10,000 Matching Annotations
  1. Nov 2023
    1. These clinicians, too, could be arrested or sued or lose their medical licenses. To protect themselves, they may have to give up traveling to certain parts of the country — and it’s still no guarantee.

      This might be a good topic to talk about just because someone's life could be ruined for doing what they think or know is morally right in there head.

    1. Author Response

      Reviewer #1 (Public Review):

      Due complicated and often unpredictable idiosyncratic differences, comparing fMRI topography between subjects typically would require extra expensive scan time and extra laborious analyzing steps to examine with specific functional localizer scan runs that contrast fMRI responses of every subject to different stimulus categories. To overcome this challenge, hyperaligning tools have recently been developed (e.g., Guntupalli et al., 2016; Haxby et al., 2011) based on aligning in a high-dimensional space of voxels of subjects' fMRI responses to watching a given movie. In the present study, Jiahui and colleagues propose a significantly improved version of hyperaligning functional brain topography between individuals. This new version, based on fMRI connectivity, works robustly on datasets when subjects watched different movies and were scanned with different parameters/scanners at different MRI centers.

      Robustness is the major strength of this study. Despite the fact that datasets from different subjects watching different movies at different MRI centers with different scan parameters were used, the results of functional brain topography from between-subject hyperalignment based on fMRI connectivity were comparable to the golden standard of within-subject functional localizations, and significantly better than regular surface anatomical alignments. These results also support the claim that the present approach is a useful improvement from previous hyperalignments based on time-locked fMRI voxel responses, which would require normative samples of subjects watching a same movie.

      We thank the reviewer for the appreciation of our work.

      Given the robustness, this new version of hyperalignment would provide much stronger statistical power for group-level comparisons with less costs of time and efforts to collect and analyze data from large sample size according to the current stringent standard, likely being useful to the whole research community of functional neuroimaging. That said, more discussions of the limit of the present hyperalignment approach would be helpful to potential eLife readers. For example, to what extend the present hyperalignment approach would be applicable to individuals with atypical functional brain topography such as brain lesion patients with e.g., acquired prosopagnosia? Even in typical populations, while bilateral fusiform face areas can be identified in the majority through functional localizer scans, the left fusiform face area sometimes cannot be found. Moreover, many top-down factors are known to modulate functional brain topography. Due to these factors, brain responses and functional connectivity may be different even when a same subject watched a same movie twice (e.g., Cui et al., 2021).

      We thank the reviewer for the suggestion and agree that it would be fascinating if the predictions can be made with high fidelity in neuropsychological populations. Although we are optimistic that our algorithm is able to generalize across diverse populations, to date, no previous literature has provided empirical evidence to illustrate the effectiveness, including optimizations and special applications beyond typical brains. Besides the neuropsychological population, it would also be valuable to study the generalization across a broad age range, for example, from infants to the elderly. The brain changes across age both anatomically and functionally, so it is a challenge to predict functional topographies based on a normative group that only includes young participants. With all these potential applications in mind, future research is needed to illustrate the efficacy, build the pipeline, and construct the representative normative groups to meet the requirements of accurate individualized predictions in diverse populations.

      In typical populations, although participants have great individual variabilities in their functional topographies, for instance, some participants have distinguishable patches of activations in their left ventral temporal cortex while some participants don’t, our algorithms successfully captured these individualized differences in the prediction. The figure below shows, as an example, the face-selective topographies of two individuals that have markedly different face-selective topographies on the left ventral temporal cortex. The left participant has prominent face-selective areas on the left ventral temporal cortex that are in similar sizes as the right side, while the right participant only has a few scattered small face-selective spots on the left side. No matter what their face-selective areas look like, our algorithm accurately recovered the individualized locations, shapes, and sizes, retaining the individual variability in the functional topographies.

      Functional connectivity profiles based on naturalistic stimuli are very stable across the cortex, even when participants watch different movies. In Figure 4-figure supplement 9, the mean correlations of fine-scaled connectome for most searchlights (r = 15mm) when participants watched The Grand Budapest Hotel and the Raiders of the Lost Ark were generally around 0.8. The mean correlations were about 0.9 between the first and second half of the same movie although the stimuli contents were different between the two halves. Thus, the fine-grained functional connectivity profiles remain highly stable and reliable across movie contents, which contributes to the robustness of cross-movie, time, and other parameters (e.g., scanner models, scanning parameter) predictions using our algorithms.

      We added a paragraph in the discuss section to address the concerns (page 18-19):

      “This study successfully illustrated that accurate individualized predictions are both robust and applicable across a variety of conditions, including movie types, languages, scanning parameters, and scanner models. Importantly, the intricate connectivity profiles remain consistent even when participants view entirely different movies, as evidenced by Figure 4-figure supplement 9, reinforcing the prediction's stability in various scenarios. However, all four datasets in this study only included typical participants with anatomically intact brains. An unanswered question is whether individualized topographies of neuropsychological populations with atypical cortical function (e.g., developmental prosopagnosics) or with lesioned brains (e.g., acquired prosopagnosics) could also be accurately predicted using the hyperalignment-based methods. Up to now, as far as we know, no previous literature has investigated this question. Beyond neuropsychological groups, it is also valuable to investigate how well the predictions will be across a wide range of age, from infants to the elderly. Future research is essential to adapt our algorithms to diverse populations.”

      Reviewer #2 (Public Review):

      Guo and her colleagues develop a new approach to map the category-selective functional topographies in individual participants based on their movie-viewing fMRI data and functional localizer data from a normative sample. The connectivity hyperalignment are used to derived the transformation matrices between the participants according to their functional connectomes during movies watching. The transformation matrices are then used to project the localizer data from the normative sample into the new participant and create the idiosyncratic cortical topography for the participant. The authors demonstrate that a target participant's individualized category-selective topography can be accurately estimated using connectivity hyperalignment, regardless of whether different movies are used to calculate the connectome and regardless of other data collection parameters. The new approach allows researchers to estimate a broad range of functional topographies based on naturalistic movies and a normative database, making it possible to integrate datasets from laboratories worldwide to map functional areas for individuals. The topic is of broad interest for neuroimaging community; the rationale of the study is straightforward and the experiments were well designed; the results are comprehensive. I have some concerns that the authors may want to address, particularly on the details of the pipeline used to map individual category-selective functional topographies.

      We thank the reviewer for the encouragement.

      1) How does the length of the scan-length of movie-viewing fMRI affect the accuracy in predicting the idiosyncratic cortical topography? Similarly, how does the number of participants in the normative database affect the prediction of the category-selective topography? This information is important for the researchers who are interested in using the approach in their studies.

      To investigate the influence of movie-viewing data length and the number of participants in the normative database on prediction performance, we systematically varied these parameters. Specifically, we altered the number of runs utilized in the analysis for both the normative and target data and experimented with varying the number of participants in the normative dataset using the Budapest and the Sraiders datasets. We have included a new Figure 4-figure supplement 5 to present a summary of these findings.

      The results reveal that both within-dataset and between-dataset prediction performances are positively correlated with the length of movie-viewing fMRI data used for both the normative and target groups. A similar trend was observed with respect to the number of participants included in the normative dataset. It is important to highlight, though, that, even when analyzing as little as one run of movie-viewing data—roughly 10-15 minutes, our hyperalignment-based prediction performance was significantly higher than that achieved using traditional surface alignment. This held true even when the normative dataset included as few as five participants.

      In summary, our results show that prediction performance generally improves with longer movie-viewing sessions and larger normative datasets. However, it is noteworthy that even with minimal data—10 minutes of movie-viewing and a small number of participants in the normative dataset—our algorithm still outperforms traditional surface alignment methods significantly.

      We also added sentences in the discussion section (page 15):

      “We investigated the influence of naturalistic movie length and the size of the training group on the prediction accuracy of individualized functional topographies. By incrementally increasing both the number of movie runs in the training and target dataset and the participants in the training group in the Budapest and Sraiders dataset, we observed enhanced prediction accuracy (Figure 4-figure supplement 5). Notably, even with just one movie run in the training or target dataset, or with a mere five participants in the training group, our prediction performance (Pearson r) ranged from about 0.6 to 0.7. This accuracy significantly outperformed results obtained using surface-based alignment.”

      2) The data show that category-selective topography can be accurately estimated using connectivity hyperalignment, regardless of whether different movies are used to calculate the connectome and regardless of other data collection parameters. I'm wondering whether the functional connectome from resting state fMRI can do the same job as the movie-watching fMRI. If it is yes, it will expand the approach to broader data.

      We agree with the reviewer that demonstrating the applicability of the resting state data will expand the application scenarios of this approach. Most previous findings on resting state connectivity, including the comparison between the naturalistic and the resting state paradigms, focused on the macro-scale similarities and differences (e.g., Samara et al., 2023). Very few studies have investigated the fine-scaled connectome based on resting state data. The study on connectivity hyperalignment (Guntupalli et al., 2018) demonstrated a shared fine-scale connectivity structure among individuals that co-exists with the common coarse-scale structure and built the algorithm to successfully hyperalign individuals to the shared fine-scaled space. Another study from our lab (Feilong et al., 2021) revealed that the fine-scaled connectivity profiles in both resting and task states are highly predictive of general intelligence, indicating reliable and biologically relevant fine-scaled resting state connectome structures. Thus, it is highly plausible that our approach is able to be generalized to the resting state data, generating significantly better predictions of individualized functional topographies than traditional surface alignment. However, due to the limitations of the current datasets, we do not have resting state data available in the current datasets to perform this analysis. We are in the process of collecting new data to explore this hypothesis in future work.

      We added sentences to the discussion section to discuss this idea (page 18):

      “Studies comparing movie-viewing and resting state functional connectivity have shown that both paradigms yield overlapping macroscale cortical organizations (29), though naturalistic viewing introduces unique modality-specific hierarchical gradients. However, there remains a gap in research comparing the fine-scaled connectomes of naturalistic and resting state paradigms. Guntupalli and colleagues (14) revealed a shared fine-scale structure that coexists with the coarse-scale structure, and connectivity hyperalignment successfully improved intersubject correlations across a wide variety of tasks. Feilong et al. (13) noted that the fine-scaled connectivity profiles in both resting and task states are highly predictive of general intelligence. This suggests a reliable and biologically relevant fine-scale resting state connectivity structure among individuals. Therefore, it is plausible that individualized functional topography could be effectively estimated using resting state functional connectivity, expanding the applicability of our approach. Future studies are needed to explore this direction.”

      3) The authors averaged the hyper-aligned functional localizer data from all of subjects to predict individual category-selective topographies. As there are large spatial variability in the functional areas across subjects, averaging the data from many subjects may blur boundaries of the functional areas. A better solution might be to average those subjects who show highly similar connectome to the target subjects.

      We appreciate the reviewer’s insightful question about optimizing prediction performance by selecting participants most similar in functional connectivity to the target individuals. This is a promising direction and difficult problem as well. Our approach is based on fine-scale connectome to hyperalign participants, thus different groups of participants may be similar to the target participant in different searchlights. In addition, based on results discussed in the response to Q2, the more participants included in the normative dataset, the better the prediction performance. Thus, there is a trade-off between the number of participants included in the normative dataset for the prediction and the overall similarity of those participants to the target participant.

      To quantitatively explore this idea, we used a searchlight in the right ventral temporal cortex, roughly at the location of posterior fusiform face area (pFFA).We sorted participants by their connectome similarity to each target participant and then examined prediction performance based on either the top nine most similar participants or the bottom nine least similar participants. Our results, presented in Figure 4-figure supplement 8, reveal that hyperalignment consistently outperforms surface alignment regardless of the subset of participants used. Notably, using the nine most similar participants did not significantly alter prediction performance (Tukey Test, z = -0.09, p = 0.996), while using the least similar participants did negatively impact it (Tukey Test, z = 2.492, p = 0.034). Interestingly, the stability of hyperalignment-based predictions remained high even when only a subset of participants was used, contrasting with the variability observed in surface-alignment-based predictions.

      Overall, these findings suggest that while selecting functionally similar participants is a promising avenue for future optimization, the process will require nuanced, searchlight-specific criteria. Each searchlight may necessitate its own set of optimal participants to balance between the performance boost from having more participants and the fidelity gained from participant similarity.

      We added the following to the discussion in the manuscript (page 16):

      “In our study, we used fine-scale connectomes, noting that some participants are more similar to the target participant in specific searchlights. It is an interesting question whether predictions could be enhanced by exclusively selecting those more similar participants for the target participant. To explore this option, we examined a searchlight in the right ventral temporal cortex that was roughly at the location of the posterior fusiform area (pFFA) using the top and bottom nine participants similar to each target participant measured by their fine-scale connectome similarities in the budapest dataset. Generally, using all or part of the participants for the prediction generated similar results (Figure 4-figure supplement 8). Compared to using all the participants, using only the top nine participants who are the most similar to the target participants did not significantly improve the prediction (Tukey Test, z = -0.09, p = 0.996), but using only the bottom nine participants generated significantly lower prediction accuracies (Tukey Test, z = 2.492, p = 0.034). This suggests a trade-off between the number of participants included in the prediction and the similarity of the participants. Future studies are needed to explore the optimal threshold for the number of participants included for each searchlight to refine the algorithm.”

      4) It is good to see that predictions made with hyperalignment were close to and sometimes even exceeded the reliability values measured by Cronbach's alpha. But, please clarify how the Cronbach's alpha is calculated.

      Cronbach’s alpha calculates the correlation score between localizer-based maps across the runs, and it reflects the amount of noise in maps based on individual localizer runs. Traditionally, the reliability was estimated based on split-half correlations. For example, Guntupalli et al. (2016) used correlations of category-selectivity maps between odd and even localizer runs as the measure of reliability. The odd/even split measure underestimated reliability and necessitated recalculation of correlations between maps for only half the data to provide valid comparisons. In contrast, Cronbach’s alpha involves all localizer runs and provides a more accurate statistical estimate of the reliability of the topographies estimated with localizer runs.

      Cronbach’s alpha has been used in many previously published works from our lab (e.g., Feilong et al., 2021; Jiahui et al., 2020, 2023). The code for implementing this metric is publicly accessible on the first author’s Github repository (https://github.com/GUOJiahui/face_DCNN/blob/main/code/cronbach_alpha.py).

      We added the detailed explanation above to the Material and Methods section (page 24):

      “Cronbach’s alpha calculates the correlation score between localizer-based maps across the runs, and it reflects the amount of noise in maps based on individual localizer runs. Traditionally, the reliability was estimated based on split-half correlations. The common odd/even split measure underestimated reliability and necessitated recalculation of correlations between maps for only half the data to provide valid comparisons. In contrast, Cronbach’s alpha involves all localizer runs and provides a more accurate statistical estimate of the reliability of the topographies estimated with localizer runs.”

      5) Which algorithm was used to perform surface-based anatomical alignment? Can the state-ofthe-art Multimodal Surface Matching (MSM) algorithm from HCP achieve better performance?

      We preprocessed our datasets using fMRIPrep, which employs algorithms from FreeSurfer’s recon-all for surface-based anatomical alignment. It is worth noting that different alignment methods can yield varying degrees of performance. For instance, a study by Coalson et al. (2018) compared the localization performance of multiple surface-based alignment methods, including Multimodal Surface Matching (MSM) and FreeSurfer. The study found that MSM outperformed FreeSurfer in terms of peak probabilities and spatial clustering, suggesting better overall localization.

      Additionally, Guntupalli et al. (2018) evaluated intersubject correlations (ISC) of functional connectivity from movie-viewing data using both Connectivity Hyperalignment (CHA) and MSM-All with the Human Connectome Project (HCP) dataset. The study showed that although MSM-All yielded marginally better ISC than traditional surface alignment, CHA’s performance was significantly superior.

      In summary, while using a more advanced alignment algorithm like MSM could marginally improve prediction performance, its advantages may not be substantial when compared to our CHA-based predictions. The combination of MSM and CHA represents an intriguing direction for future research, although it falls outside the scope of our current study.

      6) Is it necessary to project to the time course of the functional localizer from the normative sample into the new participants? Does it work if we just project the contrast maps from the normative samples to the new subjects?

      It is an interesting question and a practical alternative to researchers to know whether time series of the localizer runs are required to obtain reasonable predictions, as in some scenarios, contrast maps may be the only accessible data in the analysis. To quantitatively explore this possibility, we applied transformation matrices derived from the movie data to training participants’s individual pre-calculated contrast maps of all four categories, and evaluated the predictions. We found nearly similar prediction performance between the two flavors within and across datasets (Figure 4-figure supplement 7). However, it is worth noting that applying transformation matrices directly to contrast maps did not get as much improvement in the interactive steps as the other flavor in the advanced CHA, perhaps due to the scale changes when multiple iterations were implemented and the difficulty to properly normalize the t-maps compared to the regular time series.

      Overall, although our algorithm is originally designed to be used on the time course of the functional localizer runs, relatively comparable results can be generated even when the contrast maps are directly projected from the normative group to the target participant. However, to derive the best results with our approach, time series are recommended when the situation permits.

      We have also added the contents into the Discussion section (page 16):

      “Our original algorithm is designed to apply transformation matrices to the time series of localizer data of training participants before generating contrast maps. To explore whether directly applying these matrices to pre-calculated contrast maps yields comparable results, we conducted an additional analysis across the four categories. Our findings indicate that the prediction outcomes were indeed quite similar between the two approaches for both the within- and across-datasets predictions (Figure 4-figure supplement 7). However, it is worth noting that the improvements observed with enhanced CHA were not as pronounced when applied directly to the contrast maps as opposed to the time series.”

      7) Saygin and her colleagues have demonstrated that structural connectivity fingerprints can predict cortical selectivity for multiple visual categories across cortex (Osher DE et al, 2016, Cerebral Cortex; Saygin et al, 2011, Nat. Neurosci). I think there's a connection between those studies and the current study. If the author can discuss the connection between them, it may help us understand why CHA work so well.

      We thank the reviewer for raising this point that provides us with the chance of clarifying how our approach differs with methods previously reported in the literature. The computational logic underlying our approach is that we derived the transformation matrices between the training and the target participants in the high-dimensional space based on functional connectivity calculated from the movie data. Then, we applied these transformation matrices to the training participant’s localizer data to accomplish the prediction. On the other hand, Saygin and colleagues directly used diffusion-weighted imaging (DWI) data and predicted participants’ functional responses based on the anatomical-functional correspondence. They evaluated the prediction by calculating the mean absolute errors (AE) of the difference between the actual and predicted contrast responses. Although AE linearly increases with the quality of the prediction, it is difficult to measure the prediction performance of the shape, size, and location of the functional areas precisely using this mean value. With our algorithm, we were able to predict the general location and size of the areas and recover the individualized shapes, generating more powerful predictions. We also used the searchlight analysis to evaluate the performance across the cortex systematically. In addition, Osher et al. (2016) and Saygin et al. (2012) always have a few participants failing to show better predictions based on the connectivity than the group averaged method. Our algorithm is more stable, as all participants across all four datasets had better predicted performance using our algorithm than using the group average. However, although we did not directly use the anatomical-functional correspondence with DWI, the relationships between individual structural connectivity and cortical visual category selectivity could be one of the biological underpinnings that contribute to this robust and accurate prediction.

      The Connectivity-Based Shared Response Model (cSRM, Nastase et al., 2020) offers an alternative framework for aligning individuals through functional connectivity. While the overarching aim of cSRM and our methodology converges, substantial differences emerge in the respective implementation and application between the two methods that make our approach the more suitable for predicting individualized topographies. The most significant difference between the two is that, instead of focusing on within-individual connectivity profiles, cSRM used inter-subject functional connectivity (ISFC) in the initial step. This design requires that all participants must have time-locked time series, making the algorithm unusable for cross-content prediction and making it incompatible with resting-state data. Our approach, on the other hand, does not require time-locked stimuli, thereby offering a more flexible framework that permits generalization across different types of stimuli and experimental settings and enables bringing data across laboratories across the world together. Secondly, cSRM predominantly focuses on Region of Interest (ROI) analyses, whereas our model employs searchlight-based analyses designed to comprehensively cover the entire cortical sheet. Whole-brain coverage is needed to generate the topography that reflects the patterns across the cortex. Finally, with the optimized 1step method, our approach directly hyeraligns the training and target participants together, avoiding the accumulation of errors from the intermediate common space. cSRM, with an implementation similar to the classic connectivity hyperalignment, creates and hyperaligns all participants to a shared information space. In summary, while our approach and cSRM share a similar theoretical foundation, our approach has been specifically optimized to address the challenges and complexities in predicting individualized whole-brain functional topographies. Moreover, our approach demonstrates a remarkable ability to generalize across a variety of contexts and stimuli, offering a significant advantage in dealing with diverse experimental settings and datasets.

      We have added the contents to the discussion section (page 16-17):

      “By leveraging transformation matrices obtained from hyperaligning participants based on movie-viewing data, we successfully mapped these relationships to the training participants’ localizer data, enabling robust predictions. Prior work employing diffusion-weighted imaging (DWI) has underscored the link between anatomical connectivity and category selectivity across diverse visual fields (22, 23) and has established a notable congruence between structural and functional connectivities (24). These findings suggest that the unique anatomical connectivity patterns of individuals may serve as a foundational mechanism, contributing to the stable finescale functional connectome that underpins our approach. The connectivity-based Shared Response Model (cSRM) proposed by Nastase and colleagues (25) used connectivity to functionally align individuals similar to the connectivity hyperalignment algorithm. While both approaches share overarching goals, they diverge considerably in implementation and application. First and most important, cSRM used inter-subject functional connectivity (ISFC) rather than within-subject functional connectivity to initially estimate the connectome. As a result, cSRM requires participants to have time-locked fMRI time series. Therefore, unlike our algorithm, the cSRM approach does not support cross-content applications and also is not suitable for use with resting-state data. Second, cSRM is implemented based on a predefined cortical parcellation rather than the overlapping, regularly-spaced cortical searchlights applied in our method which are not constrained by areal borders. For the application, cSRM has mainly been used to do ROI analysis rather than the estimation of the whole-brain topography that requires broader coverage of the cortex with a searchlight analysis. Third, our method is specifically designed to work in each individual’s space, while cSRM decomposes data across subjects into shared and subjectspecific transformations, focusing on a communal connectivity space. In summary, although cSRM presents a promising alternative for similar aims, its current implementation precludes it from fulfilling the range of applications for which our method is optimized.”

      Reviewer #3 (Public Review):

      In this paper, Jiahui and colleagues propose a new method for learning individual-specific functional resonance imaging (fMRI) patterns from naturalistic stimuli, extending existing hyperalignment methods. They evaluate this method - enhanced connectivity hyperalignment (CHA) - across four datasets, each comprising between nine (Raiders) and twenty (Budapest, Sraiders) participants.

      The work promises to address a significant need in existing functional alignment methods: while hyperalignment and related methods have been increasingly used in the field to compare participants scanned with overlapping stimuli (or lack thereof, in the case of resting state data), their use remains largely tied to naturalistic stimuli. In this case, having non-overlapping stimuli is a significant constraint on application, as many researchers may have access to only partially overlapping stimuli or wish to compare stimuli acquired under different protocols and at different sites.

      It is surprising, however, that the authors do not cite a paper that has already successfully demonstrated a functional alignment method that can address exactly this need: a connectivitybased Shared Response Model (cSRM; Nastase et al., 2020, NeuroImage). It would be relevant for the authors to consider the cSRM method in relation to their enhanced CHA method in detail. In particular, both the relative predictive performance as well as associated computational costs would be useful for researchers to understand in considering enhanced CHA for their applications.

      We thank the reviewer for raising this point that provides us with the chance of clarifying how our approach differs with methods previously reported in the literature. The computational logic underlying our approach is that we derived the transformation matrices between the training and the target participants in the high-dimensional space based on functional connectivity calculated from the movie data. Then, we applied these transformation matrices to the training participant’s localizer data to accomplish the prediction. On the other hand, Saygin and colleagues directly used diffusion-weighted imaging (DWI) data and predicted participants’ functional responses based on the anatomical-functional correspondence. They evaluated the prediction by calculating the mean absolute errors (AE) of the difference between the actual and predicted contrast responses. Although AE linearly increases with the quality of the prediction, it is difficult to measure the prediction performance of the shape, size, and location of the functional areas precisely using this mean value. With our algorithm, we were able to predict the general location and size of the areas and recover the individualized shapes, generating more powerful predictions. We also used the searchlight analysis to evaluate the performance across the cortex systematically. In addition, Osher et al. (2016) and Saygin et al. (2012) always have a few participants failing to show better predictions based on the connectivity than the group averaged method. Our algorithm is more stable, as all participants across all four datasets had better predicted performance using our algorithm than using the group average. However, although we did not directly use the anatomical-functional correspondence with DWI, the relationships between individual structural connectivity and cortical visual category selectivity could be one of the biological underpinnings that contribute to this robust and accurate prediction.

      The Connectivity-Based Shared Response Model (cSRM, Nastase et al., 2020) offers an alternative framework for aligning individuals through functional connectivity. While the overarching aim of cSRM and our methodology converges, substantial differences emerge in the respective implementation and application between the two methods that make our approach the more suitable for predicting individualized topographies. The most significant difference between the two is that, instead of focusing on within-individual connectivity profiles, cSRM used inter-subject functional connectivity (ISFC) in the initial step. This design requires that all participants must have time-locked time series, making the algorithm unusable for cross-content prediction and making it incompatible with resting-state data. Our approach, on the other hand, does not require time-locked stimuli, thereby offering a more flexible framework that permits generalization across different types of stimuli and experimental settings and enables bringing data across laboratories across the world together. Secondly, cSRM predominantly focuses on Region of Interest (ROI) analyses, whereas our model employs searchlight-based analyses designed to comprehensively cover the entire cortical sheet. Whole-brain coverage is needed to generate the topography that reflects the patterns across the cortex. Finally, with the optimized 1step method, our approach directly hyeraligns the training and target participants together, avoiding the accumulation of errors from the intermediate common space. cSRM, with an implementation similar to the classic connectivity hyperalignment, creates and hyperaligns all participants to a shared information space. In summary, while our approach and cSRM share a similar theoretical foundation, our approach has been specifically optimized to address the challenges and complexities in predicting individualized whole-brain functional topographies. Moreover, our approach demonstrates a remarkable ability to generalize across a variety of contexts and stimuli, offering a significant advantage in dealing with diverse experimental settings and datasets.

      We have added the contents to the discussion section (page 16-17):

      “By leveraging transformation matrices obtained from hyperaligning participants based on movie-viewing data, we successfully mapped these relationships to the training participants’ localizer data, enabling robust predictions. Prior work employing diffusion-weighted imaging (DWI) has underscored the link between anatomical connectivity and category selectivity across diverse visual fields (22, 23) and has established a notable congruence between structural and functional connectivities (24). These findings suggest that the unique anatomical connectivity patterns of individuals may serve as a foundational mechanism, contributing to the stable finescale functional connectome that underpins our approach. The connectivity-based Shared Response Model (cSRM) proposed by Nastase and colleagues (25) used connectivity to functionally align individuals similar to the connectivity hyperalignment algorithm. While both approaches share overarching goals, they diverge considerably in implementation and application. First and most important, cSRM used inter-subject functional connectivity (ISFC) rather than within-subject functional connectivity to initially estimate the connectome. As a result, cSRM requires participants to have time-locked fMRI time series. Therefore, unlike our algorithm, the cSRM approach does not support cross-content applications and also is not suitable for use with resting-state data. Second, cSRM is implemented based on a predefined cortical parcellation rather than the overlapping, regularly-spaced cortical searchlights applied in our method which are not constrained by areal borders. For the application, cSRM has mainly been used to do ROI analysis rather than the estimation of the whole-brain topography that requires broader coverage of the cortex with a searchlight analysis. Third, our method is specifically designed to work in each individual’s space, while cSRM decomposes data across subjects into shared and subjectspecific transformations, focusing on a communal connectivity space. In summary, although cSRM presents a promising alternative for similar aims, its current implementation precludes it from fulfilling the range of applications for which our method is optimized.”

      With this in mind, I noted several current weaknesses in the paper:

      First, while the enhanced CHA method is a promising update on existing CHA techniques, it is unclear why this particular six step, iterative approach was adopted. That is: why was six steps chosen over any other number? At present, it is not clear if there is an explicit loss function that the authors are minimizing over their iterations. The relative computational cost of six iterations is also likely significant, particularly compared to previous hyperalignment algorithms. A more detailed theoretical understanding of why six iterations are necessary-or if other researchers could adopt a variable number according to the characteristics of their data-would significantly improve the transferability of this method.

      In the advanced connectivity hyperalignment implementation, we gradually increased the number of targets. The six steps were not intentionally chosen but were the result of the increase to the maximum number of fine-grained targets, namely single cortical vertices.

      Our datasets were resampled to the cortical mesh with 18,742 vertices across both hemispheres (approximately 3 mm vertex spacing; icoorder 5; 20,484 vertices before removing non-cortical vertices). Step 1 was the classic standard connectivity hyperalignment implementation based on the anatomically-aligned data. Since using dense connectivity targets (e.g., using all 18742 vertices on the surface) with anatomically-aligned data generates poor functional correspondence across participants (Busch et al., 2021), we used 1,284 vertices (icoorder 3, before removing the medial wall) as connectivity targets in step 1. However, it is beneficial to include more targets for calculating connectivity patterns after the first iteration of connectivity hyperalignment and repeated iterations to lead to a better solution by gradually aligning the information at finer scales. To better align across participants, we iterated the alignment for another two times (step 2 and step 3) with the same number of 1,284 coarse connectivity targets to ensure improved alignment before increasing the number of targets in the later steps. In step 4, we increased the number of targets to 5,124 (icoorder 4, before removing the medial wall), and iterated with this number of vertices for two times in total (step 4 & step 5) before using all vertices as targets. In the final step (step 6), all vertices were used as connectivity targets.

      It is true that the multiple iteration steps largely increased the computational complexity compared to the classic connectivity hyperalignment, but the prediction increase was steady across all datasets and became comparable to response hyperalignment performance which requires time-locked stimuli. We did not use an explicit loss function in the algorithm, but followed the natural progression of the number of potential connectivity targets in the implementation. On the other hand, the difference between the performance of the improved and the classic connectivity hyperalignment was relatively small (difference of r < 0.05), which indicates the effectiveness of our classic algorithm. It is up to the researchers’ own options to adopt the number of iterations and the pace of increasing the number of targets in each step. If computational resources are limited or if a shorter total computational time is the primary priority, using the classic connectivity hyperalignment may be the best option to balance the trade-offs.

      The Materials and Methods section had the details of the implementation (page 22-23):

      “Using dense connectivity targets (e.g., using all 18742 vertices on the surface) with anatomically-aligned data usually generates poor functional correspondence across participants (33). It is, however, beneficial to include more targets for calculating connectivity patterns after the first iteration of connectivity hyperalignment and repeated iterations to lead to a better solution by gradually aligning the information at finer scales.

      We used six steps to further improve the connectivity hyperalignment method. Step 1 was the initial connectivity hyperalignment step as described above that was based on the raw anatomically aligned movie data. The resultant transformation matrices were applied to those movie runs, and the hyperaligned data were then used in step 2 to calculate new connectivity patterns and calculate new transformation matrices. We repeated this procedure iteratively six times and derived transformation matrices for each step. In steps 1, 2, and 3, 642 × 2 (icoorder3, before removing the medial wall) connectivity targets were defined with 13 mm searchlights. In step 4 and 5, 2562 × 2 (icoorder 4, before removing the medial wall) connectivity targets were used with 7 mm searchlights to calculate target mean time series. In the final step 6, all 18742 vertices were included as separate connectivity targets, using each vertex’s time series rather than calculating the mean in a searchlight. Each step of this advanced connectivity hyperalignment algorithm increased the prediction performance (Figure 4-figure supplement 2).”

      But to help the readers understand the logic of the advanced connectivity hyperalignment algorithm used in this study, we expanded the discussion section (page 15):

      “Because using dense connectivity targets (e.g., using all vertices as connectivity targets) with anatomically-alignment data often leads to suboptimal alignment across participants (33), we started with coarse connectivity targets and gradually increased the number of connectivity targets to form a denser representation of connectivity profiles. The iterations improved the prediction performance step by step, and at the final step (step 6, all vertices were used as connectivity targets) in this analysis, the enhanced CHA generated comparable performance with RHA (Figure 4-figure supplement 4).”

      Second, the existing evaluations for enhanced CHA appear to be entirely based on imagederived correlations. That is, the authors compare the predicted image from CHA with the ground-truth image using correlation. While this provides promising initial evidence, correlation-based measures are often difficult to interpret given their sensitivity to image characteristics such as smoothness. Including Cronbach's alpha reliability as a baseline does not address this concern, as it is similarly an image-based statistic. It would be useful to see additional predictive experiments using frameworks such as time-segment classification, intersubject decoding, or encoding models.

      We appreciate the reviewer’s concern regarding the stability of local correlations in relation to image characteristics. To address this, we conducted additional analysis using different searchlight sizes (with radii of 10 mm, 15 mm, and 20 mm) to evaluate the predicted categoryselective maps, focusing specifically on the Budapest dataset. The local correlations between the predicted category-selective maps (obtained using enhanced CHA) and participants’ own maps based on classic localizer runs were calculated for each searchlight. We averaged these correlations across participants and plotted the resulting maps, as shown in Figure 4-figure supplement 10. Although using a larger searchlight radius is similar to employing a larger smoothing kernel, the results remained relatively stable across different searchlight sizes, particularly in regions selectively responsive to the specific category. This stability suggests that while the evaluation may be influenced by image-related features, the conclusion would remain consistent under varying parameters.

      As for the use of enhanced CHA, it serves as an optimized version of the classic CHA, specifically designed for predicting individualized functional topographies. Evaluating prediction performance in our study is based on t-value contrast maps for each participant. Given this, it's unclear how time-segment classification or other decoding/encoding models could be appropriately implemented for performance evaluation. However, prior research from our lab has already established the effectiveness of classic CHA. Specifically, Guntupalli et al. (2018) showed that classic CHA significantly improved intersubject correlations (ISC) of connectivity profiles across the cortex. They also revealed that CHA captured fine-scale variations in connectivity profiles for nearby cortical nodes across participants and led to improved betweensubject multivariate pattern classification accuracies (bsMVPC) of movie segments. These findings serve as robust evidence for the effectiveness of classic CHA, laying the groundwork for our enhanced CHA approach.

      We added Figure 4-figure supplement 10 to the supplementary material:

      Addressing these concerns and considering cSRM as a comparison model would significantly strengthen the paper. There are also notable strengths that I would encourage the authors to further pursue. In particular, the authors have access to a unique dataset in which the same Raiders of the Lost Ark stimulus was scanned for participants within the Budapest (SRaiders) dataset as well as non-overlapping participants in the Raiders dataset. Exploring the relative performance for cross-movie prediction within a dataset as compared to a shared movie prediction across datasets is particularly interesting for methods development. I would encourage the authors to explicitly report results in this framework to highlight both this unique testing structure as well as the performance of their enhanced CHA method.

      We appreciate the reviewer's suggestion to examine a shared time-series but non-overlapping participants scenario using the Sraiders and Raiders datasets. However, there are significant differences between the two datasets that preclude such direct comparison. These differences include varying scanning parameters, MRI scanners, localizer types, and data collection procedures. Due to these methodological divergences, the datasets cannot be treated as identical time-series.

      Firstly, the scanning parameters vary considerably. Sraiders were scanned with TR = 1 s (TR/TE = 1000/33 ms, flip angle = 59 °, resolution = 2.5 mm3 isotropic voxels, matrix size = 96 × 96, FoV = 240 × 240 mm, multiband acceleration factor = 4, and no in-plane acceleration), and Raiders were scanned with TR = 2.5 s (TR = 2.5 s, TE = 35 ms, Flip angle = 90°, 80 × 80 matrix, FOV = 240 mm × 240 mm, resolution = 0.938 mm × 0.938 mm × 1.0 mm).

      Secondly, participants in the Sraiders were scanned with a 3 T S Magnetom Prisma MRI scanner with a 32 channel head coil and the Raiders dataset, collected more than 10 years ago, used a 3T Philips Intera Achieva scanner with an eight-channel head coil.

      Thirdly, the stimuli presentations were different. In the Sraiders dataset, the movie Raiders of the Lost Ark was split into eight parts (~15 min each), and the first four parts were watched outside of the scanner prior to the scanning (~56 min). The later four parts were watched in the scanner (57 min) with audio. And in the Raiders dataset, the audio-visual movie was split into eight parts (~15 min each). Participants watched all eight parts in the scanner with audio (one part / per run).

      Fourthly and critically, the two datasets included two types of localizers. The Sraiders dataset included dynamic localizer runs, and the Raiders dataset only contained a static localizer that was similarly designed as in the Forrest dataset.

      With all four points, it is not suitable to treat the two datasets as identical time-series. The difference in the localizer type is a further issue. The topographies generated from the two types of localizers are dissimilar in many ways. For all categories, the dynamic localizer elicited stronger and broader category-selective activations than the static localizer, and the searchlight analysis showed that the dynamic localizer had higher reliabilities across the cortex, especially in regions that were selectively responsive to the target category. Due to these differences, crossdataset predictions yielded lower correlations than within-dataset predictions. This is not indicative of methodological failure but reflects diverging topographies activated by different localizers.

      In the manuscript, we have extensively analyzed cross-dataset predictions (Figure 2-figure supplement 1-Figure 4-figure supplement 4 & 6).

      ● Figure 2-figure supplement 1 demonstrates that, despite the limitations of cross-localizertype evaluation, both R-to-S (Raiders to Sraiders) and S-to-R (Sraiders to Raiders) predictions significantly outperformed surface alignment methods across categories.

      ● Figure Figure 2-figure supplement 2 confirms that the prediction performance remained stable across individual participants, underscoring the robustness of our methodology.

      ● Figure 3-figure supplement 1 & Figure 3-figure supplement 2 display contrast maps generated from both native and alternate localizers, revealing that the maps share similar topographies irrespective of the dataset origin.

      ● Figure 4-figure supplement 1 presents a correlation analysis of local similarities in R-to-S and S-to-R predictions, highlighting particularly strong correlations in the ventral face regions.

      ● Figure 4-figure supplement 2 employs histograms to showcase performance across major cortices and furnishes additional evidence regarding the influence of localizer types on the results.

      ● Figure 4-figure supplement 3 offers a searchlight analysis for other categories, enriching the scope of our investigation.

      ● Figure 4-figure supplement 4 affirms that the advanced CHA is effective in both R-to-S and S-to-R predictions.

      ● Figure 4-figure supplement 6 compares the efficacy of 1-step vs. 2-step prediction methods for R-to-S and S-to-R, showing a clear advantage for the 1-step approach.

      These analyses affirmed that our approach outperforms surface alignment methods. But the inherent limitations in data collection and localizer types preclude a direct exploration of the reviewer’s hypothesis. These complexities necessitate further research to fully validate the proposed scenario.

      Overall, I share the authors' enthusiasm for the potential of cross-movie, cross-dataset prediction, and I believe that methods such as enhanced CHA are likely to significantly improve our ability to make these comparisons in the near future. At present, however, I find that the theoretical and experimental support for enhanced CHA is incomplete. It is therefore difficult to assess how enhanced CHA meets its goals or how successfully other researchers would be able to adopt this method in their own experiments.

