that gain accessibility upon stimulation (recapitulating the authors' findings in ref 8 in a different cell-type), and the CD83 promoter exhibits co-accessibility with two regions within an adjacent SE. The authors also show that both genes are sensitive to treatment with 1.6-HD, a compound that disrupts liquid-like condensates (a characteristic that has been reported for SEs), and CD83 is sensitive to an inhibitor of Brd4 (which has been associated to SE function). However, while these findings could be considered to be suggestive of regulation by SEs, they are clearly not definitive (nor do the authors claim so).

      Finally, the authors show (figure 4a-c) that while the level of stimulus-driven gene upregulation correlates with co-accessibility with both SEs and typical enhancers (TEs), the cell-to-cell heterogeneity of gene expression correlates only with co-accessibility with SEs. This would agree with a model in which SE-regulated gene regulation may generally impart heterogeneous or switch-like gene expression. *

      **Specific comments**

      • The experiments are adequately presented, and the authors indicate that not only the sequencing data but also the analysis code is available. Nevertheless, the methods section is rather terse, and could benefit from more detail to understand the various analyses, particularly concerning the analyses of SEs in figures 3 and S7, where it is often difficult to understand how peaks or genes are categorized.

      Response: We thank the Reviewer for pointing this out and we agree that the Methods section was not described in detail, particularly in how the SEs were analyzed and categorized. Therefore, we have added more details on how SEs were categorized in the Methods section as follows:

      “ Peak calling and enhancer identification from ATAC-seq data were performed using Homer v4.10.4 (http://homer.ucsd.edu/homer/) using the bam files generated from the Cell Ranger pipeline. Tag directories were created for the bam file from each condition using the “makeTagDirectory” program with the “--sspe -single -tbp 1” option. Peak calling was performed using the “findPeaks” program with the “-style super -typical -minDist 5000 -L 0 -fdr 0.0001” option. This procedure stitches peaks within 5 kb and ranks regions by their total normalized number reads and classifies TE and SE by a slope threshold of 1. Peak annotation was subsequently performed using the “annotatePeaks.pl” program with the GRCg6a.96 annotation file. The consequent peak files were merged between each stimulation condition for the SE and TE peaks separately using the “mergeBed” program of bedtools. Peak annotation was performed for the second time for the merged peaks to create the final SE and TE peaks. ATAC fold-change was then calculated between both conditions for the merged peaks separately for SE and TE. Genes associated with both SE and TE were assigned only to the SE.”

      Similarly, we have added more details for other analyses in the Method section and the main sentences.

      • The imaging, scRNA-seq and RNA-FISH experiments are well-presented, although the supplementary figures 4 and 5 include key results that would merit inclusion within the main figures. *

      Response: We thank the Reviewer for this comment. We have included supplementary figures 4b and 5d in the main figures (new Fig. 2g) since both of these figures represent the raw data revealing the differences between smFISH counts and RNA-seq derived gene expression.

      • It is strking that although all the conclusions about SEs are drawn almost exclusively from analysis of ATAC-seq data, no raw ATAC-seq data is directly shown in any figure (even in the browser snapshots of figure 4d & e). It would be important to show the actual ATAC data from which the inferences of figures 3 and 4 are drawn, especially so that it is possible to visualize the implication of a particular 'ATAC fold-change' or of 'ATAC-gained enhancers'. Response: We have added a browser snapshot of the ATAC-seq data, presenting the super-enhancer region assigned to both CD83 and NFKBIA* (new Fig. 3c).

      Reviewer #1 (Significance (Required)):

      • This manuscript can be considered as a follow-up of the authors' previous paper (Michida 2020, ref 8), here focusing on cell-to-cell heterogeneity rather than on the overall magnitude of the stimulus-induced response. Overall, the experiments are well-performed and bring new data to an interesting angle of gene regulation. However, the analyses presented do not seem to fully exploit the data, and the authors do not manage to present any strong conclusions, particularly relating to the possible involvement of super enhancers.

      Response: To strengthen our conclusions about the possible involvement of super-enhancers in regulating heterogeneity, we performed additional analyses on the properties of the SE including the number of transcription factors, NF-κB and PU.1 binding motifs and the length of the enhancers, according to a previous report (Michida et al., 2020, Cell Rep). This was also conducted to confirm whether the ATAC-seq-based SE identification method presents results consistent with those provided by H3K27Ac-ChIP-based methods utilized in the previous study (Michida et al., 2020, Cell Rep). SEs revealed longer genomic length (new Supplementary Fig. 8a) and this length was positively correlated with the ATAC signal (new Supplementary Fig. 8b). Furthermore, gained and lost SE revealed a correlation with enhanced gene expression upregulation and downregulation, respectively, compared to TE (new Fig. 3g). We also demonstrated that SE-regulated genes have a higher Fano factor change, which is consistent with the state of an SE whether it is gained or lost (new Fig. 5a, 5b). For binding motif analysis, we observed a slightly higher PU.1 motif density at SEs (new Supplementary Fig. 11), corresponding to the results of the previous study (Michida et al., 2020, Cell Rep). Interestingly, only the density of NF-κB and not PU.1 was correlated with ATAC signal change in SE (new Fig. 4a), suggesting that those SEs were controlled by nuclear translocation of NF-κB.

      As a mechanism to produce gene expression heterogeneity in phenotypically identical cells, we observed that co-accessibility, which has been reported to be concordant with genomic contacts is correlated to Fano factor change, indicating that gene expression heterogeneity possibly stems from cis-regulatory interactions. NF-κB activation has been reported to increase the heterogeneity in some genes and is attributed to the accumulation of Ser5p RNAPII (Wong et al., 2018, Cell Rep). Additionally, Ser5p RNAPII has been reported to accumulate at enhancer regions (Koch et al., 2011, Nat Struct Mol Biol), and that the accumulation of RNAPII is suggested to assist in gene expression activation through enhancer-promoter contact (Thomas et al., 2021, Mol Cell). Our results support these conclusions since co-accessibility or putative cis-regulatory interactions correlate to Fano factor changes. SE can form phase-separated transcription hubs containing multiple enhancers and/or promoters, which may enable the higher diffusion rate of active enhancers; therefore, it may induce a higher possibility of genomic DNA interactions (Gu et al., 2018, Science). In contrast, the enrichment of TATA motif has also been proposed to generate transcriptional heterogeneity (Faure et al., 2017, Cell Syst). Therefore, we examined this possibility with our data. However, we observed a higher occurrence of TATA box in genes associated with lost SE (new Supplementary Fig. 18) which might have caused gene expression heterogeneity in unstimulated cells. This heterogeneity might be due to the differences in Pol II loading intervals (Tunnacliffe & Chubb, 2020, Trends Genet) however the noise associated with gained SE is possibly generated by the fluctuation of high-order biomolecular assembly. Therefore, we believe that the source of heterogeneity in these conditions were different.

      Additionally, we performed Hill function analysis to reveal the threshold behavior of gene expression in our analysis since previously gained SEs were associated with threshold gene expression (Michida et al., 2020, Cell Rep). In this study, we presented that threshold behavior in gained SE is related to motif density of NF-κB (Fig. 4d), however, threshold behavior does not seem to be related to heterogeneous gene expression.

      Following these results, we concluded that NF-κB activated SE has two closely related but distinct functions for gene control: (1) enhanced heterogeneity and fold-changes and (2) switch-like expression. These are controlled by different mechanisms stemming from chromatin status: (1) frequency of cis-regulatory genomic interactions possibly mediated by phase separation and (2) cooperative binding of NF-κB to DNA. These differences were well represented by expression profiles of CD83 (higher heterogeneity and weak bimodal expression) and NFKBIA (lower heterogeneity and strong bimodal expression).

      • For instance, the existence of multiple gene clusters that exhibit distinct patterns of heterogeneity implies that switch-like gene activation occurs on a per-gene basis, rather than corresponding to an all-or-nothing activation of individual cells. This would be an exciting finding, and the authors have the data to test this. Likewise, the division of heterogeneous gene expression into bimodal (like NFKBIA) or unimodal (like CD83) distributions could be a nice paradigm if systematically applied to the other 1335 differentially-expressed genes identified by the authors. * Response: We appreciate this comment. Following your comment, we analyzed the relationship between heterogeneity and bimodality (switch-like expression or high Hill coefficient) for the remaining genes. We observed that SE having a high Hill coefficient contained a higher number of NF-κB motif in SE (new Fig. 4), indicating that cooperative binding of NF-κB to DNA shaped non-linear gene expression profiles as we indicated in a previous paper (Michida et al., 2020, Cell Rep). Additionally, as described in the earlier section, we observed that heterogeneity arises from cis-regulatory genomic interaction. We compared these gene groups and observed that these properties were not completely shared (new Supplementary Fig. 15), indicating that bimodality and heterogeneity originated from different mechanisms. We assume that those differences are mediated through a combination of chromatin accessibility and the biophysical properties of NF-κB.

      • In contrast, although the authors try to use their data to investigate gene regulation by SEs, these inferences are all somewhat indirect, and the authors themselves do not manage to draw any definitive conclusions. Response: We appreciate this comment. We performed the additional computational analysis and carefully interpreted the data. Additionally, we have now concluded that SEs have two major biological functions: (1) gene expression heterogeneity, which is mediated via cis-regulatory interactions (Fig. 5) and (2) bimodal gene expression, which is mediated by NF-κB binding (new Fig. 4). The latter finding has also been reported in a mouse primary B cell, albeit the mechanism causing heterogeneity was a novel conclusion of this study.

      • I feel that the authors are under-selling their data here. As-is, the data represents more of a resource than a study with a clear message, but I believe that with more in-depth analysis the authors could make a much more significant advance, particularly concerning the cell-to-cell heterogeneity of gene expression. I would be very enthusiastic to review the same data again with a more detailed analysis, which I believe would enormously improve the manuscript. Response: We appreciate this comment. As described in this report and the revised manuscript, we performed a considerably detailed computational analysis and gained several novel insights to answer the question regarding the functional roles of SE. We are grateful to learn that gene expression patterns may be estimated from ATAC-seq profiles and that they may even be controlled. We hope that this Reviewer would observe the scientific value of our study and provide us with your valuable feedback on our revised manuscript.

      Reviewer #2

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Imaging and single cell sequencing analyses of super-enhancer activation mediated by NF-κB in B cells" by Wibisana et al. examined the relationship between super-enhancers, NF-κB nuclear aggregation, and target gene regulation. The authors have generated a large amount of data from fluorescent microscopy, scRNA-seq, scATAC-seq, smRNA FISH. While this is an impressive dataset in terms of diverse technically advanced methods employed, it is not clear what to take as a main conceptual advance. What could be the functional implications of observed cell-cell variability in B cell transcriptional responses to environmental stimuli? In addition to this general point, the following are specific comments that could improve the manuscript.

      1. In Figure 2, smRNA FISH foci of CD83 and NFKBIA are quantified as # of spots per cell (Supplementary figure 5). But it is difficult to see in Figure 2 the colocalization of any mRNA spots with RelA foci. Ideally, it will be convincing to show by DNA FISH that these target loci are indeed located within NF-κB occupied super-enhancer puncta. Even with the current RNA FISH data, some colocalization analysis could have been performed. * Response: In Figure 2, we were unable to perform accurate colocalization analysis with the current smFISH data as the probes used by us map to exons. Moreover, we have also previously performed DNA-FISH; nevertheless, it was difficult to assess co-localization between the DNA and RelA proteins secondary to the degradation of RelA-GFP proteins. Therefore, we decided to perform intronic smRNA-FISH, which can be used to pinpoint the site of active transcription (Levesque and Raj, 2013, Nat Methods). The results, along with the quantification results, are presented in the new Fig. 2f.
      • Supplementary Figure 5a shows lower correlations of # GFP-RelA foci to CD83 transcripts in comparison to NFKBIA. Even though the foci and smRNA FISH spots are derived from high resolution imaging data, we should remember that any snapshot measurements have limited information content for gene regulatory relationships. Live cell studies (for example, from the groups of Suzanne Gaudet, Kathryn Miller-Jensen, and Myong-Hee Sung) have shown that time-integrated measures (e.g. maximum fold change and area under the curve of RelA signaling time course in single cells) are better correlates to transcriptional output of target genes (Lee REC et al 2014 Mol Cell; Wong VC et al 2019 Biophysical J; Sung MH et al. 2014 Science Signal; Martin EW et al. 2020 Science Signal). *

      Response: We thank the Reviewer for this valuable comment. One of the reasons for a lower correlation between GFP-RelA foci and CD83 transcripts compared to NFKBIA may be the difference in expression timing of CD83 and NFKBIA and the timing of nuclear localization of GFP-RelA. RelA localizes in the nucleus 10−30 mins after cell stimulation, and NFKBIA is an early responsive gene, however, CD83 is expressed later (new Supplementary Fig. 17). Therefore, this time difference possibly affects correlation accuracy. Although we agree that high-throughput time-course measurement of RelA-GFP combined with smFISH measurements, such as that reported in Wong VC et al., 2019, will be ideal, it is technically difficult since DT40 are suspension cells and the smFISH protocol requires multiple washing and centrifugation steps. Thus, with this experimental setup, we were unable to perform the time-course analysis.

      Nonetheless, we measured the time-course foci formation at the same single-cells (new Supplementary Fig. 1b) and observed that it effectively represents Figure 1a, which is a snapshot of the population dynamics of RelA foci across time. Additionally, the observed dynamics, which revealed a steep initial increase and slight decrease with time, effectively recapitulates the previous reports (Lee et al., 2014, Mol Cell; Wong et al., 2019, Biophys J).

      In our analysis, we performed imaging analysis to demonstrate that NF-κB foci formation is switch-like, and this formation might be involved in the formation of phase-separated condensates enhancing DNA to DNA contact. The number of foci may depend upon the intracellular concentration of NF-κB, and fold change in the RelA signal may be correlated with gene expression as previously reported (Lee et al., 2014, Mol Cell; Wong et al., 2019, Biophys J). However, there is another report presenting that promote/enhancer proximity is not related to gene expression (Alexander et al. 2019, eLife). Although we were unable to perform this analysis owing to the limitations stated above, we tried to find the relationship between RelA foci and gene expression by performing biochemical perturbations (Fig 1e-f, Fig 5h) and presented that these foci are related to gene expression.

      • The analyses have been performed using DT40 cells. In the Methods section, no description was provided about what type of B cells DT40 is, even though few outside of the field may not know that the cells were immortalized from chicken. This is an important consideration, because some nuclear bodies and genome organization features are different between host species and they also depend on whether the cells are primary or transformed. Because the authors do not discuss this point, it seems possible that the findings about NF-κB aggregates and super-enhancers may not necessarily hold true for primary B cells. *

      Response: We thank the Reviewer for pointing out these issues. We have added the following description on DT40 cells in the Methods section describing that DT40 cells are chicken bursal lymphoma cells.

      DT40 B lymphocytes have been widely used as a B cell model for studying B cell receptor signaling (Mori et al., 2002, J. Exp. Med.; Patterson et al., 2002, Cell; Saeki et al., 2003, EMBO J.) due to its high gene targeting efficiency. We also previously confirmed that anti-IgM stimulation induces the NF-κB signaling pathway in mouse primary splenic B cells and DT40 and that the signaling molecules and dynamics in these cells are well conserved (Shinohara et al., 2014, Science; Shinohara et al., 2016, Sci. Rep.; Inoue et al., 2016, NPJ Syst. Biol. Appl.). However, we understand the Reviewer’s concerns. Therefore, we have provided the track view of primary B cell ATAC-seq data to demonstrate that the chromatin accessibility changes upon anti-IgM stimulation in CD83 and NFKBIA were similarly observed in primary B cell data (new Supplementary Fig. 9b) and that the upregulation and association with SE of CD83 and NFKBIA were also observed in primary B cell (new Supplementary Fig. 9a).

      • Similarly, the GFP-RelA expressing DT40 cell generation should be described with more detail (beyond "provided by ..."). N-terminal or C-terminal fusion? Did the fusion construct contain an artificial promoter (e.g. CMV) or an upstream fragment of the genomic Rela locus (chicken or human)? Methods of transfection and cloning of stable lines? These choices affect the interpretation of the data, so they must be fully described and justified. *

      Response: We thank you for pointing this out. We have added the following details on the RelA-GFP construct in the Methods section:

      Mouse RelA-eGFP with eGFP on the C terminal was cloned into a pGAP vector containing Ecogpt resistance gene targeting endogenous GAPDH locus. This construct was further electroporated into wild-type cells and selected using Ecogpt to produce RelA-GFP-expressing DT40 cells.

      • DT40 cells were cultured in 39 degrees. Michael White and colleagues have shown that high temperatures can alter NF-kappaB dynamics and function (https://www.pnas.org/content/115/22/E5243). Did the authors try lower temperatures to ascertain that the NF-kB aggregates and other major findings are still observed in 37 degrees? *

      Response: We performed the experiments at 39 degrees to mimic the natural body temperature of chicken since DT40 cells were derived from chicken bursal lymphoma (Saribasak and Arikawa, 2006, Subcell Biochem). Previously, we cultured DT40 cells at 37 degrees and observed that the cell growth was inhibited, and thus, we believed that it was not ideal to perform experiments of DT40 cells at 37 degrees.

      Reviewer #2 (Significance (Required)):

      It is not clear what to take as a main conceptual advance.

      Response: Considering the original manuscript, we agree with the Reviewer on the lack of strong emphasis on the conclusions of our study. Therefore, in this revised manuscript, we have focused on the comprehensive mechanism of heterogeneity and switch-like activation in gene expression control. As we described in the comments to Reviewer #1, we performed an additional in-depth computational analysis on SE and TE. Consequently, we demonstrated that enhanced heterogeneity and expression fold-changes mediated by SE are defined by the number of cis-regulatory genomic interactions in open chromatin regions (Figure 5), however, switch-like expression (bimodal patterns) is determined by the number of NF-κB binding in SE (new Figure 4). The latter finding has also been reported in a mouse primary B cell in our previous study (Michida et al. 2020, Cell Rep.). However, the mechanism causing heterogeneity is a novel conclusion obtained in this study. We also concluded that these similar, albeit quantitatively and slightly different characteristics in gene control can be achieved through a combination of chromatin accessibility of host cells and biophysical properties of NF-κB molecule, which is involved in phase separation.

      What could be the functional implications of observed cell-cell variability in B cell transcriptional responses to environmental stimuli?

      Response: We performed gene ontology analysis to reveal how the heterogeneously expressed genes (cluster 4) (Fig. 2d) presented enrichment for immune-related functions (Supplementary Fig. 5b). This result supports a previous study, which stated that variability in gene expression is related to function (Osorio et al., 2019, Cells).

      This discussion is incorporated in the manuscript as follows:

      “We observed that genes with an increased heterogeneity upon increasing stimulation dose are enriched with cell-type-specific immune regulatory genes (Supplementary Fig. 5b), supporting a previous report where heterogeneity in gene expression is tied to biological functions and may be used by cells as a bet-hedging or a response distribution mechanism (Osorio et al., 2019, Cells), where cells exhibit heterogeneity to enable response to changing environment and also allowing dose-dependent fractional activation respectively. This was observed in CD83, a B cell activation marker, demonstrating the involvement of heterogeneity in B cell development.”

    1. Has can be thought of as a type-indexed heterogeneous map, which is type safe,but requires access to compile-time type tag information. ZLayer can be thoughtof as a more powerful version of Java and Scala constructors, which can buildmultiple services in terms of their dependencies.
    1. automatic OER processing

      I am unsure of what "automatic OER Processing" might mean/ Can anyone help?

      The closes I came was in the section of a International Journal of OER paper by Stephen Downes: A Look at the Future of Open Educational Resources where in the Artificial Intelligence section he illustrates an example of AI creating OER (?)

      What is relevant to open education is that the services offered by these programs will be available as basic resources to help build courses, learning modules, or interactive instruction. For example, Figure 3 illustrates a simple case. It takes the URL of an image, loads it, and connects an online artificial intelligence gateway offered by Microsoft as part of its Azure cloud services using an API key generated from an Azure account.

      The Azure AI service automatically generates a description of the image, which is used as an alt tag, so the image can be accessible; the alt tag can be read by a screen reader for those who aren’t able to actually see the image. In this case, the image recognition technology automatically created the text “a large waterfall over a rocky cliff,” along with a more complete set of analytical data about the image.

      Yes this is interesting and is a useful tool for content creation, but to me seems a far leap to creating educational content.

    1. SciScore for 10.1101/2021.11.25.470011: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: The study and corresponding experiments were approved by the local ethics committee (S64089) and all patients gave their written informed consent.<br>Consent: The study and corresponding experiments were approved by the local ethics committee (S64089) and all patients gave their written informed consent.<br>Euthanasia Agents: At day 4 post-infection, animals were euthanized by intraperitoneal injection of 500 μL Dolethal (200 mg/mL sodium pentobarbital, Vétoquinol SA).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Female Syrian hamsters (Mesocricetus auratus) were purchased from Janvier Laboratories and kept per two in individually ventilated isolator cages (IsoCage N Bio-containment System, Tecniplast) at 21°C, 55% humidity and 12:12 day/night cycles.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">No randomization methods were used and confounders were not controlled, though all caretakers and technicians were blinded to group allocation in the animal facility and to sample numbers for analysis (qPCR, titration, and histology).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">No randomization methods were used and confounders were not controlled, though all caretakers and technicians were blinded to group allocation in the animal facility and to sample numbers for analysis (qPCR, titration, and histology).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">Group size was calculated based on the independent t-test with an effect size of 2.0 and a power of 80% (effect size = delta mean/SD = 1 log10 decrease in viral RNA/0.5 log10), resulting in 5-6 animals/group.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">His-tag labeled SARS-CoV-2 RBD (The Native Antigen Company) was biotinylated with the EZ-Link Sulfo-NHS-LC-Biotin kit (Thermofisher Scientific) according to the manufacturer’s protocol, corresponding to 1-3 biotin groups per antibody molecule.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Sulfo-NHS-LC-Biotin</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After the 60 minutes incubation, B cells were washed with FACS buffer and stained with PerCP-cy5.5 anti-human CD19 antibody (Biolegend, 363016)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human CD19</div><div>suggested: (BioLegend Cat# 363016, RRID:AB_2564207)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">FITC anti-human CD3 antibody (Biolegend, 300306) and PE streptavidin (Biolegend, 405203) for 25 minutes on ice.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human CD3</div><div>suggested: (BioLegend Cat# 300306, RRID:AB_314042)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">As a positive and negative control, an anti-SARS-CoV-2 RBD mAb (40150-D004, Sino Biological) and anti-SARS-CoV-2 nucleocapsid antibody (MBS2563841, MyBioSource) were used, respectively.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 nucleocapsid antibody ( MBS2563841</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">First, mouse anti-human IgG (Fc) antibody (Human Antibody Capture Kit, Cytiva) was immobilized on a CM5 chip according to manufacturer instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Monoclonal antibody neutralization assays: a. Production of S-pseudotyped virus and serum neutralization test (SARS2, SARS1, MERS, 229E): VSV S-pseudotypes were generated as described previously56.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Two hours later, the medium was replaced by medium containing anti-VSV-G antibody (I1-hybridoma, ATCC CRL-2700) to neutralize residual VSV-G input.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-VSV-G</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In brief, serial dilutions of antibodies were mixed separately with live SARS-CoV-2 Wuhan, alpha, beta and gamma virus strains, incubated at 37 °C for 1h, and added to the monolayer of Vero E6 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>1h</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibody protein treatments (anti-SARS-CoV-2 mAbs or human IgG1 isotype control Trastuzumab/Herceptin® (Roche)) were initiated 24 hours post infection by intraperitoneal injection.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>human IgG1</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, HEK-293T cells (SARS-CoV, SARS-CoV-2 and MERS-S) or BHK-21J cells (229E) were transfected with the respective S protein expression plasmids, and one day later infected (MOI = 2) with GFP-encoding VSVΔG backbone virus (purchased from Kerafast).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK-293T</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>BHK-21J</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">To quantify nAbs, serial dilutions of serum samples were incubated for 1 hour at 37 °C with an equal volume of S pseudotyped VSV particles and inoculated on Vero E6 cells (SARS-CoV and SARS-CoV-2) or Huh-7 cells (229E and MERS-S) for 18 hours.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Huh-7</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Shortly, 104 VeroE6 cells/well were seeded in 96-well plates one day prior to the titration and inoculated with 10–fold serial dilutions of virus solutions and cultured for 3 days at 37°C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>VeroE6</div><div>suggested: JCRB Cat# JCRB1819, RRID:CVCL_YQ49)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Infectious virus was isolated by serial passaging on Huh7 and Vero E6 cells58; passage 6 virus was used for the study described here.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Huh7</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Intramuscular pDNA electroporation: 3B8 was delivered in vivo, encoded in the CMV-driven pcDNA3.4 vectors, as an equimolar mixture of the 3B8 heavy and light chain plasmids (jointly referred to as ‘p3B8’).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3.4</div><div>suggested: RRID:Addgene_131198)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Analysis was performed using Graphpad Prism 9.0 (Graphpad Software). b.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Graphpad</div><div>suggested: (GraphPad, RRID:SCR_000306)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Epitope binning graphs were made in Microsoft Excel and clustering was done with ClustVis web tool (</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Microsoft Excel</div><div>suggested: (Microsoft Excel, RRID:SCR_016137)</div></div><div style="margin-bottom:8px"><div>ClustVis</div><div>suggested: (ClustVis, RRID:SCR_017133)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Neutralization IC50 values were determined by normalizing the serum neutralization dilution curve to a virus (100%) and cell control (0%) and fitting in Graphpad Prism (GraphPad Software, Inc.). b.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Graphpad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Both strains were subjected to sequencing on a MinION platform (Oxford pore) directly from the nasopharyngeal swabs</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MinION</div><div>suggested: (MinION, RRID:SCR_017985)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT03831503</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Active, not recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">A Study of INO-A002 in Healthy Dengue Virus-naive Adults</td></tr></table>


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Counties could add additional early voting days from October 22 through October 26 and/or November 4. ↑ Counties could add additional early voting days from October 22 through October 26 and/or November 4. ↑ Tampa Bay Times, "Confusion clouds restoration of Florida felons’ voting rights," accessed December 17, 2018 ↑ My News 13, "Amendment 4 Could Be Delayed 60 Days, DeSantis Says," accessed December 17, 2018 ↑ Palm Beach Post, "EXCLUSIVE: DeSantis to act quickly on water, Supreme Court, Broward sheriff," accessed December 17, 2018 ↑ https://www.tallahassee.com/story/news/2018/12/14/ron-desantis-wants-lawmakers-have-look-amendment-4/2314818002/ Tallahassee Democrat, "Critics angry after Ron DeSantis asks Florida lawmakers to review Amendment 4 implementation," accessed December 17, 2018] ↑ Law 360, "BREAKING: 11th Circ. Sides With Fla. In Felon Voting Rights Dispute," accessed September 11, 2020 ↑ Document Cloud, "Jones v Florida," accessed September 11, 2020 ↑ Jump up to: 9.0 9.1 9.2 Florida Division of Elections, "Voting Restoration Amendment 14-01," accessed April 20, 2017 ↑ The Brennan Center, "Voting rights restoration efforts in Florida," accessed July 17, 2018 ↑ Jump up to: 11.0 11.1 Florida Commission on Offender Review, "Executive Clemency Timeline: 1991-2015," accessed December 7, 2017 ↑ Jump up to: 12.0 12.1 Florida Commission on Offender Review, "Rules of Executive Clemency," accessed December 7, 2017 ↑ Miami Herald, "Florida’s lifetime ban on voting by felons is unconstitutional, federal judge rules," February 1, 2018 ↑ CBS 12, "Court backs state in felons' rights fight," April 25, 2018 ↑ Jump up to: 15.0 15.1 15.2 15.3 15.4 15.5 Florida Department of State, "Campaign Finance Database," accessed December 11, 2018 Cite error: Invalid <ref> tag; name "fin" defined multiple times with different content ↑ Jump up to: 16.0 16.1 16.2 Florida Secretary of State, "Initiative #14-01 Petition," accessed April 20, 2017 ↑ Jump up to: 17.0 17.1 17.2 17.3 17.4 17.5 Note: This text is quoted verbatim from the original source. Any inconsistencies are attributable to the original source. Cite error: Invalid <ref> tag; name "quotedisclaimer" defined multiple times with different content Cite error: Invalid <ref> tag; name "quotedisclaimer" defined multiple times with different content Cite error: Invalid <ref> tag; name "quotedisclaimer" defined multiple times with different content Cite error: Invalid <ref> tag; name "quotedisclaimer" defined multiple times with different content ↑ Jump up to: 18.0 18.1 Floridians for a Fair Democracy, "Homepage," accessed November 30, 2017 ↑ St. Peters Blog, "Supreme Court OKs gambling control, felon voting rights amendments," April 20, 2017 ↑ Jump up to: 20.0 20.1 Bernie Sanders Tweet, September 26, 2018 ↑ USA Today, "Ex-felons in Florida need their voting rights back," February 11, 2018 ↑ Jump up to: 22.0 22.1 22.2 22.3 22.4 22.5 Tampa Bay Times, "Where they stand: Candidates for governor on vote for felons," January 30, 2018 ↑ Florida Politics, "‘Julián Castro 2020’? Former HUD head addresses Democrats in Miami," accessed October 1, 2018 ↑ Twitter, "Second Chances Florida September 18, 2018 Tweet," accessed September 20, 2018 ↑ Democratic Progressive Caucus of Florida, "2018 Ballot Amendments Recommendations," accessed October 14, 2018 ↑ Florida Rights Restoration Coalition, "Homepage," accessed January 6, 2017 ↑ Politico, "ACLU to storm 2018 midterms," January 6, 2018 ↑ Our Revolution, "Voting Rights Restoration for Felons Initiative: Voting Restoration Amendment," accessed September 2, 2017 ↑ Florida Politics, "Committee backing voting restoration amendment raises $1.1M in November," December 13, 2017 ↑ Wear TV, "Amendment would restore felons' right to vote in Florida," accessed July 25, 2018 ↑ Jump up to: 31.0 31.1 31.2 31.3 31.4 31.5 League of Women Voters of Florida, "Amendments," accessed September 13, 2018 ↑ News-Press, "We support restoration of an ex-felon's voting rights," September 13, 2018 ↑ Florida TaxWatch, "2018 Florida Voter Guide," accessed October 5, 2018 ↑ Jump up to: 34.0 34.1 34.2 Second Chances Florida, "Freedom Partners Chamber of Commerce Endorses Amendment 4," September 13, 2018 ↑ Libertarian Party of Florida, "LPF Voting Recommendations for the 2018 FL Ballot," accessed October 19, 2018 ↑ Second Chances Florida, "FOR IMMEDIATE RELEASE: Florida Conference of Catholic Bishops Announces Support for Amendment 4," October 18, 2018 ↑ TBYR, "2018 Florida Constitutional Amendments Recommendations," accessed November 1, 2018 ↑ News 965, "SINGER JOHN LEGEND WILL RALLY IN ORLANDO TO RESTORE FELON’S VOTING RIGHTS," accessed October 1, 2018 ↑ WLRN, "ACLU Of Florida Explains Its Stand On Constitutional Amendments Four, Six And 11," accessed September 26, 2018 ↑ Tallahassee Democrat, "Amendment 4 will save taxpayer money and give felons a second chance | Opinion," accessed September 20, 2018 ↑ Florida Department of State, "Floridians For A Sensible Voting Rights Policy," accessed November 30, 2017 ↑ Floridians For A Sensible Voting Rights Policy, "Homepage," accessed December 21, 2017 ↑ Floridians For A Sensible Voting Rights Policy, "About," accessed December 21, 2017 ↑ Florida Politics, "Tampa attorney argues against proposed voter restoration amendment," November 3, 2017 ↑ Florida Family Action, "2018 Ballot Amendment Voter Guide," accessed October 19, 2018 ↑ Human Rights Defense Center, "FLORIDA AMENDMENT 4 – HRDC FACT SHEET," accessed November 14, 2018 ↑ Jump up to: 47.0 47.1 47.2 Ballotpedia staff, "Email correspondence with Woment Against Registry representative," accessed November 14, 2018 ↑ Tampa Bay Times, "Column: Reject effort to restore voting rights for most felons," August 31, 2017 ↑ Tallahassee Democrat, "The case against Amendment 4 on felon voting rights | Opinion," accessed September 20, 2018 ↑ Florida Today, "Why you should vote to restore felons' voting rights | Our view," February 5, 2018 ↑ New York Times, "Florida’s 1.5 Million Missing Voters," January 2, 2018 ↑ Washington Post, "Floridians should scrap these retrograde, racist voting laws," January 27, 2018 ↑ Tampa Bay Times, "Times recommends: Yes on Amendment 4," accessed October 8, 2018 ↑ Sun Sentinel, "Five good — seven bad — amendments for Florida’s Constitution | Editorial," accessed October 8, 2018 ↑ Naples News, "Editorial: Our final recommendations on amendments," accessed October 10, 2018 ↑ Tallahassee Democrat, "Florida's constitutional amendments: Vote 'yes' on 4 and 11, 'no' on rest | Our opinion," accessed October 12, 2018 ↑ Herald Tribune, "Editorial: In support of Amendments 3, 4," accessed October 3, 2018 ↑ Your Observer, "Florida voters will decide dozens of ballot questions. Here are six for consideration," accessed October 13, 2018 ↑ Treasure Coast Palm, "How to vote on 12 constitutional amendments on Nov. 6 ballot | Our view," accessed October 13, 2018 ↑ Jacksonville, "Editorial: Sorting out confusing amendments for the voters," accessed October 15, 2018 ↑ My Palm Beach Post, "Editorial: Time to restore voting rights to 1.5 million Floridians," accessed October 15, 2018 ↑ Daily Commercial, "Our Opinion: Our recommendations on the amendments," accessed October 23, 2018 ↑ The Independent Florida Alligator, "The Alligator's endorsements for Constitutional amendments and referenda," accessed October 31, 2018 ↑ The Orlando Sentinel, "Editorial: Florida's Election 2018: Our endorsements for governor, U.S. Senate, U.S. House and the amendments," accessed October 31, 2018 ↑ Miami Herald, "Learn how 12 Florida amendments affect your life, and your wallet, before you vote," accessed November 4, 2018 ↑ News-Press, "Editorial: Proposed amendments too much of a gamble; vote 'no' on 11 of them," accessed October 8, 2018 ↑ National Conference of State Legislatures, "Felon Voting Rights," November 28, 2017 ↑ FairVote, "Average Margin of Victory," accessed August 7, 2017 ↑ Usenix.org, "Computing the Margin of Victory in IRV Elections," accessed August 7, 2017 ↑ Florida Constitution Revision Commission, "Amendments, Election of 11-5-68," accessed December 7, 2017 ↑ Florida Constitution Revision Commission, "Constitution of 1885," accessed December 7, 2017 ↑ Florida Constitution Revision Commission, "Constitution of 1868," accessed December 7, 2017 ↑ Florida Secretary of State, "Tabulation of Official Votes Cast in the General Election (1968)," accessed December 7, 2017 ↑ Florida Constitution Revision Commission, "Constitution of 1838," accessed December 7, 2017 ↑ Florida Commission on Offender Review, "Clemency," accessed January 30, 2018 ↑ Jump up to: 76.0 76.1 76.2 United States Court of Appeals for the 11th Circuit, "Johnson v. Bush," April 12, 2005 ↑ United States District Court for the Southern District of Florida, "Johnson v. Bush," September 21, 2000 ↑ Jump up to: 78.0 78.1 78.2 78.3 United States District Court for the Northern District of Florida, "Hand v. Scott," February 1, 2018 ↑ NPR, "Voting Rights Process For Florida Felons Unconstitutional, Judge Says," February 2, 2018 ↑ Tampa Bay Times, "Judge strikes down Florida’s system for denying felons’ voting rights," February 2, 2018 ↑ CBS News, "Ruling on voting rights for felons in Florida could impact upcoming elections," February 2, 2018 ↑ News 4 JAX, "State says it should control rights restoration," February 12, 2018 ↑ Florida Politics, "State, voting rights group disagree on how to handle clemency process," February 12, 2018 ↑ Orlando Sentinel, "Florida ordered to redo how it restores felons' voting rights," March 26, 2018 ↑ Florida Politics, "Rick Scott, Cabinet appeal voting rights ruling," April 6, 2018 ↑ Florida Politics, "State requests more time in felons’ rights battle," April 25, 2018 ↑ CBS 12, "Court backs state in felons' rights fight," April 25, 2018 ↑ Florida Commission on Offender Review, "Rules of Executive Clemency (2007)," accessed January 30, 2018 ↑ Florida Politics, "Charlie Crist applauds Terry McAuliffe for beating his record on restoring voting rights," April 20, 2018 ↑ Jump up to: 90.0 90.1 The Sentencing Project, "6 Million Lost Voters: State-Level Estimates of Felony Disenfranchisement, 2016," October 6, 2016 ↑ Florida Politics, "Felon voter restoration advocates make their case to Supreme Court," November 23, 2016 ↑ Tampa Bay Times, "Voting rights ballot initiative clears Supreme Court legal hurdle," April 20, 2017 ↑ Florida Supreme Court, "Advisory Opinion," April 20, 2017 ↑ Tampa Bay Times, "Petition drive for 2016 would make it easier for ex-felons to regain voting rights," December 21, 2014 ↑ Florida Politics, "Voting restoration amendment has 900,000 signatures," November 29, 2017 ↑ Florida Department of State, "Campaign Finance Database," accessed February 13, 2018 ↑ Florida Secretary of State, "FAQ - Voting," accessed October 17, 2019 ↑ Jump up to: 98.0 98.1 Florida Division of Elections, "National Voter Registration Act (NVRA)," accessed October 6, 2019 ↑ Jump up to: 99.0 99.1 Florida Division of Elections, "Register to Vote or Update your Information," accessed October 6, 2019 ↑ Florida Division of Elections, "Election Day Voting," accessed September 29, 2019 ↑ Jump up to: 101.0 101.1 Florida Division of Elections, "Florida History: Voter ID at the Polls," accessed September 29, 2019 ↑ National Conference of State Legislatures, "Voter Identification Requirements|Voter ID Laws," June 5, 2017 ↑ The Washington Post, "Do I need an ID to vote? A look at the laws in all 50 states," October 27, 2014 ↑ United States Census Bureau, "QuickFacts - Florida," accessed May 9, 2018 ↑ Florida Demographics, "Florida Cities by Population," accessed May 9, 2018 Only the first few references on this page are shown above. Click to show more.

      This source can be verified through the references at the bottom of the page, which must be expanded from the text that says "Only the first few references on this page are shown above. Click to show more.".

