51 Matching Annotations
  1. Aug 2022
    1. Meng, B., Abdullahi, A., Ferreira, I. A. T. M., Goonawardane, N., Saito, A., Kimura, I., Yamasoba, D., Gerber, P. P., Fatihi, S., Rathore, S., Zepeda, S. K., Papa, G., Kemp, S. A., Ikeda, T., Toyoda, M., Tan, T. S., Kuramochi, J., Mitsunaga, S., Ueno, T., … Gupta, R. K. (2022). Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature, 1–1. https://doi.org/10.1038/s41586-022-04474-x

  2. Jul 2022
    1. The post-1950 acceleration of the human imprint on the Earth System, particularly the 12 graphsthat show changes in Earth System structure and functioning, have played a central role in thediscussion around the formalisation of the Anthropocene as the next epoch in Earth history.Although there has been much debate around the proposed start date for the Anthropocene, thebeginning of the Great Acceleration has been a leading candidate (Zalasiewicz et al., 2012).

      The Great Acceleration of socio-economic and earth system indicators after 1950 make it a good candidate as a Golden Spike for the start of the Anthropocene.

  3. Apr 2022
  4. Mar 2022
  5. Feb 2022
    1. Trevor Bedford. (2022, January 28). Omicron viruses can be divided into two major groups, referred to as PANGO lineages BA.1 and BA.2 or @nextstrain clades 21K and 21L. The vast majority of globally sequenced Omicron have been 21K (~630k) compared a small minority of 21L (~18k), but 21L is gaining ground. 1/15 [Tweet]. @trvrb. https://twitter.com/trvrb/status/1487105396879679488

  6. Jan 2022
    1. Pajon, R., Doria-Rose, N. A., Shen, X., Schmidt, S. D., O’Dell, S., McDanal, C., Feng, W., Tong, J., Eaton, A., Maglinao, M., Tang, H., Manning, K. E., Edara, V.-V., Lai, L., Ellis, M., Moore, K. M., Floyd, K., Foster, S. L., Posavad, C. M., … Montefiori, D. C. (2022). SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. New England Journal of Medicine, 0(0), null. https://doi.org/10.1056/NEJMc2119912

  7. Dec 2021
    1. nference. (2021, November 27). Here is how B.1.1.529 (#Omicron #B11529) compares to Alpha, Beta, Gamma, Delta variants. Omicron has highest novel Spike mutations including striking cluster on the “crown” suggesting significant selection pressure & antigenic distinction from prior strains (Credits: Nference) https://t.co/4oZQbjhbG8 [Tweet]. @_nference. https://twitter.com/_nference/status/1464404770098229250

  8. Nov 2021
    1. Interestingly, all four vaccine breakthrough infection subjects who had previous COVID-19 were seropositive for anti-membrane IgG during acute infection, while no breakthrough subjects without prior COVID-19 had detectable anti-membrane antibodies in the acute infection period (Figure 1I).

      Vaccinated individuals that experience a breakthrough infection do not develop antibodies to the parts of the virus that is not encoded by the vaccine.

  9. Oct 2021
    1. Sun, W., Liu, Y., Amanat, F., González-Domínguez, I., McCroskery, S., Slamanig, S., Coughlan, L., Rosado, V., Lemus, N., Jangra, S., Rathnasinghe, R., Schotsaert, M., Martinez, J. L., Sano, K., Mena, I., Innis, B. L., Wirachwong, P., Thai, D. H., Oliveira, R. D. N., … Palese, P. (2021). A Newcastle disease virus expressing a stabilized spike protein of SARS-CoV-2 induces protective immune responses. Nature Communications, 12(1), 6197. https://doi.org/10.1038/s41467-021-26499-y

  10. Aug 2021
  11. May 2021
  12. Oct 2020
  13. Aug 2020
    1. Ferretti, A. P., Kula, T., Wang, Y., Nguyen, D. M., Weinheimer, A., Dunlap, G. S., Xu, Q., Nabilsi, N., Perullo, C. R., Cristofaro, A. W., Whitton, H. J., Virbasius, A., Olivier, K. J., Baiamonte, L. B., Alistar, A. T., Whitman, E. D., Bertino, S. A., Chattopadhyay, S., & MacBeath, G. (2020). COVID-19 Patients Form Memory CD8+ T Cells that Recognize a Small Set of Shared Immunodominant Epitopes in SARS-CoV-2. MedRxiv, 2020.07.24.20161653. https://doi.org/10.1101/2020.07.24.20161653