      We hope our new analysis and replies addressed the reviewer’s concerns.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This important study from Godneeva et al. establishes a Drosophila model system for understanding how the activity of Tif1 proteins is modified by SUMO. The authors nicely show that Bonus, like homologous mammalian Tif1 proteins, is a repressor, and that it interacts with other co-repressors Mi-2/NuRD and setdb1 in Drosophila ovaries and S2 cells. They also show that Bonus is SUMOylated by Su(var)2-10 on at least one lysine at its N-terminus to promote its interaction with setdb1. By combining nice biochemistry with an elegant reporter gene approach, they show that SUMOylation is important for Bonus interaction with setdb1, and that this SUMO-dependent interaction triggers high levels of H3K9me3 deposition and gene silencing. While there are still major questions of how SUMO molecularly promotes this process, this study is a valuable first step that opens the door for interesting future experimentation.

      Major Point:

      The RNAseq and ChIPseq data is not available. This is critical for the review of the paper and would help the readers and reviewers interpret the Bonus mutant phenotype and its mechanism of repressing genes.

      The sequencing data have been deposited to the NCBI GEO archive. The accession number for all other RNA-seq and ChIP-seq data reported in this paper is GEO: GSE241375.

      1) The author's conclusion that Bonus SUMOylation is "essential for its chromatin localization" is not supported by the data. Figure 5F shows less 3KR mutant in the chromatin fraction but there is still significant signal.

      We appreciate the reviewer's feedback and agree that the term "essential" was not appropriate in this context. We have revised the manuscript to replace "essential" with "contributes to" to accurately reflect our findings.

      2) The author's conclusion that Bonus is SUMOylated at a single site close to its N-terminus is not necessarily true. In several SUMO and Bonus blots throughout the paper (5B, 6C, S4A), there are >2 differentially migrating species that could represent more than one SUMO added to Bonus. While the single K20R mutation eliminates all of these species in Fig 5C, it is possible that K20R SUMOylation is required for additional SUMOylation events on other residues. One way to determine if Bonus is SUMOylated on multiple sites is to add recombinant SUMO protease to the extract and see if multiple higher molecular weight bands collapse into a single migrating species (implying multiple SUMOs) or multiple migrating species (implying something else is altering gel migration).

      We appreciate the suggestion made by the reviewer. While we acknowledge the presence of occasional multiple bands in SUMO Western blots, the predominant pattern is the presence of unmodified Bon and a single additional band corresponding to SUMO-modified Bon. To investigate the possibility of multi-site SUMOylation, we performed requested experiment where we added SENP2 SUMO protease to the extract and checked Bon's SUMOylation. In the presence of NEM, we observed the unmodified form of Bon, as well as a single additional band representing a SUMO-modified form of Bon. Following SENP2 SUMO protease treatment, SUMOylation form of Bon was completely abolished in all samples, leaving only the unmodified Bon band (Extended Data Fig. 4D). This indicates that Bon is not SUMOylated on multiple sites and that the observed differential migration species likely result from other factors affecting gel migration.

      3) The authors state that most upregulated genes in BonusGLKD are not highly enriched in H3K9me3. The heatmap in figure 3D is not an ideal presentation of this argument. The authors should show an example of what the signal on a highly enriched gene looks like for comparison. The authors also argue that because most upregulated genes in BonusGLKD are not highly enriched in H3K9me3, they must be indirectly repressed. Another possibility is that bonus-mediated H3K9me3 is only important (and present) during early nurse cell differentiation and is later lost and dispensable during the rapid endocycles. After bonus establishes repression though H3K9me3, it might be maintained through bonus-Mi2/Nurd, something else, or nothing at all. The authors could discuss this possibility or perform H3K9me3 ChIP during cyst formation and early nurse cell differentiation rather than in whole ovaries, which are enriched for later stages.

      We thank the reviewer for their thoughtful comments and suggestions. In our revised manuscript we have included the tracks of gene that is highly enriched in H3K9me3 but remain unchanged upon Bon GLKD (Extended Data Fig. 3B). This addition allows for a visual comparison and better supports our argument that majority of genes upregulated in Bon GLKD are not enriched in H3K9me3 mark. We also appreciate the reviewer's suggestion regarding the potential temporal dynamics of Bon-mediated H3K9me3. It is indeed possible that Bon's role in establishing H3K9me3 might be more prominent during early nurse cell differentiation and less critical in later stages. We included discussion of this possibility in revised manuscript. To further explore it would be valuable to perform H3K9me3 ChIP during cyst formation and early nurse cell differentiation. However, given the limitations of our current resources and time limitations, we were unable to perform these experiments for the revised manuscript.

      4) The BonusGLKD RNAseq analysis is underwhelming. The conclusion that "Bonus represses tissue-specific genes" has limited value. Every gene that is not expressed in ovaries is "tissue-specific." What subset of tissue-specific genes does Bonus repress? What common features do these genes have and how do they compare to other sets of tissue-specific genes, such as those reportedly repressed by setdb1, Polycomb proteins, small ovary, l(3)mbt, and stonewall (among others in female germ cells). Comparing these available data sets could help the authors understand the mechanism of Bonus repression and how BonusGLKD leads to sterility. The authors could also further analyze the differences between nos-Gal4 and MT-Gal4 to better understand why nos- but not MT-driven knockdown is sterile.

      We appreciate the reviewer's feedback regarding the RNA-seq analysis and acknowledge the importance of identifying the specific subset of tissue-specific genes. The Figure 2C shows specific tissues where genes derepressed upon Bon GLKD are normally expressed. These are tissues/organs such as the head, digestive system, and nervous system. The reviewer's suggestion to compare our findings with existing datasets are valid and could indeed provide a more comprehensive understanding of Bon repression and its implications in female germ cells. However, many of the published datasets are based on mutant fly lines or use different GAL4 drivers to induce knockdowns, making direct comparisons challenging. We have conducted a preliminary analysis of available data, specifically nos-Gal4>SetDB1KD (GSE109852), and identified an overlap of 135 genes out of the 464 genes upregulated upon nos-Gal4>BonusKD with those affected by SetDB1 knockdown. We have included this result in the revised manuscript.

      Main Study Limitations:

      1) It is unclear which genes are directly vs indirectly regulated by bonus, which makes it difficult to understand Bonus's repressive mechanism. Several lines of experiments could help resolve this issue. 1) Bonus ChIPseq, which the authors mentioned was difficult. 2) RNAseq of BonusGLKD rescued with KR3 mutation. This would help separate SUMO/setdb1-dependent regulation from Mi-2 dependent regulation. Similarly, comparing differentially expressed genes in Su(var)2-10GLKD, setdb1GLKD, 3KR rescue, and MI-2 GLKD could identify overlapping targets and help refine how bonus represses subsets of genes through these different corepressors.

      We appreciate the reviewer's suggestions and agree that discrimination between direct and indirect Bon targets should be the next step in understanding Bon repressive mechanism. We have previously attempted to determine Bon direct targets using ChIP-seq approach. However, despite our multiple efforts using both native Bon antibodies and GFP-tagged Bon fly lines, analysis of ChIP-seq data did not reveal specific enrichment indicating that Bon – similar to many other chromatin-bound proteins – are not amenable to ChIP. The recommendation for RNA-seq analysis of Bon GLKD rescued with the 3KR mutation is valuable, and we will certainly consider it for future investigations.

      We compared differentially expressed genes in Su(var)2-10 GLKD and Mi-2 GLKD and found limited overlap: out of the 231 genes affected by Bon GLKD, 39 genes were affected in Mi-2 GLKD and 42 in Su(var)2-10 GLKD. We acknowledge the importance of understanding which genes are directly or indirectly regulated by Bon and the potential for further experiments to address this question.

      2) The paper falls short in discussing how SUMO might promote repression. This is important when considering the conservation (of lack thereof) of SUMOylation sites in Tif1 proteins in distantly related animals. One piece of data that was not discussed is the apparent localization of SUMOylated bonus in the cytoplasmic fraction of the blot in Figure 5F. Su(var)2-10 is mostly a nuclear protein, so is bonus SUMOylated in the nucleus and then exported to the cytoplasm? Also, setdb1 is a nuclear protein, so it is unlikely that the SUMOylated bonus directly interacts with setdb1 on target genes. Together with Fig 5E (unSUMOylatable Bonus aggregates in the nucleus), one could make a model where SUMO solubilizes bonus (perhaps by disassembling aggregates) and indirectly allows it to associate with setdb1 and chromatin. It is also important to note that in Figure 5I, the K3R mutation appears to lessen but not eliminate Bonus interaction with setdb1. This data again disfavors a model where SUMO establishes an interaction interface between setdb1 and Bonus. To determine which form of Bonus interacts with setdb1, the authors could perform a setdb1 pulldown and monitor the SUMOylation state of coIPed Bonus through mobility shift. If mostly unSUMOylated bonus interacts with setdb1, and SUMO indirectly promotes Bonus interaction with setdb1 (perhaps by disassembling Bonus aggregates), then the precise locations of Bonus SUMOylation sites could more easily shift during evolution, disfavoring the author's convergent evolution hypothesis.

      We appreciate the reviewer's valuable feedback. Regarding the observation of SUMOylated Bon in the cytoplasmic fraction in Figure 5F, we recognize its significance. This finding has prompted us to consider a model in which SUMOylation may play a role in translocating Bon from the nucleus to the cytoplasm, potentially influencing interactions with SetDB1 and chromatin indirectly. Furthermore, Figure 5I which shows only a partial reduction in Bon-SetDB1 interaction with the 3KR mutation, suggests that SUMO may not be the primary mediator of this interaction. We recognize the need for further investigations to clarify SUMO's exact role in this context. In response to the reviewer's suggestion, we conducted SetDB1 pulldown experiments in S2 cells. The results reveal that indeed SetDB1 primarily interacts with unmodified Bon which is by far more abundant compared to SUMOylated form (Extended Data Fig. 5C). We think this experiment presents certain technical challenges, as the signal for Bon, when used as prey in co-IP experiments, is relatively faint, making it inherently difficult to detect the lower levels of SUMO-modified Bon. Additionally, in revised manuscript we have added new result of determining Bon interactors in ovary using mass-spec analysis, which showed that SetDB1 associates with wild-type, but not SUMO-deficient Bon. While our data support the idea that SUMO may contribute to Bon solubilization, possibly by disassembling aggregates, thereby indirectly facilitating its association with SetDB1 and chromatin, we acknowledge that the precise mechanism remains unclear.

      Reviewer #2 (Public Review):

      Summary:

      The authors analyze the functions and regulation of Bon, the sole Drosophila ortholog of the TIF1 family of mammalian transcriptional regulators. Bon has been implicated in several developmental programs; however, the molecular details of its regulation have not been well understood. Here, the authors reveal the requirement of Bon in oogenesis, thus establishing a previously unknown biological function for this protein. Furthermore, careful molecular analysis convincingly established the role of Bon in transcriptional repression. This repressor function requires interactions with the NuRD complex and histone methyltransferase SetDB1, as well as sumoylation of Bon by the E3 SUMO ligase Su(var)2-10. Overall, this work represents a significant advance in our understanding of the functions and regulation of Bon and, more generally, the TIF1 family. Since Bon is the only TIF1 family member in Drosophila, the regulatory mechanisms delineated in this study may represent the prototypical and important modes of regulation of this protein family. The presented data are rigorous and convincing. As discussed below, this study can be strengthened by a demonstration of a direct association of Bon with its target genes, and by analysis of the biological consequences of the K20R mutation.

      Strengths:

      1. This study identified the requirement for Bon in oogenesis, a previously unknown function for this protein.
      2. Identified Bon target genes that are normally repressed in the ovary, and showed that the repression mechanism involves the repressive histone modification mark H3K9me3 deposition on at least some targets.
      3. Showed that Bon physically interacts with the components of the NuRD complex and SetDB1. These protein complexes are likely mediating Bon-dependent repression.
      4. Identified Bon sumoylation site (K20) that is conserved in insects. This site is required for repression in a tethering transcriptional reporter assay, and SUMO itself is required for repression and interaction with SetDB1. Interestingly, the K20-mutant Bon is mislocalized in the nucleus in distinct puncta.
      5. Showed that Su(var)2-10 is a SUMO E3 ligase for Bon and that Su(var)2-10 is required for Bon-mediated repression.

      Weaknesses:

      The study would be strengthened by demonstrating a direct recruitment of Bon to the target genes identified by RNA-seq. Given that the global ChIP-seq was not successful, a few possibilities could be explored. First, Bon ChIP-qPCR could be performed on the individual targets that were functionally confirmed (e.g. rbp6, pst). Second, a global Bon ChIP-seq has been reported in PMID: 21430782 - these data could be used to see if Bon is associated with specific targets identified in this study. In addition, it would be interesting to see if there is any overlap with the repressed target genes identified in Bon overexpression conditions in PMID: 36868234.

      We greatly appreciate the reviewer's suggestion to demonstrate the direct recruitment of Bon to the target genes. As described in our answer to reviewer #1, we attempted to determine Bon direct targets using ChIP-seq approach using both native Bon antibodies and GFP-tagged Bon fly lines. However, analysis of ChIP-seq data did not reveal specific enrichment. Similarly, Bon ChIP-qPCR on individual targets showed the same results suggesting that Bon – similar to many other chromatin-bound proteins – are not amenable to ChIP protocol, at least in standard conditions. To further explore this issue, we have analyzed results of a global Bon ChIP-seq reported in PMID: 21430782. We did not find Bon binding to individual targets, but even more importantly, we did not see clear Bon enrichment elsewhere in the genome confirming a conclusion that Bon targets on chromatin cannot be determined by ChIP. Additionally, we explored the possibility of overlap between target genes repressed by Bon in our study and those observed under Bon overexpression conditions in PMID: 36868234. While we did identify 41 genes in common, it's important to note that the datasets are derived from different tissues (pupal eyes vs. ovaries), making direct comparison problematic.

      The second area where the manuscript can be improved is to analyze the biological function of the K20R mutant Bonus protein. The molecular data suggest that this residue is important for function, and it would be important to confirm this in vivo.

      We appreciate the reviewer's suggestion to analyze the biological function of the K20R mutant Bon protein. While we acknowledge that we did not use single-site K20R mutant for in vivo experiments, we demonstrated that the mutant with the three-residue substitution (3KR) is incapable of inducing repression (Figure 5G). Given that other experiments consistently showed that K20 is the primarily SUMOylation site, this result supports the conclusion that K20 SUMOylation plays an important role in Bon-mediated transcriptional silencing.

      Reviewer #1 (Recommendations for The Authors):

      Make the RNAseq and ChIPseq data publicly available!

      The sequencing data have been deposited to the NCBI GEO archive. The accession number for all other RNA-seq and ChIP-seq data reported in this paper is GEO: GSE241375.

      Reviewer #2 (Recommendations for The Authors):

      It would be interesting to identify the biological basis of aberrant ovary development in Bon depletion conditions. Previous studies (e.g. PMID: 11336699) suggested that Bon loss of function clones are cell lethal, and the developmental defects in oogenesis presented in the current study offer an opportunity to delve more into the causes of cell loss, e.g. by showing that the cells die via apoptosis.

      Thank you for your valuable suggestion. In response to your comment, we performed a TUNEL assay to investigate whether germ cells in nos-Gal4>BonusKD ovaries undergo apoptosis. Our results indeed indicate that germ cells in these ovaries exhibit apoptosis, as evidenced by the TUNEL signal (Extended Data Fig. 1C). This information has been included in the revised manuscript to provide insights into the biological basis of aberrant ovary development in Bon depletion conditions.

      The K20 residue could also be ubiquitinated. This possibility could at least be discussed, particularly given the presence of the RING Ub ligase domain in Bon that might potentially perform self-ubiquitination.

      Indeed, the possibility that Bon can be ubiquitinated is a valid consideration. We have explored this possibility. We did not detect any signals with the Ubiquitin antibody in both wild-type Bon immunoprecipitant and triple-mutant [3KR] ovaries (in which K20 is also mutated) (Extended Data Fig. 4C). This suggests that K20 is more likely responsible for Bon SUMOylation rather than ubiquitination. We appreciate the reviewer's suggestion and have included this information into the revised manuscript.

    1. Author Response

      We thank the reviewers for their suggestions in improving the manuscript. We are currently working on a formal revision and plan to submit a revised manuscript in the near future. However, we would be remiss, if we did not address concerns regarding the conceptual merits of the paper. Below we speak to major points of note that address select reviewer comments and the eLife assessment of our manuscript.

      eLife assessment:

      However, the strength of evidence is incomplete due to the concern that larval contraction is a result of chilling the nervous system and muscles, which causes spreading depolarization and mechanical contraction of the body, rather than an active sensorimotor response to cold.

      Reviewer #3:

      The scientific premise is that a full body contraction in larvae that are exposed to noxious cold is a sensorimotor behavioral pathway. This premise is, to start with, questionable. A common definition of behavior is a set of "orderly movements with recognizable and repeatable patterns of activity produced by members of a species (Baker et al., 2001)." In the case of nociception behaviors, the patterns of movement are typically thought to play a protective role and to protect from potential tissue damage.

      Does noxious cold elicit a set of orderly movements with a recognizable and repeatable pattern in larvae? Can the patterns of movement that are stimulated by noxious cold allow the larvae to escape harm? Based on the available evidence, the answer to both questions is seemingly no.

      We thank the reviewer for their questions and clarify, here. Exposure to cold temperatures does elicit a recognizable and repeatable pattern of behavior across multiple strains, including both wildtype and genetic control strains (w1118, Oregon R) and numerous control conditions that have been previously published (Himmel et al., 2021, Himmel et al., 2023, Patel et al., 2022, Turner et al., 2016, Turner et al., 2018, Tenedini et al., 2019). Our initial publication on Drosophila cold nociception demonstrated a variety of cold-evoked behavior responses including head and/or tail raising of the larva as well as contraction behavior. These behaviors were repeatedly observed in assays involving either local cold stimulation with a cold probe or global cold stimulation on a cold plate. Head and/or tail raise behaviors are consistent with behavior that displaces the larval body from the cold surface, however, exposure to increasingly colder temperatures leads to an increasing level of cold-evoked contraction (CT) responses which result in a reduction of larval area (Turner et al., 2016). Presumably, increasing the level of CIII md neuron activation leads to greater activation of downstream circuitry. We previously performed optogenetic dose response assays to further clarify the increased prevalence CT response to strong noxious cold stimuli and investigated how CIII md neurons discriminate between innocuous touch and noxious cold stimuli. Here, we found that lower-level activation of CIII md neurons lead to predominantly touch-evoked behaviors whereas high-level activation led predominantly to cold-evoked responses (Turner et al., 2016). These analyses were coupled with stimulus-evoked calcium imaging, which revealed that touch-evoked Ca2+ levels were significantly lower than cold-evoked Ca2+ levels (Turner et al., 2016).

      In this manuscript, we confirm our previously published findings that neural silencing of CIII md neurons with either tetanus toxin expression or impairing action potential propagation results impaired cold-evoked CT responses (Turner et al., 2016, Turner et al., 2018). However, neural silencing of CIII md neurons did not eliminate cold-evoked CT responses. We interpret this finding as evidence that some component of cold-evoked CT response may be due to cold-induced muscle contraction. Furthermore, in this manuscript, we implicate the requirement of chordotonal (Ch) neurons in cold-evoked CT and demonstrate cold-evoked Ca2+ increases in Ch neurons. Furthermore, neural silencing of multiple sensory neuron types (CIII + Ch or CIII + CII) resulted in greater deficits in cold-evoked behaviors (Turner et al., 2016). Thus, the noxious cold stimulus is detected by multiple peripheral sensory neurons and inhibiting neural activity in CIII md neurons alone cannot eliminate cold-evoked CT responses.

      In this manuscript and in several other publications, studies have shown that optogenetic activation of CIII md neurons, or CIII neurons plus CII neurons or Ch neurons elicits CT-like responses (Hwang et al., 2007, Shearin et al., 2013, Turner et al., 2016). Conversely, optogenetic stimulation of CIII md neurons knocked down for paralytic, the α-subunit of voltage-gated sodium channel, did not elicit blue light-evoked CT responses due to impaired action potential propagation. These analyses collectively indicate that CIII md neuron activation is sufficient for eliciting CT-like responses. Additionally, we have previously published electrophysiological recordings of CIII md neurons under cold exposure. To address potential confounds of cold-induced muscle contraction on cold-induced electrical activity of CIII md neurons, we performed these analyses on de-muscled fillets revealing that CIII neural activity is not dependent upon muscles in response to cold. Exposure to noxious cold stimuli results in temperature-dependent increases in CIII neuron firing pattern consisting of both bursting and tonic firing (Himmel et al., 2021, Himmel et al., 2023, Maksymchuk et al., 2022, Patel et al., 2022, Himmel et al., 2022, Maksymchuk et al., 2023).

      Reviewer #3:

      Can the patterns of movement that are stimulated by noxious cold allow the larvae to escape harm?

      We were similarly curious about the neuroethological and/or protective implications of cold-evoked behaviors. In Drosophila larvae, noxious mechanical stimuli-evoked body rolling allows for lateral escape from predatory wasp (Hwang et al., 2007). Reducing the overall surface area that is exposed to cold (e.g., huddling behavior) serves as a protective strategy in many species (Canals et al., 1997, Contreras, 1984, Gilbert et al., 2006, Vickery and Millar, 1984, Hayes et al., 1992). Low temperatures can be fatal to poikilotherms (e.g., insects), however, many species have evolved the ability to cold acclimate thereby increasing their cold tolerance. To explore the potential evolutionary benefit of CIII-mediated contraction response to cold, we previously published work revealing a neural basis for cold acclimation in Drosophila larvae implicating these neurons (Himmel et al., 2021). We demonstrated that cold-evoked CT behavior is evolutionarily conserved across 11 different drosophilid species and that other cold-induced behaviors (e.g., tail raise) were also observed. Furthermore, drosophilid species adapted to rapid temperature swings were more likely to retain the ability to locomote even at lower temperatures (Himmel et al., 2021). Next, we elucidated the role of CIII md neurons in cold acclimation. Silencing CIII md neurons resulted in the inability to cold acclimate. We additionally investigated roles of Ch or CII md neurons, which alone did not inhibit the ability of larvae to cold acclimate. However, combinatorial silencing of CIII with CII or Ch neurons resulted in an inability to cold acclimate but did not obviously increase baseline cold tolerance. We explored how developmental exposure to noxious cold temperature impacts CIII md neuron cold-evoked firing pattern. Electrophysiological analyses revealed that cold acclimation results in hypersensitization in CIII md neurons (Himmel et al., 2021). Lastly, developmental optogenetic activation of CIII md neurons led to increased cold tolerance. Therefore, CIII md neurons are necessary and sufficient for cold tolerance and our collective evidence demonstrate that CIII-mediated cold nociception constitutes a peripheral neural basis for Drosophila larval cold acclimation (Himmel et al., 2021).

      Reviewer #3:

      It should be noted that this actuator drives very strong activation, and other studies with milder optogenetic stimulation of Class III neurons have shown that these cells produce behavioral responses that resemble gentle touch responses (Tsubouchi et al 2012 and Yan et al 2013)…The latter makes the reported Calcium responses to cold difficult to interpret in light of the fact that the strong muscle contractions driven by cold may actually be driving mechanosensory responses in these cells (ie through deformation of the mechanosensitive dendrites)…. Are the cIII calcium signals still observed in a preparation where cold induced muscle contractions are prevented?”

      We agree with the reviewer that mild activation of CIII md neurons results in gentle touch-like responses. In this manuscript, and other previously published work, it has been shown that optogenetic activation of CIII neurons, or CIII neurons and other sensory neurons, using a variety of optogenetic actuators (ChR2, ChETA, and CsChrimson) promotes bilateral contraction of the larval body along the anterior-posterior axis (Shearin et al., 2013, Hwang et al., 2007, Meloni et al., 2020, Turner et al., 2016, Patel and Cox, 2017, Patel et al., 2022, Himmel et al., 2023).

      As described above, in our initial publication documenting larval cold nociception in Drosophila, we investigated how CIII md neurons discriminate multimodal stimuli to elicit stimulus relevant behavioral responses. We reported that increased activation of CIII md neurons results in cold-evoked behaviors, where lower activation results in touch-evoked behaviors. Subsequent, calcium analyses revealed greater stimulus-evoked calcium response to noxious cold and milder calcium response to gentle touch (Turner et al., 2016).

      Though we have not performed cold-evoked Ca2+ imaging of CIII md neurons in larval preparations without muscles, we have recorded electrical responses of CIII md neurons in the absence of muscle contractions using de-muscled larvae fillets to analyze cold-evoked firing patterns of CIII md neurons (Himmel et al., 2021, Himmel et al., 2022, Himmel et al., 2023, Patel et al., 2022, Maksymchuk et al., 2022, Maksymchuk et al., 2023). These studies demonstrate the cold-evoked CIII neural activity is not dependent upon muscles.

      Reviewer #3:

      A major weakness of the study is that none of the second or third order neurons (that are downstream of CIII neurons) are found to trigger the CT behavioral responses even when strongly activated with the ChETA actuator (Figure 2 Supplement 2). These findings raise major concerns for this and prior studies and it does not support the hypothesis that the CIII neurons drive the CT behaviors.”

      We conducted extensive screening of interneuron populations post-synaptically connected to CIII neurons in an effort to identify post-synaptic partners that were sufficient to trigger CT response. Much to our surprise, we were unable to find any individual neuron type or driver line that was sufficient to elicit a CT response. However, we provide substantial supporting evidence for our co-activation experiments including neural silencing, EM connectivity and calcium imaging. We also report necessity for the reported second/third order neurons in cold-evoked behavioral responses, where inhibiting neural activity resulted in reduced cold-evoked behavior. Second/third order neurons also exhibit cold-evoked calcium responses. Lastly, we also report CIII-evoked (using optogenetics) increases in calcium response in downstream post-synaptic neurons.

      Previously published literature investigating CIV md neuron circuitry has implicated downstream neurons that are not sufficient to elicit rolling behavior upon activation. In CIV md neuron circuit dissection, select neurons are reported as acting downstream of CIV md neurons that require additional circuit components in order to execute rolling behavior. For example, A00c neuron activation alone does not lead to rolling behavior, however, co-activation of A00c and Basin-4 neurons facilitates rolling response (Ohyama et al., 2015). Similarly, co-activation of Basin-1 and Basin-4 neurons significantly enhance rolling probability relative to Basin-4 alone (Ohyama et al., 2015). Further, DnB neurons require Goro command neuron activity to promote rolling behavior (Burgos et al., 2018). Thus, there is precedent for co-activation requirements to elicit robust behavioral output in sensorimotor circuits and we employed a similar strategy after we discovered that activation of second or third order neurons alone did not elicit CT response.

      Reviewer #3:

      Later experiments in the paper that investigate strong CIII activation (with ChETA) in combination with other second and third order neurons does support the idea activating those neurons can facilitate body-wide muscle contractions. But many of the co-activated cells in question are either repeated in each abdominal neuromere or they project to cells that are found all along the ventral nerve cord, so it is therefore unsurprising that their activation would contribute to what appears to be a non-specific body-wide activation of muscles along the AP axis. Also, if these neurons are already downstream of the CIII neurons the logic of this co-activation approach is not particularly clear.”

      We agree with the reviewer’s comment that various cell-types that were investigated are repeated in every abdominal neuromere, however, only select post-synaptic neurons (Basin 1-4, DnB, mCSI, and Chair neurons) are segmentally repeated in every abdominal segment. Conversely, other projection and ascending neurons we investigated (A09e, A00c, A05q, Goro, TePn04/05, and A08n) are not segmentally repeated in every section. We used connectome evidence to guide our experiments on populations of neurons to explore in cold-evoked behavior and as alluded to above our co-activation approach was driven by the observation that an individual subpopulation of connected interneurons was not found to be sufficient to elicit CT behavior. That said, it does not change the findings that inhibition of neural activity in these subpopulations impairs cold-evoked behavior, nor does it change the observation that connected interneurons exhibit cold-evoked Ca2+ responses that can also be observed with optogenetic activation of CIII neurons. Reviewer #3: “The authors argument that the co-activation studies support "a population code" for cold nociception is a very optimistic interpretation of a brute force optogenetics approach that ultimately results in an enhancement of a relatively non-specific body-wide muscle convulsion.” Many studies exploring circuit bases of behavior have applied large-scale optogenetic, including co-activation strategies, or silencing screens to identify circuit components involved in specific behaviors under investigation. We employed similar methods in our circuit-based dissection and our conclusions are not solely based upon optogenetic analyses.

      References: BURGOS, A., HONJO, K., OHYAMA, T., QIAN, C. S., SHIN, G. J.-E., GOHL, D. M., SILIES, M., TRACEY, W. D., ZLATIC, M., CARDONA, A. & GRUEBER, W. B. 2018. Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila. eLife, 7:e26016.

      CANALS, M., ROSENMANN, M. & BOZINOVIC, F. 1997. Geometrical aspects of the energetic effectivenes of huddling in small mammals. Acta Theriologica 42(3):321-328..

      CONTRERAS, L. C. 1984. Bioenergetics of Huddling: Test of a Psycho-Physiological Hypothesis. Journal of Mammalogy, 65, 256-262.

      GILBERT, C., ROBERTSON, G., LE MAHO, Y., NAITO, Y. & ANCEL, A. 2006. Huddling behavior in emperor penguins: Dynamics of huddling. Physiol Behav, 88, 479-88.

      HAYES, J. P., SPEAKMAN, J. R. & RACEY, P. A. 1992. The Contributions of Local Heating and Reducing Exposed Surface Area to the Energetic Benefits of Huddling by Short-Tailed Field Voles (Microtus agrestis). Physiological Zoology, 65, 742-762.

      HIMMEL, N. J., LETCHER, J. M., SAKURAI, A., GRAY, T. R., BENSON, M. N., DONALDSON, K. J. & COX, D. N. 2021. Identification of a neural basis for cold acclimation in Drosophila larvae. iScience, 24, 102657.

      HIMMEL, N. J., SAKURAI, A., DONALDSON, K. J. & COX, D. N. 2022. Protocols for measuring cold-evoked neural activity and cold tolerance in Drosophila larvae following fictive cold acclimation. STAR Protoc, 3, 101510.

      HIMMEL, N. J., SAKURAI, A., PATEL, A. A., BHATTACHARJEE, S., LETCHER, J. M., BENSON, M. N., GRAY, T. R., CYMBALYUK, G. S. & COX, D. N. 2023. Chloride-dependent mechanisms of multimodal sensory discrimination and nociceptive sensitization in Drosophila. elife, 12:e76863.

      HWANG, R. Y., ZHONG, L., XU, Y., JOHNSON, T., ZHANG, F., DEISSEROTH, K. & TRACEY, W. D. 2007. Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps. Current Biology, 17, 2105-2116.

      MAKSYMCHUK, N., SAKURAI, A., COX, D. N. & CYMBALYUK, G. 2022. Transient and Steady-State Properties of Drosophila Sensory Neurons Coding Noxious Cold Temperature. Frontiers in Cellular Neuroscience, 16:831803.

      MAKSYMCHUK, N., SAKURAI, A., COX, D. N. & CYMBALYUK, G. S. 2023. Cold-Temperature Coding with Bursting and Spiking Based on TRP Channel Dynamics in Drosophila Larva Sensory Neurons. Int J Mol Sci, 24(19):14638.

      MELONI, I., SACHIDANANDAN, D., THUM, A. S., KITTEL, R. J. & MURAWSKI, C. 2020. Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics. Scientific Reports, 10, 17614.

      OHYAMA, T., SCHNEIDER-MIZELL, C. M., FETTER, R. D., ALEMAN, J. V., FRANCONVILLE, R., RIVERA-ALBA, M., MENSH, B. D., BRANSON, K. M., SIMPSON, J. H., TRUMAN, J. W., CARDONA, A. & ZLATIC, M. 2015. A multilevel multimodal circuit enhances action selection in Drosophila. Nature, 520, 633-639.

      PATEL, A. & COX, D. 2017. Behavioral and Functional Assays for Investigating Mechanisms of Noxious Cold Detection and Multimodal Sensory Processing in Drosophila Larvae. BIO-PROTOCOL, 7(13):e2388.

      PATEL, A. A., SAKURAI, A., HIMMEL, N. J. & COX, D. N. 2022. Modality specific roles for metabotropic GABAergic signaling and calcium induced calcium release mechanisms in regulating cold nociception. Front Mol Neurosci 15:942548.

      SHEARIN, H. K., DVARISHKIS, A. R., KOZELUH, C. D. & STOWERS, R. S. 2013. Expansion of the Gateway MultiSite Recombination Cloning Toolkit. PLoS ONE, 8, e77724-e77724.

      TENEDINI, F. M., SÁEZ GONZÁLEZ, M., HU, C., PEDERSEN, L. H., PETRUZZI, M. M., SPITZWECK, B., WANG, D., RICHTER, M., PETERSEN, M., SZPOTOWICZ, E., SCHWEIZER, M., SIGRIST, S. J., CALDERON DE ANDA, F. & SOBA, P. 2019. Maintenance of cell type-specific connectivity and circuit function requires Tao kinase. Nature Communications, 10, 3506.

      TURNER, H. N., ARMENGOL, K., PATEL, A. A., HIMMEL, N. J., SULLIVAN, L., IYER, S. C., BHATTACHARYA, S., IYER, E. P. R., LANDRY, C., GALKO, M. J. & COX, D. N. 2016. The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila. Curr Biol, 26, 3116-3128.

      TURNER, H. N., PATEL, A. A., COX, D. N. & GALKO, M. J. 2018. Injury-induced cold sensitization in Drosophila larvae involves behavioral shifts that require the TRP channel Brv1. PLoS One, 13, e0209577.

      VICKERY, W. L. & MILLAR, J. S. 1984. The Energetics of Huddling by Endotherms. Oikos, 43, 88-93.

    1. While adjectives almost always have some relationship to a noun, whether in the NP or the VP, adverbs modify many other parts of speech; classically, adverb phrases (AdvP) are understood as ‘modifying’ verbs in verb phrases, where they appear as adjuncts, but they can also modify adjective phrases, prepositional phrases, other adverb phrases, and both main and subordinate clauses as well.

      Adverb phrases consist of adverbs together with elements which complement or modify them in different ways. Although adverb phrases are complex, in practice most of them have a fairly simple structure. A typical adverb phrase consists of a head in the form of an adverb sometimes accompanied by modifiers. For example: Aluminum burns comparatively slowly.

      Here, the adverb head slowly is modified by the adverb (phrase) ‘comparatively’.

    2. While adjective phrases in NPs often occur before the head noun, there are a few exceptions–cases in which the adjective phrase occurs postnominally, particularly with indefinite pronouns like ‘something’, ‘anything’, ‘nothing’, and ‘everything’. (16a) Let’s do a fun activity. (16b) *Let’s do a fun something. (16c) Let’s do something fun. (16d) *Let’s do an activity fun.

      The examples provided to show exceptions for adjective phrases occurring before the head noun sound weird. Is "Let's do an activity fun" a correct sentence?

    1. Reviewer #2 (Public Review):

      Summary:

      This paper nicely introduces WormPsyQi, an imaging analysis pipeline that effectively quantifies synaptically localized fluorescent signals in C. elegans through high-throughput automation. This toolkit is particularly valuable for the analysis of densely packed regions in 3D space, such as the nerve ring. The authors applied WormPsyQi to various aspects, including the examination of sexually dimorphic synaptic connectivity, presynaptic markers in eight head neurons, five GRASP reporters, electrical synapses, the enteric nervous system, and developmental synapse comparisons. Furthermore, they validated WormPsyQi's accuracy by comparing its results to manual analysis.

      Strengths:

      Overall, the experiments are well done, and their toolkit demonstrates significant potential and offers a valuable resource to the C. elegans community. This will expand the range of possibilities for studying synapses in the central nervous system in C. elegans.

      Weaknesses:

      1. The authors effectively validated sexually dimorphic synaptic connectivity by comparing the synapse puncta numbers of PHB>AVA, PHA>AVG, PHB>AVG, and ADL>AVA. However, these differences appear to be quite robust. Knowing how well WormPsyQi can detect more subtle changes at the synapses, such as 10-20% changes in puncta number and fluorescence intensity, will require further study.

      2. The authors mentioned that having a cytoplasmic reporter in the background of the synaptic reporter enhanced performance. However, comparative results with and without cytoplasmic reporters, particularly for scenarios involving dim signals or densely distributed signals, are not provided, making it difficult to rigorously assess the importance of this step.

      3. In some cases, the authors note discrepancies between WormPsyQi and human quantification. While they provide some potential explanations for these, the areas of discrepancy are not always highlighted in the images. This may make it difficult for users to know which types of signals are or are not well-suited for analysis by WormPsyQi.

    1. In both the Toganand Sesshu paintings similar physical characteristics ofblocky head shape and broad facial features also hark backagain to the primary Kogaku-ji lineage. The Fujii painting represents a late 15th century evocation, T5gan'sone a century later.

      Togan-Sessu Kogaku-ji lineage of Daruma paintings

    Annotators

    1. the average person when they meet a stranger and start a conversation with him they accurately 00:10:44 understand what's going on in that person's head 20% of the time with friends and family it goes up to 35% of the time some people are pretty good they're 55% of the time and some people are zero% of the time but think they're 00:10:57 100% of the time we're often strangers to each other
      • for: statistic - how little we know each other

      • statistic: how little we know each other

        • the average person when they meet a stranger and start a conversation with him they accurately understand what's going on in that person's head 20% of the time
        • with friends and family it goes up to 35% of the time
        • some people are pretty good they're 55% of the time
        • some people are zero% of the time but think they're 100% of the time
        • we're often strangers to each other
    1. Although there does not seem to be a great danger ofGoogle shutting down Google Docs anytime soon, popu-lar products (e.g. Google Reader) do sometimes get shutdown [106] or lose data [105], so we know to be careful

      I have dread in my head every time I use cloud service that there is an issue about to happen. There will be a data breach, data loss, service becoming unavailable (e.g., they don't like you anymor, e.g., Github can block you from your private repos at their will), it's just a matter of time.

      So I need to get my data out, back it up, if service been kind to allow for that. But that's a burden. It's a hidden cost you learn to recognize over time. May not be apparent from the start to everybody.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this study, Ghafari et al. explored the correlation between hemispheric asymmetry in the volume of various subcortical regions and lateralization of posterior alpha-band oscillations in a spatial attention task with varying cognitive demands. To this end, they combined structural MRI and task MEG to investigate the relationship between hemispheric differences in the volume of basal ganglia, thalamus, hippocampus, and amygdala and hemisphere-specific modulation of alpha-band power. The authors report that differences in the thalamus, caudate nucleus, and globus pallidus volume are linked to the attention-related changes in alpha band oscillations with differential correlations for different regions in different conditions of the design (depending on the salience of the distractor and/or the target).

      Strengths:<br /> The manuscript contributes to filling an important gap in current research on attention allocation which commonly focuses exclusively on cortical structures. Because it is not possible to reliably measure subcortical activity with non-invasive electrophysiological methods, they correlate volumetric measurements of the relevant subcortical regions with cortical measurements of alpha band power. Specifically, they build on their own previous finding showing a correlation between hemispheric asymmetry of basal ganglia volumes and alpha lateralization by assessing a task without an explicit reward component. Furthermore, the authors use differences in saliency and perceptual load to disentangle the individual contributions of the subcortical regions.

      Weaknesses:<br /> The theoretical bases of several aspects of the design and analyses remain unclear. Specifically, we missed statements in the introduction about why it is reasonable, from a theoretical perspective, to expect:<br /> (i) a link between volumetric measurements and task activity;<br /> (ii) a specific link with hemispheric asymmetry in subcortical structures (While focusing on hemispheric lateralization might circumvent the problem of differences in head size, it would be better to justify this focus theoretically, which requires for example a short review of evidence showing ipsilateral vs contralateral connections between the relevant subcortical and cortical structures);<br /> (iii) effects not only in basal ganglia and thalamus, but also hippocampus and amygdala (a justification of selection of all ROIs);<br /> (iv) effects that depend on distractor versus target salience (a rationale for the specific two-factor design is missing);<br /> (v) effects in the absence of reward (why it is important to show that the effect seen previously in a task with reward is seen also in a task without reward);<br /> (vi) effects on rapid frequency tagging.