  3. Nov 2021
    1. SciScore for 10.1101/2021.11.17.468943: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">1.5 Cytotoxicity assays: Vero cell lines (ATCC® CCL-81™) were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">1.1 Cloning, protein overexpression and purification of SARS-CoV-2 PLpro: A fragment of SARS-CoV-2 ORF pp1a/ab encoding the PLpro domain and corresponding to amino acids 746-1060 of non-structural protein 3 (YP_009742610.1) was cloned into pETM11(EMBL), which encodes N-terminal hexa-his tag followed by a tobacco etch virus (TEV) protease cleavage site.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pETM11</div><div>suggested: RRID:Addgene_108943)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Final rounds of manual refinement with either Refmac48 or Phenix49 together with manual model building applying COOT resulted in the final refined structures.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>COOT</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Microsoft Excel and GraphPad Prism (version 8.3.1) were used for analyzing the results and preparation of corresponding figures.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Microsoft Excel</div><div>suggested: (Microsoft Excel, RRID:SCR_016137)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell culture supernatant was harvest 42 h post-infection and viral RNA was purified using MagMAX™</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MagMAX™</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">EC50-values were calculated by fitting the data using GraphPad Prism version 8.00 (GraphPad Software, La Jolla California USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.11.23.469714: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">As a control, a same number of cells were stained with BV421 anti-hCD45 antibody (Biolegend, #368522) and the top 3% of the BV421-positive cells were sorted.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-hCD45</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Then the cells were washed two times and resuspended in FACS buffer containing the secondary antibodies at a 1:1000 dilution: AF647-labeled donkey anti-goat IgG (Invitrogen, #A32849) or AF488-labeled goat anti-rabbit IgG (Invitrogen, #A32731).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>AF647-labeled donkey anti-goat IgG</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-rabbit IgG</div><div>suggested: (Thermo Fisher Scientific Cat# A32731, RRID:AB_2633280)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">HRP-conjugated goat anti-human IgG Fc secondary antibody was used to detect the bound ACE2.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">To compare GFP expressions in ACE2- and LRRC15-positive cells, pseudovirus-infected cells were stained for surface ACE2 and LRRC15 as described above with following secondary antibodies: AF405-labeled donkey anti-goat IgG (Invitrogen, #A48259) and PE-labeled donkey anti-rabbit IgG (Jackson ImmunoResearch, #711-116-152)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>AF405-labeled donkey anti-goat IgG</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>PE-labeled donkey anti-rabbit IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells were subsequently incubated with recombinant anti-LRRC15 antibody (Abcam, #ab150376) and SARS-CoV-2 spike antibody [1A9] (GeneTex, #GTX632604) at 1:100, followed by incubation with 1:500-diluted Alexa Fluor 555 conjugated goat anti-rabbit IgG antibody (Abcam, #ab150078) and 1:200-diluted Alexa Fluor 488 conjugated goat anti-mouse IgG antibody (Abcam, #ab150117) for 60 min at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-LRRC15</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-mouse IgG</div><div>suggested: (Abcam Cat# ab150117, RRID:AB_2688012)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For A375 cells, 5 µg/mL blasticidin (Gibco, #A1113903) and 1 µg/mL puromycin (Gibco, #A1113803) were added as appropriate.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>A375</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A375-dCas or HeLa-dCas cells were generated by transducing with pLenti-dCas9-VP64-Blast (Addgene, #61425).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HeLa-dCas</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">7.8 x 107 A375-dCas cells were transduced with the CRISPRa library at ~0.3 MOI to make 2.4 x 107 transduced cells, which is sufficient for the integration of each sgRNA into ~500 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>A375-dCas</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, 8 x 106 HEK293T cells were plated in 10-cm tissue culture dishes and transfected using Lipofectamine2000 (Invitrogen) with plasmids encoding different CoV spike proteins or VSV-G protein.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For 1:1 ratio co-culture, 1 x 104 HeLa-ACE2 cells and 1 x 104 HeLa or HeLa-sgLRRC15 cells were plated per well.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HeLa</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>HeLa-sgLRRC15</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Microscopic analysis: 8 x 103 HeLa-ACE2 cells and 3.2 x 104 HeLa or HeLa-sgLRRC15 cells (1:4 ratio) were co-plated per well in 8-well chamber slides (Nunc).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HeLa-ACE2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A375-dCas or HeLa-dCas cells were generated by transducing with pLenti-dCas9-VP64-Blast (Addgene, #61425).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pLenti-dCas9-VP64-Blast</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Stable ACE2 expressing HeLa cells (HeLa-ACE2) were generated by transducing HeLa-dCas cells with pLENTI_hACE2_HygR (Addgene, #155296) followed selection with hygromycin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pLENTI_hACE2_HygR</div><div>suggested: RRID:Addgene_155296)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For ectopic expression of LRRC15, a lentiviral vector pCDH-MSCV-T2A-Puro (System Biosciences, #CD522A-1) was modified to enable zeocin selection instead of puromycin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCDH-MSCV-T2A-Puro</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A codon-optimized LRRC15 ORF was cloned into pCDH-MSCV-T2A-Zeo with a C-terminal 3xFLAG tag and used to transduce HeLa-ACE2 followed by zeocin selection.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCDH-MSCV-T2A-Zeo</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The sgRNAs were cloned into pXPR_502 (Addgene, #96923) with assistance from the Genome Engineering and iPSC Center (GEiC) at Washington University in Saint Louis.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pXPR_502</div><div>suggested: RRID:Addgene_96923)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Expression vectors for SARS-CoV-2 Wuhan-Hu-1 (Addgene, #149539), SARS-CoV-2 B.1.167.2 (Addgene, #172320), SARS-CoV-2 B.1.1.7 (Addgene, #170451), SARS-CoV-2 B.1.351 (Addgene, #170449), SARS-CoV-2 P.1 (Addgene, #170450), SARS-CoV-1 (Addgene, #170447), MERS-CoV (Addgene, #170448) and VSV-G (Addgene, #12259) were used.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>VSV-G</div><div>suggested: RRID:Addgene_138479)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Generation of genetically modified cell lines: Individual sgRNAs (sgLRRC15 #1: GACATGCAGGCACTGCACTG; sgLRRC15 #2: AGTGTCAGCCCGGGACATGC; sgACE2: GTTACATATCTGTCCTCTCC) targeting the candidate genes were cloned into linearized pXPR_502 (Addgene, #96923) for CRISPR activation.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GACATGCAGGCACTGCACTG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 30 min incubation at 4°C, the cells were washed two times, fixed with 4% formaldehyde for 15 min and washed and resuspended in FACS buffer before analyzing by flow cytometry using FACSCelesta (BD Biosciences) or Cytek</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Cytek</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data was analyzed with Flowjo software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Flowjo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">GraphPad Prism 9 software was used to perform nonlinear regression curve-fitting analyses of binding data to estimate dissociation constants (KD).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">To compare LRRC15 expression in lung cell lines infected with SARS-CoV-2 vs mock controls [61], we accessed the raw count data from GSE147507 and performed differential expression analysis using DESeq2 as above.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>DESeq2</div><div>suggested: (DESeq, RRID:SCR_000154)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Statistical analysis: Statistical significance was determined using GraphPad Prism 9 software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.11.24.469842: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Bound phages were detected by HRP-conjugated anti-M13 antibody (Sino Biological, China)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-M13</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Bound VHHs were detected by HRP-conjugated anti-Myc-tag antibody and TMB substrate.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-Myc-tag</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After incubation samples were added to a monolayer of Vero E6 cells and incubated in a 5% CO2 incubator at 37 °C for 96-120 h.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cloning, expression and purification of recombinant SARS-CoV-2 RBD protein: The RBD nucleotide sequence of SARS-CoV-2 Wuhan-Hu-1 isolate (Genbank accession number MN908947, from 319 to 545 aa) was synthesized (Evrogen, Russia) and cloned into the pCEP4 mammalian expression vector (Thermo Fisher Scientific, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCEP4</div><div>suggested: RRID:Addgene_16479)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">VHHs coding sequences were PCR amplified and cloned into a pHEN1 phagmid vector (33)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHEN1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In the second round PCR nanobodies sequences were assembled together and amplified using pHEN1-F and pHEN1-R primers.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHEN1-F</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pHEN1-R</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">VHH-coding sequences were sequenced with Lac-prom (5’-CTTTATGCTTCCGGCTCGTATG-3’) and pIII-R (5’ CTTTCCAGACGTTAGTAAATG 3’) primers according to the protocol of the BigDyeTerminator 3.1 Cycle Sequencing kit for the Genetic Analyzer 3500 Applied Biosystems (Waltham, MA, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pIII-R</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">EC50 values were calculated using four-parameter logistic regression using GraphPad Prism 9 (GraphPad Software Inc, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Sequences were aligned with MUSCLE (v3.8.31) (35).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MUSCLE</div><div>suggested: (MUSCLE, RRID:SCR_011812)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The phylogenetic tree was reconstructed using the maximum likelihood method implemented in the PhyML program (v3.1/3.0 aLRT) (36).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PhyML</div><div>suggested: (PhyML, RRID:SCR_014629)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Graphical representation and edition of the phylogenetic tree were performed with MEGA X (34).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MEGA</div><div>suggested: (Mega BLAST, RRID:SCR_011920)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.11.23.469747: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Target proteins were detected using the following antibodies: mouse anti-Strep tag II (Millipore Sigma: 71590); rabbit anti-Caspase 3 (Cell signaling: 9662); rabbit anti-Cleaved-Caspase 3 (Cell signaling: 9664) and mouse anti-GAPDH antibody (Cell signaling: 2118).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-Strep tag II</div><div>suggested: (Abnova Cat# PAB16601, RRID:AB_10677207)</div></div><div style="margin-bottom:8px"><div>anti-Caspase 3</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-Cleaved-Caspase 3</div><div>suggested: (Affinity Biosciences Cat# BF0711, RRID:AB_2846190)</div></div><div style="margin-bottom:8px"><div>anti-GAPDH</div><div>suggested: (Cell Signaling Technology Cat# 2118, RRID:AB_561053)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A549 and 293T cell lines were maintained in the high glucose Dulbecco’s modified Eagle’s medium (DMEM) (Corning Cat#: 10-017-CV) with 10% fetal bovine serum (FBS, Gibco Cat#: 100-438-026) and 100 U/mL Penicillin-Streptomycin (Gibco Cat#:</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Calu-3 cells were maintained in Eagle’s Minimum Essential medium (EMEM) (Quality Biological Cat#: 112-018-101) with 10% FBS and 100 U/mL Penicillin-Streptomycin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Calu-3</div><div>suggested: BCRJ Cat# 0264, RRID:CVCL_0609)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Measurement of Mammalian Cell-specific Activities: 2 x 104 293T or 1 x 104 A549 and Calu-3 cells/well were seeded into a 96-well plate and cultured at 37°C/5% CO2 overnight.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>A549</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For the mammalian ORF3a study, a lentiviral constitutive expression vector pLVX-EF1alpha-IRES-Puro (Takara) that carries the ORF insert (provided by Dr. Nevan J.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pLVX-EF1alpha-IRES-Puro</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Fission Yeast Plasmid Transformation and Inducible SARS-COV-2 Gene Expression: The SARS-COV-2 gene-carrying pYZ1N plasmids were transformed into a wild type fission yeast SP223 strain by electroporation (5, 57).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pYZ1N</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Calu-3 cells were maintained in Eagle’s Minimum Essential medium (EMEM) (Quality Biological Cat#: 112-018-101) with 10% FBS and 100 U/mL Penicillin-Streptomycin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Quality Biological</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Statistical Analysis: Pair-wise t-test or one-way ANOVA was calculated using software Prism 9 (GraphPad, San Diego, CA, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on pages 24 and 17. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.11.24.469776: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IACUC: All animal experiments were performed according to Institute of Laboratory Animal Resources guidelines and the protocol was approved by the National Cancer Institute Animal Care and Use Committee.<br>Euthanasia Agents: All mice were anesthetized via isoflurane inhalation (3 - 5 % isoflurane, oxygen flow rate of 1.5 L/min) prior and during BLI using the XGI-8 Gas Anesthesia System.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">6–8-week-old male and female mice were used for all the experiments.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plates were washed three times and incubated with the goat anti-human-IgG Fc secondary antibody conjugated with alkaline phosphatase (AP, Southern Biotech) at a 1:1000 dilution in blocking buffer for 1 h at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human-IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibody-dependent cellular phagocytosis was determined by flow cytometry, gating on THP-1 cells that were triple-positive for GFP, efluor450 and efluor670 cellular dyes.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GFP</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Samples were washed, sonicated, and incubated with goat anti-guinea pig C3 antibody conjugated with biotin (Immunology Consultants Laboratory) at RT for 1 h followed by incubation with streptavidin R-Phycoerythrin (PE,</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-guinea pig C3</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Before and after injection, serum samples were collected at 0 min, 10min, 1 h, 6 h, 24 h and 48 h and the ACE2-Fc serum concentration was estimated by indirect ELISA in which SARS-CoV-2 RBDwt (200 ng/well) were used as capturing molecule and the goat-anti-human IgG conjugated with AP (1:1000 dilution) were used as secondary antibody.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IgG</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">IgG1 Fc tag and 8xHis tag) (45), plasmids encoding the respective genes were transfected to 293F cells with the same protocol as described above.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293F</div><div>suggested: RRID:CVCL_D615)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">To determine viral titers, hACE2-expressing 293T cells (gift from Dr. Allison Malloy, USUHS) were infected with serial PsV dilutions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: KCB Cat# KCB 200744YJ, RRID:CVCL_0063)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibody-dependent cellular phagocytosis was determined by flow cytometry, gating on THP-1 cells that were triple-positive for GFP, efluor450 and efluor670 cellular dyes.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>THP-1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Dilutions from infected cell homogenates were applied on Vero E6 monolayer. 24 hour post infection, infected Vero E6 cells were washed with PBS, lysed with Passive lysis buffer and transferred into a 96-well solid white plate (Costar Inc) and nanoluciferase activity was measured using Tristar multiwell Luminometer (Berthold Technology) for 2.5 seconds by adding 20 µl of Nano-Glo® substrate in nanoluc assay buffer (Promega Inc).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">96-well Nunc Maxisorp plates (Sigma) were coated with SARS-CoV-2 RBDwt (residue 319-541) (50ng), RBDB.1.351 (50 ng), S-2P (75 ng), SB.1.1.7 (75 ng), SB.1.351 (75ng), SP.1 (75 ng), SB.1.526 (75 ng) and SARS-CoV RBD (50ng) per well in Tris-buffered saline (TBS) at 4 °C overnight.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SB.1.1.7</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For in vivo PsV-based inhibition assays, 6-8-week-old K18-hACE2 mice were intranasally (i.n) treated with Synagis (control IgG, 25 µg), M27 or M81 (5 or 25 µg) one hour before challenge by SARS-CoV-2 PsVD614G or PsVB.1.617.2 (i.n., ∼108 RLU)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>K18-hACE2</div><div>suggested: RRID:IMSR_GPT:T037657)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For PK studies, C57BL/6J mice were intravenously (i.v.) injected with 100 μg (5 mg/kg) of two engineered ACE2-Fc M81 or M86.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>C57BL/6J</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">To generate SARS-CoV-2 RBDwt (residue 319-541 or residue 319-537, for crystallization), RBDB.1.1.7 (residue 329-527, N501Y) and RBDB.1.351 (residue 329-527, K417N/E384K/N501Y), the respective codon optimized DNA segments fused with an N-terminal secretion peptide and a C-terminal 6xHis tag were cloned into the pACP-tag (m)-2 vector using either EcoRI/NotI for RBDwt (319–541), RBD B.1.1.7 and RBDB.1.351 or BamHI/XhoI for RBDwt (319–537) as restriction enzymes.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pACP-tag</div><div>suggested: RRID:Addgene_101126)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Monomeric ACE2wt and engineered ACE2LFMYQY2HA plasmids encoding ACE2 (residue 1-615) with C-terminal HRV-3C-cleavable 8xHis tag (45) were transfected to FreeStyle 293F cells and the resulting protein was purified over Ni-NTA columns (Cytiva).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE2LFMYQY2HA</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">GraphPad Prism was used to display the mean and SEM for all groups and used to calculate the area under the curve (AUC) within the concentration range of 0.05-2.5 nM using 5% binding as baseline (Fig. 2D & S2)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Iterative cycles of model building and refinement were done in Coot (79) and Phenix (80).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Structural analysis and Fig. generation were performed in PyMOL (81)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMOL</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All samples were acquired on an LSRII cytometer (BD Biosciences) and data analysis performed using FlowJo v10 (Tree Star)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Bioluminescence Imaging (BLI) of SARS-CoV-2 infection: All standard operating procedures and protocols for IVIS imaging of SARS-CoV-2 infected animals under ABSL-3 conditions were approved by IACUC, IBSCYU and YARC.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>YARC</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Images were acquired and analyzed with Living Image v4.7.3 in vivo software package (Perkin Elmer Inc).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Living Image</div><div>suggested: (Living Image software, RRID:SCR_014247)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The data were processed and plotted using GraphPad Prism 8 v8.4.3.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      Thus far, the in vivo protective potential of an ACE2-Fc therapeutic has been tested only once in a Syrian hamster model (28) which has several limitations due to its inability to fully recapitulate SARS-CoV-2 pathogenesis and severity. To better test our lead ACE2-Fc variant we utilized a well characterized K18-hACE2 mouse model (67). Due to the constitutive high endogenous human ACE2 expression, this model is highly susceptible to SARS-CoV-2 infection and the disease progression partially recapitulates the severe pathological features of SARS-CoV-2 infection in humans. The model has also been used extensively for evaluating contributions from direct neutralization and Fc-effector activities mediated by nAbs (68) and a non-neutralizing Ab (69). However, a high basal level of hACE2 on target cells in this model, particularly in the brain, poses a significant obstacle for soluble ACE2-based antivirals such as our engineered ACE2-Fc to surmount and achieve protection. Despite these limitations, we detected a strong benefit to the administration of ACE2740 LFMYQY2HA–Fc GASDALIE variant both prophylactically and therapeutically in K18-hACE2 mice. In both settings, ACE2-Fc treatments were associated with markedly improved in vivo efficacy, e.g., a reduction in virus-induced body weight loss, pro-inflammatory cytokine responses and mortality, particularly in the therapeutic context. Given the human Fc-mouse FcγR mismatch may compromise Fc-effector functionality of ACE-Fcs in K18-hA...

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on pages 56, 51 and 60. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Jiang et al.

      I would be cautious with the interpretation of Jiang et al. paper since the expressed spike proteins contains his-tag and the authors IMO didn't do a proper control so one can't exclude that the effect(s) seen it due to the his-tag.

    1. Whenever you tag or add an annotation to a resurfaced highlight, you can see that update reflected in the margin of the original document (and vice versa).

      Yes! Will this include margin notes taken with digital ink that is then recognized by OCR? (e.g. like myscript/kobo is doing). That would be truly transformative. Much more personal and flexible than typing some stuff into the margins.

    1. https://www.amazon.com/Blog-Paper-Advanced-Taking-Technology/dp/1926892100/

      Doing some research for my Paper Website / Blog.

      Similar to some of the pre-printed commonplace books of old particularly with respect to the tag and tag index sections.

      I sort of like that it is done in a way that makes it useful for general life even if one isn't going to use it as a "blog".

      How can I design mine to be easily photographed and transferred to an actual blog, particularly with Micropub in mind?

      Don't forget space for the blog title and tagline. What else might one put on the front page(s) for identity? Name, photo, address, lost/found info, website URL (naturally)...

      Anything else I might want to put in the back besides an category index or a tag index? (Should it have both?)

    1. Apparently, there was a poem written not too long ago by an Australian author and poet named John O’Grady[iii] entitled Tumba Bloody Rumba. I won’t include the poem here in its entirety, partly because its frequent use of the word bloody may offend some. Suffice it to say, the poem makes ample use of colourful tmesis with words such as “Tumba-bloody-rumba” and “kanga-bloody-roos.” The result, thanks in no small part to the almost hypnotic power of the word, is that tumbarumba has now become a synonym for tmesis in the English language.

      tumbarumba = tmesis in Australia

    1. SciScore for 10.1101/2021.11.02.466951: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The blots were then probed with SARS-CoV-2 spike antibody (NR-52947, BEI Resources, NIAID, NIH) in blocking buffer for 12 hr at 4°C, followed by secondary Goat Anti-Rabbit IgG antibody (ab6721, Abcam, RRID:AB_955447) incubation for 2hr.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-Rabbit IgG</div><div>detected: (Abcam Cat# ab6721, RRID:AB_955447)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Actin was labelled using antibody against beta-actin [AC-15] (HRP) (ab49900, Abcam, RRID: AB_867494).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>antibody against beta-actin</div><div>detected: (Abcam Cat# ab49900, RRID:AB_867494)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The HEK293 cells were transfected with 100 ng/well of pGL3-Fluc plasmid using Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer’s protocol at around 75-90% confluency in a 96 well plate.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells and virus: The following cell lines were used in this study, namely HEK 293T cells (CRL-1573, ATCC, RRID: CVCL_0045)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK 293T</div><div>detected: (NIH-ARP Cat# 103-306, RRID:CVCL_0045)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">, HEK 293T cells stably expressing human ACE2 (NR-52511, BEI Resources, NIAID, NIH, RRID:</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK 293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">, Vero-E6 cells (CRL-1586, ATCC, RRID: CVCL_0574).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero-E6</div><div>detected: (IZSLER Cat# BS CL 87, RRID:CVCL_0574)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">NR-52282, BEI Resources, NIAID, NIH) was propagated and quantified by plaque assay in Vero-E6 cells as described before (Case et al., 2020)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero-E6</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cytotoxicity assay: HEK-ACE2 cells were seeded in 0.1 mg/mL poly-L-lysine (P9155-5MG, Sigma-Aldrich) coated 96-well plate to reach 70-80% confluency after 24 Hrs.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK-ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Virus infection: HEK ACE2 cells were seeded in poly-L-lysine coated 24-well plate to reach 80% confluency at the time of infection.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK ACE2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Nsp1 expression and purification: The gene construct encoding the Nsp1 from SARS-CoV-2 in pCDNA 5-3X-Flag-Nsp1 was amplified and sub-cloned into pET28a with N-terminal His-tag (Schubert et al., 2020; Thoms et al., 2020) using appropriate primers (Supplementary table 1).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCDNA 5-3X-Flag-Nsp1</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pET28a</div><div>suggested: RRID:Addgene_114156)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">the cultures were then transferred at 16°C at 120 rpm, and the expression of pET28a-His-Nsp1 and pET28a-His-Nsp1Δ40 were induced by adding 1 mM of Isopropyl β-d-1-thiogalactopyranoside (IPTG) and allowed to grow for 18 hours.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET28a-His-Nsp1</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pET28a-His-Nsp1Δ40</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The HEK293 cells were transfected with 100 ng/well of pGL3-Fluc plasmid using Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer’s protocol at around 75-90% confluency in a 96 well plate.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pGL3-Fluc</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The plasmid expressing the Nsp1 protein (pcDNA 3.1-Nsp1) was co-transfected at 100 ng/well concentration.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA 3.1-Nsp1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 48 hr incubation, cells were fixed with 4% paraformaldehyde, and crystal violet (C6158, Merck) staining was done to visualize the plaques. Plasmids: pLVX-EF1alpha-SARS-CoV-2-nsp1-2xStrep-IRES-Puro expressing SARS CoV-2 NSP1 was a kind gift from Prof. Nevan Krogan (Gordon et al., 2020).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pLVX-EF1alpha-SARS-CoV-2-nsp1-2xStrep-IRES-Puro</div><div>suggested: RRID:Addgene_141367)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Other plasmids used in this study include Plasmids pRL-TK (mammalian vector for weak constitutive expression of wild-type Renilla luciferase), pGL4 (mammalian vector expressing firefly luciferase), pIFN-β Luc (IFN beta promoter-driven firefly luciferase reporter).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pRL-TK</div><div>suggested: RRID:Addgene_11313)</div></div><div style="margin-bottom:8px"><div>pGL4</div><div>suggested: RRID:Addgene_48744)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The plasmid pMTB242 pcDNA5 FRT-TO-3xFLAG-3C-Nsp1_SARS2 was a kind gift from Prof. Ronald Beckmann.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pMTB242</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Finally, the library was screened against the 18S rRNA interacting interface of Nsp1-C-ter using the Surflex-dock program, which is available in SYBYL v2.1 (Jain, 2003).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Surflex-dock</div><div>suggested: (Surflex-Dock, RRID:SCR_000196)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The data was analysed by using ThermControl software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ThermControl</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The two subsequent 100 ns runs from MD simulations were further subjected to perform the MM-PBSA by using the python script (mmpbsa.py) to calculate the binding energy of the two drugs.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>python</div><div>suggested: (IPython, RRID:SCR_001658)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Relative intensity of bands was quantified using Fiji/imageJ.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Fiji/imageJ</div><div>suggested: None</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.29.466470: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibodies: Monoclonal antibodies MAb362 isotypes IgG1 and IgA1 has been described before(32).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IgA1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">REGN10987, S309 and CR3022 antibodies heavy and light variable region sequences(33, 34, 58) were synthesized and cloned into pcDNA3.1 vector (Invitrogen™, Thermo Fisher Scientific, Waltham, MA, USA) in-frame with human IgG heavy or light chain Fc fragment.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CR3022</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">. 2G12 monoclonal antibody was expressed in ExpiCHO-S™ cells through co-transfection of plasmids encoding light and IgG heavy chains(59), using the ExpiFectamine™ CHO transfection kit (Gibco™, Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>2G12</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Monoclonal antibodies 4A8 and 1A9 were purchased from BioVision (Milpitas, CA, USA) and GeneTex (Irvine, CA, USA), respectively.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>1A9</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Anti-6x-His-tag polyclonal antibody, and both HRP-conjugated anti-mouse IgG Fc and anti-human IgG Fc were purchased from Invitrogen™ (Waltham, MA, USA)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-6x-His-tag</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">We used a rabbit anti-6X-His antibody (Invitrogen™, Waltham, MA, USA) to detect histidine-tagged proteins or mouse 1A9 antibody (GeneTex, Irvine, CA, USA) for specific detection of SARS-CoV-2 SΔTM.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-6X-His</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Membranes were washed three times with PBS-T and then incubated with secondary HRP-conjugated anti-rabbit IgG (Abcam, Cambridge, UK) or anti-mouse IgG (Invitrogen™, Waltham, MA, USA) antibodies diluted in 0.5% (w/v) skim milk/PBS-T and incubated for one hour at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-rabbit IgG</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-mouse IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">As secondary antibodies, HRP-conjugated anti-human kappa antibody (SouthernBiotech, Birmingham, AL, USA) diluted 1:4000 in PBS was used in wells treated with MAb362, CR3022 and S309 antibodies, while HRP-conjugated anti-human IgG Fc (Invitrogen™, Waltham, MA, USA) diluted 1:10,000 in PBS was used in wells treated with REGN10987, 4A8 and 2G12 antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human kappa</div><div>suggested: (Abgent Cat# AT4000a, RRID:AB_1554597)</div></div><div style="margin-bottom:8px"><div>S309</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">S1). smFRET imaging: Labeled SΔTM spikes (100-200 nM) were incubated in the absence or presence of unlabeled ACE2 or the indicated antibody at a monomer:ACE2 or monomer:antibody ratio of 1:3 for 90 minutes at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Two-tailed nonparametric Spearman test with 95% confidence was performed to evaluate the correlation level between the occupancy of SΔTM in the open conformation due to allosteric antibody binding and ACE2 binding (Figs. 4 and 5).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE2 binding (Figs. 4</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">glycoprotein ectodomain (SΔTM) (residues Q14–K1211) with SGAG substitution at the furin cleavage site (R682 to R685), and proline substitutions at K986 and V987, was synthesized by GenScript® (Piscataway, NJ, USA) and inserted into pcDNA3.1(−).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3.1</div><div>suggested: RRID:Addgene_79663)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SΔTM hetero-trimers for smFRET experiments were expressed by co-transfection with both the untagged SΔTM (D614 or D614G) construct and the corresponding 161/345A4-tagged SΔTM plasmid at a 2:1 molar ratio.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SΔTM</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SΔTM concentration was also estimated by densitometric analysis of protein bands on immunoblots with the monoclonal antibody 1A9 as described below, and using ImageJ software v1.52q (NIH, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ImageJ</div><div>suggested: (ImageJ, RRID:SCR_003070)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All smFRET data were processed and analyzed using the SPARTAN software (www.scottcblanchardlab.com/software) in Matlab (Mathworks, Natick, MA, USA)(65).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Matlab</div><div>suggested: (MATLAB, RRID:SCR_001622)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">smFRET trajectories were idealized to a 3-state hidden Markov model and the transition rates were optimized using the maximum point likelihood algorithm(66), implemented in SPARTAN.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SPARTAN</div><div>suggested: (SPARTAN, RRID:SCR_014901)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Dissociation constants (KD) were determined using GraphPad Prism version 9.2.0 (GraphPad Software, San Diego, CA, USA)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Structural analysis: Protein structures from RCSB PDB were visualized and analyzed using PyMOL™ software version 2.0.7 (The PyMOL Molecular Graphic System,</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMOL™</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div><div style="margin-bottom:8px"><div>PyMOL</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 21. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • No funding statement was detected.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.11.15.468737: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The SARS-CoV-2 nsp12, nsp10 and nsp7 gene were cloned into a modified pET-21b vector with the C-terminus possessing a 6×His-tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET-21b</div><div>suggested: RRID:Addgene_132607)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The nsp8 gene was cloned into the modified pET-32a vector with the N-terminus possessing a trx-His6-tag and PreScission Protease site.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET-32a</div><div>suggested: RRID:Addgene_120288)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The nsp7-pET-21b plasmid was transformed into E. coli Rosetta-gami2 (DE3) and the transformed cells were cultured at 37 °C in LB with a final concentration of 100 μg/ml ampicillin and 25 μg/ml chloramphenicol.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>nsp7-pET-21b</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The nsp14 gene (nsp14-ExoN (residues 1–289)) was cloned into the modified pET-28b vector with the N-terminus possessing a MBP-tag and PreScission Protease site.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET-28b</div><div>suggested: RRID:Addgene_47327)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The PCR product was digested with Xho1 and BamH1 and ligated into pET-15b vector, and transformed into E-coli DH5α to obtain clones.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET-15b</div><div>suggested: RRID:Addgene_108953)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.11.08.467773: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Field Sample Permit: Mouse studies: Mouse studies were conducted at Murigenics (Vallejo, CA) under IACUC approved protocols.<br>IACUC: Mouse studies: Mouse studies were conducted at Murigenics (Vallejo, CA) under IACUC approved protocols.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Female Balb/c mice (Envigo), 6–8 weeks old were used for all studies.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Membranes were blocked for 1h in 5% skim milk in TBST and then probed with an anti-S2 mouse monoclonal antibody (GeneTex) at a 1:1000 dilution for 2h-overnight.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-S2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Membranes were washed (0.05% Tween 20 in 1X TBS) and then probed with a Rabbit anti-Mouse HRP antibody (Bethyl labs) for 1h before washing and detection with a SuperSignal West Femto Maximum Sensitivity Substrate (Pierce).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-Mouse HRP</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A parallel blot using a mouse anti-actin antibody (Thermo Fisher) was used to ensure equivalent protein amounts per well.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-actin</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Extracellular staining was performed in FACS buffer (PBS + 2% FBS + 2mM EDTA) with the following antibodies: CD4 (GK1.5, Biolegend), CD8 (53-6.7, BD).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CD4</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>CD8</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Intracellular staining was then performed in permeabilization buffer with the following antibodies: IFNγ (XMG21.2, Invitrogen), TNFα (MP6-XT22, eBiosciences), IL2 (JES6-5H4, eBiosciences), IL4 (11B11, Biolegend), IL10 (JES5-16E3, Biolegend).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IL2</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>IL4</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>IL10</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>JES5-16E3</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The intensity of the light being emitted is inversely proportional to the amount of anti-SARS-CoV-2 neutralizing Spike antibodies bound to the VSVΔG – Spike ΔCT particles.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 neutralizing Spike</div><div>suggested: (Creative Diagnostics Cat# CABT-CS064, RRID:AB_2891088)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plates were incubated with anti-nucleocapsid protein primary antibody cocktail (clones HM1056 and HM1057) (EastCoast Bio, North Berwick, ME) for 60 minutes at 37°C (Battelle Memorial Institute, Patent Number 63/041,551 Pending, 2020).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-nucleocapsid protein</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The plates were washed and the secondary antibody (goat anti-mouse IgG Horse Radish Peroxidase (HRP) conjugate; Fitzgerald, North Acton, MA) was added to the wells, and the plates were incubated for 60 minutes at 37°C1.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-mouse IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Wells were washed and incubated with 25 μL of 1 μg/mL SULFO-TAG labeled anti-species antibody (MSD), diluted in DPBS + 1% BSA (Sigma-Aldrich, St. Louis, MO), for 1 hour at room temperature on an orbital shaker.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MSD</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Western analysis: HEK293F cells seeded at 5e5 cells/mL were infected with an MOI of 1 IU/cell.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293F</div><div>suggested: RRID:CVCL_6642)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The VSVΔG virus was transduced in HEK293T cells previously transfected with the spike glycoprotein of the SARS-CoV-2 coronavirus (Wuhan strain) for which the last 19 amino acids of the cytoplasmic tail were removed (ΔCT).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After the incubation of the serum/plasma-pseudotyped virus complex, the serum/plasma-pseudotyped virus complex was transferred to the plate containing Vero E6 cells (ATCC).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: RRID:CVCL_XD71)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Female Balb/c mice (Envigo), 6–8 weeks old were used for all studies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Balb/c</div><div>suggested: RRID:IMSR_ORNL:BALB/cRl)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The sequence of a E1 (578-3404 bp)/E3 deleted virus (2,125-31,825 bp) was assembled into pUC19 from VR-594-derived and synthetic (SGI-DNA) fragments.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pUC19</div><div>suggested: RRID:Addgene_50005)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The pA68-E4d-Spike plasmids were linearized, purified using a Nucleospin kit (Machery-Nagel) and transfected into 2 mL of 293F cells (0.5 mL/mL) using TransIT-Lenti (Mirus bio).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pA68-E4d-Spike</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Spike sequences were PCR amplified and cloned into PacI/BstBI sites of a pUC02-VEE vector.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pUC02-VEE</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Vector generation: The ChAd68 nucleotide sequence was based on the wild-type sequence obtained by MiSeq (Ilumina sequencing) of virus obtained from the ATCC (VR-594).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MiSeq</div><div>suggested: (A5-miseq, RRID:SCR_012148)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Analysis of flow cytometry data was performed using FlowJo software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data processing was performed using the R programming language and graphed using GraphPad Prism.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT03639714</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Active, not recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">A Study of a Personalized Neoantigen Cancer Vaccine</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT03953235</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">A Study of a Personalized Cancer Vaccine Targeting Shared Ne…</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04776317</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Chimpanzee Adenovirus and Self-Amplifying mRNA Prime-Boost P…</td></tr></table>


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.25.465714: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IACUC: The KYODOKEN Institutional Animal Care and Use Committee approved the protocols for these studies (approval number 20200312) and monitored health conditions.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">half-siblings—a 19-month-old male named “Puta” and a 19-month-old female named “Christy”—were immunized.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Blotted membranes were incubated overnight at 4°C with the C9 antibody or the C-terminally 6×His-tagged homodimer of nanobodies—the dilution ratios of P158, P334, and P543 were 1:5000, 1:1000, and 1:2500, respectively—in Tris-buffered saline (TBS, pH 7.4) containing 0.005% Tween 20 (TBST) and 5% skim milk.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>C9</div><div>suggested: (LSBio (LifeSpan Cat# LS-C9-1000, RRID:AB_1276501)</div></div><div style="margin-bottom:8px"><div>P334</div><div>suggested: (Leinco Technologies Cat# P334, RRID:AB_2831621)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In the case of nanobody-based blotting, after 3 washes with TBST, the membranes were incubated with 1:5000-diluted anti-His-tag antibody (MBL) in TBST containing 5% skim milk at room temperature for 1 h.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-His-tag</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The membranes were soaked with 1:5000-diluted HRP-conjugated anti-rabbit or anti-mouse IgG secondary antibodies (GE Healthcare) in TBST containing 5% skim milk for 30 min at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-rabbit</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-mouse IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Anti-6×His-tagged antibody-positive fractions were gathered and concentrated via VIVAspin 6 size exclusion columns (30,000-MWCO) to reach a volume under 0.5 ml.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-6×His-tagged</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 3 washes with PBST, HRP-conjugated anti-alpaca VHH antibody (Jackson) at a dilution of 1:5000 was reacted at room temperature for 30 min.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-alpaca VHH</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After washing, the cells were incubated with an anti-His antibody (Abcam) on ice for 30 min and then Alexa 647-conjugated anti-rabbit IgG (Dako).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-His</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-rabbit IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After washing with PBST, an appropriately diluted anti-His-tagged antibody and anti-C9-tagged antibody in blocking buffer were added and reacted at room temperature for 1 h.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-His-tagged</div><div>suggested: (StressMarq Biosciences Cat# SPC-167, RRID:AB_2703750)</div></div><div style="margin-bottom:8px"><div>anti-C9-tagged</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell culture and transfection: HEK and K562 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM: Invitrogen) supplemented with 10% foetal bovine serum (FBS) and antibiotics (1% penicillin and streptomycin).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>K562</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pseudotyped virus production: HIV-1-based SARS-CoV-2 spike pseudotyped virus was prepared as follows: LentiX-HEK293T cells were transfected using a polyethyleneimine transfection reagent (Cytiva) with plasmids encoding the C-terminally C9-tagged full-length SARS-CoV-2 spike variants (original, alpha, beta, and delta) and HIV-1 transfer vector encoding a luciferase reporter, according to the manufacturer’s protocol.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>LentiX-HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Microscopy analyses for cell staining: HEK cells were transiently transfected with plasmids encoding the C-terminally C9-tagged full-length SARS-CoV-2 spike variants using Lipofectamine 3000 (Thermo) according to the manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The expression vector of the SARS-CoV-2 S2 domain (residues 744-1213) was constructed by removing an N-terminal part of the extracellular domain of the SARS-CoV-2 spike (residues 31-743) and subcloned into the pcDNA3.1(+) vector.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3.1 ( + )</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The synthesized genes were subcloned in the pMES4 vector to express N-terminal PelB signal peptide-conjugated and C-terminal 6×His-tagged nanobodies into the bacterial periplasm.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pMES4</div><div>suggested: RRID:Addgene_98223)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The lentiviral vector pWPI-IRES-Bla-Ak-ACE2-TMPRSS2 was acquired from AddGene (plasmid #154983).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pWPI-IRES-Bla-Ak-ACE2-TMPRSS2</div><div>suggested: RRID:Addgene_154983)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">coli TG1 cells (Agilent Technologies Japan, Ltd., Tokyo, Japan) were transformed with the ligated plasmids under chilled conditions (Bio-Rad Laboratories, Inc., Hercules, CA)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Bio-Rad Laboratories</div><div>suggested: (Bio-Rad Laboratories, RRID:SCR_008426)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The raw data of reads were trimmed of the adaptor sequence using cutadapt v1.1859, and low-quality reads were subsequently removed using Trimmomatic v0.3960.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Trimmomatic</div><div>suggested: (Trimmomatic, RRID:SCR_011848)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The remaining paired reads were merged using fastq-join61 and then translated to the amino acid sequences using EMBOSS v6.6.0.062.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>EMBOSS</div><div>suggested: (EMBOSS, RRID:SCR_008493)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Finally, unique amino acid sequences in each library were counted using a custom Python script combining seqkit v0.10.163 and usearch v.1164.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Python</div><div>suggested: (IPython, RRID:SCR_001658)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cryo-EM image processing and refinement: The images were processed using RELION 3.169.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>RELION</div><div>suggested: (RELION, RRID:SCR_016274)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Movies were motion corrected using MotionCor270, and the contrast transfer functions (CTFs) were estimated using CTFFIND 4.171.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CTFFIND</div><div>suggested: (CTFFIND, RRID:SCR_016732)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The data were imported and further processed with non-uniform refinement in cryoSPARC v3.2.072.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>cryoSPARC</div><div>suggested: (cryoSPARC, RRID:SCR_016501)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After the models were manually fitted into the density using UCSF Chimera v1.1573 and modified in Coot v0.8.9.274, real space refinement was performed in PHENIX v1.19.175.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div><div style="margin-bottom:8px"><div>PHENIX</div><div>suggested: (Phenix, RRID:SCR_014224)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Figures were prepared using UCSF Chimera73, ChimeraX77, and PyMOL v2.5.0 (Schrödinger, LLC, New York, NY).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMOL</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The program refmac582 in the ccp4 suite83 and the program Phenix-refine75 were used for structural refinement.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ccp4</div><div>suggested: (CCP4, RRID:SCR_007255)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.11.13.468472: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IACUC: Animals that lost more than 25% of their initial body weight were euthanized in accordance with our animal ethics protocol.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Two groups of ferrets (5 female and 5 male ferrets in the vaccine group and 3 female and 3 male ferrets in the control group) were immunized intranasally with a single-dose 1×106 PFU of dNS1-RBD and CA04-WT virus respectively diluted in 1640 media to a final 500 μL volume.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Proteins were separated on a 10% gel, and then following transfer, blots were incubated with an anti-influenza A NP protein antibody 19C10 generated by our laboratory (1:1000)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-influenza A NP protein</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">and anti-V5 tag antibody (Thermo,1:5000) and visualized with horseradish peroxidase (HRP)-conjugated anti-mouse IgG (Invitrogen, 1:5000)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-V5</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-mouse IgG</div><div>suggested: (LSBio (LifeSpan Cat# LS-C69682-5000, RRID:AB_1653096)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Based on the ELISA results using a sandwich assay with anti-RBD monoclonal antibodies on both sides (Wantai, Beijing, China) and plaque assay results, serial passages 1 to 10 of purified vaccines were confirmed to be stable under current vaccine manufacturing conditions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-RBD</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Anti-RBD IgG measurements: RBD-specific antibody titers in serum samples collected from immunized animals with 1×106 PFU of vaccine were determined by indirect ELISA.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-RBD IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Diluted sera (1:100) were successively diluted in a 2-fold series and applied to each well for 1 h at 37°C, followed by incubation with goat anti-mouse, anti-hamster or anti-human antibodies conjugated with HRP for 1 h at 37°C after 3 washes.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-mouse ,</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The cells were stained with murine antibodies for phenotype and activation (CD4 [clone GK1.5, APC/Cy7], CD8 [clone 53-6.7, PerCP/Cy5.5], CD11b [clone M1/70, PE], CD11c [clone N418, BV421],</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CD4</div><div>suggested: (Miltenyi Biotec Cat# 130-109-536, RRID:AB_2657974)</div></div><div style="margin-bottom:8px"><div>CD8</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>CD11b</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>CD11c</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>BV421</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Immunohistochemical staining was performed by using a mouse monoclonal anti-SARS-CoV-2 N protein antibody.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 N protein</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Human embryonic kidney cells (293T), African green monkey kidney epithelial cells (Vero E6), and Madin-Darby canine kidney cells (MDCK) were maintained in DMEM-high glucose (Sigma Aldrich, USA) supplemented with 10% low endotoxin FBS (Cegrogen Biotech, Germany) and penicillin-streptomycin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MDCK</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Generation and passage of dNS1-RBD viruses: Eight pHW2000 plasmids containing the DelNS1 segment and the other seven influenza virus genomic segments, together with an NS1 expression plasmid, pCX-CA04-NS1-Flag, which derived from the parental influenza virus A/California/04/2009(H1N1) (GenBank: MN371610.1-371617.1), were transfected into 293T cells and incubated overnight at 37°C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SARS-CoV-2 titration assay: Live virus titers in homogenized lung tissues and cell cultures were measured by the standard TCID50 method in Vero E6 cells seeded in 96-well plates.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Immunization and infection of mice: BALB/c mice were immunized intranasally with 50 μL containing 1×106 PFU of the vaccine prepared as indicated above under isoflurane anesthesia, while the control group was administered CA04-WT or CA04-dNS1 virus.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BALB/c</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For cellular immune response analyses of PBMCs, splenic lymphocytes, pulmonary lymphocytes and lymph node cells, C57BL/6 mice (6-8 weeks old) were immunized intranasally with 1×106 PFU of the vaccine by the one-dose or two-dose regimen as described above (10 animals in each group).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>C57BL/6</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Immunization and infection of hACE2-KI/NIFDC mice: hACE2-KI/NIFDC mice (8-10 weeks old) were divided into three groups and treated intranasally with 1×106 PFU of the vaccine by gently adding 50 μL droplets of virus stock for the vaccine-immunized group (5 animals) at two time points (days 0 and 14), and then, the vaccine-immunized group and unvaccinated group (3 animals each) were challenged with 1×104 PFU of SARS-CoV-2 by the intranasal route 30 days post immunization.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>hACE2-KI/NIFDC</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The sequence encoding the RBD segment was then cloned into the NS1 deletion plasmid pHW2000-DelNS1 as described previously.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHW2000-DelNS1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Generation and passage of dNS1-RBD viruses: Eight pHW2000 plasmids containing the DelNS1 segment and the other seven influenza virus genomic segments, together with an NS1 expression plasmid, pCX-CA04-NS1-Flag, which derived from the parental influenza virus A/California/04/2009(H1N1) (GenBank: MN371610.1-371617.1), were transfected into 293T cells and incubated overnight at 37°C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHW2000</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pCX-CA04-NS1-Flag</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The data were analyzed by FlowJo V10.6.0 and GraphPad Prism 9.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Statistical analysis: Statistical significance was assigned when P values were < 0.05 using GraphPad Prism 8.0 (GraphPad Software, Inc.)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.31.466651: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Field Sample Permit: Sample collection, preparation, and storage: All studies were approved by the Institutional Review Board of Washington University in St Louis.<br>IRB: Sample collection, preparation, and storage: All studies were approved by the Institutional Review Board of Washington University in St Louis.<br>Consent: Written consent was obtained from all participants.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">For selection, where a clone spanned both the GC and LNPC compartments, and/or multiple time points, a compartment and a timepoint were first randomly selected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">HRP-conjugated goat anti-human IgG (H+L) antibody (Jackson ImmunoResearch, 109-035-088, 1:2500) was used to detect monoclonal antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: (Jackson ImmunoResearch Labs Cat# 109-035-088, RRID:AB_2337584)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">HRP-conjugated goat anti-Human IgG Fcγ fragment (Jackson ImmunoResearch, 109-035-190, 1:1500), HRP-conjugated goat anti-human serum IgA α chain (Jackson ImmunoResearch, 109-035-011, 1:2500), and HRP-conjugated goat anti-human IgM (Caltag, H15007, 1:4000) were used to detect plasma antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human serum IgA α chain</div><div>suggested: (Jackson ImmunoResearch Labs Cat# 109-035-011, RRID:AB_2337580)</div></div><div style="margin-bottom:8px"><div>anti-human IgM (Caltag, H15007</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In brief, a mammalian cell codon-optimized nucleotide sequences coding for the soluble version of S (GenBank: MN908947.3, amino acids 1-1,213) including a C-terminal thrombin cleavage site, T4 fold trimerization domain and hexahistidine tag was cloned into the mammalian expression vector pCAGGS.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCAGGS</div><div>suggested: RRID:Addgene_18926)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Flow cytometry data were analyzed using FlowJo v.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">V(D)J gene annotation and genotyping: Initial germline V(D)J gene annotation was performed on the preprocessed BCRs using IgBLAST v.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IgBLAST</div><div>suggested: (IgBLAST, RRID:SCR_002873)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">1.17.138 with IMGT/GENE-DB release 202113-239.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IMGT/GENE-DB</div><div>suggested: (IMGT/GENE-DB, RRID:SCR_006964)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">BCR analysis: BCR analysis was performed in R v4.1.0 with visualization performed using base R, ggplot2 v3.3.544, and GraphPad Prism v9.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ggplot2</div><div>suggested: (ggplot2, RRID:SCR_014601)</div></div><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Clonal overlap between B cell compartments was visualized using circlize v.0.4.1345.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>circlize</div><div>suggested: (circlize, RRID:SCR_002141)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Phylogenetic trees for S+ clones containing BMPCs were constructed on a by-participant basis using IgPhyML v1.1.346 with the HLP19 model47.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IgPhyML</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Gene annotation on human reference chromosomes and scaffolds in Gene Transfer Format (‘gencode.v32.primary_assembly.annotation.gtf’) was downloaded (2021-06-02) from GENCODE v3252, from which a biotype (‘gene_type’) was extracted for each feature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GENCODE</div><div>suggested: (GENCODE, RRID:SCR_014966)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Quality control was performed as follows on the aggregate gene expression matrix consisting of 360,803 cells and 36,601 features using SCANPY v1.7.253 and Python v3.8.8.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Python</div><div>suggested: (IPython, RRID:SCR_001658)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      A potential limitation to our analyses of S-binding clones is that our selection strategy may have excluded some low-abundance or low-affinity S-specific clones. Nonetheless, we were able to account for 45% and 67% of all GC B cell and LNPC clones, respectively identified by scRNA-seq. This is the first study to provide direct evidence for the induction of antigen-specific BMPCs by an mRNA-based vaccine in humans. Notably, none of the 11 participants from whom post-vaccination bone marrow specimens were examined had a history of SARS-CoV-2 infection. BMPCs that recognized contemporary seasonal influenza virus vaccine antigens and diphtheria/tetanus vaccine antigens were present at frequencies roughly 10- and 2-fold greater than those against SARS-CoV-2 S, respectively. This is likely due to both the greater number of antigenic targets contained in the former vaccines and the repeated exposures to influenza and tetanus/diphtheria vaccine antigens our study participants likely experienced in comparison to the initial exposure to the novel SARS-CoV-2 S antigen. There are some epitopes within the S protein that are conserved between human seasonal coronaviruses and SARS-CoV-228,29. Cross-reactive B cells targeting these epitopes participate in PB and GC B cell responses to SARS-CoV-2 vaccination6,30. It is unlikely, however, that a substantial proportion of the SARS-CoV-2 S+ BMPCs we observed six months after immunization were part of a pre-existing pool of BMPCs, as in a previou...

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.29.466401: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Primary antibodies against the His-tag (1:2000, Invitrogen) were followed by secondary HRP conjugated antibodies (1:2000, Dako, Denmark), for detection of both proteins.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>His-tag</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Sf9 cells transfected by following were used to express the S protein by following bac-to-bac baculovirus expression system (Thermo Fisher, SG).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Sf9</div><div>suggested: CLS Cat# 604328/p700_Sf9, RRID:CVCL_0549)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SARS-CoV-2 S, SARS-CoV-2 S1 and two variants of SARS-CoV-2 S2 proteins, produced by ACROBiosystems (USA), were used for BN-PAGE, MST and to stimulate THP-1 cells and for in vivo experiments.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>THP-1</div><div>suggested: CLS Cat# 300356/p804_THP-1, RRID:CVCL_0006)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Mouse inflammation model and in vivo imaging: BALB/c tg (NF-B-RE-Luc)-Xen reporter mice (Taconic Biosciences, Albany, NY, USA, 10– 12 weeks old) were used to study the immunomodulatory effects of SARS-CoV-2 S protein subunits alone or in combination with LPS.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BALB/c</div><div>suggested: RRID:IMSR_ORNL:BALB/cRl)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The image was obtained using a Gel Doc Imager (Bio-Rad Laboratories,</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Bio-Rad Laboratories</div><div>suggested: (Bio-Rad Laboratories, RRID:SCR_008426)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The initial coordinates of E. coli lipid A and LPS were obtained from CHARMM-GUI LPS modeller,62 while the initial coordinates of the S protein were extracted from the cryo-EM structure of S ECD in the closed state (PDB: 6XR8)23 with missing loops constructed using Modeller version 9.21.63 Protein and lipid were parameterized using the CHARMM36 forcefield.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Modeller</div><div>suggested: (MODELLER, RRID:SCR_008395)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">70 All simulations were performed using GROMACS 201871 and the trajectories visualised in VMD.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GROMACS</div><div>suggested: (GROMACS, RRID:SCR_014565)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 31. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.11.11.468228: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Enzymatic assays: NEMO peptide expression and purification: The constructs of Human NEMO (residues 215-247) and mouse NEMO (residues 221-250) cloned into pGEX-6p-1 vector were transformed into BL21 (DE3) cells and selected using ampicillin-enriched LB media.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pGEX-6p-1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">3CLpro expression and purification: 3CLpro WT enzyme for assays was prepared independently from a clone of the SARS-CoV-2 NSP5 gene in pD451-SR (Atum, Newark, CA) according to published procedure 6.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pD451-SR</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Bands were visualized with BullDog Bio Acquastain. 5.2. Crystallography: 3CLpro WT expression and purification: BL21(DE3) cells were transformed with pMCSG53 pDNA containing a 3CLpro WT insert with an autoprocessing-sensitive N-terminal Maltose Binding Protein (MBP) tag and a PreScission protease-sensitive C-terminal His6 tag (provided by Andrzej Joachimiak).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pMCSG53 pDNA</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Iterative refinement was performed manually in Coot 51 and REFMAC 52.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All bonds of the peptide were kept rigid as the goal was to preserve the initial conformation and compute the binding free energy using the AutoDock Vina scoring function.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>AutoDock</div><div>suggested: (AutoDock, RRID:SCR_012746)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. girls who sit at the intersections of racism and sexism

      Racism happens between different racial groups, but sexism can happen in the same racial group. Black women bear the tag"black" and "women", so they may encounter more discrimination than other groups.

    1. One by one DAUGHTERS read thevital stats off each toe tag, and as they read each SANTAsits up briefly, winks, tells story, lays back dead

      daughters are the shelther wokers

    Annotators

    1. https://collect.readwriterespond.com/antennapod/

      I feel your pain here Aaron.

      Perhaps it helps, perhaps not, but I've been using AntennaPod for a few years now. In particular I love it on Android because I can use the share functionality to share to a custom email address which posts to reading.am for an account that aggregates everything I'm listening to. Then I port the RSS feed of that back into my site. It's a stupid amount of manual work, but it mostly works.

      Alternately you could share material you listen to to Huffduffer and pull data out that way as well. My problem here is that Huffduffer is more of a bookmark service than a "listened to this" sort of service, though you could always add a "listened" tag to the things you've heard in the past.