    1. Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., Schäfer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K. H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch, E. J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B. M., … Graham, B. S. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 1–8. https://doi.org/10.1038/s41586-020-2622-0

    1. Martino, C., Kellman, B. P., Sandoval, D. R., Clausen, T. M., Marotz, C. A., Song, S. J., Wandro, S., Zaramela, L. S., Benítez, R. A. S., Zhu, Q., Armingol, E., Vázquez-Baeza, Y., McDonald, D., Sorrentino, J. T., Taylor, B., Belda-Ferre, P., Liang, C., Zhang, Y., Schifanella, L., … Knight, R. (2020). Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. BioRxiv, 2020.08.17.238444. https://doi.org/10.1101/2020.08.17.238444

    1. Yonker, L. M., Neilan, A. M., Bartsch, Y., Patel, A. B., Regan, J., Arya, P., Gootkind, E., Park, G., Hardcastle, M., John, A. S., Appleman, L., Chiu, M. L., Fialkowski, A., Flor, D. D. la, Lima, R., Bordt, E. A., Yockey, L. J., D’Avino, P., Fischinger, S., … Fasano, A. (2020). Pediatric SARS-CoV-2: Clinical Presentation, Infectivity, and Immune Responses. The Journal of Pediatrics, 0(0). https://doi.org/10.1016/j.jpeds.2020.08.037

    1. Glasgow, A., Glasgow, J., Limonta, D., Solomon, P., Lui, I., Zhang, Y., Nix, M. A., Rettko, N. J., Lim, S. A., Zha, S., Yamin, R., Kao, K., Rosenberg, O. S., Ravetch, J. V., Wiita, A. P., Leung, K. K., Zhou, X. X., Hobman, T. C., Kortemme, T., & Wells, J. A. (2020). Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. BioRxiv, 2020.07.31.231746. https://doi.org/10.1101/2020.07.31.231746

    1. Sun, W., McCroskery, S., Liu, W.-C., Leist, S. R., Liu, Y., Albrecht, R. A., Slamanig, S., Oliva, J., Amanat, F., Schäfer, A., Dinnon, K. H., Innis, B. L., García-Sastre, A., Krammer, F., Baric, R. S., & Palese, P. (2020). A Newcastle disease virus (NDV) expressing membrane-anchored spike as a cost-effective inactivated SARS-CoV-2 vaccine. BioRxiv, 2020.07.30.229120. https://doi.org/10.1101/2020.07.30.229120

    1. Bangaru, S., Ozorowski, G., Turner, H. L., Antanasijevic, A., Huang, D., Wang, X., Torres, J. L., Diedrich, J. K., Tian, J.-H., Portnoff, A. D., Patel, N., Massare, M. J., Yates, J. R., Nemazee, D., Paulson, J. C., Glenn, G., Smith, G., & Ward, A. B. (2020). Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. BioRxiv, 2020.08.06.234674. https://doi.org/10.1101/2020.08.06.234674

    1. Hsieh, C.-L., Goldsmith, J. A., Schaub, J. M., DiVenere, A. M., Kuo, H.-C., Javanmardi, K., Le, K. C., Wrapp, D., Lee, A. G., Liu, Y., Chou, C.-W., Byrne, P. O., Hjorth, C. K., Johnson, N. V., Ludes-Meyers, J., Nguyen, A. W., Park, J., Wang, N., Amengor, D., … McLellan, J. S. (2020). Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science. https://doi.org/10.1126/science.abd0826

    1. Havers, F. P., Reed, C., Lim, T., Montgomery, J. M., Klena, J. D., Hall, A. J., Fry, A. M., Cannon, D. L., Chiang, C.-F., Gibbons, A., Krapiunaya, I., Morales-Betoulle, M., Roguski, K., Rasheed, M. A. U., Freeman, B., Lester, S., Mills, L., Carroll, D. S., Owen, S. M., … Thornburg, N. J. (2020). Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020. JAMA Internal Medicine. https://doi.org/10.1001/jamainternmed.2020.4130

    1. Clausen, T. M., Sandoval, D. R., Spliid, C. B., Pihl, J., Painter, C. D., Thacker, B. E., Glass, C. A., Narayanan, A., Majowicz, S. A., Zhang, Y., Torres, J. L., Golden, G. J., Porell, R., Garretson, A. F., Laubach, L., Feldman, J., Yin, X., Pu, Y., Hauser, B., … Esko, J. D. (2020). SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. BioRxiv, 2020.07.14.201616. https://doi.org/10.1101/2020.07.14.201616