      Second, the results are not fully reported. The model space and the results from the model comparison are omitted. Behavioral data and rapid frequency tagging results are not shown. Without having access to the data or the results of the analyses, the reader cannot evaluate whether the null effect corresponds to the absence of evidence or (as claimed in the discussion) evidence of absence.

      Third, it remains unclear whether the MMS is the best approach to analyzing effects as a function of target and distractor salience. To address the question of whether the effects of subcortical volumes on alpha lateralization vary with task demands (which we assume is the primary research question of interest, given the factorial design), we would like to evaluate some sort of omnibus interaction effect, e.g., by having target and distractor saliency interact with the subcortical volume factors to predict alpha lateralization. Without such analyses, the results are very hard to interpret. What are the implications of finding the differential effects of the different volumes for the different task conditions without directly assessing the effect of the task manipulation? Moreover, the report would benefit from a further breakdown of the effects into simple effects on unattended and attended alpha, to evaluate whether effects as a function of distractor (vs target) salience are indeed accompanied by effects on unattended (vs attended) alpha.

      The fourth concern is that the discussion section is not quite ready to help the reader appreciate the implications of key aspects of the findings. What are the implications for our understanding of the roles of different subcortical structures in the various psychological component processes of spatial attention? Why does the volumetric asymmetry of different subcortical structures have diametrically opposite effects on alpha lateralization? Instead, the discussion section highlights that the different subcortical structures are connected in circuits: "Globus pallidus also has wide projections to the thalamus and can thereby impact the dorsal attentional networks by modulating prefrontal activities." If this is true, then why does the effect of the GP dissociate from that of the thalamus? Also, what is it about the current behavioural paradigm that makes the behavioral readout insensitive to variation in subcortical volume (or alpha lateralization?)?

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this manuscript, the authors use anatomical tracing and slice physiology to investigate the integration of thalamic (ATN) and retrosplenial cortical (RSC) signals in the dorsal presubiculum (PrS). This work will be of interest to the field, as the postsubiculum is thought to be a key region for integrating internal head direction representations with external landmarks. The main result is that ATN and RSC inputs drive the same L3 PrS neurons, which exhibit superlinear summation to near-coincident inputs. Moreover, this activity can induce bursting in L4 PrS neurons, which can pass the signals LMN (perhaps gated by cholinergic input).

      Strengths:<br /> The slice physiology experiments are carefully done. The analyses are clear and convincing, and the figures and results are well-composed. Overall, these results will be a welcome addition to the field.

      Weaknesses:<br /> The conclusions about the circuit-level function of L3 PrS neurons sometimes outstrip the data, and their model of the integration of these inputs is unclear. I would recommend some revision of the introduction and discussion. I also had some minor comments about the experimental details and analysis.

      Specific major comments:<br /> 1) I found that the authors' claims sometimes outstrip their data, given that there were no in vivo recordings during behavior. For example, in the abstract, their results indicate "that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex", and in the conclusion they state "[...] cortical RSC projections that carry visual landmark information converge on layer 3 pyramidal cells of the dorsal presubiculum". However, they never measured the nature of the signals coming from ATN and RSC to L3 PrS (or signals sent to downstream regions). Their claim is somewhat reasonable with respect to ATN, where the majority of neurons encode HD, but neurons in RSC encode a vast array of spatial and non-spatial variables other than landmark information (e.g., head direction, egocentric boundaries, allocentric position, spatial context, task history to name a few), so making strong claims about the nature of the incoming signals is unwarranted.

      2) Related to the first point, the authors hint at, but never explain, how coincident firing of ATN and RSC inputs would help anchor HD signals to visual landmarks. Although the lesion data (Yoder et al. 2011 and 2015) support their claims, it would be helpful if the proposed circuit mechanism was stated explicitly (a schematic of their model would be helpful in understanding the logic). For example, how do neurons integrate the "right" sets of landmarks and HD signals to ensure stable anchoring? Moreover, it would be helpful to discuss alternative models of HD-to-landmark anchoring, including several studies that have proposed that the integration may (also?) occur in RSC (Page & Jeffrey, 2018; Yan, Burgess, Bicanski, 2021; Sit & Goard, 2023). Currently, much of the Discussion simply summarizes the results of the study, this space could be better used in mapping the findings to the existing literature on the overarching question of how HD signals are anchored to landmarks.

    1. Investigators urge anyone with information to reach out to the sheriff's office

      The Sheriff's office is still looking for the person(s) who wacked the man in the head.

    1. 12.2.2. Chain letters

      Chain letters still exist in some form today. On various social media platforms, mainly TikTok, people will make posts saying if you skip the video, if you don't interact with the video in some way, or if you don't use the sound under the video then something good or bad will happen. This comes from the rise in practicing manifestation. However, people have flipped it on its head to gain followers, views, and likes. While this trend doesn't require paying for envelopes or stamps, it does cost some people a lot of unnecessary anxiety and stress if they don't interact with those types of videos

    1. A meme is a piece of culture that might reproduce in an evolutionary fashion, like a hummable tune that someone hears and starts humming to themselves, perhaps changing it, and then others overhearing next.

      After reading this definition of "meme" I'm surprised that the definition of "meme" I had in my head is much different. I thought a meme was most of the time related to mocking or in a joking sense.

    1. an old man,—Head servant at the warehouse,—suspected of theft and threatened with Justice, proved to be lost; it was believed that he went to drown him self

      Shows how frowned upon being a thief is in this age

    1. Others attribute this fall to another cause, which seems to have some relation to the case of Adam, but falsehood makes up the greater part of it. They say that the husband of Aataentsic, being very sick, dreamed that it was necessary to cut down a certain tree from which those who abode in Heaven obtained their food; and that, as soon as he ate of the fruit, [page 127] he would be immediately healed. Aataentsic, knowing the desire of her husband, takes his axe and goes away with the resolution not to make two trips of it; but she had no sooner dealt the first [88] blow than the tree at once split, almost under her feet, and fell to this earth; whereupon she was so astonished that, after having carried the news to her husband, she returned and threw herself after it. Now, as she fell, the Turtle, happening to raise her head above water, perceived her; and, not knowing what to decide upon, astonished as she was at this wonder, she called together the other aquatic animals to get their opinion. They immediately assembled; she points out to them what she saw, and asks them what they think it fitting to do. The greater part refer the matter to the Beaver, who, through courtesy, hands over the whole to the judgment of the Turtle, whose final opinion was that they should all promptly set to work, dive to the bottom of the water, bring up soil to her, and put. it on her back. No sooner said than done, and the woman fell very gently on this Island. Some time after, as she was with child when she fell, she was delivered of a daughter, who almost immediately became pregnant. If you ask them how, you puzzle them very much. At all events, they tell you, she was pregnant. Some throw the blame upon some strangers, [89] who landed on this Island. I pray you make this agree with what they say, that, before Aataentsic fell from the Sky, there were no men on earth. However that may be, she brought forth two boys, Tawiscaron and Iouskeha, who, when they grew up, had some quarrel with each other; judge if this does not relate in some way to the murder of Abel. They came to blows, but with very different [page 129] weapons. Iouskeha had the horns of a Stag; Tawiscaron, who contented himself with some fruits of the wild rosebush, was persuaded that, as soon as he had struck his brother, he would fall dead at his feet. But it happened quite differently from what he had expected; and Iouskeha, on the contrary, struck him so rude a blow in the side, that the blood came forth abundantly. This poor wretch immediately fled; and from his blood, with which the land was sprinkled, certain stones sprang up, like those we employ in France to fire a gun,—which the Savages call even to-day Tawiscara, from the name of this unfortunate. His brother pursued him, and finished him. This is what the greater part believe concerning the origin of these Nations.

      What a crazy story

    1. Peer acceptance is a big thing for adolescents, and many of them care about their image as much as a politician running for office, and to them it can feel as serious. Add to that the fact that kids today are getting actual polling data on how much people like them or their appearance via things like “likes.” It’s enough to turn anyone’s head. Who wouldn’t want to make herself look cooler if she can? So kids can spend hours pruning their online identities, trying to project an idealized image. Teenage girls sort through hundreds of photos, agonizing over which ones to post online. Boys compete for attention by trying to out-gross one other, pushing the envelope as much as they can in the already disinhibited atmosphere online. Kids gang up on each other.

      Nowadays, many of our kids no longer look like kids. Social media plays a big part in this. The makeup they wear and the interactions they have with others are all virtually.

    1. ^didn’tgethealing,Iwaslike,Oh,okay.”Iwashearingotherpeople“Theprocesswasreallytraumaticforme.Itbroughtupallthisstuffforme-wasP^11^forme-It:waswhatever.”Andpeoplewerelike,“Oh,thatmeantthatitwasineffectiveandthatitwasfailing.”AndIwaslikeactuallyinhearinghowpeopleweretalkingaboutthat,Iwaslike,“Actuallythisprocesssoundslikeitwasdoingexactlywhatwasneededtogetthisperson,ayeardowntheroad,towardtheirownheal¬ing.”FigumHgoutwhatthatwouldlooklike.I’mnotsayingthatyouwon’tnecessarilygetwhatyouneedtohealinaprocess.I’mjustsayingthatformany,manytimes,processesfeelterrible.Becausetheharmissocentral.Andifyou’reengagedintheprocesswiththepersonwhoharmedyou—mygod.It’sbringingupsomuchstuffthatifyou’recon¬stantlytryingtograbatthehealing,you’renotintheharm,processingthat.You’reoutsidelookingforthatdestinationthat’ssomewheredowntheroad.Butno,actuallywehavetoberighthererightnow,handlingallthat.Thefear,theanger,thevengeancefeelings,thebackandforthslidingagainstonedayyouwantthemdead,thenextdayyou’reokay.Wejusthavetobehereholdingthisrightnow.Sothat’swhatImeanbyit’snot—oftenfeelslikeit’snot—ahealingspace.Becausehealedisnotadestination.You’rejustalwaysinprocess.Sothat’swhatI’mtalkingabout.Doesn’tmeanthatwhatyouexperiencecan’thelptowardthathealing.Ofcourse,itdoesinitsbestway,initsbestiteration.Butwhileyou’reinit,itoftendoesnotfeelthatwayatall.

      This is a very important idea that the healing process may bring up a lot of trauma and pain for the person, but it will be worth it down the road. Essentially Kaba says you must face it head on and come to terms with it or else that trauma will be pent up inside you for the rest of your life. She also explains that if the harm was inflicted by someone you know the process is much harder. You may still come in contact and see that person on a daily basis. Kaba says " the fear, the anger, the vengeance" you must come to terms with but eventually you will come to terms with it and find peace.

    1. . By fall I was laid off and subsequently lost my tuition funding. Knowing I wanted to continue my education, I secured a job as a live-in nanny to support myself and my school costs. Since I felt disconnected from my online university, I decided to transfer to the University of Arizona’s Arizona Online program.

      I am glad to relate to this tory as well. It has been a tough time being unemployed but still have my head up, continue working on my self and attend college.

    1. Reviewer #3 (Public Review):

      This paper seeks to characterize finger enslavement impairment after stroke-"the unwanted coactivation of non-intended fingers in individuated finger movements." In the past, three possible neuromuscular mechanisms contributing to finger enslavement were suggested: passive musculotendon properties, an intrusion of flexor bias, and a loss of complexity in finger control repertoire. To tease apart these factors, the authors simultaneously recorded all five fingertip forces using a sensitive isometric force measurement device, which allowed characterizing patterns of enslavement for all fingers in a variety of instructed tasks. This novel experimental design opened new opportunities to study finger enslavement in more detail. To analyze this multi-dimensional dataset, new metrics were introduced, and many detailed analyses were conducted. Here is a brief account of the important results as best as I can summarize them.

      1. Gross finger individuation ability is lower in the paretic hand of stroke patients than in non-paretic or healthy hands. Enslavement worsens with the severity of overall stroke impairment.<br /> 2. The enslavement patterns - unintended finger forces as functions of an instructed force in a different finger - show smaller "complexity" in paretic than nonparetic hands. I.e., the directions of unintended finger forces in the paretic hand remain similar across various instructed tasks. This reduced complexity also correlates with the severity of stroke.<br /> 3. The enslavement patterns show larger magnitude differences in the paretic than non-paretic hands; i.e., the unintended fingers' forces show a larger shift when comparing two instructed force directions in a paretic finger.<br /> 4. Finger force biases exist in paretic and non-paretic hands and correlate with the severity of stroke. Biases are more pronounced in flexion than ab/adduction direction.<br /> 5. The resting hand posture does not correlate with finger force bias or enslavement patterns.<br /> 6. Finger force biases correlate with enslavement patterns in the paretic hand, but not in the non-paretic hand.<br /> 7. Flexor bias (force biases in flexor direction) does not correlate with gross individuation ability in the ab/adduction direction in the non-paretic hand, but it correlates with the ab/adduction individuation ability in the paretic hand.<br /> 8. Finger force biases do not correlate with directional differences in enslavement patterns on either hand. However, biases correlate with the magnitude of force shift in the enslavement pattern.<br /> 9. The intrusion of flexor bias (difference of finger force biases in paretic and non-paretic hands) does not correlate with directional differences in enslavement patterns in either hand, but it correlates with force shifts in enslavement patterns in both hands.<br /> 10. More principal components (in principal component analysis, PCA) are required to explain similar levels of variance of enslavement patterns in paretic than non-paretic hands.

      Taken together, the authors use these results to claim that: 1) enslavement impairment is unrelated to passive biomechanical properties, and 2) loss of complexity and flexor bias both contribute to enslavement, but possibly via different mechanisms.

      The first argument is supported by the result that resting hand posture does not explain gross individuation ability or enslavement patterns. Although these results are valid, biomechanical contributions are not ruled out altogether in my opinion. The experiment starts from the optimal posture in which minimal finger forces are recorded in a relaxed state, essentially an "equilibrium" posture where all forces from muscles, ligaments, and other soft tissues are balanced. However, this equilibrium posture alone does not represent potential asymmetry in passive biomechanical properties (e.g., at equilibrium, flexion may face less stiffness than extension), nor does it take into account complex interactions between muscles of the hand. A simple finger force requires the co-activation of several intrinsic and extrinsic hand muscles as well as those of the wrist, some of which may be weak, shortened, stiff, painful, etc. Even if neural activity is present, compensation from other muscles may be needed, which may lead to unintended forces in other fingers. Although my "hunch" agrees with the author's claim that neural contributions outweigh biomechanical factors in enslavement, I believe resting posture on its own cannot account for "all" biomechanical factors. Additionally, the results comparing biases in paretic and non-paretic hands (line 389) are unrelated to biomechanics. It is reasonable to believe that the passive biomechanical properties of the paretic hand are different from those of the non-paretic hand if long enough time has passed since the stroke. So biomechanical of one hand is not representative of the other hand. Even if biases in the non-paretic hand could explain those in the paretic hand, I find it hard to extend the conclusion that biomechanics is a factor.

      The authors further presented detailed analyses to tease apart contributions of flexor bias and loss of complexity to enslavement. The flexor bias is straightforward to define, and its correlation with enslavement (or the absence of correlation in the non-paretic hand) is supported by the results. However, the arguments about complexity are less straightforward. Two separate definitions of complexity are used: one is the directional differences between enslavement patterns, and the other is based on the number of principal components. This is one source of confusion as to which definition is used when referring to "loss of complexity". Nonetheless, both complexities are shown to decrease with the severity of stroke. The first type of complexity is also shown to be uncorrelated to flexor bias. However, I did not find evidence among the results that directly linked complexity to enslavement. Could complexity, similar to biomechanical properties, be ruled out? This paper provides no evidence for or against the contribution of complexity to enslavement.

      My last point is about the neural correlates of these characteristics. The authors frequently use the terms "low-level", "subcortical", "top-down cortical", etc. throughout the paper, while the results are exclusively at a behavioral level. This issue is also present in the abstract where the authors state that: "we aim to tease apart the contributions of lower biomechanical, subcortical constraints, and top-down cortical control to these patterns in both healthy and stroke hands"; however, the methods and the results are unrelated to neural aspects of control, and the authors only refer to other studied to link these behavioral effects to "potential" neural causes. Further, the intrusion of flexor bias is usually associated with "subcortical" neural pathways in Results. The authors have properly discussed these possible neural correlates in the Discussion, but mentioning these terms in the Results is unjustified and unsupported by the results or the methods. This paper does not provide any standalone evidence to directly link complexity or bias to their neural correlates.

      Comments on the representational distance matrices (RDM):<br /> Two types of RDM were defined: "by-Finger" RDM (Fig 4A), and "by-Target Direction" RDM (Fig 4D). While I understand the by-Finger RDM and it physically makes sense to me, I cannot fully wrap my head around the by-Target RDM. I leave the interpretation of these results to the reader.

      The distinction between the Euclidean and Angular distance is also vague to me. Angular distance is a valid similarity measure for the directions of two vectors and it is unrelated to the norms of vectors. However, Euclidean distance is not fully independent of the Angular distance as the authors claim; it changes with both the norms of the two vectors and the angle between them. If the angular distance is small, then Euclidian distance mostly represents norm differences, but the statement "Euclidean distances are sensitive to the length difference between two force vectors but insensitive to direction differences" is not generally correct. This issue is particularly important because the averaging of distances (see my next point) masks details of individual distance values, which hinders the interpretation of the results.

      The enslavement patterns and RDMs are potentially valuable metrics, however, the way they are condensed in the final statistical analyses reduces their value. The way I understand it, all elements of the RDM matrix are averaged into a single value. This averaging masks the details of individual pairs of comparisons, which not only reduces the information resolution but also seriously hinders rigorous analysis and interpretation of the results.

    1. It is the labels we give them that concerns us and, having labelled them, what we do about them

      Labeling can be quite harmful when it comes to mental illness because there is a lot of stigma attached to labels. This leads to others treating them different based on this label. By having this label "hanging over a person's head", a lot of damage can be done to the person's self esteem especially if we are not taking the right steps to combat this label.

    1. He dragged him across the gravel lot, back to his Nova, then to the front tire, which was pushed up against a rectangular length of [End Page 116] concrete. Connolly wedged the cowboy’s head between the concrete and the tire so he couldn’t get away. I didn’t even know you could do this, and the cowboy, he didn’t seem to know it either. He’d come to by now. He’d started screaming.

      Love the way the narration is meted out here... the description of the violence. The "I didn't even know you could do this, and the cowboy, he didn't seem to know either." Then the final two short sentences.

    1. LI: Though you have been one of many public advocates for the acknowledgment of our varied stories to be told, you still remain one of the very few Black curators and professors working in contemporary art—both as a curator and as a professor—in Toronto and in Canada. But numerous articles recently have high-lighted this strain on marginalized professionals that become sole beacons of support to countless marginalized students or mentees, which I know is your experience because I happen to be one of those students that was vying for as much of your time as possible. What are your strategies of being able to support, and care for, an onslaught of people wanting your time? How do you manage that demand?AF: That’s a huge question. In order for the work that I want to see out there, and that my communities want to see, we have to become credentialized. To make sure that we will continue to centre Blackness, I have to work very hard to make sure that folks who want to be credentialized become credentialized, because the space of academia, like the space of the art gallery, has its gate- keepers. They have particular notions of who belongs in these spaces, and what can be said in these spaces, and for me it’s important to open that up, to make sure that what Black folks need to say can become speakable within both of these sites. But what’s also been really important to me in the work I do, particularly since I came to OCAD, is to have a community of folks outside of the arts whom I am accountable to and who hold me accountable, so that I still grasp the material realities of life, so that I don’t go off into the rarefied space that both academia and the arts can take. A lot of my care—and really what matters is a particular type of deep care—and support comes from folks who are interested in supporting the arts, who understand the role of the arts in my life, and in their lives, but who don’t exist in the arts. Their perspectives give me balance, and hold me down to always make sure that I’m real in terms of my desire for things, meaning that I don’t end up being seduced by the notion of singularity either. They remind me that [this work is] not just for some of us—it’s for all of us—which means that I have to really work hard on trying to care from my heart and not trying to care from my head.

      Connection: Both these women share so much of themselves with like minded groups and individuals eager to engage and learn. I have had conversations with both of them separately and I am in awe of their generosity of time with how busy they both are in their careers and lives. This whole paragraph made me reflect on importance of community and how differently that can be defined. I am thinking specifically about the readings that focussed on black women building in the art world here and the emotional labour alone to get it done without any support. BAND, The State of Blackness database, “Black Wimmin: When and Where We Enter” https://canadianart.ca/essays/why-have-there-been-no-great-black-%20canadian-women-artists/ https://www.artsy.net/article/artsy-editorial-overlooked-black-women-altered-course-feminist-art

  2. Oct 2023
    1. A method was developed for oriented immobilization of bacteriophage T4 through introduction of specific binding ligands into the phage head using a phage display technique

      Why was this method developed?

    1. eLife assessment

      This study presents a valuable finding on the mechanism of glucocorticoid-induced osteonecrosis of the femoral head. The data were collected and analyzed using solid and validated methodology and can be used as a starting point for functional studies of the development of glucocorticoid-induced osteonecrosis. This paper would be of interest to cell biologists and biophysicists working on the potential pharmacological treatments for glucocorticoid-induced osteonecrosis.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The manuscript by Xia et al. investigated the mechanisms underlying Glucocorticoid-induced osteonecrosis of the femoral head (GONFH). The authors observed that abnormal osteogenesis and adipogenesis are associated with decreased β-catenin in the necrotic femoral head of GONFH patients, and that the inhibition of β-catenin signalling leads to abnormal osteogenesis and adipogenesis in GONFH rats. Of interest, the deletion of β-catenin in Col2-expressing cells rather than in osx-expressing cells leads to a GONFH-like phenotype in the femoral head of mice.

      Strengths:<br /> A strength of the study is that it sets up a Col2-expressing cell-specific β-catenin knockout mouse model that mimics the full spectrum of osteonecrosis phenotype of GONFH. This is interesting and provides new insights into the understanding of GONFH. Overall, the data are solid and support their conclusions.

    3. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors reported a study to uncover that β-catenin inhibition disrupting the homeostasis of osteogenic/adipogenic differentiation contributes to the development of Glucocorticoid-induced osteonecrosis of the femoral head (GONFH). In this study, they first observed abnormal osteogenesis and adipogenesis associated with decreased β-catenin in the necrotic femoral head of GONFH patients, but the exact pathological mechanisms of GONFH remain unknown. They then performed in vivo and in vitro studies to further reveal that glucocorticoid exposure disrupted osteogenic/adipogenic differentiation bone marrow stromal cells (BMSCs) by inhibiting β-catenin signaling in glucocorticoid-induced GONFH rats, and specific deletion of β-catenin in Col2+ cells shifted BMSCs commitment from osteoblasts to adipocytes, leading to a full spectrum of disease phenotype of GONFH in adult mice.

      Strengths:<br /> This innovative study provides strong evidence supporting that β-catenin inhibition disrupts the homeostasis of osteogenic/adipogenic differentiation that contributes to the development of GONFH. This study also identifies an ideal genetically modified mouse model of GONFH. Overall, the experiment is logically designed, the figures are clear, and the data generated from humans and animals is abundant supporting their conclusions.

      Weaknesses:<br /> There is a lack of discussion to explain how the Wnt agonist 1 works. There are several types of Wnt ligands. It is not clear if this agonist only targets Wnt1 or other Wnts as well. Also, why Wnt agonist 1 couldn't rescue the GONFH-like phenotype in β-cateninCol2ER mice needs to be discussed.

    4. Reviewer #3 (Public Review):

      Summary:<br /> In this manuscript, the authors are trying to delineate the mechanism underlying the osteonecrosis of the femoral head.

      Strengths:<br /> The authors provided compelling in vivo and in vitro data to demonstrate Col2+ cells and Osx+ cells were differentially expressed in the femoral head. Moreover, inducible knockout of β-catenin in Col2+ cells but not Osx+ cells lead to a GONFH-like phenotype including fat accumulation, subchondral bone destruction, and femoral head collapse, indicating that imbalance of osteogenic/adipogenic differentiation of Col2+ cells plays an important role in GONFH pathogenesis. Therefore, this manuscript provided mechanistic insights into osteonecrosis as well as potential therapeutic targets for disease treatment.

      Weaknesses:<br /> However, additional in-depth discussion regarding the phenotype observed in mice is highly encouraged.

    1. what web component libraries are available around the web today

      what web component libraries are available around the web today - to get a head start on the future.

    1. Like prepositional phrases, adjective phrases generally occur as modifiers to noun phrases, but in contrast to prepositional phrases, which follow the head noun they modify, adjective phrases precede the head noun.

      I did not know what modifiers was mean but now I know.

    2. Like prepositional phrases, adjective phrases generally occur as modifiers to noun phrases, but in contrast to prepositional phrases, which follow the head noun they modify, adjective phrases precede the head noun.

      It tells how adjective phrases are not parallel to prepositional phrases and how it goes as a modifiers to noun phrases.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for reviewing and assessing our paper. Reviewer2 had only posive comments. Reviewer 1 also had posive comments but included a list of suggesons. The revised version includes text edits to address the suggesons.

      Reviewer 1:

      … First, it is unclear whether the experiments and analyses were set up to be able to rule out more specific candidate funcons of the ZI.

      The list of possible funcons performed by the ZI is broad. Nevertheless, our study considers a rather long list of neural processes related to the behaviors listed below.

      Second, many important details of the experiments and their results are hard to decipher given the current descripons and presentaons of the data.

      The procedures used in the present study have all been used and described in our previous studies (cited). We used the same descripons and presentaons as in the prior studies. We have gone over the Methods and figures to ensure that all details required to understand the experiments are provided, but we also added further details following the suggesons noted below.

      The paper could be significantly strengthened by including more details from each experiment, stronger jusficaons for the limited behaviors and experimental analyses performed, and, finally, a broader analysis of how the recorded acvity in the ZI relates to behavioral parameters.

      The paper studied several behaviors including: 1) spontaneous movement of head-fixed mice on a spherical treadmill, 2) tacle (whisker, and body parts) and auditory (tones and white noise) smuli applied to head fixed mice, 3) spontaneous movement iniaon, change, and turns in freely moving mice, 4) auditory tone (frequency and SPL) mapping in freely behaving mice, 5) auditory-evoked orienng head movements (responses) in the context of several behavioral tasks, 6) signaled acve avoidance responses and escapes (AA1), 7) unsignaled/signaled passive avoidance responses (AA2ITI/AA3-CS2), 8) sensory discriminaon (AA3), 9) CS-US interval ming discriminaon (AA4), and 10) USevoked unsignaled escape responses.

      In freely moving experiments, the behavior is connuously tracked and decomposed into translaonal and rotaonal movement components. Discrete responses are also evaluated (e.g., acve avoids, escapes, passive avoids, errors, intertrial crossings, latencies, etc.). These behavioral procedures evaluate many neural processes, including decision making (Go/NoGo in AA1-3), response control/inhibion (unsignaled and signaled passive avoidance in AA2/3), and smulus discriminaon (AA3). The applied smuli, discrete responses, and tracked movement are always related to the recorded ZI acvity using a variety of techniques (e.g., cross-correlaons, PSTHs, event-triggered me extracons, etc.), which relate the discrete and me-series parameters to the neural acvity. We do not think all this qualifies as, “limited behaviors”.

      (1) Anatomical specificaon: The ZI contains many disnct subdivisions--each with its own topographically organized inputs/outputs and putave funcons. The current manuscript doesn't reference these known divisions or their behavioral disncons, and one cannot tell exactly which poron(s) of the ZI was included in the current study. Moreover, the elongated structure of the ZI makes it very difficult to specifically or completely infect virally. The data could be beter interpreted if the paper included basic informaon on the locaons of recordings, the extent of the AAV spread in the ZI in each viral experiment, and what fracon of infected neurons were inside versus outside ZI.

      Our experiments employed Vgat-Cre mice to target ZI neurons. In this line, GABAergic neurons from the enre ZI express Cre, including the dorsal and ventral subdivisions (see (Vong et al., 2011; Hormigo et al., 2020)). Consequently, AAV injecons in Vgat-Cre mice produce restricted expression in the ZI that can fully delineate the nucleus as shown in the papers referenced above (including ours). There is nil expression in structures above or below ZI because they do not express Cre in these mice (e.g., thalamus and subthalamic nucleus), which allows for selecve targeng of ZI. Our optogenec manipulaons and photometry recordings were not aimed at specific ZI subdivisions. We targeted the area of ZI indicated by the stereotaxic coordinates (see Methods), which are aimed at the center of the structure to maximize success in recording/manipulang neurons within ZI. While all the animals included in the study expressed opsins and GCaMP within ZI that in many animals fully delineated the nucleus, there was normal variability in the locaon of opcal fibers, but we did not detect any differences in the results related to these variaons.

      Fiber photometry and optogenecs experiments are performed with rather large diameter opcal probes, which record/manipulate relavely large areas of the targeted structure. This is useful because our goal was to idenfy funconal roles of the enre ZI, which could then be parsed. In the present study, we did not perform experiments to target specific ZI populaons (e.g., retrograde Cre expression from target areas), which may have revealed differences atributed to their projecon sites. However, in the last experiment, we selecvely excited ZI fibers targeng three different areas (midbrain tegmentum, superior colliculus, and posterior thalamus), which revealed clear differences on movement. Thus, future experiments should explore these different populaons (e.g., using retrograde/anterograde expression systems), which may be in different subdivisions.

      We have enhanced the Methods secon to clarify these points, including the addion of these references.

      (2) Electrophysiological recording on the treadmill: The authors are commended for this technically very difficult experiment. The authors do not specify, however, how they knew when they were recording in ZI rather than surrounding structures, parcularly given that recording site lesions were only performed during the last recording session. A map of the locaons of the different classes of units would be valuable data to relate to the literature.

      We have added details about this procedure in the Methods secon. These recordings are performed based on coordinates, and categorizing neurons as belonging to ZI is obviously an esmate based on the final histological verificaon. Nevertheless, the marking lesions revealed that the electrodes were on target, which likely resulted from the care taken during the surgical procedure to define reference points used later during the recording sessions (see Methods). Regarding a map of the unit locaons, we performed several analyses that did not reveal clear differences based on site. For example, we compared depth vs cell class, “There was no difference in recording depth between the four classes of neurons (ANOVA F(3,337)= 1.06 p=0.3676)”. Future experiments that employ addional methods (labelling, opto-tagging, etc.) would be more appropriate to address mapping quesons. Finally, as we state in the paper, “However, these recordings do not target GABAergic neurons and may sample some neurons in the tissue surrounding the zona incerta. Therefore, we used calcium imaging fiber photometry to target GABAergic neurons in the zona incerta”.

      (3) The raonale of the analysis of acvity with respect to “movement peak”: It is unclear why the authors did not assess how ZI acvity correlates with a broad set of movement parameters, but rather grouped heterogeneous behavioral epochs to analyze firing with respect to “movement peaks”.

      The reviewer is referring to movement peaks on the spherical treadmill. On the treadmill, we used the forward locomotor movement of the animal because this is the main acvity of the mice on the treadmill. We considered “all peaks” (or movements) and “>4 sec peaks”, which select for movement onsets. Compared to the treadmill, in freely movement condions during various behavioral tasks, there is a richer behavioral repertoire, which was analyzed in more detail (i.e., translaonal, and rotaonal components during spontaneous ongoing movement and movement onsets, movement related to various behaviors such as orienng, acve and passive avoidance, escape, sensory smulaon, discriminaon, etc.). Thus, we focused on a broader set of movement parameters in the Cre-defined ZI cells of freely behaving mice.

      (4) The display of mean categorical data in various figures is interesng, however, the reader cannot gather a very detailed view of ZI firing responses or potenal heterogeneity with so litle informaon about their distribuons.

      The PCA performs the heterogeneity classificaon in an unbiased manner, which we feel is a thoughul approach. The firing rates and correlaons with movement for each category of neurons are detailed in the results. Furthermore, the sensory responses for these neurons are also detailed. Together, we think this provides a detailed view of the units we recorded in awake/head-fixed mice. As already stated, further study would benefit from an addional level of cell site verificaon.

      (5) Somatosensory firing responses in ZI: It is unclear why the authors chose the specific smuli used in the study. How oen did they evoke reflexive motor responses? What was the latency of sensory-evoked responses in ZI acvity and the latency of the reflexive movement?

      These are broad quesons, and we assume that the reviewer is asking about somatosensory evoked responses on the spherical treadmill. We used air-puffs applied to the whiskers and on the back (le vs right) because the whiskers represent an important sensory representaon for mice, and the back is a part of the body (trunk), which we oen use to movate the animals to move forward on the treadmill. Regarding the latency of the somatosensory evoked responses, in this case, we did not correct them based on the me it takes the air-puff to travel to the whiskers or body part, and therefore we did not provide latencies. Moreover, air-puffs are not a very good method to quanfy whisker-evoked latencies, which are beter measured using other methods (whisker deflecons of single/mulple whiskers using piezo-devices or other mechanical devices, as we and others have done in many studies). We are not sure what the reviewer means by “reflexive behavior”; we did not measure any reflexive behavior under these condions. We have gone over the Methods and Results to ensure that sufficient details are provided about these experiments.

      (6) It would be valuable to see example traces in Figure 3 to get a beter sense of the me course and contexts under which Ca signals in ZI tracks movement. What is the typical latency? What is the typical range of magnitudes of responses? Does the Ca signal track both fast and slow movements? How are the authors sure that there are no movement arfacts contribung to the calcium imaging? It seems there is more informaon in the dataset that could be valuable.

      As is well known, fiber photometry calcium imaging is a slow populaon signal. We do not think it would be valuable to get into ming issues beyond what is already detailed in the study (i.e., magnitudes measured as areas or peaks, and ming as me-to-peaks). Regarding “movement arfacts”, these signals are absent (flat) in animals that do not express GCAMP. We agree that there must be addional valuable informaon in our datasets (as in most me-series). However, the current paper is already rather extensive. We will connue to peruse our datasets and report addional findings in new papers.

      (7) Figure 4: The raonale for quanfying the F/Fo responses over a 6-second window, rather than with respect to discrete movement parameters, is not well explained. What types of movement are binned in this approach and might this broad binning hinder the ability to detect more specific relaonships between acvity and movement?

      Figure 4 is focused on characterizing the relaonship between turns (ipsiversive and contraversive) during movement and ZI acvity. We tested different binning windows to find differences, including the 6 sec window in figure 4 for populaon measures (-3 to 3 sec around the turns). This binning approach is effecve at revealing differences where they exist (e.g., superior colliculus) as shown in our previous studies (e.g. (Zhou et al., 2023)). Moreover, the turns in the different direcons can be considered discrete responses at their peak, and the ming of the related acvaons (e.g., me to peaks), which we evaluated, are rather sensive and would have revealed differences, but we did not find them.

      (8) Separaon of sensory and motor responses in Figure 5: The current data do not adequately differenate whether the responses are sensory or motor given the high correlaon of the sensory inputs driving motor responses. Because isoflurane can diminish auditory responses early in the auditory pathway, this reviewer is not convinced the isoflurane experiments are interpretable.

      The reviewer is referring to Fig. 5C,D. Indeed, the point of this experiment was to show that it is difficult to differenate whether neural responses are sensory or motor in awake and freely moving condions. As we stated in the Results secon, “Although arousal and movement were not dissected in the present experiment (this would likely require paralyzing and ventilating the animal), the results indicate that activation of zona incerta neurons by sensory stimulation is primarily associated with states when sensory-evoked movement is also present”. This is followed in the Discussion by, “…as already noted, the suppression of sensory responses may be due to changes in arousal (Castro-Alamancos, 2004; Lee and Dan, 2012) and not caused by the abolishment of the movements per se”.

      (9) Given the broad duraon of the mean avoidance response (Fig. 6 C, botom), it would be useful to know to what extent this plot reflects a prolonged behavior or is the result of averaging different animals/trials with different latencies. Given that the shapes of the F/Fo responses in ZI appear similar across avoids and escapes (Fig. 6D), despite their apparent different speeds and movement duraons (Fig 6C), it would be valuable to know how the ming of the F/Fo relates to movement on a trial-by-trial basis.

      The duraon of the avoidance response cannot be ascertained from CS onset (panel 6C botom) and avoids are not wide but rather sharp. We have now made this clearer when Fig. 6C is first menoned (“note that since avoids occur at different latencies after CS onset they are best measured from their occurrence as in Fig. 6D”). Like other related condioned and uncondioned responses, avoids and escapes are similar, varying in the noted parameters. Regarding ming, as already menoned above, we think that the characteriscs of the populaon calcium signal make it unsuitable for further ming consideraons than what we included, parcularly for movements occurring at the fast speeds of avoids and escapes.

      (10) Lesion quanficaon: One cannot tell what rostral-caudal extent of ZI was lesioned and quanfied in this experiment. It would be easier to interpret if also ploted for each animal, so the reader can tell how reliable the method is. The mean ablaon would be beter shown as a normalized fracon of cells. Although the authors claim the lesions have litle impact on behavior, it appears the incompleteness of the lesions could warrant a more conservave interpretaon.

      The lesion experiment was a complement to the optogenecs inacvaon experiments we performed in our preceding ZI paper and in the present paper. Thus, the finding that the lesions had litle impact on behavior is supporve of the optogenecs findings. Regarding cell counts, we did not select any parts of the ZI to quanfy the number of neurons in either control or lesion mice. We considered the full rostrocaudal extent in our measurements. We are not sure what “fracon” the reviewer is suggesng, considering that these counts are from two different groups of mice (control vs lesion). Note that the red-marked neurons, as shown in Fig. 8A, reveal healthy non-Vgat-Cre neurons outside ZI that mark the extent of the AAV diffusion, which as shown spanned the full extent of the ZI in the coronal plane (and in other planes as the AAV spreads in all direcons).

      (11) Optogenecs: the locaon of infected neurons is poorly described, including the rostral-caudal extent and the fracon of neurons inside and outside of ZI. Moreover, it is unclear how strongly the optogenec manipulaons in this study are expected to affect neuronal acvity in ZI.

      We discussed the first point in (1) above. Regarding, how optogenec manipulaons are expected to affect neuronal acvity in ZI and its targets, we have conducted extensive electrophysiological recordings in slices and in vivo to detail the effects of our manipulaons on GABAergic neurons (e.g. (Hormigo et al., 2016; Hormigo et al., 2019; Hormigo et al., 2021a; Hormigo et al., 2021b), including ZI neurons (Hormigo et al., 2020). In fact, we never use an opsin we have not validated ourselves using electrophysiology. Moreover, our experiments employ a spectrum of optogenec light paterns (including trains/cont at different powers) that trate the optogenec effects within each session/animal. As shown in fig. 11 and 12, these paterns produce different behavioral effects related to the different levels of neural firing they induce. For ChR2-expressing neurons in ZI, firing is frequency dependent and maximal during Cont blue light (at the same power). For Arch-expressing neurons only Cont is used, and inhibion is a funcon of the green light power. When blue light is applied in ZI fibers targeng different areas, this relaonship changes. Blue light trains (1-ms pulses) at 40-66 Hz become the most effecve means of inducing sustained postsynapc inhibion compared to Cont or low frequencies.

      References

      Castro-Alamancos MA (2004) Dynamics of sensory thalamocorcal synapc networks during informaon processing states. Progress in Neurobiology 74:213-247.

      Hormigo S, Vega-Flores G, Castro-Alamancos MA (2016) Basal Ganglia Output Controls Acve Avoidance Behavior. J Neurosci 36:10274-10284.