      The tougher part of all this is that podcasts have "canonical" links for the podcast episodes (sometimes) and an entirely different link for the audio file which has no meta data attached to it (presuming you can even find the URL for the audio file to begin with.)

      AntennaPod allows you to pick and choose what you want to share, so usually I default to the audio file to get that in to the workflow and finding/adding the data for the particular episode is a bit easier.

      I will say that this is one of the ugliest and most labor intensive workflows I've got for social posts, so I'm usually only doing it and posting publicly for things that I really think are worth the time that make for interesting notes/observations that go along with the post.

      I'm curious to see what others come up with for this workflow.

    1. Reviewer #3 (Public Review):

      The emergence of AR-V7 and other AR splice variants in patient tumors has been shown to track with inferior response to AR targeted and chemotherapies in prostate cancer. Using a series of sophisticated imaging techniques the authors have determined that the AR-V7 uses a mechanism for nuclear import distinct from the FL-AR and the AR-V567 variant. AR-V7 also appears to have very fast intranuclear mobility, a characteristic shown to be associated with antagonist bound AR and yet AR-V7 efficiently activates transcription of a reporter gene and at least a subset of AR target genes. This study provides new insights into how AR-V7 may contribute to the pathology of CRPC.<br> Although it is well accepted that the AR-Vs serves as a strong biomarker for resistance to antiandrogen treatment, it is still being debated as to whether and how AR-Vs contribute to the pathology of castration resistance prostate cancer. In this regard, significant efforts have been invested to understand how these splice variants work and how to best target them. Several models of have been proposed, some of which suggested that the AR-Vs can dimerize with the full-length (FL) receptor and require FL-AR for activity, others indicated that AR-V has unique activities independent of FL-AR. Using a series of sophisticated imaging techniques, the authors have addressed some of these unresolved issues in the field, in particular determining that AR-V7 uses a mechanism for nuclear import distinct from the FL-AR and the AR-V567 variant. AR-V7 also appears to have very fast intranuclear mobility, a characteristic shown to be associated with antagonist bound AR; and yet, AR-V7 efficiently activates transcription of a reporter gene and at least a subset of AR target genes. Overall, this is a valuable study, and the authors are to be commended for the high-quality figures and illustrations. Specific strengths include the following points:

      1. It has been observed that the AR-V7 predominantly resides in the nucleus; however, the mechanism(s) by which AR-V7 used for nuclear import is not clear. Using live imaging combined with pharmacological and genetic approaches the authors have determined that the importin / complex is required for FL-AR, but not AR-V7 nuclear import. However, nucleoporin complex and Ran-GTP activity are required for FL-AR import, as expected, and are at least partially required for AR-V7 nuclear accumulation. These series of studies have confirmed previously finding that AR-V7 uses a mechanism for nuclear import, distinct from the FL-AR and the AR-V567 variant.

      2. Using mutagenesis of the D-box and DNA binding mutants, the authors have also contrasted the structural requirements within FL-AR vs AR-V7 for nuclear localization and transcription. It was determined that the dimerization surface is required for AR-V7 nuclear retention but is dispensable for FL-AR. However, disruption of DNA binding with a single point mutation has demonstrated that DNA binding is not an obligatory step for FL-AR and AR-V7 nulcear retention. This series of experiments have enhanced our understanding of the nuclear cytoplasmic dynamics of AR-V7 and how it differs from FL-AR and suggests that interfering with the dimerization interface may be a means by which AR-V7 can be targeted.

      3. Using FRAP and photoconvertible fluorescent protein tag, the authors were able to track the intranuclear dynamics of AR and AR-V7 in real time, which is a strength of this study. They have determined that AR-V7 has higher sub-nuclear mobility compared to FL-AR and that DNA binding is required for even the short residence time of this mutant AR on the chromatin. Together these data suggested that AR-V7 and FL-AR may use different means to activate transcription.

      There are some weaknesses that could be addressed to improve the work:

      1. Most of the studies were done in PC3 AR negative cell line. It would be helpful to confirm some the key findings in AR positive cell line as the import mechanism may not be the same in AR negative vs AR-positive cell lines.

      2. In Figure 2 and 3 where authors used mutagenesis to determine the structural requirements of FL-AR and AR-V7 for nuclear import/retention. These studies used nuclear:cytoplasmic ratios as readouts, not transport kinetics, and thus the observed changes in N/C ratios could be the results of changes in nuclear export and should be discussed appropriately.

      3. The observation that co-expression of AR-V7 increased nulcear FL-AR in the absence of ligand is interesting. The fact that IPZ interferes with nuclear accumulation of FL-AR in the presence of AR-V7 indicated that FL-AR import still requires importin but does not rule out the possibility that FL-AR via its dimerization with AR-V7 within the nucleus could lead to increased retention of FL-AR within the nucleus, a possibility that the authors should consider.

      4. The authors used ChIP assays to confirm the fast chromatin mobility of AR-V7 they have observed using FRAP, however ChIP efficiency could differ significantly using different antibodies and the results should be discussed with caution. Although the authors tried to confirm the same using chromatin bound fraction as another readout for transient chromatin binding of AR-V7, it was unclear why the authors didn't use endogenous AR-V7 in 22RV1 cells to look at chromatin bound fraction, as overexpressed protein may have different behavior compared to endogenous protein.

    1. The solution is to create a tag file that points to the original and edited photo, like DerivedWork(original=(some hash), derived=(some hash)).

      Relational tags

    1. It's all too complex for our little brains to handle. And like any situation of excess complexity, we collapse dimensions until we have a structure we can comprehend. The problem, in this case, is that our simplifications create tunnels large enough for the trucks of hacker to drive through—with ease.
    1. la omt en 1994 definió turismo como “las actividades que realizan las personas durante sus viajes y estancias en lugares distintos al de su entorno habitual, por un período de tiempo consecutivo inferior a un año con fines de ocio, por negocios y otros” (Sancho, 1998, p. 11).<

      MI COMENTARIO:

    1. They wanna be to Linux what the Play Store is to Android, what the App Store is to iOS.But we don't do that around here. We use Flatpak round 'ere.

      annotation meta: may need new tag: company [aspiring] to be bigger / take over the world

    1. Why does it bother me?

      An important list of pk2b & web-tag problems:

      • cannot search user activity & annotations; less so when offline
      • half-baked UX
      • cannot integrate apps, across platforms, desktop/mobile, cloud/local.
      • What if sites disappear (next chapter)?
    1. Hannah associates a tag and a description with two images using a single annotation

      How, in this case, Hannah would refer to an image from within the description?

    1. I posted a question about MD5 hash collision back in 2014. As far as I know questions about algorithms are on-topic on Stack Overflow, and the cryptography tag did not have the warning "CRYPTOGRAPHY MUST BE PROGRAMMING RELATED" back then.
    1. wn written cultures material is typically sorted alphabeticallySor by some other method of linguistic ordering such as the number ofstrokes in qhinese charactersTW or systematicallyW according to various sysXtems that strive to map or hierarchize the relations between the items storedSincluding those of uoogle or ffiahooTW or miscellaneouslyY

      What about the emergence of non-hierarchal methods? (Can these logically be sorted somehow without this structure?)

      With digital commonplacing methods, I find that I can sort and search for things temporally by date and time as well as by tag/heading.

      Cross reference:

  4. Oct 2021
    1. students generated a total of 1,636 dif-ferent issue tags, including a large proportion of redundant and related tag

      Since they give the students no restrictions on what to write about, it resulted in having many "thematic tags. It is amazing how the types were varied.

    1. Of course someone has published a zettelkasten notebook for taking notes to be moved into one's zettelkasten at a later date.

      It includes space for notes as well as meta data box which includes labels and spaces for the following:

      • UID
      • Parent UID
      • Zettel
      • tags
      • refs

      It's also got (at least one) page for an index in the end titled "tag list" with a two column ruling

      This follows the general pattern of pre-printed commonplace books which was common with at least John Locke's index pre-printed.

      Other examples include published bullet journals with custom formatting.

    1. SNAP-Capture Magnetic Beads are used to selectively immobilize and magnetically separate a SNAP-tag fusion protein from solution using magnetic agarose beads
    1. SciScore for 10.1101/2021.10.25.21265476: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: Participant recruitment and study approval – Toronto cohorts: Negative control serum samples were from patients enrolled in cancer studies pre-COVID-19 (prior to November 2019; Mount Sinai Hospital (MSH) Research Ethics Board (REB) studies #01-0138-U and #01-0347-U), which were archived and frozen in the Lunenfeld-Tanenbaum Research Institute (LTRI</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Recombinant antibody production: The llama single domain antibody (VHH) VHH72-hFc1X7 (VHH72-Fc) was described previously (PDB entry 6WAQ_1) (17); additional VHHs (NRCoV2-04 and NRCoV2-20) were isolated in-house from llamas immunized with recombinant SARS-CoV-2 trimeric spike ectodomain SmT1 (Supplementary Figure 2).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>NRCoV2-20</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">VHH sequences were fused to an antibody-dependent cell-mediated cytotoxicity (ADCC)-attenuated human IgG1 Fc domain (hFc1X7, from patent US 2019 352 383A1).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>human IgG1 Fc domain ( hFc1X7</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The anti-human-IgG monoclonal antibodies (mAbs) IgG#5 and IgG#6 were derived from mice immunized with human IgG; heavy chain (HC) and light chain (LC) variable domain sequences (VH and VL) were fused to mouse IgG2a and mouse kappa LC constant sequences, respectively, to express full-length mAbs.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human-IgG</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>mouse IgG2a</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SARS-CoV-2 antibody-negative blood was spotted directly from EDTA Vacutainer tubes onto DBS cards.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All matched plasma and contrived DBS samples were tested using the anti-SARS-CoV-2 ELISA IgG kit (EUROIMMUN, Lübeck, Germany), according to the manufacturer’s instructions, to verify that donors were either positive or negative for SARS-CoV-2 antibodies prior to shipping to Toronto and Ottawa.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 ELISA IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For spike and its RBD, the recombinant antibodies used were VHH72-Fc IgG (NRC; see above), human anti-spike S1 IgG (clone HC2001, GenScript, #A02038), human anti-Spike S1 IgM (clone hIgM2001, GenScript, #A02046), and human anti-spike IgA (clone CR3022, Absolute Antibody, Oxford, United Kingdom, #Ab01680-16.0).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-spike S1 IgG</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-Spike S1 IgM</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-spike IgA</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For N, the antibodies used were human anti-nucleocapsid IgG (clone HC2003, GenScript, #A02039)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-nucleocapsid IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">anti-nucleoprotein IgM (CR3018 (03-018), Absolute Antibody, #Ab01690 -15.0), and anti-nucleoprotein IgA (CR3018 (03-018), Absolute Antibody, #Ab01690 -16.0).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-nucleoprotein IgM</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-nucleoprotein IgA</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>CR3018</div><div>suggested: (Imported from the IEDB Cat# CR3018, RRID:AB_2833185)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Negative control antibodies purified from human serum (final 1 µg/mL; human IgG, Sigma-Aldrich, Oakville, ON, Canada,</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>human IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Anti-human secondary antibodies (recombinant anti-human IgG#5-HRP, goat anti-human IgG Fcy-HRP (Jackson ImmunoResearch Labs, West Grove, PA, USA, #109-035-098)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-human secondary</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human IgG#5-HRP</div><div>suggested: (Jackson ImmunoResearch Labs Cat# 109-035-098, RRID:AB_2337586)</div></div><div style="margin-bottom:8px"><div>anti-human IgG Fcy-HRP</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, 100 μL samples of titrations of anti-SARS-CoV-2 S CR3022 Human IgG1 (Absolute Antibody, Ab01680-10.0), anti-SARS-CoV-2 S CR3022 Human IgA (Absolute Antibody, Ab01680-16.0), or anti-SARS-CoV-2 S CR3022 Human IgM (Absolute Antibody, Ab01680-15.0) were diluted in 1% w/v skim milk in PBST.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 S CR3022 Human IgG1</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>Human</div><div>suggested: (Imported from the IEDB Cat# CR3022, RRID:AB_2848080)</div></div><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 S CR3022 Human IgA</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 S CR3022 Human IgM</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The final isotype-specific secondary antibodies used were anti-human IgG#5-HRP (Supplementary Figure 3), anti-human IgA-HRP (Jackson ImmunoResearch Labs, 109-035-011), and anti-human IgM-HRP (Jackson ImmunoResearch Labs, 109-035-129).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgA-HRP</div><div>suggested: (SouthernBiotech Cat# 2050-05, RRID:AB_2687526)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Two concentrations of secondary antibody IgG#5-HRP (0.09 and 0.18 μg/mL) were assessed using dilution curves of the VHH72-Fc antibody (to detect spike and its RBD) or an anti-N antibody (to detect N; Supplementary Figure 7), and the best concentration (0.18 μg/mL) was further tested on a dilution series of 32 serum samples provided by CBS (Supplemental Figure 8).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>VHH72-Fc</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-N</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">We also tested anti-RBD NRCoV2-04 and NRCoV2-20 recombinant calibration antibodies, which were comparable to VHH72-Fc in reference curves (Supplementary Figure 7).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-RBD</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>NRCoV2-04</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For chemiluminescent assays, 10 µL of goat anti-human IgM-HRP (1:10,000; 0.80 ng/well) or goat anti-human IgA-HRP (1:12,000, 0.66 ng/well) were used as secondary antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgM-HRP</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Protein production: Spike trimer: The SARS-CoV-2 spike ectodomain construct (SmT1) with S1/S2 furin site mutations, K986P/V987P prefusion-stabilizing mutations, and human resistin as a trimerization partner (15) was produced using stably transfected Chinese Hamster Ovary (CHO) pools (CHOBRI/2353™ cells) and purified as described (8).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHOBRI/2353™</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The construct was expressed by transient gene expression in CHOBRI/55E1™ cells as described above (15).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHOBRI/55E1™</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">VHH and mAb sequences were synthesized by GenScript using C. griseus codon bias for expression in CHO cells and cloned into the pTT5™ plasmid.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHO</div><div>suggested: CLS Cat# 603479/p746_CHO, RRID:CVCL_0213)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The ACE2-BAP cDNA was expressed by transient gene expression in CHOBRI/55E1 cells as described (15) with the addition of 5% (w/w) pTT5™-BirA (an Escherichia coli biotin ligase) expression plasmid as described previously (18).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHOBRI/55E1</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Nucleocapsid: N cDNA (corresponding to amino acids 1–419 of YP_009724397) was synthesized by GenScript (Piscataway, NJ, USA; using Cricetulus griseus codon bias) with a C-terminal FLAG-Twin-Strep-tag-(His)6 tag and cloned into the pTT5 expression plasmid (NRC) to create NCAP (16).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pTT5</div><div>suggested: RRID:Addgene_52326)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Amino acids 331–521 of the SARS-CoV-2 spike protein (YP_009724390.1) corresponding to the RBD were cloned into the pTT5™ vector using EcoRI and BamHI.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pTT5™</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The ACE2-BAP cDNA was expressed by transient gene expression in CHOBRI/55E1 cells as described (15) with the addition of 5% (w/w) pTT5™-BirA (an Escherichia coli biotin ligase) expression plasmid as described previously (18).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pTT5™-BirA</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Ottawa: Samples from DBS cards were punched manually or in a semi-automated manner using a PerkinElmer DBS puncher (PerkinElmer, Woodbridge, ON, Canada; 3.2 mm discs) or a BSD600 Ascent puncher (BSD Robotics; 3 mm discs) and eluted in 100 μL/disc PBS + 1% Triton X-100 for up to 16 h (minimum 4 h) in 96-well U-bottom plates on a shaker at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Canada</div><div>suggested: (Brain Canada, RRID:SCR_005053)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Other data analyses: Plots were generated in R using the ggplot2, lattice, latticeExtra, grid, and gridExtra packages.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ggplot2</div><div>suggested: (ggplot2, RRID:SCR_014601)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Lentiviral treatment of two different shRNAs led to a 73 to 82% reduction of Kdm6b transcripts in 26°C gonads from early stage 15 onward (fig. S4), as compared with treatment with nonsilencing scrambled virus

      The authors validated the shRNAs using multiple methods.

      The shRNA was infected with a fluorescence tag, called green fluorescent protein or GFP. The infected embryos were then visualized at multiple developmental stages. The treated embryos fully fluoresced green, including the gonads, which indicated that the virus successfully introduced the shRNA to the embryos.

      The authors also checked the levels of transcript between the control shRNA- (a non-specific sequence) and Kdm6b shRNA-treated embryo gonads. In the green, GFP+ gonads, the shRNAs specifically reduced Kdm6b by up to 80% when compared to the controls.

    2. in situ hybridization

      A common technique to visualize nucleotide (DNA or RNA) in cells.

      A chemical or radioactive label is added to a nucleotide sequence that is complimentary to the sequence of interest. When added to the cells, this complimentary nucleotide sequence will bind to and tag the sequence of interest, allowing scientists to visualize the DNA or RNA of interest within the cell.

      You can read more about in situ hybridization methods here: https://www.nature.com/scitable/topicpage/fluorescence-in-situ-hybridization-fish-327/

    3. Immunofluorescence

      A widely-used technique used to image proteins on or within cells. It uses antibodies to bind and tag a protein of interest.

      The first antibody specifically binds the protein of interest, for example KDM6B. Then, a second antibody carrying a fluorescent dye attaches to the first antibody.

      These proteins are visualized using a microscope with lasers. The lasers excite the fluorophore, which in turn emits specific light waves. Here, the KDM6B is marked by the emission of light waves in the green spectrum and beta catenin produces waves in the red spectrum.

      Here is a brief introduction to immunofluorescence techniques: https://oni.bio/nanoimager/super-resolution-microscopy/immunofluorescence/

    1. Have students highlight, tag, and annotate words or passages that are confusing to them in their readings

      that's nice!

    1. Use settings to change the default templates used for each tag Specify templates using template and sub_menu_template arguments for any of the included menu tags (See Specifying menu templates using template tag parameters). Put your templates in a preferred location within your project and wagtailmenus will pick them up automatically (See Using preferred paths and names for your templates).

      Dónde especificar las plantillas para los menús. Si no usas las tuyas, el paquete usa plantillas por defecto usando bootstrap3

    1. Címkefelhő

      A címkefelhő (tag cloud) egy adott weboldal tartalmára jellemző kulcsszavak látványos, vizuális ábrázolása. Az ábrázolásmódot befolyásolja az adott szó vagy címke valamely tulajdonsága, például a szövegbeli gyakorisága vagy az olvasói használat gyakorisága.

    1. You can tell your friends and family of your plans to become healthier so they can give you encouragement and keep you accountable. There are no real consequences to breaking your pledge other than letting other people down.But a commitment that comes with only a psychological price tag for failure is surprisingly effective for two reasons:We don’t want to be seen contradicting ourselves in front of people we respect and love.We want to be consistent with our past pronouncements. Cognitive dissonance, where we say one thing but do another, can cause unpleasant feelings within us.Through soft commitment devices, you are using the power of social pressure to promote behaviors you want to change in your life. And if your goals are made to show, they are made to grow.

      this is just leveraging the basic desires of human for social bonding and recognition and also satisfying the ego, we will not break the commitments for the fear of being ostracized by the public

    1. SciScore for 10.1101/2021.10.16.21265096: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Some cleaned Fasta files were also uploaded to SnapGene (version 5.3.2) for multisequence analysis via the MAFFT tool.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SnapGene</div><div>suggested: (SnapGene, RRID:SCR_015052)</div></div><div style="margin-bottom:8px"><div>MAFFT</div><div>suggested: (MAFFT, RRID:SCR_011811)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">With these factors all considered, an optimal tree was selected from the 21 trees for re-rooting via FigTree (https://github.com/rambaut/figtree/releases/tag/v1.4.4).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FigTree</div><div>suggested: (FigTree, RRID:SCR_008515)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">PyMol structural modeling: The PyMol molecular graphics system (version 2.4.2, https://pymol.org/2/) from Schrödinger, Inc. was used for downloading structure files from the PDB database for further analysis and image export.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMol</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The images were cropped via Adobe Photoshop and further presentation using Illustrator.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Adobe Photoshop</div><div>suggested: (Adobe Photoshop, RRID:SCR_014199)</div></div><div style="margin-bottom:8px"><div>Illustrator</div><div>suggested: (Adobe Illustrator, RRID:SCR_010279)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pandemic and vaccination data: Pandemic and vaccination data were downloaded from the Our World in Data website (https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&time=2020-03-01..latest&facet=none&pickerSort=desc&pickerMetric=total_cases&Metric=Confirmed+cases&Interval=Cumulative&Relative+to+Population=false&Align+outbreaks=false&country=~OWID_WRL) as a .csv file for further processing via Excel and figure generation through Prism 9.0 and Adobe Illustrator.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Excel</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>Prism</div><div>suggested: (PRISM, RRID:SCR_005375)</div></div><div style="margin-bottom:8px"><div>Adobe Illustrator</div><div>suggested: (Adobe Illustrator, RRID:SCR_010279)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.13.464050: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells and expression vectors: HEK293T cells and SiHa cells were procured from the central cell line repository of RGCB (CCL</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SiHa</div><div>suggested: KCB Cat# KCB 2013026YJ, RRID:CVCL_0032)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">CaCo-2 cells were obtained from ATCC.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CaCo-2</div><div>suggested: CLS Cat# 300137/p1665_CaCo-2, RRID:CVCL_0025)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">DLD-1 cells were obtained from Sigma (Merck #90102540).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>DLD-1</div><div>suggested: ECACC Cat# 90102540, RRID:CVCL_0248)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">HEK293T cells were transfected with lenti-ZsGreen (Addgene) and 10 µg of psPAX2 (Addgene) and SARS-CoV-2-S variant (pCDNA 3.1_Spike_Del19, Addgene) at a ratio of 1:2:1 using the transfection reagent (Lipofectamine 3000, Thermo Fisher Scientific #L3000001).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The mixture was added to the HEK293T-HA-ACE2 cells for 4 hours, followed by fresh medium, and wells with IgG served as control.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T-HA-ACE2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Mouse immunization and serum preparation: BALB/c mice were immunized with purified RBD-His protein expressed in E. coli as per the standard protocol approved by IAEC.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BALB/c</div><div>suggested: RRID:IMSR_ORNL:BALB/cRl)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">) Spike S1 Gene with C terminal OFP Spark fluorescent tag (pCMV3-C-OFPSpark) was obtained from Sino biological (#VG40591-ACR)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV3-C-OFPSpark</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Full-length DNA clone of Human angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 with C terminal GFPSpark tag (pCMV3-hACE2-GFPSpark) was obtained from Sino biological (#HG10108-ACG).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV3-hACE2-GFPSpark</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The mammalian expression vector for soluble ACE2 pcDNA3-sACE2 (WT)-sfGFP (#145171) was obtained from Addgene.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3-sACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The packaging vectors and Lenti ZsGreen were from Addgene (pHIV-Zsgreen #18121</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHIV-Zsgreen</div><div>suggested: RRID:Addgene_18121)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Immobilization of GFP Nanobody to Agarose beads: The bacterial expression vector for anti-GFP nanobody pGEX-6P-1 was procured from Addgene.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pGEX-6P-1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">HEK293T cells were transfected with lenti-ZsGreen (Addgene) and 10 µg of psPAX2 (Addgene) and SARS-CoV-2-S variant (pCDNA 3.1_Spike_Del19, Addgene) at a ratio of 1:2:1 using the transfection reagent (Lipofectamine 3000, Thermo Fisher Scientific #L3000001).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>psPAX2</div><div>suggested: RRID:Addgene_12260)</div></div><div style="margin-bottom:8px"><div>pCDNA 3.1_Spike_Del19</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The images were acquired and analyzed using NIS-Elements software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>NIS-Elements</div><div>suggested: (NIS-Elements, RRID:SCR_014329)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 22. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.13.464307: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The anti-His tag antibodies, diluted at 50 μg/mL in 10 mM sodium acetate, pH 4.5, were immobilized on both the active and reference flow cells surface of the activated CM5 sensor chip using amine coupling method.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-His tag</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Approximately 200 RU of His-tagged SARS-CoV-2 and SARS-CoV spike trimers and RBDs were captured onto the chip for the active surface, and anti-His antibody alone served as the reference surface.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-His</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell lines: HEK293T/17 (cat# CRL-11268) and Vero E6 cells (cat# CRL-1586) were from ATCC, 293T-ACE2 cells were kindly provided by J. Sodroski of Harvard Medical School, and they were cultured in 10% fetal bovine serum (FBS, GIBCO cat# 16140071) supplemented Dulbecco’s Modified Eagle Medium (DMEM, ATCC cat# 30-2002) at 37°C, 5% CO2.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>293T-ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, HEK293T cells were grown to 80% confluency before transfection with the spike gene using Lipofectamine 3000 (Invitrogen).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The proteins were expressed in HEK293 Freestyle cells (Invitrogen) in suspension culture using serum-free media (Invitrogen) and transfected into HEK293 cells using polyethyleneimine (Polysciences).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The results were then converted into percentage neutralization at a given sample dilution or mAb concentration, and the averages ± SEM were plotted using a five-parameter dose-response curve in GraphPad Prism v.8.4.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data processing was performed using cryoSPARC v2.15 [14].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>cryoSPARC</div><div>suggested: (cryoSPARC, RRID:SCR_016501)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Model building and refinement: The 2-36-RBD complex model was built starting from template PDB structures 6BE2 (Fab) and 7BZ5 (RBD) using Phenix Sculptor.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Phenix Sculptor</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Automated and manual model building were iteratively performed using real space refinement in Phenix [16] and Coot [17].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Phenix</div><div>suggested: (Phenix, RRID:SCR_014224)</div></div><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Geometry validation and structure quality assessment were performed using Molprobity [18].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Molprobity</div><div>suggested: (MolProbity, RRID:SCR_014226)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The visualization of sequence entropy was displayed by PyMol version 2.3.2.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMol</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.13.464254: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">In brief, female Syrian hamsters (Mesocricetus auratus) of 6-8 weeks old were anesthetized with ketamine/xylazine/atropine and inoculated intranasally with 50 μL containing 1×104 TCID50 Beta B.1.351 (derived from hCoV-19/Belgium/rega-1920/2021; EPI_ISL_896474, 2021-01-11).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibody isolation and recombinant production: Antigen specific IgG+ memory B cells were isolated and cloned from PBMC of SARS-CoV-2 convalescent individuals.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Antigen specific IgG+</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">goat anti-human IgG secondary antibody (Southern Biotech, 2040-04) was added and incubated for 45 min at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>goat anti-human IgG secondary antibody</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: (SouthernBiotech Cat# 2040-04, RRID:AB_2795643)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 2 h, infected cells were washed an additional five times with DMEM prior to adding media supplemented with anti-VSV-G antibody (I1-mouse hybridoma supernatant diluted 1:25, from CRL-2700, ATCC) to reduce parental background.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-VSV-G</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells were fixed with 4% PFA (Electron Microscopy Sciences, #15714S), permeabilized with Triton X-100 (SIGMA, #X100-500ML) and stained with an antibody against the viral nucleocapsid protein (Sino Biologicals, #40143-R001) followed by a staining with the nuclear dye Hoechst 33342 (Fisher Scientific, # H1399) and a goat anti-rabbit Alexa Fluor 647 antibody (Invitrogen, #A-21245).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>#X100-500ML</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-rabbit</div><div>suggested: (Molecular Probes Cat# A-21245, RRID:AB_141775)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">HEK293T-ACE2, Vero-TMPRSS2) (32)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T-ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pseudotyped viruses were prepared using Lenti-X 293 cells seeded in 15-cm dishes.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For neutralization experiments, HEK-293T cells expressing hACE2 (Crawford et al. 2020) in DMEM supplemented with 10% FBS and 1% PenStrep were seeded at 20,000 cells per well into clear bottom, white manually poly-D-lysine coated 96 well plates and incubated at 37°C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK-293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Neutralization of authentic SARS-CoV-2 viruses: Vero-TMPRSS2 cells were seeded into black-walled, clear-bottom 96-well plates at 2 × 104 cells/well and cultured overnight at 37°C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero-TMPRSS2</div><div>suggested: JCRB Cat# JCRB1818, RRID:CVCL_YQ48)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell-surface mAb-mediated S1 shedding: CHO cells stably expressing the prototypic SARS-CoV-2 Spike protein were harvested, washed in wash buffer (PBS 1% BSA 2 mM EDTA) and resuspended in PBS.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHO</div><div>suggested: CLS Cat# 603479/p746_CHO, RRID:CVCL_0213)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Viral replication fitness assays: Vero E6 cells (ATCC, CRL-1586) were seeded at 1×106 cells per well in 6-well plates.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After a 15-minute incubation, Jurkat cells stably expressing FcγRIIIa receptor (V158 variant) or FcγRIIa receptor (H131 variant) and NFAT-driven luciferase gene (effector cells) were added at an effector to target ratio of 6:1 for FcγRIIIa and 5:1 for FcγRIIa.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Jurkat</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">fold-on trimerization motif, and an 8× His tag in the pCMV vector.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV</div><div>suggested: RRID:Addgene_20783)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Using the Database IMGT (http://www.imgt.org), the VH and VL gene family and the number of somatic mutations were determined by analyzing the homology of the VH and VL sequences to known human V, D and J genes.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>http://www.imgt.org</div><div>suggested: (IMGT - the international ImMunoGeneTics information system, RRID:SCR_012780)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">UCA sequences of heavy and light variable regions were constructed using IMGT/V-QUEST.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IMGT/V-QUEST</div><div>suggested: (IMGT/V-QUEST, RRID:SCR_010749)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 45 min incubation, absorbance at 405 nm was measured by a plate reader (Biotek) and data plotted using Prism GraphPad.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After a 30 sec stabilization step in KB, biosensors were moved in SARS-CoV or SARS-CoV-2 :2 dilution series (starting concentration: 18.5 nM) for the 600 sec association step, and then moved back in KB to record dissociation signals for 540 sec.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2</div><div>suggested: (BioLegend Cat# 946101, RRID:AB_2892515)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The data were baseline subtracted, results fitted using the Pall FortéBio/Sartorius analysis software (version 12.0) and plotted using GraphPad Prism (version 9.1.1</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data were analyzed and visualized with Prism (Version 9.1.1).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Prism</div><div>suggested: (PRISM, RRID:SCR_005375)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Micrographs were recorded using the Leginon software on a 120 kV FEI Tecnai G2 Spirit with a Gatan Ultrascan 4000 4k</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Leginon</div><div>suggested: (Leginon, RRID:SCR_016731)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">3D refinements were carried out using non-uniform refinement along with per-particle defocus refinement in CryoSPARC (57).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CryoSPARC</div><div>suggested: (cryoSPARC, RRID:SCR_016501)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Model building and refinement: UCSF Chimera (61) and Coot (62) were used to fit atomic models into the cryoEM maps.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">This variant was originally isolated in house from nasopharyngeal swabs taken from travelers returning to Belgium (baseline surveillance) and were subjected to sequencing on a MinION platform (Oxford Nanopore) directly from the nasopharyngeal swabs (65).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MinION</div><div>suggested: (MinION, RRID:SCR_017985)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your code and data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 24. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.16.464644: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The cleaned Fasta file was then uploaded to SnapGene (version 5.3.2) for multisequence analysis via the MAFFT tool.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SnapGene</div><div>suggested: (SnapGene, RRID:SCR_015052)</div></div><div style="margin-bottom:8px"><div>MAFFT</div><div>suggested: (MAFFT, RRID:SCR_011811)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">With these factors all considered, an optimal tree was selected from the 21 trees for re-rooting via FigTree (https://github.com/rambaut/figtree/releases/tag/v1.4.4).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FigTree</div><div>suggested: (FigTree, RRID:SCR_008515)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The resulting tree was exported for image processing via Adobe Photoshop and subsequent presentation via Illustrator.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Adobe Photoshop</div><div>suggested: (Adobe Photoshop, RRID:SCR_014199)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">PyMol structural modeling: The PyMol molecular graphics system (version 2.4.2, https://pymol.org/2/) from Schrödinger, Inc. was used for downloading structure files from the PDB database for further analysis and image export.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMol</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The images were cropped via Adobe Photoshop and further presentation using Illustrator.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Illustrator</div><div>suggested: (Adobe Illustrator, RRID:SCR_010279)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your code.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.13.21264916: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: Deidentified data from staff testing and patients were obtained from the Infections in Oxfordshire Research Database (IORD) which has generic Research Ethics Committee, Health Research Authority and Confidentiality Advisory Group approvals (19/SC/0403, ECC5-017(A)/2009).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Secondary antibody rabbit anti-human whole IgG conjugated to alkaline phosphatase (Sigma, USA) or a secondary antibody mouse anti-human IgA conjugated to horse radish peroxidase (Sigma, USA) was added at a dilution of 1:1000 in casein–PBS solution and incubated for 1 hour at RT after which a final wash was performed.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human whole IgG</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human IgA</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For detection of the IgA secondary antibody, plates were developed by adding Tetramethylbenzidine (TMB) (Thermo scientific USA) to visualize and Sulfuric acid to stop the reaction.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IgA</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A 1x working concentration of the SULFO-TAG anti-human IgG Detection Antibody was prepared in Diluent 100.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: (RevMAb Biosciences Cat# 31-1019-MK, RRID:AB_2783627)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Microplates were coated with RBD in Dulbecco’s Phosphate Buffered Saline (DPBS) to bind corresponding ACE2 or blocking antibodies of the sample.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">MSD V-PLEX assay: IgG antibody responses to SARS-CoV-2 spike, RBD, NTD and nucleocapsid and the spike proteins of SARS-CoV-1, HCoV-229E, HCoV-NL63, HCoV-HKU1 and HCoV-OC43 were assessed using the Meso Scale Diagnostics (MSD) Multi-Spot Assay System (MSD, USA)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HCoV-NL63</div><div>suggested: RRID:CVCL_RW88)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.17.464700: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: Patient Samples and Collection: Use of human samples for this study was approved by the University of Ottawa Ethics Review Board: Certificates H-04-20-5727, H-04-21-6643 and H-07-20-6009.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In initial experiments, aliquots of each fraction were visualized via immunoblotting (anti-His antibody; Cat: SAB2702218</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-His</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In conjunction, titration curves of conformation-dependent monoclonal IgM (Absolute Antibody, Ab01680-15.0), IgA (Absolute Antibody, Ab01680-16.0), and IgG (Absolute Antibody, Ab01680-10.0) CR3022 antibodies were used as reference material to assess protein folding.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>titration curves of conformation-dependent monoclonal IgM ( Absolute Antibody , Ab01680-15.0) , IgA ( Absolute Antibody , Ab01680-16.0)</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>IgG ( Absolute Antibody , Ab01680-10.0 ) CR3022 antibodies</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After blocking, plates were washed thrice with PBS-T, and followed by addition of 100 μL of the respective diluted serum samples and CR3022 antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CR3022</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The plates were incubated for two hours on a shaker at room temperature, washed thrice with PBS-T followed by the addition of 50 μL of the respective secondary-HRP antibody at specified dilutions (1:4000 secondary anti-human IgG-HRP (NRC anti-hIgG#5-HRP</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG-HRP</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Surrogate Neutralization ELISA (snELISA) assay for evaluation of neutralization in serum samples: The described methodology was adapted from the surrogate neutralization ELISA assay as shown in Abe et al. 2020, for the evaluation of the relative inhibition of neutralizing antibodies to RBD protein from binding to soluble ACE2.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">RBD Production in mammalian cells: For comparison, a mammalian RBD was produced in HEK 293F cells and purified.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK 293F</div><div>suggested: RRID:CVCL_6642)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">(Mount Sinai, NYC) encoding the Whuhan-Hu-1 RBD (MN908947) sequence coding for the amino acid 319-541 and fused with the N-terminal SARS-CoV-2 spike secretory signal and a C-terminal hexa-histidine tag was transfected into 293F cells cultivated in Freestyle 293 expression media (Thermo Fisher, #12338018) at 37°C, 7% CO2, while shaking (125rpm).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Whuhan-Hu-1 RBD</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The construct was codon-optimized for N. benthamiana expression and was synthesized by GenScript into the pHREAC vector (Peyret et al., 2019) via BsaI sites</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHREAC</div><div>suggested: RRID:Addgene_134908)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Lectin-binding human chaperone calreticulin (NP_004334.1) was codon-optimized for N. benthamiana and synthesized in the pHRE vector (Peyret et al., 2019).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHRE</div><div>suggested: RRID:Addgene_134909)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Transient expression in Nicotiana benthamiana: Prior to infiltration, pHREAC-RBD and pHRE-calreticulin were freshly transformed into Agrobacterium tumefaciens strains AGL1 and Gv2260, respectively, via electroporation.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHREAC-RBD</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pHRE-calreticulin</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Dissociation constant (KD) was determined using 4-parameter curve fitting with GraphPad Prism 9.1.2 software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. COURSE CONTENT

      I love the verbs chosen for each page/discussion/assignment. It is a great call to action! The structure is outstanding. The only issue I see with this display is that the image raises an equity issue - students who require screen readers will not be able to access this information unless there is a really long alt tag associated with the image.

    1. For a very long time in the COVID-19 crisis, behavioural change leading to physical distancing behaviour was the only tool at our disposal to mitigate virus spread. In this large-scale naturalistic experimental study we show how we can use behavioural science to find ways to promote the desired physical distancing behaviour. During seven days in a supermarket we implemented different behavioural interventions: (i) rewarding customers for keeping distance; (i) providing signage to guide customers; and (iii) altering shopping cart regulations. We asked customers to wear a tag that measured distances to other tags using ultra-wide band at 1Hz. In total N = 4,232 customers participated in the study. We compared the number of contacts (< 1.5 m, corresponding to Dutch regulations) between customers using state-of-the-art contact network analyses. We found that rewarding customers and providing signage increased physical distancing, whereas shopping cart regulations did not impact physical distancing. Rewarding customers moreover reduced the duration of remaining contacts between customers. These results demonstrate the feasibility to conduct large-scale behavioural experiments that can provide guidelines for policy. While the COVID-19 crisis unequivocally demonstrates the importance of behaviour and behavioural change, behaviour is integral to many crises, like the trading of mortgages in the financial crisis or the consuming of goods in the climate crisis. We argue that by acknowledging the role of behaviour in crises, and redefining this role in terms of the desired behaviour and necessary behavioural change, behavioural science can open up new solutions to crises and inform policy. We believe that we should start taking advantage of these opportunities.
    1. Reviewer #1 (Public Review): 

      In this manuscript, the authors challenge the long-standing conclusion that Orco and IR-dependent olfactory receptor neurons are segregated into subtypes such that Orco and IR expression do not overlap. First, the authors generate new knock-in lines to tag the endogenous loci with an expression reporter system, QF/QUAS. They then compare the observed expression of these knock-ins with the widely used system of enhancer transgenes of the same receptors, namely Orco, IR8a, IR25a, and IR76b. Surprisingly, they observe an expansion of the expression of the individual knock-in reporters as compared to the transgenic reporters in more chemosensory neurons targeting more glomeruli per receptor type than previously reported. They verify the expression of the knock-in reporters with antibody staining, in situ hybridization and by mining RNA sequencing data. 

      Finally, they address the question of physiological relevance of such co-expression of receptor systems by combining optogenetic activation with single sensillum recordings and mutant analysis. Their data suggests that IR25a activation can modulate Orco-dependent signaling and activation of olfactory sensory neurons. 

      The paper is well written and easy to follow. The data are well presented and very convincing due in part to the combination of complementary methods used to test the same point. Thus, the finding that co-receptors are more broadly and overlappingly expressed than previously thought is very convincing and invites speculation of how this might be relevant for the animal and chemosensory processing in general. In addition, the new method to make knock-ins and the generated knock-ins themselves will be of interest to the fly community. 

      The last part of the manuscript, although perhaps the most interesting, is the least developed compared to the other parts. In particular, the following points could be addressed: 

      - It would be good to see a few more traces and not just the quantifications. For instance, the trace of ethyl acetate in Fig. 6C, and penthyl acetate for 6G. 

      - In Fig. 4D, the authors show the non-retinal fed control, which is great. An additional genetic control fed with retinal would have been nice. 

      - It appears that mostly IR25a is strongly co-expressed with other co-receptors. The provided experiments suggest a possible modulation between IR25a and Orco-dependent neuronal activity. However, what does this mean? How could this be relevant? And moreover, is this a feature of Drosophila melanogaster after many generations in laboratories?

    1. effective use of high quality educational and research materials

      Noting here University of Edinburgh's collection of OERs that support SD4 including

      • Foundations for All - supporting refugee scholars
      • Wikimedia in Education published in cooperation with Wikimedia UK "bringing together a collection of case studies from across the UK in order to provide insight into the use of the Wikimedia projects in education."
      • Critical Thinking in Global Challenges - a series of open licensed videos "to better understand what critical thinking is, and to practice and enhance critical thinking skills" and how they were applied in course activities designed around global issues

      There's much more here https://open.ed.ac.uk/tag/sdg4/

    1. Highlightr adds a menu with pre-defined colors for the <mark> html tag to allow for an easier multi-color highlighting experience.

      Here is a way to make better highlights

    1. SciScore for 10.1101/2021.10.12.464150: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Consent: Informed consent was obtained from all patients, and all patient samples were collected after a full recovery from illness and under IRB approval.<br>IACUC: Animal work was performed at Lovelace Biomedical Research Institute (LBRI), with approval from the Institutional Animal Care and Use Committee (IACUC) and within Animal Biosafety Level 3 (ABSL3) containment.<br>Euthanasia Agents: All animals were euthanized with an euthanasia solution consisting of 390 mg of sodium pentobarbital and 50 mg of phenytoin per mL.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">The FPF of delivered dose was calculated as the total amount of sugar or sugar alcohol (e.g., trehaose, mannitol) collected with an aerodynamic diameter below 5 µm as a percentage of the total amount of sugar or sugar alcohol deposited on the adapter, the induction port, stages 1–7 and Micro-Orifice Collector. 2.8. Efficacy of AUG-3387 in and in vivo model of SARS-CoV-2 infected Syrian Hamsters: An in vivo efficacy study was performed with male Syrian Hamsters (Mesocricetus auratus) approximately 9 weeks of age with a weight range of 110-134 g, at time of randomization, were sourced from Charles River Laboratory.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">The FPF of delivered dose was calculated as the total amount of sugar or sugar alcohol (e.g., trehaose, mannitol) collected with an aerodynamic diameter below 5 µm as a percentage of the total amount of sugar or sugar alcohol deposited on the adapter, the induction port, stages 1–7 and Micro-Orifice Collector. 2.8. Efficacy of AUG-3387 in and in vivo model of SARS-CoV-2 infected Syrian Hamsters: An in vivo efficacy study was performed with male Syrian Hamsters (Mesocricetus auratus) approximately 9 weeks of age with a weight range of 110-134 g, at time of randomization, were sourced from Charles River Laboratory.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A fluorescently labelled anti-human IgG/IgA/IgM secondary antibody was also added to each well.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG/IgA/IgM</div><div>suggested: (Sigma-Aldrich Cat# S4893, RRID:AB_10625701)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For identification of surface bound antibodies binding to SARS-CoV-2, SARS-CoV-2 antigens conjugated to Alexa Fluor 488 stained SARS-CoV-2 antigen was used as a staining agent for single cell sorting of antigen reactive memory B cells into 96 well plates on a Sony SH-800 Cell Sorter.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2</div><div>suggested: (Thermo Fisher Scientific Cat# 53-6490-82, RRID:AB_2884046)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">AUG-3705 was attached to the LSA flow cell via interaction with its V5 tag and a surface bound anti-V5 antibody.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-V5</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The cells were enriched 4 times until 97% of the cells showed signal above the negative control as read out by staining with anti-ACE-2 and secondary antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-ACE-2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Assay: 2.4.1 ACE-2 Expressing HEK293T Cell Line Construction: An ACE2 expressing HEK293T cell line (“LentiX ACE2.S4”) was constructed by packaging pCMV-AC-GFP (Origene) into lentivirus and transducing HEK293T’s (ATCC).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE-2</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Infected cell culture supernatant was diluted with 950 µL D10 media, and then serial diluted before 50 µL of each dilution was added to 8 wells of Vero E6 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: RRID:CVCL_XD71)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 96 hours, 100 µL CellTiterGlo reagent was added to each well of the infected Calu-3 cells to assay for live cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Calu-3</div><div>suggested: BCRJ Cat# 0264, RRID:CVCL_0609)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Assay: 2.4.1 ACE-2 Expressing HEK293T Cell Line Construction: An ACE2 expressing HEK293T cell line (“LentiX ACE2.S4”) was constructed by packaging pCMV-AC-GFP (Origene) into lentivirus and transducing HEK293T’s (ATCC).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV-AC-GFP</div><div>suggested: None</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04872231</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Completed</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Single Ascending Dose and Multiple Ascending Dose Study of V…</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04576325</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Pharmacokinetic Profile of Voriconazole Inhalation Powder in…</td></tr></table>


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.12.464114: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: Description of cohort and ethics statement: Samples were collected from participants enrolled in a prospective cohort study approved by the Biomedical Research Ethics Committee (BREC) at the University of KwaZulu–Natal (reference BREC/00001275/2020).<br>Consent: Written informed consent was obtained from each participant.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Four were males and 5 were females.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For RBD expression experiments, 45 OD units of yeast were labeled in 1:100 diluted chicken-anti-Myc-FITC antibody (Immunology Consultants CMYC45F) to detect the RBD’s C-terminal Myc tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Myc tag .</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After the plasma incubations, the libraries were secondarily labeled for 1 hour with 1:100 fluorescein isothiocyanate-conjugated anti-MYC antibody (Immunology Consultants Lab, CYMC-45F) to label for RBD expression and 1:200 Alexa Fluor-647-conjugated goat anti-human-IgA+IgG+IgM (Jackson ImmunoResearch 109-605-064) to label for bound plasma antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-MYC</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human-IgA+IgG+IgM</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">, version 0.8.10) to process Illumina sequences into counts of each barcoded RBD variant in each pre-selection and antibody-escape population.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>antibody-escape population .</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Magnetic Separation Rack, Thermo Fisher Scientific, CS15000) was used to separate antibodies that bind RBD from the supernatant, and the supernatant (the post-RBD antibody depletion sample) was removed.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>post-RBD</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Note that these assays were performed in 293T cells over-expressing human ACE2, which may underestimate contributions of non-RBD-binding antibodies to viral neutralization (7, 35, 60).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Dilution series of the synthetic sera comprised of the anti-RBD antibody REGN10987 (72), which binds to both Wuhan-1-like RBD and B.1.351 RBD, and pooled pre-pandemic human serum from 2017-2018 (Gemini Biosciences; nos. 100–110, lot H86W03J; pooled from 75 donors) were performed such that the anti-spike antibody was present at a highest concentration of 0.25 µg/mL.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-spike</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pre-pandemic serum alone, without anti-RBD antibody depletion, was used as a negative control, averaged over 2 replicates</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-RBD</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibody binding was detected with TMB/E HRP substrate (Millipore Sigma, ES001) and 1 N HCl was used to stop the reaction.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ES001</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Generation of pseudotyped lentiviral particles: HEK-293T (American Type Culture Collection, CRL-3216) cells were used to generate SARS-CoV-2 spike-pseudotyped lentiviral particles and 293T-ACE2 cells (Biodefense and Emerging Infectious Research Resources Repository (BEI Resources), NR-52511) were used to titer the SARS-CoV-2 spike-pseudotyped lentiviral particles and to perform neutralization assays (see below).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T-ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">To generate spike-pseudotyped lentiviral particles (70), 6e105 HEK-293T (ATCC CRL-3216) cells per well were seeded in 6-well plates in 2 mL D10 growth media (Dulbecco’s Modified Eagle Medium with 10% heat-inactivated fetal bovine serum, 2 mM l-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK-293T</div><div>suggested: ATCC Cat# CRL-3216, RRID:CVCL_0063)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Note that these assays were performed in 293T cells over-expressing human ACE2, which may underestimate contributions of non-RBD-binding antibodies to viral neutralization (7, 35, 60).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: CCLV Cat# CCLV-RIE 1018, RRID:CVCL_0063)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For experiments involving D614G spike, we used spike-pseudotyped lentiviral particles that were generated essentially as described in (70), using a codon-optimized SARS-CoV-2 spike from Wuhan-Hu-1 strain that contains a 21-amino-acid deletion at the end of the cytoplasmic tail (27) and the D614G mutation that is now predominant in human SARS-CoV-2 (30).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Wuhan-Hu-1</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">AWY101 yeast containing a negative control (containing an empty vector pETcon plasmid) were grown overnight at 30°C in galactose-containing media.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pETcon</div><div>suggested: RRID:Addgene_41522)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The resulting CCSs are available on the NCBI Sequence Read Archive, BioProject PRJNA770094,</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>NCBI Sequence Read Archive</div><div>suggested: (NCBI Sequence Read Archive (SRA, RRID:SCR_004891)</div></div><div style="margin-bottom:8px"><div>BioProject</div><div>suggested: (NCBI BioProject, RRID:SCR_004801)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Statistical Analysis: The percent of neutralizing activity of early-2020 and B.1.351-convalescent plasmas due to RBD-binding antibodies is plotted with the plotnine python package, version 0.8.0 (https://plotnine.readthedocs.io/en/stable/index.html), shown as a Tukey boxplot (middle line indicating median, box limits indicating interquartile range) with individual measurements overlaid as points.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>python</div><div>suggested: (IPython, RRID:SCR_001658)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All raw sequencing data are available on the NCBI Short Read Archive at BioProject PRJNA770094, BioSample SAMN22208699, SAMN22208700.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>NCBI Short Read Archive</div><div>suggested: None</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your code and data.