  14. Jul 2020
    1. Yurkovetskiy, L., Wang, X., Pascal, K. E., Tomkins-Tinch, C., Nyalile, T., Wang, Y., Baum, A., Diehl, W. E., Dauphin, A., Carbone, C., Veinotte, K., Egri, S. B., Schaffner, S. F., Lemieux, J. E., Munro, J., Rafique, A., Barve, A., Sabeti, P. C., Kyratsous, C. A., … Luban, J. (2020). Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. BioRxiv, 2020.07.04.187757. https://doi.org/10.1101/2020.07.04.187757

  15. Jun 2020
    1. Pell, Samantha, closeSamantha PellReporter covering the Washington CapitalsEmailEmailBioBioFollowFollowC, ace Buckner, closeC, and ace BucknerNational Basketball Association with an emphasis in covering the Washington Wizards EmailEmailBioBioFollowFollowJacqueline Dupree closeJacqueline DupreeNewsroom Intranet EditorEmailEmailBioBioFollowFollow. ‘Coronavirus Hospitalizations Rise Sharply in Several States Following Memorial Day’. Washington Post. Accessed 10 June 2020. https://www.washingtonpost.com/health/2020/06/09/coronavirus-hospitalizations-rising/.

  16. May 2020
  17. Apr 2020
    1. Spikes Spikes are a type of exploration Enabler Story in SAFe. Defined initially in Extreme Programming (XP), they represent activities such as research, design, investigation, exploration, and prototyping. Their purpose is to gain the knowledge necessary to reduce the risk of a technical approach, better understand a requirement, or increase the reliability of a story estimate. Like other stories, spikes are estimated and then demonstrated at the end of the Iteration. They also provide an agreed upon protocol and workflow that Agile Release Trains (ARTs) use to help determine the viability of Epics. Details Agile and Lean value facts over speculation. When faced with a question, risk, or uncertainty, Agile Teams conduct small experiments before moving to implementation, rather than speculate about the outcome or jump to a Solution. Teams may use spikes in a variety of situations: Estimate new Features and Capabilities to analyze the implied behavior, providing insight about the approach for splitting them into smaller, quantifiable pieces Perform feasibility analysis and other activities that help determine the viability of epics Conduct basic research to familiarize them with a new technology or domain Gain confidence in a technical or functional approach, reducing risk and uncertainty Spikes involve creating a small program, research activity, or test that demonstrates some aspect of new functionality. Technical and Functional Spikes Spikes primarily come in two forms: technical and functional. Functional spikes – They are used to analyze overall solution behavior and determine: How to break it down How to organize the work Where risk and complexity exist How to use insights to influence implementation decisions Technical spikes – They are used to research various approaches in the solution domain. For example: Determine a build-versus-buy decision Evaluate the potential performance or load impact of a new user story Evaluate specific technical implementation approaches Develop confidence about the desired solution path Some features and user stories may require both types of spikes. Here’s an example: “As a consumer, I want to see my daily energy use in a histogram so that I can quickly understand my past, current, and projected energy consumption.” In this case, a team might create both types of spikes: A technical spike to research how long it takes to update a customer display to current usage, determining communication requirements, bandwidth, and whether to push or pull the data A functional spike – Prototype a histogram in the web portal and get some user feedback on presentation size, style, and charting Guidelines for Spikes Since spikes do not directly deliver user value, use them sparingly. The following guidelines apply. Quantifiable, Demonstrable, and Acceptable Like other stories, spikes are put in the Team Backlog, estimated, and sized to fit in an iteration. Spike results are different from a story because spikes typically produce information rather than working code. They should develop only the necessary data to identify and size the stories that drive it confidently. The output of a spike is demonstrable, both to the team and to any other stakeholders, which brings visibility to the research and architectural efforts, and also helps build collective ownership and shared responsibility for decision-making. The Product Owner accepts spikes that have been demoed and meet its acceptance criteria. Timing of Spikes Since they represent uncertainty in one or more potential stories, planning for both the spike and the resulting stories in the same iteration is sometimes risky. However, if it’s small and straightforward, and a quick solution is likely to be found, then it can be quite efficient to do both in the same iteration. The Exception, Not the Rule Every user story has uncertainty and risk; that’s the nature of Agile development. The team discovers the right solution through discussion, collaboration, experimentation, and negotiation. Thus, in one sense, every user story contains spike-like activities to identify the technical and functional risks. The goal of an Agile team is to learn how to address uncertainty in each iteration. Spikes are critical when high uncertainty exist, or there are many unknowns.  
  18. Jan 2018