      Hormigo S, Zhou J, Castro-Alamancos MA (2020) Zona Incerta GABAergic Output Controls a Signaled Locomotor Acon in the Midbrain Tegmentum. eNeuro 7.

      Hormigo S, Zhou J, Castro-Alamancos MA (2021a) Bidireconal control of orienng behavior by the substana nigra pars reculata: disnct significance of head and whisker movements. eNeuro. Hormigo S, Vega-Flores G, Rovira V, Castro-Alamancos MA (2019) Circuits That Mediate Expression of Signaled Acve Avoidance Converge in the Pedunculoponne Tegmentum. J Neurosci 39:45764594.

      Hormigo S, Zhou J, Chabbert D, Shanmugasundaram B, Castro-Alamancos MA (2021b) Basal Ganglia Output Has a Permissive Non-Driving Role in a Signaled Locomotor Acon Mediated by the Midbrain. J Neurosci 41:1529-1552.

      Lee SH, Dan Y (2012) Neuromodulaon of brain states. Neuron 76:209-222.

      Vong L, Ye C, Yang Z, Choi B, Chua S, Jr., Lowell BB (2011) Lepn acon on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71:142-154.

      Zhou J, Hormigo S, Busel N, Castro-Alamancos MA (2023) The Orienng Reflex Reveals Behavioral States Set by Demanding Contexts: Role of the Superior Colliculus. J Neurosci 43:1778-1796.

    1. He slowly realized that European military tactics would not work in North America. In Europe, armies fought head-on battles in attempt to seize major cities

      This was an initial disadvantage the British faced because they were not ready to fight that type of war

    2. Washington realized after New York that the largely untrained Continental Army could not win head-on battles with the professional British army. So he developed his own logic of warfare that involved smaller, more frequent skirmishes and avoided major engagements that would risk his entire army. As long as he kept the army intact, the war would continue, no matter how many cities the British captured.

      Good leader ship by Washington realizing that his men aren't trained in the same ways the Red Coats are. He realized that his men were basically marksmen who can hit farther and harder shots. He used this knowledge to use a different strategy.

    3. Washington realized after New York that the largely untrained Continental Army could not win head-on battles with the professional British army. So he developed his own logic of warfare that involved smaller, more frequent skirmishes and avoided major engagements that would risk his entire army. As long as he kept the army intact, the war would continue, no matter how many cities the British captured.

      !

    1. Is there any general pattern here? We can easily formulate a general principle for cases 3 and 4 if we say that dependents other than determinatives combine to form nominals, whether those dependents appear before or after the head noun, and determinatives combine with nominals to form NPs.

      There is talk of generalize specific patterns in the sentence structure. Is their a way to make sentences more difficult?

    1. And so you're so worried that the work will be taken out of context or misread. Or someone might think that I'm an expert on a concept, idea or history, when really  I'm approaching it as a student.

      C: Hunter’s fear about being taken out of context or misread reminds me of Kobena Mercer’s text, “Skin Head Sex Thing: Racial Difference and the Homoerotic Imaginary,” that we read for Art Methods; because Mercer explains that he is altering his position on Mapplethorpe in order to avoid being appropriated by the alt-Right (13). Mercer returns to his own writing, embracing unknowingness and the learning process but also as an attempt control how his work is interpreted and engaged with. I think the concept of looping has the potential to address this fear, as it points to a continuous dialogue in which one can respond to their own writing but also to those who have sampled/cited it. I understand the desire to avoid being misread, especially when thinking about the vulnerability of curiosity, but I also think being taken out of context can indicate a conversation that needs to be had.

    1. Your residence at Port Royal made little shadow and for a long time I left you alone.But now this considerable theft you have made forces me to open my mouth. I willsoon come to see you. Perhaps you will well receive what I have to say. If you hear meand speak as you should, and you use the proper words, I will know that you only wishfor what is good and that everything will turn out well. I will not say more so as to nolonger split the head with my words. I send you greetings, my lord.]

      This paragraph explains that the Mi'kmaq people were very open to the French settling in Port Royal, however they felt that the french are now starting to take over and it is effect the way of living for the Mi'Kmaq people people, they did not like that they wee being forced to take refuge on their own land.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary

      Elucidating the cellular and molecular mechanisms underlying age-related neurodegeneration remains a key challenge for neurobiologists. In this manuscript, Mariana Tsap and colleagues in the team of Halyna Shcherbata focus on the function of the neuropathy target esterase NTE/Swiss Cheese (Sws) in the Drosophila brain. The authors use an elegant combination of genetics, light and electron microscopy, RT-qPCR and GS-MS mass spectrometry to determine the complex role of Sws in cellular blood brain barrier (BBB) integrity, the brain inflammatory response and fatty acid metabolism. The study provides a detailed characterisation as to how the loss of sws affects glial cell morphology in the BBB revealing abnormal membrane accumulations and tight junctions, and in consequence causing permeability issues. Importantly, they observed the upregulation of antimicrobial peptides in the brain, indicative of neuroinflammation, as well as of fatty acids, equally connected with the inflammatory response.

      Major comments

      The study provides a detailed and comprehensive characterization of the sws mutant phenotype, and in particular the role of this gene in blood-brain barrier forming glia. - The study connects neurodegeneration and inflammation, but also makes a particular point about "inflammaging". However, the age contribution has not been studied in detail. Indeed, the flies analyzed are 15 days old (according to the Material and Methods section, with the exception of Figure 1 where flies are 30 days old), and hence have not been compared with younger or older flies to make a point of age as evoked in the abstract, introduction or discussion. The authors should either add experiments comparing differently aged flies or de-emphasize this point to a brief consideration in the discussion. Instead, it would be very helpful to provide concise information about the current knowledge concerning the inflammatory response in the Drosophila brain. - Related to this point, the authors convincingly show that sws is required in surface glia using rescue experiments. Nevertheless, all experiments rely on drivers and mutants that could cause the emergence of phenotypes during development. Thus, to strengthen the causative link between the breakdown of the BBB and the neuroinflammatory response, it would be helpful to consider an acute knock-down in adults after BBB formation has been completed. - To test the brain permeability barrier, the study uses a 10 KDa dextran permeability assay. Almost 25% of brain in controls show a leaky barrier. It would be helpful to describe the causes for this relatively high occurrence. - An important point in the study concerns the increase of free fatty acids as cause of the inflammatory response. The measurements were based on measurements of whole heads, which could include the hemolymph and fat body within the head in addition to brain. However, the causative relationship remains unclear and the question why a leaky blood brain barrier would increase the free fatty acid levels in the body or brain remains mainly an observation at the descriptive level. Here, it would be helpful to design an experiment, which could test the causative links or to modify the interpretation in scheme 6D and adjust the wording in the text. - Related to this, how do the levels of AMP caused by a leaky BBB would compare to an elicited neuroinflammation by the presence of bacteria? The neuroinflammatory response can be accompanied by macrophage entry into the brain following AMP induction. Could the authors detect this response (which could be envisioned as manipulations include pupal development, provided macrophages would persist into adulthood)? This would make a strong point regardless of the outcome. - Expression of sws is determined using sws-Gal4 driving membrane-tethered GFP. As sws is expressed very widely and classical Gal4 lines tend to be active in the BBB, it is important to provide the exact information about the nature of this driver. - The Material and Methods section should contain a proper Quantification and Statistical analysis section. In the Figures, it would be helpful to refer to the Table reporting sample numbers. - In Figure 5, it would be important to indicate sample numbers, the nature of the error bar, and show data points together with columns.

      Minor comments

      • On page 8, cell death is visualized using "the apoptotic marker Cas3". It should be Caspase-3. Moreover, it is not clear whether this antibody (directed against vertebrate Caspase-3) recognizes indeed Caspase-3 in Drosophila? This should be formulated more carefully.
      • On Page 9 (3rd paragraph), the authors report that they "want to understand what signaling pathway is activated." However, the described experiments do not lead to a signaling pathway, but conclude that an antiflammatory response is evoked. This should thus be reworded.
      • Figure 1 reports the expression pattern and phenotype of sws; thus, the title of the figure should be extended.
      • Concerning the description of phenotypes, the authors use the term "clumps", but it is not clear what this entails (e.g., Page 6, or Figure 6). For the reader, it is also necessary to refer to original studies of moody to understand the septate junction phenotype represented in the figure.

      Referees cross-commenting

      I fully agree with the comments of the other two reviewers, as they were complementary and overlapping with mine (e.g. the contribution of age).

      Significance

      This study provides a detailed cellular and functional characterization of the swiss cheese phenotype in the blood-brain barrier so far not reported in previous studies, including the team's own earlier publications (e.g., Kretzschmar et al., 1997; Melentev et al., 2021 and Ryabova et al., 2021). Furthermore, it uses cutting-edge technology to provide links to neuroinflammation and neurodegeneration, Previous studies explored neuroinflammation in the brain of Drosophila by challenging the organism with bacteria to mount an inflammatory response (Winkler et al., 2021). Intriguingly, this current study provides evidence, that a leaky blood brain barrier alone could lead to an inflammatory response, and that in turn, treatment with anti-inflammatory agents could reduce the cellular defects in glia and in consequence neurodegeneration. This represents an important conceptual advance that will be of wide interest to neurobiologists interested in glial biology, neuroinflammation and neurodegeneration in Drosophila and in vertebrates. One possible limitation of the study may be that while complex cellular processes have been pinpointed, some of the causative links of the BBB with neuroinflammation remain unexplored, in particular the aspect of elevated free fatty acids/antimicrobial peptides.

    1. 58% of respondents said they lacked "meaning or purpose in their lives

      College and Graduate schools are meant to be period of time where young adults experiment, find themselves, and grow into their adult values as well as determine the direction they want to head in for the rest of their lives. This is no easy feat but, what makes it more stressful?

    1. Argentine wizard Borges, with the same sort of experience often happening to him as well, probed in a poem like "Street with a Pink Corner Store" or the haunting essay that confronts the phenomenon head-on and analyzes it fully, "A New Refutation of Time."

      I'm not familiar with Aragon, but the shout out to Borges I think help's capture LaSalle's point of some non-corporeal plane at work; some "metaphysical" as he says, or perhaps ontological draw back through the streets to a specific place that haunts him on a level he is unaware of until he finds himself returned to that place - physically or mentally.

    1. Reviewer #1 (Public Review):

      Summary:<br /> Herein, Blaeser et al. explored the impact of migraine-related cortical spreading depression (CSD) on the calcium dynamics of meningeal afferents that are considered the putative source of migraine-related pain. Critically previous studies have identified widespread activation of these meningeal afferents following CSD; however, most studies of this kind have been performed in anesthetized rodents. By conducting a series of technically challenging calcium imaging experiments in conscious head fixed mice they find in contrast that a much smaller proportion of meningeal afferents are persistently activated following CSD. Instead, they identify that post-CSD responses are differentially altered across a wide array of afferents, including increased and decreased responses to mechanical meningeal deformations and activation of previously non-responsive afferents following CSD. Given that migraine is characterized by worsening head pain in response to movement, the findings offer a potential mechanism that may explain this clinical phenomenon.

      Strengths:<br /> Using head fixed conscious mice overcomes the limitations of anesthetized preps and the potential impact of anaesthesia on meningeal afferent function which facilitated novel results when compared to previous anesthetized studies. Further, the authors used a closed cranial window preparation to maximize normal physiological states during recording, although the introduction of a needle prick to induce CSD will have generated a small opening in the cranial preparation, rendering it not fully closed as suggested.

      Weaknesses:<br /> Although this is a well conducted technically challenging study that has added valuable knowledge on the response of meningeal afferents the study would have benefited from the inclusion of more female mice. Migraine is a female dominant condition and an attempt to compare potential sex-differences in afferent responses would undoubtedly have improved the outcome.

      The authors imply that the current method shows clear differences when compared to older anaesthetized studies; however, many of these were conducted in rats and relied on recording from the trigeminal ganglion. Inclusion of a subgroup of anesthetized mice in the current preparation may have helped to answer these outstanding questions, being is this species dependent or as a result of the different technical approaches.

      The authors discuss meningeal deformations as a result of locomotion; however, despite referring to their previous work (Blaeser et al., 2022), the exact method of how these deformations were measured could be clearer. It is challenging to imaging that simple locomotion would induce such deformations and the one reference in the introduction refers to straining, such as cough that may induce intracranial hypertension, which is likely a more powerful stimulus than locomotion.

    1. Reviewer #1 (Public Review):

      Summary:<br /> The authors use a combination of biochemistry and cryo-EM studies to explore a complex between the cap-binding complex and an RNA binding protein, ALYREF, that coordinates mRNA processing and export.

      Strengths:<br /> The biochemistry and structural biology are supported by mutagenesis which tests the model in vitro. The structure provides new insight into how key events in RNA processing and export are likely to be coordinated.

      Weaknesses:<br /> The authors provide biochemical studies to confirm the interactions that they identify; however, they do not perform any studies to test these models in cells or explore the consequences of mRNA export from the nucleus. In fact, several of the amino acids that they identified in ALYREF that are critical for the interaction, as determined by their own biochemical studies, are conserved in budding yeast Yra1 (residues E124/E128 are E/Q in budding yeast and residues Y135/V138/P139 are F/S/P), where the impact on poly(A) RNA export from the nucleus could be readily evaluated. The authors could at least mention this point as part of the implications and the need for future studies. No one seems to have yet targeted any of these conserved residues, so this would be a logical extension of the current work.

      Specific suggestions:<br /> The authors could put their work in context by speculating how some of the amino acids that they identify as being critical for the interactions they identify could contribute to cancer. For example, they mention mutations of interacting residues in NCBP2 are associated with human cancers, pointing out that NCBP2 R105C amino acid substitution has been reported in colorectal cancer and the NCBP2 I110M mutation has been found in head and neck cancer. Do the authors speculate that these changes would decrease the interaction between NCBP2 and ALYREF and, if so, how would this contribute to cancer? They also mention that a K330N mutation in NCBP1 in human uterine corpus endometrial carcinoma, where Y135 on the α2 helix of mALYREF2 makes a hydrogen bond with K330 of NCBP1. How do they speculate loss of this interaction would contribute to cancer?

    1. Saginaw Bay and its fisheries have undergone dramatic changes since the 1830's, and especially since the 1940's. The quality of the water in the Saginaw River system and the inner bay was steadily degraded by a wide variety of domestic and industrial pollutants.

      It is awful to think about the negative impacts that this has on all ecosystems, and scary to wrap your head around the fact that it has been happening for so long.

    1. stuff going on in our own brains that influences the way we take in and interpret information. This is called confirmation bias.

      Everyone processes information in different ways. Some people may take notes some might highlight while other people might be able to grasp things in their head.

    1. doing 80 all the way to the head of the holler, weaving through the double lines;

      Author is stating how recless we drive now like we dont have a care in the world.

    1. Author Response

      Reviewer #1 (Pulic Review):

      The authors aimed to understand whether the superficial, retinorecipient layers of the mouse superior colliculus (sSC) participate in figure-ground segregation and object recognition. To address this question, they use a combination of optogenetic perturbations of sSC and recordings. These data are consistent with SC being causally involved in object recognition. This would be useful information for the field and likely to be cited.

      Thank you for your positive evaluation.

      However, I have several concerns regarding their conclusions.

      A significant limitation of this study is methodological. The major novelty is the effect of optogenetic silencing, because the recordings are largely correlative, but the optogenetic silencing approach lacks appropriate controls for the effects of the optogenetic excitation light. The authors acknowledge that the optogenetic light is a potential confound, but attempt to address this by shielding the fiber to eliminate light leak and strobing a blue led in the arena. The former does not account for the effects of excitation light scattering intracerebrally--during optogenetic experiments, intracerebral scattering causes the eyes to light up--and for the latter, there is no way to compare the intensity or qualia of the externally strobed LED and the intracerebral light. The proper control would be a cohort of mice lacking channelrhodopsin expression in sSC. Regardless, it is essential to acknowledge this potential confound.

      This is a good point. We have added discussion of this in lines 90-95. The proposed experiment was done in Kirchberger et al. (Sci Adv 2021, Suppl Figure 3). In mice without expression of channelrhodopsin trained on the same task as in our study, blue laser light in the cortex did not affect accuracy. Although the exact location of these fibers is different from ours, the distance from the fiber to the eye is very similar. Furthermore, in answer to this comment, we have done a new set of experiments with 4 wild type mice, in which we recorded neural activity in the sSC while delivering optogenetic light stimulation. The procedure was similar to our previous experimental animals except that they did not receive a virus injection. In these mice, we did not see any response in the superior colliculus to the laser light, but we noticed a 5% reduction in response to the visual stimuli (new Figure 1—figure supplement 3). This small reduction could be a small reduction of contrast of the visual stimulus due to the laser light hitting the retina, but given that we did not see any response to the laser alone, it is more likely to come from the known inhibiting effects of light on neural activity (e.g. through heat, see Owen et al. Nat Neurosci 2019). Because our aim was to silence sSC, this particular effect is not a strong confound for our study.

      Relatedly, as the authors note, there are GABAergic projection neurons in sSC that may be driving these effects via gain of function. This is a significant concern that has limited the widespread adoption of this approach in sSC despite its popularity in studies in cortex. Indeed, one recently published study of behavioral functions of deep SC found that activating inhibitory neurons actually caused paradoxical behavioral effects consistent with gain of function in the targeted hemisphere, due to the effects of long-range inhibitory projections on the other SC hemisphere. Given the presence of inhibitory projections in sSC, it would be preferable to use an orthogonal method for silencing and at least to thoroughly acknowledge these concerns and cite these recent studies.

      This is a valid point. When we started our study, we had some experience with inhibitory opsin (archaerhodopsin and halorhodopsin) and were not confident that we could widely inhibit the sSC reversibly, repeatedly and consistently for an extended period. Other labs have now shown this is feasible with improved inhibitory opsins, so this would now be our preferred option too. The method of silencing sSC by inhibition of GABAergic neurons, however, is still the most common optogenetic method to silence sSC for an extended period (e.g. Hu et al. Neuron 2019, Brenner et al. Neuron 2023) .

      We thank the reviewer pointing us to recently published paradoxical behavioral effects. These effects, that we found in Essig et al. (Comm. Biol. 2021) are very interesting, but are not really a concern for the interpretation of our results, partially because as the reviewer pointed out, the GABAergic neurons activated there were in the deep and intermediate layers of the SC, below the sSC that we targeted. The paradoxical effects in that manuscript were attributed to direct inhibition of the contralateral superior colliculus. In our case, we activated the inhibitory neurons bilaterally, and this interhemispheric GABAergic connectivity, if it extends to sSC, only strengthened the bilateral silencing of the sSC. However, we have now discussed the possibility of our transfection of these deeper GABAergic neurons (lines 272-278). The more general point that activating GABAergic neurons in the sSC may also cause inhibition in other structures is indeed a concern. GABAergic neurons in the sSC project to the PBG and the LGN (in particular the vLGN) (Gale & Murphy, 2014; Whyland et al., 2019; Li et al., 2023). Although the primary effect of our manipulation is silencing of the superior colliculus, including the GABAergic neurons (see our answer further below), we cannot exclude the possibility that activating these extracollicular GABAergic projections has an effect. We have edited our discussion of this and updated the references (lines 268-272). However, our measurements in anesthetized (previous submission) and in awake mice (new Figure 1—figure supplement 2) show that apart from a short period directly after the onset of the laser, also almost all putative GABAergic neurons are reduced in their response (see also our answer to the next comment).

      A minor point is that although activation of GABAergic neurons in sSC is expected to cause inhibition of neighboring neurons, I would expect channelrhodopsin-expressing GABAergic cells to show an increase in firing during optogenetic excitation. However, it seems that none of the cells plotted (assuming each point in Supplementary Fig 4D is a cell, which the legend does not specify) had such an increase. Do these extracellular recordings not detect inhibitory neurons well?

      This is indeed an intriguing observation. The data in the original figure (Supp Fig 1D) was spiking data from 15 recording sites and not from sorted units. This was mentioned in panel C, but not in the caption. For the purpose of the amount of silencing, there was no need to sort single units. Still, it is surprising to see the reduction on almost all channels. The data of Supp Fig 1D came from experiments in anesthetized mice. Prompted by a question from another reviewer, we have now redone these experiments in head-fixed awake mice. The new Figure 1—figure supplement 2 shows these results, for single- and multi-unit clusters. In response to a short laser pulse (50 ms), we find that many units significantly increase their firing rate (Figure 1—figure supplement 2A-B). However, almost all activated then reduce there firing rate and again, we see an overall reduction of responses to visual stimuli. Only one unit fires significantly more when the laser is on during the period of visual stimulation compared to when the laser is off, and the overall firing rate is strongly reduced (Figure 1—figure supplement 2C-E). It appears that optogenetically activating the inhibitory neurons in the sSC for a longer period also reduces the activity of these neurons. The effect that we are seeing might be similar to the paradoxical effects that may occur in visual cortex, where additional excitation of inhibitory neurons leads also leads to their reduced activity due to network dynamics (see e.g. Sadeh & Clopath, Nat Neurosci Rev 2021). However, the effect may also be due to a few inhibitory neurons having a strong inhibitory effect on other inhibitory neurons. This is an interesting point worthy of more investigation, but it falls out to scope of this manuscript.

      Finally, the relationship between these stimuli and objects is not entirely clear. The authors acknowledge this but it would be worthwhile to devote more attention to this point. In effect, as the authors note, the gray screen and sinuisoidal grating do not have any sharp edges on the screen, whereas each of the behaviorally relevant stimuli will create a sharp, step-like edge on the screen. Whether edge detection is truly object detection or simply a variant of more general visual detection is unclear.

      Indeed, the task can be solved by detection of texture edges, and it is not necessary to integrate the edge components into an object to successfully perform the task. A linear decoder fed with simple cell-like inputs is able to do the orientation task (Luongo et al., 2023). The same network failed to learn the phase task, but also the image of a phase-defined figure contains features that are not present in the background image, and could be solved by learning only local features. Even the texture-defined figures used in Kirchberger et al. (2021) and in earlier monkey studies (Lamme, 1995) which do not contain any sharp stimulus edges can be detected without integrating the local edges into objects and segregation the figure from the background. Several monkey studies show that late neuronal responses in V1 are enhanced for neurons with receptive fields on what we, humans, perceive as the figure. This effect has also been seen in mouse V1, even in the case where there are no local features distinguishing the figure from the background (Fig 7. in Kirchberger et al. 2021). Interfering with activity in V1 in this late phase reduces the ability to detect the figure in human (by TMS) and mouse (by optogenetics). This is suggestive that this figure-ground modulation is used in solving the task, but not a proof. To understand if mice solve the tasks by detecting a figure or by detecting specific features, we can look at generalization. Mice were previously shown to generalize to some degree for size, position and spatial phase of the figure grating patch (Schnabel et al., 2018), suggesting that the mice did not train to detect specific features at specific locations. Rats trained on a similar task had difficulty generalizing from a luminance-defined object to an orientation-defined object (De Keyser et al., 2015), as do mice (Khastkhodaei et al., 2016), but once the rats were acquainted with one set of oriented figures, they immediately generalized to other texture-orientations above chance. On a slightly different figure-detection task mice also showed generalization for different orientations once the initial task was learned (Luongo et al. 2023). This suggests that at least some generalization to object detection occurs in this task. We have added these observation to the discussion (line 301-305).

      Reviewer #2 (Public Review):

      The goal of this study is to show that the superficial superior colliculus (sSC) of mouse signals figure-ground differences defined by contrast, orientation, and phase, and that these signals are necessary for the animal to detect such figure-ground differences. By inhibiting sSC while the animals perform a figure-ground detection task, the study shows that detection performance decreases when sSC activity is suppressed during the onset of the visual stimulus. The study then intends to show that sSC neurons exhibit surround suppression based on orientation differences, and that surround suppression is stronger when the animal detects the correct location of the figure on the background.

      The major strength of this study is the use of a behavioural paradigm to test detection performance of figure-ground stimuli while manipulating neural activity in the sSC during different times after stimulus onset. This paradigm would show whether activity in the sSC is relevant for performing the task. Secondly, the study collected data to confirm previous findings: sSC neurons exhibit orientation specific surround suppression. Additionally, it is impressive that the authors were able to train mice to generalize their task performance across different stimulus categories (figure-ground differences in orientation and phase). This should be highlighted as it may inform future studies.

      Thank you for your positive evaluation. We have extended our discussion on the generalization in object detection tasks in mice.

      The study has, however, methodological and analytical weaknesses so that the stated conclusions are not supported by the presented results.

      1) Optogenetic inhibition is not limited to sSC (even expression may not be limited) About 30% of inhibitory neurons in the sSC project to other areas, e.g. ventral LGN, parabigeminal nucleus and pretectum (Whyland et al, 2019, see ref in manuscript). This means that these areas receive direct inhibition when inhibitory sSC neurons are optogenetically stimulated. This fact is mentioned in the discussion but the consequences and implications for the results are ignored. This is a major flaw of the optogenetic experiments of this study. Additionally, no evidence is given that opsin expression was limited to the superficial layers (except for one histological slice), which the authors acknowledge in line 285. Deeper layers may have other inhibitory neurons with long-range projections.

      The finding that sSC neurons show no figure-ground modulation for phase while the optogenetic manipulation has behavioural effects may be an indication for other areas being affected by the optogenetic manipulation.

      This is a valid point, also raised by reviewer 1. Although the primary effect of activating the GABAergic neurons in the sSC is a strong reduction of activity in the sSC (see also new figure S1), we cannot rule out that we also activate GABAergic neurons below the sSC and that there are some effects of activating GABAergic connections to the LGN and PBG. We have extended our discussion of this point in lines 269-277. However, as shown in new Figure 1—figure supplement 2, the effect of optogenetically activating Gad2-positive neurons appears to lead to a counter-intuitive reduction of their activity. This effect has previously been observed in cortex.

      2) Could other behavioural variables explain the results?

      a) Are there any task events other than the visual stimuli that the mice could use to make their decisions? The authors state the use of a custom made lick spout but it is not clear how this spout works, i.e. how do mechanics of the spout deliver water to the right versus the left output and could the mouse perceive these mechanics?

      We believe there were no task events besides the visual stimuli that the mice could use to make their decisions. The lick spout was Y-shaped (see Figure 1B) to facilitate the two-alternative forced choice task. Each side of the lick spout was connected to a separate water tube. The water flow in each tube was controlled using a valve. Also, each side of the lick spout was connected to its own lick detector wire. The two valves and the two detector wires were connected to an Arduino which was controlled by our MATLAB task script. The task script was coded such that, when the lick of the mouse had been on the correct side, the valve controlling the water flow on the correct side would briefly open to deliver the water reward. To summarize, the water would only flow after the mouse had licked and if the first lick had been on the correct side. Hence, the water reward did not produce additional cues. We have edited the description of the lick spout in the Methods section to make the functioning of the lick spout more clear (lines 511-513).

      b) Could the different neural responses to figure versus ground shown in Fig 2I-J and Fig 3B be explained by behaviours varying between the trial types, e.g. by early lick movements (which are conceivable even if the spout is not present), eye movements or changes in pupil-linked arousal? A behavioural difference seems even more likely to occur between hit and error/miss trials (Fig 4). If these behaviours were not measured, the possibility of behavioural modulation should be discussed.

      In the awake behaving electrophysiology experiments, the lick spout was not present until 500 ms after stimulus onset, so the mouse could not lick the spout. We did not record whisking or other face and jaw movements, hence we cannot say for sure whether the mice performed early ‘licks’ in the absence of the lick spout. We did, however, add a supplementary figure showing the licking behavior of the mice in the optogenetic interference experiments (see Figure 1—figure supplement 5). In this experiment, the lick spout was present at all times so all early licks would be recorded. Any licks before 200 ms after stimulus onset were disregarded as this would be too early for the decision to include knowledge about the stimulus. Figure 1—figure supplement 5B shows that the mice indeed only performed very few early licks as they probably knew this would not yield reward. The mice that performed the awake electrophysiology experiments were trained on the same task as these mice before introducing the lick spout delay of 500 ms. So although we cannot rule out early licks during electrophysiology, we think early licks would be an unlikely explanation for the neural response differences.

      We have added a new supplementary figure (Figure 2—figure supplement 2) showing data for eye movements and pupil dilation during the tasks. We had excluded all trials where the mice performed eye movements between 0-450 ms after stimulus onset, and indeed we saw no eye movements during the peak of the visual response (0-250 ms). Furthermore, the pupil dilation of the mice also did not change in this period.

      All in all, we view it as unlikely that the differences in neural activity in sSc were caused by either licking, eye movements or pupil-linked arousal.

      3) What is the behavioural strategy of the animals? Only licks beyond 200 ms after stimulus onset determine the choice of the animal because "mice made early random licks" from 0 to 200 ms. To better understand the behavioural strategies of the animals we need to see their behavioural data, i.e. left and right licks aligned to stimulus onset. It would be particularly interesting to see how number and latency of licks changes during optogenetic manipulation.

      Based on these suggestions, we investigated the licking behavior of the mice during the optogenetic experiments in more detail. Our new Figure 1—figure supplement 5 taught us several things:

      1) The fully trained mice hardly perform any early licks; they seem to understand that early licks cannot yield reward.

      2) The mice typically only lick one side of the lick spout during one trial. In correct trials the fluid reward is given directly after a correct lick, which causes the mouse to lick the correct side of the spout even more. However, even if the first lick is incorrect (bottom rows), the mouse generally does not lick the other (correct) side afterward. They seem to know that correct licks after an incorrect lick do not yield reward.

      3) The maximum licking rates were not significantly affected by laser onset.

      4) The latency of the first lick (reaction time) was not significantly affected by laser onset. (Please also see our response to question 2b).

      4) Data relating to misses should be included in analyses to provide a complete picture of behaviour and neural responses

      a) In the optogenetic manipulations, an increase in misses seems to dominate the decreased accuracy (please, explain when a response was counted as a miss). A separate analysis of miss trials may be more robust than of error trials and also offers a different interpretation of the data, namely that the mouse did not see the stimulus rather than perceiving the figure on the opposite side. However, if the mice reduced their lick rate in general during optogenetic stimulation, this begs the question whether their motor performance was affected by optogenetic manipulation. Can this possibility be excluded?

      Trials were counted as follows: A trial was counted as a hit when the first lick after 200 ms after stimulus onset was on the correct side. A trial was counted as an error, when the first lick after 200 ms after stimulus onset was on the incorrect side. A trial was counted as a miss, when the mouse did not lick in the window between 200 and 2000 ms after stimulus onset. We have clarified this in the methods section (line 517-526).

      Our previous text may not have been sufficiently clear but the decrease in accuracy during optogenetic trials is not dominated by an increase in missed trials. As we have now indicated explicitly in its caption, in figure 1, missed trials are excluded from the analysis. Hence, the significant effects shown in figure 1 are not driven by an increase in missed trials but rather by an increase in erroneous licks. When comparing figure 1 vs figure S3, where the missed trials are added to the analysis as if they were error trials, we can see an overall downward shift of the performances. Indeed, mice miss more trials when the laser is on. The increase in number of missed trials is lower than the increase in number of wrong choices. Furthermore, the range between the performances at early laser onset and late laser onset is still very similar. This indicates that the mice on average do not have higher miss rates when laser onset is early.

      Finally, nor maximum licking rate, nor the reaction time is affected by the laser onset (see the new figure S2)

      Related to Fig 4, it would be equally interesting to see how FGM changes during misses. Do the changes support the observations for error trials?

      We are not convinced that the neural data from missed trials can be interpreted in a simple way. Mice may have various reasons to miss a trial: they may be tired or not paying attention, they may not have seen the stimulus well, they may not feel thirsty enough, they might be distracted by some sensory input that humans might not be aware of, etc. This is why we specifically opted to not use a go-no/go task but instead opted to use a 2-alternative forced choice task.

      5) Statistical tests do not support the conclusions, are missing or inadequate

      a) In Fig 1E, accuracy is significantly affected at only 1-2 time points in each task, specifically either the 1st and 3rd or the 2nd time point. How do the authors interpret these results? If inhibition starting at the 2nd time point has no significant effects, why would it be significant when inhibition starts later (at the 3rd time)? Furthermore, given that all other starting points of laser stimulation have no significant effects, there is no reason to trust the latency of inhibition effects based on mostly insignificant data points. This analysis in its current form should be removed, including a comparison of latencies between tasks, which was not tested for significance. It may be more meaningful to analyse accuracy for each animal separately. This may reduce variability.

      We can understand that the reviewer may have concerns regarding the post-hoc analysis of Fig 1E, but we feel these concerns stem from a misinterpretation of our goal with this analysis. In Figure 1E, we use a 1-way repeated-measures ANOVA. By using this test, we ask whether the performance of the animals is affected by the laser onset. More specifically “does the performance increase or decrease with increasing laser onset?” The test is significant, so indeed the performance goes up as laser onset goes up. This indicates that the performance of the mice is affected by the inhibition of sSC. For the sake of completeness we had included the post-hoc tests for each latency in the statistics table. Indeed, some individual latencies are not significantly different to the no-laser condition. However, this does not invalidate the conclusion of the main test: a repeated measures ANOVA can only be performed on data with 3 or more groups, so the conclusion of the repeated measures ANOVA could not have been drawn from simply those laser onset(s) that is/are significantly different from the no-laser condition. The main effect of higher performance with higher latencies is significant, even if some individual comparisons are non-significant. The difference in significance of the post-hoc tests does not indicate a significant difference between the groups, but insufficient power to do six individual tests.

      We have changed the wording in the reporting of the statistics of Figure 1E to hopefully more precisely indicate the conclusions we drew from the statistics. We do not draw conclusions from the post hoc tests. We have considered removing them from the statistics table 1, but believe that some readers might be interested. We can remove them if the reviewer believes that would be better.

      b) Analyses regarding the difference in neural response to figure and ground (Fig 2I-J, Fig 3B, Fig 4B, Fig 5C) would be more convincing and informative if the differences were analysed on the level of single neurons in response to the same orientation within their RF (or at the location where the figure is presented, for edge-RF neurons). A histogram of these differences would show how many neurons are affected and how large the effect is in single neurons.

      We fully appreciate this idea, but the way we set up the behavioural task does not quite allow for this type of statistical analysis. This is because we tested all three of the tasks during single sessions (contrast/orientation/phase), and on top of that, we varied the orientations of the stimuli (0/90deg), as well as the phase of the gratings (60 different phases). This all was done with the idea that it would prevent the mice from memorizing the individual stimuli of the task. This also had the effect that only very few trials per session contained the exact same stimulus type, figure-ground condition, orientation and phase. For example, if a mouse would perform around 120 trials in a session. 25% of those were contrast-stimulus-trials, 37.5% of those were orientation-stimulus-trials and 37,5% were phase trials. If we look into 120*0.375 = 45 orientation-stimulus-trials, half of those were figure trials, half were ground trials: 22 trials each. If we split these trials up by their individual orientations, we are left with only about 11 trials per condition to analyse for figure-ground effects, each of which would probably have a different grating phase. Given the firing rate variations that the individual neurons show in awake mice, this amount of trials would not provide enough statistical power to test the significance of modulation in single neurons.

      Although we feel the study design would not allow analysis of individual neurons in response to the same orientation within their RF, we did perform an aggregated analysis on orientation selectivity. For this analysis, we included all the trials where the RF of the recorded neurons was on the background-half of the screen. We then computed the responses of each neuron to the trials where the background orientation was 0 and 90, respectively. This analysis showed that most neurons had no preference for either of the two tested orientations of the other. Only 4 out of 64 (6%) neurons showed a significant preference. We therefore believe that splitting the data by orientation preference would not be very informative.

      c) All statistical tests performed across neurons should account for dependencies due to simultaneous recordings (dependency on session) and due to recordings in the same animal (dependency on animal). This can be done in most cases by using linear mixed-effects models.

      We agree with the reviewer and have changed the analysis for figure 2I, 3B and 3E to an LME analysis (see also Table 1).

      d) There was no significant difference between model weights (Fig 3D), so the statement in line 210 (RF-edge neurons had higher weights) should be removed.

      In answer to previous we question changed the analysis for what is now Figure 3E to an LME. This shows that relative weights were significantly higher for the orientation compared to the phase task. We have adapted our conclusion accordingly (line 214-218).

      e) Fig 4B compares FGM during correct and error trials. This comparison has to be performed with the same set of neurons in correct and error trials (not the case for orientation). Again, the most compelling and informative comparison would be on the level of single neurons: response difference between figure and ground (same visual features at figure position) during hits versus errors.

      As described above, we feel the study design does not allow analysis on the level of individual neurons. The analysis in 4B was actually performed using the same set of neurons, we have removed the typo.

      f) There is no evidence that FGM for phase was different between hit and error trials as stated in line 234.

      Indeed, we had phrased this incorrectly. Since we recorded all task during single recording sessions, we have data for each task for most neurons. We were therefore able to pool the results from the different tasks, and the main d-prime difference between hit vs. error was significant. Post-hoc tests showed that this is mainly driven by the difference in the orientation task. We have edited the wording to be more accurate (line 239-242).

      g) It is not clear why and how the mixed linear effects model was used pooling data across tasks (Fig 4C and Fig 5D). Different neurons were recorded for each task, so the sample points (neurons) are not affected by both task effects (orientation and phase). Each task should be analysed separately.

      Since we recorded all three task versions during single behavioral sessions, we have data for multiple tasks from each neuron. This is why the linear mixed effects model pools the data across the tasks. We have added a note in the main text for clarity (line 238-242)

      h) Bonferroni correction in Fig 1E should correct multiple comparisons across time points, not across tasks (see Table 1).

      The multiple time points all belong to the same one-way repeated measures ANOVA, so there’s no need to correct the post-hoc analysis. We did run the ANOVA for three tasks, which is why we corrected the p-values of each task. We think that this is best way, but can also present uncorrected p-values if needed.

      i) What is the reason to perform some tests one-tailed, others two-tailed?

      Following the reviewer comments, we changed some analyses to LME models. The remaining tests that require definition of the tails are all two-tailed.

      6) The results relating to "multisensory neurons" are ambiguous regarding their interpretation (if significant at all) and seem unrelated to the goal of the study. It is particularly likely that behaviours like licking or other movements cause the response differences between figure and ground.

      We agree with the reviewer that finding these neurons was not the aim of the study. We did not include enough type of tests in our paradigm to fully determine the properties of these neurons. Furthermore, we note that we have recorded too few of these neurons to draw strong conclusions. The data shown in new Figure 2—figure supplement 1H suggest that the responses of these neurons or not as strongly time-locked to the first lick as they are to the trial onset. We presented the behavior of these neurons in our manuscript, because, whatever their exact behavior, they are clearly distinct from the visually responsive cells that show a short latency response to the visual stimulus (Figure 2—figure supplement 1). We still feel that it is useful for the reader to know there are cells in the sSC that show such a distinct behavior, but we have moved the figure and the accompanying text to a figure supplement to avoid distraction from the main message of the manuscript.

      7) What depth were neurons recorded from (Fig 3 and 4)?

      The depths of the recorded visually responsive neurons is now shown in Figure 2—figure supplement 1E.

      Reviewer #3 (Public Review):

      The authors used optogenetic manipulations and electrophysiology recordings to study a causal role and the coding of superficial part of the mouse Superior Colliculus (SCs) during figure detection tasks.

      Authors previously reported that figure-ground perception relies on V1 activity (Kirchberger et al. 2021) and pointed out that silencing of V1 reduced the accuracy of the mice but still the performance was above the chance level. Therefore, visual information necessary in this task, could be processed via alternative pathways. In this study, authors investigated specifically SCs and used similar approach and analysis as in Kirchberger et al. 2021. Optogenetic silencing of the activity of visual neurons in SCs impaired the accuracy in all 3 versions of the figure detection task: contrast, orientation, and phase. Electrophysiology recordings revealed that SCs neurons are figure-ground modulated, but only by contrast- and orientation-based figures. They show SCs visually responsive neurons reflect behavioral performance in orientation-based figure task. The authors conclusion is that SCs is involved in figure detection task.