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      Our study has several limitations. The cohorts of individuals infected with early 2020 and B.1.351 viruses are small, and are geographically and temporally distinct. Nevertheless, the two cohorts are relatively well-matched with respect to age, sex, and days-post symptom onset of sample collection (Table 1) and assays were performed under comparable conditions. Our deep mutational scanning measured binding to yeast-displayed RBD, which may not capture all relevant features of full-length spike in the context of virus. Finally, our neutralization assays used pseudotyped lentiviral particles and ACE2-overexpressing cells, and some recent works suggest that the relative importance of different spike epitopes for neutralization can depend on the viral system and target cell line used (7, 35, 36, 60). Although the B.1.351 variant has now been displaced by the Delta variant, our results illustrate the need to understand immunity elicited by different SARS-CoV-2 variants. As population immunity due to infection or vaccination increases, preexisting immunity is becoming an increasingly important driver of SARS-CoV-2 evolution (61), as has shown to be the case for seasonal coronaviruses (62, 63). Moreover, as individuals begin to accumulate more complex SARS-CoV-2 immune histories due to multiple infections and/or vaccinations, the effects of immune imprinting or original antigenic sin (64, 65) may start to interact with the variant-specific immunodominance hierarchies we have describ...

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. .

      Are you aware of work by Jane Lugea and Dan Mcintyre at Huddersfield who also developed some software (called Worldbuilder) that can tag and annotate texts using TWT principles? They discuss it in this article but there may be other publications about it too: link to article The software has mixed reviews from TW theorists... some don't see it as necessary for TWT analysis. I'm not sure how often Worldbuilder is used now.

    1. I said above that I typically spend 10 to 60 minutes Ankifying a paper, with the duration depending on my judgment of the value I'm getting from the paper. However, if I'm learning a great deal, and finding it interesting, I keep reading and Ankifying. Really good resources are worth investing time in.

      How to tag and store the "really good sources" for later review? I wouldn't want to have thousands of really good sources because then I wouldn't have any bandwidth for new material. Always pop something out if something goes in?

    1. SciScore for 10.1101/2021.10.11.463956: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">The experiments were not randomized and investigators were not blinded to allocation during experiments and outcome assessment.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">The experiments were not randomized and investigators were not blinded to allocation during experiments and outcome assessment.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">No statistical methods were used to predetermine sample size.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell Lines: 293T (or HEK293T) cells, 293T-ACE2, and Expi293F cells were cultured in DMEM media, supplemented with 10% FBS, 100 U/ml penicillin/ streptomycin, 2 mM L-glutamine, and in the presence of 5% CO2.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>Expi293F</div><div>suggested: RRID:CVCL_D615)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">293T-ACE2 cells, derived from 293T, stably express human ACE2 71.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T-ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Expi293F cells, derived from the 293 cells, were purchased from ThermoFisher Scientific (cat # A14528; RRID: CVCL_D615).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Expi293F</div><div>detected: ( RRID:CVCL_D615)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Viral infectivity measurements: The infectivity of lentivirus particles carrying S proteins (including variants) on the surface was evaluated using a vector containing an HIV-1 long terminal repeat (LTR) that expresses a Gaussia luciferase reporter (HIV-1-inGluc) 72,73. 293T cells were transfected at 60–80 % confluency with the plasmid encoding indicated full-length SARS-CoV-2 S glycoproteins, the plasmid encoding an intron-regulated Gluc (HIV-1-inGluc), and a plasmid pCMV delta R8.2 encoding HIV-1 GagPol (Addgene, plasmid # 12263) using FuGENE 6 (Promega, # E2311).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Untagged and double-tagged SARS-CoV-2 spike variants were generated based on a template full-length pCMV3-SARS-CoV-2 Spike (codon-optimized, Sino Biological, cat # VG40589-UT) plasmid that has translated amino acid sequence identical to QHD43416.1 (GenBank).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV3-SARS-CoV-2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">D614G point mutation was introduced into both untagged full-length pCMV3 SD614 and double-tagged SD614 Q3/A4 constructs to generate both untagged and tagged SG614 variants.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV3</div><div>suggested: RRID:Addgene_161029)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">E484K point mutation was introduced into both untagged and tagged pcDNA3.1 SAlpha by site-specific mutagenesis.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3.1</div><div>suggested: RRID:Addgene_79663)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Viral infectivity measurements: The infectivity of lentivirus particles carrying S proteins (including variants) on the surface was evaluated using a vector containing an HIV-1 long terminal repeat (LTR) that expresses a Gaussia luciferase reporter (HIV-1-inGluc) 72,73. 293T cells were transfected at 60–80 % confluency with the plasmid encoding indicated full-length SARS-CoV-2 S glycoproteins, the plasmid encoding an intron-regulated Gluc (HIV-1-inGluc), and a plasmid pCMV delta R8.2 encoding HIV-1 GagPol (Addgene, plasmid # 12263) using FuGENE 6 (Promega, # E2311).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCMV</div><div>suggested: RRID:Addgene_20783)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, DNA sequence encoding monomeric hACE2 followed by an HRV3C cleavage site, monomeric Fc tag, and 8xHisTag at the 3’-end were synthesized and cloned into the pVRC8400 vector.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pVRC8400</div><div>suggested: RRID:Addgene_63164)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Where indicated, the conformational effects of hACE2 on S proteins were conducted by pre-incubating fluorescently labeled viruses with 200 μg/ml hACE2 for 90 mins at room temperature before imaging and smFRET imaging data were taken in the continued presence of 200 μg/ml hACE2. smFRET quantification and statistical analysis: The analysis of smFRET data was performed using a MATLAB-based customized SPARTAN software package 78.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SPARTAN</div><div>suggested: (SPARTAN, RRID:SCR_014901)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Based on visual inspection of fluorescence and FRET traces that revealed direct observations of state-to-state (conformation-to-conformation) transitions, FRET histograms were fitted into the sum of four Gaussian distributions using the least-squares fitting algorithm in MATLAB.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MATLAB</div><div>suggested: (MATLAB, RRID:SCR_001622)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on pages 20 and 22. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Reviewer #1 (Public Review):

      Cytoplasmic germ granules are a common feature of germ cells across species. Great effort has gone into trying to (1) identify proteins that localize to these condensates, (2) gain insights into how these granules assemble, and (3) characterize their functional significance. Pioneering studies on P granules in C. elegans have greatly expanded our understanding of these structures.

      In this paper, Price et al. use proximately labeling to identify previously unknown P granule components. They tag several known P granule protein genes with TurboID at their endogenous loci and perform biotinylation reactions in two different ways. Labeled proteins were subsequentially pulled down and identified using mass spectrometry. This approach successfully identified known P granule components and many new potential candidates. The authors focus their efforts on characterizing two related proteins EGGD-1 and EGGD-2 (also known as MIP-1 and MIP-2, based on recently published work). Knockdown of EGGD-1 and EGGD-2 using RNAi results in P granule defects. Cas-9 induced mutations confirm and extend this genetic analysis. The authors also perform structure/function analysis on EGGD-1 and define specific roles for its LOTUS and Intrinsically Disordered Region (IDR) domains in perinuclear P granule formation and function. Epistasis analysis shows that EGGD-1 acts upstream of GLH-1 in P granule assembly, and overexpression of EGGD-1 can drive granule formation outside of germ cells.

      Strengths

      The P granule proteome data presented here provides a useful resource for the community. The genetic analysis on eggd-1 provides important insights into the function of a new P granule component. The data are convincing, and the experiments are well-controlled.

      Weaknesses

      There are relatively few weaknesses and the general conclusions are supported by the data.

    1. I just bookmarked this article published today in Current Biology for later reading and annotation. While the article isn't specifically focused on memory, the fact that it touches on visual structures, emotion, music, and movement (dance) which are core to some peoples' memory toolkits, I thought that many here would find it to be of interest.

      One of the authors provided the following tl;dr synopsis:

      "Across the world, people express emotion through music and dance. But why do music and dance go together?

      We tested a deceptively simple hypothesis: Music and movement are represented the same way in the brain."

      For those who haven't integrated song or dance into their practices, searching around for the idea of songlines will give you some background on their possible uses.

      cc: @LynneKelly

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons

      1. General Statements

      We want to thank all three reviewers for their positive feedback, constructive comments, and suggestions for clarity and improvement. We are delighted to find their consensus that the manuscript represents a contribution to the field.

      Accordingly, we made changes in the text (all highlighted in blue in the revised manuscript) and added a new figure as detailed in the point-by-point response.

      2. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors describe results of the comprehensive analysis of the prevalence and functionality of intrinsically disordered regions of the pathogen-encoded signaling receptor Tir, which serves as an illustrative example of the bacterial effector proteins secreted by Attaching and Effacing (A/E) pathogens. This is an interesting and important study that represents an impressive amount of data generated computationally and using a broad spectrum of biophysical techniques. The work serves as a model of the well-designed and perfectly conducted study, where intriguing conclusions are based on the results of the comprehensive experiments. The manuscript is well-written and concise, and I have a real pleasure reading it. The text and figures are clear and accurate.

      We thank the Reviewer for these positive comments on our work.

      Although, in general, prior studies are referenced appropriately, the authors should mention that the pre-formed structural elements they found in Tir are in line with the concept of "PreSMos" (pre-structured motifs) previously introduced and described in several important studies from the laboratory of Kyou-Hoon Han.

      We thank the Reviewer for this suggestion. We have added a sentence to acknowledge the presence of “PreSMos” in the target-free state of Tir as putative signatures for target-binding, referring to a review article summarizing several local structural elements in unbound IDPs:

      “This supports the presence of pre-structured motifs (PreSMos) as pre-existing signatures for target binding and function within target-free Tir (72)**.”

      Please, note that we decided to keep this discussion to a minimum, as we cannot rule out the contribution of the induced fit model to the binding mechanism (i.e., disorder-to-order transition upon binding).

      Reviewer #1 (Significance (Required)):

      Solid evidence is provided that structural disorder and short linear motifs represent common features of A/E pathogen effectors. In fact, using a set of bioinformatics tools, the authors first show that although prokaryotic proteins typically contain significantly less intrinsic disorder than eukaryotic proteins, A/E pathogen effectors are as disordered as eukaryotic proteins. Using the translocated intimin receptor (Tir) as a subject of focused study, the authors then utilized a number of biophysical techniques to draw an impressive picture of disorder-based functionality. This study clearly represents a major advancement in the field of functional intrinsic disorder in general and in disorder-based functionality of proteins expressed by pathogenic bacteria. This was adds significantly to the field and will have a noticeable impact.

      Again, reading this manuscript was a real joy. Finally, this work perfectly fits in the area of my expertise, since for the past 25 years or so I am working on the different aspects of intrinsically disordered proteins.

      Thank you for this encouraging assessment.

      **Referee Cross-commenting**

      I agree with the amended recommendation of reviewer #3 to add in the manuscript EPEC O127.

      According to the suggestion of Reviewer #3, we have now included EPEC O127:H6 in the manuscript.

      I completely agree with comments of reviewer #2 and partially agree with reviewer #3. In my view, comparison of various strains as references for EPEC represents an interesting but independent project. It can be recommended to the authors as one of the potential future developments of their work.

      Thanks for the suggestion. We are pursuing that line of research.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The general impression is that this is an excellent study that establishes

      The C-terminal intracellular region of Tir called C-Tir spanning residues 338 to 550 is largely disordered, however, observe helical structural elements involved with lipid interactions; multi-phosphorylation. The intracellular N-terminal part of Tir called N-Tir spanning residues 1 to 233 is also partially disordered but include a folded domain that is shown to assemble into a dimer

      The only major concern is that no SDS-PAGE gels or size exclusion chromatograms have been included to verify purity and monodispersed of the various constructs worked on. In particular, the SAXS and CD measurement is highly sensitive to purity, and the level of degradation as IDPs are notorious for being difficult to handle in solution. it would strengthen the arguments made based that

      We produced N-Tir and C-Tir as fusion proteins with a cleavable N-terminal thioredoxin tag (Trx-His6) and C-terminal Strep-tag. The latter allowed us to purify them via Strep-tag affinity chromatography as indicated by SDS-PAGE (please see Fig. S1).

      We agree with the Reviewer that even small amounts of impurities (i.e., higher oligomers/degradation) can interfere with the data analysis and make interpretation of the resulting data difficult and potentially misleading. So, to avoid such problems, all samples were purified in monodispersed forms by size-exclusion chromatography (SEC) before any biophysical study.

      Following the Reviewer's suggestion, we added a new supplementary figure (Fig. S5) showing the SEC-SAXS chromatogram profiles of C-Tir, N-Tir, and NS-Tir. Briefly, in the inline SEC-SAXS experiment, the sample eluates from an HPLC system directly and continuously into a BioSAXS flow cell for subsequent X-ray interrogation. Under our experimental conditions, C-Tir elutes as a single peak with Rg-values and mass compatible with a disordered monomeric protein, providing an excellent fit to the experimental SAXS curves. For N-Tir and NS-Tir, by SEC-SAXS, we separated the dimer from small amounts of high-order oligomers to yield the experimental SAXS curves of the pure dimers.

      “Fig. S5. SEC-SAXS chromatograms of (A) C-Tir, (B) N-Tir, and (C) NS-Tir. Each plane shows normalized total scattering intensity I(s), over the entire s range, from each frame acquired along elution volume and respective Rg-value (black circles). The flat variation of Rg reflects a pure monodisperse sample. The column type for size exclusion chromatography and sample concentrations are on the top left of each panel. For reference, the retention volume for monomeric BSA (66.4 kDa) is displayed by red triangles.”

      **Minor Comments**

      Read through the manuscript to remove passages with spoken language

      We thank the Reviewer for this suggestion. We went through the manuscript and improved the writing to reduce passages with spoken language.

      Line 263, "To do so", should be removed

      Line 290 "Our data thus" replaced with "this"

      We have amended the manuscript accordingly.

      Line 292 "lipid bilayers that might potentially fine-tune Tir's activity in the host cell." Weak sentence and the word fine-tune is slang. Rewrite the sentence. The interaction with lipids is fascinating!

      Thanks for the suggestion. The sentence has now been changed to “**This shows that C-Tir can undergo multivalent and tunable electrostatic interaction with lipid bilayers via pre-structured elements, suggesting that membrane-protein interplay at the intracellular side might control the activity and interactions of Tir in host cells.**”

      We also reinforce this fascinating message in the abstract by adding the sentence: “Membrane affinity is residue-specific and modulated by lipid composition, suggesting a previously unrecognized mechanism for interaction with the host.”

      Line 192 "In figure Fig. 3A," remove the Fig

      Fixed.

      Line 326, "In a similar fashion," is redundant. Rewrite the sentences below.

      We have modified the sentence as follows: “We evaluated whether the N-terminal cytosolic region of Tir (N-Tir; Fig S1) was also intrinsically disordered ...

      Line 342 add spaces between digit and SI unit "52kDa" there are more cases of this.

      Thank you for pointing this out. This has now been corrected to 52 kDa.

      Reviewer #2 (Significance (Required)):

      I expect this study to have broad relevance to microbiologists working with the intimin and translocated intimin receptor, in particular the lipid interaction is likely to be followed up by the community.

      We thank the reviewer for this comment. Indeed, we believe that further studies on Tir's lipid-binding ability as a novel molecular strategy in host-pathogen interactions, will potentially provide new insights on virulence, transmembrane signaling in general, and disorder-mediated functions.

      **Referee Cross-commenting**

      What reviewer 3 suggested in the comments sounds like added value and should be included.

      I agree with reviewer 1, that the strain comparison potentially is beyond the scope presented in this manuscript.

      We have now included EPEC O127:H6 in the manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      **Summary:**

      This interesting manuscript look at the structure of the Nter and Cter of the effector Tir from enteropathogenic E. coli. The authors confirmed previous study highlighting the "disordered" part of the Cter. However, the extended experimental work (NMR, Small-angle X-ray scattering and CD spectroscopy) from this study also reveals the connection between different area of Tir and its implication during Tir phosphorylation and its interactions with SH2 domain.

      We thank the Reviewer for this positive remark. Indeed, in our work, we highlight the structural features of the SH2-mediated interaction between Tir and host SHP-1 protein, and we also show that C-Tir is capable of lipid interaction via pre-structured motifs and that N-Tir is disordered but assembled into a dimer. Overall, we provide an updated and wide picture of Tir's intracellular side that goes beyond the scrutiny of previously described disorder features.

      **Major Comments:**

      The authors used E2348/69 (O127:H7) strain as a reference for EPEC. However, this strain are the least effectors of all the EPEC sequences and may over estimated the PDR in EPEC. It would be wiser to use a strain like B171 as a reference for EPEC to be able to conclude "Disordered Proteins (PDR) with long disordered regions occur in EPEC effectors similar to the human proteome". I believe that the PDR in EPEC is similar to EHEC and CR. I do not have any major concern for the rest of the work.

      We thank the Reviewer for this comment. So, to clarify, we amended “EPEC” with “EPEC O127:H6” in text and figures.

      We also added a paragraph at the beginning of the Discussion section to acknowledge that our prediction analysis concerns EPEC O127:H6 and two additional representative A/E bacteria strains:

      “Among the enteropathogenic Escherichia coli strains EPEC O127:H6 (E2348/69) is commonly used as a prototype strain to study EPEC biology, genetics, and virulence (69). Here, we have determined the structural disorder propensity of EPEC O127:H6 sequences and two additional representatives of A/E bacteria: EHEC O157:H7 and CR ICC168.

      Finally, the Reviewer suggests to include EPEC strain B171 (serotype O111:NM) in our analysis. We agree that considering additional strains would be of value, however we believe that this is beyond the scope of this manuscript, which mainly focuses on the characterization of the structural features of the E2348/69 Tir effector. We are currently working on a broader comparative analysis among different Escherichia coli pathogenic strains, including B171, and we hope to share our findings with the community in the near future.

      **Minor comments**

      Statistic problem: Mann Whitney U Test (Wilcoxon Rank Sum Test) is a comparison of two independent samples with the underlying assumption is normally distributed or that the samples were sufficiently large. It is not certain that any of this assumption is correct. In addition, the effector are part of the whole proteome. Can it be then considered that both groups are independent?

      We thank the Reviewer for this remark, which allows us to clarify the choice of this particular test. Indeed the Mann Whitney U-test is a non-parametric test to compare two samples with the alternative hypothesis being that one of the two samples is stochastically greater than the other. As it is a nonparametric test samples are not required to be normally distributed, as it is for the Student t-test.

      Regarding the independence of the samples, when comparing the effectors collections to their corresponding proteomes, we did exclude the effectors sequences from the latter. We have clarified this point in the Supplementary Material and Methods section.

      Line 120 and 442: O127 not H127

      Thank you for pointing this out. It has now been corrected to O127.

      Line 212: positions 409 or 405?

      Yes, it should be 405. Thank you.

      Reviewer #3 (Significance (Required)):

      **Nature and significance:**

      Tir plays a major role during EPEC infection. It is a signalling platform that has been reported to interact with multiple proteins. Whereas the extracellular part has been well characterised and crystallised, the intracellular part has been proven so far to be difficult to study. Over the last decade, no progress has been made to explain how Tir works. This manuscript provides interesting information that shade some light on how the protein could work.

      **Existing literature:**

      The last research manuscript trying to highlight the structural function of Tir dates from 2007 (PMC1896257). This study is far more extended and in depth than any other previous work done.

      **Audience:**

      the Audience may probably limited to researcher working on the field of cellular microbiology and the function associated with bacterial effector in the host. This study could be also a useful tool to identify new effectors base on their "disorder".

      We thank the Reviewer for recognizing the importance of this study. We agree that our work highlights the pivotal role of disordered regions in bacterial effectors, thus enabling a better understanding of the molecular mechanisms used by pathogens to subvert the host-cell processes. We indeed believe that our work can stimulate further research on the characterization of intrinsically disordered effectors, and also beyond the cellular microbiology field, in order to gain a broader knowledge on the molecular dialogue at the host-pathogen interface, which is essential to design better therapeutic strategies.

      **Expertise:**

      I have been working on A/E pathogens for the last 15 years with a particular interest in Tir signalling. My domain of expertise is more in relation to cell signalling than crystallography or structural study.

      **Referee Cross-commenting**

      I agree with both reviewers. My comment about EPEC is more about the conclusion for some of the figures. I don't think they should conclude for the whole EPEC. The Tir variation among EHEC O157:H7 is low, but it is far more diverse for EPEC. Simply adding in the manuscript EPEC O127 should be enough.

      We thank the Reviewer for this comment. As mentioned above, we now state in the manuscript, in both Results and Discussion sections, that we used E2348/69 as a representative strain for EPEC.

    1. SciScore for 10.1101/2021.10.05.21264054: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: Study participants and ethics statement: Blood samples were obtained from 143 dialysis patients and 48 healthcare workers under study protocols approved by the local Institutional Review Boards (Canton Ticino Ethics Committee, Switzerland).<br>Consent: All subjects provided written informed consent for the use of blood and blood components (such as PBMCs, sera or plasma).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">Statistical analysis: The study was designed to have 80% power to detect a minimum 25% difference in total incidence of cases with poor neutralizing antibody response (i.e., low or undetectable plasma antibody titers) or in average neutralizing titers between dialysis patients and healthy controls as well as within the HD subgroups.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell lines: Cell lines used in this study were obtained from ATCC (Vero E6 TMPRSS2) or ThermoFisher Scientific (Expi CHO cells, Expi293F™ and FreeStyle 293 cells)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHO</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Vero E6 TMPRSS2 cells were grown in DMEM supplemented with 10% HyClone (FBS)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6 TMPRSS2</div><div>suggested: JCRB Cat# JCRB1819, RRID:CVCL_YQ49)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plasma pseudovirus neutralization assay: Vero E6-TMPRSS2 were grown in DMEM supplemented with 10% FBS and seeded into white bottom 96 well plates (PerkinElmer, 6005688), as previously described35.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6-TMPRSS2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Production of recombinant glycoproteins: The SARS-CoV-2 RBD WT construct was synthesized by GenScript into phCMV1, with a sequence encoding an N-terminal mu-phosphatase signal peptide, an ‘ETGT’ linker, SARS-CoV-2 S residues 328-531, a linker sequence, an Avi tag, a twin Strep tag and a 8xHis-tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>phCMV1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The SARS-CoV-2 stabilized Spike WT (D614G) construct was synthesized by GenScript into pCDNA with an N-terminal mu-phosphatase signal peptide, 2P stabilizing mutation28,29, a TEV cleavage site and a C-terminal foldon, 8x His-tag, Avi tag and C-tag30 and expressed in FreeStyle 293 cells following manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCDNA</div><div>suggested: RRID:Addgene_105932)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Amino acid substitutions were introduced into the D614G pCDNA_SARS-CoV-2_S plasmid as previously described31.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCDNA_SARS-CoV-2_S</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data were analyzed and visualized with Prism (Version 9.1.0).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Prism</div><div>suggested: (PRISM, RRID:SCR_005375)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data were plotted and analyzed with GraphPad Prism software (version 9.1.0).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      Our study has some limitations including a missing control group of patients matched by age, gender and comorbidities, without ESKD, while our control group was composed by younger individuals with few or no comorbidities. Another limitation was the low number of PD patients that did not allow to make subgroup analyses of risk factors of defective response. In addition, our patients were unbalanced in terms of type of mRNA vaccine received (BNT162b2 or mRNA-1273), although we had sufficient statistical power to make a comparison, even in a subgroup of patients matched by age, gender and comorbidity index. In conclusion, our study demonstrates, at the functional level, that mRNA vaccines induce a defective neutralizing antibody response against SARS-CoV-2 variants in dialysis patients, in particular in naïve HD patients immunized with BNT162b2. Our findings support the need of an additional boost, preferentially with a high-dose mRNA vaccine, in this population58-60, which, however, need to be continuously monitored with proper serological tests that measure not only the serum antibody levels, but also their neutralizing activity, either directly or indirectly through an avidity test. Finally, our data suggest that some patients may not respond efficiently even after an additional boost and, therefore, in case of SARS-CoV-2 infection, they should be considered for other therapeutic strategies, including early immunotherapy with monoclonal antibodies.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.05.463282: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Consent: Written informed consent was obtained from all patients.<br>IRB: This study was approved by the Institutional Review Board of The University of Hong Kong/Hospital Authority Hong Kong West Cluster, the Hong Kong East Cluster Research Ethics Committee, and the Kowloon West Cluster Research Ethics Committee (UW 13-265, HKECREC-2018-068, KW/EX-20-038[144-26]).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Male and female golden Syrian hamsters (Mesocricetus auratus) (aged 6–10 weeks) were purchased from the Chinese University of Hong Kong Laboratory Animal Service Centre through the HKU Laboratory Animal Unit</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">The hamsters were randomized from different litters into experimental groups.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Serially diluted plasma from healthy individuals or previously published monoclonal antibodies against HIV-1 (VRC01) were used as negative controls.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HIV-1</div><div>suggested: (bNAber Cat# bNAberID_1, RRID:AB_2491019)</div></div><div style="margin-bottom:8px"><div>VRC01</div><div>suggested: (bNAber Cat# bNAberID_1, RRID:AB_2491019)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Two consecutive staining steps were conducted: the first one used an antibody and RBD cocktail incubation of 30 min at 4 °C; the second staining involved staining with anti-His-APC and anti-His-FITC antibodies (Abcam) at 4 °C for 30 min to detect the His tag of the RBD.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-His-APC</div><div>suggested: (Miltenyi Biotec Cat# 130-101-320, RRID:AB_2747411)</div></div><div style="margin-bottom:8px"><div>anti-His-FITC</div><div>suggested: (Miltenyi Biotec Cat# 130-092-675, RRID:AB_1103226)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For dIgA antibody production, plasmids of paired heavy chain (IgA1, IgA2) and kappa light chain together with a J chain were co-transfected into Expi293™ expression system (Thermo Fisher Scientific) at the ratio of 1:1:1 following the manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IgA1</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>IgA2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibodies produced from cell culture supernatants were purified immediately by affinity chromatography using recombinant Protein G-Agarose (Thermo Fisher Scientific) or CaptureSelect™ IgA Affinity Matrix (Thermo Fisher Scientific) according to the manufacturer’s instructions, to purify IgG and IgA, respectively.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IgA</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">2 mL-fractions were collected, pooled, concentrated and evaluated by western blot using mouse anti-IGJ monoclonal antibody [KT109] (Abcam) and rabbit anti-human IgA alpha chain antibody (Abcam).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-IGJ</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human IgA alpha chain antibody ( Abcam) .</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The differences in response units between ACE2 injection alone and prior antibody incubation reflect the antibodies’ competitive ability against ACE2 binding to the spike protein.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For identification and localization of SARS-CoV-2 nucleocapsid protein (NP) in organ tissues, immunofluorescence staining was performed on deparaffinized and rehydrated tissue sections using a rabbit anti-SARS-CoV-2-NP protein antibody together with an AF488-conjugated anti-rabbit IgG (Jackson ImmunoResearch, PA, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2 nucleocapsid protein (NP</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-SARS-CoV-2-NP protein</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-rabbit IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After blocking with 0.1% Sudan black B for 15 min and 1% bovine serum albumin (BSA)/PBS at RT for 30 min, the primary rabbit anti-SARS-CoV-2-NP antibody (1:4000 dilution with 1% BSA/PBS) was incubated at 4°C overnight.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2-NP</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For identification of DC-SIGN expression, we stained the NT slices with rabbit anti-DC-SIGN primary antibody (Abcam) and Alexa Fluor 488 goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody (Life Technologies) according to the manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-DC-SIGN</div><div>suggested: (IMGENEX Cat# DDX0208A488, RRID:AB_1929964)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For identification of ACE2 expression, the goat anti-ACE2 primary antibody (R&D) and Alexa Fluor 568 donkey anti-goat IgG (H+L) secondary antibodies (Invitrogen) according to the manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-goat IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The infectious medium was replaced with fresh medium containing respective concentration of antibody after washing 3 times with PBS. 24 h later, the infected cells were imaged under fluorescence microscope after staining with AF488-conjugated anti-SARS-CoV-2 NP antibody.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 NP</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells were further permeabilized with 0.2% Triton X-100 and incubated with cross-reactive rabbit sera anti-SARS-CoV-2-N for 1 hour at RT before adding Alexa Fluor 488 goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody (Life Technologies).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2-N</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After treatment with B8 antibodies at the dose of 3000 ng/ml/mL for 1 hour, HEK293T cells transfected with SARS-CoV-2 spike-GFP were added into the treated Vero-E6 TMPRSS2 cells and co-cultured for 48 hours.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>B8</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The viral challenge experiments were then conducted in our Biosafety Level-3 animal facility following SOPs strictly, with strict adherence to SOPs Cell lines: HEK293T cells, HEK293T-hACE2 cells Vero-E6 cells, HK2 cells and Vero-E6-TMPRSS2 cells were maintained in DMEM containing 10% FBS, 2 mM L-glutamine, 100 U/mL/mL penicillin and incubated at 37 □ in a 5% CO2 setting 62</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T-hACE2</div><div>suggested: RRID:CVCL_A7UK)</div></div><div style="margin-bottom:8px"><div>Vero-E6</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>Vero-E6-TMPRSS2</div><div>suggested: JCRB Cat# JCRB1819, RRID:CVCL_YQ49)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, The pseudovirus was generated by co-transfection of 293T cells with pVax-1-S-COVID19 and pNL4-3Luc_Env_Vpr, carrying the optimized spike (S) gene (QHR63250) and a human immunodeficiency virus type 1 backbone, respectively 77</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The antibody-virus mixtures were subsequently added to pre-seeded HEK 293T-ACE2 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK 293T-ACE2</div><div>suggested: RRID:CVCL_A7UK)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Mixtures were then transferred to 96-well plates pre-seeded with 1×104/well Vero E6 cells and incubated at 37°C for 24 hours.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The HEK293T-CD209 cells were pre-treated with 10 ng/ml/mL of B8-dIgA or control dIgA and incubated for 6 h prior SARS-CoV-2 infection (MOI=0.05).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T-CD209</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Effects of B8 antibodies on SARS-CoV-2 mediated cell-cell fusion: Vero-E6 TMPRSS2 cells were seeded into 48-well plates and cultured overnight.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero-E6 TMPRSS2</div><div>suggested: JCRB Cat# JCRB1819, RRID:CVCL_YQ49)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After treatment with B8 antibodies at the dose of 3000 ng/ml/mL for 1 hour, HEK293T cells transfected with SARS-CoV-2 spike-GFP were added into the treated Vero-E6 TMPRSS2 cells and co-cultured for 48 hours.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, The pseudovirus was generated by co-transfection of 293T cells with pVax-1-S-COVID19 and pNL4-3Luc_Env_Vpr, carrying the optimized spike (S) gene (QHR63250) and a human immunodeficiency virus type 1 backbone, respectively 77</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pVax-1-S-COVID19</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pNL4-3Luc_Env_Vpr</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Sequences were aligned using Clustal W in the BioEdit sequence analysis package (Version 7.2)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BioEdit</div><div>suggested: (BioEdit, RRID:SCR_007361)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Half-maximal (IC50) or 90% (IC90) inhibitory concentrations of the evaluated antibody were determined by inhibitor vs. normalized response -- 4 Variable slope using GraphPad Prism 6 or later (GraphPad Software Inc.)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The defocus value of each image, which was set from −1.0 to −2.0 μm during data collection, was determined by Gctf.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Gctf</div><div>suggested: (GCTF, RRID:SCR_016500)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Sequential data processing was carried out on RELION 3.0 and RELION 3.1.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>RELION</div><div>suggested: (RELION, RRID:SCR_016274)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">RBD-Fab maps were fitted onto the whole structure map using Chimera, then combined using PHENIX combine_focused_maps.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PHENIX</div><div>suggested: (Phenix, RRID:SCR_014224)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Model building and structure refinement: The spike model (PDB code: 6VSB) and the initial model of the B8 Fab generated by SWISS-Model were fitted into the EM density map, and further manually adjusted with Coot.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The final structures were validated using Phenix.molprobity</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>molprobity</div><div>suggested: (MolProbity, RRID:SCR_014226)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">. UCSF Chimera, ChimeraX and PyMol were used for map segmentation and figure generation.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMol</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">NP+ cells per field were quantified based on the mean fluorescence intensity (MFI) using the ZEN BLACK 3.0 and ImageJ (NIH).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ImageJ</div><div>suggested: (ImageJ, RRID:SCR_003070)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The fluorescence density of SARS-CoV-2 infected cells was acquired using a Sapphire Biomolecular Imager (Azure Biosystems) and then the MFI of four randomly selected areas of each sample was quantified using Fiji software (NIH).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Fiji</div><div>suggested: (Fiji, RRID:SCR_002285)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Re-analysis of published nasal brushing single-cell data: The preprocessed scRNA-seq data from nasal brushing samples of 2 healthy controls and 4 COVID-19 patients were downloaded from Gene Expression Omnibus (GEO) database with accession numbers GSE171488 and GSE164547.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Gene Expression Omnibus</div><div>suggested: (Gene Expression Omnibus (GEO, RRID:SCR_005012)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Quantification and statistical analysis: Statistical analysis was performed using PRISM 6.0 or later.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PRISM</div><div>suggested: (PRISM, RRID:SCR_005375)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      One limitation is the insufficient amounts of HuNAbs distributed on the nasal mucosal surface for protection 47. Other reasons might include alternative entry pathways engaged by SARS-CoV-2 to evade HuNAbs. To this end, Liu et al. reported recently that antibodies against the spike N-terminal domain (NTD) induced an open conformation of the RBD and thus enhanced the binding capacity of the spike to the ACE2 receptor, leading to increased viral infectivity 66. Yeung et al. demonstrated nicely that SARS-CoV-2 could engage soluble ACE2 (sACE2) and then bind alternate receptors for viral entry, through interaction between a spike/sACE2 complex with the angiotensin II AT1 receptor, or interaction between a spike/sACE2/vasopressin complex with the AVPR1B vasopressin receptor, respectively 49. In this study, we found that, in the presence of potent neutralizing B8-dIgA1 or B8-dIgA2 antibodies, SARS-CoV-2 used the cellular receptor CD209 for capture or infection, which likely expanded the use of CD209+ cells as target cells, leading to enhanced NT infection and trans-infection. Interestingly, a preprint report suggests that cells expressing CD209 can be infected directly by SARS-CoV-2 through an interaction of the spike with the NTD instead of the RBD 67. This mode of action, however, was unlikely to explain our findings, because no enhancement of SARS-CoV-2 nasal infection was found in presence of control dIgA1 and dIgA2. Our results rather suggest that the direct binding of virus-b...

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.10.03.462919: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IACUC: Animal work was performed at Lovelace Biomedical, with approval from the Institutional Animal Care and Use Committee.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Following 2-hr sample incubation, the plate was washed and SULFO-TAG (MSD) anti-hamster IgA (Brookwood Biomedical) detection antibody was added.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-hamster IgA</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">VeroE6 cell monolayers at ≥ 90% confluency in 96-well plates were rinsed with PBS.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>VeroE6</div><div>suggested: JCRB Cat# JCRB1819, RRID:CVCL_YQ49)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Vaccine constructs: r-Ad-S is a rAd5 vector containing full-length SARS-CoV-2 S gene under control of the CMV promoter.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>rAd5</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">IgA MSD: S1 protein was biotinylated according to manufacturer’s instructions (EZ-link, Thermofisher), and was conjugated to a U-Plex MSD linker (Mesoscale Diagnostics).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Thermofisher</div><div>suggested: (ThermoFisher; SL 8; Centrifuge, RRID:SCR_020809)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      Our study does have limitations. Firstly, we do not measure mucosal T cell responses which are shown to play a role in limiting SARS-CoV-2 infection at mucosal sites19. Additionally, the SAR-CoV-2 challenge dose we used was above physiological dose likely to be picked up by an environmental exposure, as evidenced by the high viral RNA load in the nose at 1-day post infection in all index hamsters. It is likely that mucosal immunization would provide greater protection against SARS-CoV-2 transmission when lower doses of challenge virus are used. Our study was meant to be a stringent challenge to clearly identify advantages between vaccine groups. For practical reasons, such as the limitation of the number of aerosol transmission chambers, lower dose levels or evaluation at later time points were not done. Additionally, future work should include challenging mucosally-vaccinated hamsters with the Delta variant and other variants of concern. An orally-delivered, temperature-stable SARS-CoV-2 vaccine is ideal for global vaccination, where adequate storage and qualified health care providers maybe in short supply. IN delivery has some of the same advantages, but translating IN SARS-CoV-2 vaccination efficacy in humans has proven to be more difficult than in animals20,21. Implementing oral vaccine campaigns around the world has been done, as evidenced by the rotavirus and poliovirus vaccination efforts22,23. We have previously demonstrated that our SARS-CoV-2 clinical candidate vac...

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04563702</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Active, not recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Safety and Immunogenicity Trial of an Oral SARS-CoV-2 Vaccin…</td></tr></table>


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

  5. ecampusontario.pressbooks.pub ecampusontario.pressbooks.pub
    1. H5P TAG HERE

      wtf is a H5P tag?! If someone knows and reads his, please help a girl out and tell me?

    1. SciScore for 10.1101/2021.10.04.21264522: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: Ethical considerations: The Cuban Ministry of Public Health (MINSAP), the Independent Ethics Committee (IEC) for Studies on Human Subjects, at CENATOX and the Cuban National Regulatory Agency (Centre for State Control of Medicines and Medical Devices, CECMED), approved the trial and the procedures (CECMED, Authorization date: 13/10/2020, Reference number: 05.013.20BA).<br>Consent: Written informed consent was obtained from all volunteers.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Sixty Cuban volunteers aged 19-59 years, with body mass index 18.5-29.9 kg/m2, of both sexes, were recruited (Table 1).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">Study design and participants: This phase I, randomized, double-blind clinical trial was carried out at the National Centre of Toxicology (CENATOX) in Havana, Cuba.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">Randomization and blinding: Stratified random blinded sampling was used to select the sample of the universe of Cuban citizens aged 19-59 years, which was proportionally divided in two age subgroups: 19-39 and 40-59 years to ensure a proper representation of each age subgroup.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Exclusion criteria were: history of COVID-19, SARS-CoV-2 PCR-positive tests or detection of antibodies anti-SARS-CoV-2, any severe disease or decompensated chronic disease, immunodeficiency, history of serious allergy, pregnancy, breastfeeding, and immunological treatment during the last 30 days.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Seroconversion rates for IgG anti-RBD antibodies (≥4-fold increase in antibody titres over pre-immunization titres) were calculated for each subject.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-RBD</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">sequence: 319-541 amino acid residues with a poly-histidine fusion tag at its C-terminus), expressed in CHO cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHO</div><div>suggested: CLS Cat# 603479/p746_CHO, RRID:CVCL_0213)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Statistical analyses were done using SPSS version 25·0; EPIDAT version 4.1,</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SPSS</div><div>suggested: (SPSS, RRID:SCR_002865)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">, Prism GraphPad version 6.0.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Prism</div><div>suggested: (PRISM, RRID:SCR_005375)</div></div><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. This review reflects comments and contributions by Ricardo Carvalho, Joachim Goedhart, Sónia Gomes Pereira, Pratima Gurung, Samuel Lord, Claudia Molina, Arthur Molines, Gregory Redpath, Mugdha Sathe, Sagar Varankar. Review synthesized by Ewa Sitarska.

      This preprint introduces a recombinant profilin that has a flexible linker to a genetically encoded fluorescent tag (either mApple or Halo). Fluorescent protein tagging is a popular and accepted method to study the properties of a protein of interest in solution and in cells. A careful analysis of the tagged protein relative to the untagged, native protein is crucial to understand whether the tagged protein faithfully reflects the behavior of the native protein. Therefore, studies like these are very valuable and the current manuscript is a good example of how such a study should be performed. The flexible linker presented here overcomes challenges observed in previous papers that found that linking a fluorescent protein to profilin disrupted some of its actin-related functions in cells and in vitro.

      This study is carefully conducted and nicely describes the properties of a fluorescent protein tagged profilin in a detailed manner. In particular, the authors use various in vitro assays as well as rescue experiments to demonstrate that their tagged version of profilin appears to behave similarly to wildtype profilin. The manuscript is written in a clear manner and was an enjoyable read. The comments below cover a couple of experiments, clarifications and questions for consideration to further add to the work. Regardless, this work is likely to contribute to the field, as anyone studying profilin is likely to try this construct in their future experiments.

      General comments:

      • Why was mApple chosen as a tag (as opposed to the popular and best known fluorescent protein mEGFP)?
      • The mApple is prone to photochromicity/photoswitching (https://doi.org/10.1038/nmeth.1209, https://doi.org/10.1038/nmeth.4074). This should be mentioned to warn future users of this fusion protein.
      • It would be advisable to be consistent with the naming of ‘untagged profilin’ throughout the manuscript. Currently unlabeled, untagged, wild-type or rescue are used interchangeably.
      • In Figures 4B, 5A there appears to be differences between untagged and tagged profilin in the images. Maybe a more representative image would be beneficial, where applicable.
      • Depositing the plasmids from this paper at addgene.org would be beneficial for the public (the plasmids can be deposited under condition that these will be released only after publication of this work in a peer-reviewed journal).

      Title

      ‘Functional fluorescently-tagged human profilin’– suggest clarifying in the title and throughout the text that the fluorescent tags are genetically encoded.

      Abstract

      ‘high cellular concentrations (121 µM)’– This is a very precise number for such a general statement. It seems that the number is derived from a specific cell line, so it would be beneficial to present it as a number from this cell line or change it to an approximation (~100 µM).

      Introduction

      'Some profilin outcompetes actin bound'– suggest some rewording to clarify the fragment, for example, it could be mentioned whether it refers to F-actin or G-actin.

      Results- Design of tagged profilin

      ‘Profilin is considerably smaller than the smallest fluorescent tags’ – clarifying that it is a genetically encoded fluorescent tag would be of advantage. There are no smaller fluorescent proteins (FP) yet, but genetically encoded FP of a similar size exist, for example miRFP670nano is 17kDa. https://doi.org/10.1038/s41467-018-08050-8

      ‘Traditional direct labeling approaches are cytotoxic and disrupt actin-based functions’ – is there data showing the new fluorescent profilin side-by-side with one without a flexible linker (or other version used previously) to show that the latter disrupts profilin's functions? It’s not essential but it would strengthen this point and confirm the improvement over prior work.

      ‘Estimates of cellular profilin concentration are very high depending on the cell type’ – would be nice to provide a rough estimate at this point, similarly to the introduction part.

      ‘with an mApple fluorescent probe or as Halo-tagged single molecules’ - What is the meaning of 'single' here?

      ‘We cloned mApple- or Halo-tags fused to a ten amino acid flexible linker on the N-terminus of human profilin-1.’ – As in the introduction, it is stated that “Positioning a GFP-derived fluorescent tag on the C- or N-terminus disrupts PLP- and PIP-binding interactions, effectively rendering the fluorescent version flawed for critical measurements in cells”, it would be beneficial to state the rationale for tagging profillin at the N-terminus? Also, how was the linker composition and length determined and how is it related to other linkers used in compromised fusions of profilin?

      Figure 1

      • In panel A, it would be helpful to indicate the N-terminus, as this is the side where the fluorescent protein is attached.
      • In the legend, PFN1 is introduced for the first time and thus, it could be replaced with ‘tagged-profilin (PFN1)’.

      Results - mApple-profilin binds phosphoinositide lipids with similar affinity as untagged profilin

      ‘PIP’ - PIP is usually an abbreviation for Phosphatidyl Inositol Phosphate (which is a lipid). Phosphoinositide is the same thing, but is not abbreviated as PIP. Recommend using Phosphatidyl Inositol Phosphate = PIP. These types of lipids can be indicated as PIPs (without the addition of lipids).

      ‘Profilin also binds PI(3,5)P2 which regulates critical signal transduction events through intracellular vesicles to the early endosome’ - The prevailing consensus now is that PI(3,5)P2 is involved in late endosomal trafficking to the lysosome. This could be different for profilin specific purposes, but this statement could be updated with recent references to PI(3,5)P2.

      ‘Thus, mApple-tagged profilin retains functional interactions with two important PIP lipids.’ – Testing other phospholipids, including PIP3 (Lu et al., 1996 showed an interaction with profilin) and some negative controls would be beneficial. Covering most phosphoinositide species by using the phospholipid-binding dot blots would make this figure stronger.

      Figure 2

      • In panel B, it would be easier to compare profilin and mApple-profilin binding affinity to each of the PIP lipids. For that, profilin and mApple-profilin samples could be run side by side in the same blot. The suggestion being that panel B includes profilin and mApple-profilin incubated with PI(3,5)P2, and panel C profilin and mApple-profilin incubated with PI(4,5)P2. For clarity, can it be specified in the figure legend or in the figure that the profilin-1 lane is the negative control pellet lacking the liposomes as well as that S and P stands for supernatant.
      • Also, in panel B, what are the loading controls? The quantification and western-blots are unclear. For example, it is indicated that 1µM PFN1was used in this experiment, but the pellet band for mAp-PFN1 is not comparable to PFN1 pellet band. Despite this, quantification in 2D shows that they are similar. Please clarify and add the corresponding loading controls.
      • Panel D: Please mention what is quantified here (supernatant, pellet or overall level),
      • Panel D and E: the shades to pink may be tricky to distinguish, more contrasting colors and/or shapes might be useful.
      • It is highly appreciated that the antibodies and dilutions are mentioned in the figure legend.

      Results - Direct visualization of fluorescent-profilin with polymerizing actin filaments

      ‘We used fluorescence anisotropy to measure the binding affinity between profilin and Oregon-Green (OG)-labeled monomeric actin (Figure S2).‘ - This appears confusing with the 3D results. If a change in fluorescence anisotropy with OG-actin is not detected, then is it okay to use OG-actin for bulk polymerisation assay. Maybe the OG-tag interferes only during fluorescence anisotropy, but not during fluorescence microscopy.

      ‘Several studies demonstrate that thymosin b4 (Tb4) competes with profilin to bind actin monomers‘ – It is worth mentioning that this refers to untagged/unlabeled actin monomers.

      Figure 3

      • Please consider if it is relevant to compare the competitive and non-competitive data on the same graph.
      • In panel A description, ‘10 nM GFP-thymosin b4 (GFP-Tb4) mixed with increasing concentrations of unlabeled actin.’ – Would ‘10nM unlabelled actin monomers in presence of increasing concentration of Τβ4’ be more appropriate?
      • In panel D, the curves would be better visible when the y-axis runs from 0-30.
      • In panel E, the mApple-Profilin samples show longer filaments, maybe quantification of the filament length could be performed?
      • In panel G, are the errors bars based on the means of the technical replicates or on all aggregated data? The first option is preferred, as this plotting strategy was also used in 3F.
      • In the panel description, ‘Data were quantified from four separate reactions (FOV) each.’ – could clarify whether the data derive from 4 totally independent reactions, or from the analysis of 4 different fields of view (FOV) from the same experimental procedure?
      • In the panel description, ‘ns, not significantly different from 1 µM actin alone control; a, compared with control (p <0.05)‘ – such labeling may be confusing for the reader, it would be beneficial to state that the first ‘ns/a’ are related to the actin alone, and the second ‘ns’ are comparing labelled and unlabeled profilin or omit showing the statistical test in the plot, and show it in a table instead.

      Results - Fluorescent profilin stimulates formin-based actin filament assembly

      General: Based on the competition and interaction experiments it seems important to generate a dose-dependent inducible construct for profilin to govern the stoichiometry of interactions and study their relevance in the cells.

      ‘Similar to experiments in assessing only profilin-actin interactions (Figure 3F), we counted significantly fewer actin filaments in reactions containing actin and either profilin (Figure 4D)’ - In Figure 3F the plot shows around 45 actin filaments per FOV with 1 uM actin (20% oregon green actin). In Figure 4D the plot shows more than 100 actin filaments per FOV with 1 uM actin (10% alexa 647 actin). Surprisingly, the elongation rate are similar in Fig 3F and Fig 4D. Is the Oregon-Green actin known to be less efficient at nucleating filaments while retaining the same polymerization ability? If it is the case, it would be worth making a mention.

      ‘Thus, fluorescent profilin stimulates formin-mediated actin filament nucleation similar to the untagged version.’ - The data seem to suggest that the presence of profilin inhibits actin filament nucleation and polymerization, a clarification would be appreciated.

      ‘The ac-celerated rate of actin filament’ – Please change to ‘accelerated’.

      Results - Profilin directly binds tubulin dimers and enhances the growth rate of microtubules in vitro

      ‘microtubule stability index‘ – The values indicated on the y-axis for the plot in Fig 5E are confusing (0 / 25/ 50 / 75 / 1). Is the index expressed as a percentage and the max value supposed to be 100? Or is the index supposed to be the number of rescues per catastrophe?

      ’This suggests a mechanism where profilin accelerates microtubule polymerization by directly binding to tubulin dimers to promote microtubule assembly and then diffusing along the sides of the microtubule lattice to further stabilize microtubule growth.‘ - Microtubules are more stable the faster they grow (catastrophe frequency scales inversely with polymerization rate). In this condition where profilin increases polymerization rate by around 5x, it is unclear how much of the increased stability is due to the lattice binding. The fragment could be softened regarding the role of the transient lattice binding in microtubule stabilization.

      Figure 5

      • In panel B, intensities are quite different, would it be possible to comment on this?
      • In panels H an I, a black/magenta merge is tricky to see. Although it breaks consistency, a green/magenta or cyan/magenta merge may be more informative visually.

      Results - Profilin regulates the morphology of N2a cells through actin and microtubule crosstalk

      ‘We used quantitative western blots to determine the level of endogenous profilin as well as levels of profilin in CRISPR knockout cells following transfection with plasmids containing untagged profilin, mApple-profilin, or Halo-profilin.’ - The levels of profilin are quantified from a blot, which is a bulk measurement. The transfection of profilin will show substantial cell-to-cell variation (some cells may have much higher or lower levels than the measured average). Mentioning it and discussing its implications would be advisable.

      ‘We chose this parameter because N2a cells have unique actin filament and microtubule cytoskeletal features but do not efficiently perform other classic cell processes that require intact cytoskeletal crosstalk (i.e., migration or division).‘ – While looking at cell shape is one strategy, an additional experiment looking into a migration phenotype may strengthen this point. Another interesting experiment to strengthen this point and providing a direct measure of profilin function could be performing a pulse chase experiment using drugs to depolymerise actin/microtubules. In such an experiment, a distinct change in depolymerisation should be noted between WT, KO, and the profilin rescue cells. This could show that the mApple-profilin can substitute for WT profilin.

      ‘super resolution confocal microscopy to image fixed cells.‘ – how is super-resolution achieved here? Or is ‘super’ unnecessary here?

      ‘the ratio of endogenous cell area to other cell conditions’ - This metric is a ratio of areas and it is only valid as an assessment for shape if the cells from each condition cover similar areas. If it is not the case, then the two parameters (shape and area) are convoluted and the ratio measures both the difference in shape and in area covered. It would be good to provide the average area of the cells in each condition for clarification.

      ‘We also stained these cells for actin filaments (Figures 6H and 6I) and micro-tubules (Figure 6J and 6K) and used a similar morphology parameter to detect broad differences in cytoskeletal architecture.’ – Please clarify the reasons for using the cell area ratio metric for quantification of cell morphology. How is the quantification metric (area) used for sub-cellular network like actin and microtubule? F-actin stained with phalloidin looks different in endogenous PFN1 vs mApple-PFN1, but by using area metric there is no morphological difference. Microtubule, on the other hand, appear similar in all the cells.

      Figure 6

      • In panel A, it does not seem like mApple-PFN1 and Halo-PFN1 reach endogenous levels. Maybe a quantification would be beneficial.
      • In panel B, please report the number of independent replicates. Also, may be worth commenting on why tagged PFN1 rescue cells were not included?
      • For panel E, please provide the error bars and the legend that contains the information from where the data derived or from how many independent experiments.
      • In panel F, it may be advantageous to use red green and blue as colors for the overlay. This will generate unique colors for the different combinations of the three images.
      • For the context of panel F, unprocessed images of the tagged profilin in living cells could be presented somewhere in the main text. They could be larger than the small panels here, and not be segmented into binary images. The point of the fluorescent profilin is that it can be used for live-cell imaging without substantially disrupting the typical profilin interactions. This should be confirmed by presenting live-cell images of the profilin construct. To avoid problems with high cytoplasmic concentrations of profilin drowning out any localization signal, maybe the fluorescent version could be expressed at a very low level or the Halo version could be used with a low concentration of fluorophore.
      • In panel G, it is clear that the dots are from different cover slips, how many cells were analyzed per coverslip? Data could be shown from individual cells (not just their average). Also, please clarify if this quantification was made 24 hours after transfection as well?
      • For panel I, actin morphology was calculated from actin filament signals similar to the cell morphology index. These calculations could be explained further in the methods. Does this mean that the actin morphology index is the ratio of actin area between the two conditions? Is the actin image somehow thresholded before taking the ratio?
      • Panel L, is really appreciated and helpful to understand the "competition" between actin and microtubules for profilin. It would be also nice to represent the plasma membrane and the lipid-binding activity of profilin as well as binding to nucleation promoting factors (the proline-rich motifs of VASP and WASP), as this is mentioned throughout the paper.

      Discussion

      The fact that mApple and HaloTag both are entirely different and non-disturbing gives confidence that profilin can be fused with other tags, without losing functionality. Mentioning this in the discussion could give new insights for the readers.

      ‘Our genetic analyses in mammalian cells indicate that mApple-profilin and Halo-profilin are fully inter-changeable with the endogenous version.‘ - Authors have given the field an excelled tool which will be quite useful to study cellular functions of PFN1, its interaction with its several binding partners. Currently, cell shape is the metric used to determine if the tagged versions are fully inter-changeable with the endogenous version. Whether the tagged PFN1 can replace untagged PFN1 for other cellular functions will require further exploration. Also, high concentration of PFN1 will remain an issue even with the mApple-PFN1 developed here. Do the authors suggest mild over-expression as a strategy to go around the high concentration issue?

      ‘Based on localization experiments using the pan-formin inhibitor, SMIFH2, some interactions between profilin and the sides of micro-tubules are thought to be indirect.’ – suggest clarifying how SMIFH2 treatment leads to conclude that interactions between PFN1 and microtubules is indirect.

      Methods

      Statistical significance tests do not demonstrate that conditions are identical. That is, when two conditions are not statistically different, it is not possible to say that these are equal (https://doi.org/10.1053/j.seminhematol.2008.04.003). Suggest avoiding the use of "n.s." in graphs to indicate that the data are similar. It is clear from the data that (in many cases) the tagged and untagged profilin show similar properties. If equality needs to be demonstrated, recommend carrying out an equivalence test.

      ‘Different shades of data points show technical replicates.’ – Please rephrase to clarify, for example “Different colors represent biological replicates. Similar colored dots reflect technical replicates“. Does "technical replicate," mean repeated measurements within each independent experimental run? Or different experimental runs? If the shading is supposed to denote paired experiments (e.g. darkest shading in different conditions are from the same experimental run), that can be stated in the caption.

    1. No one wants to sell his or her idea short. Minivations are products that tap neither a product concept’s full market potential nor its full price potential. Companies that fall into the minivation trap underexploit the market opportunity and the price they could have charged, thereby robbing themselves of profits. Minivations go down as undermonetized products cursed with a “what might have been” tag.

      Il caso del problema di #minivation è quello in cui il prodotto non raggiunge né il massimo del potenziale di mercato né il massimo del potenziale di prezzo. Le aziende che cadono in questa trappola sono aziende che danno al proprio prodotto un prezzo più basso di quanto sia effettivamente il suo valore ed in questo modo rinunciano a dei guadagni.

    1. I read your blog post with interest, as a researcher in literature and cultural studies I was looking for this kind of entry to… maybe end a feeling of loneliness as I’m going to switch for a tool mainly used by programmers? :) I do some programming (mostly copy/paste language for the moment tbh) but I felt the need to find a testimony from someone in my field to give me this last bit of force to make the jump and you gave it to me! I want more now :) would you have some ressources to share about knowledge management taking advantage of org-mode and computational thinking?

      I’ve been managing my personal archaic databases with a tag system and relational databases for 20 years including ten years of an overly complicated handwriting mode before years of Excel that ended in a frustrating stateless vagabondage. I came across Org-mode as I was engaging myself in databases programming and would love to have some keystone to help me getting started. Thanx a lot!

    1. SciScore for 10.1101/2021.09.30.462449: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: Mouse studies Ethical approval: All the experimental procedures were performed in accordance with the guide for the use of laboratory animals of the University of Sao Paulo and approved by the institutional ethics committee under the protocol number 105/2021.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">SARS-CoV-2 experimental infection and treatments: Female K18-hACE2 mice, 8-week-old, were infected with 2×104 PFU of SARS-CoV-2 (in 40 µL) by intranasal route.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">A total of 10 photomicrographs in 40X magnification per animal were randomly obtained using a microscope Novel (Novel L3000 LED, China) coupled to a HDI camera for images capture.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The virus was propagated and titrated in Vero E6 cells in a biosafety level 3 laboratory (BSL3) at the Ribeirão Preto Medical school</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: RRID:CVCL_XD71)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The viral inoculum was added to Vero cells in DMEM 2% FBS and incubated at 37 °C with 5% CO2 for 48 h.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For expression, BL21 cells transformed with plasmid were grown in ZYM-5052 to an OD600 of 0.6-0.8 at 37°C and 200 RPM.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BL21</div><div>suggested: RRID:CVCL_M639)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">K18-hACE2 mice: To evaluate the effects of Pyronaridine in vivo, we infected the K18-hACE2 humanized mice (B6.Cg-Tg(K18-ACE2)2Prlmn/J)(21, 65, 66).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>K18-hACE2</div><div>suggested: RRID:IMSR_GPT:T037657)</div></div><div style="margin-bottom:8px"><div>B6.Cg-Tg(K18-ACE2)2Prlmn/J</div><div>suggested: RRID:IMSR_JAX:034860)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">PCR product was digested with NcoI and XhoI and cloned into pET28a (Novagen) in frame with a C-terminal his-tag coding sequence E. coli BL21 transformed with plasmids were grown in LB to an optical density (OD600) of 0.6 at 37 °C and 200 RPM.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET28a</div><div>suggested: RRID:Addgene_114156)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The total septal area and total area were analyzed with the aid of the Pro Plus 7 software (Media Cybernetics, Inc., MD, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Pro Plus</div><div>suggested: (Image-Pro Plus, RRID:SCR_016879)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Prior to docking, ligand and protein were prepared with LigPrep (Schrödinger, 2017, USA) and Protein Preparation Wizard (Schrödinger, 2017, USA) using default parameters.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>LigPrep</div><div>suggested: (Ligprep, RRID:SCR_016746)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Figures were generated with ChimeraX.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ChimeraX</div><div>suggested: (UCSF ChimeraX, RRID:SCR_015872)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.09.30.462420: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Consent: Patient recruitment: All donors have given written informed consent and analyses were approved by the Institutional Review Board of Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin (study protocol number EA1/258/18), the Institutional Review Board of the Faculty of Medicine at Ludwig-Maximilians-Universität (LMU) Munich, Germany (20-371), as well as the ethics committee of the Innsbruck Medical University (1167/2020).<br>IRB: Patient recruitment: All donors have given written informed consent and analyses were approved by the Institutional Review Board of Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin (study protocol number EA1/258/18), the Institutional Review Board of the Faculty of Medicine at Ludwig-Maximilians-Universität (LMU) Munich, Germany (20-371), as well as the ethics committee of the Innsbruck Medical University (1167/2020).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Diagnostic antibody testing: Initial serological testing of patient samples was performed using a solid phase immunoassay (SeraSpot®Anti-SARS-CoV-2 IgG, Seramun Diagnostica GmbH, Heidesee, Germany).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SeraSpot®Anti-SARS-CoV-2 IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After washing, bound antibodies were detected by incubation with horseradish peroxidase (HRP)-labeled anti-human IgG for 30 minutes at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Second, the presence of SARS-CoV-2 S1-specific antibodies was analyzed using a commercially available anti-SARS-CoV-2-S1 IgG ELISA (EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany) according to the manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2-S1 IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After His-tagged RBD Beta was immobilized on anti-Penta His BLI sensors, sensors were first dipped into CS82 IgG (50 μg/ml), and then dipped into indicated IgG antibodies (12.5 μg/ml).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-Penta</div><div>suggested: (Bio-Rad Cat# MCA5995P, RRID:AB_2888689)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">His-tagged recombinant RBD Beta protein was produced in HEK cells (ACROBiosystems, SPD-C52Hp) and covalently labeled using CruzFluor488 (Santa Cruz Biotechnology, sc-362617) according to the manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, HEK293T cell-secreted RBD-Fc fusion proteins composed of the RBD-SD1 component of the SARS-CoV-2 spike S1 subunit (amino acids 319-591) and the constant region of rabbit IgG1 heavy chain (Fc) were immobilized onto 96-well plates via anti-rabbit IgG (Dianova, 711-005-152)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In brief, Vero E6 cells (1.6 x105 cells/well) were seeded in 24-well plates and incubated overnight.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Crystallization and structural determination: The RBD (residues 333-529) of the SARS-CoV-2 spike (S) protein (GenBank: QHD43416.1) and the Beta variant that carries three mutations on the RBD (K417N, E484K, and N501Y) were cloned into a customized pFastBac vector (37), and fused with an N-terminal gp67 signal peptide and C-terminal His6 tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pFastBac</div><div>suggested: RRID:Addgene_1925)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For expression and purification of the Fabs, heavy and light chains were cloned into phCMV3.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>phCMV3</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cloning was considered successful when sequence identity was >99.5% as verified by the cBASE module of BASE software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BASE</div><div>suggested: (BASE, RRID:SCR_010937)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After identification of public clonotypes, they were plotted in a Circos plot using the R package circlize (33).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Circos</div><div>suggested: (Circos, RRID:SCR_011798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">As the CoV-AbDab includes SARS-CoV-2 mAbs from other sources than humans, and against other epitopes than the RBD, the following selection criteria were used (nomenclature like in CoV-AbDab): Binds to: SARS-CoV-2,</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2</div><div>suggested: (BioLegend Cat# 946101, RRID:AB_2892515)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Iterative model building and refinement were carried out in COOT (41) and PHENIX (42), respectively (table S4).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>COOT</div><div>suggested: (Coot, RRID:SCR_014222)</div></div><div style="margin-bottom:8px"><div>PHENIX</div><div>suggested: (Phenix, RRID:SCR_014224)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">1 and all statistical analyses were performed using GraphPad Prism (9.2.0).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 34. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. we ask that question posters do some initial research before posting

      well with enough research(and the requisite time) answers to all except the most cutting-edge profound questions can be found without having to ask anything anywhere (except maybe google)... it is to get answers for questions more quickly than that, that questions are asked in sites like this one... if the question is not a duplicate in the site, instead of -1ing such non-technical questions why not create a category or tag called "non-technical" or something and not blame the question poster?

    1. 8 Years StrongTo commemorate BLM’s 8th anniversary, we put together an anniversary video. Watch it now. Black Lives Matter Condemns the Treatment of Haitian Migrants at the U.S./Mexico Border September 22, 2021 Black Lives Matter condemns the racist, anti-

      2) Articles are clearly separated - this is positive for the majority of users that do not have accessibility needs. Font size throughout is large, both of article title and article preview. This is positive for those with difficulty seeing/minor-major eyesight trouble. This is also positive for people that have ADHD, as a lack of clutter will make it an easier read.

      3) Image does not have an <alt> tag - this is negative regarding accessibility for the blind. *I have included 3) here along with 2) because when I highlight just the picture the functions that hypothes.is offers do not appear.

    1. SciScore for 10.1101/2021.09.28.21264207: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Consent: Written informed consent was obtained from all participants, and the trial was done in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice.<br>IRB: Study approval in the UK was done by the Medicines and Healthcare products Regulatory Agency (reference 21584/0424/001-0001) and the South Central Berkshire Research Ethics Committee (reference 20/SC/0145).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">For some assays and where sample availability allowed, comparison was made with age- and sex-matched participants who were HIV negative, aged 18–55 years, enrolled into the main COV002 phase 2/3 randomised clinical trial, and randomly assigned (5:1) to receive either ChAdOx1 nCoV-19 or MenACWY by intramuscular vaccination.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 2-hour incubation and a washing step, detection antibody (MSD SULFO-TAG™ Anti-Human IgG Antibody, 1/200) was added.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-Human IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Assays were performed using Multiscreen IP ELISpot plates (Merck Millipore, Watford, UK) coated with 10 μg/mL human anti-IFNγ antibody and developed using SA-ALP antibody conjugate kits (Mabtech, Stockholm, Sweden) and BCIP NBT-plus chromogenic substrate (Moss Inc., Pasadena, MA, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-IFNγ</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>SA-ALP</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After stimulation cells were stained with the anti-human antibodies contained in supplementary table 6.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A MULTI-SPOT® 96-well, 10 spot plate was coated with three SARS CoV-2 antigens (S, RBD, N), SARS-CoV-1 and MERS-CoV spike trimers, as well as spike proteins from seasonal human coronaviruses, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63, and bovine serum albumin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HCoV-229E</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>HCoV-NL63</div><div>suggested: RRID:CVCL_RW88)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The mixtures were then transferred to 96-well, cell culture-treated, flat-bottom microplate containing confluent Vero cell monolayers in duplicate and incubated for further 2 hours, followed by the addition of 1.5% semi-solid carboxymethyl cellulose (CMC) overlay medium to each well to limit virus diffusion.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero</div><div>suggested: CLS Cat# 605372/p622_VERO, RRID:CVCL_0059)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Participants with a history of laboratory-confirmed SARS-CoV-2 infection by anti-N protein IgG immunoassay (Abbott Architect, Abbott Park, IL, USA) at screening were excluded.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Abbott Architect</div><div>suggested: (Abbott ARCHITECT i1000sr System, RRID:SCR_019328)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Standardised EUs were determined from a single dilution of each sample against the standard curve which was plotted using the 4-Parameter logistic model (Gen5 v3.09, BioTek).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Gen5</div><div>suggested: (Gen5, RRID:SCR_017317)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The percentage of focus reduction was calculated and IC50 (reported as FRNT50) was determined using the probit program from the SPSS package.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SPSS</div><div>suggested: (SPSS, RRID:SCR_002865)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The data was analysed using FlowJo version 10 and Prism version 9.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div><div style="margin-bottom:8px"><div>Prism</div><div>suggested: (PRISM, RRID:SCR_005375)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Gating strategies are as shown in supplementary figure 1a and b Phylogenetic analysis: We used protein BLAST to download all human coronavirus S protein sequences from NCBI database.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BLAST</div><div>suggested: (BLASTX, RRID:SCR_001653)</div></div><div style="margin-bottom:8px"><div>NCBI</div><div>suggested: (NCBI, RRID:SCR_006472)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">We used MAFFT to align all chosen human corona viruses, SARS-CoV, MERS-CoV and SARS-CoV-2 S protein sequences.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MAFFT</div><div>suggested: (MAFFT, RRID:SCR_011811)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">We then calculated the pairwise distances between the sequences and built a neighbour joining tree using MATLAB.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MATLAB</div><div>suggested: (MATLAB, RRID:SCR_001622)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">We did all analyses using R (version 3.6.1 or later), and Prism 9 (GraphPad Software).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04400838</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Active, not recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Investigating a Vaccine Against COVID-19</td></tr></table>


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Given that water is such a fundamental resource and a matter of life and death, and given that it is such an abundant commodity to many and so scarce to others,

      Water is something that humans cannot live without, but at the same time something that humans can get for nearly free. Putting a price tag on water effectively capitalizes on humans' need to live.

  6. Sep 2021
    1. Awesome collection. I've spent a lot of time looking into this myself. I'm a heavy Instapaper user, using this Chrome extension to export annotations to Roam (not Roam-specific): https://github.com/houshuang/instapaper-exporter-extension. However, it's really frustrating that Instapaper isn't better... Highlighting on iPhone is jarring, it often jumps randomly when I long-press, I can't capture images etc. And the API is useless - no way of getting more than the first 200 items, which is why the extension above scrapes their website... Looked into Pocket, but they don't even allow entering your own notes. I also recently looked into RSS - Feedly pro (not cheap) allows annotations and has an API - I'll experiment with the API later, but I might also just tag articles and have them sent to Instapaper... Wallabag looks cool, wish I was an iOS developer so I could add the stuff I want :)

      The way to export Instapaper annotations to Roam without using Readwise as a middleware

    1. SciScore for 10.1101/2021.09.27.21264163: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: The S3 study, the COSCA study and the RECoVERED study were approved by the medical ethical review board of the Amsterdam University Medical Centers (<br>Consent: All participants provided written informed consent.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All S constructs were verified by Sanger sequencing and subsequently produced in HEK293F cells (ThermoFisher) and purified as previously described22.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293F</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pseudoviruses were produced by co-transfecting the SARS-CoV-2-S expression plasmid with the pHIV-1NL43 ΔEnv-NanoLuc reporter virus plasmid in HEK293T cells (ATCC, CRL-11268), as previously described48.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: ATCC Cat# CRL-11268, RRID:CVCL_1926)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Shortly, HEK293T/ACE2 cells, kindly provided by Dr. Paul Bieniasz48, were seeded at a density of 20,000 cells/well in a 96-well plate coated with 50 μg/mL poly-L-lysine one day prior to the start of the neutralization assay.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T/ACE2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">They were ordered as gBlock gene fragments (Integrated DNA Technologies) and cloned in a pPPI4 expression vector containing a hexahistidine (his) tag with Gibson Assembly (ThermoFisher)22.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pPPI4</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pseudovirus construction: The WT, D614G, Alpha, Alpha E484K, Beta and Gamma pseudovirus S constructs were ordered as gBlock gene fragments (Integrated DNA Technologies) and cloned using SacI and ApaI in the pCR3 SARS-CoV-2-SΔ19 expression plasmid48 using Gibson Assembly (ThermoFisher)c</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCR3</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pseudoviruses were produced by co-transfecting the SARS-CoV-2-S expression plasmid with the pHIV-1NL43 ΔEnv-NanoLuc reporter virus plasmid in HEK293T cells (ATCC, CRL-11268), as previously described48.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHIV-1NL43 ΔEnv-NanoLuc</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The inhibitory concentration (IC50) and neutralization titers (ID50) were determined as the NAb concentration and serum dilution at which infectivity was inhibited by 50%, respectively, using a non-linear regression curve fit (GraphPad Prism software version 8.3).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      There are several limitations of our study. First, our study includes substantially more female than male participants, reflecting the gender distribution among HCW at our institute. Second, the age distribution in the four groups is not identical. In particular, the AZD1222 group is, on average, considerably older as a consequence of restrictive use of the AZD1222 vaccine in individuals aged 60-64 years in the Netherlands. As immune responses tend to become weaker with higher age, this is a relevant factor when considering the weaker responses in the AZD1222 group. Finally, the samples we tested were taken at the expected peak of immunity. It will be relevant to study the durability of the neutralizing antibody responses after vaccination with each of these vaccines. Some studies suggest that immunity induced by adenovirus vaccines might be more durable than immunity from mRNA vaccines8,45. We have only analyzed known VOCs and VOIs and cannot predict how our results apply to future variants. One consideration is that current VOCs were probably selected based on increased fitness and/or transmissibility, while future variants may very well be selected based on escape from immunity when more and more people are vaccinated or have experienced COVD-19. Such escape variants may be more resistant to neutralizing antibodies induced by current vaccines than the VOCs and VOIs studied here and may render vaccines even less effective at preventing infection. However, while circulating ...

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a protocol registration statement.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. areas of action of this Recommendation

      The OEGlobal 2021 conference was themed around the five action areas. For "raw material" to anchor here, you can find sessions related to each action area via these links:

    1. SciScore for 10.1101/2021.09.24.21263853: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: All subjects were recruited following protocols approved by local Institutional Review Boards (IRBs) or from NIH NIAID IRB, as indicated below: Chile: IRB: Comité Ético Científico Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile Protocol: 2020-41 Title: Infección por Sars CoV-2 y enfermedad Covid-19: caracterización epidemiológica, clínica, virológica e inmunológica (SARS-CoV-2 infection and COVID-19: Epidemiologic, clinical, virologic and immunologic characterization) Pavia, Italy: IRB: Ethics Committee of the Fondazione IRCCS Policlinico San Matteo, Pavia Protocol: 20200037677 Title: Analisi comprensiva della risposta immunitaria innata ed adattativa durante</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SARS-CoV-2 antibody testing: SARS-CoV-2 anti-spike and anti-nucleocapsid antibody testing was performed via luciferase immunoprecipitation systems assay, as previously described [6].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-spike</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-nucleocapsid</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">PBMC pools were Fc blocked (Human TruStain FcX, BioLegend) and stained with Totalseq-C human ‘hashtag’ antibodies (BioLegend), washed with staining buffer (2% BSA in PBS).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>human ‘hashtag’</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The fluorescence-labeled antibody cocktail against human CD45 (APC/Cyanine7), CD3 (AF488), CD19 (APC), CCR7 (BV786), CD95 (BV650), IgD (PerCP-Cy5.5) and CD27(PE/Cyanine7; all antibodies obtained from Biolegend) were added at the end of blocking and incubated for 20 minutes at 4°C in the dark.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>human CD45</div><div>suggested: (BD Biosciences Cat# 563716, RRID:AB_2716864)</div></div><div style="margin-bottom:8px"><div>CD3</div><div>suggested: (SouthernBiotech Cat# 8200-30, RRID:AB_2796425)</div></div><div style="margin-bottom:8px"><div>CD19</div><div>suggested: (BD Biosciences Cat# 563333, RRID:AB_2738141)</div></div><div style="margin-bottom:8px"><div>CCR7</div><div>suggested: (Creative Diagnostics Cat# CPBT-66983GM, RRID:AB_2528776)</div></div><div style="margin-bottom:8px"><div>BV786</div><div>suggested: (BD Biosciences Cat# 740991, RRID:AB_2740614)</div></div><div style="margin-bottom:8px"><div>CD95</div><div>suggested: (BioLegend Cat# 305642, RRID:AB_2632622)</div></div><div style="margin-bottom:8px"><div>BV650</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>PerCP-Cy5.5</div><div>suggested: (BD Biosciences Cat# 560612, RRID:AB_1727457)</div></div><div style="margin-bottom:8px"><div>CD27</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Because multiple samples from different timepoints for each donor were collected and could not be demultiplexed by this method alone, ‘hashtag’ antibodies (Biolegend) were used to uniquely label the different time points.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>‘hashtag’</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The data of several proteins that directly bind with secondary antibodies detected through buffer incubation without any serum were excluded (such as IGHG1, IGHG3 and so on) alongside the controls (such as Rhodamine+IgG64, Anti-human IgG, GST 10ng/ul etc.).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IGHG1</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>IGHG3</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>Anti-human IgG</div><div>suggested: (LSBio (LifeSpan Cat# LS-C23907-500, RRID:AB_900919)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Multiplex particle-based anticytokine autoantibody screening assay and functional evaluation: Plasma samples were screened for autoantibodies against IFN-α, IFN-β, IFN-ω and IFN-γ in a multiplex particle-based assay [31], in which differentially fluorescent magnetic beads were covalently coupled to recombinant human proteins (2.5 ug/reaction).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IFN-α, IFN-β</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>IFN-ω</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For the comparison of pHC with pCOVID-19, the classification was then repeated after the exclusion of allergic pHC, with similar results.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCOVID-19</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">These analyses were completed with IBM SPSS Statistics v.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SPSS</div><div>suggested: (SPSS, RRID:SCR_002865)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">27 and GraphPad Prism version 9 [7].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Trained with Python sklearn library’s RandomForestClassifier object, using parameters: n_estimator=2000, random_state=42 for data set.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Python</div><div>suggested: (IPython, RRID:SCR_001658)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The statistical analysis of SOMAscan® results was performed using R Studio (R Core Team, 2020) [11], also using a specifically developed webtool for basic data plotting and analysis [12].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SOMAscan®</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">To assess the difference in the overall predictive importance (derived by GENIE3) of each variable with and without IVIG treatment, we summed the interaction strengths associated with each predictor-target pair for a given predictor variable in either treatment condition (steroid treatment applied in both conditions).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GENIE3</div><div>suggested: (GENIE3, RRID:SCR_000217)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The resulting values were visualized using the Complexheatmap package in R.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Complexheatmap</div><div>suggested: (ComplexHeatmap, RRID:SCR_017270)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All sequencing data were then processed with Burrows–Wheeler Aligner (BWA) and the Genome Analysis Toolkit (GATK</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BWA</div><div>suggested: (BWA, RRID:SCR_010910)</div></div><div style="margin-bottom:8px"><div>Genome Analysis Toolkit</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>GATK</div><div>suggested: (GATK, RRID:SCR_001876)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Raw fastq files were trimmed using Trimmomatic v0.39 [15] and mapped to the hg38 human reference genome using BWA-MEM v07.17.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Trimmomatic</div><div>suggested: (Trimmomatic, RRID:SCR_011848)</div></div><div style="margin-bottom:8px"><div>BWA-MEM</div><div>suggested: (Sniffles, RRID:SCR_017619)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">PCR Duplicates were marked using Samblaster v0.1.2.5 [16] and GATK4 v4.1.9.0 was used to perform BAM recalibration, and HLA*LA [17] was used to call HLA genotypes.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Samblaster</div><div>suggested: (SAMBLASTER, RRID:SCR_000468)</div></div><div style="margin-bottom:8px"><div>GATK4</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The resulting CDR3 sequences were collapsed and filtered to quantify the absolute abundance and frequency of each unique CDR3 region with Adaptive Biotechnologies’ pipeline [19]</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Biotechnologies’</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">10x Genomics 5’ Single cell gene expression, cell surface protein tag, TCR and BCR libraries were pooled and sequenced on Illumina NovaSeq platform (Illumina, San Diego, CA) using the sequencing parameters recommended by the 10x Genomics 5’ v1.1 user guide. d) Bulk RNA sequencing and single cell sample demultiplexing: For each sample, 100,000-500,000 cells were processed in Trizol using the miRNAeasy micro kit (Qiagen, Germantown, MD) and standard RNA sequencing libraries were generated using Illumina Truseq library preparation kits.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Genomics</div><div>suggested: (UTHSCSA Genomics Core, RRID:SCR_012239)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The sequencing reads were adapter and quality trimmed and then aligned to the human genome using the splice-aware STAR aligner and SNP calls were generated using the previously published protocol [23].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>STAR</div><div>suggested: (STAR, RRID:SCR_004463)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Lowly expressed genes were removed for each cell type individually using the filterByExpr function from edgeR [26]</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>edgeR</div><div>suggested: (edgeR, RRID:SCR_012802)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Differentially expressed genes were identified using the limma voom [27] workflow which models the log of the cpm (counts per million) of each gene.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>limma</div><div>suggested: (LIMMA, RRID:SCR_010943)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Enriched gene sets were identified using the pre-ranked GSEA algorithm implemented in the FGSEA R package [https://www.biorxiv.org/content/10.1101/060012v3].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FGSEA</div><div>suggested: (fgsea, RRID:SCR_020938)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The pseudobulk gene counts were normalized with the varianceStabilizingTransformation function from DEseq2 (doi:10.1186/s13059-014-0550-8) for the score calculation.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>DEseq2</div><div>suggested: (DESeq2, RRID:SCR_015687)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For BCR data, V(D)J sequencing contigs from 10x CellRanger output was processed using Immcantation v2.7.0 toolbox (https://immcantation.readthedocs.io/en/latest/index.html).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Immcantation</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">BCR sequence genotype inference and mutation load quantification were performed with reference to the pipeline from Mathew et al. [29] using the TIgGER package [30] and SHazaM package [28].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>TIgGER</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>SHazaM</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Autoantibody analysis: Autoantibody analysis was performed using HuProt™ v4.0 human protein microarrays and processed by CDI Laboratories (Baltimore, MD)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HuProt™</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Beads were washed again, resuspended in assay buffer, and analyzed on a BioPlex X200 instrument.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BioPlex</div><div>suggested: (BioPlex, RRID:SCR_016144)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells were acquired on a BD LSRFortessa cytometer, gated on CD14+ monocytes, and analyzed with FlowJo software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your code and data.


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      This study has some limitations. Only a few children with severe pCOVID-19 were included in the study, and therefore the results obtained may not apply to rare cases of life-threatening disease in children. We did not have longitudinal samples available for all MIS-C patients. However, the number of patients included in the study was sufficient to detect early and late signatures of the disease. Finally, while an increasing number of cases of pCOVID-19 due to the delta variant have been recently reported [62], almost all samples were collected prior to the emergence of this variant. Therefore, the impact of the delta variant on innate and adaptive immune responses in children with pCOVID-19 and MIS-C remains to be studied. Despite these limitations, this study has helped identify novel age-, time- and treatment-related immunopathological signatures that characterize MIS-C and pCOVID-19.

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT03394053</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">The Mechanistic Biology of Primary Immunodeficiency Disorder…</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT03610802</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Send-In Sample Collection to Achieve Genetic and Immunologic…</td></tr></table>


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a protocol registration statement.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. The FBI said it has stopped using the "Black Identity Extremist" tag and acknowledged that white supremacist violence is the biggest terrorist threat this country faces. https://trib.al/OepGw2S

      This article initially looked compelling and true. The name is catchy and so I assumed The Root was a community organizer for black justice but after scrolling over the check I learned it is a digital magazine platform that shares thought provoking articles from various black perspectives. I used the consensus/check for other coverage and found out there is no actual news on this and the link in the tweet shared is directly to the blog post on their page.

    1. SciScore for 10.1101/2021.09.24.461616: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Field Sample Permit: Animal studies were carried out at Galveston National Laboratory at University of Texas Medical Branch at Galveston, Texas, an AAALAC accredited (November 24, 2020) and PHS OLAW approved (February 26, 2021) high-containment National Laboratory, based on a protocol approved by the Institutional Animal Care and Use Committee at UTMB at Galveston.<br>IACUC: Animal studies were carried out at Galveston National Laboratory at University of Texas Medical Branch at Galveston, Texas, an AAALAC accredited (November 24, 2020) and PHS OLAW approved (February 26, 2021) high-containment National Laboratory, based on a protocol approved by the Institutional Animal Care and Use Committee at UTMB at Galveston.<br>IRB: All animal procedures and operations were approved by the ethical committee of Wuhan Institute of Virology, Chinese Academy of Sciences.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Rhesus macaques were randomly divided into control group, low-dose (10 mg/kg of 2G1) and high-dose (50 mg/kg of 2G1) groups with one male and one female in each.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">Rhesus macaques were randomly divided into control group, low-dose (10 mg/kg of 2G1) and high-dose (50 mg/kg of 2G1) groups with one male and one female in each.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Biotin labeled RBD (Sino Biological), PE labeled streptavidin (ThermoFisher) and 7AAD (BD) Single memory B cells with potential SARS-CoV-2 antibody secretion were sorted out by gating 7AAD-, CD19+, CD27+, IgG+, and RBD+ using a BD Aria III cell sorter with fluorescence-activated cell sorting modules.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CD27+ , IgG+</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The transfection efficiency was examined by flow cytometry using S1-mFc recombinant protein (Sino Biological) as primary antibody and FITC-AffiniPure Goat Anti-Mouse IgG (Jackson) as secondary antibody.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-Mouse IgG</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antigen-binding ELISA: Enzyme-linked immunosorbent assays (ELISA) were applied to study the binding ability of antibodies with SARS-CoV-2 RBDs (Sino Biological) and S trimers (AcroBiosystems).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Antigen-binding ELISA</div><div>suggested: (Ling-Chu Hung / Animal Health Research Institute, Council of Agriculture, Executive Yuan, Taiwan Cat# 12-Hung-03 m& 20 ORF3 7D3, RRID:AB_2827541)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After pipetting off the unbound antibodies, plates were washed 4 times with PBST and further incubated with 100 μL per well of goat anti-human IgG (Fc specific)-Peroxidase antibody (1: 5000 dilution, Sigma) for 1 h at 37°C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG ( Fc specific)-Peroxidase</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">ACE2 competition ELISA: For experiments involving the competitive binding of antibodies to SARS-CoV-2 RBD or S trimer, recombinant hACE2-Fc protein was first biotinylated using EZ-Link Sulfo-NHS-Biotin (ThermoFisher) as the instruction described.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Sulfo-NHS-Biotin</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibody-Dependent Cellular Phagocytosis (ADCP): In ADCP experiment, CD14+ monocytes (Allcells) were cultured and differentiated for 7 days to obtain macrophage cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Antibody-Dependent Cellular Phagocytosis ( ADCP)</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After washing, a Goat Anti-human Fc HRP (Sigma) was used as secondary antibody with 1:6000 dilutions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-human Fc HRP</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In brief, HEK-293T cells (ATCC) with 70% - 80% confluence in a 10 cm dish were co-transfected with 12 μg of plasmid pHIV-puro encoding RRE and ACE2 genes, 8 μg of plasmid psPAX2 encoding gag and pol, and 4 μg of plasmid VSV-G encoding G glycoprotein of vesicular stomatitis virus(VSVG) using Lipofectamine 3000 Reagent (Invitrogen).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK-293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">500 μL of filtered lentivirus supernatant was added in a 24-well plate with Jurkat cells (ATCC).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Jurkat</div><div>suggested: TKG Cat# TKG 0209, RRID:CVCL_0065)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The culture medium of ACE2-293T cells was removed and then replaced by the antibody-pseudovirus mixture.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ACE2-293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The mixture was then added into a 96-well plate covered with Vero cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero</div><div>suggested: CLS Cat# 605372/p622_VERO, RRID:CVCL_0059)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">This recombinant S protein was overexpressed using the HEK 293F mammalian cells (Invitrogen) at 37°C under 5% CO2 in a Multitron-Pro shaker (Infors, 130</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK 293F</div><div>suggested: RRID:CVCL_6642)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pharmacokinetic study and toxicity test: For the pharmacokinetic study, BALB/c mice were tail intravenously injected with 2G1 (15, 30, or 60 mg/kg), or equivalent volume of PBS.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BALB/c</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">mAb preparation: Heavy chains and light chain genes were inserted separately into pcDNA3.4 and amplified in E. coli DH5α.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3.4</div><div>suggested: RRID:Addgene_131198)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In brief, HEK-293T cells (ATCC) with 70% - 80% confluence in a 10 cm dish were co-transfected with 12 μg of plasmid pHIV-puro encoding RRE and ACE2 genes, 8 μg of plasmid psPAX2 encoding gag and pol, and 4 μg of plasmid VSV-G encoding G glycoprotein of vesicular stomatitis virus(VSVG) using Lipofectamine 3000 Reagent (Invitrogen).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHIV-puro</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>psPAX2</div><div>suggested: RRID:Addgene_12260)</div></div><div style="margin-bottom:8px"><div>VSV-G</div><div>suggested: RRID:Addgene_138479)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">S protein over-expression cells: The coding sequence for full-length wild-type S protein (GenBank: QHD43416.1) from Met1 to Thr1273 was inserted into plasmid pHIV-puro1.0, followed by an internal ribosome entry site (IRES) and puromycin resistance gene.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pHIV-puro1.0</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Expression and purification of S protein: The prefusion S extracellular domain (1-1208 a.a) (Genbank ID: QHD43416.1) was cloned into the pCAG vector (Invitrogen) with six proline substitutions at residues 817, 892, 899, 942, 986 and 98739, a “GSAS” substitution (instead of “RRAR”) at residues 682 to 685 and a C-terminal T4 fibritin trimerization motif followed by one Flag tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCAG</div><div>suggested: RRID:Addgene_74288)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The resulting bulk transfected population was sorted on a BD FACSJazz Cell Sorter (BD) with the BD FACS™ Sortware.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BD FACS™</div><div>suggested: (BD FACS Aria II, RRID:SCR_018091)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data were analyzed with GraphPad Prism Version 9.0.0 and EC50 values were determined using a four-parameter nonlinear regression.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SARS-CoV-2 RBD (Sino Biological), S trimer (AcroBiosystems), mutated RBDs (Sino Biological), and mutated S trimers (AcroBiosystems) were coated onto High Binding ELISA 96-Well Plate (BEAVER).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>AcroBiosystems</div><div>suggested: (ACRObiosystems, RRID:SCR_012550)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The defocus values were estimated with Gctf43. Particles for S in complex with 2G1 were automatically picked using Relion 3.0.644–47 from manually selected micrographs.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Relion</div><div>suggested: (RELION, RRID:SCR_016274)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 17. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Disclaimer I really have no desire to maintain this project, as it's not mine to begin with. I was looking for something like Gitso but it didn't quite have what I wanted. After making my changes I thought I might as well put this up on GitHub for others who wanted something similar. So if you have issues, you're better off forking the project and fixing them yourself.

      .