      Overall, this study provides evidence that mouse SCs is involved in a figure detection task, and codes for task-related events. Authors heroically compared results between 3 different versions of the figure-based detection task. The logic of the study flows through the manuscript and authors prepared a detailed description of methods.

      Thank you for your positive comments.

      However, my main concern is with 1) the amount of data used to make the key arguments, and 2) the interpretation of results. The key findings of this study (figure-ground modulations in SCs) could be a result of the visual cortical feedback in SCs during the task, or pupil diameter changes. Unfortunately, the authors did not rule out these possibilities.

      Still, this study can be relevant to a general neuroscience audience, and results could be more convincing if the authors could clarify:

      1) Optogenetic inactivation

      a) The impact of laser stimulation on neural activity is not satisfactory (Supplementary Figure 1). The method seems to be insufficient to fully salience neurons. Electrophysiology control recordings of inactivation are performed in anesthetized mice, which is not a fair estimation of the effect in awake state. Therefore, it rises a major question how effective the inactivation is during the task?

      We have conducted new control experiments for the impact of laser stimulation on neural activity, now in awake animals (see Figure 1—figure supplement 2). The reviewer was right to ask for these experiments. We had not expected much difference in the effect of silencing in the awake and anesthetized state. To minimize the animal discomfort, we had therefore done these control experiments in terminal experiments under anesthesia. However, these new set of experiments showed that the impact of laser stimulation was much stronger in awake mice than anesthetized mice. We see an average spike rate reduction of 90% when the laser is on. Although it is not full silencing, we think this reduction is sufficient to draw some conclusions on the role of sSC in the behavioral tasks.

      b) Could authors provide more details if laser stimulation has an effect only on visual, or all sampled units? How many of units were recorded, and how many show positive and negative laser modulation?

      We defined visually responsive units as units that have an evoked rate of at least 2 spikes/s. In the new figure 1—figure supplement 2D from the new set of control experiments, we plotted, for every unit, the mean rate in laser ON and OFF trials - also including the non-visually responsive units. It is evident that the spiking activity of most units – including those that were not classified as ‘visual’ – is reduced in the laser ON compared to OFF trials. We observed 1 unit that showed strong positive laser modulation over the entire duration (figure 1—figure supplement 1D). Many units were activated by shorter laser pulses directly after laser onset (Figure 1—figure supplement 2A-B), but these also reduced in activity as the stimulation continued.

      c) How local the inactivation effect is? Where was the silicon probe placed in relation to AAV expression and optical fiber position?

      The AAV was injected at 0.3 mm anterior and 0.5 mm lateral to the lambda cranial landmark. With this injection location we aimed to focus the expression at low/nasal receptive fields, in front of the mouse, because that is where the visual stimulation would take place. From there, the expression did spread laterally across sSC (see Figure 1C). The silicon probe was placed roughly in the same location as the viral injection. The optical fiber was positioned such that the tip would shine on the surface of the sSC at a slight angle, from a lateral distance of ~200 µm from the silicon probe. We have edited the methods section to make this more clear (line 583-585). This procedure allowed us to record only relatively local effects of the inactivation. Although we did not record neural activity across the entirety of sSC, we did record from multiple electrode penetrations per mouse, each time slightly varying the recording location with up to ~300µm and ~500µm in the anterior and lateral directions, respectively. In these variations of recording location the optogenetic effect was always present (see new Figure 1—figure supplement 2G). Moreover, the suppressive effect of optogenetic stimulation of GAD2+ neurons was observed across the entire depth of the sSC (new Figure 1—figure supplement 2H).

      2) Number of sessions and units

      a) The inactivation effect on behavior (Figure 1E) during phase-task has a significantly larger effect at 66ms after stimulus onset. How can authors explain this? Could this result be biased by one animal/session, or low number of trials for this condition? There is no information about number of trials, or sessions from individual animals. Adding a single example of animal's performance, and sessions for individual mice could clarify results in Figure 1.

      The criterium for each mouse to be included in the analysis for one of the tasks was to have 100 trials where optogenetics were used (aggregated across the latencies). So at minimum, we would have about 100 trials/6 latencies = 17 trials per latency per mouse. For most mice though, the number of trials per latency was closer to about 40. We have added more information about this to the methods section (lines 567-570). Despite these inclusion criteria, the 66 ms effect is present for multiple mice (we have now added data visualizations for the individual mice in Figure 1—figure supplement 4). To address the reviewer’s concerns, we can only speculate as to why this happens. It might be random variation. A more speculative conclusion would be that perhaps this 66ms laser onset is particularly disturbing to the visual processing and/or decision-making of the mouse. But we feel that we do not have enough evidence to conclude this.

      b) Figure 2H shows an example of neuron with an effect in the figure detection task based on phase difference, but Figure 2I/J (population response) shows there is no effect. Overall, the conclusion is that SCs neurons are not modulated by a phase-defined object. It seems that number of mice and hence units are smaller in phase-detection task comparing to two other tasks. How many of single units are modulated in each version of the task? How big is the FGM effect on single neuron response (could authors provide values in spikes/s)? One task is dropped from analysis which it is one of the main points of the paper: to compare responses across different versions of the figure detection task in SCs. But Figures 3-5 only focuses on two tasks, because there is not enough of data for figure-based contrast task.

      We have updated Figure 2H to show spikes/s of the example single neuron response. For the population responses, we explicitly normalized the individual neurons because they all have different baseline and peak firing rates. This normalization was important for the decoding, so we decided to print the data such that the data from Figures 2I and 3B went into the decoding as printed. If we look at the non-normalized values, the maximum amplitude of the average FGM effect is 22.3, 5.9 and 2.9 sp/s respectively for the three tasks (for neurons with RF on stimulus center).

      We have furthermore updated the FGM analysis such that the clustered statistic is now based on linear mixed effects statistics instead of T-test statistics. The results based on this new analysis are largely the same (see statistics table T1). We checked the significance of individual neurons in the time window where the grouped LME analysis was significant. For the phase task (n.s. in grouped analysis), we used the significant window from the orientation task. For this analysis, we want to stress that the number of trials for each version of the task for each individual neurons is quite limited as we recorded all three of the tasks during each recording session. Individually, 7/23 neurons were significant for the contrast task, 1/49 were significant for the orientation task, 0/32 were significant for the phase task (after Bonferroni-holm correction).

      To address the final part of this comment on dropping the contrast task: we indeed have recorded too few data points to draw conclusions on decoding (Fig. 3) and discriminability (Fig. 4) for the contrast task. However, we do not see the contrast detection task as the main point of the paper. As earlier work had already shown involvement of the sSC in visually-evoked behaviours based on objects that are clearly isolated from the background, the main focus in this work is to show involvement of sSC in complex object detection, where the visual contrast and luminance is the same across object and background.

      3) Figure-ground modulation in SCs

      a) How is neural activity correlated with pupil size, movement (eg. whisking, or face), or jaw movement (preparation to lick)? Can activity of FGM neurons in SCs be explained by these behavioral variables?

      We did not record whisking or other face and jaw movements. We did record the eye of the mice, so have included a new Figure 2—figure supplement 2 which shows eye position and pupil dilation during the task. For the analysis in the originally submitted paper, trials with substantial eye movement (Z-score of eye speed > 2.5) between 0 and 450 ms had already been removed from the analysis. This way, we could exclude effects of eye movements (but not pupil dilation) on the visual responses in sSC. The additional figures and analyses have been done using the same inclusion criteria. Indeed, in the included trials mice did not move their eyes during the peak of the visual response (0-250 ms). The pupil dilation also did not change in this period.

      b) Could authors describe in more detail how they measure a pupil position and diameter, by showing raw data, pupil size aligned to task events?

      We have added a new Figure 2—figure supplement 2 to show the pupil position and diameter aligned to task onset.

      c) How does pupil diameter change between tasks? Small pupil changes can affect responses of visual neurons, and this could be an explanation of FGM effect in SCs. Can authors rule out this possibility, by for example showing pupil size and changes in position at stimulus onset in different tasks?

      Our new Figure 2—figure supplement 2B shows that pupil dilation changes and differences in pupil dilation between figure/ground trials do occur, but only after ~300 ms, so after the peak of the visual response and after the FGM is present in sSC.

      d) Authors in discussion mentioned that the modulation of V1 could be transferred to SCs through the direct projection. Moreover, animals perform above chance in both inactivation experiments (V1 and SC), which could be also an effect of geniculate projections to HVAs (eg. Sincich et al. 2004). Could authors discuss different possibilities?

      The direct geniculate projection to HVAs is an interesting possibility that we had not considered yet. The dLGN in the mouse projects (apart from V1) mostly to the medial HVAs (Bienkowski et al. 2018). The lateral extrastriate regions receive only very sparse input from the dLGN. The medial HVAs, however, could be silenced without drop in performance in a simple visual detection task (Goldback et al., 2020). Therefore, it does not seem likely that this geniculate to HVAs projections would be important in the figure detection task.

      4) Interpretation of multisensory neurons is not clear. In Figure 5B, there is an example of neuron with two peaks of response. Authors speculate about the activity (pre-motor) but there is lack of clear measurement showing "multisensory" response of these neurons. Could these responses be related to the movement of the lick spout towards the mouth of the mouse (500 ms after the presentation of the stimulus)? Moreover, the number of "multisensory" units is very low (5 units, and 8 units).

      We have not done definitive test to show what these putative multisensory neurons exactly respond to. Because of their response was after the appearance of the lick and time locking to the trial start, rather than to the licking response, we think that is likely that these neurons responded to the appearance of the spout. There might have been visual, auditory, vibrational or touch clues to which these neurons respond. We believe it is interesting for the reader to know that there is class of neurons in the sSC that did not show a visual stimulus but was time locked to the trial. This was the reason that we had included this figure in the manuscript. However, given the reviewers comments we have decided to move the figure and accompanying text to a figure supplement (Figure 2—figure supplement 1) in order to not distract from the main message of the manuscript.

    1. One had betterd1e/1ghtrngagainstrn1ust,cethan to die likea dogor a rat in a trap

      I agree with this but at the same time, I would like to share my own opinions on this. Yes, you should fight for what's right, but at the same time, one must always have a plan for the battle that they're stepping into, instead of diving in head first.

    1. I cannot think of any city more commendable for the habits of its citizens in attending church, in observing the divine festivals, in giving alms, in providing hospitality, in formalizing betrothals, in contracting marriages, in celebrating weddings, in throwing banquets, in keeping guests entertained, as well as in attention to the burial and funeral needs of the deceased.

      When looking at all kinds of religions, no matter what their beliefs, values, and traditions are. People who believe and worship a specific religion believe that the most honorable acts one can do then to give themselves to the religion and carry its values and traditions with their head held high.

    1. Deafness is the partial or complete inability to hear. There are two main types of deafness. Conductive hearing loss is when sound fails to reach the cochlea. Causes for conductive hearing loss include blockage of the ear canal, a hole in the tympanic membrane, or problems with the ossicles. However, sensorineural hearing loss is the most common form of hearing loss. Sensorineural hearing loss occurs when neural signals from the cochlea fail to be transmitted to the brain, and can be caused by many factors, such as aging, head or acoustic trauma, infections and diseases

      Which one is more common for old people ?

    2. However, sensorineural hearing loss is the most common form of hearing loss. Sensorineural hearing loss occurs when neural signals from the cochlea fail to be transmitted to the brain, and can be caused by many factors, such as aging, head or acoustic trauma, infections and diseases (such as measles or mumps), medications, environmental effects such as noise exposure (Figure 5.26), and toxins (such as those found in certain solvents and metals). Some people are born without hearing, which is known as congenital deafness. This could be inherited or due to birth complications, prematurity, or infections during pregnancy. Most states mandate that babies have their hearing tested shortly after birth (Penn State Health, 2023). This increases the likelihood that problems can be corrected within the critical period for the development of hearing, which is important for language development.

      It is one of the most common forms of permanent hearing loss and is often referred to as nerve-related or inner ear hearing loss

    1. I got grouped with the gifted students in elementary and middle school, and my teachers drilled into my head that I was to become a doctor and attend Harvard University.

      New paragraph maybe? Not sure the hard pivot from film to family/college is the smoothest option

    1. What is that sound high in the air Murmur of maternal lamentation Who are those hooded hordes swarming

      The repetition of "what is" and "who are" in this stanza illuminates a fragmented series of lines, as if working through the an internalized thought process in someone's head. Also the hood imagery includes this obfuscated image that separates the internal from the external, as if the hood is an extension of an individuals cloudy perspective.

    2. Sighs, short and infrequent, were exhaled, And each man fixed his eyes before his feet

      ZOMBIE: The fixation on the feet of each man shows that each each man connects to my motif because they are showing signs of a disembodied spirit, regular people would have their eyes/head up to see what's ahead of them but now these people doesn't have to worry about whats ahead of them.

    3. Thank you. If you see dear Mrs. Equitone, Tell her I bring the horoscope myself: One must be so careful these days.     Unreal City, Under the brown fog of a winter dawn, A crowd flowed over London Bridge, so many, I had not thought death had undone so many. Sighs, short and infrequent, were exhaled, And each man fixed his eyes before his feet. Flowed up the hill and down King William Street, To where Saint Mary Woolnoth kept the hours With a dead sound on the final stroke of nine. There I saw one I knew, and stopped him, crying: “Stetson! “You who were with me in the ships at Mylae! “That corpse you planted last year in your garden, “Has it begun to sprout? Will it bloom this year? “Or has the sudden frost disturbed its bed? “Oh keep the Dog far hence, that’s friend to men, “Or with his nails he’ll dig it up again! “You! hypocrite lecteur!—mon semblable,—mon frère!”                 II. A Game of Chess   The Chair she sat in, like a burnished throne, Glowed on the marble, where the glass Held up by standards wrought with fruited vines From which a golden Cupidon peeped out (Another hid his eyes behind his wing) Doubled the flames of sevenbranched candelabra Reflecting light upon the table as The glitter of her jewels rose to meet it, From satin cases poured in rich profusion; In vials of ivory and coloured glass Unstoppered, lurked her strange synthetic perfumes, Unguent, powdered, or liquid—troubled, confused And drowned the sense in odours; stirred by the air That freshened from the window, these ascended In fattening the prolonged candle-flames, Flung their smoke into the laquearia, Stirring the pattern on the coffered ceiling. Huge sea-wood fed with copper Burned green and orange, framed by the coloured stone, In which sad light a carvéd dolphin swam. Above the antique mantel was displayed As though a window gave upon the sylvan scene The change of Philomel, by the barbarous king So rudely forced; yet there the nightingale Filled all the desert with inviolable voice And still she cried, and still the world pursues, “Jug Jug” to dirty ears. And other withered stumps of time Were told upon the walls; staring forms Leaned out, leaning, hushing the room enclosed. Footsteps shuffled on the stair. Under the firelight, under the brush, her hair Spread out in fiery points Glowed into words, then would be savagely still.     “My nerves are bad tonight. Yes, bad. Stay with me. “Speak to me. Why do you never speak. Speak.   “What are you thinking of? What thinking? What? “I never know what you are thinking. Think.”     I think we are in rats’ alley Where the dead men lost their bones.     “What is that noise?”                           The wind under the door. “What is that noise now? What is the wind doing?”                            Nothing again nothing.                                                         “Do “You know nothing? Do you see nothing? Do you remember “Nothing?”          I remember Those are pearls that were his eyes. “Are you alive, or not? Is there nothing in your head?”                                                                            But O O O O that Shakespeherian Rag— It’s so elegant So intelligent “What shall I do now? What shall I do?” “I shall rush out as I am, and walk the street “With my hair down, so. What shall we do tomorrow? “What shall we ever do?”                                                The hot water at ten. And if it rains, a closed car at four. And we shall play a game of chess, Pressing lidless eyes and waiting for a knock upon the door.     When Lil’s husband got demobbed, I said— I didn’t mince my words, I said to her myself, HURRY UP PLEASE ITS TIME Now Albert’s coming back, make yourself a bit smart. He’ll want to know what you done with that money he gave you To get yourself some teeth. He did, I was there. You have them all out, Lil, and get a nice set, He said, I swear, I can’t bear to look at you. And no more can’t I, I said, and think of poor Albert, He’s been in the army four years, he wants a good time, And if you don’t give it him, there’s others will, I said. Oh is there, she said. Something o’ that, I said. Then I’ll know who to thank, she said, and give me a straight look. HURRY UP PLEASE ITS TIME If you don’t like it you can get on with it, I said. Others can pick and choose if you can’t. But if Albert makes off, it won’t be for lack of telling. You ought to be ashamed, I said, to look so antique. (And her only thirty-one.) I can’t help it, she said, pulling a long face, It’s them pills I took, to bring it off, she said. (She’s had five already, and nearly died of young George.) The chemist said it would be all right, but I’ve never been the same. You are a proper fool, I said. Well, if Albert won’t leave you alone, there it is, I said, What you get married for if you don’t want children? HURRY UP PLEASE ITS TIME Well, that Sunday Albert was home, they had a hot gammon, And they asked me in to dinner, to get the beauty of it hot— HURRY UP PLEASE ITS TIME HURRY UP PLEASE ITS TIME Goonight Bill. Goonight Lou. Goonight May. Goonight. Ta ta. Goonight. Goonight. Good night, ladies, good night, sweet ladies, good night, good night.                 III. The Fire Sermon     The river’s tent is broken: the last fingers of leaf Clutch and sink into the wet bank. The wind Crosses the brown land, unheard. The nymphs are departed. Sweet Thames, run softly, till I end my song. The river bears no empty bottles, sandwich papers, Silk handkerchiefs, cardboard boxes, cigarette ends Or other testimony of summer nights. The nymphs are departed. And their friends, the loitering heirs of city directors; Departed, have left no addresses. By the waters of Leman I sat down and wept . . . Sweet Thames, run softly till I end my song, Sweet Thames, run softly, for I speak not loud or long. But at my back in a cold blast I hear The rattle of the bones, and chuckle spread from ear to ear.   A rat crept softly through the vegetation Dragging its slimy belly on the bank While I was fishing in the dull canal On a winter evening round behind the gashouse Musing upon the king my brother’s wreck And on the king my father’s death before him. White bodies naked on the low damp ground And bones cast in a little low dry garret, Rattled by the rat’s foot only, year to year. But at my back from time to time I hear The sound of horns and motors, which shall bring Sweeney to Mrs. Porter in the spring. O the moon shone bright on Mrs. Porter And on her daughter They wash their feet in soda water Et O ces voix d’enfants, chantant dans la coupole!   Twit twit twit Jug jug jug jug jug jug So rudely forc’d. Tereu   Unreal City Under the brown fog of a winter noon Mr. Eugenides, the Smyrna merchant Unshaven, with a pocket full of currants C.i.f. London: documents at sight, Asked me in demotic French To luncheon at the Cannon Street Hotel Followed by a weekend at the Metropole.   At the violet hour, when the eyes and back Turn upward from the desk, when the human engine waits Like a taxi throbbing waiting, I Tiresias, though blind, throbbing between two lives, Old man with wrinkled female breasts, can see At the violet hour, the evening hour that strives Homeward, and brings the sailor home from sea, The typist home at teatime, clears her breakfast, lights Her stove, and lays out food in tins. Out of the window perilously spread Her drying combinations touched by the sun’s last rays, On the divan are piled (at night her bed) Stockings, slippers, camisoles, and stays. I Tiresias, old man with wrinkled dugs Perceived the scene, and foretold the rest— I too awaited the expected guest. He, the young man carbuncular, arrives, A small house agent’s clerk, with one bold stare, One of the low on whom assurance sits As a silk hat on a Bradford millionaire. The time is now propitious, as he guesses, The meal is ended, she is bored and tired, Endeavours to engage her in caresses Which still are unreproved, if undesired. Flushed and decided, he assaults at once; Exploring hands encounter no defence; His vanity requires no response, And makes a welcome of indifference. (And I Tiresias have foresuffered all Enacted on this same divan or bed; I who have sat by Thebes below the wall And walked among the lowest of the dead.) Bestows one final patronising kiss, And gropes his way, finding the stairs unlit . . .   She turns and looks a moment in the glass, Hardly aware of her departed lover; Her brain allows one half-formed thought to pass: “Well now that’s done: and I’m glad it’s over.” When lovely woman stoops to folly and Paces about her room again, alone, She smoothes her hair with automatic hand, And puts a record on the gramophone.   “This music crept by me upon the waters” And along the Strand, up Queen Victoria Street. O City city, I can sometimes hear Beside a public bar in Lower Thames Street, The pleasant whining of a mandoline And a clatter and a chatter from within Where fishmen lounge at noon: where the walls Of Magnus Martyr hold Inexplicable splendour of Ionian white and gold.                  The river sweats                Oil and tar                The barges drift                With the turning tide                Red sails                Wide                To leeward, swing on the heavy spar.                The barges wash                Drifting logs                Down Greenwich reach                Past the Isle of Dogs.                                  Weialala leia                                  Wallala leialala                  Elizabeth and Leicester                Beating oars                The stern was formed                A gilded shell                Red and gold                The brisk swell                Rippled both shores                Southwest wind                Carried down stream                The peal of bells                White towers                                 Weialala leia                                 Wallala leialala   “Trams and dusty trees. Highbury bore me. Richmond and Kew Undid me. By Richmond I raised my knees Supine on the floor of a narrow canoe.”   “My feet are at Moorgate, and my heart Under my feet. After the event He wept. He promised a ‘new start.’ I made no comment. What should I resent?”   “On Margate Sands. I can connect Nothing with nothing. The broken fingernails of dirty hands. My people humble people who expect Nothing.”                        la la   To Carthage then I came   Burning burning burning burning O Lord Thou pluckest me out O Lord Thou pluckest   burning                 IV. Death by Water   Phlebas the Phoenician, a fortnight dead, Forgot the cry of gulls, and the deep sea swell And the profit and loss.                                    A current under sea Picked his bones in whispers. As he rose and fell He passed the stages of his age and youth Entering the whirlpool.                                    Gentile or Jew O you who turn the wheel and look to windward, Consider Phlebas, who was once handsome and tall as you.                 V. What the Thunder Said     After the torchlight red on sweaty faces After the frosty silence in the gardens After the agony in stony places The shouting and the crying Prison and palace and reverberation Of thunder of spring over distant mountains He who was living is now dead We who were living are now dying With a little patience   Here is no water but only rock Rock and no water and the sandy road The road winding above among the mountains Which are mountains of rock without water If there were water we should stop and drink Amongst the rock one cannot stop or think Sweat is dry and feet are in the sand If there were only water amongst the rock Dead mountain mouth of carious teeth that cannot spit Here one can neither stand nor lie nor sit There is not even silence in the mountains But dry sterile thunder without rain There is not even solitude in the mountains But red sullen faces sneer and snarl From doors of mudcracked houses                                       If there were water    And no rock    If there were rock    And also water    And water    A spring    A pool among the rock    If there were the sound of water only    Not the cicada    And dry grass singing    But sound of water over a rock    Where the hermit-thrush sings in the pine trees    Drip drop drip drop drop drop drop    But there is no water   Who is the third who walks always beside you? When I count, there are only you and I together But when I look ahead up the white road There is always another one walking beside you Gliding wrapt in a brown mantle, hooded I do not know whether a man or a woman —But who is that on the other side of you?   What is that sound high in the air Murmur of maternal lamentation Who are those hooded hordes swarming Over endless plains, stumbling in cracked earth Ringed by the flat horizon only What is the city over the mountains Cracks and reforms and bursts in the violet air Falling towers Jerusalem Athens Alexandria Vienna London Unreal   A woman drew her long black hair out tight And fiddled whisper music on those strings And bats with baby faces in the violet light Whistled, and beat their wings And crawled head downward down a blackened wall And upside down in air were towers Tolling reminiscent bells, that kept the hours And voices singing out of empty cisterns and exhausted wells.   In this decayed hole among the mountains In the faint moonlight, the grass is singing Over the tumbled graves, about the chapel There is the empty chapel, only the wind’s home. It has no windows, and the door swings, Dry bones can harm no one. Only a cock stood on the rooftree Co co rico co co rico In a flash of lightning. Then a damp gust Bringing rain   Ganga was sunken, and the limp leaves Waited for rain, while the black clouds Gathered far distant, over Himavant. The jungle crouched, humped in silence. Then spoke the thunder DA Datta: what have we given? My friend, blood shaking my heart The awful daring of a moment’s surrender Which an age of prudence can never retract By this, and this only, we have existed Which is not to be found in our obituaries Or in memories draped by the beneficent spider Or under seals broken by the lean solicitor In our empty rooms DA Dayadhvam: I have heard the key Turn in the door once and turn once only We think of the key, each in his prison Thinking of the key, each confirms a prison Only at nightfall, aethereal rumours Revive for a moment a broken Coriolanus DA Damyata: The boat responded Gaily, to the hand expert with sail and oar The sea was calm, your heart would have responded Gaily, when invited, beating obedient To controlling hands                                     I sat upon the shore Fishing, with the arid plain behind me Shall I at least set my lands in order? London Bridge is falling down falling down falling down Poi s’ascose nel foco che gli affina Quando fiam uti chelidon—O swallow swallow Le Prince d’Aquitaine à la tour abolie These fragments I have shored against my ruins Why then Ile fit you. Hieronymo’s mad againe. Datta. Dayadhvam. Damyata.                   Shantih     shantih     shantih Archives October 2023 September 2023 August 2023 Categories Uncategorized Course Info Mystery Text Assignment (Due: 9/26) Syllabus General Info How to annotate Texts Texts Alain Locke Alice Dunbar-Nelson Allen Ginsberg, “Howl” (1956) Charlotte Perkins Gilman, “The Yellow Wallpaper” (1892) Claude McKay Edgar Lee Masters Edna St. Vincent Millay Edwin Arlington Robinson Ernest Hemingway, In Our Time Ezra Pound Georgia Douglas Johnson Gertrude Stein Gwendolyn B. Bennett Helene Johnson Henry Adams, “The Dynamo and the Virgin” John Dos Passos, “The Body of an American” Langston Hughes Langston Hughes, “The Negro Artist and the Racial Mountain” (1926) Lawrence Ferlinghetti Paul Laurence Dunbar Philip Levine, “They Feed They Lion” (1972) Radical Poetry Robert Frost Sterling Brown T.S. Eliot “The Waste Land” (1922) W.E.B. Du Bois, “Of Our Spiritual Strivings” William Carlos Williams

      Has this entire poem been the conversation of the speaker receiving a taro card reading?

    1. all so you can create a solution which helps solve a problem they face.

      When it comes to the students in my class, I like to make weekly goals on something I am observing, then come up with a solution on how to reach the goal. It could be as simple as "A is having difficulty at lunch. It could possibly be the noise. We will try noise eliminating head phones." Sometimes the solutions don't work, but it is all trial and error.

    1. 1. White rat suddenly taken from the basket and presented to Albert. He began to reach for rat with left hand. Just as his hand touched the animal the bar was struck immediately behind his head. The infant jumped violently and fell forward, burying his face in the mattress. He did not cry, however. 2. Just as the right hand touched the rat the bar was again struck. Again the infant jumped violently, fell forward and began to whimper.

      The study demonstrated the phenomenon of stimulus generalization, showing that the conditioned fear response could transfer to similar stimuli (in this case, a rabbit and a dog).

    2. In recent literature various speculations have been entered into concerning the possibility of conditioning various types of emotional response, but direct experimental evidence in support of such a view has been lacking. If the theory advanced by Watson and Morgan [1] to the effect that in infancy the original emotional reaction patterns are few, consisting so far as observed of fear, rage and love, then there must be some simple method by means of which the range of stimuli which can call out these emotions and their compounds is greatly increased. Otherwise, complexity in adult response could not be accounted for. These authors without adequate experimental evidence advanced the view that this range was increased by means of conditioned reflex factors. It was suggested there that the early home life of the child furnishes a laboratory situation for establishing conditioned emotional responses. The present authors have recently put the whole matter to an experimental test. Experimental work had been done so far on only one child, Albert B. This infant was reared almost from birth in a hospital environment; his mother was a wet nurse in the Harriet Lane Home for Invalid Children. Albert's life was normal: he was healthy from birth and one of the best developed youngsters ever brought to the hospital, weighing twenty-one pounds at nine months of age. He was on the whole stolid and unemotional. His stability was one of the principal reasons for using him as a subject in this test. We [p.2] felt that we could do him relatively little harm by carrying out such experiments as those outlined below. At approximately nine months of age we ran him through the emotional tests that have become a part of our regular routine in determining whether fear reactions can be called out by other stimuli than sharp noises and the sudden removal of support. Tests of this type have been described by the senior author in another place.[2] In brief, the infant was confronted suddenly and for the first time successively with a white rat, a rabbit, a dog, a monkey, with masks with and without hair, cotton wool, burning newspapers, etc. A permanent record of Albert's reactions to these objects and situations has been preserved in a motion picture study. Manipulation was the most usual reaction called out. At no time did this infant ever show fear in any situation. These experimental records were confirmed by the casual observations of the mother and hospital attendants. No one had ever seen him in a state of fear and rage. The infant practically never cried. Up to approximately nine months of age we had not tested him with loud sounds. The test to determine whether a fear reaction could be called out by a loud sound was made when he was eight months, twenty-six days of age. The sound was that made by striking a hammer upon a suspended steel bar four feet in length and three-fourths of an inch in diameter. The laboratory notes are as follows: One of the two experimenters caused the child to turn its head and fixate her moving hand ; the other stationed back of the child, struck the steel bar a sharp blow. The child started violently, his breathing was checked and the arms were raised in a characteristic manner. On the second stimulation the same thing occurred, and in addition the lips began to pucker and tremble. On the third stimulation the child broke into a sudden crying fit. This is the first time an emotional situation in the laboratory has produced any fear or even crying in Albert. [p.3] We had expected just these results on account of our work with other infants brought up under similar conditions. It is worth while to call attention to the fact that removal of support (dropping and jerking the blanket upon which the infant was lying) was tried exhaustively upon this infant on the same occasion. It was not effective in producing the fear response. This stimulus is effective in younger children. At what age such stimuli lose their potency in producing fear is not known. Nor is it known whether less placid children ever lose their fear of them. This probably depends upon the training the child gets. It is well known that children eagerly run to be tossed into the air and caught. On the other hand it is equally well known that in the adult fear responses are called out quite clearly by the sudden removal of support, if the individual is walking across a bridge, walking out upon a beam, etc. There is a wide field of study here which is aside from our present point. The sound stimulus, thus, at nine months of age, gives us the means of testing several important factors. I. Can we condition fear of an animal, e.g., a white rat, by visually presenting it and simultaneously striking a steel bar? II. If such a conditioned emotional response can be established, will there be a transfer to other animals or other objects? III. What is the effect of time upon such conditioned emotional responses? IV. If after a reasonable period such emotional responses have not died out, what laboratory methods can be devised for their removal?

      The paper begins by highlighting the lack of direct experimental evidence concerning the conditioning of emotional responses, a crucial topic in the history of psychology. The authors acknowledge the importance of understanding how emotions, particularly fear, can be conditioned and their impact on later life.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We are grateful for the helpful comments of both reviewers and have revised our manuscript with them in mind.

      One of the main issues raised was that readers may by default assume that our models are correct. We in fact made it very clear in our discussion that the models are merely hypotheses that will need testing by “wet” experiments and we do not therefore agree that even readers unfamiliar with AF would assume that the models must be correct. It was also suggested that readers could be reassured by including extensive confidence estimates such as PAE plots. As it happens, every single model described in the manuscript had reasonably high PAE scores and more crucially the entire collection of output files, including PAE data, are readily accessible on Figshare at https://doi.org/10.6084/m9.figshare.22567318.v2, a fact that the reviewers appear to have overlooked. The Figshare link is mentioned three times in the manuscript. Embedding these data within the manuscript itself would in our view add even more details and we have therefore not included them in our revised manuscript. Likewise, it is rather simple for any reader to work out which part of a PAE matrix corresponds to an interaction observed in the corresponding pdb prediction. Besides which, it is our view that the biological plausibility and explanatory power of models is just as important as AF metrics in judging whether they may be correct, as is indeed also the case for most experimental work.

      Another important point was that the manuscript was too long and not readable. Yes, it is long and it could well be argued that we could have written a different type of manuscript, focusing entirely on what is possibly the simplest and most important finding, namely that our AF models suggest that in animal cells Wapl appears to form a quarternary complex with SA, Pds5, and Scc1 in a manner suggesting that a key function of Wapl’s conserved CTD is to sequester Scc1’s Nterminal domain after it has dissociated from Smc3. For right or for wrong, we decided that this story could not be presented on its own but also required 1) an explanation for how Scc1 is induced to dissociate from Smc3 in the first place and 2) how to explain that the quarternary complex predicted for animal cells was not initially predicted for fungi such as yeast. The yeast situation was an exception that clearly needed explaining if the theory was to have any generality and it turned out that delving into the intricate details of the genetics of releasing activity in yeast was eventually required and yielded valuable new insights. We also believe that our work on the recruitment of Eco/Esco acetyl transferases to cohesin and the finding that sororin binds to the Smc3/Scc1 interface also provided important insight into how releasing activity is regulated. We acknowledge that the paper is indeed long but do not think that it is badly written. It is above all a long and complex story that in our view reveals numerous novel insights into how cohesin’s association with chromosomes is regulated and have endeavoured to eliminate any excessive speculation. We feel it is not our fault that cohesin uses complex mechanisms.

      Notwithstanding these considerations, we have in fact simplified a few sections and removed one or two others but acknowledge that we have not made substantial cuts.

      It was pointed out that a key feature of our modelling, namely the predicted association of Wapl’s C-terminal domain with SA/Scc3’s CES is inconsistent with published biochemical data. The AF predictions for this interface are universally robust in all eukaryotic lineages and crucially fully consistent with published and unimpeachable genetic data. We note that any model that explains all findings is bound to be wrong for the very simple reason that some of these findings will prove to be incorrect. There is therefore an art in Science of judging which data must be explained and accommodated and which should be ignored. In this particular case, we chose to ignore the biochemistry. Time will tell whether our judgement proves correct.

      Last but not least, it was suggested that we might provide some experimental support for our proposed SA/Scc3-Pds5-Scc1-WaplC quaternary complex. We are in fact working on this by introducing cysteine pairs (that can be crosslinked in cells) into the proposed interfaces but decided that such studies should be the topic of a subsequent publication. It would be impossible with the resources available to our labs to follow up all of the potential interactions and we therefore decided to exclude all such experiments.

      We are grateful for the detailed comments provided by both reviewers, many of which were very helpful, and in many but not all cases have amended the manuscript accordingly.

      With regard to the more specific comments:

      Reviewer #1 (Recommendations For The Authors):

      1) One concern is that observed interfaces/complexes arise because AF-multimer will aim to pack exposed, conserved and hydrophobic surfaces or regions that contain charge complementarity. The risk is that pairwise interaction screens can result in false positive & non-physiological interactions. It is therefore important to report the level of model confidence obtained for such AF calculations:

      A) The authors should color the key models according to pLDDT scores obtained as reported by AF. This would allow the reader to judge the estimated accuracy of the backbone and side chain rotamers obtained. At least for the key models and interactions it would be important to know if the pLDDT score is >90 (Correct backbone and most rotamers) or >70 (only backbone is correct).

      B) It would also be important to report the PAE plots to allow estimation of the expected position error for most of the important interactions. pLDDT coloring and PEA plots can be shown side-by-side as shown in other published data (e.g. https://pubmed.ncbi.nlm.nih.gov/35679397/ (Supplementary data)

      C) The authors should include a Table showing the confidence of template modeling scores for the predicted protein interfaces as ipTM, ipTM+pTM as reported by AlphaFold-multimer. Ideally, they would also include DockQ scores but this may not be essential. Addition of such scores would help classification into Incorrect, Acceptable or of high quality. For example, line 1073 et seq the authors show a model of a SCC1SA and ESCO1 complex (Fig. 37). Are the modeling scores for these interfaces high? It does not help that the authors show cartoons without side chains? Can the authors provide a close-up view of the two interfaces? Are the amino acids are indeed packed in a manner expected for a protein interface? Can we exclude the possibility that the prediction is obtained merely because the sequence segments (e.g. in ESCO1 & ESCO2) are hydrophobic and conserved?

      We do not agree that including this level of detail to the text/figures of the manuscript would be suitable. All the relevant data for those who may be sceptical about the models are readily available at https://doi.org/10.6084/m9.figshare.22567318.v2. In our view, the cartoon versions of the models are easier for a reader to navigate. Anyone interested in the molecular details can look at the models directly.

      Importantly, no amount of statistical analysis can completely validate these models. What is required are further experiments, which will be the topic of further work from our and I dare from other laboratories.

      D) When they predict an interaction between the SA2:SCC1 complex and Sororin's FGF motif, they find that only 1/5 models show an interaction and that the interaction is dissimilar to that seen of CTCF. Again, it would be helpful to know about modeling scores. Can they show a close-up view of the SORORIN FGF binding interface to see if a realistic binding mode is obtained? Can they indicate the relevant region on the PAE plot?

      Given that AF greatly favours other interactions of Sororin’s FGF motif over its interaction with SA2-Scc1, we do not agree that dwelling on the latter would serve any purpose.

      2) Line 996: AF predicts with high confidence an interaction between Eco1 & SMC3hd. What are the ipTM (& DockQ if available) scores. Would the interface score High, Medium or Acceptable?

      As mentioned, see https://doi.org/10.6084/m9.figshare.22567318.v2.

      3) Line 1034 et seq: Eco1/ESCO1/ESCO2 interaction with PDS5. Interface scores need to be shown to determine that the models shown are indeed likely to occur. If these interactions have low model confidence, Fig. 36 and discussion around potential relevance to PDS5-Eco1 orientation relative to the SMC3 head remains highly speculative and could be expunged.

      See https://doi.org/10.6084/m9.figshare.22567318.v2. It should be clear that the predictions are very similar in fungi and animals. Crucially, we know that Pds5 is essential for acetylation in vivo, so the models appear plausible from a biological point of view.

      4) Considering the relatively large interface between ECO1 and SMC3, would the author consider the possibility that in addition to acetylating SMC3's ATPase domain, ECO1 remains bound to cohesin-DNA complex, as proposed for ESCO1 by Rahman et al (10.1073/pnas.1505323112)?

      This is certainly possible but we would not want to indulge in such speculation.

      5) E.g. Line 875 but also throughout the text: As there is no labeling of the N- and C-termini in the Figures, is frequently unclear what the authors are referring to when they mention that AF models orient chains in a certain manner.

      Good point. This has been amended. However, the positions of N- and C- is all available at https://doi.org/10.6084/m9.figshare.22567318.v2.

      6) Fig19B: PAE plots: authors should indicate which chains correspond to A, B, C. Which segment corresponds to the TYxxxR[T/S]L motif? Can they highlight this section on the PAE plot?

      Good point and amended in the revised manuscript.

      Minor comments:

      1) Line 440: the WAPL YSR motif is not shown in Fig. 14A

      2) Line 691: Scc3 spelling error.

      3) Line 931: Sentence ending '... SCC3 (SCC3N).' requires citation.

      4) Line 1008: Figure reference seems wrong. It should read: Fig. 34A left and right. Fig. 34B does not contain SCC1.

      Many thanks for spotting these. Hopefully, all corrected.

      5) Fig. 41 can be removed as it shows the absence of the interaction of Sororin with SMC1:SCC1. Sufficient to mention in the text that Sororin does not appear to interact with SMC1:SCC1.

      This is possible but we decided to leave this as is.