    1. SciScore for 10.1101/2021.09.16.21263693: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">Using a R code script, 50 randomly selected values from the extended sera sample cohort (n=345) were used to set quartile thresholds according to the mean values derived from the bootstrap iterations, a process which was then repeated 10,000 times.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Serum anti-SARS-CoV-2 RBD antibodies assay: RBD+ Ig levels in sera were determined using 96 well ELISA plates that were coated overnight at 4°C with 2μg/ml RBD in PBS (pH 7.4).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2 RBD</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">ELISA plates were then washed three times with PBST and 50μl of horseradish peroxidase (HRP) conjugated goat anti-human IgG (Jackson ImmunoResearch, #109035003) / anti-human IgM (Jackson ImmunoResearch, #109035129) / anti-human IgA (Jackson ImmunoResearch, #109035011) secondary antibodies were added to each plate at the detection phase (50μl, 1:5000 ratio in 3% w/v skim milk in PBS) and incubated for 1 hour at room temperature (RT), followed by three washing cycles with 0.05% PBST.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: (Jackson ImmunoResearch Labs Cat# 109-035-003, RRID:AB_2337577)</div></div><div style="margin-bottom:8px"><div>anti-human IgM</div><div>suggested: (Jackson ImmunoResearch Labs Cat# 109-035-129, RRID:AB_2337588)</div></div><div style="margin-bottom:8px"><div>anti-human IgA</div><div>suggested: (Jackson ImmunoResearch Labs Cat# 109-035-011, RRID:AB_2337580)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Computational and statistical analysis: Bootstrapping & quartile establishment: We stratified the RBD+ antibody levels to quartiles by musing the bootstrap method.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>RBD+</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The cloned region encodes amino acids 1-740 of hACE2 followed by 8xHis tag and a Strep Tag at the 3’ end, cloned in a pCDNA3.1 backbone.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCDNA3.1</div><div>suggested: RRID:Addgene_79663)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All statistics were performed with GraphPad Prism 9.0.2 (GraphPad Software).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. L’esercizio fisico deve essere raccomandato per il controllo del diabete nelle persone con diabete di tipo 2?

      Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

    1. The expanding global collection of open educational resources has created fertile ground for this effort.

      Here we are in 2021 at the OE Global Conference reflecting back on this declaration that was a key point in the journey to develop the UNESCO OER Recommendation.

      How does this declaration stand up over time? What was unanticipated? What has it achieved? Were you there? Do you remember this?

      We are using this as a practice annotation activity for activities that will take place after the conference.

      Please annotate in abundance, reply others and tag them #OEGlobal21 Then tune in to find out what we will annotate next.

    1. If there is one thing that normally characterizes the entire Linux ecosystem, it is that there are many solutions to one problem.

      many different solutions to a problem

    1. tcpwrappers or, as you’re probably more familiar, the hosts.allow and hosts.deny files

      little-known facts better known as

      Indeed, I'd heard of hosts.allowed but would have never known that they were part of a package/system called tcpwrappers (which I don't think I've ever heard of).

    1. nity-based resear

      what does this mean exactly?

    1. One important thing to keep in mind if you are hoping to transition to a four-year school for your Bachelors—how your credits will transfer. You don’t want to pay for a class you already took at a higher price tag

      How easy is this to do? Is this an example that shows a negative? Is it good for an issue like this to show the negatives and positives? Are there more positives than negatives---if so, what does this show?

    1. Author Response:

      Reviewer #3:

      Maintaining the balance between stem cell proliferation and cell differentiation is an essential challenge of all stem cell niches. In the shoot apical meristem of plants, these functions are spatially separated into the central zone and peripheral zone, respectively. How these zones communicate to give rise to proper stem cell behavior has been a research focus for many years.

      In this manuscript, the authors suggest that the small secreted peptide CLE40 and the receptor kinase like protein BAM1 form a novel pathway that contributes to meristem homeostasis by stimulating the expression of the central stem cell inducer WUSCHEL primarily from the meristem periphery. Importantly, this pathway acts antagonistically to the well-studied CLV pathway, which is only active in the center of the meristem and is molecularly highly similar to the CLE40/BAM1 system. This model is experimentally supported mainly by analysis of spatial localization patterns in the meristem using transcriptional and translational reporters and by the analysis of genetic interactions.

      The findings of the authors are novel, highly relevant and would certainly be of great interest for the plant community. However, the manuscript could be substantially improved to provide better support for the conclusions laid out.

      Of major concern are the reporter genes and imaging data: Partial colocalization and exclusion from CZ and OC are one of the main arguments of the authors to claim that CLE40/BAM1 function together and antagonistically to CLV3/CLV1 in controlling WUS expression.

      Working with reporters as proxies for endogenous gene expression needs to be backed up by proper controls. Given the central importance of the reporters for the conclusions it is essential to show that the regulatory sequences used for the CLE40 reporter are sufficient to rescue a cle40 mutant.

      We show now in a new supplemental figure (1) the expression patterns of two different CLE40 reporter lines (differening in length of the promoter region) in the root, which are identical, and (2) that expression CLE40 from the CLE40 promoter rescues the cle40 mutant root phenotypes, which were described in earlier work. See Fig2-SupplFig. 1

      It is essential to show that ... the observed expression of the reporter is consistent across the majority of different T1 lines and, most importantly, that the pattern reported here is consistent with in situ data for endogenous CLE40 mRNA.

      RNA in situ analysis is difficult due to the low expression level of CLE40, and the small size of the CLE40 transcript. We show in Fig2-SupplFig2 expression data for 4 independent transgenic CLE40 reporter lines, confirming the general conclusions that we present in this manuscript.

      The authors have previously published in situs for CLE40 that do not show the exclusion from the CZ and OC (Hobe et al., 2003, Figure 2a,c), which urgently needs clarification.

      The RNA expression data from Hobe et al. are displayed at low mag and low resolution, and might have suffered from high background.

      Figures 2, 4 and 5 show imaged meristems in great detail but each focus only on a single sample. I strongly recommend to also include quantitative data on multiple samples to substantiate the claims. This could be likely be done with standard software, such as MorphographX.

      The data we showed before represented typical examples from a wide range of data that we analysed. All original data are being made publicly available for reanalysis. We have now added multiple examples from multiple samples, and also added quantitative data from fluorescence analysis. See new Supplementary Fig2-SupplFig. 2, Fig.4-SupplFig. 1, Fig.4-SupplFig. 2, Fig.4-SupplFig. 3, Fig.5-SupplFig. 1, Fig.5-SupplFig. 2, Fig.5-SupplFig. 3, Fig.5-SupplFig. 4

      Whereas the inhibitory effect of WUS on CLE40 is convincingly shown using ectopic WUS expression and the hypomorphic wus7 allele (Figure 2) the quantification of WUS positive cells in Figure 7 is problematic. Although it was done over multiple samples it heavily relies on manual scoring, which is prone to bias. The same is true for the width/height measurements of different meristems. An unbiased computational image analysis would certainly give more reliable results.

      We are grateful for this suggestion. We normally analyse samples in an anonymised manner. We have now also quantified the number of WUS positive cells using the Imaris software, as suggested, see Fig.7-SupplFig.1, and found that this analysis supported our previous conclusions. We also added a figure showing multiple samples from this experiment. See new Supplementary Fig7-SupplFig. 2

      One major point that the authors try to establish is that the CLE40 signal that eventually leads to reduction in meristem size is transduced via the BAM1 receptor. However, only genetic interactions, which are complicated by intricate feedbacks, are show to substantiate this claim. For a strong statement on CLE40/BAM1 ligand/receptor interactions, advanced imaging technologies available to the authors or biochemical experiments would be necessary.

      We are currently not aware of a reliable and applicable experimental approach that would allow us to show direct interaction of the CLE40 peptide with its receptors in vivo. Biochemical experiments using purified peptides and/or receptors are, so far, contradictory: Shinohara et al. (2015) used chemically synthesized arabinosylated CLV3 peptide and photoaffinity labelling to show binding of CLV3 to a BAM1-Halo-TAG fusion protein expressed in BY-2 cells. However, using BAM1 protein purified from insect cell lines which was biotinylated in the Creoptix WAVE system, Crook et al. (2020) found no significant binding activity for synthetic CLV3 peptide. Our preliminary conclusion from these data sets is that binding of peptides to receptors should be best evaluated in vivo, since important posttransciptional and posttranslational modifications, as well as coreceptors, can strongly modify peptide-receptor interactions.

      We have here added data showing that in the root, BAM1 receptor but not CLV1 is required for CLE40 dependent regulation of root meristem development, indicating again that CLE40 and BAM1 are likely to act in the same signaling pathway throughout development. See new Supplementary Fig6-SupplFig. 1

      Similarly, the genetic studies need some clarification: The authors show that cle40 and bam1 single mutants as well as cle40/bam1 double mutants all show a comparable reduction in meristem size, suggesting epistasis. In contrast, a reduction in meristem size can not be observed if cle40 is combined with clv1, which according to the proposed model appears to be unexpected. The interpretation of the genetic experiments is complicated by the well-known fact that BAM1 expression is regulated by the CLV pathway and loss of CLV signaling leads to ectopic expression of BAM1 in the OC which can partially compensate for the loss of CLV1, due to the molecular similarity of the two receptors. The shift of BAM1 expression from the PZ towards the OC could explain why there is no significant reduction in meristem size since CLE40 induced signaling at the PZ would be inhibited by the lack of the BAM1 receptor. To clarify the specific interaction of CLE40 with BAM1 and/or CLV1 the authors could try to restore BAM1 levels in the PZ of cle40/clv1 mutants by expressing BAM1-GFP from an appropriate promoter (e.g. RPS5 or UBQ10). This experiment would allow to distinguish between the genetic interaction of CLE40 with CLV1 from the feedback between CLV1 and BAM1 expression.

      The suggested experiment, to misexpress BAM1 from the RPS5 or UBQ10 promoter, is not feasible, since this results generally in a much higher expression level, which, in our hands, is not "tolerated" by CLV-family receptors. We found that higher level expression of RLKs generally causes mislocalisation of nonfunctional proteins.

      Overall, the manuscript could be strengthened by inclusion of additional molecular data probing the directness of WUS inhibiting CLE40 and/or BAM1 expression.

      We are planning to set-up experiments for detailed studies on the transciptional regulation of genes in the stem cell control pathways, and will in the future also investigate the feedback regulation of WUS onto CLE40 and BAM1. However, such analysis goes far beyond the scope of our current manuscript.

    1. Our support goes beyond today. 🌈 Tap through to take a look at 6 LGBTQIA+-led brands and businesses you can champion always ~ Tag more queer kickstarters and entrepreneurs in the comments! 👸🏽❤️ Let’s step up and support our colourful community in all the ways we can!

      Hypothesis: Businesses can use emotional branding to keep up with the times.

      NOTE: Colourette Cosmetics is a Filipino makeup brand that also promotes inclusivity. It's cosmetics is geared towards the younger generation no matter the gender.

    1. All the waiters had stopped, and all the people had stoppedeating, and the patio looked like a frozen place, a garish game offreeze tag.“I have my own Steinway at home,” she said.“How nice,” the pianist said.“And I’ve played,” she said, and paused. “I’ve played in ... manysituations.

      the world is through the will, connects back to the idea that mother believes the world is run by will not love

      similar to harrison believing that she can will herself to nto care about the world

    Annotators

    1. SciScore for 10.1101/2021.09.14.21263603: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Consent: All study participants provided written informed consent and all study protocols were approved by the Cedars-Sinai Medical Center institutional</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Coupling efficiency was confirmed by incubation of 625 beads from each coupled region with a phycoerythrin-conjugated anti-6×□HisTag antibody (Abcam, Cambridge, UK) at a concentration of 10 μg/mL for 45 min shaking at 900 rpm and room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-6×□HisTag</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The bound AABs were detected by addition of R-phycoerythrin-labelled goat anti-human IgG detection antibody (Ab) (5□µg/ml, Dianova, Hamburg, Germany) for 1 hr at RT, after several PBS washes.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Other antigens were produced in-house using E.coli SCS1 carrying plasmid pSE111, which contains an N-terminally located hexa-histidine-tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pSE111</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For all HCW participants, EDTA plasma specimens were transported within 1 hour of phlebotomy to the Cedars-Sinai Department of Pathology and Laboratory Medicine and underwent serology testing using the Abbott Diagnostics SARS-CoV-2 IgG chemiluminescent microparticle immunoassay (Abbott Diagnostics, Abbott Park, Illinois) against the nucleocapsid (N) antigen of the SARS-CoV-2 virus (12, 13).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Abbott</div><div>suggested: (Abbott, RRID:SCR_010477)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Statistical analyses: Data processing and analysis were performed using R v3.5.1 and KNIME 2.12 (https://www.knime.org/) (21, 22).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>KNIME</div><div>suggested: (Knime, RRID:SCR_006164)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.09.17.460782: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Detection was achieved using horseradish peroxidase-conjugate secondary antibody anti-rabbit and anti-mouse (Bio Rad #1706516, #1706515) and visualized with ECL (Cytiva RPN2232).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-mouse</div><div>suggested: (Bio-Rad Cat# 170-6516, RRID:AB_11125547)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Antibodies: The primary antibodies used in this study are: rabbit anti-SARS-CoV-2 Spike S1 Subunit (Sino Biological, 40150-T62)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-SARS-CoV-2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Secondary antibody used are: horseradish peroxidase-conjugate anti-rabbit and anti-mouse (Bio Rad #1706516, #1706515).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-rabbit</div><div>suggested: (Bio-Rad Cat# 170-6515, RRID:AB_11125142)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After washing, AP-conjugated goat anti-rat IgG antibody (SIGMA A8438) or AP-conjugated goat anti-rabbit IgG antibody (SIGMA A8025) was added, and the plates were further incubated for 1 hour at RT.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-rat IgG</div><div>suggested: (Sigma-Aldrich Cat# A8438, RRID:AB_258391)</div></div><div style="margin-bottom:8px"><div>anti-rabbit IgG</div><div>suggested: (Sigma-Aldrich Cat# A8025, RRID:AB_258372)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">FACS: Vero E6 cells were incubated with RBD protein (0.45 μg/mL, final concentration) followed by incubation with human anti-RBD antibody (primary antibody) (40150-D003, Sino Biological) and goat anti-human IgG AF488-conjugated antibody (secondary antibody) (A-11013, Thermo Fisher Scientific)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-RBD</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: (Molecular Probes Cat# A-11013, RRID:AB_141360)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Hi-5 cells (BTI-TN-5B1-4) (Gibco #B85502) were cultured in Express Five™ SFM (Serum-Free Media) medium (Gibco #B85502 Expression Systems) at a cell density of 0.5 x 106 cells/mL and infected with recombinant virus.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Hi-5</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">FACS: Vero E6 cells were incubated with RBD protein (0.45 μg/mL, final concentration) followed by incubation with human anti-RBD antibody (primary antibody) (40150-D003, Sino Biological) and goat anti-human IgG AF488-conjugated antibody (secondary antibody) (A-11013, Thermo Fisher Scientific)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After a wash step in 1× kinetic buffer for 120 s, the ACE2-Fc-captured biosensor tips were then submerged for 300 s in wells containing different concentrations of antigen (RBD E. coli, insect, and HEK-293) to evaluate association curves, followed by 900 s of dissociation time in kinetic buffer.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK-293</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">RBD protein production in E. coli: The SARS-CoV-2 Spike Receptor Binding Domain sequence (aa 319-541, Uniprot ID P0DTC2) was cloned with a C-terminal 6x-His tag into a pET-21a(+) plasmid. E. coli BL21 Star™ (DE3) (genotype: F−ompT hsdSB (rB−, mB−) galdcmrne131) competent cells, and E. coli Lemo21 (DE3) (genotype: fhuA2 [lon] ompT gal (λ DE3) [dcm] ΔhsdS/ pLemo(CamR)) competent cells were transformed with 100 ng of plasmid of interest.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pET-21a(+</div><div>suggested: RRID:Addgene_12669)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">RBD protein production in insect cells: The SARS-CoV-2 Spike Receptor Binding Domain sequence (aa 319-541, Uniprot ID P0DTC2) was cloned into a pFAST-bac1 plasmid downstream of the gp64 signal sequence to promote secretion, along with a C-terminal 8x-His tag for affinity purification.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pFAST-bac1</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Raw data were analyzed using the Biopharma Finder 2.1 software from ThermoFisher Scientific.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Biopharma Finder</div><div>suggested: None</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      However, the high costs (resources), the time-consuming production, the requirement of specific equipment, and access to dedicated facilities could be a limitation for many laboratories or for the industrial production. By contrast, the bacterial-derived RBD offers a low production cost, a broader availability, and easy handling as main advantages, which make it more accessible. However, limitations in the quality of the produced sample include the absence of glycosylation that partially affects protein stability and efficiency, the presence of heterogeneous folded populations, and the relative low production yields which may result in a final product not eligible for some clinical and medical applications. Overall, all the recombinantly produced RBDs represent valuable tools for research purposes against the pandemic. Recently, expression and purification strategies described in this article have been also proved to be successful in the production of mutants of RBD corresponding to the variants of concern.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.09.15.460454: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">Contamination: All cell lines have tested negative for mycoplasma contamination.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell lines used in this study: 293FT cells were obtained from Dr. Kosuke Yusa’s Lab. 293FT.Cas9 cell lines were generated through lentiviral integration of an EF1a-Cas9-T2A-BlastR construct at low MOI to achieve single-copy integration.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293FT</div><div>suggested: ATCC Cat# PTA-5077, RRID:CVCL_6911)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">To generate cell lines permissive to Spike-Pseudotyped lentiviral infection, 293FT.Cas9 cells were engineered to stably express SARS-CoV-2 receptors ACE2 and TMPRSS2.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293FT.Cas9</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For in vitro transcribed mRNA, 293T cells were transfected for functional testing using Lipofectamine messengerMAX (Invitrogen) according to the manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: CCLV Cat# CCLV-RIE 1018, RRID:CVCL_0063)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">293FT.Cas9.ACE2/TMPRSS2 clonal cell lines were harvested by trypsinization and resuspend at a density of 70.000 cells per 30 μL.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293FT.Cas9.ACE2/TMPRSS2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In vitro transcription of S protein mRNA: Templates for in vitro transcription were generated by cloning P1 and P13 between NcoI and NotI sites of pTNT-B18R-6His (addgene plasmid 58979, a kind gift from Steven Dowdy (30)).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pTNT-B18R-6His</div><div>suggested: RRID:Addgene_58979)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For transfection, 1 μg of lentiviral transfer vector (pCSGW-GFP), were mixed with 0.72 μg of gag-pol expressing plasmid p8.9 and 68.33 fmol of S protein expressing construct in 500 μL of optiMEM media followed by the addition of 2 μL of PLUS reagent and incubation for 5 minutes at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCSGW-GFP</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>p8.9</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">These PCR products were both visualized on an agarose gel as well as TA-cloned using ‘TA Cloning Kit with pCR2.1 vector and OneShot TOP10 Chemically Competent E.coli’ (ThermoFisher) according to kit instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCR2.1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The template used to align the ALKBH5 reads to was constructed manually, by performing in silico Gateway cloning, inserting the ALKBH5 CDS and mRuby3 CDS into the pLIX_403 vector (Addgene plasmid #41395).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pLIX_403</div><div>suggested: RRID:Addgene_41395)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Full DNA sequences of these plasmids are found at a Zenodo provided doi: 10.5281/zenodo.5470001. “Wuhan” in plasmid names refers to the S protein DNA sequence from the Wuhan-Hu-1 isolate (Genbank: MN908947.3) while “18F” refers to the removal of the last 18 amino acids of the S protein C terminus (ER retention sequence) and the addition of a FLAG tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Zenodo</div><div>suggested: (ZENODO, RRID:SCR_004129)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data was analysed using FlowJo software (BD Biosciences) and displayed as % cells infected at 1:500 dilution of pseudotyped virus, normalized to the intronless construct infection rates (Figure 7).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Staining was developed using 20X LumiGLO® Reagent and 20X Peroxide reagents according to manufacturer’s recommendations (Cell Signaling Technology, #7003). cDNA analysis: RNA was extracted from the frozen cell pellets using RNeasy Mini Kit (Qiagen) and treated with ezDNase (ThermoFisher) before applying oligo(dT) guided 1st strand cDNA synthesis using SuperScript IV reverse transcriptase (ThermoFisher), all according to manufactures’ recommendations.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ThermoFisher</div><div>suggested: (ThermoFisher; SL 8; Centrifuge, RRID:SCR_020809)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All reads were mapped back to the original construct DNA sequence using SnapGene software to assess individual mRNA splicing events.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SnapGene</div><div>suggested: (SnapGene, RRID:SCR_015052)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After another round of bead purification, samples were pooled and submitted to Edinburgh Genomics, where they were further processed, barcoded and run on PromethION platform.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PromethION</div><div>suggested: (PromethION, RRID:SCR_017987)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      The main limitation lies in the quantification of the observed events in comparison to the reads without events which can be influenced by size dependency of some of the sample preparation steps as the full-size S protein cDNA is over 4kb long and many of the observed splicing events can be shorter than 200 bp and depleted by many sample preparation methods. Reported here are distributions based on the full length read population alone within each sample, but care should be applied before comparing these frequencies to other datasets with different sample preparation methods, such as the ChAdOx1 Nanopore RNA direct data (Sup Figure 8). Hundreds of randomly spaced splicing events characterized by the cDNA direct sequencing approach for the S protein and similar events seen in other proteins highlight the fact that even when the transgene’s CDS is apparently well designed and expression of full-length protein can be detected, the status quo design is just not optimal for RNA expression as transcript heterogeneity will inevitably impact both product levels (yield) and homogeneity. The impact of this will be dependent on the nature of the product, whether it is expressed in vitro or in vivo. In vitro expression offers opportunities to improve homogeneity by application of purification methods. Two thirds of cryptically spliced RNA molecules would be out-of-frame and would not just impact protein yield but any translation in vivo would generate novel peptides with potential immuno...

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. RED-tris-NTA

      his tag can be labeled in lysate

    2. because of its small size, binding of tris-NTA has minimum effect on biochemical and physicochemical properties of the protein

      small tag may not alter the conformation and function of the protein

    3. The observed Kd values were 1.3 ± 0.2 nM for the His6 peptide, 0.6 ± 0.3 nM for IDH R132H and 2.4 ± 1.1 nM for p38α

      2 points:

      1. binding Kd is about 1nM
      2. Kd for different targets could be slightly different

    Tags

    Annotators

    1. SciScore for 10.1101/2021.09.14.460356: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">g, anti-Human antibody was added to the wells and incubated for 1 hour followed by six washes as before.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-Human</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">RBD-SD1, wild type RBD and mutant RBD domains were subcloned into pcDNA.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>RBD-SD1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">One day before transfection, CHO-S cells were seeded at a density of 1 x 106 cells/mL in 45 mL culture flask.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CHO-S</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Lipofectamine® transient transfection of RBD constructs: For transient expression of RBD-SD1, RBD wild-type and RBD mutants, 293T cells were cultured and and incubated at at 37℃ with 5% CO2.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Vero E6 neutralization assay: All aspects of the assay utilizing virus were performed in a BSL3 containment facility according to the ISMMS Conventional Biocontainment Facility SOPs for SARS-CoV-2 cell culture studies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: RRID:CVCL_XD71)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After incubation with 293TACE2 cells for 48 hours at 37°C, cells were washed twice with PBS, lysed with Luciferase Cell Culture Lysis 5x reagent (Promega), and NanoLuc Luciferase activity in lysates was measured using the Nano-Glo Luciferase Assay System (Promega)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293TACE2</div><div>suggested: RRID:CVCL_YZ65)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SARS-CoV-2 Spike ECD 1-1208 (682-GSAS-685; 986-PP-987) fused to the T4 fibritin trimerization domain with C-terminal Avi- and His-tag were synthesized with gene block (IDT) and cloned into pcDNA.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA</div><div>suggested: RRID:Addgene_66792)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">On the day of transfection, 75 µL of FectoPRO® transfection reagent (PolyPlus-transfection®) was mixed with 5 mL of 15 µg/mL pcDNA3 plasmid DNA harboring antibody encoding sequence in CD-CHO media and incubated for 10 min at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3</div><div>suggested: RRID:Addgene_15475)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The atomic models and cryo-EM maps generated for the N-612-017, N-612-014, and N-612-004 Fabs complexed with SARS-CoV-2 S have been deposited at the PDB (http://www.rcsb.org/) and the Electron Microscopy Databank (EMDB) (http://www.emdataresource.org/) under accession codes 7S0C, 7S0D, 7S0E and EMD-24786, EMD-24787, EMD-24788, respectively.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>http://www.emdataresource.org/</div><div>suggested: (EMDataResource.org, RRID:SCR_003207)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Half-maximal inhibitory concentrations (IC50 values) for mAbs were determined using 4-parameter nonlinear regression (Prism, GraphPad).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Prism</div><div>suggested: (PRISM, RRID:SCR_005375)</div></div><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Movies were collected using a 3x3 beam image shift pattern with SerialEM automated data collection software (Mastronarde, 2005) at a nominal magnification of 45,000x (super-resolution 0.4345 Å/pixel) using a defocus range of −0.7 to −2.0 µm.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SerialEM</div><div>suggested: (SerialEM, RRID:SCR_017293)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For all datasets, movies were patch motion corrected for beam-induced motion including dose-weighting within cryoSPARC v3.1 (Punjani et al.,</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>cryoSPARC</div><div>suggested: (cryoSPARC, RRID:SCR_016501)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Coordinates were rigid body and B-factor refined in PHENIX v1.19 (Adams et al., 2010) followed by sequence matching and repeated cycles of phenix.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PHENIX</div><div>suggested: (Phenix, RRID:SCR_014224)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">refine and manual building in Coot (v0.9.3) (Emsley et al., 2010) (Table S6)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Full Revision

      Manuscript number: RC-2021-00785

      Corresponding author: Christian, G. Specht

      1. General Statements

      Dear Editor,

      We greatly appreciate the reviewers’ constructive comments on our manuscript ‘Identification of a stereotypic molecular arrangement of glycine receptors at native spinal cord synapses’. We were particularly pleased that all four reviewers agreed that our data yield new insights into the structure of inhibitory glycinergic synapses, and represent both a technical and conceptual advance the field of synaptic neuroscience.

      The reviewers have consistently raised one main criticism, namely the use of endogenously expressed GlyRs tagged with the fluorescent protein mEos4b, which could potentially have an impact on receptor expression, trafficking and function. We have addressed this point by performing whole-cell recordings of GlyR currents in cultured neurons that show that glycinergic transmission and therefore function is preserved. We have also addressed all other comments of the reviewers in the revised manuscript, including a thorough revision of the text and the addition of new data and figures as detailed in the point-by-point response.

      Point-by-point description of the revisions

      Reviewer 1:

      Summary:

      In this manuscript Maynard et al describe a newly generated knockin mouse to study the endogenous distribution of Gly receptors in the spinal cord. Using quantitative confocal imaging and SMLM the distribution and levels of GlyRs at spinal cord synapses is compared between dorsal and ventral horn. They found that levels of synaptic GlyR are higher in dorsal than ventral spinal cord synapses. Nevertheless, the ratio to gephyrin seems constant, except for synapses in superficial layers of the dorsal horn, where gephyrin levels exceeded the levels of GlyRs. There are also fewer, but larger synapses in the ventral horn than in the dorsal horn. These findings are further corroborated by an SR-CLEM approach. Furthermore, it is shown that in a mouse model for hyperekplexia GlyR levels are lower, but still enriched at synapses, and the dorsal-ventral gradient in GlyR expression was maintained. The difference in size of ventral and dorsal synapses observed in WT animals was also lost in the oscillator mouse, suggesting that particularly the ventral synapses are affected. Despite these differences, the density of GlyRs per synapse remained similar.

      Major comments:

      Line 113: "labeling the_ _b__-subunit has proven difficult". This statement is unclear and it would be informative for readers to grasp what exactly has been difficult, and why the approach described here overcomes that? Related to that, the authors state "KI animals reach adulthood and display no overt phenotype, suggesting that the presence of the N-terminal fluorophore does not affect receptor expression and function". That is indeed reassuring, but it does not exclude that receptor numbers, function and distribution are altered. As it seems there is no prior literature on tagging the beta subunit, additional evidence that the tag does not interfere with receptor trafficking or functioning would be desirable

      We have clarified why it has been difficult to label the GlyR beta subunit until now, lines 113-115 _“To date, labeling of GlyRβ in situ using immunocytochemistry has proven difficult due to a lack of reliable antibodies that recognize the native β-subunit (only antibodies for Western blotting recognizing the denatured protein are available), which has severely limited the study of the receptor.”_ Hence it was important to us to generate this knock-in mouse in order to study the endogenous GlyR at synapses, which is the least well studied receptor mediating fast synaptic transmission.

      The reviewer makes an important point regarding the labeling of the GlyRβ-subunit with a fluorescent protein that has also been raised by the other reviewers. We have now verified receptor function by patch clamp recordings of glycine currents in whole-cell configuration in spinal cord neuron cultures from the mEos4b KI mouse (new Supplementary Fig. S2C). At saturating glycine concentrations of 300 μM we found no difference in chloride influx between mEos4 KI and WT mice. Since glycine concentrations in the synaptic cleft are in the millimolar range during synaptic transmission, these data strongly suggest that glycinergic transmission is not affected by the presence of the mEos4b under physiological conditions, despite a minor shift in the EC50.

      There are several other strong arguments that suggest that mEos4b-GlyRb expression, subcellular localization and function are the same as those of the native subunit. Firstly, the mEos4b sequence was inserted after the signal peptide and before the beginning of the coding sequence of the mature β-subunit (Fig. S1). Since the mEos4b sequence does not interrupt the coding sequence it is less likely to affect the receptor conformation. Secondly, we did not notice any behavioural phenotypes in animals carrying the GlrbEos allele. At the time of weaning, the genotypes of the pups corresponded to the expected Mendelian frequency (new Fig. S2A). Moreover, we did not observe a reduction in live expectancy of GlrbEos/Eos animals (new Fig. S2B), demonstrating that the mEos4b-GlyRb does not cause pathology in older animals.

      Most importantly, our imaging data (Fig. 1-3) provide exhaustive evidence that mEos4b-GlyRb assembles with GlyR alpha subunits as heteropentameric receptor complexes that are trafficked to the plasma membrane and inserted into the synaptic membrane due to their interaction with the gephyrin scaffold at functional synapses. Using quantitative imaging, we have also shown that homozygous GlrbEos/Eos KI mice have exactly twice the number of receptors at synapses as heterozygous animals, strongly suggesting no interference in receptor trafficking to the plasma membrane and gephyrin binding. As the mEos4b mice were also bred with the oscillator mouse model of hyperekplexia, which is lethal when homozygous, we could further test the combined effect of GlrbEos and GlyRa1spt-ot. The presence of both alleles did not lead to any noticeable phenotypes in heterozygous oscillator mice. On the contrary, both synaptic targeting and the packing density of the receptors were not altered in this model, despite a region-specific reduction in synapse size due to the reduced availability of the intact GlyRa1 subunit.

      We believe that these data overwhelmingly support our conclusion that the presence of the mEos4b tag does not alter the structure and function of the receptor, making this mouse model uniquely suited to study the dynamics and regulation of glycinergic synapses in a quantitative manner and at the molecular level.

      In the Discussion the authors conclude that "Our quantitative SR-CLEM data lend support to the first model, whereby inhibitory PSDs in the spinal cord are composed of sub-domains that shape the distribution of the GlyRs". This conclusion seems however based on one example image in Fig 3G that is not very convincing. The EM image seems to show two clearly separated PSDs opposed by two distinct active zones. So, although this conclusion is of high interest, more support should be given to substantiate this conclusion. More general, these subsynaptic domains (SSDs) are hardly further explored, but seem relevant for transmission, particularly given that the synaptic pool of GlyRs at these synapses is not saturated by single release events. How general are these SSDs at these synapses?

      The representative image in Fig. 3G shows two SSDs within the same postsynaptic site with a continuous presynaptic active zone. It should be noted that the PALM/SRRF images were taken of the entire 2 µm thick slice, whereas the electron micrograph shows only a single 70 nm section. We verified throughout the full 3D stack of serial sections that the presynaptic site remains continuous, which it does. We would also like to point out the scale of the image showing that the two SSDs are only around 170 nm apart, i.e. spatially very close. Our conclusions are however not based on this single image but the whole dataset. The graph in Fig. 3I shows 3 synapses (out of N = 36), in which the GlyR density at separate SSDs could be quantified, demonstrating that the receptor density is not different between SSDs. The reviewer is correct that we do not further analyse the SSDs beyond their density and the analysis of the segmentation of the postsynaptic sites (Fig. 3E-G). Further work on the functional role of SSDs in synaptic transmission is outside the scope of this manuscript and would indeed merit future study.

      The approach for counting molecules based on the PALM acquisition has been developed in prior publications and seems robust. It would however be worth to present the reader with a bit more background and explain the assumptions of this approach in more detail. Particularly, since counting of mEos4b can be problematic, as there are multiple dark and fluorescent states of this fluorophore that could be influenced by the illumination scheme, see for instance De Zitter et al., Nat Methods 2019. Since the preceding SRRF acquisition already exposes the fluorophore to high and continuous 561-nm laser power this could skew the counting due to unaccounted conversion and perhaps bleaching of mEos4b. In line with this, although throughout the manuscript the term 'absolute copy numbers' is used the reported numbers are at best an estimate based on a number of assumptions. I think the wording 'absolute numbers' is therefore deceiving and should be nuanced.

      We have clarified how the molecule conversion is calculated (Fig. S7 legend), to provide a more complete description of the way in which the values were obtained. Further we have explained how we calculated the probability of detection. Since the probability of detection accounts for any unconverted or non-functional mEos4b molecules, our molecule counting approach is relatively resistant to potential pre-bleaching of fluorophores. It should be noted, that 561 nm illumination had no obvious effect on the non-converted (green) mEos4b fluorophores, as judged by the fact that the intensity of receptor puncta was unaffected by the SRRF recordings. We appreciate the reviewers point regarding the term ‘absolute copy number’ and we have adjusted our wording throughout the manuscript accordingly.

      Related, most of the quantifications are in estimating the number of receptors, and not so much the distribution with the PSD. The term "molecular arrangement" - also used in the title - might therefore be misleading, there is in fact little characterization of how GlyRs are placed within the PSD. More focused analysis quantifying the distribution of receptors within the PSD and/or SSDs would strengthen the manuscript.

      By estimating the number of receptors and the exact size of synapses, the main conclusion of our study is that receptor density at dorsal and ventral synapses is identical, independent of synapse size, subdomains, or in fact loss of GlyRs in a mouse model of hyperekplexia. This observation clearly relates to how receptors are packed within synapses, and thus describes their molecular arrangement.

      The reported N is confusing and makes it hard to judge the reproducibility of the data. Sometimes it refers to number of images, sometimes number of synapses, but it is unclear from how many experiments these are drawn. This should be reported more completely (number of animals should be reported at least) and consistently. In figure 1, the N numbers (N=3-5 images) are particularly low and question how consistent these findings are across multiple animals.

      We have clarified the N in the figure legends, to reflect the full size of the datasets that have been analysed.

      The levels of mRFP-Gephyrin seem to differ between the different mouse lines, is this a significant difference?

      No significant differences in mRFP-gephyrin levels were found in animals with different mEos4b-GlyRb genotype (Fig. 1B). However, expression of mRFP-gephyrin in heterozygous animals is 50% of that in homozygous mRFP-gephyrin KI animals (not shown).

      The ICQ analysis for co-localization is hardly explained. How do we interpret this parameter? What does an average value of ~0.3 mean? A comparison with sets of proteins that do not overlap as a negative control would strengthen the conclusion.

      We have clarified that an ICQ value of 0.3 is indicative of a very high spatial correlation between pixels, and provided a corresponding reference for ICQ analysis (lines 209-210). We would like to point out that the scale of the ICQ is between -0.5 to 0.5, meaning that a value of 0.3 comes close to complete correlation.

      Minor comments:

      Very little fluorescence was detected in the forebrain, despite the high reported expression of the Glrb transcript". Can the authors expand on this? What would explain this discrepancy?

      We have clarified the text to include “suggesting that protein levels are controlled by post-translational mechanisms in a region-specific manner, as previously proposed (Weltzien et al., 2012)” (Lines 152-153). The reason for this discrepancy is not known. However, the distribution of mEos4b expression throughout the brain is as expected, based on the literature.

      "What region is quantified in Fig 1B? is the same region in all conditions? This should be specified more clearly as the manuscripts presents a clear gradient in expression levels in the spinal cord and thus the location will influence the intensity measurements.

      We have explained in the text that this is the region at the centre of the ventral horn identified by the white square in Fig. 1A, and that the same region was analysed for all images across all animals. Page 5, lines 160-161 “The same region of the ventral horn, indicated by the white square in Fig. 1A was taken for quantification of mEos4b-GlyRβ and mRFP-gephyrin expression in all conditions.”

      The labeling approach does not differentiate between surface and internal receptors, this should be made more explicit in the text.

      Whilst this is correct, we have only analysed mEos4b-positive synapses that had corresponding gephyrin clusters, meaning synapses where receptors are located in the postsynaptic membrane. Indeed we found that all mEos4b clusters imaged colocalised with mRFP-gephyrin clusters. We have adjusted the text accordingly, page 6, line 205-206 “All mEos4b-GlyR clusters closely matched the mRFP-gephyrin clusters, confirming the localization of the receptors in the postsynaptic membrane.”

      Significance:

      The presented data are interesting and the experiments are technically advanced and carefully performed. Particularly the SR-CLEM approach is technically advanced. The datasets present a quantitatively detailed characterization of spinal cord synapses and will be of interest for researchers working in the field of spinal cord circuitry, as well as super-resolution imaging. The conceptual advance for the field is however somewhat limited. It seems that the presented data confirm the general notion that receptor numbers and synapse size are highly correlated. So, although this manuscript describes very interesting observations, in its present form the manuscript does not provide any new mechanistic insight or significant advance in our understanding of how these synapses operate.

      We thank the reviewer for his/her comments relating to the technicality of our manuscript. However we think that the statement “The conceptual advance for the field is however somewhat limited” is unfair, as this level of organisation of inhibitory synapses at the molecular scale has never been achieved before, as pointed out by the other reviewers, and especially not as regards different ages of animals and a disease model that directly affects receptor numbers in a region-specific manner. We therefore believe that our study will have a substantial impact within the fields of synaptic neuroscience as well as quantitative neurobiology.

      Referee cross-commenting:

      I agree with the other reviewers that this study is technically advanced, but I remain critical towards the extent of conceptual advancement this study brings and there are some important concerns with the presented data that need to be addressed. Nevertheless, indeed many of these concerns can be addressed without additional experiments. As pointed out also by other reviewers additional validation that the fusion proteins are not disrupting their function or organization would be important.

      Reviewer 2:

      Summary:

      Maynard et al. investigate (inhibitory) glycinergic synapses in mouse spinal cord, which regulate motor and sensory processes. The authors analyse the molecular architecture and ultra-structure of these synapses in native spinal cord tissue using quantitative super-resolution correlative light and electron microscopy. The major finding is that GlyRs exhibit equal receptor-scaffold occupancy and constant absolute packing densities across the spinal cord and throughout adulthood, although ventral and dorsal inhibitory synapses differ in size. Moreover, what the authors call a „stereotypic arrangement" is even maintained in a hypomorphic mutant (oscillator), which is deficient in the adult GlyR a1 subunit.

      Specific comments:

      To reach their conclusions the authors generate two knock-in mouse lines, one with mEOS-labelled GlyR ß-subunit and one with mRFP-labelled gephyrin, a subsynaptic scaffolding protein of inhibitory synapses, which are subsequently crossed. Both changes are not unproblematic, as mutations in the N-terminal end of the GlyR ß subunit polypeptide chain might interfere with the assembly of functional GlyR (consisting of a und ß subunits) and and mutations at the N-terminal end of gephyrin interfere with it's homo-oligomerization into higher molecular assemblies.

      We have demonstrated that the function of mEos4b-GlyRb does not differ significantly from WT GlyRs, by carrying out electrophysiological experiments (new Fig. S2C). For a detailed response, please see the response to the first comment of reviewer 1. The mRFP-gephyrin KI strain has been validated and published previously (see Machado et al., 2011, J Neurosci; Specht et al. 2013 , Neuron) and was not specifically generated for this study. The experiments with the oscillator mutant did not include the mRFP-gephyrin allele. In these experiments, the wildtype GlrbEos/Eos (Fig. 4, 5) behaves exactly as the GlrbEos/Eos in the double knock-in (Fig. 1, 2), further validating the mouse models used.

      However, in this experimental design both labelled proteins reach postsynaptic membrane specialisations. In case of the ß-subunit quantitative evaluation confirms that heterozygous animals contain only half of the labelled protein as homozygous, which is an indication but not a proof that the correct stoichometry of adult GlyR is maintained. Likewise, mRFP-labelled gephyrin assembles with WT-gephyrin in subsynaptic domains, but it is not clear, if the size and density of the synapses is changed by the knock-in procedure as compared to WT-synapses.

      An effect of the mRFP tag on gephyrin clustering can be ruled out, since we observed no difference in synapse size and receptor density in GlrbEos/Eos animals with (Fig. 1, 2) and without the GphnmRFP allele (Fig. 4, 5, oscillator wild-type controls). Similarly, the synaptic mEos4b-GlyRb levels in heterozygous animals were precisely half those of the homozygous animals, strongly suggesting that the expression and trafficking of the tagged receptor subunit is unchanged, as the reviewer acknowledges. In the absence of any obvious behavioural and/or functional phenotypes (Fig. S2) this KI model is in our view is an exceptional tool to study GlyRs expressed at endogenous levels in a cell-type specific manner.

      Accepting these constraints, which to the knowledge of this reviewer have never been addressed to satisfaction, the authors provide a technically excellent, comprehensive analysis of glycinergic synapses in the spinal cord of double knock-in mice. Therefore, it should be stated in the title, that the investigations were performed with double knock-in instead of „native" spinal cord. Text and figures are clear and accurate and represent the state of the art.

      We thank the reviewer for the positive comments regarding the techniques used in the study, and the clarity of the text and figures. We have adjusted the title as requested.

      Finally, the reviewer would like to raise a minor point: the term postsynaptic density is derived from electron microscopical studies of synapses, where asymmetrical synapses display a „postsynaptic density" but symmetrical synapses do not. The latter were identified as inhibitory synapses and therefore, by definition, inhibitory synapses do not have a postsynaptic density, but rather a postsynaptic membrane specialisation. The use of the term „postsynaptic density" should, therefore, be restricted to excitatory synapses.

      We are conscious of the importance of correct definitions and have revised the terminology, referring to “postsynaptic sites”, “postsynaptic domains”, and “postsynaptic specializations” as appropriate throughout the manuscript.

      Significance:

      The authors provide a state of the art advanced light and electron microscopical analysis of glycinergic synapses in the mouse spinal cord. They suggest a robust "stereotypical" mechanism in place, which guarantees a fixed stoichiometry of relevant components, which is even maintained in a hypomorphic mutant, which is believed to represent a mouse model of human hyperekplexia (startle disease).

      Referee cross-commenting:

      I would like to corroborate the arguments of the previous reviewer: it is not clear to which extent the fusion proteins influence the measurements, which are technically very advanced and well done, however. The authors do definitely not investigate "native spinal cord" as stated in the title.

      The argument concerning fusion proteins must be taken especially serious as the fusions were induced in regions known to be responsible for assembly of glycine receptors and oligomerization of gephyrin.

      We have verified the receptor function with electrophysiological recordings and clarified exactly where the fluorescent protein was inserted (see reviewer 1 response). Given the similarity in synapse size, fluorescence intensities and molecule densities observed in neurons expressing different combinations of tagged and native receptors and scaffold proteins, we strongly believe that all animal models used are well suited to the experimental aims of our study.

      Reviewer 3:

      Summary:

      Glycinergic synapses are the least well understood of synapses that mediate fast synaptic transmission. The manuscript by Maynard et al. adds new information about the structural aspects of these synapses, using PALM and EM imaging of spinal cord synapses from mice at 2 and 10 months. The authors created a knock-in mouse that expresses a tagged GlyRbeta subunit, allowing synaptic localization of glycine receptors; all synaptically localized glycine receptors are thought to require the beta subunit to be tethered by gephyrin. The authors compare synaptic profiles from: 2 month old vs. 10 month old mice; dorsal vs. ventral horn; and GlyR1-reduced vs. wild type mice. Strikingly, they find a tight relationship across all of these variables between glycine receptor puncta and gephyrin puncta, as well as an apparently constant "packing density" of glycine receptors. They conclude that synaptic extent is likely to be the most important determinant of synaptic strength, as the density of receptors within the postsynaptic density is constant. These results use cutting-edge imaging and are analyzed with care, and add new information to our understanding of these relatively less well characterized synapses._

      Major comments:

      The key conclusions are convincing and the claims appear solid. Additional experiments are not needed to support these claims. The data and the methods are largely presented in such a way that they can be reproduced, although there are minor suggestions for improvement below.

      We thank the reviewer for his/her positive comments.

      Minor comments:

      Do the authors have any comment on the requirement during, e.g. LTP, for insertion of a gephyrin-GlyR unit? The lead author has speculated that gephyrin creates "slots" for GlyRs; yet apparently each slot is already filled in the snapshots taken here. How might postsynaptic LTP occur (Kandler group, Kauer group papers)?

      Given the reciprocity of GlyR and gephyrin clustering at synapses, the occupancy of binding sites (and in turn the number of available ‘slots’) is dependent on the strength of receptor-scaffold interactions, as discussed previously (Specht 2020, Neuropharmacol). In this study we demonstrate that the density of GlyRs at synapses is constant, which implies that the receptor occupancy is also the same, with the possible exception of mixed inhibitory synapses in the superficial dorsal horn that contain a majority of GABAARs. The PALM/SRRF data are represented as rendered image reconstructions and not as pointillist representations, and the detection of unoccupied binding sites is below the spatial resolution of our approach. However, the high spatial correlation of the signal intensities (ICQ ≈ 0.3) suggests that receptor occupancy is equal between and within synapses. It has previously been established that there are more scaffold proteins than receptors at synapses (Specht et al. 2013, Neuron; Patrizio et al. 2017, Sci Rep). Based on these studies we report that approximately half the gephyrin binding sites are occupied by receptors (lines 262-655). We have also expanded the discussion, describing how shape and size of synapses may affect synaptic transmission, as well as the possible role of receptor-gephyrin interactions in synaptic plasticity at glycinergic synapses.

      It would be very interesting in the discussion to contrast the present observations with what is known about excitatory synapses (NMDA and AMPAR distributions) and GABAergic synapses. Are the authors at all surprised that receptor packing is constant across conditions? Can the authors speculate on how non-gephyrin binding receptors (homomeric alpha receptors, which are found in recordings) may function and be tethered to the membrane.

      We have included additional information about receptor numbers and distributions at excitatory (lines 428-438) and GABAergic (lines 389-393) synapses in the discussion. So far, homomeric GlyRs composed of alpha subunits have been found to be exclusively extrasynaptic. As stated on page 4, lines 111-112 the beta subunit is required for binding of the GlyR to gephyrin and subsequent anchoring at the synapse. Previous studies have shown exocytosis of receptors to occur at extrasynaptic sites followed by lateral diffusion to synapses. Homomeric GlyRs are therefore most likely targeted to the extrasynaptic plasma membrane where they remain due to the lack of the beta subunit.

      Figure S1. It would be most helpful to quantify this; at the least to include an atlas-like drawing to allow identification of the structures illustrated and containing Glrb; better yet would be quantification of staining in regions where this is strongest.

      We have added an atlas indicating the different brain regions expressing mEos4b-GlyRb protein as a new Supplementary Fig. S3. The regional expression pattern agrees with the available literature about protein expression of the GlyRb subunit in different brain regions and hence provides further evidence that mEos4b-GlyRb is expressed like the native receptor. Due to the relatively low resolution of the tiled image no accurate quantification was possible. We have however added higher magnification confocal images of representative brain regions expressing varying amounts of GlyRb.

      The fact that the lower panel in B is labeled as +/+ across all groups is initially confusing; perhaps relabel as mEos4 -/-, +/- and +/+?

      We assume that the reviewer is referring to Fig1B. The genotype of both the GlrbEos and the GphnmRFP allele is now indicated on the x-axes, and the legend has been modified to clarify that all these animals were homozygous for GphnmRFP/mRFP. We have strived to remain consistent throughout the manuscript when referring to genotypes and protein levels.

      Do gephyrin levels drop in WT mice as well as in the mEosr-GlyRb mouse between 2 and 10 months? Do the authors have any thoughts on this (Supp figure S2)?

      We found no differences in gephyrin levels between 2 and 10 months. Fig. S2 (now Fig. S4C) shows the number of synaptic gephyrin clusters, which was the same at different ages and genotypes.

      Significance:

      Glycinergic synapses are the least well understood of synapses that mediate fast synaptic transmission. The manuscript by Maynard et al. adds new information about the structural aspects of these synapses, using PALM and EM imaging of spinal cord synapses from mice at 2 and 10 months. The authors created a knock-in mouse that expresses a tagged GlyRbeta subunit, allowing synaptic localization of glycine receptors.

      This will be of interest to those studying inhibitory synapses, and more broadly to synaptic morphologists, physiologists and imagers for comparison with other synapse types.

      My own expertise is NOT in these techniques, but I am a synaptic physiologist with a standing interest in glycinergic synapses; thus I am not providing serious technical critiques.

      Referee cross-commenting:

      Hi all, I agree with the other two reviewers, and do not have anything else to add.

      Reviewer 4:

      Summary:

      The authors used a correlative approach and combined photo-activated localization microscopy with electron microscopy to characterise Glycinergic synapses in spinal cord tissue. Some of the major findings are:

      • The receptor-scaffold occupancy and packing densities of glycinergic synapses in different regions of the spinal cord are the same.
      • Gephyrin clusters in the spinal cord are composed of sub-domains that shape the GlyR clusters.
      • Ventral horn synapses are generally larger, more complex (containing a number of gaps) and contain more GlyRs. -In a mouse model of Hyperekplexia, the number of GlyRs is reduced resulting in smaller synapses in the ventral spinal cord.

      Major comments:

      Are the key conclusions convincing? Yes

      Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? No

      Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation. No

      Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments. N/A

      Are the data and the methods presented in such a way that they can be reproduced? Yes

      Are the experiments adequately replicated and statistical analysis adequate? Yes

      Minor comments:

      Specific experimental issues that are easily addressable. Please see below

      Are prior studies referenced appropriately? Yes

      Are the text and figures clear and accurate? Yes

      Do you have suggestions that would help the authors improve the presentation of their data and conclusions? Please see below.

      As the authors pointed out, fusing mEos to the extrasynaptic terminal of GlyRb has been difficult and therefore this construct would benefit the larger scientific community. Fig 1C is a nice imaging control for expression efficiency, however, it is in stark contrast with the lack of functional control. Do authors have any electrophysiological evidence showing that the insertion of mEos4b doesn't modulate channel function? I would assume that the construct would be tested in cell lines before the KI mouse line was created. Was any functional analysis done? If yes, it would be very useful to show it. I do appreciate that the authors used a standard insertion between the 4th and 5th AA in the extracellular domain, which in most cases does not abolish channel function. Given the lack of an obvious phenotype in the KI mouse model, I believe that this is also the case here. However, I disagree with the statement in lines 120-121: "the presence of the N-terminal fluorophore does not affect receptor expression and function." I believe that if there are no electrophysiological measurements of GlyR function, this statement remains speculative. As the authors pointed out in their previous publication: "receptor function and gephyrin binding are not independent properties. Instead, we think that conformational changes triggered at extracellular or intracellular protein domains have downstream consequences on channel opening as well as receptor clustering." In line with this, my concern is that the modulation of channel function by mEos4b could result in an altered cluster size at synapses. There is a large body of literature showing that just one missense mutation in the extracellular domain of ion channel subunits can lead to synaptopathies because the channel function gets modulated, and there is an abundance of similar examples involving mutations of GlyR and GABAAR subunits. In my view, comparing the function of GlyRs incorporating wt-GlyRb and mEos4b-GlyRb subunits is important for the correct interpretation of the main findings of this work and would strengthen the publications.

      As the reviewer points out, the insertion of the mEos4b sequence was considered carefully in order to have the least impact on receptor function. GlyR channelopathies are often caused by point mutations within the coding sequence, which is not the case in the GlrbEos allele. Instead, the mEos4b sequence was inserted after the single peptide of GlyRb, duplicating several amino acid residues in order to maintain the correct cleavage site and N-terminus of the mature receptor, and to not interrupt the GlyRb coding sequence (Fig. S1B). In order to verify that the mEos4b-tag does not affect GlyR function, we have now carried out electrophysiological experiments (new Fig. 2C). For a detailed description please see the response to the first comment of reviewer 1.

      Line 189: Are the authors making conclusions based on intensity comparison of red mEos4b and mRFP? The title of this section implies that the red form of mEos was compared to mRFP(?) But mEos converts from green to red only partially. Was the probability for conversion taken into account at this point? Please clarify which version of mEos was compared to mRFP._

      In line 189 (now 218) we compared the intensities of mRFP-gephyrin with those of converted (red) mEos4b in SRRF / PALM super-resolution images of the synapses (Fig. 2D). Since the absolute intensities are altered by the process of image reconstruction, the probability that mEos4b is photoconverted does not have to be taken into account. The constant ratio of the SRRF and PALM image intensities confirms the data in Fig. 1D showing that GlyR and gephyrin amounts are highly correlated throughout the spinal cord (with the exception of the superficial layers of the dorsal horn). We have clarified in the text that this analysis was carried out on reconstructed SRRF images of mRFP-gephyrin and PALM images of mEos4, line 202.

      Line 192: Please clarify how the density threshold was calculated/determined? This is important for the replication of the experiments, and it also has implications for the calculated probability of detection of mEos4b. I am not aware that this probability was calculated before for mEos4b and therefore other researchers may decide to rely on the value calculated here.

      We have now clarified in more detail how the probability of detection was calculated (new Supplementary Fig. S7 legend).

      In Fig. 2 Gephyrin clusters look consistently smaller than GlyR clusters, which is inconsistent with the published work. I assume that the difference in size is a consequence of different image reconstruction methods(?) However, I would assume that SRRF would have lower resolution than your PALM measurements and that would result in wider Gephyrin clusters. Could you please explain this discrepancy? Also, could you provide an estimate for the image resolution in SRRF and PALM techniques? For SMLM, localization precision would suffice.

      We have provided an estimate of the resolution of the two techniques using Fourier ring correlation, which gave 46 nm for SRRF and 21 nm for PALM. Additionally we have precised the discrepancy between reconstruction methods, page 6, lines 194-200 “The spatial resolution was estimated using Fourier ring correlation (FRC), which measures the similarity of two images as a function of spatial frequency by comparing the odd and even frames of the raw image sequence. According to this analysis, the spatial resolution of SRRF was 46 nm and that of PALM 21 nm. It should be noted that the synaptic puncta in the SRRF images appear somewhat smaller and brighter due to differences in the reconstruction methods that result in differences in the dynamic intensity range.”

      Why is the data in Fig. 5D and E represented as Detections/Synapse instead of GlyRs/Synapse? Could you please re-plot this so that a comparison with Fig. 2H and I is straightforward?

      We have converted the detections to receptor copy numbers as requested (Fig. 5D,E).

      Figure S5C: for P=0.5, 2=0.25. Please correct. Also, I assume that the second graph is what would be observed experimentally for dimers and P=0.5. Please clarify in the figure caption.

      This was a mistake and has been corrected. We have also clarified which parts of the calculations are theoretical and which values were derived from our experimental data. We have provided a more detailed description in the figure legend of Supplementary Fig. S7.

      Line 606: Please provide a complete derivation of this formula.

      We have provided a full derivation of this formula (new Fig. S7C).

      Significance:

      The work described here seem to be a natural progression of a publication by Patrizio et al., 2017 that came out from the same laboratory. This study uses advanced methodologies in the imaging space to visualise and characterise Glycinergic synapses in spinal cord tissue. The experiments described here are technically demanding as evidenced by the relatively small number of publications describing super-resolution measurements in tissue samples. Even more rare are studies that attempt to do single protein counting in neuronal culture and tissue sections. Therefore, I believe that this work brings significant technical advancement in the field of super-resolution and corelative microscopy. The findings are also highly significant for all fields of neuroscience in which the structure of inhibitory Glycinergic synapse is relevant, ranging from the fundamental understanding of inhibitory synapse function to pathologies involving Glycinergic signalling._

      I have substantial experience in different microscopy methods, including quantitative super-resolution microscopy based on single molecule counting. My background also covers the structure and function of GABAA and Glycine receptors using electrophysiology. I am familiar with the methods used in electron microscopy and the process of creating KI mouse lines, however I don't have hands-on experience in these fields._

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary:

      In this manuscript Maynard et al describe a newly generated knockin mouse to study the endogenous distribution of Gly receptors in the spinal cord. Using quantitative confocal imaging and SMLM the distribution and levels of GlyRs at spinal cord synapses is compared between dorsal and ventral horn. They found that levels of synaptic GlyR are higher in dorsal than ventral spinal cord synapses. Nevertheless, the ratio to gephyrin seems constant, except for synapses in superficial layers of the dorsal horn, where gephyrin levels exceeded the levels of GlyRs. There are also fewer, but larger synapses in the ventral horn than in the dorsal horn. These findings are further corroborated by an SR-CLEM approach. Furthermore, it is shown that in a mouse model for hyperekplexia GlyR levels are lower, but still enriched at synapses, and the dorsal-ventral gradient in GlyR expression was maintained. The difference in size of ventral and dorsal synapses observed in WT animals was also lost in the oscillator mouse, suggesting that particularly the ventral synapses are affected. Despite these differences, the density of GlyRs per synapse remained similar.

      Major comments:

      • Line 113: "labeling the -subunit has proven difficult". This statement is unclear and it would be informative for readers to grasp what exactly has been difficult, and why the approach described here overcomes that? Related to that, the authors state "KI animals reach adulthood and display no overt phenotype, suggesting that the presence of the N-terminal fluorophore does not affect receptor expression and function". That is indeed reassuring, but it does not exclude that receptor numbers, function and distribution are altered. As it seems there is no prior literature on tagging the beta subunit, additional evidence that the tag does not interfere with receptor trafficking or functioning would be desirable
      • In the Discussion the authors conclude that "Our quantitative SR-CLEM data lend support to the first model, whereby inhibitory PSDs in the spinal cord are composed of sub-domains that shape the distribution of the GlyRs". This conclusion seems however based on one example image in Fig 3G that is not very convincing. The EM image seems to show two clearly separated PSDs opposed by two distinct active zones. So, although this conclusion is of high interest, more support should be given to substantiate this conclusion. More general, these subsynaptic domains (SSDs) are hardly further explored, but seem relevant for transmission, particularly given that the synaptic pool of GlyRs at these synapses is not saturated by single release events. How general are these SSDs at these synapses?
      • The approach for counting molecules based on the PALM acquisition has been developed in prior publications and seems robust. It would however be worth to present the reader with a bit more background and explain the assumptions of this approach in more detail. Particularly, since counting of mEos4b can be problematic, as there are multiple dark and fluorescent states of this fluorophore that could be influenced by the illumination scheme, see for instance De Zitter et al., Nat Methods 2019. Since the preceding SRRF acquisition already exposes the fluorophore to high and continuous 561-nm laser power this could skew the counting due to unaccounted conversion and perhaps bleaching of mEos4b. In line with this, although throughout the manuscript the term 'absolute copy numbers' is used the reported numbers are at best an estimate based on a number of assumptions. I think the wording 'absolute numbers' is therefore deceiving and should be nuanced.
      • Related, most of the quantifications are in estimating the number of receptors, and not so much the distribution with the PSD. The term "molecular arrangement" - also used in the title - might therefore be misleading, there is in fact little characterization of how GlyRs are placed within the PSD. More focused analysis quantifying the distribution of receptors within the PSD and/or SSDs would strengthen the manuscript.
      • The reported N is confusing and makes it hard to judge the reproducibility of the data. Sometimes it refers to number of images, sometimes number of synapses, but it is unclear from how many experiments these are drawn. This should be reported more completely (number of animals should be reported at least) and consistently. In figure 1, the N numbers (N=3-5 images) are particularly low and question how consistent these findings are across multiple animals.
      • The levels of mRFP-Gephyrin seem to differ between the different mouse lines, is this a significant difference?
      • The ICQ analysis for co-localization is hardly explained. How do we interpret this parameter? What does an average value of ~0.3 mean? A comparison with sets of proteins that do not overlap as a negative control would strengthen the conclusion.

      Minor comments:

      • "Very little fluorescence was detected in the forebrain, despite the high reported expression of the Glrb transcript". Can the authors expand on this? What would explain this discrepancy?
      • What region is quantified in Fig 1B? is the same region in all conditions? This should be specified more clearly as the manuscripts presents a clear gradient in expression levels in the spinal cord and thus the location will influence the intensity measurements.
      • The labeling approach does not differentiate between surface and internal receptors, this should be made more explicit in the text.

      Significance

      The presented data are interesting and the experiments are technically advanced and carefully performed. Particularly the SR-CLEM approach is technically advanced. The datasets present a quantitatively detailed characterization of spinal cord synapses and will be of interest for researchers working in the field of spinal cord circuitry, as well as super-resolution imaging. The conceptual advance for the field is however somewhat limited. It seems that the presented data confirm the general notion that receptor numbers and synapse size are highly correlated. So, although this manuscript describes very interesting observations, in its present form the manuscript does not provide any new mechanistic insight or significant advance in our understanding of how these synapses operate.

      Referee Cross-commenting

      I agree with the other reviewers that this study is technically advanced, but I remain critical towards the extent of conceptual advancement this study brings and there are some important concerns with the presented data that need to be addressed. Nevertheless, indeed many of these concerns can be addressed without additional experiments. As pointed out also by other reviewers additional validation that the fusion proteins are not disrupting their function or organization would be important.

    1. SciScore for 10.1101/2021.09.03.21263105: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Consent: All participants provided written informed consent.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">Study participants and sample collection: The study participants were enrolled in the ACTIV-2/AIDS Clinical Trials Group (ACTG) A5401 phase 2 randomized, placebo-controlled trial of bamlanivimab 7000mg and 700mg mAb therapy.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">IgG was detected by incubation with MSD SULFO-TAG anti-IgG antibody.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti-IgG</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SARS-CoV-2 quantitative Laboratory Developed Test (LDT) was developed utilizing open mode functionality on m2000sp/rt (Abbott, Chicago, IL) by using EUA Abbott SARS-CoV-2 qualitative reagents30.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Abbott</div><div>suggested: (Abbott, RRID:SCR_010477)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Raw sequence data were analyzed using PASeq v1.4 (https://www.paseq.org).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PASeq</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, data were quality filtered using Trimmomatic (v0.30), using a Q25/5 bp sliding window and a 70 bp minimum length.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Trimmomatic</div><div>suggested: (Trimmomatic, RRID:SCR_011848)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Filtered reads were then merged with pear v0.9.6 aligned to the reference sequence using Bowtie2 v2.1.0)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pear</div><div>suggested: (PEAR, RRID:SCR_003776)</div></div><div style="margin-bottom:8px"><div>Bowtie2</div><div>suggested: (Bowtie 2, RRID:SCR_016368)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All statistical analyses were performed in GraphPad Prism (Version 9.1.1)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      One limitation to this study is that bamlanivimab is no longer used clinically as a single agent. These results, though, provide important proof of principle for the role that drug resistance may have on virologic and clinical efficacy of SARS-CoV-2 antiviral therapies. These lessons have implications for the development of novel COVID-19 antiviral therapies and have continued relevance for other clinically-approved single agent monoclonal antibody treatments29 and for combination therapies where one agent may be ineffective due to circulating variants13. Another limitation of this study is the limited sample size of this phase 2 study, especially in the bamlanivimab 7000mg cohort. While treatment-emergent mutations were not found in ACTIV-2 participants receiving the higher 7000mg dose of bamlanivimab, they were frequently detected in the larger BLAZE-1 phase 2 trial of the 7000mg dose7. One difference between these studies was the longer duration since symptom onset for the ACTIV-2 participants, who enrolled a median of 6 days since symptom onset versus 4 days for the BLAZE-1 participants. This likely led to higher pretreatment viral loads, which we found to be a risk factor for resistance emergence. Unfortunately, baseline viral loads could not be compared between studies as the BLAZE-1 study did not use a quantitative SARS-CoV-2 viral load assay. These disparate results highlight the importance of incorporating quantitative viral load testing and resistance testing for CO...

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04518410</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">ACTIV-2: A Study for Outpatients With COVID-19</td></tr></table>


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.09.07.21262911: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: The study was approved by the ethics and research committees of the Instituto Nacional de Medicina Genómica (CEI/1479/20 and CEI 2020/21).<br>Field Sample Permit: Effective reproduction number estimation for variants B.1.1.222 and B.1.1.519: We grouped all sequenced samples based on the epidemiological week as the date of sample collection.<br>Consent: Verbal consent and identification were the first steps when calling each subject included in the final analysis.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Sequencing was performed on the MinION platform, and the final library (15 ng) was loaded onto the flow cell R.9 according to the manufacturer’s instructions.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MinION</div><div>suggested: (MinION, RRID:SCR_017985)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A final consensus FASTA file was generated by first marking positions not covered by at least 20 reads from either group as low coverage and building a pre-consensus FASTA with BCFtools consensus, which was subsequently aligned against the reference sequence using muscle (v.3.8.1551).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BCFtools</div><div>suggested: (SAMtools/BCFtools, RRID:SCR_005227)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Phylogenetic Analysis: The sequences were aligned with MAFFT (version 7.475) using the FFT-NS-2 algorithm20,21.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MAFFT</div><div>suggested: (MAFFT, RRID:SCR_011811)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A maximum-likelihood phylogeny was calculated with FastTree (version 2.1.11) compiled with the double precision tag using a generalized time-reversible model (GTR)22,23.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FastTree</div><div>suggested: (FastTree, RRID:SCR_015501)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Hypo.thesis apparently can't handle page 96, so here are my notes on it. New note: "'Or complex,' volleyed Dunraven. 'Remember the universe.' Funny banter isn't something I've seen in many other Borges stories, but he's good at it. New note: "volleyed Dunraven." Borges breaks the rules a bit by using a descriptive dialogue tag. I think he does it really well, though. "Volleyed" communicates more than, say, "retorted." It tells us a bit about Dunraven's tone and what kind of comment he's making, which is already clear because Borges' dialogue is sharp and clear, but it also tells us that Dunraven might think of conversation as a game or a competition. Originality helps here, too. I don't think I've seen "volleyed" used as a dialogue tag anywhere else. New note: "Climbing up steep sandy hills...." Their walk needs a little more specificity, in my opinion. Maybe it would be more clear with a description of these characters coming over a hill past Dunraven's family shack and seeing the labyrinth in the distance, or something like that. The beginning of this paragraph was pretty disorienting at first. The disorientation definitely could be intentional, though. Borges could be setting something up with that vagueness.

    Annotators

    1. Also, give up now on the idea of trying to get everything tagged. If you can set a baseline of 80% or better, you’re outperforming almost everyone. And, in most cases, you’re not an organization where you’re required to spend thousands of dollars to allocate that last 20 cents. Lastly, never ever expect people to tag things by hand. They won’t. If you want decent tag coverage, tagging absolutely must be automated.
    1. With Tag Editor, you build a query to find resources in one or more AWS Regions that are available for tagging. You can choose up to 20 individual resource types, or build a query on All resource types. Your query can include resources that already have tags, or resources that have no tags.
    1. Automation and proactive tag management are important, but are not always effective. Many customers also employ reactive tag governance approaches to identify resources that are not properly tagged and correct them.
    1. SciScore for 10.1101/2021.09.12.459978: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The plasmids of all S variants were transiently expressed in HEK293 Freestyle cells with polyethylenimine.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293</div><div>suggested: CLS Cat# 300192/p777_HEK293, RRID:CVCL_0045)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, transient expression of recombinant ACE2 was achieved in Expi293 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Expi293</div><div>suggested: RRID:CVCL_D615)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pseudovirus neutralization assay: The pseudovirus neutralization assays were performed using 293T cells overexpressing ACE2 as described previously32.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Expression and purification of S-Beta, Gamma, Delta, and Kappa variants: The codon-optimized DNA sequences corresponding to residues 1-1209 of S-Beta, Gamma, Delta, and Kappa variants were individually cloned into the mammalian expression vector pcDNA3.4-TOPO (Invitrogen, U. S. A.), which contains a foldon trimerization domain based on phage T4 fibritin followed by a c-Myc epitope and a hexa-repeat histidine tag as previously described32,42.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3.4-TOPO</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data processing was accomplished by using cryoSPARC v2.14.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>cryoSPARC</div><div>suggested: (cryoSPARC, RRID:SCR_016501)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Data acquisition was performed on a 300 keV Titan Krios microscope equipped with a Gatan K3 direct electron detector (Gatan, U. S. A.) in a super-resolution mode using EPU v2.10 software (ThermoFisher Scientific, U. S. A.).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>EPU</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Image processing and 3D reconstruction: All 2x binned super-resolution movie files were analyzed by Relion-3.044 with dose-weighting and 5×5 patch-based alignment using MotionCor2 (v1.2.6)45.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>MotionCor2</div><div>suggested: (MotionCor2, RRID:SCR_016499)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Structural visualization and rendering of structural representations were accomplished by using UCSF-ChimeraX and Pymol 2.4.1 (Schrodinger Inc. U. S. A.)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Pymol</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">IC50 was determined by a four-parameter logistic regression using GraphPad Prism 9 (GraphPad, U. S. A.).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. With the new Readwise reading app, not only will these resurfacing and syncing features not go away, they will be enhanced through tight integration into the reading experience. Some examples: Whenever you take a new highlight, you can see that highlight instantly propagated throughout your note-taking apps. Whenever you annotate a document, you can forge connections to other documents, authors, notes, and highlights — using the same fuzzy search, autocomplete and backlinking you'd expect in any modern tool for thought. Whenever you tag or add an annotation to a resurfaced highlight, you can see that update reflected in the margin of the original document (and vice versa). In addition to expanding the quantity of things you can retain, the Readwise reading app also facilitates the ease with which you can recall.

      .readwise-whatis

    1. Reading at a Higher Level Not only does inline tagging make it easy to add keywords and categories to your highlights, consistent use will also elevate your reading practice to the next level. Distilling a highlight down to a single keyword or forging an association between a passage and something you're working on are both forms of actively engaging with what you're reading. And actively (rather than passively) reading is essential to getting more of what you want out of books

      .tag-why .read-howto

    2. Keyword tags can help you quickly recall a passage's content, reference relevant material on a topic of interest, or identify interesting patterns in your thinking. And categorical tags can help you organize your highlights into actionable workflows for later use.

      .c1 .tag-whyto Use both Keyword and Categorical tags.

    3. inline tagging — the subject of this guide — makes it even easier because adding keywords and categories in the moment is much faster than adding them after the fact.

      .c2

    4. An inline tag is a special note taken while you read that's automatically converted into a tag in Readwise. Tagging in the moment is much faster than tagging after the fact, and once your highlights have keywords and categories, they're much easier to review and reference.

      .tag-howto

    1. Any highlight you tag as a heading won’t show up during reviews/Readwise’s daily emails, but the structure will show up in the Readwise (web) app and in your exports to Roam

      .c2

    1. An #each tag can loop anything with a length property, so: {#each {length: 3} as _, i} <li>{i + 1}</li> {/each} will also work, if you prefer.
    1. SciScore for 10.1101/2021.09.08.21263027: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: This study was approved by the local Ethical Review Board (41/21) and conducted according to the Declaration of Helsinki.<br>Consent: Blood Plasma samples of patients with PIMS/MIS-C according were taken after written informed consent in the department of Pediatric Cardiology of the Saarland University Hospital (Homburg/Saar, Germany), the Department of Pediatrics, Klinikum Saarbrücken (Germany), the Department of Pediatric Rheumatology and Immunology of the University Children’s Hospital Muenster (Germany), the Department of Pediatrics, Hospital Sant Joan de</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All patients with PIMS/MIS-C fulfilled the WHO criteria, in addition all patients were seropositive for antibodies against SARS-CoV-2 or had positive PCR, with the exception of one patient who had only reported contact to SARS-CoV2.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>SARS-CoV2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">ELISA for autoantibodies against PGRN, IL-1-Ra: The ELISA for autoantibodies was performed as previously described (19).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PGRN</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Recombinant IL-1-Ra at 40ng/mL (Biozol, #PPT-AF-2000-01RA) alone or with either anti-IL-1-Ra antibody at 5 µg/mL (antibodies-online#ABIN2856394), recombinant SLP-antibody at 5µg/mL (abcam, #ab191883), plasma diluted 1:20 of a patient with acute PIMS/MIS-C and high-titered IL-1-Ra-antibodies (PIMS-I), or plasma diluted 1:20 of the same patient 7 months after PIMS/MIS-C without anymore detectable IL-1-Ra-Abs were preincubated for 2h at room temperature.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>#PPT-AF-2000-01RA</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-IL-1-Ra</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>antibodies-online#ABIN2856394</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">In short, the antigens were obtained using the coding sequences of the GRN gene encoding PGRN, isoform 1 precursor of IL1RN were recombinantly expressed with a C-terminal FLAG-tag in HEK293 cells under the control of a cytomegalovirus promoter (pSFI).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293</div><div>suggested: CLS Cat# 300192/p777_HEK293, RRID:CVCL_0045)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      The relatively small number of cases included in the present study, due to the rarity of the disease, is a limitation. Nonetheless, these antibodies suggest to be pathogenetically relevant and should be further investigated in PIMS/MIS-C and other hyperinflammatory diseases.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. It is advised to inline any css @import in component's style tag before it hits css-loader. This ensures equal css behavior when using HMR with emitCss: false and production.
    2. while we figure out how to best include HMR support in the compiler itself (which is tricky to do without unfairly favoring any particular dev tooling)
    1. It is an issue tracker but we don't have a backlog, or planning sessions, or a project board. Or the resources to even triage and tag effectively. If it is important someone will respond / reopen, popular issues are exempt from the bot, we can't fix everything and this is pretty much our only view on stuff that need to be addressed. We need to make some attempt to make sure that everything is still relevant and reduce the noise to a degree where we can actually manage it. I understand the trade-offs with stale bots but we don't have many options. I appreciate your experiences but that doesn't make them a fact. We have discussed this internally and this is what we are doing. If you have any other actionable alternatives outside of saying the bot is bad then we are all ears.
    2. Most issues have been manually labelled as stale rather than automated and closure will be manual too, so we have time to think.

      manual action time to think

    1. Why Reading This Article Won’t Help You Be a Better Entrepreneur

      .h1 Can I write the Summary Note using the tag 'dot h1'?

    1. Gems use a period and packages use a dot

      Probably a false distinction, because "packages" is used in a way that it implies a distinction from "gems", when in actuality

      1. gems are packages, too (Ruby packages)
      2. it's referring specifically to JavaScript/node/npm packages,

      ... so there is only truly a distinctio if you are specific enough to say JavaScript packages.

    1. Author response


      September 9, 2021

      We would like to thank ASAPbio for selecting our preprint for review! We are excited to contribute to this new process and hope others will find it as helpful as we have. The comments generated by the “crowd” were detailed and thoughtful. Below we respond to the major discussion points and if there were specific reviewer comments relevant to the discussion point, we also included that statement. We also responded to each specific comment. We would love to continue this discussion, so we invite further feedback and responses! Thanks so much for your time.

      -Chelsea Kidwell, Joey Casalini, and Minna Roh-Johnson


      Major Discussion Point #1:One of the most important claims is that mitochondria are the organelles responsible for the activation of the signals of cell proliferation. However, a previous report by the last author reported that macrophages transfer cytoplasm to recipient cells. It cannot be excluded that other organelles or cellular fragments are transferred as well and contribute to the observed effects (ERK activity). Perhaps a good way to solve this would be the use of macrophages that are devoid of mitochondria. At least, this aspect should be discussed in the manuscript.

      🡪 We had first considered two approaches to test the requirement and sufficiency of macrophage mitochondria in cancer cell proliferation. The first was to generate rho-zero macrophages (mtDNA-deficient), as you mention in your comment, such that the macrophages did not have functional mitochondria. However, we use primary human macrophages for all of our studies, and these cells would not survive long enough to generate rho-zero cells (which requires that the cells be treated with low levels of ethidium bromide for weeks). The second is to biochemically purify mitochondria from macrophages and directly inject these mitochondrial preps into breast cancer cells. We actually did this experiment, and cancer cells injected with purified mitochondrial preps exhibited higher proliferation (by live timelapse microscopy) compared to control cells. However, we also found that the mitochondrial purifications were not clean, and contained other membranous components in the cytoplasm. We tried centrifugation-centric approaches, as well as IP-ing against a mitochondrially-localized tag, but in all cases, the mitochondrial preparations contained other cytoplasmic components. Therefore, we did not feel that this approach was an adequate way to test effects of specifically the mitochondria. We certainly wanted to discuss this aspect in the manuscript, but unfortunately, we were limited due to space. If folks have suggestions on how to best purify mitochondria, we’d love to know, so please reach out.

      However, in terms of the bigger question of whether the induced proliferation in cancer cells is specifically due to ROS accumulation in transferred macrophage mitochondria, we tried to address this question with the mito-KillerRed experiments, where we generate ROS using optogenetics, and ask whether this accumulation is sufficient to induce cancer cell proliferation (which we showed it was). We also showed that this same approach could induce Erk activity, and then in separate experiments, we show that macrophage mitochondrial transfer results in accumulation of ROS and increased Erk activity. We feel that these experiments support our conclusions, however, we’d love for a way to link it all together. Unfortunately, we are not convinced that such experiments are possible at this time.

      Major Discussion Point #2: Most of the positive examples of transferred mitochondria discussed appeared in a small clump. However, there also appears to be another population that was more diffuse and co-localizes with host mitochondria (e.g., Fig2B, bottom right panels). It would be helpful to show results of these sibling mitochondria for assays performed on their clumpy siblings. If they behave differently, it would be helpful to provide some explanation.

      Specific Comment: Figure 2 Majority (57%) of donated mitochondria do not colocalize with LysoTracker signal (N=24 cells, 4 donors) - Here the paper implies that some transferred mitochondria do co-localize with lysoTracker signal. More importantly, they co-localize with host mitochondria. It raises the question of whether they signal through ROS and ERK like their clumpy siblings who are in the limelight of most figures.

      🡪Yes, you are correct. There does appear to be a diffuse population of macrophage mitochondria. The majority of these mitochondria co-localize with lysotracker, suggesting that they are being actively degraded. We can’t say that they tend to co-localize with endogenous cancer cell mitochondria, however, it’s possible that this diffuse population is comprised of both mitochondria that are being degraded and mitochondria that are fusing with the endogenous network. We do not know if this population has a different effect on cancer cell behavior because we did not follow this population (mostly because once the mitochondria are degraded or fuse with the network, we can no longer follow those mitochondria!). However, we did follow cancer cells that contained punctate macrophage mitochondria. Often times this was the only population we could observe in the cell at that time, and this is the population in which we observe accumulated ROS.

      Major Discussion Point #3:The effects that are attributed to the transferred mitochondria are highly variable (figures 1F, 3A,E) and often due to a subpopulation of samples that show a few extreme values (e.g. figures 2D, 3E, S4B, S4D). This might be expected from effects that are caused by a single mitochondria (which has a small volume) that is transferred to a complete cell. This complicates the study of the transfer process and effects and should be discussed. Also, do the authors have ideas how to improve the system, to make it more robust and easier to study the effects?

      🡪The variability in the assays likely reflects the heterogeneity within the biology - Each experiment contains macrophages derived from primary monocytes that are harvested from different human blood donors! Due to the primary nature of these cells, we do expect a range of phenotypes as each donor would have a different genetic background and the monocytes were likely exposed to different environmental stimuli. In fact, even though working on this study was a giant pain due to the variability, we felt more confident about our findings because despite the heterogeneity in the system, we still observed consistent phenotypes. Below we indicate where we took a sample set and removed “outliers”, and ran the statistical tests again. The differences were still statistically significantly different, further suggesting robustness of our findings.

      However, we are always on the lookout for ways to make the system easier to study. One way that we will follow up on is using M2-like macrophages since they transfer mitochondria at a higher rate than unstimulated macrophages.

      Major Discussion Point #4: The authors conclude that the transfer of dysfunctional mitochondria generated a signal mediated by ROS that activates cell proliferation signals. The statement that "transferred mitochondria act as a signaling source that promotes cancer cell proliferation" is too strong. There is increased ROS production from mitochondria, yes, but an experiment in which ROS are decreased would be needed to properly sustain that conclusion. The title and abstract could be changed to better reflect the data.

      Specific Comment: ‘Furthermore, treatment with an ERK inhibitor (ERKi) was sufficient to inhibit ERK activity ‘- curious as to whether antioxidant treatment would reverse any proliferative phenotypes?

      🡪We wish we could quench the ROS at macrophage mitochondria. We really tried. We used a combination of ROS quenchers (NAC, mitoTempo, Tempo) and ROS readouts (mitoSOX, CellRox, DCFDA, and the 2 biosensors used in our study: Grx and Orp1), and treated cells for various amounts of time, and no matter what we tried, we could not reliably detect reduction of ROS levels in the host network or the transferred mitochondria (without killing the cells, that is). Another issue that we faced was that any pharmacological treatment would have a global effect on the mitochondrial network in the recipient cells and therefore it would not be possible to distinguish effects from global inhibition of ROS versus specifically at the site of the transferred mitochondria, and we certainly observed cell death upon treatment of ROS quenchers because of this fact. We talked to a couple of ROS experts, and they indicated that this issue is not unique to us, although we unfortunately did not have viable solutions, so if people have ideas or suggestions, please let us know!!

      However, despite our failed attempts at quenching ROS, the comment that "transferred mitochondria act as a signaling source that promotes cancer cell proliferation" is too strong of a statement… well, we don’t entirely agree given that we do perform sufficiency experiments in which weinduce ROS and observe both proliferation and ERK signaling, so we do feel reasonably justified to provide the title that we did. However, we will continue to mull over this comment. Thanks for sharing your thoughts.

      Major Discussion Point #5:The study may benefit from more direct evidence to support its conclusion of increased proliferation after mitochondrial transfer. While the RNA-seq, flow cytometry, counting of completion of cytokinesis and dry mass measurements provided in the present study do lend some support to the proliferation hypothesis, they all seem indirect. With the biomarkers labeling the mitochondria of donor and potential recipient cells, high content imaging and tracking of cells could be used to monitor cell division. A comparison of cell division rates of transfer-positive cells and transfer-negative cells will provide a more pertinent test of whether mitochondrial transfer promotes recipient cell proliferation.

      🡪We should probably do a better job at describing the dry mass measurements (QPI, quantitative phase imaging) because we view this quantification as one of the most direct measurement to monitor cell growth/division. The approach measures the changes in dry mass as the cells prepares for cell division. So not only do we get the final readout of division (complete cytokinesis), but we also get a measure of that growth rate (the cell getting ready to divide) before cytokinesis. This is why we are so tickled to collaborate with Tom Zangle’s lab because we could finally get a direct proliferation readout in real-time. We could also use this approach to follow thousands of cells at a time, a very critical aspect since mitochondrial transfer is rare event, and therefore, we need to follow many cells to have enough statistical power to quantify the growth rates. Check out some of the Zangle lab’s other papers (PMC5866559; PMC6917840; PMC4274116), and please let us know if you disagree with us!

      Major Discussion Point #6: The authors have used such a tracking-based approach on a very small scale (n=5) to measure daughter cell growth rate. However, the data do not show a statistically significant difference between the growth rates of daughters that inherited transferred mitochondria and those who did not (Fig S3). Increasing the case number via high content imaging would help obtain sufficient data points for a reliable statistical test. In addition, as suggested above, an accounting of the daughter cells' division rate for transfer positive and negative cells would provide another line of evidence to either prove or disprove the increased proliferation rate hypothesis. The same suggestion goes to the optically induced ERK activation experiments shown in Fig3F. It is also helpful to include references that studied how ERK signaling promotes proliferation and compare the evidence here with evidence or assays used in those studies as a benchmark.

      Specific Comment:Figure S3 - There is no statistical test to check for ‘increase in their rate of change of dry mass over time versus sister cells that did not inherit macrophage mitochondria’. What are the colours indicative of in S3B? Can this be reported in the figure legend.

      🡪You are right – the tracking-based approach on daughter cells is based on a small ‘n’. However, the tracking itself is performed on 1000s of cells. It’s just that in order to capture daughter cell data, we have to find a cancer cell with macrophage mitochondria (which is only ~1% of the population), and then follow that cell until it divides, and then follow BOTH daughter cells. So, even with the 1000s of cells that we followed, we could only capture a small number of daughter cells. The colors in S3B represent each individual triads – parent and 2 daughters. We will make this info clearer in the legend.

      In terms of the optically-induced ERK activation experiments, yes, it would be great to have a higher sampling. These experiments were performed at 63x so we could reliably draw small ROIs to mimic the size of a macrophage mitochondria. While we switched to lower magnification to follow cell division, we still were limited to only a few cells for the actual photoactivation. The technical aspects of this experiment were the reason for the low sampling. Despite these limitations though, we still observed increased cell division upon mito-killerred photoactivation, which we were honestly pretty surprised (and stoked) about.

      Other specific comments:

      -Figure S1A - The authors could perhaps use a more aggressive gating strategy here, clipping closer to the 231 population described in Fig S1A - picking only the center of the cluster in the upper left of the RFP vs CD11b plot would likely not affect results but make them more convincing by unequivocally excluding macrophages.

      -Figure 1D - Not sure about the 0.2% baseline assigned for the monoculture of cancer cells (that does not have the macrophages with the Emerald mitochondria). It is determined with cytometry - I am no expert on that topic, so maybe I missed something - but it looks weird to see some cells with transfer when there is a monoculture.

      🡪Due to the variable nature of the mito-mEm signal in the recipient cancer cells (i.e. transfer of one mitochondrion vs transfer of three), we found that an overlap of 0.2% set on a fully stained monoculture control was the most accurate way to gate for the recipient cancer cells. The final gating strategies used in our study were determined by FACS-isolating populations of interest based on several different gating strategies, and directly visualizing cancer cells with macrophage mitochondria without capturing macrophages or cancer cell/macrophage fusions (which is cool, but not what we wanted). To further clarify, there is no transfer occurring in the monoculture – the overlap of mEmerald signal into the transfer gate in that control sample is likely reflective of normally occurring autofluorescence. This is a very important point, so we will make this aspect clearer in the Methods section.

      -Figure S1B - Could perhaps be an interesting follow-up question for future works re: differences between cell lines and propensities to transfer mitochondria. Did the authors attempt to use other cell lines (ie, MDCK, HeLa, iPSCs, etc)?

      🡪Great question and something that we have also been thinking about. To date the only recipient cells we have used are 231, MCF10A, and PDxO cells. This would be a great avenue for future studies.

      -Figure S1B - Did the authors see an increase in growth rate in MCF10A line despite the lower growth rate?

      🡪We have not measured the growth rate in MCF10a recipient cells but something that would be great to follow up on in future studies.

      -‘physically separated from macrophages by a 0.4μM trans-well insert’ - should this read 0.4 micrometer?

      🡪Yes, great catch.

      -Figure S1F - The authors wrote that they used a two-way ANOVA analysis, could you report the factors used for that analysis in the Figure legend.

      🡪Noted!

      -Figure 1B - It is difficult to see the arrowheads in 1B, suggest moving them so they are not covering the magenta fluorescence, have them point from a different angle, and make them more brightly colored. Insets here would help the reader. A negative control image from a monoculture would also be helpful, to ensure the GFP signal is not an artifact of culture conditions.

      🡪Thank you for your feedback – we will take note of this.

      -Figure 1F - For graphs that do not show zero (as in 1F), the bar should be omitted. In these cases the length of the bar does not reflect the average of the data (as it does in 1D).

      -Figure 3C - Please omit bar, see comment on panel 1F.

      🡪 In the case of Fig 1F, we modified the y-axis to eliminate empty space. The bar is representative of mean of the data displayed in both 1D as well as 1F, but we can add a broken y-axis to help make this point.

      -Figure 1 - Given that these data are fractions of a population (ie. can be described via a contingency table), isn't something like a Fisher's exact test a better measure of significance here?

      🡪We think you are referring to Figure 1D? If so, we thought that we could not use Fisher’s exact test because that test assumed parametric distributions (which we do not observe). We have been working with a biostatistician for our statistics, but please do let us know if we have it wrong.

      -Single cell RNA- sequencing - In the methods section the authors mention doing a differential analysis between the cells that received the mitochondria and the cells that didn’t. It might be worth introducing a figure (a heatmap or a U-MAP) relating to this analysis. Single cell sequencing would not only affirm the heterogeneity between these two populations but also help in highlighting the novel cell surface markers associated with the two populations.

      🡪Yeah, good point – we can add a UMAP.

      -‘mito-mEm+ mitochondria remained distinct from the recipient host mitochondrial network, with no detectable loss of the fluorescent signal for over 15 hours’- It is surprising that the transferred mitochondria do (or cannot) fuse with the host 231 mitochondria.

      🡪We were also initially surprised to find that the transferred mitochondria do not fuse with the host 231 network! We think that the lack of fusion is due to the fact that the transferred mitochondria do not exhibit membrane potential (which is required for mitochondrial fusion). We also think that these results open interesting lines of questioning: Why are these depolarized mitochondria not degraded? Is this an active avoidance of the mitophagy pathway? How dynamic are these punctae? Many fun and interesting questions regarding the long-lived nature of these transferred mitochondria.

      -It is unclear in these images, but the 231 mitochondria appear fragmented too. Is it possible that the mitochondrial fusion machinery (Opa1 or Mfn1/2) are inactive?

      🡪231 cells are capable of fission and fusion (PMC7275541, PMC3911914, and in our own timelapse recordings), so we think that the machinery is functional. However, we don’t know whether the 231 mitochondrial machinery changes after receipt of macrophage mitochondria. Interestingly, the references above both investigate how mitochondrial dynamics promote tumor metastasis. A fascinating future direction could include an investigation to how macrophage mitochondrial transfer influences tumor cell mitochondrial dynamics.

      -Figure 2B - What does the MTDR staining of the macrophage mitochondria prior to transfer look like? Important to check this to confirm that only the transferred mitochondria had lower membrane potential.

      -‘significantly higher ratios of oxidized:reduced protein were associated with the transferred mitochondria versus the host network’-Here too, it would be important to check the mito-Grx1-roGFP2 readout of macrophage mitochondria prior to transfer.

      🡪The way that these comments are written is as if we already know that the mitochondria are dysfunctionalbefore transfer to cancer cells. But we actually do not know if that is the case. It’s also possible that macrophage mitochondria become dysfunctional once they are in the cancer cell, which would be equally cool. So, we are actively investigating this biology.

      -Figure 2A, 2BB and S1D - How were the colocalizations assessed? Was it just a visual assessment? Given the importance of these experiments for the whole story, having a quantification of the level of colocalization with each dye would be important.

      🡪This is a good point and it should be straightforward to include a Pearsons coefficient for these markers.

      -Figure S1D - The paper makes an argument about mitochondria transferred from Macrophages (marked green) having positive DNA stain (gray), but appearing depolarized (negative TMRM stain). The image in FigS1D is peculiar, as the majority of the 231 cells' mitochondria appear to not have any DNA stain but maintain membrane potential (positive in TMRM), while some (just above the green macrophage mitochondria) do have both DNA stain and membrane potential. The authors might want to clarify whether this is a typical scenario, and if so perhaps offer an explanation as to why the 231 mitochondria exhibit such heterogeneity.

      🡪The images in S1D are of a single z-plane image therefore the DNA signal in the endogenous network is more readily visible in planes that are not shown.

      -‘we confirmed that 91% of transferred mitochondria were not encapsulated by a membranous structure, thus excluding sequestration as a mechanism for explaining the lack of degradation or interaction with the endogenous mitochondrial network’ - This is based on co-staining with MemBrite 640/660, which is a dye that "covalently labels the surface of live cells", thus there is a concern as to whether this approach allows to study whether the mitochondrium is encapsulated by an endomembrane.

      🡪Thank you for your feedback. We actually do think that Membrite can label endomembrane in addition to the plasma membrane. This is from the published Membrite protocol: “MemBrite™ Fix dyes are designed to be fixed shortly after staining, when they primarily localize to the plasma membrane/cell surface. Cells also can be returned to growth medium and cultured after staining, however, dye localization in live cells changes over time. Labeled membranes become internalized, so staining gradually changes from cell surface to intracellular vesicles, usually becoming mostly intracellular after about 24 hours. Internalized MemBrite™ Fix dye is usually detectable for up to 48 hours after staining, though this may vary by cell type”.

      In our hands, we found that the dye started to become internalized and labeled vesicles within the cell within a few hours of staining. The images in the panels that you refer to came from time-lapse imaging experiments of between 10-15 hours, therefore the cells have internalized the MemBrite signal allowing for the visualization of internal vesicles. Also, in other studies not in the preprint, we perfused purified mitochondrial preparations onto 231 cells. The 231 cells took up the mitochondria from the environment, and all of these engulfed mitochondria were surrounded by a MemBrite positive membrane! These results further suggest that if the transferred mitochondria were encapsulated by a membrane, we would be able to visualize it.