      Reviewer #2 (Recommendations For The Authors):

      Minor points

      (1) Are there any predicted models in which one of the two dimer interfaces of the hinge is open when the coiled coils are folded back, as seen in the cryo-EM structure of human cohesin-NIPBL complex in the clamped state?

      No AF runs ever predicted half opened hinges. It is possible that the introduction of mutations in one of the two interfaces might reveal a half-opened state and we ought to try this. However, it would not be appropriate for this manuscript, we believe.

      (2) Structures of the SA-Scc1 CES bound to [Y/F]xF motifs from Sgo1 and CTCF have been reported, suggesting that a similar motif could interact with SA/Scc3. Surprisingly, AF did not predict an interaction between Scc3/SA and Wapl FGF motifs, which only bind to the Pds5 WEST region. On the other hand, AF predicted interactions of the Sororin FGF motif with both Pds5 WEST and SA CES. Can the authors comment on this Wapl FGF binding specificity? What will happen if a Wapl fragment lacking the CTD is used in the prediction?

      This seems to be an academic point as the CTD is always present.

    2. Reviewer #1 (Public Review):

      There are a number of outstanding questions concerning how cohesin turnover on DNA is controlled by various accessory factors and how such turnover is controlled by post-translational modification. In this paper, Nasmyth et al. perform a series of AlphaFold structure predictions that aim to address several of these outstanding questions. Their structure predictions suggest that the release factor WAPL forms a ternary complex with PDS5 and SA/SCC3. This ternary complex appears to be able to bind the N-terminal end of SCC1, suggesting how formation of such a complex could stabilize an open state of the cohesin ring. Additional calculations suggest how the Eco/ESCO acetyltransferases and Sororin engage the SMC3 head domain presumably to protect against WAPL-mediated release.

      This work thus demonstrates the power of AF prediction methods and how they can lead to a number of interesting and testable hypotheses that can transform our understanding of cohesin regulation. These findings require orthogonal experimental validation, but authors argue convincingly that such validation should not be a pre-requisite to publication.

      In their revised version, the authors did not systematically include model confidence scores, and it therefore remains difficult for the reader to evaluate the reliability of the models obtained. The authors correctly point out that such metrics are available on figshare. It is therefore possible to obtain such information. The caveat is that it remains to the user to identify and extract the relevant information. While they claim that they have labeled N- and C-termini in their figures, no such labeling can be seen in the revised version. Addition of such labels, at least for some of the figures, would help the user to navigate the models.

      The authors have now updated figure legends to indicate which protein is referred to by the chain labels shown in PAE plots.

      It is exciting to see AF-multimer predictions being applied to cohesin. As some of the reported interactions are not universally conserved and some involve relatively small interfaces the possibility arises that these interfaces show poor or borderline confidence scores. As some of these interfaces map to mutants that have previously been obtained by hypothesis-free genetic screens and mutational analyses, they appear nevertheless valid. Thus, an important point to make is that even interfaces that show modest confidence scores may turn out to be valid while others may be not.

    1. Reviewer #1 (Public Review):

      Overall, the experiments are well-designed and the results of the study are exciting. We have one major concern, as well as a few minor comments that are detailed in the following.

      Major:<br /> 1. The authors suggest that "Visuomotor experience induces functional and structural plasticity of chandelier cells". One puzzling thing here, however, is that mice constantly experience visuomotor coupling throughout life which is not different from experience in the virtual tunnel. Why do the authors think that the coupled experience in the VR induces stronger experience-dependent changes than the coupled experience in the home cage? Could this be a time-dependent effect (e.g. arousal levels could systematically decrease with the number of head-fixed VR sessions)? The control experiment here would be to have a group of mice that experience similar visual flow without coupling between movement and visual flow feedback. Either change would be experience-dependent of course, but having the "visuomotor experience dependent" in the title might be a bit strong given the lack of control for that. We would suggest changing the pitch of the manuscript to one of the conclusions the authors can make cleanly (e.g. Figure 4).

      Minor:<br /> 2. "ChCs shape the communication hierarchy of cortical networks providing visual and contextual information." We are not sure what this means.

      3. "respond to locomotion and visuomotor mismatch, indicating arousal-related activity" This is not clear. We think we understand what the authors mean but would suggest rephrasing.

      4. 'based on morphological properties revealed that 87% (287/329) of labeled neurons were ChCs" Please specify the morphological properties used for the classification somewhere in the methods.

      5. We may have missed this - in the patch clamp experiment (Fig.1 H-K), please add information about how many mice/slices these experiments were performed in.

      6. "These findings suggest that the rabies-labeled L1-4 neurons providing monosynaptic input to ChCs are predominantly inhibitory neurons". We are not sure this conclusion is warranted given the sparse set of neurons labelled and the low number of cells recorded in the paired patch experiment. We would suggest properly testing (e.g. stain for GABA on the rabies data) or rephrasing.

      7. Figure 2E. A direct comparison of dF/F across different cell types can be subject to a problematic interpretation. The transfer function from spikes to calcium can be different from cell type to cell type. Additionally, the two cell populations have been marked with different constructs (despite the fact that it's the same GECI) further reducing the reliability of dF/F comparisons. We would recommend using a different representation here that does not rely on a direct comparison of dF/F responses (e.g. like the "response strength" used in Figure 3B). Assuming calcium dynamics are different in ChCs and PyCs - this similarity in calcium response is likely a coincidence.

      8. If ChCs are more strongly driven by locomotion and arousal, then it's a bit counterintuitive that at the beginning of the visual corridor when locomotion speed consistently increases, the activity of ChCs consistently decreases. This does not appear to be driven by suppression by visual stimuli as it is present also in the first and last 20cm of the tunnel where there are no visual stimuli. How do the authors explain this?

      9. The authors mention that "ChC responses underwent sensory-evoked plasticity during the repeated visual exposure, even though the visual stimuli were different from those encountered during training in the virtual tunnel". How would this work? And would this mean all visual responses are reduced? What is special about the visual experience in the virtual tunnel? It does not inherently differ from visual experience in the home cage, given that the test stimuli (full field gratings) are different from both.

      10. Just as a point to consider for future experiments: For the open-loop control experiments, the visual flow is constant (20cm/s) - ideally, this would be a replay of the running speed the mouse previously generated to match statistics.

      11. We would recommend specifying the parameters used for neuropil correction in the methods section.

      12. If we understand correctly, the F0 used for the dF/F calculation is different from that used for division. Why is this?

      13. Authors compare neuronal responses using "baseline-corrected average". Please specify the parameters of the baseline correction (i.e. what is used as baseline here).

    1. I could see the stories about our lives forming in the writer's head.

      The grandfather wants the writer to immortalize the Howlands because he never achieved greatness as a writer himself and lost most of his family's history to the "carpetbaggers."

    1. Introduction Migration from mountainous areas is a common phenomenon that occurs in different parts of the world. As mountain areas around the world differ in political and cultural structure some reasons for migration may occur in different parts of the world, while some of them may be occurring only in specific areas. To contemplate this phenomenon, we ask ourselves: What are the common and respectively the exceptional reasons for migration from mountainous areas of Switzerland and Georgia?Migration from mountains in Switzerland Due to the early clock making and the textile industries, many people immigrated to alpine and pre-alpine areas since the end of the 17th century. The collapse of the proto-industrial activities led to a decrease of people in these areas (Head-König 2011). Until today, many people are leaving the mountain areas and are moving to the flatlands to settle there in the agglomeration (Camenisch & Debarbieux 2011). Huge migration from economical weak and peripheric areas in Switzerland, especially mountain areas are still reality although there are regional policies and many transfers from economic strong regions. Especially remote, sparsely populated regions with no great tourism potential are affected by migration from mountains (Wahl 2006). One of the main reasons for the migration from mountains to urban centers is the lack of working perspectives outside the fields of farming or tourism in the mountains. Many jobs are just not available in the mountains so young people leave for bigger cities where they have more opportunities (Blick 2021).Migration from mountains in Georgia Georgia is a country in which more than 65% of the territory is occupied by mountainous areas; this determines the importance of mountainous regions of the country in terms of sustainable development. (Elizbarashvili 2016)In Georgia like Switzerland, over the years, thousands of people have emptied the highland villages. They left their permanent residence and moved in other cities, because of better conditions, livelihoods, and privileges. In Georgia, reasons for mountain migration are for example: labor and low income, unemployment, lack of service area, lack of access to education, environmental degradation and damaged roads that often make it hard to reach the destination, especially during winter. (Kollmair & Banerjee 2011)Conclusion Finally, we have seen that migration from mountain regions is a common phenomenon in Switzerland and Georgia. Although the historical background and the political structures differ, we can see many common reasons for migration. We see that the main reasons for migration seem to be the better opportunities for jobs or education in cities or agglomerations. Although tourism offers great possibilities for mountainous regions, there seem to be economic benefits by leaving mountain regions. Still, there are reasons that only occur in one of the countries specifically. For example, infrastructure and environmental degradation seem to play a more important role in Georgia than in Switzerland.

      ბლოგი,,მთის მიგრაცია შვეიცარიასა და საქართველოში"მომზადებულია ციურიხის უნივერსიტეტისა და თბილისის სახელმწიფო უნივერსიტეტის სტუდენტების:ხატია გორგიშელის,თიმონ დუფნერისა და ანნიკა სპაარის კოლაბორაციით. აუცილებელია აღვნიშნით,რომ განსახილველი სტატია გამოქვეყნდა 2022 წელს და მასში მკვეთრად იკვეთება პრობლემა,კერძოდ, მიგრაცია ისეთ ქვეყნებში,როგორიცაა საქართველო და შვეიცარია. ბლოგის გაცნობის შედეგად,თამამად შეიძლება ითქვას,რომ მთიანი რეგიონებიდან მიგრაცია-არის ჩვეულებრივი და მეტად ბუნებრივი მოვლენა. მოგეხსენებათ,რომ შვეიცარია და საქართველო სრულიად განსხვავდება როგორც პოლიტიკური,ასევე კულტურულ ასპექტში. როგორც ბლოგიდან ირკვევა,ქვეყნებში მიგრაცია მე-17 საუკუნიდან იწყება,გამომწვევი მიზეზი ძალიან მასშტაბურია. მთიან რეგიონში მყოფი საზოგადოება საცხოვრებლად დაბლობს და ეკონომიკურად სტაბილურ ადგილს ირჩევს.ფაქტია,რომ ორივე ქყვეყანა მთიანი რეგიონია,მთაში მრავალი პრობლემა იკვეთება და შესაბამისად,ადამიანის მოთხოვნასთან ერთად აუცილებელია დაკმაყოფილებული იქნას ისეთი საჭიროებები,როგორიცაა:განათლების მიღება,სამუშაო სივრცეების არსებობა და ა.შ. ფაქტია,რომ აღნიშნული პრობლემის აღმოსაფხვრელად ახალგაზრდები მიგრაციას ამჯობინებენ. ერთ-ერთი მთავარი პუნქტი როგორც საქართველოში,ასევე შვეიცარიაში ახალგაზრდების რესურსის დაკარგვა/აუთვისებლობაა. ისინი ტოვებენ მუდმივ საცხოვრებელს და გადადიან იქ,სადაც მეტი შესაძლებლობა ექნებათ ფორმალური თუ არაფორმალური განათლების მისაღებად.მთიანი რეგიონი კი კარგავს ადამიანებს,რომლებიც მომავლისთვის,განვითარებისა და არსებობისთვის ყველაზე მეტად სჭირდება. აუცილებელია აღვნიშნოთ,რომ ახალგაზრდების მიგრაცია პრობლემას წარმოშობს როგორც სოფლებსა და რაიონებში,ასევე ქალაქში.შესაბამისად,პრობლემის აღმოსაფხვრელად აუცილებელია გადაწყვეტილებების მიღება მთიან რეგიონებში,რაც მოიცავს როგორც სამუშაო გარემოს შექმნას ,ასევე განათლებისთვის საჭირო რესურსების მოძიებასა და გამოყენებას ახალგაზრდების სასარგებლოდ.

    1. In che alcove, I curned my head left,no nghr, to see rhc skylight

      It's hard to not take her literally. It feels like she is burdened. However with the talk of 'sunlight', there seems to be hope. I want to believe so.

    1. A writer friend of mine suggests opening the jar and shooting them all in the head. But I think he’s a little angry, and I'm sure nothing like this would ever occur to you.

      I enjoy how the author's voice is evident throughout the article. It's a sort of "dark humor" situation that makes the article more entertaining. Using the word "shitty" in the title also gives insight to their writing style or voice.

    2. Almost all good writing begins with terrible first efforts. You need to start somewhere. Start by getting something— anything—down on paper. A friend of mine says that the first draft is the down draft—~you just get it down. The second draft is the up draft—you fix it up. You try to say what you have to say more accurately. And the third draft is the dental draft, where you check every tooth, to see if it’s loose or cramped or decayed,

      Going through the process of writing multiple drafts each round helps you clean up your piece, but the first draft is crucial to get all the ideas and thoughts that are rambling in your head out so you have somewhere to start.

    1. BEAUDRICOURT. Well, what is it? What does she want? What is it you want, youinfernal nuisance? What’s this nonsensical story I hear-Joan collides head first with Beaudricourt’s great paunch. He is half winded, gives a yellof pain, grabs her by the arm and lifis her level with his nose, apoplectic with rage.What the devil do you want, you horrible mosquito? What the devil do you mean, playingthe fool outside my gates for three days on end? What the devil are these tales you’ve been tellingthe guards until their eyes pop out as far as their noses?JOAN (breathless with her running and poised on tip-toe in the arms of the giant). | want ahorse, my lord, a man’s clothes, and an escort, to go to Chinon to see his highness the Dauphin.BEAUDRICOURT. And my boot, you want that, too, of course?JOAN. If you like, my lord, and a good clout, as long as I get the horse as well.

      Beat 1: Beaudricourt - to resolve the issue of Joan annoying his guards in order to restore status quo. He not only wants to do away with Joan, he also is very curious of why she has gone to all the trouble of bothering his guards for three days.

      Joan - to gain an audience with Beaudricourt in order to obtain a horse, men's armor, and an escort to Chinon. Joan believes the sire is the only one who will grant her requests and give her the mount, supplies, and assistance she needs, because the Archangel told her he would.

      CC: Trigger: Beaudricourt explains to Joan how most young girls get what they want from him.

      Heap: Joan, in her innocence, does not realize what Beaudricourt is saying, and tells him she was sent by an angel.

    1. Vu Squad, a Las Vegas-based group with more than 900,000 followers on TikTok that makes videos staging various, sure-to-go-viral scenarios, such as airplane altercations or pregnancy reveals. The account is seemingly working with a fairly limited budget, as videos frequently recycle actors, sets, and even costumes; the woman who plays the Karen in the restaurant clip, for instance, appears in a number of other Vu Squad videos, such as one where she can be seen berating a fellow airline passenger. Rolling Stone was able to identify her as a Las Vegas-based actor who has Paul Vu, the head of a company called Paul Vu Media, tagged in her Instagram bio.

      Information about the people who posted the viral video that is used as the example for this argument, they are a popular group that posts many different clips that are likely to be popular but are also staged for entertainment.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We appreciate very much the comments and suggestions on our manuscript "Cylicins are a structural component of the sperm calyx being indispensable for male fertility in mice and human". According to the comments, we performed a series of further experiments, re-worded and re-wrote several paragraphs and re-structured the manuscript according to the reviewers’ comment. We think that the manuscript is now improved and are looking forward to the further evaluations. We provide a point by point response to all comments and have prepared a version.

      Recommendations for the authors:

      Editor’s comment:

      1) As pointed out by all three reviewers, it is critical to show the specificity of the antibodies used. The authors should clarify how the specificity of antibodies is tested. Western blot analysis to show the absence of the protein in the knockout is essential.

      As suggested by all reviewers, we additionally performed Western Blot analysis on cytoskeletal protein fractions to further verify the specificity of generated antibodies and the generation of functional knockout alleles. Results nicely confirm the results of the IF staining, however, both anti-bodies detected the bands lower than the predicted molecular weight. In addition, Mass Spectrometry was performed to search for the presence of peptides in the cytoskeletal protein fractions. The paragraph reads now as follows:

      Line 127-134: Additionally, Western Blot analyses confirmed the absence of CYLC1 and CYLC2 in cytoskeletal protein fractions of the respective knockout (Fig. 1 G), thereby demonstrating i) specificity of the antibodies and ii) validating the gene knockout. Of note, the CYLC1 antibody detects a double band at 40-45 KDa. This is smaller than the predicted size of 74 KDa as, but both bands were absent in Cylc1-/y. Similarly, the CYLC2 Antibody detected a double band at 38-40 KDa instead of 66 KDa. Again, both bands were absent in Cylc2-/-. Next, Mass spectrometry analysis of cytoskeletal protein fraction of mature spermatozoa was performed detecting both proteins in WT but not in the respective knockout samples (Figure 1 – supplement 5; Figure 1 – supplement 6).

      Specificity of antibodies was additionally proven by immunohistochemical staining, showing a specific staining only in testis sections but not in any other organ tested. The section reads now as follows:

      Line 115-117: Specificity of antibodies was proven by immunohistochemical stainings (IHC), showing a specific signal in testis sections only, but not in any other organ tested (Figure 1 – supplement 2)

      2) Re-structuring/streamlining of the figures is recommended. Please consider the flow suggested by reviewer #2 and shorten the evolutionary analysis which takes up more space than it adds to the value of the story.

      We thank the reviewers and editor for the valuable suggestion. We re-structured the figures as suggested and rewrote the results section accordingly. The evolutionary analysis was significantly shortened.

      3) Provide statistics for the imaging analysis such as TEM as only a single representative image is shown.

      We agree that the observed morphological defects require a detailed statistical evaluation. TEM analysis was performed to confirm the results from optical microscopy and representative images with high magnification are shown for a detailed visualization of the defects. For additional quantification, we included statistics for IF stainings against calyx proteins CCIN and CapZa (Fig. 2 I-J). For TEM, we added additional images to the supplement (Figure 3 – supplement 1). Furthermore, we quantified the manchette length of step 10-13 spermatids to prove the increased elongation of the manchette in Cylc2-/- and Cylc1-/y Cylc2-/- spermatids (Fig. 5 A-B).

      4) Please consider other points raised by the reviewers below to improve the manuscript and provide responses on how the authors have addressed them.

      We thank all reviewers for the detailed review of our manuscript and their valuable suggestions, which helped a lot to improve the manuscript. We considered all points raised by the reviewers to the best of our knowledge and hope that the reviewers will approve the manuscript ready for publication. We added a point-by-point discussion of all comments/suggestions hereafter.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      (1) Antibody specificity: Fig 1E - there are some unspecific binding in Cylc2-/- for CYLC2 and in Cylc1/y Cylc2+/- for CYLC1 in the testis (and elongating spermatids in Figure 1 – Supplement 4). Could authors elaborate/comment on this? Western blot analysis would be also helpful to further support the antibody specificity.

      The very weak unspecific staining in the testis for CYLC2 (in Cylc2-/-) and CYLC1 (in Cylc1-/y Cylc2+/-) is only present in the lumen of the seminiferous tubules and/or the residual bodies of the testicular sperm cells and can be referred to as background signal. Importantly, the signal is entirely lost in the PT region, proving specificity of the generated antibodies. We added the following paragraph to the results section:

      Line 124-127: The generated antibodies did not stain testicular tissue and mature sperm of Cylc1- and Cylc2-deficient males, except for a very weak unspecific background staining in the lumen of seminiferous tubules and the residual bodies of testicular sperm (Fig. 1 F).

      Specificity of antibodies was additionally proven by immunohistochemical staining, showing a specific staining only in testis sections but not in any other organ tested.

      Line 115-117: Specificity of antibodies was proven by immunohistochemical stainings, showing a specific staining in testis sections only, but not in any other organ tested (Figure 1 – supplement 2)

      To further verify the specificity of generated antibodies and the generation of functional knockout alleles, we additionally performed Western Blot analysis on cytoskeletal protein fractions, confirming the results of the IF staining. No unspecific bands were detected in the Western Blot, further supporting the notion that the weak unspecific signals in IF resemble staining artifacts.

      The paragraph reads now as follows:

      Line 127-132: Additionally, Western Blot analyses confirmed the absence of CYLC1 and CYLC2 in cytoskeletal protein fractions of the respective knockout (Fig. 1 G), thereby demonstrating i) specificity of the antibodies and ii) validating the gene knockout. Of note, the CYLC1 antibody detects a double band at 40-45 KDa. This is smaller than the predicted size of 74 KDa as, but both bands were absent in Cylc1-/y. Similarly, the CYLC2 Antibody detected a double band at 38-40 KDa instead of 66 KDa. Again, both bands were absent in Cylc2-/-.

      (2) Please provide more interpretation of the gene dosage effect of Cylicin 2. It is not common to see a gene dosage effect in the sperm phenotype as transcripts and proteins can be shared between haploids due to syncytium formation during spermatogenesis.

      We agree and we apologize for the misinterpretation. In Cylc2+/- mice expression of Cylc2 was reduced by half but there was no altered phenotype observed. The sentence now reads as follows:

      Line 112: In Cylc2+/- animals expression of Cylc2 was reduced by 50 %.

      (3) Line 194-196 - the authors say that the sperm are smaller, with shorter hooks and increased circularity of the nuclei, and reduced elongation. Are these statistically significant? There seems to be a high variation in the graph in S2D and the statistical analysis is not given.

      We agree, performed statistical analyses, and highlighted significantly altered values for sperm head elongation and circularity in Figure 2 – Supplement 3.

      (4) Line 153-164 It is interesting that the absence of Cylc2 affected many parts of sperm structure. I think some ratios of sperm always have a morphological defect in diverse ways, so it is hard to confirm the finding only with a single sperm image. I think that it will be important to do some statistical analysis or at the minimum show more TEM images from TEM.

      We agree that the observed morphological defects require a detailed statistical evaluation. TEM analysis was performed to confirm the results from optical microscopy and representative images with high magnification are shown for a detailed visualization of the defects. For additional quantification, we included statistics for IF stainings against calyx proteins CCIN and CapZa (Fig. 2 I-J). For TEM, we added additional images to the supplement (Figure 3 – Supplement 1).

      (5) Line 236-242 - I believe that the phenotype described applies to the sperm from Cylc2-/- and Cylc1/y Cylc2-/- animals; however, I think that the Cylc1-/y Cylc2+/- has a more subtle, intermediate phenotype between the WT and the genotypes missing both Cylc-/- alleles.

      We agree and we added a quantification of manchette length at step 10-13 to visualize the differences between the genotypes. The section reads now as follows: Line 268-272: Manchette length was measured starting from step 10 until step 13 spermatids and the mean was obtained, showing that the average manchette length was 76-80 nm in wildtype, Cylc1-/Y and Cylc2+/- while for Cylc2-/- and Cylc1-/Y Cylc2-/- spermatids mean manchette length reached 100 nm (Fig. 5 B). Cylc1-/Y Cylc2+/- spermatids displayed an intermediate phenotype with a mean manchette length of 86 nm.

      (6) Since CYLC1 staining is absent in Fig 5B, does that mean that the mutation resulted in protein degradation/instability? Is RNA present? Additional biochemical studies of Cyclins demonstrating the deleterious nature of the mutations would strengthen the molecular pathogenesis of the human mutations.

      Thank you for raising these important questions. The CYLC1 variant c.1720G>C is predicted to cause the amino acid substitution p.(Glu574Gln). It is, thus, conceivable that the RNA is present but either the protein is degraded or misfolded and, therefore, not detectable by IF. Unfortunately, for personal reasons of the patient, it is currently not possible to receive additional semen samples, preventing additional analyses of the semen, e.g. analysis of Cylicin transcript level.

      (7) Strongly suggest shortening the evolutionary analysis - all the corresponding materials are in supplemental while texts are extensive- or even consider entirely omitting. It does not add a lot to the current study.

      We agree that the evolutionary analysis was very detailed. However, we think that the results are important to understand the role of Cylicins for male reproduction in general. The results obtained from the mouse model might be transferable to other species, including humans. Further, the results present a possible explanation for the subfertility of Cylc1-deficient mice, in contrast to infertility of Cylc2-deficient males. We shortened the section, the paragraph reads as follows:

      Line 287-302: To address why Cylc2 deficiency causes more severe phenotypic alterations than Cylc1deficiency in mice, we performed evolutionary analysis of both genes. Analysis of the selective constrains on Cylc1 and Cylc2 across rodents and primates revealed that both genes’ coding sequences are conserved in general, although conservation is weaker in Cylc1 trending towards a more relaxed constraint (Fig. 6). A model allowing for separate calculation of the evolutionary rate for primates and rodents, did not detect a significant difference between the clades, neither for Cylc1 nor for Cylc2, indicating that the sequences are equally conserved in both clades.

      To analyze the selective pressure across the coding sequence in more detail, we calculated the evolutionary rates for each codon site across the whole tree. According to the analysis, 34% of codon sites were conserved, 51% under relaxed selective constraint, and 15% positively selected. For Cylc2, 47% of codon sites conserved, 44% under neutral/relaxed constraint, and 9% positively selected. Interestingly, codon sites encoding lysine residues, which are proposed to be of functional importance for Cylicins, are mostly conserved. For Cylc1, 17% of lysine residues are significantly conserved and 35% of significantly conserved codons encode for lysine. For Cylc2, this pattern is even more pronounced with 27.9% of lysine codons being significantly conserved and 24.3% of all conserved sites encoding for lysine (Fig. 6).

      Minor comments:

      (1) Line 114, 115, 118 à Figure 1D is already well-described in the previous paragraph and thus redundant. Ref Fig 1D, E; but only figure E shows IF. Maybe supposed to be E and F or just 1E?

      We apologize for the mix-up with the subfigures. The mentioned paragraph refers to Fig. 1 E-F, which was corrected accordingly.

      Line 117-123: Immunofluorescence staining of wildtype testicular tissue showed presence of both, CYLC1 and CYLC2 from the round spermatid stage onward (Fig. 1 E). The signal was first detectable in the subacrosomal region as a cap-like structure, lining the developing acrosome (Fig. 1 E-F, Figure 1 – supplement 3). As the spermatids elongate, CYLC1 and CYLC2 move across the PT towards the caudal part of the cell (Figure 1 – supplement 4). At later steps of spermiogenesis, the localization in the subacrosomal part of the PT faded, while it intensified in the postacrosomal calyx region (Fig. 1 E-F).

      (2) Figure 1F - Arguably, IF images show expression of both CYLC1 and CYLC2 to reach/include the acrosome/hook portion of the sperm head, but the diagram does not reflect that. Why is that?

      We agree and apologize for the inconsistency. The illustration was adjusted according to the experimental data showing localization of Cylicins in the whole ventral part of the sperm.

      (3) Line 124 - PAS staining mentioned on line 124, is not explained (Periodic acid Schiff staining) until line 605

      We agree and introduced the abbreviation accordingly. The PAS staining was moved to Fig. 4. The paragraph reads now as follows:

      Line 220-222: To study the origin of observed structural sperm defects, spermiogenesis of Cylicin deficient males was analyzed in detail. PNA lectin staining and Periodic Acid Schiff (PAS) staining of testicular tissue sections were performed to investigate acrosome biogenesis.

      (4) Some figures are hard to read due to being very small (S1B, 3F).

      We agree and we increased the figure size. For former Figure 3F (now figure 4A), insets with higher magnification of representative sperm were added. Insets are additionally shown in Figure 4 – Supplement 1 in higher resolution.

      (5) Line 139 Please specify whether the sperm was capacitated or not.

      Analysis of the flagellar beat was performed with non-capacitated sperm. We clarified this in the main text:

      Line 203: The SpermQ software was used to analyze the flagellar beat of non-capacitated Cylc2-/- sperm in detail 22.

      As described in the Material and Methods section, sperm were only activated in TYH medium, prior to analysis:

      Line 732-733: Sperm samples were diluted in TYH buffer shortly before insertion of the suspension into the observation chamber.

      (6) Line 142-145; The sentence is interrupted strangely, perhaps the authors meant to write: "Interestingly, we observed that the flagellar beat of Cylc2-/- sperm cells was similar to wildtype cells, however, with interruptions during which midpiece and initial principal piece appeared stiff whereas high-frequency beating occurs at the flagellar tip"

      We corrected the sentence accordingly.

      Line 206-208: Interestingly, we observed that the flagellar beat of Cylc2-/- sperm cells was similar to wildtype cells, however, with interruptions during which midpiece and initial principal piece appeared stiff whereas high frequency beating occurs at the flagellar tip (Fig. 3 C, Video 1, Video 2).

      (7) Line 142 -Wrong Figure number. Figure S4A is a phylogenic analysis.

      We regret the mix up and corrected the Figure reference accordingly. Line 204-205: Cylc2-/- sperm showed stiffness in the neck and a reduced amplitude of the initial flagellar beat, as well as reduced average curvature of the flagellum during a single beat (Figure 3 – supplement 2).

      (8) L146-147 Better placed in Discussion.

      We agree, and we omitted this sentence from the results part.

      (9) Line 154-156 - The white arrowheads are present in both WT and KO sperm, thus it appears they denote the basal plate, not necessarily the dislocation/parallel position as the current text seems to suggest. Furthermore, the position of the WT and KO sperm is somewhat different with the tail coiling differently, so it is hard to see whether the two are comparable.

      We agree and we removed the white arrowhead in the WT sperm picture, and it now depicts only the dislocation of the basal plate in the Cylc2-/- sperm. Due to the morphological anomalies of Cylc2-/- sperm cells, it’s difficult to determine the exact angle of the depicted cell. However, we added more TEM pictures of the sperm cells (3 for WT and 6 for Cylc2-/-) in Figure 3 – Supplement 1.

      (10) Line 164 Please describe in detail what mitochondrial damage the readers expect to see from the TEM image.

      We evaluated the observed mitochondrial damage in more detail. Unfortunately, the defects described initially seem to be an artifact of apoptotic sperm cells and could not be identified in vital sperm cells in either of the knockout mouse models. We apologize for this misinterpretation, and we deleted this section in the manuscript.

      (12) Figure S2A - no WT comparison, difficult to compare without it (mitochondria in Cylc2-/-)

      See (10). We evaluated the observed mitochondrial damage in more detail and in comparison to WT. Unfortunately, the defects described initially seem to be an artifact of apoptotic sperm cells and could not be identified in vital sperm cells in either of the knockout mouse models. We apologize for this misinterpretation and we deleted this section in the manuscript.

      (13) Line 172-173 - Fig 3C denotes quantification of abnormal acrosome only, however, the text mentions sperm coiled tail being quantified within this graph - which is it? Is it both of them? Or only one of them?

      Figure 3 C (now Figure 2G) showed the percentage of abnormal sperm in general comprising acrosomal as well as flagellar defects. We modified the figure and evaluated acrosomal defects and tail defects separately. The results section was changed accordingly and reads now as follows:

      Line 152-159: Loss of Cylc1 alone caused malformations of the acrosome in around 38% of mature sperm, while their flagellum appeared unaltered and properly connected to the head. Cylc2+/- males showed normal sperm tail morphology with around 30% of acrosome malformations. Cylc2-/- mature sperm cells displayed morphological alterations of head and mid-piece (Fig. 2 F-G). 76% of Cylc2-/- sperm cells showed acrosome malformations, bending of the neck region, and/or coiling of the flagellum, occasionally resulting in its wrapping around the sperm head in 80% of sperm (Fig. 2 F). While 70% of Cylc1-/Y Cylc2+/- sperm showed these morphological alterations, around 92% of Cylc1-/YCylc2-/- sperm presented with coiled tail and abnormal acrosome (Fig. 2 F-G).

      (14) Fig 3D - CCIN in the text, cylicin in the figure - this should be consistent. Furthermore, since only the head is being shown, is CCIN ever detected in the WT sperm tail?

      We apologize for the inconsistency, and we added the abbreviation “CCIN” to the figure. CCIN is solely detectable in the sperm head of wildtype sperm as published previously. Irregular staining patterns showing signals in the tail region are only observed upon Cylicin deficiency.

      (15) Line 199-200 - To say that head of Cylc2-deficient sperm appears less concave seems redundant, likely the observed increased circularity is contributed to by sperm head being less concave in this region; unless there is an extra point that the authors are trying to make and if so, this needs to be elaborated on

      We agree and we deleted the sentence from the manuscript.

      (16) Figure legend of Fig S3 is wrong. Only S3A and S3B are present, and in the figure legend S3C corresponds to figure S3B.

      We agree and corrected the Figure legends accordingly. Due to the re-structuring of the manuscript, Figures and Supplementary figures were re-ordered as well.

      (17) Figure 4B - figure legend and/or text should specify that lectin is green and HOOK1 is in red

      We specified the figure legend as well as the main text accordingly: Line: 279-281: Co-staining of the spermatids with antibodies against PNA lectin (green) and HOOK1 (red) revealed that abnormal manchette elongation and acrosome anomalies simultaneously occurred in elongating spermatids of Cylc2-/- male mice (Fig. 5 C).

      Line: 560-562: Co-staining of the manchette with HOOK1 (red) and acrosome with PNA-lectin (green) is shown in round, elongating and elongated spermatids of WT (upper panel) and Cylc2-/- mice (lower panel).

      (18) Line 261-263 - It is difficult to see what is going on with microtubules in these images, as the resolution is low

      We increased the pictures and improved their quality. Microtubules are also depicted with letter ‘m’

      (19) Line 265-266 - It seems that there is a persistence of manchette, rather than elongation. From these images, I cannot see gaps, and I am not sure where to look for them. This needs to be labelled further and higher-resolution images could be included for clarity.

      We agree, although we observed both excessive elongation and persistence of the manchette. The average length of the manchette is now shown in figure 5B.

      The paragraph now reads as follows:

      Line 235-239: Microtubules appeared longer on one side of the nucleus than on the other, displacing the acrosome to the side and creating a gap in the PT (Fig. 4 C). Whereas elongated spermatids at step 14-15 in wildtype sperm already disassembled their manchette and the PT appeared as a unique structure that compactly surrounds nucleus, in Cylc2-/- spermatids, remaining microtubules failed to disassemble.

      The gaps in the perinuclear theca are better visible in TEM micrographs and the description is now in the paragraph describing TEM.

      (20) Line 269 Please include the information of "White arrowhead".

      We added the information accordingly.

      Line 240-242: In addition, at step 16, the calyx was absent, and an excess of cytoplasm surrounded the nucleus and flagellum (Fig. 4 C, white arrowhead).

      (21) Line 276-280 This should be placed in the Discussion.

      We agree, and we deleted this concluding remark from the results section.

      (22) Is Cylc1 and/or Cylc2 conserved/expressed amongst species other than rodents and primates?

      Yes, Cylc1 and Cylc2 homologs were identified in C. elegans for example. We added a schematic to the introduction showing the protein structure of human, mouse and C. elegans CYLC1 and CYLC2 (Figure 1 – supplement 1).

      The section reads now as follows:

      Line 73-78: In most species, two Cylicin genes, Cylc1 and Cylc2, have been identified (Figure 1- supplement 1). They are characterized by repetitive lysine-lysine-aspartic acid (KKD) and lysine-lysine-glutamic acid (KKE) peptide motifs, resulting in an isoelectric point (IEP) > pH 10 14, 15. Repeating units of up to 41 amino acids in the central part of the molecules stand out by a predicted tendency to form individual short α-helices 14. Mammalian Cylicins exhibit similar protein and domain characteristics, but CYLC2 has a much shorter amino-terminal portion than CYLC1 (Figure 1-supplement 1).

      (23) The whole chapter "Cylc2 coding sequence is slightly more conserved among species than Cylc1" references only supplemental figures/tables. I find this unusual.

      We agree, and in order to show the results of the evolutionary analysis more clearly, we moved the panel to main Figure 6.

      Line 286-302: To address why Cylc2 deficiency causes more severe phenotypic alterations than Cylc1deficiency in mice, we performed evolutionary analysis of both genes. Analysis of the selective constrains on Cylc1 and Cylc2 across rodents and primates revealed that both genes’ coding sequences are conserved in general, although conservation is weaker in Cylc1 trending towards a more relaxed constraint (Fig. 6 A). A model allowing for separate calculation of the evolutionary rate for primates and rodents, did not detect a significant difference between the clades, neither for Cylc1 nor for Cylc2, indicating that the sequences are equally conserved in both clades.

      To analyze the selective pressure across the coding sequence in more detail, we calculated the evolutionary rates for each codon site across the whole tree. According to the analysis, 34% of codon sites were conserved, 51% under relaxed selective constraint, and 15% positively selected. For Cylc2, 47% of codon sites conserved, 44% under neutral/relaxed constraint, and 9% positively selected. Interestingly, codon sites encoding lysine residues, which are proposed to be of functional importance for Cylicins, are mostly conserved. For Cylc1, 17% of lysine residues are significantly conserved and 35% of significantly conserved codons encode for lysine. For Cylc2, this pattern is even more pronounced with 27.9% of lysine codons being significantly conserved and 24.3% of all conserved sites encoding for lysine (Fig. 6 B).

      (24) Line 332 - CYCL2 should be CYLC2

      We corrected the typo accordingly.

      (25) Line 340 The ratio of head defects is different from Table 1 (98% here and 99 % in the table). Please check this information.

      We apologize for the inconsistency. We checked the raw data and corrected the table accordingly.

      (26) Line 344-345 From figure 5C it is difficult to determine whether the sperm are "headless" or whether the heads are attached to the highly coiled tails next to them

      We agree and we quantified the percentage of sperm showing abnormal flagella and a headless phenotype. Furthermore, we added an arrowhead to figure 6C to highlight headless sperm. The paragraph reads now as follows:

      Line 335-339: Bright field microscopy demonstrated that M2270’s sperm flagella coiled in a similar manner compared to flagella of sperm from Cylicin deficient mice. Quantification revealed 57% of M2270 sperm displaying abnormal flagella compared to 6% in the healthy donor (Fig. 7 D). Interestingly, DAPI staining revealed that 27% of M2270 flagella carry cytoplasmatic bodies without nuclei and could be defined as headless spermatozoa (Fig. 7 C, white arrowhead; Fig. 7 E).

      (27) L367-368 I agree with the authors' logic of this sentence. Although, it is better to show the co-localization of proteins using multi-channel immunocytochemistry. As you mentioned on L369 this will make your finding more obvious. If it is available, please include the colocalization images of the proteins.

      We performed the multi-channel staining against Cylicin1 and Calicin, as well as Cylicin2 and Calicin on mouse epipidymal sperm and it’s shown in Figure 2 – supplement 4. Unfortunately, we did not manage to obtain stainings of tissue sections since antibodies against Cylicins and Calicin require different sample processing.

      The sentence was added in the section describing calyx integrity:

      Line 168-169: In epididymal sperm, CCIN co-localizes with both CYLC1 and CYLC2 in the calyx (Figure 2 – supplement 4).

      (28) Line 376 Please keep the abbreviation. "Calicin" "CCIN".

      We included the abbreviation accordingly.

      Line 377-378: CCIN is shown to be necessary for the IAM-PT-NE complex by establishing bidirectional connections with other PT proteins.

      (29) Line 377-378 "Based on ~". The authors did not prove the interaction between CCIN and Cylicins in this article. The mislocalization of CCIN might be resulted in the loss of Cylicins, without any "interaction". To reach this conclusion, a more direct result should be provided.

      We agree that we overinterpreted this as we and others did not prove the interaction between CCIN and Cylicins so far. We therefore weakened this statement and formulated it as a hypothesis.

      Line 377-381: CCIN is shown to be necessary for the IAM-PT-NE complex by establishing bidirectional connections with other PT proteins. Zhang et al. found CYLC1 to be among proteins enriched in PT fraction 7. Based on their speculation that CCIN is the main organizer of the PT, we hypothesize that both CCIN and Cylicins might interact, either directly or in a complex with other proteins, in order to provide the ‘molecular glue’ necessary for the acrosome anchoring.

      (30) Line 499 Please specify which is the target of the immunostaining on the Figure legend. (Tubulin à acetylated α-tubulin)

      We specified that α-Tubulin was stained. The figure legend reads now as follow: Line 555-557: Immunofluorescence staining of α-Tubulin to visualize manchette structure in squash testis samples of WT, Cylc1-/y, Cylc2+/-, Cylc2-/-, Cylc1 -/y Cylc2+/- and Cylc1-/y Cylc2-/- mice.

      (31) Line 502 Please specify which color indicates which target protein (not only cellular structure).

      Line 560-562: Co-staining of the manchette with HOOK1 (red) and acrosome with PNA-lectin (green) is shown in round, elongating and elongated spermatids of WT (upper panel) and Cylc2-/- mice (lower panel).

      (32) Line 509 Please include scale bar information in the figure legend like Figure 4 (The magnifications of Figure 5 B, C, and D seem different).

      We included the scale bar information accordingly (now Figure 6).

      Line 575-588: Figure 6: Cylicins are required for human male fertility

      (A) Pedigree of patient M2270. His father (M2270_F) is carrier of the heterozygous CYLC2 variant c.551G>A and his mother (M2270_M) carries the X-linked CYLC1 variant c.1720G>C in a heterozygous state. Asterisks (*) indicate the location of the variants in CYLC1 and CYLC2 within the electropherograms.

      (B) Immunofluorescence staining of CYLC1 in spermatozoa from healthy donor and patient M2270. In donor’s sperm cells CYLC1 localizes in the calyx, while patient’s sperm cells are completely missing the signal. Scale bar: 5 µm.

      (C) Bright field images of the spermatozoa from healthy donor and M2270 show visible head and tail anomalies, coiling of the flagellum as well as headless spermatozoa who carry cytoplasmatic residues without nuclei. Heads were counterstained with DAPI. Scale bar: 5 µm.

      (D-E) Quantification of flagellum integrity (D) and headless sperm (E) in the semen of patient M2270 and a helathy donor.

      (F-G) Immunofluorescence staining of CCIN (F) and PLCz (G) in sperm cells of patient M2270 and a healthy donor. Nuclei were counterstained with DAPI. Scale bar: 3 µm.

      (33) S2A is not clear. Please describe specifically what the left panel and right panel are about to show with a clear indication of what is PM, mitochondria, etc. On the right, in only one cross-section that shows both mitochondria and the 9+2 axoneme, they look both unaltered whereas on the left, there are unpacked, not aligned mitochondria but the tail boundary is not clear to grasp at first sight.

      We apologize for the bad quality of the TEM pictures showing the axonemes and the missing labeling. We recorded and included new images showing an intact 9+2 microtubular structure in Cylc2-/-. Furthermore, we added an image for the wildtype control.

      (34) S2D: colors of the last three plots of each graph are too close to tell apart

      We agree and changed the color scheme for better visualization.

      Reviewer #2 (Recommendations For The Authors):

      However, I find the manuscript a bit messy, and I will propose to reorganize the figures: following figure 1, showing the reproductive phenotype, I would continue with a figure showing the morphology of sperm in optical microscopy and showing the morphological defect of the nucleus (Fig 3B and 3E), followed with one figure focusing on the flagellum, with images obtained with optical and electronic microscopies, allowing to present the abnormalities of the flagellum and finally the impact on sperm motility and flagellum beating (mix of figure 2FG/3A); next, one figure focusing on acrosome. After that, I would present all data concerning spermiogenesis, starting with figure 2C.

      We thank the reviewer for the valuable suggestion, which helps a lot to improve the structure and comprehensibility of the manuscript. We re-organized the figures and the results section accordingly.

      Major remarks

      1) Line 111. The specificity of raised Ab is not clear. Please specify if antibodies are specific: what immune-decorates anti-CYLC1: only CYLC1 or CYLC1 and CYLC2. Same question for anti-CYLC2

      Both antibodies were raised against specific peptides of the CYLC1 or CYLC2 protein, respectively. The antigen peptides used for immunization are depicted in the Material and Methods section (AESRKSKNDERRKTLKIKFRGK and KDAKKEGKKKGKRESRKKR peptides for CYLC1; KSVGTHKSLASEKTKKEVK and ESGGEKAGSKKEAKDDKKDA for CYLC2). The peptides used for immunization are specific as they do not resemble the highly conserved and repetitive KKD/KKE motives present in both, Cylc1 and Cylc2.

      The specificity of raised antibodies was validated by IF staining of wildype and Cylicin-deficient testis sections. The results clearly show, that CYLC1 signal is absent in Cylc1-deficient spermatids and CYLC2 signal being absent in Cylc2 deficient spermatids.

      Specificity of antibodies was additionally proven by immunohistochemical stainings, showing a specific staining only in testis sections but not in any other organ tested.

      Line 115-117: Specificity of antibodies was proven by immunohistochemical stainings, showing a specific staining only in testis sections but not in any other organ tested (Figure 1 - supplement 2)

      To further verify the specificity of generated antibodies and the generation of functional knockout alleles, we additionally performed Western Blot analysis on cytoskeletal protein fractions, confirming the results of the IF staining.

      The paragraph reads now as follows:

      Line 127-134: Additionally, Western Blot analyses confirmed the absence of CYLC1 and CYLC2 in cytoskeletal protein fractions of the respective knockout (Fig. 1 G), thereby demonstrating i) specificity of the antibodies and ii) validating the gene knockout. Of note, the CYLC1 antibody detects a double band at 40-45 KDa. This is smaller than the predicted size of 74 KDa as, but both bands were absent in Cylc1-/y. Similarly, the CYLC2 Antibody detected a double band at 38-40 KDa instead of 66 KDa. Again, both bands were absent in Cylc2-/-. Next, Mass spectrometry analysis of cytoskeletal protein fraction of mature spermatozoa was performed detecting both proteins in WT but not in the respective knockout samples (Figure 1 – supplement 5; Figure 1 – supplement 6).

      2) Line 115 and figure 1D. From the images presented in figure 1D, it is not clear where CYLC1 and CYLC2 are localized in the round and in elongated spermatids. Please make double staining using a second Ab to identify the acrosome such as DPY19L2 (best option) or SP56 and the manchette such as acetylated alpha-tubulin.

      We agree, and we added a double staining of CYLC1/CYLC2 and SP56 to the supplement (Figure 1 - supplement 3), showing co-localization of the developing acrosome and Cylicins. Manchette staining was not performed due to antibodies being available in same species as those against Cylicins (anti-rabbit).

      Line 117-120: Immunofluorescence staining of wildtype testicular tissue showed presence of both, CYLC1 and CYLC2 from the round spermatid stage onward (Fig. 1 E, Figure 1 – supplement 3). The signal was first detectable in the subacrosomal region as a cap like structure, lining the developing acrosome (Fig. 1 E-F, Figure 1 – supplement 3).

      3) Line 118 and figure 1. The drawing showing the localization of Cylicin in mature sperm does not fit with the experimental data. Cylicins are located on the whole ventral face of the sperm.

      We agree and apologize for the inconsistency. The illustration was adjusted according to the experimental data showing localization of Cylicins in the whole ventral part of the sperm.

      4) Figure 1: Change "expression of Cylicin" to "localization of cylicin" (green)

      We changed the legend accordingly.

      5) Line 124 and figure 2C. In the figure provided, the PAS staining seems defective. The acrosomes do not seem stained (in pink as expected for a PAS staining). It may be due to the low quality of the pdf file, nevertheless, it is important to provide in supplementary data, an enlargement of the spermatid region showing the staining of the acrosome.

      We apologize for the bad quality of the PDF file and the low magnification. We restructured the subfigure showing PAS stained spermatids at different steps of spermiogenesis at higher magnification. According to the initial reviewer’s suggestion, the PAS staining was moved to figure 4. The PAS staining in figure 2 was replaced by HE-stained overview testis sections in Figure 3 – supplement 1 showing intact spermatogenesis in all genotypes.

      6) Line 130. Please indicate a reference for the lower limit of 58%. If this lower limit corresponds to human sperm, it should be omitted.

      Indeed, the given reference limit of 58% is only valid for human sperm samples. Therefore, we omitted the reference limit. The paragraph reads now as follows: Line 144-146: Eosin-Nigrosin staining revealed that the viability of epididymal sperm from all genotypes was not severely affected (Fig. 2 D, Figure 2 – supplement 2).

      7) line 152 Sperm morphology. Before showing the ultrastructure of the sperm, it would be important to show sperm morphology observed by optical microscopy. Therefore, I recommend including figure S2 as a principal figure, with a mix of Figures 3B and 3E.

      We thank the reviewer for the suggestion. The results section was re-structured accordingly, first showing results of optical microscopy (Fig. 2), followed by an in-depth ultrastructural investigation of morphological defects and their effects on sperm motility. Brightfield images of epididymal sperm were moved from former Figure S2 to main Figure 2.

      8) Line 164. figure S2A, showing that the 9+2 pattern is normal in KO sperm, is not convincing. Enlargement is required to conclude that the axoneme structure is normal; from the pictures, it rather seems that some doublets are missing.

      We apologize for the bad quality of the TEM pictures showing the axonemes. We recorded and included new images showing an intact 9+2 microtubular structure.

      9) Line 196. I would suggest removing the term "mild globozoospermia". Globozoospermia is rather complete (100% of round sperm heads) or incomplete (<90 % of round sperm heads). The anomalies observed on sperm heads, sperm motility, and the decrease in sperm concentration are rather suggestive of an OAT.

      We agree and we omitted the term “mild globozoospermia”. Instead, we added a concluding remark to the section, summarizing the described defects as OAT syndrome. The section reads now as follows:

      Line 215-217: Taken together, observed anomalies of sperm heads, impaired sperm motility, and the decrease in epididymal sperm concentration show that Cylc deficiency results in a severe OAT phenotype (Oligo-Astheno-Teratozoospermia-syndrome) described in human.

      10) Line 248. It is not clear from the data of figure 4B that "the developing acrosome lost its compact adherence to the nuclear envelope". From this figure, only defective morphologies of the acrosome are observed

      We agree and we omitted the sentence. Furthermore, it does not add additional information to the manuscript, since defects in the attachment of the acrosome to the nuclear envelope have been described in detail in Figure 4C.

      11) line 260-264. Manchette defects appear at stages 9-10. At this stage, the HTCA is already attached to the nucleus of the spermatid. see for instance figure 2 from Shang Y, Zhu F, Wang L, Ouyang YC, Dong MZ, Liu C, Zhao H, Cui X, Ma D, Zhang Z, Yang X, Guo Y, Liu F, Yuan L, Gao F, Guo X, Sun QY, Cao Y, Li W. Essential role for SUN5 in anchoring sperm head to the tail. Elife. 2017 Sep 25;6:e28199. doi: 10.7554/eLife.28199 . Therefore, the hypothesis that "abnormal attachment of the developing flagellum to the basal plate and consequently flipping of the head and coiling of the tail in mature spermatozoa" is unlikely and I suggest modifying this paragraph. In the HOOK paper, the manchette defects occurred earlier.

      We read the suggested literature and we agree to this reviewer’s comment. Manchette defects that we observe appear at later stages and are probably not responsible for the morphological anomalies of the mature sperm. We also re-analyzed all the manchette staining pictures and didn’t find any defects at earlier stages, so we decided to delete the sentence from the manuscript.

      12) Line 344. Please indicate a percentage of headless spermatozoa. Many sperm is too vague.

      We agree and we quantified the percentage of sperm showing abnormal flagella and a headless phenotype. The paragraph reads now as follows:

      Line 335-339: Bright field microscopy demonstrated that M2270’s sperm flagella coiled in a similar manner compared to flagella of sperm from Cylicin deficient mice. Quantification revealed 57% of M2270 sperm displaying abnormal flagella compared to 6% in the healthy donor (Fig. 7 D). Interestingly, DAPI staining revealed that 27% of M2270 flagella carry cytoplasmatic bodies without nuclei and could be defined as headless spermatozoa (Fig. 7 C, white arrowhead; Fig. 7 E).

      13) Any data concerning the success of ICSI for this patient?

      Yes, the outcome of the ICSI were added to the main text. Line 309-311: The couple underwent one ICSI procedure which resulted in 17 fertilized oocytes out of 18 retrieved. Three cryo-single embryo transfers were performed in spontaneous cycles, but no pregnancy was achieved.

      14) Finally, it would be interesting to study the localization of PLCzeta in this model, since its localization in the perinuclear theca has been clearly shown (Escoffier et al, 2015 doi:10.1093/molehr/gau098 )

      We thank the reviewer for the valuable suggestion and performed PLCzeta staining on human sperm, clearly showing an irregular PT staining pattern in sperm of patient M2270 compared to healthy control sperm. Of note, staining was not possible in the mouse due to the antibody being reactive only for human samples.

      The section reads as follows:

      Line 343-349: Testis specific phospholipase C zeta 1 (PLCζ1) is localized in the postacrosomal region of PT in mammalian sperm (Yoon and Fissore, 2007) and has a role in generating calcium (Ca²⁺) oscillations that are necessary for oocyte activation (Yoon, 2008). Staining of healthy donor’s spermatozoa showed a previously described localization of PLCζ1 in the calyx, while sperm from M2270 patient presents signal irregularly through the PT surrounding sperm heads (Fig. 7 G). These results suggest that Cylicin deficiency can cause severe disruption of PT in human sperm as well, causing male infertility.

      Reviewer #3 (Recommendations For The Authors):

      1) Why the Cylc1-/y Cylc2+/- males were infertile? It would be helpful to show the homologue of the two proteins;

      To elaborate more on the homology of CYLC1 and CYLC2, we added a more detailed section about the protein and domain structure to the introduction.

      Line 73-78: In most species, two Cylicin genes, Cylc1 and Cylc2, have been identified (Figure 1supplement 1). They are characterized by repetitive lysine-lysine-aspartic acid (KKD) and lysine-lysineglutamic acid (KKE) peptide motifs, resulting in an isoelectric point (IEP) > pH 10 14, 15. Repeating units of up to 41 amino acids in the central part of the molecules stand out by a predicted tendency to form individual short α-helices (Hess et al., 1993). Mammalian Cylicins exhibit similar protein and domain characteristics, but CYLC2 has a much shorter amino-terminal portion than CYLC1 (Figure 1supplement 1).

      Speculations about the infertility of Cylc1-/y Cylc2+/- males was added to the discussion:

      Line 410-413: Interestingly, Cylc1-/Y Cylc2+/- males displayed an “intermediate” phenotype, showing slightly less damaged sperm than Cylc2-/- and Cylc1-/Y Cylc2-/- animals. This further supports our notion, that loss of the less conserved Cylc1 gene might be at least partially compensated by the remaining Cylc2 allele.

      2) Western blot is important to show the absence of the two proteins in the mouse models;

      To further verify the specificity of generated antibodies and the generation of functional knockout alleles, we additionally performed Western Blot analysis on cytoskeletal protein fractions, confirming the results of the IF staining.

      A paragraph was added to the manuscript and reads as follows:

      Line 127-134: Additionally, Western Blot analyses confirmed the absence of CYLC1 and CYLC2 in cytoskeletal protein fractions of the respective knockout (Fig. 1 G), thereby demonstrating i) specificity of the antibodies and ii) validating the gene knockout. Of note, the CYLC1 antibody detects a double band at 40-45 KDa. This is smaller than the predicted size of 74 KDa as, but both bands were absent in Cylc1-/y. Similarly, the CYLC2 Antibody detected a double band at 38-40 KDa instead of 66 KDa. Again, both bands were absent in Cylc2-/-. Next, Mass spectrometry analysis of cytoskeletal protein fraction of mature spermatozoa was performed detecting both proteins in WT but not in the respective knockout samples (Figure 1 – supplement 5; Figure 1 – supplement 6).

      3) On Page 7, line 227 and line 243, was the acetylated α-tubulin or α-tubulin antibody used?

      For all stainings α-tubulin antibody was used. We corrected this accordingly. Line 257-259: We used immunofluorescence staining of α-tubulin on squash testis samples containing spermatids at different stages of spermiogenesis to investigate whether the altered head shape, calyx structure, and tail-head connection anomalies originate from possible defects of the manchette structure.

      4) Fig. 2S: A cartoon showing the elongation and circularity of nuclei for evaluation is helpful; The TEM images from the control and Cylc1 KO mice are needed;

      Cylc1-/Y TEM picture was added in Figure 3A.

      5) The discussion should be rewritten. The current version is to repeat the experiments/findings. The authors should discuss more about the potential mechanisms.

      We discussed the observed defects of Cylc-deficient animals and discussed this in relation to other published mouse models deficient in Calyx components. Furthermore, we speculated about potential interaction partners of Cylicins and the importance of these protein complexes for male fertility. However, to this point, we think that it is too farfetched to speculate about potential mechanisms without any evidence for Cylc interaction partner or their exact molecular function. This requires further research.

    2. eLife assessment

      This study provides valuable insights into the role of two under-researched sperm-specific proteins (Cylicin 1 and Cylicin 2). The authors provide convincing evidence that they have an essential role in sperm head structure during spermatogenesis, and that their loss leads to subfertility or infertility, with a dose-dependent phenotype. Importantly, the authors identify infertile males with mutations in both Cylicin1 and Cylicin2. Thus, the findings from the mouse models might be applicable to understanding human male infertility with similar structural defects.

    3. Reviewer #1 (Public Review):

      Mice and humans have two Cylicin genes (X-linked Cylicin 1 and the autosomal Cylicin 2) that encode cytoskeletal proteins. Cylicins are localized in the acrosomal region of round spermatids, yet they resemble a calyx component within the perinuclear theca of mature sperm nuclei. The function of Cylicins during this developmental stage of spermiogenesis (tail formation and head elongation/shaping) was not known. In this study, using CRISPR/Cas genome editing, the authors generated Cylc1-and Cylc2-knockout mouse lines to study the loss-of-function of each Cylicin or all together.

      The major strengths of the study are the rigorous and comparative phenotypic analyses of all the combinatorial genotypes from the cross between the two mouse lines (Cylc1-/y, Cylc2-/-, Cylc1-/y Cylc2+/- and Cylc1-/y Cylc2-/-) at the levels of male fertility, cellular, and subcellular levels to support the conclusion of the study. While spermatogenesis appeared undisturbed, with germ cells of all types detected in the testis, low sperm counts in epididymis were observed. Mice were subfertile or infertile in a dose-dependent manner where fewer functional alleles had more severe phenotypes; the loss of Cylc2 was less tolerated than the loss of Cylc1. Thus, loss of Cylc1, and to an even greater extent, loss of Cylc2, leads to sperm structure anomalies and decreased sperm motility. Particularly, the sperm head and sperm head-neck region are affected, with calyx not forming in the absence of Cylicins, the acrosomal region being attached more loosely, and the sperm head itself appearing structurally rounder and shorter. Furthermore, manchette, which disassembles during spermiogenesis, persists in mature sperm of mice missing Cylc2. It is interesting that the study identifies a human male that has mutations in both CYLC1 and CYLC2 genes and suffers from infertility, with similar motility and sperm structure defects compared to the mouse models. CYLC1 in the sperm from the infertile patient sperm is absent, providing evidence that in both rodents and primates, Cylicins are essential for male fertility. Evolutionary analysis of two genes adds an interesting point. The authors show that the reason for the loss of Cylc2 being more severe is due to the higher conservation of Cylc2 compared to Cylc1 in rodents and primates.

      Overall, the work highlights the relevance and importance of Cylicins in male infertility and advances our understanding of perinuclear theca formation during spermiogenesis.

    1. As a rule, humans do not like to be duped. We like to know which kinds of signals to trust, and which to distrust. Being lulled into trusting a signal only to then have it revealed that the signal was untrustworthy is a shock to the system, unnerving and upsetting. People get angry when they find they have been duped. These reactions are even more heightened when we find we have been duped simply for someone else’s amusement at having done so.

      I agree that I do indeed do not like to be duped. I am a person that likes to have control over situations even when it is most definitely out of my own personal control. Being lied to and having to accept the fact that it was false reality is always something that takes time for me to wrap my head around. On top of this, it would give me even more mental trouble to have found out that it was to fuel someone else's amusement.

    1. What are the ways in which a parasocial relationship can be authentic or inauthentic? both for the celebrity and for the viewer/follower

      I am not sure a parasocial relationship can be truly authentic from the celebrity to the viewer, since the celebrity obviously does not know the follower; however, I think some personas which the celebrity presents to their following may seem authentic because it is or because they play the role well. I also think that in some situations, personas can be both authentic and inauthentic since the definition is based off of matching reality. There is a popular saying to "never meet your heroes" because they almost never match the mental model in your head, so before there may have been authentic connection, but after meeting, the connection may be seen as inauthentic.

    1. Author Response

      We thank the reviewers for their suggestions. We are confident in the model that predicts odor vs odor (OCT-MCH) preference using calcium activity, but we acknowledge the relative weakness of the model that predicts odor (OCT) vs air preference. We are preparing an updated manuscript that will prioritize our interpretation of the OCT-MCH results and more fully document uncertainties around our estimates of prediction capacity.

      Reviewer #1 (Public Review):

      Summary: The authors seek to establish what aspects of nervous system structure and function may explain behavioral differences across individual fruit flies. The behavior in question is a preference for one odor or another in a choice assay. The variables related to neural function are odor responses in olfactory receptor neurons or in the second-order projection neurons, measured via calcium imaging. A different variable related to neural structure is the density of a presynaptic protein BRP. The authors measure these variables in the same fly along with the behavioral bias in the odor assays. Then they look for correlations across flies between the structure-function data and the behavior.

      Strengths: Where behavioral biases originate is a question of fundamental interest in the field. In an earlier paper (Honegger 2019) this group showed that flies do vary with regard to odor preference, and that there exists neural variation in olfactory circuits, but did not connect the two in the same animal. Here they do, which is a categorical advance, and opens the door to establishing a correlation. The authors inspect many such possible correlations. The underlying experiments reflect a great deal of work, and appear to be done carefully. The reporting is clear and transparent: All the data underlying the conclusions are shown, and associated code is available online.

      We are glad to hear the reviewer is supportive of the general question and approach.

      Weaknesses: The results are overstated. The correlations reported here are uniformly small, and don't inspire confidence that there is any causal connection. The main problems are

      We are working on a revision that overhauls the interpretations of the results. We recognize that the current version inadequately distinguishes the results that we have high confidence in (specifically, PC2 of our Ca++ data as a predictor of OCT-MCH preference) versus results that are suggestive but not definitive (such as the PC1 of Ca++ data as a predictor of Air-OCT preference).

      It’s true that the correlations are small, with r2 values typically in the 0.1-0.2 range. That said, we would call it a victory if we could explain 10 to 20% of the variance of a behavior measure, captured in a 3 minute experiment, with a circuit correlate. This is particularly true because, as the reviewer notes, the behavioral measurement is noisy.

      1) The target effect to be explained is itself very weak. Odor preference of a given fly varies considerably across time. The systematic bias distinguishing one fly from another is small compared to the variability. Because the neural measurements are by necessity separated in time from the behavior, this noise places serious limits on any correlation between the two.

      This is broadly correct, though to quibble, it’s our measurement of odor preference which varies considerably over time. We are reasonably confident that the more variance in our measurements can be attributed to sampling error than changes to true preference over time. As evidence, the correlation in sequential measures of individual odor preference, with delays of 3 hours or 24 hours, are not obviously different. We are separately working on methodological improvements to get more precise estimates of persistent individual odor preference, using averages of multiple, spaced measurements. This is promising, but beyond the scope of this study.

      2) The correlations reported here are uniformly weak and not robust. In several of the key figures, the elimination of one or two outlier flies completely abolishes the relationship. The confidence bounds on the claimed correlations are very broad. These uncertainties propagate to undermine the eventual claims for a correspondence between neural and behavioral measures.

      We are broadly receptive to this criticism. The lack of robustness of some results comes from the fundamental challenge of this work: measuring behavior is noisy at the individual level. Measuring Ca++ is also somewhat noisy. Correlating the two will be underpowered unless the sample size is huge (which is impractical, as each data point requires a dissection and live imaging session) or the effect size is large (which is generally not the case in biology). In the current version we tried to in some sense to avoid discussing these challenges head-on, instead trying to focus on what we thought were the conclusions justified by our experiments with sample sizes ranging from 20 to 60. We are working on a revision that is more candid about these challenges.

      That said, we believe the result we view as the most exciting — that PC2 of Ca++ responses predicts OCT-MCH preference — is robust. 1) It is based on a training set with 47 individuals and a test set composed of 22 individuals. The p-value is sufficiently low in each of these sets (0.0063 and 0.0069, respectively) to pass an overly stringent Bonferonni correction for the 5 tests (each PC) in this analysis. 2) The BRP immunohistochemistry provides independent evidence that is consistent with this result — PC2 that predicts behavior (p = 0.03 from only one test) and has loadings that contrast DC2 and DM2. Taken together, these results are well above the field-standard bar of statistical robustness.

      In the revision we are working on, we are explicit that this is the (one) result we have high confidence in. We believe this result convincingly links Ca++ and behavior, and warrants spotlighting. We have less confidence in other results, and say so, and we hope this addresses concerns about overstating our results.

      3) Some aspects of the statistical treatment are unusual. Typically a model is proposed for the relationship between neuronal signals and behavior, and the model predictions are correlated with the actual behavioral data. The normal practice is to train the model on part of the data and test it on another part. But here the training set at times includes the testing set, which tends to give high correlations from overfitting. Other times the testing set gives much higher correlations than the training set, and then the results from the testing set are reported. Where the authors explored many possible relationships, it is unclear whether the significance tests account for the many tested hypotheses. The main text quotes the key results without confidence limits.

      Our primary analyses are exactly what the reviewer describes, scatter plots and correlations of actual behavioral measures against predicted measures. We produced test data in separate experiments, conducted weeks to months after models were fit on training data. This is more rigorous than splitting into training and test sets data collected in a single session, as batch/environmental effects reduce the independence of data collected within a single session.

      We only collected a test set when our training set produced a promising correlation between predicted and actual behavioral measures. We never used data from test sets to train models. In our main figures, we showed scatter plots that combined test and training data, as the training and test partitions had similar correlations.

      We are unsure what the reviewer means by instances where we explored many possible relationships. The greatest number of comparisons that could lead to the rejection of a null hypothesis was 5 (corresponding to the top 5 PCs of Ca++ response variation or Brp signal). We were explicit that the p-values reported were nominal. As mentioned above, applying a Bonferroni correction for n=5 comparisons to either the training or test correlations from the Ca++ to OCT-MCH preference model remains significant at alpha=0.05.

      Our revision will include confidence limits.

      Reviewer #2 (Public Review):

      Summary:

      The authors aimed to identify the neural sources of behavioral variation in a decision between odor and air, or between two odors.

      Strengths:

      -The question is of fundamental importance.

      -The behavioral studies are automated, and high-throughput.

      -The data analyses are sophisticated and appropriate.

      -The paper is clear and well-written aside from some strong wording.

      -The figures beautifully illustrate their results.

      -The modeling efforts mechanistically ground observed data correlations.

      We are glad to read that the reviewer sees these strengths in the study. We hope the forthcoming revision will address the strong wording.

      Weaknesses:

      -The correlations between behavioral variations and neural activity/synapse morphology are (i) relatively weak, (ii) framed using the inappropriate words "predict", "link", and "explain", and (iii) sometimes non-intuitive (e.g., PC 1 of neural activity).

      Taking each of these points in turn: i) It would indeed be nicer if our empirical correlations are higher. One quibble: we primarily report relatively weak correlations between measurements of behavior and Ca++/Brp. This could be the case even when the correlation between true behavior and Ca++/Brp is higher. Our analysis of the potential correlation between latent behavioral and Ca++ signals was an attempt to tease these relationships apart. The analysis suggests that there could, in fact, be a high underlying correlation between behavior and these circuit features (though the error bars on these inferences are wide).

      ii) We are working to guarantee that all such words are used appropriately. “Predict” can often be appropriate in this context, as a model predicts true data values. Explain can also be appropriate, as X “explaining” a portion of the variance of Y is synonymous with X and Y being correlated. We cannot think of formal uses of “link,” and are revising the manuscript to resolve any inappropriate word choice.

      iii) If the underlying biology is rooted in non-intuitive relationships, there’s unfortunately not much we can do about it. We chose to use PCs of our Ca++/Brp data as predictors to deal with the challenge of having many potential predictors (odor-glomerular responses) and relatively few output variables (behavioral bias). Thus, using PCs is a conservative approach to deal with multiple comparisons. Because PCs are just linear transformations of the original data, interpreting them is relatively easy, and in interpreting PC1 and PC2, we were able to identify simple interpretations (total activity and the difference between DC2 and DM2 activation, respectively). All in all, we remain satisfied with this approach as a means to both 1) limit multiple comparisons and 2) interpret simple meanings from predictive PCs.

      -No attempts were made to perturb the relevant circuits to establish a causal relationship between behavioral variations and functional/morphological variations.

      We did conduct such experiments, but we did not report them because they had negative results that we could not definitively interpret. We used constitutive and inducible effectors to alter the physiology of ORNs projecting to DC2 and DM2. We also used UAS-LRP4 and UAS-LRP4-RNAi to attempt to increase and decrease the extent of Brp puncta in ORNs projecting to DC2 and DM2. None of these manipulations had a significant effect on mean odor preference in the OCT-MCH choice, which was the behavioral focus of these experiments. We were unable to determine if the effectors had the intended effects in the targeted Gal4 lines, particularly in the LRP experiments, so we could not rule out that our negative finding reflected a technical failure. We are reviewing these results to determine if they warrant including as a negative finding in the revision.

      We believe that even if these negative results are not technical failures, they are not necessarily inconsistent with the analyses correlating features of DC2 and DM2 to behavior. Specifically, we suspect that there are correlated fluctuations in glomerular Ca++ responses and Brp across individuals, due to fluctuations in the developmental spatial patterning of the antennal lobe. Thus, the DC2-DM2 predictor may represent a slice/subset of predictors distributed across the antennal lobe. This would also explain how we “got lucky” to find two glomeruli as predictors of behavior, when were only able to image a small portion of the glomeruli. In analyses we did not report, we explored this possibility using the AL computational model. We are likely to include this interpretation in the revised discussion.

      Reviewer #3 (Public Review):

      Churgin et. al. seeks to understand the neural substrates of individual odor preference in the Drosophila antennal lobe, using paired behavioral testing and calcium imaging from ORNs and PNs in the same flies, and testing whether ORN and PN odor responses can predict behavioral preference. The manuscript's main claims are that ORN activity in response to a panel of odors is predictive of the individual's preference for 3-octanol (3-OCT) relative to clean air, and that activity in the projection neurons is predictive of both 3-OCT vs. air preference and 3-OCT vs. 4-methylcyclohexanol (MCH). They find that the difference in density of fluorescently-tagged brp (a presynaptic marker) in two glomeruli (DC2 and DM2) trends towards predicting behavioral preference between 3-oct vs. MCH. Implementing a model of the antennal lobe based on the available connectome data, they find that glomerulus-level variation in response reminiscent of the variation that they observe can be generated by resampling variables associated with the glomeruli, such as ORN identity and glomerular synapse density.

      Strengths:

      The authors investigate a highly significant and impactful problem of interest to all experimental biologists, nearly all of whom must often conduct their measurements in many different individuals and so have a vested interest in understanding this problem. The manuscript represents a lot of work, with challenging paired behavioral and neural measurements.

      Weaknesses:

      The overall impression is that the authors are attempting to explain complex, highly variable behavioral output with a comparatively limited set of neural measurements…

      We would say that we are attempting to explain a simple, highly variable behavioral measure with a comparatively limited set of neural measurements. I.e. we make no claims to explain the complex behavioral components of odor choice, like locomotion, reversals at the odor boundary, etc.

      Given the degree of behavioral variability they observe within an individual (Figure 1- supp 1) which implies temporal/state/measurement variation in behavior, it's unclear that their degree of sampling can resolve true individual variability (what they call "idiosyncrasy") in neural responses, given the additional temporal/state/measurement variation in neural responses.

      We are confident that different Ca++ recordings are statistically different. This is borne out in the analysis of repeated Ca++ recordings in this study, which finds that the significant PCs of Ca++ variation contain 77% of the variation in that data. That this variation is persistent over time and across hemispheres was assessed in Honegger & Smith, et al., 2019. We are thus confident that there is true individuality in neural responses (Note, we prefer not to call it “individual variability” as this could refer to variability within individuals, not variability across individuals.) It is a separate question of whether individual differences in neural responses bear some relation to individual differences in behavioral biases. That was the focus of this study, and our finding of a robust correlation between PC2 of Ca++ responses and OCT-MCH preference indicates a relation. Because behavior and Ca++ were collected with an hours-to-day long gap, this implies that there are latent versions of both behavioral bias and Ca++ response that are stable on timescales at least that long.

      The statistical analyses in the manuscript are underdeveloped, and it's unclear the degree to which the correlations reported have explanatory (causative) power in accounting for organismal behavior.

      With respect, we do not think our statistical analyses are underdeveloped, though we acknowledge that the detailed reviewer suggestions included the helpful suggestion to include uncertainty in the estimation of confidence intervals around the point estimate of the strength of correlation between latent behavioral and Ca++ response states. We are considering those suggestions and anticipate responding to them in the revision.

      It is indeed a separate question whether the correlations we observed represent causal links from Ca++ to behavior (though our yoked experiment suggests there is not a behavior-to-Ca++ causal relationship — at least one where odor experience through behavior is an upstream cause). We attempted to be precise in indicating that our observations are correlations. That is why we used that word in the title, as an example. In the revision, we are working to make sure this is appropriately reflected in all word choice across the paper.

    1. He had always passed without turning his head to look. It was his habit to walk swiftly in the street even by day and whenever he found himself in the city late at night he hurried on his way apprehensively and excitedly.

      ID: Action: social anxiety

    1. Have you ever eated dog food? I have. After crunching like ice, sheopens her big mouth to prove it, only a pink tongue rolling aroundin there like a blind worm, and Janey looking in because she saidShow me. But me I like that Lucy, corn smell hair and aqua ip-ops just like mine that we bought at the K mart for only 79 centssame time

      I loved how descriptive Cisneros was in this part of the story because it helped me paint the perfect picture in my head of what was happening, and it made me think about how my sister and her friend used to do similar things like the narrator and Lucy did when they were young. Furthermore, mentioning how the narrator and Lucy have the same exact flip flops that they bought with each other shows how they have a perfect friendship with one another, that most of us were blessed enough to have with someone else growing up as well. I wonder if the narrator likes Lucy so much because of her big family that she doesn't have, and I also wonder if the narrator envy's Lucy so intensely that she wants to literally be Lucy in general?

    1. “Four into fourteen,” Hickock curtly corrected him. “There are four killers uphere and one railroaded man. I’m no goddam killer. I never touched a hair on ahuman head.”

      Dick/interesting: Funny how he goes back to the hairs on the head

    2. LoganGreen, who, certain that “temporary insanity” was the defense his antagonistswould attempt to sustain in the forthcoming trial, feared that the ultimateoutcome of the proposal would be, as he predicted in private conversation, theappearance on the witness stand of a “pack of head-healers” sympathetic to thedefendants (“Those fellows, they’re always crying over the killers. Never athought for the victims”

      plot (before this they're both trying to escape

  3. inst-fs-iad-prod.inscloudgate.net inst-fs-iad-prod.inscloudgate.net
    1. or everyone, everywhere. Computational thinkingwill be a reality when it is so integral to humanendeavors it disappears as an explicit philosophy.

      I really agree with this quote because the way the world is head is so technologically advanced that it is for everyone. we are going to have to use computational thinking. -Samantha Vinson

    1. Jack Dorsey shares Robert F. Kennedy Jr. video echoing conspiracy theoriesDorsey, the co-founder of Twitter and the head of Block Inc, has previously supported unconventional Democratic candidates.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In this paper, the effects of two sensory stimuli (visual and somatosensory) on fMRI responsiveness during absence seizures were investigated in GEARS rats with concurrent EEG recordings. SPM analysis of fMRI showed a significant reduction in whole-brain responsiveness during the ictal period compared to the interictal period under both stimuli, and this phenomenon was replicated in a structurally constrained whole-brain computational model of rat brains.

      The conclusion of this paper is that whole-brain responsiveness to both sensory stimuli is inhibited and spatially impeded during seizures.

      I also suggest the manuscript should be written in a way that is more accessible to readers who are less familiar with animal experiments. In addition, the implementation and interpretation of brain simulations need to be more careful and clear.

      Strengths:<br /> 1. ZTE imaging sequence was selected over traditional EPI sequence as the optimal way to perform fMRI experiments during absence seizures.

      2. A detailed classification of stimulation periods is achieved based on the relative position in time of the stimulation period with respect to the brain state.

      3. A whole-brain model embedded with a realistic rat connectome is simulated on the TVB platform to replicate fMRI observations.

      Weaknesses:<br /> 1. The analysis in this paper does not directly answer the scientific question posed by the authors, which is to explore the mechanisms of the reduced brain responsiveness to external stimuli during absence seizures (in terms of altered information processing), but merely characterizes the spatial involvement of such reduced responsiveness. The same holds for the use of mean-field modeling, which merely reproduces experimental results without explaining them mechanistically as what the authors have claimed at the head of the paper.

      2. The implementations of brain simulations need to be more specific.

      Contribution:<br /> The contribution of this paper is performing fMRI experiments under a rare condition that could provide fresh knowledge in the imaging field regarding the brain's responsiveness to environmental stimuli during absence seizures.

    1. requently hesitated. Thetherapist noted that Bill occasionally blinked and shook his head as though hewas trying to clear his thoughts or return his concentration to the topic at hand

      behavior

    1. Hello everyone, my name is Glendy Sanchez and it is very nice to get to know some of you guys. I know I am extremely late, but I was just now able to figure out CUNY commons and recently sign in. My major is criminology which was criminal justice at first, but once I transferred from Limestone College in SC, to John Jay College of Criminal Justice I changed my major. Criminal Justice is based more on the legal system and I am more interested in studying behavior which is what criminology is more about. Criminology is what I initially wanted to study to begin with but Limestone College only offered criminal justice. I have about 96 credits and a 3.78 cumm. GPA since I have to be thorough due to my anxiety and ADHD. Getting into John Jay was one of the best decisions I have made. I love this school compared to my school in SC, and no I am not lying, because I have actually learned so much already than I ever would have at Limestone, the school system works better for me, and they focus more on understanding and grasping the concept rather than overload you with work you have no idea about because the class structure is horrible at Limestone College. I am also a Twin sister which I am very proud of. Her name is Glenda so yes it's Glendy and Glenda or Glenda and Glendy. Confused? lol,it's ok, I get it. My goal is to become a homicide detective but I am also interested in becoming a criminal profiler for the FBI which is why I am getting my master's in Clinical psychology. The way I function, due to my personality, is having and creating more than one option for me, therefore; I want to be a homicide detective because I get to do both go to the crime scene and investigate, etc meaning not just one job or a criminal profiler which is like solving a puzzle in my head, to me and this way I do not feel restricted to work in just one field. I like to learn, having discussions, reading, (although, I read slow), and just being around my family, etc. My favorite subject in school was always science. I love biology and anatomy and physiology but I mean, my mom is a Science (Chemistry & Biology) teacher so I guess I get it from her. I am also told I am funny without trying to be and I enjoy helping people, usually to defend their rights. I am an activist of social and economic reform. I believe in gender, class, and race equality. In addition, I went to the congress building as an activist with other activists to speak on behalf of the Justice Clemency Act and spoke and gave statistical facts to congressmen as well as preparing a campaign to help immigrants get their citizenship through an internship I took. I was born and raised in The Bronx but I am Dominican and Dominican cultured. I am 26 years old with no children yet and I love to travel and learn new cultures. It amazes me. I can keep going and it is nice talking to you but I think I am talking too much now, so I will stop here, but if you have any questions you would like to know about me feel free to ask. I am open to share and no I don't bite. I consider myself very nice, having good heart intentions, and pretty cool person. May you all have a great rest of your day.