      _-‘macrophage mitochondria are depolarized but remain in the recipient cancer cell’ -_Did the authors examine the extent of cancer cell death in their co-culture system (due to the activation of apoptosis by the depolarized mitochondria)?

      🡪We do not find any evidence of abnormal levels of cell death by both flow cytometry assays as well through our QPI image analysis.

      -Figure 2C–D - Like in Fig 2B, in the bottom left of panel of Fig 2C there are a lot of donor mitochondria not in highly oxidized state and the growth/proliferation phenotypes apply mostly to donor mitochondria that appear 'clumpy'.

      -Perhaps it is worth commenting on whether there is a link between donor mitochondrial morphology and the suspected proliferation-enhancing phenotype.

      🡪The images in Fig. 2C are of the same cell – a single recipient cancer cell which is expressing the Grx biosensor. The donor mitochondria are labeled with an arrowhead, the rest of the yellow/green signal (bottom right) is from the endogenous host network and therefore we do not expect it to be in a highly oxidized state (ie. more yellow than green).

      Regarding the mito morphology and proliferation – great question, and one that we are actively working on!

      -‘At 24 hours, we observed a similar trend, but no statistically significant difference (Fig. S4D). These results indicate ROS accumulates at the site of transferred mitochondria in recipient cancer cells’ - if a specific sensor fails to show a significant oxidation at 24 hours compared mito-Grx1-roGFP2 which reports on mitochondrial glutathione redox state, does that mean there are ROS independent ways to oxidize Glutathione? The authors did see cell growth phenotype both in 24 and 48 hours which suggests that something is happening in 24 hours despite no significant difference in ROS H2O2 sensor.

      🡪The additional biosensor that we used – mito-Orp1-roGFP2 - has been engineered to be a readout of one type of ROS – H2O2. The Grx probe is a surrogate for ROS of any type, of which there are many! To us, it is not completely unexpected that they would behave differently over time since they are readout for two separate things, and it generates an interesting possibility that different types of ROS accumulate over time. Given that the Grx probe shows an increase at 24 hours, which is when we observe the proliferation phenotype, we think we are on the right track. If you have ideas on robust ways to directly observe specific types of ROS, we would love to know!

      -The differences in ratio for the two sensors used are not very convincing. In Fig 2D and Fig S4B and D the “host” and “transfer” populations are very similar. The difference seems only due to the presence of a few outliers in the “transfer” populations. More importantly, sometimes it seems that these outliers come mostly from one donor rather than being present in all 3 donors. It could be good to show histograms of the two populations for each replicate/donor and maybe redo the stats excluding these outliers.

      🡪We think that the heterogeneity that is observed is due to the biology in the system – we are using primary macrophages derived from blood donors. However, for the data represented in Fig 2D, just as a test case, we took out the top four “outliers” in that data set and re-ran the Wilcoxon matched-pairs signed rank test and the p-value was 0.0010 (***), further suggesting that the ROS biosensors are revealing consistent and robust results.

      -Figure S5C - it seems like the percentage of cells that divided is the same for unstimulated cells and cells with stimulated mito-KillerRed. Isn't this contrary to the expectation? The figure shows that photobleaching cytoplasm decreased % cell division, which is puzzling.

      🡪The mean percent of cells that divided in unstimulated and mito bleach are very similar and was not significantly different. One point to be made that may not be well illustrated in our graphical representation is that if you look at the matched data (points connected are averaged per FOV for each condition in the same experiment) the trend shows that the mito bleach does seem to have an increase in cell division which is washed out with the average bar overlay. We should note that this experiment is very “noisy” and therefore we needed a lot of N to be able to detect significant changes. We are currently thinking about other ways to demonstrate sufficiency as it relates to cell proliferation – any experimental suggestions would be very welcome! Thanks for the feedback.

      -Figure 3A - In the 'cyto' condition 6 out of 13 fields have no cells that divide. Is that expected? What is the percentage of dividing cells for cells that were not illuminated at all (a control that is lacking)? There is large variation, ranging from 0% to 22%. The evidence that illumination of KillerRed leads to increased proliferation is rather weak. Also, since Cyto and Mito are different cells, is a "paired" statistical test the right kind of test to use here?

      🡪Additional data pertaining to Fig. 3A can be found in Fig. S5C, which includes the control for cells not illuminated at all. Having no cells that divide in a field of view is not surprising to us – the doubling time for these cells is ~35 hours, and we imaged for 18 hours. Also, for each field of view, our ‘n’ for each field of view was often 6-8 cells because we performed these experiments at 63X to allow for accurately drawn regions of interest for photoactivation. We also internally controlled every experiment (each experiment consisted of fields of view that had either mito activation, cyto activation, or no-activation controls, all of which were imaged overnight with multiple x/y positions). Cells that left the field of view over the 18 hours of imaging could not be quantified. It’s this sampling that caused the large variation in the graph. But again, as with many of our experiments, despite this variability, we still observe a significant difference in our experimental conditions over control cyto bleach. As for the statistical test, our understanding is that given each experiment is internally controlled, and we compare within each experiment, a paired statistical test is appropriate here. We will consult with our biostatistician to confirm, though.

      -‘ROS induces several downstream signaling pathways’ - We would not expect the authors to investigate every signaling pathway, but wonder if the PI3K pathway was explored? It seems to be the other major cancer/proliferative pathway induced by ROS.

      🡪Yes, this is a very good point! We actually assessed three different pathways at first – ERK, PI3K-AKT, and NLRP3/inflammasome. While analyzing these 3 pathways simultaneously, we discovered that ERK inhibitors resulted in decreased proliferation in cancer cells with macrophage mitochondria. As a result, we then focused on the ERK pathway. We still do not know if PI3K-AKT or NLRP3/inflammasome pathways play a role in this biology because we have not gone back and revisited these experiments yet, however in figure 3F, ERKi treated recipient cells exhibit a partial ‘rescue’ of baseline proliferation. This suggests that other pathways may indeed be involved and we plan to investigate this possibility.

      -‘Recipient 231 cells had significantly higher cytoplasmic to nuclear (C/N) ERK-KTR ratios compared to cells that did not receive transfer’-Since two different quantification styles with opposite fraction values were used, is it possible to please specify which one was used here.

      🡪Will do!

      -Figure 3B - Please show the outlines of the nuclei and that of the cell.

      🡪That would be helpful, wouldn’t it? Will do!

      -Figure 3D - it is peculiar that ERK-KTR in Fig 3D is so strongly cytosolic while in Fig 3B it is almost exclusively nuclear. If this sensor behaves differently in different situations, the authors may want to comment on how that would affect their conclusions.

      🡪The panels in Fig. 3B were taken with the ImageStream flow cytometer which takes a lower resolution image of a single plane of a cell in suspension in the flow stream. In Fig. 3D, those images are from confocal spinning disk microscopy which allows for higher resolution, z-stack images of adherent cells on glass. Therefore, we think the differences that you point out are likely due to the fact that the two images come from very different imaging systems.

      -Figure 3E - The effect of 'opto-induced' ERK activity is weak. The initial ERK-KTR is 1 at time point zero (as the data is normalized to this timepoint) and around 1 for both the cyto and mito condition. A statistical difference is observed, but the effect is minor and it is unclear whether it is biologically meaningful. The 'cyto' condition shows an average below 1 and the mito condition remains 1, suggesting that ERK activity remains constant when ROS are produced in the mitochondria.

      -Also from S8C and 3E it appears cyto actually shows a decrease rather than mito showing an increase, could the authors comment on this?

      🡪We have a few thoughts on this. The first is that we don’t expect a dramatic change in ERK signaling because the ROS accumulation is localized to a small region in the recipient cell. This is not a situation where we would expect a large-scale change because we are adding a growth factor. We can understand that the change in ERK activity may appear to be minor, but our data suggest that these subtle changes in kinase signaling translate into significant changes in downstream behavior – proliferation. The way that we interpret differences as “biological meaningful” is whether they exhibit a functional response, and in our study, we show that inhibiting the induction of ERK activity in cancer cells with macrophage mitos inhibits proliferation. What is most interesting to us is that cancer cells that do not have macrophage mitochondria have an unchanged fraction of cells in G2/M phase of the cell cycle in response to the concentration of ERK inhibitor we used, suggesting that the ERK inhibition specifically blocks macrophage mitochondria-induced proliferation.

      In Fig. S8C, bleaching a region of cytoplasm does seem to cause a decrease in ERK activity over time. We really can’t explain this result. However, we do think that ERK activity is higher in mito-bleached cells because mt-ROS is generating an increase in ERK activity which compensates for the decrease in activity that occurs when the cytoplasmic region of interest is photobleached. It’s still a head scratcher, though, but we did perform internal controls for every experiment (as we describe above), and the mito-bleach, cyto-bleach, and no-bleach conditions were run side-by-side such that we can make apples-to-apples comparisons.

      -‘patient-derived xenografts (PDxOs)’ - As a control it would be relevant to include a normal mammary organoid model perhaps from the same patient to demonstrate that the transfer of mitochondria specifically to the cancer cells is more beneficial.

      🡪Using a normal mammary organoid cells as a control to compare efficiency of transfer and downstream phenotypes would be very interesting. Due to the fact that these are patient-derived organoids, we are unable to acquire non-malignant cells from the same patient. Expanding our studies in the MCF10A cell line that we utilized in this paper would be an alternative to what you propose and would also expand our understanding of general biology underlying mitochondrial transfer.

      -‘macrophages to both HCI-037 and HCI-038 PDxO cells (Fig. 4G)’ - Why is M0 able to transfer efficiently to HCL-037 tumour when its mitochondrial network is less fragmented as M2?

      🡪These results really stood out to us. It was quite surprising that in HCI-037, both M0 and M2 macrophages were able to transfer their mitochondria at similar efficiencies, but in HCI-038, M2 macrophages were more efficient at transfer. HCI-037 is a primary tumor, and HCI-038 is a metastases from the same patient, so there are some exciting avenues of study to examine how macrophage mitochondria transfer differs at the primary versus metastatic site. There is still very little known about how donor cell dynamics influence mitochondrial transfer!

      -Are mito transfer from M0 depolarised and accumulate ROS or show increased ERK activity or increased cell proliferation?

      🡪Yes – all studies, except studies pertinent to fig 4 (where we assessed macrophage differentiation states), were done with M0 macrophages.

      -‘M2-like macrophages preferentially transferred mitochondria to the bone metastasis PDxO cells (HCI-038) when compared to primary breast tumor PDxO cells (HCI-037)’ -The authors may want to check this statement here as it is in consistent with their data plot. In Fig. 4G, M2/PDxO transfer percentages for HCI-037 and HCI-038 are about the same, unless the authors provide statistical tests to prove otherwise. Instead, M0 appears to transfer mitochondria to HCI-037 much more efficiently than it does HCI-038.

      🡪Upon re-reading our sentence again, we now realize that it’s actually quite poorly written, so we can understand the confusion! What we meant to articulate is that M2-like macrophages are better at transferring mitochondria to HCI-038 than M0 macrophages. Whereas in HCI-037, we do not observe the same preferential transfer (ie. M0 and M2 can transfer at the same efficiency). We will certainly clarify this language in the manuscript.

      -‘M2-like macrophages exhibit mitochondrial fragmentation’ - Is there a correlation between the status of the mitochondrial network in the donor and the % of transfer to the recipient? If so, this would be a correlation that would support the conclusions.

      🡪Yes, please see Fig. 4C for transfer rates with different donor subtypes and Fig. 4H for a general working model on how we think these data fit into the larger picture.

      -‘accumulate ROS, leading to increased ERK activity’ - Did the authors obtain similar results with the PDXOs? It would be an interesting observation if the primary samples also exhibit a mechanism similar to established cell lines wherein there are more accumulated genetic changes.

      🡪Our main limitation with PDxOs is overcoming the technical hurdles related to our downstream assays. These include introducing relevant reporters and generating stable lines in the PDxOs, and imaging at high-resolution when the PDxOs are cultured in 3D. However, we are very interested in this question as well, and are actively thinking about ways to overcome these hurdles.

      -It would also be interesting to examine whether there is any difference in the ROS-ERK mechanism for primary and metastatic tumour.

      🡪We agree and this is an active avenue of investigation for us. We agree and are currently pursing models to understand how our findings fit into the larger picture of tumorigenesis and metastatic potential. We had spent months pursuing anin vivo approach using a murine Cre/LoxP system to genetically label mouse macrophage mitochondria with GFP. We crossed mice which express Cre under a monocyte-specific promoter (Jax, SN: 004781) and mice with germline expression of Lox-Stop-Lox-3xHA-EGFP-OMP25 (Jax, SN: 032290) with the expectation of seeing Cre-based excision of the stop cassette – thus resulting in offspring with macrophages expressing mitochondrial-localized GFP. However, the macrophages of the resulting offspring do not express GFP (by flow cytometry, imaging, and western blot analysis), despite the PCR-verified presence of both transgenes and the excision of the stop cassette. Needless to say, this was quite frustrating! We are currently in the process of developing a newly available MitoTag model which has been optimized for visualization purposes (Jax, SN: 032675). If you have any suggestions or advice on this matter we would much appreciate your thoughts!

      -‘in cancer cells that receive exogenous mitochondria’ - Since these macrophages also transfer mitochondria to non-malignant cells, such as MCF10A cells shown in Fig S1B, perhaps the authors could comment on whether this is part of a physiological process that would also promote normal cell growth?

      🡪 There are so many questions regarding when and why macrophages might transfer mitochondria. In general, mitochondrial transfer is observed in stressed cells. Our data suggest that transfer happens to MCF10A cells although at a much lower rate than their malignant counterparts, 231 cells, but we do not know whether similar downstream mechanisms and phenotypes are also occurring in the non-malignant cells. Thanks for your feedback – more to come here!

    1. RRID:AB_307019_307019

      DOI: 10.1016/j.scr.2021.102520

      Resource: (Abcam Cat# ab9110, RRID:AB_307019)

      Curator: @Naa003

      SciCrunch record: RRID:AB_307019

      Curator comments: Rabbit Anti-HA tag Polyclonal Antibody, Unconjugated Abcam Cat# ab9110


      What is this?

    1. Jesus Christ developed in all areas of His life—spiritually (favor with God), socially (favor with man), physically (stature), and intellectually (wisdom)—and so can you!

      headings to tag / organize information under generally. Refining / honing tags with further descriptors would be ideal.

      i.e.: Spiritual / Why i.e.: INTELLECTUAL / MEDICINE / PRACTICE / INTEGUMENTARY

    1. Reviewer #1 (Public Review):

      In the present technical report the authors develop a novel and simple strategy to generate and efficiently isolate cre/lox responsive alleles that in the right orientation are highly mutagenic. These allele offer in principle a powerful tool for the tissue specific analysis of gene function giving the ability to inactivate the gene of interest with high temporal and spatial control. The mutagenic targeting cassette contains a marker reporter for the efficient isolation of putative carriers following the integration in injected zebrafish embryos. The cassette in the mutagenic orientation also potentially labels the disrupted gene with a fluorescent tag, with the intent of following the single cells (and their full lineage) in which gene disruption has occurred. This approach is applied to three test loci comparing for which the same group had generated classical null alleles containing small deletions in the coding region.

    1. SciScore for 10.1101/2021.09.03.458953: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Protein and peptide production: The S. pombe αCOPI-WD40 domain was synthesized by TOPGENE and cloned in pcDNA3.1(+) with a C-terminal strep-tag for affinity purification.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pcDNA3.1(+)</div><div>suggested: RRID:Addgene_129020)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">β’COPI-WD40 (residues 1-304) from Saccharomyces cerevisiae was cloned in pGEX-6P-1 vector and expressed overnight in E. coli pLysS cells at 18°C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pGEX-6P-1</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Expression was performed in Expi293 mammalian cells using the Thermo Fisher ExpiFectamine expression kit.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Thermo Fisher ExpiFectamine</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Molecular replacement was performed in Phenix using a previously determined αCOPI-WD40 domain structure (PDB ID 4J87) as the search model (McCoy et al., 2007; Rossmann and Blow, 1962).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Phenix</div><div>suggested: (Phenix, RRID:SCR_014224)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Iterative model building and refinement were performed in Phenix.refine (Afonine et al., 2012) and Coot (Emsley and Cowtan, 2004).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Figures were generated in PyMol.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMol</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Analysis of Ramachandran angles: The crystal structures of wild type, Arg57→Ala, and Tyr139→Ala αCOPI-WD40 were analyzed in Molprobity (Williams et al., 2018).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Molprobity</div><div>suggested: (MolProbity, RRID:SCR_014226)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Default parameters were used, with the exception of extra rotamers allowed during packing of modeled side chains, specified by command line parameters: Sequence analysis of dibasic motifs in the human membrane proteome: UNIPROT identifiers of secreted and membrane-bound human proteins, as well as secreted/membrane-bound protein isoforms, were downloaded from the Human Protein Atlas (http://www.proteinatlas.org) (Thul et al., 2017).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>http://www.proteinatlas.org</div><div>suggested: (HPA, RRID:SCR_006710)</div></div></td></tr></table>

      Results from OddPub: Thank you for sharing your data.


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.09.03.458829: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IRB: This study was approved by the Institution Review Board of Tsinghua University (20210040)</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">Contamination: Cells were tested routinely and found to be free of mycoplasma contamination.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell culture: HEK293T (American Tissue Culture Collection, ATCC, Manassas, VA, CRL-3216), Vero E6 (Cell Bank of the Chinese Academy of Sciences, Shanghai, China) and A549 (ATCC) cells were maintained in Dulbecco’s modified Eagle medium (DMEM) (Gibco, NY, USA) supplemented with 10% (vol/vol</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>A549</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Surface ACE2 binding with RBD-His assay: HeLa cells were transduced with lentiviruses expressing the ACE2 variants for 48 h.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HeLa</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Production of SARS-CoV-2 pseudotyped virus, determination of viral entry efficiency and analysis of spike protein cleavage: Pseudoviruses were produced in HEK293T cells by co-transfecting the retroviral vector pTG-MLV-Fluc, pTG-MLV-Gag-pol, and pcDNA3.1 expressing SARS-CoV-2 spike gene or VSV-G (pMD2.G (Addgene #12259)) using VigoFect (</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">For neutralization experiments, S protein bearing pseudotyped virion particles were pre-incubated for 30 min at 37°C with diluted plasma samples obtained from convalescent COVID-19 patients, before the mixtures were inoculated onto HeLa-ACE2 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HeLa-ACE2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Recombinant ACE2-lg protein expression and purification: ACE2-lg, a recombinant Fc fusion protein of soluble human ACE2 (residues Gln18-Ser740) was expressed in 293F cells and purified using protein A affinity chromatography as described in our previous study28.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293F</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plasmids: The cDNAs encoding the ACE2 orthologs were synthesized by GenScript and cloned into the pLVX-IRES-zsGreen1 vector (Catalog No. 632187, Clontech Laboratories, Inc) with a C-terminal FLAG tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pLVX-IRES-zsGreen1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">(Addgene #12259) and psPAX2 (Addgene #12260) and the transfer vector with VigoFect DNA transfection reagent (Vigorous) into HEK293T cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>psPAX2</div><div>suggested: RRID:Addgene_12260)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Production of SARS-CoV-2 pseudotyped virus, determination of viral entry efficiency and analysis of spike protein cleavage: Pseudoviruses were produced in HEK293T cells by co-transfecting the retroviral vector pTG-MLV-Fluc, pTG-MLV-Gag-pol, and pcDNA3.1 expressing SARS-CoV-2 spike gene or VSV-G (pMD2.G (Addgene #12259)) using VigoFect (</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pTG-MLV-Fluc</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pTG-MLV-Gag-pol</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pcDNA3.1</div><div>suggested: RRID:Addgene_79663)</div></div><div style="margin-bottom:8px"><div>VSV-G</div><div>suggested: RRID:Addgene_138479)</div></div><div style="margin-bottom:8px"><div>pMD2 . G</div><div>suggested: None</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on pages 25, 26 and 27. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.09.01.458653: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Anti-FLAG epitope (DYKDDDDK, catalog# 637301) and horseradish peroxidase (HRP) Donkey anti-human IgG antibody (catalog #410902) were purchased from Biolegend (San Diego, CA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-FLAG epitope (DYKDDDDK, catalog# 637301)</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>Anti-FLAG epitope (DYKDDDDK</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-human IgG</div><div>suggested: (BioLegend Cat# 410902, RRID:AB_2686937)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The secondary antibody anti-rat IgG HRP (catalog# 7077) was bought from Cell Signaling Technology (CST, Danvers, MA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>The secondary antibody anti-rat IgG HRP</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-rat IgG</div><div>suggested: (Cell Signaling Technology Cat# 7077, RRID:AB_10694715)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cell lines: HEK293T cells expressing human angiotensin I-converting enzyme 2 (HEK293T-hACE2) were kindly provided by Dr. Jesse Bloom (Fred Hutchinson Cancer Research Center, Seattle, USA) (51).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Lenti-X 293T cell line was purchased from Takara Bio USA Inc. (San Jose, CA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: CCLV Cat# CCLV-RIE 1018, RRID:CVCL_0063)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After 1 hr incubation, the cellulose paper treated pseudovirus was gently transferred to transfect HEK293T-hACE2 cells with 80% confluency, followed by adding polybrene to a final concentration of 8 μg/ml.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293T-hACE2</div><div>suggested: RRID:CVCL_A7UK)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plasmids construction, protein expression and purification: Ty1 variants, including Ty1-CBD and control protein Ty1 without CBD module, were cloned into pSH200 vector (a generous gift from Prof. Xiling Shen at Duke University) containing 6 x Histidine tag (His-tag), between BamHI and XbaI sites.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pSH200</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Detergent compatible (DC) protein assay kit was bought from Bio-Rad Laboratories (Hercules, CA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Bio-Rad Laboratories</div><div>suggested: (Bio-Rad Laboratories, RRID:SCR_008426)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After the final wash, the cells were resuspended in 200 μL FACS buffer (5% FBS, 2mM EDTA, 0.1% sodium azide in PBS) for flow cytometric analysis in Attune™ NxT Flow Cytometer (Thermofisher) and data were analyzed by FlowJo (Franklin Lakes, NJ).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Statistical analysis: Statistical significance was evaluated using one-way ANOVA followed by Tukey post hoc test using GraphPad PRISM (San Diego, CA, USA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad PRISM</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      Despite the promises demonstrated in this study, one limitation is that only pseudovirus-containing culture media were used to characterize the fusion proteins for proof-of-concept. Therefore, it is necessary to further evaluate our approach in real specimens such as blood from COVID-19 patients in the near future.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 32. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. I don't know which language tag to use as the text is not written in latin letters.

    1. To quote yourself, you’ll need to create an <a> anchor tag in the markdown file for the post you want to quote. If you wish to highlight a specific piece of text, instead create a <span></span> around the section you want to quote. Note that this can only be on your own website—it doesn’t work cross domain.

      Boy, we of the Markdown persuasion sure do have some catching up to do with the outliners where this kind of thing is concerned...

    1. target="_blank" which opens the anchor in a new window(which has been redirected to tabs by browser settings usually)

      new window => new tab

    2. Instead if this anchor was nested in frames it would open in a sandbox mode of sorts, meaning only in that frame.
    1. SciScore for 10.1101/2021.08.28.458041: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Protease-Glo luciferase assay was carried out as follows: 293T cells in 10 cm culture dish were transfected with pGlosensor-30F Mpro plasmid in the presence of transfection reagent TransIT-293 (Mirus catalog no. MIR 2700) according to the manufacturer’s protocol.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>293T</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Calu-3 cells (ATCC, HTB-55) were plated in 384 well plates and grown in Minimal Eagles Medium supplemented with 1% non-essential amino acids, 1% penicillin/streptomycin, and 10% FBS.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Calu-3</div><div>suggested: ATCC Cat# HTB-55, RRID:CVCL_0609)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Protein Expression and Purification: The tag-free SARS CoV-2 Mpro protein with native N- and C-termini was expressed in pSUMO construct as described previously3.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pSUMO</div><div>suggested: RRID:Addgene_170732)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">50 ng of FlipGFP-Mpro plasmid and 50 ng SARS CoV-2 Mpro expression plasmid pcDNA3.1 SARSCoV-2 Mpro were transfected into each well with transfection reagent TransIT-293 (Mirus catalog no. MIR 2700) according to the manufacturer’s protocol.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlipGFP-Mpro</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pcDNA3.1 SARSCoV-2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Protease-Glo luciferase assay: pGlosensor-30F DEVD vector was obtained from Promega (Catlog no. CS182101).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pGlosensor-30F DEVD</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Protease-Glo luciferase assay was carried out as follows: 293T cells in 10 cm culture dish were transfected with pGlosensor-30F Mpro plasmid in the presence of transfection reagent TransIT-293 (Mirus catalog no. MIR 2700) according to the manufacturer’s protocol.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pGlosensor-30F Mpro</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Two days after transfection, images were taken with Cytation 5 imaging reader (Biotek) using GFP and mCherry channels via 10× objective lens and were analyzed with Gen5 3.10 software (</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Gen5</div><div>suggested: (Gen5, RRID:SCR_017317)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">A non-linear regression curve fit analysis (GraphPad Prism 8) of POC Infection and cell viability versus the log10 transformed concentration values to calculate EC50 values for Infection and CC50 values for cell viability.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Author Response:

      Reviewer #3:

      The authors modified a previously reported hybrid cytochrome bcc-aa3 supercomplex, consisting of bcc from M. tuberculosis and aa3 from M. smegmatis, (Kim et al 2015) by appending an affinity tag facilitating purification. The cryo-EM experiments are based on the authors' earlier work (Gong et al. 2018) on the structure of the bcc-aa3 supercomplex from M. smegmatis. The authors then determine the structure of the bcc part alone and in complex with Q203 and TB47.

      The manuscript is well written and the obtained results are presented in a concise, clear-cut manner. In general, the data support the conclusions drawn.

      We thank the reviewer for this evaluation.

      To this reviewer, the following points are unclear:

      1. The purified enzyme elutes from the gel filtration column as one peak, but there seems to be no information given on the subunit composition and the enzymatic activity of the purified hybrid cytochrome bcc-aa3 supercomplex.

      See answers to Question 1 from the major Essential Revisions and Question 1 from the minor Essential Revisions.

      "We have now shown that the purified chimeric supercomplex is a functional assembly with a (mean ± s.d., n = 4), in agreement with the previous study that shows M. tuberculosis CIII can functionally complement native M. smegmatis CIII and maintain the growth of M. smegmatis (Kim et al., 2015). The in vitro inhibitions of this enzyme by Q203 and TB47 was determined by means of an DMNQH2/oxygen oxidoreductase activity assay. In the assay, 500 nM Q203 or TB47 was chosen, which is close to the median inhibitory concentration (IC50) obtained from the menadiol-induced oxygen consumption in our previous study (Gong et al., 2018). After addition of Q203 and TB47, the values of turnover number of the hybrid supercomplex are reduced to 5.8 +/- 2.4 e-s-1 (Figure 4-figure supplement 4) and 5.1 +/- 2.9 e-s-1 (Figure 5-figure supplement 4) respectively, from 23.3 +/- 2.4 e-s-1. We have incorporated this new data into the text (lines 90-93, 187-189, 206-209)."

      "The subunit composition of the purified enzyme has now been provided in Figure 2-figure supplement 1."

      1. It is unclear what is the conclusion of the structure comparison (Fig 6) is regarding the affinity of Q203 for M. smegmatis.

      The structural comparison indicates that Q203 should have a similar binding mechanism and a similar effect on the activity of cytochrome bcc from M. smegmatis and M. tuberculosis. This is in good agreement with previous antimycobacterial activity data and inhibition data for the bcc complexes from M. smegmatis and M. tuberculosis (Gong et al., 2018; Lu et al., 2018a). These have now been incorporated into the revised manuscript (line 223-227).

  7. Aug 2021
    1. SciScore for 10.1101/2021.08.27.457964: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      NIH rigor criteria are not applicable to paper type.

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The N protein sequence (GenBank QIG56001.1) was amplified from cDNA samples using primers SC2-protN28182-F (5’-AGTCTTGTAGTGCGTTGTTCG-3’) and SC2-protN29566-R (5’-ATAGCCCATCTGCCTTGTGT-3’) and cloned into pGEM-T Easy (PROMEGA - USA), generating plasmid pGEM-SC2-N.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pGEM-T Easy</div><div>suggested: RRID:Addgene_80557)</div></div><div style="margin-bottom:8px"><div>pGEM-SC2-N</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The N sequence was reamplified from pGEM-SC2N with forward 5’-AACAAGCTAGCATGTCTGATAATGGACCCCAAAATCAG-3’ and reverse 5’-GGTCTGCGGCCGCTTAGGCCTGAGTTGAGTCAGCACTGCT-3’ primers and subcloned into the NheI/NotI sites of a pET28a-TEV vector carrying a 6xHis-tag and TEV protease cleavage site at the N-terminus.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pGEM-SC2N</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pET28a-TEV</div><div>suggested: RRID:Addgene_168267)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Then, the initial 3D map was refined in Imagic using an iterative process of angular reconstitution and class average rotation and translation alignment to 3D reprojections, achieving 3D resolution convergence.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Imagic</div><div>suggested: (IMAGIC, RRID:SCR_014447)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">CG molecular dynamics simulations: CG molecular dynamics simulations were performed using CafeMol 3.1 software52.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CafeMol</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">An initial N protein dimer all-atom model was built in YASARA software53 using crystallographic structures of NTD monomer (PDB ID: 6VYO) and CTD dimer (PDB ID: 6WJI).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>YASARA</div><div>suggested: (YASARA, RRID:SCR_017591)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Tools for comparing CG simulations with experimental data: For comparing CG simulation radius of gyration with experimental data, we estimated the radius of gyration of the simulated systems with Bio3D package using an in-house R script54.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Bio3D</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The area of 2D reprojections was determined using ImageJ software56. 3D Atomic model fitting: From the previous independent simulation of the CG model of N protein dimer in complex with a 60-nt-long RNA were selected 100 structures with the lowest radius of gyration using only the structures domains (NTDs and CTDs).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ImageJ</div><div>suggested: (ImageJ, RRID:SCR_003070)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The molecular interactions were described by CHARMM36 force field with CMAP corrections60.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CMAP</div><div>suggested: (CMAP, RRID:SCR_009034)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All simulations were performed with NAMD 2.1361.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>NAMD</div><div>suggested: (NAMD, RRID:SCR_014894)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All the systems were described using Amber ff14SB force field68 and the topologies were generated using tLeap program from AmberTool2069.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Amber</div><div>suggested: (AMBER, RRID:SCR_016151)</div></div><div style="margin-bottom:8px"><div>tLeap</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The images of the C-terminal tail monomers and dimers were generated using pymol 2.3.0 (open-source build).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pymol</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 38. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Student Number

      Numerical identification unique to each student for purposes for/relating to services, processes, concepts in specific or multiple collegial institutions

      I.E. Personal Identification Tag

    1. Annotations can be searched by tags, so you can add as many tags as you want to relate it to other annotations with the same tags.

      This would allow us to add a tag to our annotation which is related to what we are annotating, in order to make it easier to find annotations by specifics.

    1. SciScore for 10.1101/2021.08.25.457644: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Euthanasia Agents: On day 4 post challenge half of the animals per group were euthanized by exsanguination under isoflurane anesthesia and necropsy was performed, with the remaining half of the animals following on day 7 post challenge.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Vaccinations: BALB/c mice (OlaHSD; Envigo, female, 8-9 weeks old at day 0) were immunized on day 0 and 21 via the intranasal or intramuscular route.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">On day 0, 21 and 35, blood was collected for assessment of induction antibodies against spike and SARS-CoV-2 specific neutralizing antibodies.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2 specific neutralizing antibodies .</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">On day 35 nasal washes and the lungs were also collected for IgA antibody determination.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>IgA</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">After washing another three times the HRP conjugated antibody (Goat-anti-mouse HRP IgG 1:8000, IgG1 1:4000</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HRP IgG</div><div>suggested: (Bioss Cat# bs-4000R-HRP, RRID:AB_11081943)</div></div><div style="margin-bottom:8px"><div>IgG1</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Next, the virus-antibody mixtures are transferred to plates with Vero E6 cell culture monolayers, followed by an incubation period of 5-6 days at 37°C.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Vaccinations: BALB/c mice (OlaHSD; Envigo, female, 8-9 weeks old at day 0) were immunized on day 0 and 21 via the intranasal or intramuscular route.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>BALB/c</div><div>suggested: None</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      A significant limitation for the use of viral vector-based vaccines is the development of anti-vector immunity, which restricts the number of possible booster vaccinations. With OMV based vaccines we assume this is less of an issue, as they are non-replicating and do not depend on a specific host receptor for cellular entry. In addition, major antigens can be removed by gene deletion, as we did with the immunodominant PorA outer membrane protein in our vaccine strain, thus limiting the response against neisserial antigens. OMV-spike vaccination might thus also find an application as a heterologous boost after primary vaccination with viral vector-based vaccines. Overall, here we show that OMV-mC-Spike is safe and effective in both mice and hamsters. In these animal models, intranasal vaccination with OMV-mC-Spike is superior to intramuscular vaccination, since the amount of IgG induced is higher and in addition a strong mucosal response is induced. Our study demonstrates how adding an mCRAMP tag to the Spike protein and combining it with meningococcal OMVs improves its immunogenicity, thus warranting further development of this vaccine concept towards clinical trials in humans.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.08.25.457627: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IACUC: Animal care and ethics statement: All animal experiments were conducted in animal biosafety level 3 (BSL3) facilities at the Biosecurity Research Institute at Kansas State University according to protocols approved by the Institutional Animal Care and Use Committee at Kansas State University and the guidelines set by the Association for the Assessment and Accreditation of Laboratory Animal Care and the U.S. Department of Agriculture.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Anti-SARS-CoV-2 antibodies from humans, cats, and rabbits: Convalescent sera (Lotus 11 and 25) from COVID-19 patients were obtained from Dr. Thomas Rogers from the Scripps Research Institute, San Diego, CA, USA. Cat sera (Cat 247 and 903) were collected from cats enrolled in SARS-CoV-2 re-infection studies [89]</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Anti-SARS-CoV-2</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Expression of each species’ ACE2 receptor in the cells was confirmed by Western Blot analysis using antibody to human ACE2 (Abcam, Waltham, MA)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>human ACE2</div><div>suggested: (Abcam Cat# 3149-1, RRID:AB_2242331)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Cells and plasmids: Human embryonic kidney 293 (HEK293), the Crandell-Rees feline kidney (CRFK) and Calu-3 cells were purchased from American Type Culture Collection (ATCC; Manassas, VA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Calu-3</div><div>suggested: BCRJ Cat# 0264, RRID:CVCL_0609)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Vero E6 cells expressing human TMPRSS2 (Vero-TMPRSS2) cells were obtained from Creative Biogene (Shirley, NY)[88].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6</div><div>suggested: RRID:CVCL_XD71)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Generation of SARS-CoV-2 S pseudotyped viruses: The 2nd generation lentiviral packaging plasmid, psPAX2 (Addgene), a reporter plasmid pUCGFP-Luc (Addgene), and parental or mutant pAbVec-SARS2-S were transfected into HEK293 cells to produce pseudotyped viruses.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>HEK293</div><div>suggested: CLS Cat# 300192/p777_HEK293, RRID:CVCL_0045)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The SA/KRISP-K005325/2020 stock was subsequently passaged on Calu3 cells and NGS results showed this stock to contain only 13% of the furin site mutation; this stock was used for the in vitro virus replication kinetic experiments.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Calu3</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Inoculum (defined as 0 hpi) and the time point collected supernatants were then titrated on Vero-TMPRSS2 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero-TMPRSS2</div><div>suggested: JCRB Cat# JCRB1818, RRID:CVCL_YQ48)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Nasal wash and lung homogenates were filtered through a 0.2 μm filter prior to virus titration on Vero E6-TMPRSS2 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero E6-TMPRSS2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The codon-optimized cDNAs of the open reading frame of the human or animal ACE2 gene with FLAG tag were synthesized by Integrated DNA Technologies (Coralville, IA) and cloned into pIRES-Neo3 (Takara Bio, Mountain View, CA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pIRES-Neo3</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Pseudotyped viruses expressing SARS-CoV-2 S protein were generated by synthesizing the S gene which was truncated by 26 amino acids at the C-terminus, fused with HA tag by Integrated DNA Technologies, and cloned into plasmid pAbVec1 (Addgene, Watertown, MA), which were designated as pAbVec-SARS2-S.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pAbVec1</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Generation of CRFK cells stably expressing human or animal ACE2: CRFK cells, plated the previous day, were transfected with pIRES-Neo-human (or cat, dog, cattle, horse, camel, hamster, rabbit, mink, white-tailed deer) ACE2-FLAG.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pIRES-Neo-human</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Generation of SARS-CoV-2 S pseudotyped viruses: The 2nd generation lentiviral packaging plasmid, psPAX2 (Addgene), a reporter plasmid pUCGFP-Luc (Addgene), and parental or mutant pAbVec-SARS2-S were transfected into HEK293 cells to produce pseudotyped viruses.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>psPAX2</div><div>suggested: RRID:Addgene_12260)</div></div><div style="margin-bottom:8px"><div>pUCGFP-Luc</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pAbVec-SARS2-S</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The SA/KRISP-K005325/2020 stock was subsequently passaged on Calu3 cells and NGS results showed this stock to contain only 13% of the furin site mutation; this stock was used for the in vitro virus replication kinetic experiments.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>NGS</div><div>suggested: (PM4NGS, RRID:SCR_019164)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Structures were analyzed and images created using PyMOL [92].</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMOL</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Statistical analysis: Statistical analysis was performed using GraphPad Prism Software version 6 (San Diego, CA).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.08.25.457692: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The bound antibody was detected by AP conjugated goat- anti- human IgG Fc specific antibody.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>anti- human IgG</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">SARS-CoV-2 RBD plasmid cloning and protein expression: SARS-CoV-2 wildtype RBD (319-541aa) was cloned to pCDNA3.1 vector with 6 histidine tag.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS-CoV-2 RBD</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>pCDNA3.1</div><div>suggested: RRID:Addgene_79663)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Delta variant (L452R_T478K) and Lambda variant (L452Q_F490S) structures were prepared by Coot software 26.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Coot</div><div>suggested: (Coot, RRID:SCR_014222)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">All protein structural figures are prepared by PyMOL.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>PyMOL</div><div>suggested: (PyMOL, RRID:SCR_000305)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: No clinical trial numbers were referenced.


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.08.25.457693: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">IACUC: The protocols were approved by the Institutional Animal Care and Use Committee at the Washington University School of Medicine (assurance number A3381–01).</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">Mouse experiments: Female 129S2 (catalog 287) and K18-hACE2 C57BL/6 (catalog 034860) mice were purchased from the Charles River and The Jackson Laboratory, respectively.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">Contamination: All cells routinely tested negative for mycoplasma using a PCR-based assay.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Antibodies</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Plates were washed and sequentially incubated with an oligoclonal pool of SARS2-2, SARS2-11, SARS2-16, SARS2-31, SARS2-38, SARS2-57, and SARS2-71 (Liu et al., 2021c) anti-S antibodies and HRP-conjugated goat anti-mouse IgG (Sigma, 12-349) in PBS supplemented with 0.1% saponin and 0.1% bovine serum albumin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>SARS2-57</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>SARS2-71</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-S</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>anti-mouse IgG</div><div>suggested: (Millipore Cat# 12-349, RRID:AB_390192)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Following blocking with FcγR antibody (BioLegend, clone 93), cells were stained on ice with CD45 BUV395 (BD BioSciences clone 30-F11), CD4 PE (BD BioSciences clone GK1.5)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>CD45</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Vero-TMPRSS2 cells were supplemented with 5 μg/mL of blasticidin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero-TMPRSS2</div><div>suggested: JCRB Cat# JCRB1818, RRID:CVCL_YQ48)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Vero-hACE2-TMPRSS2 cells were supplemented with 10 µg/mL of puromycin.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Vero-hACE2-TMPRSS2</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Organisms/Strains</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Heterozygous K18-hACE2 C57BL/6J mice (strain: 2B6.Cg-Tg(K18-ACE2)2Prlmn/J) and 129 mice (strain: 129S2/SvPasCrl) were obtained from The Jackson Laboratory and Charles River Laboratories, respectively.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>C57BL/6J</div><div>suggested: RRID:MGI:3589388)</div></div><div style="margin-bottom:8px"><div>129S2/SvPasCrl</div><div>suggested: RRID:IMSR_CRL:287)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Mouse experiments: Female 129S2 (catalog 287) and K18-hACE2 C57BL/6 (catalog 034860) mice were purchased from the Charles River and The Jackson Laboratory, respectively.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>C57BL/6</div><div>suggested: None</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Homogenates then were analyzed for cytokines and chemokines by Eve Technologies Corporation (Calgary, AB, Canada) using their Mouse Cytokine Array/Chemokine Array 31-Plex (MD31) platform.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>AB</div><div>suggested: None</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Recombinant DNA</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, mammalian cell codon-optimized nucleotide sequences coding for the soluble ectodomain of the S protein of SARS-CoV-2 including a C-terminal thrombin cleavage site, T4 foldon trimerization domain, and hexahistidine tag were cloned into mammalian expression vector pCAGGS.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>pCAGGS</div><div>suggested: RRID:Addgene_18926)</div></div></td></tr><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Software and Algorithms</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Graphs were generated using Graphpad Prism v9.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>Graphpad Prism</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Briefly, a TaqMan assay was designed to target a highly conserved region of the N gene (Forward primer: ATGCTGCAATCGTGCTACAA; Reverse primer: GACTGCCGCCTCTGCTC; Probe: /56-FAM/TCAAGGAAC/ZEN/AACATTGCCAA/3IABkFQ/).</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GACTGCCGCCTCTGCTC</div><div>suggested: None</div></div><div style="margin-bottom:8px"><div>Probe</div><div>suggested: (UniPROBE, RRID:SCR_005803)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">Analysis was performed on a BD LSRFortessa X-20 cytometer, using FlowJo X 10.0 software.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>FlowJo</div><div>suggested: (FlowJo, RRID:SCR_008520)</div></div></td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">QUANTIFICATION AND STATISTICAL ANALYSIS: Statistical significance was assigned when P values were < 0.05 using Prism Version 10 (GraphPad)</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>GraphPad</div><div>suggested: (GraphPad Prism, RRID:SCR_002798)</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
      Limitations of study: We note several limitations in our study. (1) The studies in 129S2 mice precluded challenge with B.1.617.2, as it does not infect murine cells because it lacks an N501Y mutation. The generation of recombinant SARS-CoV-2 strains with spike genes encoding B.1.617.2 and an N501Y mutation could overcome this limitation. (2) Female 129S2 and K18-hACE2 mice were used to allow for group caging of the large cohorts required for these multi-arm vaccination studies. Follow-up experiments in male mice are needed to confirm results are not sex-biased. (3) We used lower vaccine dosing as a model for waning immunity. Studies that directly address durability of immune responses and protection are needed for corroboration. (4) We used historical, variant, or mixed mRNA vaccine formulations with homologous boosting schemes. Animals studies that test heterologous boosting (mRNA-1273 prime followed by mRNA-1273.351 boost) (Wu et al., 2021) also are needed to support clinical trials. (5) Our studies focused on immunogenicity and protection in two strains of mice because of the ability to set up large animal cohorts and the tools available for analysis. These results require confirmation in other animal models of SARS-CoV-2 infection including hamsters and non-human primates (Muñoz-Fontela et al., 2020). (6) We did not establish direct immunological correlates of vaccine protection or failure for all vaccine and challenge strain pairs. While some relationships were more pred...

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04927065</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Active, not recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">A Study to Evaluate the Immunogenicity and Safety of mRNA-12…</td></tr></table>


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. SciScore for 10.1101/2021.08.25.21262569: (What is this?)

      Please note, not all rigor criteria are appropriate for all manuscripts.

      Table 1: Rigor

      <table><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Ethics</td><td style="min-width:100px;border-bottom:1px solid lightgray">Field Sample Permit: Serious adverse events (SAEs) and AEs of special interest were collected throughout each study.<br>IRB: All relevant ethical guidelines have been followed, all necessary IRB and/or ethics committee approvals have been obtained, all necessary patient/participant consent has been obtained and the appropriate institutional forms archived.<br>Consent: All relevant ethical guidelines have been followed, all necessary IRB and/or ethics committee approvals have been obtained, all necessary patient/participant consent has been obtained and the appropriate institutional forms archived.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Sex as a biological variable</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Randomization</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Blinding</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Power Analysis</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr><tr><td style="min-width:100px;margin-right:1em; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Cell Line Authentication</td><td style="min-width:100px;border-bottom:1px solid lightgray">not detected.</td></tr></table>

      Table 2: Resources

      <table><tr><th style="min-width:100px;text-align:center; padding-top:4px;" colspan="2">Experimental Models: Cell Lines</th></tr><tr><td style="min-width:100px;text=align:center">Sentences</td><td style="min-width:100px;text-align:center">Resources</td></tr><tr><td style="min-width:100px;vertical-align:top;border-bottom:1px solid lightgray">The SARS-CoV-2 antigen was a stabilized pre-fusion spike protein ([2P], Δfurin, T4 foldon, His-tag), derived from the first clinical isolate of the Wuhan strain (Wuhan, 2019, whole genome sequence NC_045512), produced in ES-293 cells.</td><td style="min-width:100px;border-bottom:1px solid lightgray"><div style="margin-bottom:8px"><div>ES-293</div><div>suggested: None</div></div></td></tr></table>

      Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


      Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

      Results from TrialIdentifier: We found the following clinical trial numbers in your paper:<br><table><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Identifier</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Status</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Title</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04436276</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Active, not recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">A Study of Ad26.COV2.S in Adults (COVID-19)</td></tr><tr><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">NCT04535453</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">Active, not recruiting</td><td style="min-width:95px; border-right:1px solid lightgray; border-bottom:1px solid lightgray">A Study to Evaluate a Range of Dose Levels and Vaccination I…</td></tr></table>


      Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


      Results from JetFighter: We did not find any issues relating to colormaps.


      Results from rtransparent:
      • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
      • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
      • No protocol registration statement was detected.

      Results from scite Reference Check: We found no unreliable references.


      <footer>

      About SciScore

      SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

      </footer>

    1. Personal interactions, live product demos and networking are a few reasons why we attend physical events.

      10 slots 30 mins each for each artisan for demonstration, and Q&As

      Have a facilitator/translator to mod the session or demo the products if sent to warehouse

      Live webinar tag - redirecting to zoom