    1. “You don’t think Jonah jumped,” I said to Eva, trying hard to leave the question mark out of it.

      This is our first look into how Jonah actually died and it opens up a world of possibilities. Before it was fair to assume that he died in combat, but this twists that thought on its head and opens the reader's eyes to other potential causes to Jonah's death.

    1. reducing friction was the invention of infinite scroll

      When looking at UI and ethics the first thing that popped up into my head was the infinite scroll, as now more than ever the format has caught on and almost all social media sites have caught on to this along with the short form content format. The ethical implications of these two things are quite unclear to me. On the one hand, companies are profiting from having people glued to their phones and amplifying this with whatever algorithm they're using, on the other hand, how would something like this be regulated?

    1. obstetrical ultrasound.

      CRL in the first trimester From the crown (Highest point) to the Rump (Lowest Point)

      BPD in the second trimester (Biparietal Diameter: Between the two parietal bones) The aforementioned are in the ??? view

      Head circumference (HC) Abdominal Circumference (AC): Requires 2 ribs in the view and other things Femur Length (FL): View from diaphysis to diaphysis

    Annotators

    1. One night in her sleep shescreamed, "See him! See him!" and turned her head and found him sitting in his wheel chair behind her with a terrible expression on his faceand with all his clothes off except the general's hat and she had waked upand had not dared to go back to sleep again that night

      ????

    1. James II was suspected of trying to promote Catholicism

      James II married a catholic princess and had a son who would be the heir of the throne => a catholic head of state of a protestant state.

    2. In 1688 the King of England was also King of Ireland and King of Scotland. This was the result of a history of conquests and unions.

      Not the same countries but they had the same Head of State.

    1. It has been host to white-supremacist, neo-nazi and other hate content.

      I think this is just one of those times where when anyone given too much power or freedom it gets to one's head. It's sad that exciting and hopeful ideas such as 8Chan (now 8Kun) are ruined by ill intentioned individuals. Although no one enjoys having them -- sometimes rules and regulations are crucial in keeping good things good and not allowing any bad things to have a space to breed. People who have the goal and aim to spread ideas of hate and ignorance will find a way that's why media sites have really got to lock down (ex: Instagram being more restrictive on chats and content).

    1. 400-some strong newsroom

      not sure why in my head I thought that the newspaper was going to be really small. What other newspapers are similar to this in Israel, or is this the biggest one?

    1. To appear natural he pushed his cap back on his head and planted his elbows on the table

      ID: Action: He is consciously trying to appear normal because he is self conscious of how he is being perceived

    1. But when I look ahead up the white road There is always another one walking beside you Gliding wrapt in a brown mantle, hooded

      I'm very interested in the use of color here. Why is it that in a span of one stanza—in fact, a mere three lines—two colors are referenced: white and brown? I was interested in finding more about this, so the first place I looked to was the etymologies of these colors. From the Online Etymology Dictionary:

      Brown: Old English brun "dark, dusky," developing a definite color sense... from PIE root *bher- (2) "bright; brown."

      And:

      White: ...in late Old English "a highly luminous color devoid of chroma."

      Also, interestingly, with white:

      ...Meaning "morally pure" was in Old English. Association with royalist causes is late 18c. Slang sense of "honorable, fair" is 1877, American English; in Middle English it meant "gracious, friendly, favorable."

      Brown and white have stark differences—of course, with the most obvious being the fact that brown is "developing a definite color sense" while white is "devoid of chroma." This is consistent with the basic science behind color: white reflects all wavelengths of light—the absence of color—whereas brown/black absorbs them—a complete presence of color. As the etymology indicates, evidently, one can analogize the absence/presence of color as the absence/presence of sin: white, being absent of "chroma," is as a consequence regarded as "favorable," "honorable," and "morally pure." Of course, one can delve even more into the repercussions this had on white supremacy—but, within the context of the poem, a "white road" may be seen as a pure one: a road, or a path, free of sin (chroma).

      Interestingly, however, this idea is turned on its head in the Visuddhi-Magga reading. The "white road" from line 362 can be related to the path from Mt. Cetiya to Anuradhapura; this is hinted by line 365, which mentions the ambiguity of the gender of a figure just as the Visuddhi-Magga reading did on pg. 298. On the same page, however, elements that are white aren't indications of purity—but impurity:

      The elder looked up inquiringly, and observing her teeth, realized the impurity of her body...

      Also:

      But this I know, a set of bones / Is traveling on upon this road.

      Both bones and teeth are white—yet they are the utmost signs of the impurities, the least honorable and favorable and gracious elements of the human self.

      Finally, with regards to brown—though brown is a "dark" and "dusky" color, it has one commonality with white: the element of brightness, of luminosity, in their etymologies. I am immediately reminded of Dracula when I read this: Dracula comes out only in the absence of brightness, as he is a "nocturnal existence." Yet the mantle—the cloak—worn by this figure, much like one that Dracula is described as wearing in the novel, is brown. From conventional associations of color, if the mantle was a symbol of darkness and evil, one would not expect it to be brown—which even has the etymology of brightness. Instead, this figure may be the antithesis of Dracula itself. This would make sense because, as Angela hinted at, the idea of a "third figure" may symbolize a character of divinity, of providence—or of brightness.

    2. drop

      Eliot has a playful approach with this line, just as he demonstrates through "Weialala... la la", "Twit twit twit / Jug jug jug jug jug jug", and many other instances. I'll refer back to this line at the end of this annotation, but for now, I am most intrigued by the connection between the hermit-thrush and water. First, Eliot's footnote deems that this bird's "water-dripping song is justly celebrated". The fact that the hermit-thrush's melody is described as "water-dripping" evidently alludes to the connection between the two. Yet, important to note is that this "water-dripping" trait comes from the bird's "purity and sweetness", which comes from Chapman distinguishing that this kind is "the sweetest singer of all American birds". Water is pure, probably the purest of all liquid substance. But is it sweet? In general, no. But maybe it is in a case of drought and a situation with "no water but only rock". If one is deprived of water for long, where one's "flesh longeth for [God] in a dry and thirsty land", I'd say one would be soured with overwhelming bitterness and dissatisfaction (Psalm 63:1). Even when the hermit-thrush appears, bringing its "water-dripping song", one's thirst is still not quenched by the intangible. The hermit-thrush, with "hermit" alluding to "solitude" (343), is not an actual source of aid, thus "There is not even solitude in the mountains / But red sullen faces" – their countenance red from dehydration or head perhaps. Moreover, the hermit-thrush "attracts little notice" and "often finds seclusion" as Chapman notes. Is the bird keeping its "water-dripping song" for itself, finding solitude that the poem, narrator (Tiresias?) is unable to locate? Mother Nature has a world of its own, maybe we just can't step beyond our line of humanity and into this nature's secrecy. Maybe the natural world is punishing us through this drought, stripping us from its natural resources. Thus, we are left with mere sound tempting us, just as springtime teases us with breeding lilacs out of the dead land, making us love again only to face loss in the wintertime. The hermit-thrush's song begins with two drips and drops but finalizes with the repetition of "drop". Does this allude to humanity dropping underground post-death? Are we going to be next to be planted in the dead land, just for the next generation to rise again? "But there is no water"; perhaps there won't even be a next to breed out of the seeds of our corpses. Maybe we'll just "drop drop drop drop" into the deep realms of Hell and never see the light of day nor hear the sound of water.

    3. As he rose and fell

      Though this section appears much more concise than the rest, I believe its brevity alludes to something greater, specifically the grand, infinite cycle of change through time. Death, evidently, is a natural stage in life. Though usually interpreted as the end of something, occasionally, and generally in TWL, death represents the beginning of something new. Thus, as Phlebas' death is portrayed in this scene, some part of him still lives on, as this corpse "passe[s] the stages of his age and youth / Entering the whirlpool", retracing moments of his life in a supposed afterlife. What's interesting is that Phlebas is still the subject of this action despite proclaimed dead. Though, "A current under sea" technically is the actual subject in charge of his corpse's motion, Eliot decides on sticking with "He" as the subjective noun, perhaps emphasizing the significance of humanity and its course. However, I believe nature still prevails over mankind. Pheblas "rose and fell" only because of the "current under sea"; without the sea's motion, this corpse would remain static. This theme is corroborated in multiple sources – Dante's "a whirlwind that struck the ship head-on" shows natural force over a mere manmade construct; De Quincy's depiction of "the treacherous sands gathering above [a woman's] head, so that "no memorial of the fair young girl remained on earth".

      Phlebas' rising and falling in the sea also reminds me of the references to motion and time in the sources. De Quincey's "from the rising to the setting sun" and the plot's progression over a storm at sea till dawn evokes the image of nature's cyclic continuity. Tennyson's "every hour is saved / From that eternal silence, something more, / A bringer of new things" further alludes to vitality (new things) that comes with time (every hour). Nature and mankind seem intertwined; their motions reflect each other. Or perhaps, nature actually determines human motion and status. As the sea is the one acting in this section, it wouldn't be a stretch to say that this body of water has committed acts, including death. I'm starting to think that the "by" in "Death by Water" is not a preposition that alludes to a location, but rather identifies the agent performing an action.

    1. tells me how sorry he is, and then I just shake my head and keep walking. “It’s all just part of the experience,” I tell myself.

      writer seems almost focused on having an enjoyable experience no matter any negativity that occurs.

    1. @jarrodcarter1466 1 year ago I agree with everything you said Chris: Additionally, the recipe to build baritone range for me has been: 1) stretch and strengthen your falsetto as high as you can every day 2) stretch your falsetto down to well under the passagio with descending scales over your chest voice to help your transition to mixed voice become smooth and eliminate ascending blockages 3) do the Messa di Voce exercise as often as you can. It teaches you placement and to thread the power of your chest voice through your falsetto 4) understand that your voice should get weaker over the course of a session as the muscles fatigue. It should never get sore 5) sing lots of high songs exclusively in falsetto to strengthen the often neglected head voice muscles 6) avoid singing songs that reinforce bad technique. You should never reach a high note that you can't strain up from. Your voice should get thinner and weaker as it ascends and not hit blockages. Songs that give you a strained high-note ceiling should be avoided.

      Some handy tips someone has on how they increased their head voice range as a baritone.

    1. Reviewer #1 (Public Review):

      In this manuscript, Kim et al. investigate the molecular basis for hindbrain segmentation by performing combined single cell nucleus RNAseq and ATACseq (scMultiome) on zebrafish embryonic hindbrain tissue. Hindbrain segmentation is fundamental to head development in vertebrate species. Decades of research have provided many insights into the gene regulatory cascades that control the progressive subdivision of the hindbrain territory into segments (rhombomeres). These studies have enabled the formulation of gene regulatory network (GRN) models that depict these regulatory interactions. However, many aspects of the GRN need further clarification, including the early steps of pre-rhombomeric patterning, and the factors that respond to axial signaling pathways such as RA and FGF. The dataset in this study provides a comprehensive view of gene expression and chromatin states during hindbrain segmentation, thus it is a valuable resource for characterizing the underlying GRN. The authors demonstrate the utility of this data by comparing the molecular profiles between different rhombomeres and tracing when and how these profiles arise during development.

      Four main findings are presented:

      1. Each rhombomere has a unique molecular profile.<br /> 2. There is no clear molecular signature for odd versus even rhombomeres, nor any overt repeating two-segment molecular identities.<br /> 3. The mature rhombomeres emerge through the subdivision of three mixed-identity 'primary hindbrain progenitor domains' (PHPDs) that correspond to r2/r3, r4, and r5/r6, respectively.<br /> 4. RA and FGF signaling control formation of the primary hindbrain progenitor domains.

      These findings are well supported by the data but in my opinion they mainly confirm what was already known and do not significantly advance our mechanistic understanding of rhombomere formation, which is the aim of the paper.

      Strengths:<br /> This comprehensive dataset will be very valuable to researchers in the field. The authors successfully demonstrate its utility by resolving unique molecular profiles for each rhombomere and identifying some novel markers.

      The authors make excellent use of HCR to validate their findings, such as the co-expression of vgll3 and egr2b in r2/r3 cells at 10hpf, which implies mixed identities of PHPD cells.

      The performance of scMultiome analysis on tissue from DEAB-treated embryos (depleted RA signaling) is exciting and holds much promise for identifying RA-dependent gene regulatory cascades that govern caudal hindbrain patterning. Assessing the contribution of control versus DEAB-treated cells to the various UMAP clusters is a very nice way to identify the altered cell states in the RA-depleted hindbrain. This confirms a complete absence of r5 and r6 in the DEAB-treated embryos at this developmental stage, as was inferred from in-situ approaches in earlier studies.

      Weaknesses:<br /> The major weakness of this work is that it only provides an incremental mechanistic advance to our current understanding of the molecular basis for rhombomere formation. The descriptions of gene expression are useful but for the most part they are rather shallow lines of enquiry that confirm what was already known from previous, less comprehensive studies of gene expression. For example, regarding the identification of PHPDs, it has long been known that r5/r6 share a progenitor domain that is demarcated by mafba expression. Similarly, RA and Fgf signaling have already been shown to be required for anterior-posterior patterning in the pre-rhombomeric hindbrain. The identification of mixed-identity progenitors in PHPDs, and the characterisation of the changes in transcription and chromatin state in response to RA signaling perturbation are really exciting starting points for deeper analysis of the underlying GRN. However, it is a shame that no effort is made to glean mechanistic insights from this dataset by computational GRN inference.

    1. The wind wouldjust die, some days, inAugust, and it was no re-lief at all; the cessationdrove us nuts. We real-ized afresh how muchthe wind had becomepart of the soundtrackto life in Philo. Thesound of wind had be-come, for me, silence.When it went away, Iwas left with the squeak of theblood in my head and the auralglitter of all those little eardrumhairs quivering like aT drunk in withdrawal.

      Nice imagery.

    1. HUMAN REPRESENTATION OF RING STRUCTURE

      In Sutherland's thesis, he discusses the concept of ring structures, which can be thought of as a type of data structure where elements are connected in a circular manner. This can be compared to a Python list where the last element points back to the first one, forming a "ring".

      In the context of his thesis, Sutherland uses the terms "hen" and "chicken" to represent elements in this ring structure. A "hen" can be thought of as the starting point or the head of the list, while a "chicken" represents other elements in the list.

      The operations he describes - inserting a new chicken into a ring at a specific location, removing a chicken from a ring, putting all the chickens of one ring into another at a specific location, and performing some auxiliary operation on each member of a ring in either forward or reverse order - can be compared to operations on a Python list.

      For example, inserting a new chicken into a ring can be compared to inserting an element into a Python list at a specific index:

      ```python

      Python list

      ring = ['hen', 'chicken1', 'chicken2']

      Insert new chicken at index 1

      ring.insert(1, 'new_chicken') ```

      Removing a chicken from a ring can be compared to removing an element from a Python list:

      ```python

      Remove 'chicken1' from the list

      ring.remove('chicken1') ```

      Putting all the chickens of one ring into another at a specific location can be compared to extending a Python list with another list:

      ```python

      Another ring

      another_ring = ['hen2', 'chicken3', 'chicken4']

      Extend ring with another_ring

      ring.extend(another_ring) ```

      Performing some auxiliary operation on each member of a ring in either forward or reverse order can be compared to iterating over a Python list in forward or reverse order:

      ```python

      Forward order

      for chicken in ring: print(chicken)

      Reverse order

      for chicken in reversed(ring): print(chicken) ```

      The concept of "MACRO instructions" he mentions can be compared to Python functions that encapsulate these operations for easy use.

    1. Author Response

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public Review):

      DeKraker et al. propose a new method for hippocampal registration using a novel surface-based approach that preserves the topology of the curvature of the hippocampus and boundaries of hippocampal subfields. The surface-based registration method proved to be more precise and resulted in better alignment compared to traditional volumetric-based registration. Moreover, the authors demonstrated that this method can be performed across image modalities by testing the method with seven different histological samples. This work has the potential to be a powerful new registration technique that can enable precise hippocampal registration and alignment across subjects, datasets, and image modalities.

      We thank the Reviewer, and feel this is an accurate summary of our work.

      Reviewer #3 (Public Review):

      Summary:

      In the current manuscript, Dekraker and colleagues have demonstrated the ability to align hippocampal subfield parcellations across disparate 3D histology samples that differ in contrast, resolution, and processing/staining methods. In doing so, they validated the previously generated Big-Brain atlas by comparing across seven different ground-truth subfield definitions. This is an impressive effort that provides important groundwork for future in vivo multi-atlas methods.

      Strengths:

      DeKraker and colleagues have provided novel evidence for the tremendously complicated curvature/gyrification of the hippocampus. This work underscores the challenge that this complicated anatomy presents in our ability to co-register other types of hippocampal data (e.g. MRI data) to appropriately align and study a structure in which the curvature varies considerably across individuals.

      This paper is also important in that it highlights the utility of using post-mortem histological datasets, where ground truth histology is available, to inform our rigorous study of the in vivo brain.

      This work may encourage readers to consider the limitations of the current methods that they currently use to co-register and normalize their MRI data and to question whether these methods are adequate for the examination of subfield activity, microstructure, or perfusion in the hippocampal head, for example. Thus the implications of this work could have a broad impact on the study of hippocampal subfield function in humans.

      Weaknesses:

      As the authors are well aware, hippocampal subfield definitions vary considerably across laboratories. For example, some neuroanatomists (Ding, Palomero-Gallagher, Augustinack) recognize that the prosubiculum is a distinct region from subiculum and CA1 but others (e.g. Insausti, Duvernoy) do not include this as a distinct subregion. Readers should be aware that there is no universal consensus about the definition of certain subfields and that there is still disagreement about some of the boundaries even among the agreed upon regions.

      We thank the Reviewer, and feel this is an accurate summary of our work that also provides useful scientific context.

      Reviewer #2 (Recommendations For The Authors):

      The authors have done a great job with the revisions and have addressed all my concerns. They have clarified aspects of the method and procedure and have included a helpful walk-through explanation of an example subject. The authors have also expanded the discussion and addressed the motivation and justification for certain steps of the procedure.

      We thank the Reviewer.

      Reviewer #3 (Recommendations For The Authors):

      The authors have addressed my previous comments and I believe the impact and take home message of the paper is more clear.

      We thank the Reviewer.

      In Figure 1, is the proximal-distal label reversed for panel B? I think P (proximal) should be closer to CA4/DG and D (distal) should be closer to subiculum. Am I misreading the graph?

      We thank the Reviewer for this consideration, but the label is as intended. The terms proximal/distal in the hippocampal literature are sometimes relative to the dentate gyrus and sometimes relative to the rest of the cortex. In our case, we use the terms relative to the neocortex, following Ding and Van Hoesen (2015). We have now added the following to clarify this point at the first use of these terms (p.5):

      “The current work, however, defined this tessellation as a regular mesh grid in unfolded space consisting of 256×128 points across the anterior-posterior (A-P) and proximal-distal (P-D) (relative to the neocortex) axes of the unfolded hippocampus, respectively.”

    2. Reviewer #2 (Public Review):

      Summary:

      In the current manuscript, Dekraker and colleagues have demonstrated the ability to align hippocampal subfield parcellations across disparate 3D histology samples that differ in contrast, resolution, and processing/staining methods. In doing so, they validated the previously generated Big-Brain atlas by comparing across seven different ground-truth subfield definitions. This is an impressive effort that provides important groundwork for future in vivo multi-atlas methods.

      Strengths:

      DeKraker and colleagues have provided novel evidence for the tremendously complicated curvature/gyrification of the hippocampus. This work underscores the challenge that this complicated anatomy presents in our ability to co-register other types of hippocampal data (e.g. MRI data) to appropriately align and study a structure in which the curvature varies considerably across individuals.

      This paper is also important in that it highlights the utility of using post-mortem histological datasets, where ground truth histology is available, to inform our rigorous study of the in vivo brain.

      This work may encourage readers to consider the limitations of the current methods that they currently use to co-register and normalize their MRI data and to question whether these methods are adequate for the examination of subfield activity, microstructure, or perfusion in the hippocampal head, for example. Thus the implications of this work could have a broad impact on the study of hippocampal subfield function in humans.

      Weaknesses:

      As the authors are well aware, hippocampal subfield definitions vary considerably across laboratories. For example, some neuroanatomists (Ding, Palomero-Gallagher, Augustinack) recognize that the prosubiculum is a distinct region from subiculum and CA1 but others (e.g. Insausti, Duvernoy) do not include this as a distinct subregion. Readers should be aware that there is no universal consensus about the definition of certain subfields and that there is still disagreement about some of the boundaries even among the agreed upon regions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful assessment of our work and their valuable critiques which we will address in the “Recommendations for the authors” section below. In particular, we appreciate Reviewer #3 noting the value of the C. elegans model system and our efforts to bridge models with our study. We agree with the reviewer that there is a need to clarify the rationale, presentation and interpretation of our results. We have substantially revised the text in our manuscript and Figure legend to address this issue, and provided extensive new commentary and citations to lay out the logic behind our experiments. Indeed, it was our oversight not being more thorough about this initially. We have further adjusted our conclusions to be less unequivocal. Finally, we added an RPM-1 signaling diagram (Fig. 8A) to more clearly annotate the players in the RPM-1/MYCBP2 signaling network that were evaluated genetically in Fig. 8. Importantly, we provide clearer commentary on how genetic enhancer effects with known RPM-1 binding proteins and the absence of genetic suppression in vab-1/Eph receptor double mutants with components of the RPM-1/FSN-1 ubiquitin ligase complex are consistent with the biochemical finding that MYCBP2 stabilizes but does not degrade EphB2. Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.

      Following extensive discussions between the three reviewers, all three agree that the C. elegans data, as presented, does not add to, and in fact might harm, your bottom line. Our combined suggestion is to take this data out unless you plan to improve it substantially. All reviewers are perplexed by Figure 2F and the presumed interactions of cytosolic proteins with the extracellular domain of EPHB2. At the very least, please provide some suggestions/model/interpretation.

      We have adjusted our manuscript substantially to address this. Please see detailed comments in the individual Reviewer sections below.

      We would like to thank the reviewers for their thorough examination of our manuscript, constructive criticisms, and helpful suggestions.

      Reviewer #1 (Recommendations For The Authors):

      The work is extensive in my view, and mostly of high quality. See minor comments on some of the figures below.

      Thank you very much.

      Two more major comments :

      • I don't think the C. elegans work adds to - in fact I think it hurts - the statement that this regulatory mechanism is specific to EphB2. I would advise the authors to take it out.

      We agree that C. elegans has a sole Eph receptor called VAB-1 and is therefore not a specific model for EPH2B. However, testing MYCBP2 specificity for EPHB2 was not the goal or our perceived value for the C. elegans experiments. We now clarify this in the text of the Results section.

      Rather, we are providing evidence that the C. elegans ephrin receptor interacts genetically with known MYCBP2/RPM-1 binding proteins. Moreover, we now provide an extensive array of citations to note that genetic enhancer interactions between different RPM-1/MYCBP2 binding proteins is well established. The reviewer has nicely highlighted for us that we handled the C. elegans genetics in too cursory a fashion in our original manuscript. We appreciate this being noted and have now aimed to make this substantially clearer. We hope the reviewer agrees that our revised C. elegans section accomplishes this goal.

      Furthermore, we extensively revised the text of the Results to emphasize a key point: our observation that axon termination defects are not suppressed in vab-1; fsn-1 and vab-1; rpm-1 double mutants excludes the possibility that the VAB-1 Eph receptor is a substrate that is inhibited or degraded by the RPM-1/FSN-1 ubiquitin ligase complex. If the VAB-1 Eph receptor were ubiquitinated and degraded by the RPM-1/FSN-1 complex, we would have observed a suppression of phenotype in vab-1; rpm-1 double mutants. The precedent for this genetic relationship between the RPM-1 ubiquitin ligase and its substrates that are degraded has been established by several prior studies (PMID: 15707898; PMID: 31676756; PMID: 35421092). We now more clearly note that the absence of genetic suppression in vab-1; rpm-1 double mutants and vab-1; fsn-1 double mutants is consistent with the non-canonical stabilizing role of MYCBP2 on EPHB2 that was observed in our biochemical experiments with mammalian cells.

      We also adjusted the text of the manuscript to stress that we are testing genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This is a key point, as genetic enhancer interactions are consistent with the Eph receptor functioning in the RPM-1 signaling network. This concept has been well established for RPM-1 binding proteins as now noted in our revised text with an extensive number of additional citations to published work.

      Based on the above arguments, we respectfully disagree with the reviewer that our C. elegans data should be removed from the paper. To re-iterate, we are not trying to evaluate specificity for MYCBP2 and EPHB2 in C. elegans. Rather, our goals are twofold: 1) To ask whether there is an evolutionarily conserved functional genetic link between Eph receptors and known RPM-1 binding proteins. 2) To provide further in vivo genetic evidence invalidating the hypothesis that Ephrin receptors could be ubiquitination substrates that are inhibited/degraded by MYCBP2.

      Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.

      • The cellular responses are not robust and the effects of MYCBP2 KO - although significant - are minor in most cases. But I don't think more experiments will help here.

      We interpret the comment about the robustness to mean that the extent to which a given cellular response is affected by the loss of MYCBP2 is minor. First, the cellular responses themselves are typical of previous studies and depend on the cellular biology underlying them. For example, a growth collapse of ~50-60% over a background of 10% (Fig. 7) is typical for these sorts of assays (PMID: 37369692; PMID: 33972524; PMID: 17785182). A decrease of cell area by ~25% (Fig. 3) is quite substantial if one considers how much of a cell’s volume is taken up by the nucleus and organelles. Second, the phenotypes elicited by the loss of MYCBP2 are likely brought on by a decrease in EphB2 protein levels, but not its complete absence, as suggested by our biochemical experiment. Given that EphB2 complete loss only affects the cellular responses to a limited extent, the minor effects are not a surprise (e.g. for GC collapse: PMID: 23143520). Nevertheless, the subtle changes in cellular phenotypes, elicited by EPHB2 signaling are often sufficient to achieve proper cell positioning and cell response to guidance cues. For instance, regulation of the growth cone collapse of the outgrowing axons requires delicate changes that are dynamic and temporal.

      Minor:

      Fig 1C - EPHA3 and EPHB2 seem to run in different sizes, is this the case? In 2A they run at the same size.

      We believe this size discrepancy is due to different percentages of SDS-PAGE gels used to resolve proteins. In Fig. 1C, we used a 6% gel for a Western blot analysis of both EPHA3/-B2-FLAG (~130 kDa) and MYCBP2 (~510 kDa). In Fig. 2A however, we performed Western blot analysis using 10% resolving gel to separate and detect EPHA3/-B2-FLAG along with MYC-FBXO45 (~30 kDa). We have reviewed the results obtained from additional biological replicates of this experiment, and observed a similar pattern in gel migration of EPHA3/-B2-FLAG across all replicates.

      Fig1F - I can't trust the MYCBP2 blot.

      Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the results replace the previous Fig. 1F panel as mentioned on line 158.

      In Fig2b the authors claim that there is enhancement in the binding of MYCBP2 and EPHB2 upon FBXO45 expression. For this type of statement quantification is required.

      The quantification is now included in Fig. 2C and its significance is mentioned on line 180. Our conclusion about the enhancement stands.

      Fig2G - it remained unclear to me where the binding site to MYCBP2 is, how long is the cytoplasmic tail in the DeltaICD protein?

      Based on our experimental observations from Fig. 2E-H, we concluded that the fragment encompassing the extracellular domain(s) and/or transmembrane (TM) domain of EPHB2 is necessary for the protein complex formation with MYCBP2. We would like to accentuate that the EPHB2-MYCBP2 interaction might not be direct, and might involve other transmembrane protein(s) acting as a scaffold for EPHB2 and MYCBP2 binding. We did not pursue experiments to determine the exact region of the extracellular-TM portion of EPHB2 that is required for the interaction with MYCBP2.

      The cytoplasmic tail in ΔICD protein consists of 25 aa of the N-terminal fragment of EPHB2 juxtamembrane (JM) region, which is adjacent to the TM helix, and followed by the 8 aa FLAG tag (EPHB2 ΔICD domain composition: extracellular domains – TM domain – 25 aa fragment of JM region – FLAG). We have determined the TM and JM sequences based on Hedger et al. (PMID: 25779975) and included the N-terminal portion of the JM region to facilitate proper ΔICD protein localization within the plasma membrane (PMID: 35793621). We modified the schematic in Fig. 2G to better visualise the EPHB2 truncations and now provide information on their size in the figure legend.

      Always good to have a model of how all these proteins work together.

      While we acknowledge that this would be helpful, we do not have a clear answer on how the EPHB2-MYCBP2 complex formation occurs. This requires further elucidation of the putative proteins involved in this ternary complex or testing the possibility that a MYCBP2 fragment is extruded extracellularly. Without these experiments there are too many possibilities to summarise into a clear model figure. We thus did not make any edits regarding these possibilities in the section starting on line 195.

      Reviewer #2 (Recommendations For The Authors):

      Overall, the experiments are classical experiments of co-immunoprecipitations, swapping experiments, collapse assays, and stripe assays which all are well carried out and are convincing.

      Thank you for your encouraging comments.

      Controls for the stripe assay may include Fc / Fc stripe assays.

      We have performed these control experiments and now include their quantifications in the results sectioning concerning Fig. 3, starting on line 249, and those concerning Fig. 6 on line 381.

      It is not clear to me why SD and not SEM has been used here for presentations.

      Standard deviation (SD) measures the dispersion of a dataset relative to its mean. The standard error of the mean (SEM) measures how much discrepancy is likely in a sample’s mean compared with the population mean. Thus, SEM includes a statistical inference about the sampling distribution while SD is a less “processed” measurement that by definition is larger than SEM. SEM might make the data look less dispersed and many journals encourage the use of SD in bar graphs (PMID: 16223828).

      Fig 7A: it is rather difficult to see 'branches' in Fig. 7A, better pictures and close-ups should be provided. How are branches defined? This piece of work needs more attention.

      To remedy this shortcoming, we now provide inverted images with GFP signal in dark pixels overlaid on Fc (white) / eB2 (pink) stripes next to the original images.

      Reviewer #3 (Recommendations For The Authors):

      1) My most important suggestion to the authors would be to more carefully describe the results and their interpretation of the results. Sometimes, the distinction is not clear.

      We modified the text throughout the manuscript to address this.

      2) There are several cases, when the authors report on trends that are not statistically significant (1D, for example), or report no change, when it is clear that the addition of one more sample could have dramatically made a difference (4M - see point 12).

      We agree that some of the nonsignificant differences could become significant if we added more Ns. But we prefer not to move our experimental design towards N-chasing and p-hacking (PMID: 25768323). The number of biological replicates is normally pre-determined before the onset of the experiment. Of course, some replicates can be discarded if there is a valid reason, such as a technical issue with the experiment or a positive control not working but this is not relevant for the dataset we have provided.

      3) Data in 1F is very difficult to interpret.

      As in response to Reviewer #1: Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the improved results are in revised Fig. 1F.

      4) Figure 2 puts Figure 1 in a strange perspective. If I understand correctly, fig 2 claims that EPHB2 interaction with MYCBP2 depends on FBXO45 - if that is the case then how does the binding in Figure 1 occur?

      Indeed, we propose that the EPHB2-MYCBP2 interaction depends on FBXO45. In Fig. 2, we reveal that FBXO45 enhances the formation of the EPHB2-MYCBP2 complex. Thus, we suspect that the endogenous FBXO45 present in HeLa cells and neurons would mediate the interaction between EPHB2 and MYCBP2 in Fig. 1 experiments. We were unable to show this by Western blotting due to lack of reliable commercial antibodies against FBXO45, the complex containing endogenous FBXO45 and EPHB2 is also implied by our AP-MS data (Fig. 1B) and published databases.

      5) I am still trying to wrap my mind around the results in 2G-H. So do MYCBP2 and FBXO45 bind the extracellular domain of EPHBP2? What does that mean?

      (see also our response to Reviewer #1, end of their section) Based on our experimental observations from Fig. 2G-H, we conclude that the fragment encompassing the extracellular domain(s) and/or transmembrane domain of EPHB2 is necessary for the protein complex formation with MYCBP2 and FBXO45. Although there is a possibility that MYCBP2 directly binds the extracellular portion of EPHB2, we have not formally tested this hypothesis. MYCBP2 has been previously shown to interact with the extracellular portion of transmembrane N-cadherin (CDH2) via BioID proximity labeling and AP-MS proteomics approaches (PMID: 32341084).

      Considering the results in Fig. 2A-B, we suspect that EPHB2-MYCBP2 interaction is indirect, as FBXO45 enhances this association. Secretion of FBXO45 and direct binding of FBXO45 to the extracellular cadherin (EC1-2) domains of N-cadherin has been documented (PMID: 25143387; PMID: 32341084). Although, not tested, this is also a possibility for EPHB2-FBXO45 mode of interaction. Nevertheless, we also cannot rule out the possibility that an unknown transmembrane protein binds EPHB2 extracellularly and the same unknown protein binds MYCBP2/FBXO45 intracellularly. Resolving this model is beyond the scope of this study and will require us to pursue extensive new lines of investigation.

      6) I don't understand the stable Hela cell line CRISPR - is this a stable MYCBP2 deletion? In which case why is there only a reduction, not complete elimination of the protein? Or, is this a stable integration of a plasmid generating gRNA against MYCBP2? In which case, I would expect a homozygous null to emerge at some point. In any case, this is not well explained.

      These lines are not derived from single cells infected with the CRISPR sgRNA-carrying viruses, therefore they are not clonal and probably contain some cells that express normal levels of MYCBP2, hence its detection on a Western. This is now clarified starting on line 221 and on line 608.

      7) In 3C - is this the right statistical analysis?? I would say you want to claim the different effect of the control +/- eB2 compared to the effect in the mutant +/- eB2. Still should be significant but I think a more correct analysis.

      We now include this comparison in Fig. 3C as well in the results section starting on line 234.

      8) The robustness of the assay in Figure 3D is underwhelming – how was the area measured?

      This is a live imaging experiment. Fig. 3D plots cell area at 60 minutes after ephrin-B2 addition as a fraction of the same cell’s area at 0 minutes (ephrin-B2 addition). For control cells that is a decrease of ~25%. If one considers that a cell’s nucleus and organelles like the Golgi Apparatus take up most of its volume, the magnitude is not that surprising.

      9) Figure 3F – did you try to plot the relative area of overlap divided by the total cellular area? You might get a more striking phenotype. Also – claiming that this confirms that MYCBP2 is REQUIRED for EPHB2 function is a bit overstated, especially given that we don’t know (do you?) the EPHB2 mutant phenotype in this assay.

      We preferred to stay with the original method of image quantification which we use for other assays. With respect to the requirement of MYCBP2 for EPHB2 function in the stripe assay, our logic is rooted in the observation that native HeLa cells do not respond to ephrin-B2 stripes (45.46 ± 7.62% of cells on eB2 stripes v. Fc; data not shown). When they are transfected with EPHB2 expression plasmids they do, therefore we assume that EPHB2 expression endows them with a sensitivity to eB2 stripes. A loss of MYCBP2 attenuates this sensitivity. We clarified this starting on line 246 and on line 251.

      10) I didn't quite get the difference between 4A and 4B.

      We apologize for the confusion. In Fig 4A, we used a stable HeLa cell line that has tetracycline-inducible expression of EPHB2-FLAG. Using these cells, we subsequently generated CTRLCRISPR or MYCBP2CRISPR cells. In these cells we then induced EPHB2 expression with tetracycline and observed that deletion of MYCBP2 resulted in the reduction of EPHB2 protein levels. To confirm this observation and to rule out the possibility that EPHB2 protein reduction is an effect of the CRISPR lines generation, we tested whereas MYCBP2 deletion reduces EPHB2, which has been transiently overexpressed (Fig. 4B). We hence conclude that loss of MYCBP2 decreases EPHB2 that was either expressed from a stable locus (Fig. 4A) or from transient transfection (Fig. 4B). We modified the Results section starting on line 262 to make this point clear.

      11) The entire link to lysosomal degradation should be strengthened. Perhaps I am confused, but if the reduced EPHB2 levels in MYCBP2 mutant cells result from impaired lysosomal degradation then inhibiting the lys-deg should bring the protein levels back to normal (i.e. CRISPR control) - no? As currently presented, I do not understand nor do I think the claim is strongly supported by the data.

      Before treatment with inhibitors, EPHB2 levels in MYCBP2CRISPR cells are already 40% lower than they are in CTRLCRISPR cells and in all our attempts, inhibitors can only rescue/restore EPHB2 in MYCBP2CRISPR cells to a level that is lower than in CTRLCRISPR cells. But this restoration is greater in MYCBP2CRISPR than in MYCBP2CTRL cells (BafA1: 19% increase in CTRL cells and 40% in MYCBP2CRISPR cells; CoQ: 10% comparing to 35%). This indicates that EPHB2 degradation through the lysosomal pathway in MYCBP2CRISPR cells is stronger, explaining why EPHB2 degradation is promoted in MYCBP2CRISPR cells, compatible with reduced EPHB2 levels and enhanced EPHB2 ubiquitination.

      12) 4M, O - reporting ns based on these data seems a bit strange to me... Add one point and it will be strongly significant.

      See our response to point (2), above. We prefer not to invoke potential p-hacking.

      13) 7d - so what are you claiming? That the cellular response to eB1 but not eB2 is affected by the addition of FBD1? this is almost the opposite of what you wrote in the text...

      We treated the cells with two different ephrin-B ligands to make a stronger conclusion. When using ephrin-B1, growth cone collapse in FBD1 WT is not significant comparing to Fc treatment. When using ephrin-B2, growth cone collapse in FBD1 WT is not as significant as it is in FBD1 mut group (* versus ). We interpret this as meaning that the EPHB2-mediated growth cone collapse to both ligands is dampened, when we disrupt the EPHB2-MYCBP2 association. The difference between these two ligands might be due to their different affinities for the receptor or signalling kinetics.

      14) By far the weakest link in this paper is the worm part. I think it's a pity because strengthening this would affect the significance of the finding. First, the authors mention new genes without introducing their relationship to the signaling pathway tested. Second, the textual logics should be strengthened. Finally and most importantly, when the difference between the phenotypic severity is so strong (vab-1 and rpm-1) then I think it's impossible to say anything from the double mutant.

      We appreciate the reviewer noting that they appreciate the value and importance of the C. elegans model. The goals of our C. elegans experiments were twofold:

      1) To evaluate genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This was not clearly explained in the original manuscript nor was the published precedent for these types of genetic enhancer experiments provided. We have now rectified this by substantially revising the text of the Results C. elegans section starting on line 431 and by adding several citations.

      2) Our C. elegans genetics confirmed that the VAB-1 Eph receptor is not inhibited/degraded by the RPM-1/MYCBP2 ubiquitin ligase complex. We have now revised the text to draw this point out more clearly.

      To further address the reviewer’s concerns, we have added a new schematic (Fig. 8A) to show the relationship between the RPM-1 and the RPM-1 binding proteins (FSN-1/FBXO45 and GLO-4/SERGEF) we are testing. We chose FSN-1 because it is part of the RPM-1 ubiquitin ligase complex and we chose GLO-4 because it functions outside the context of RPM-1 ubiquitin ligase signaling via the GLO-1 Rab GTPase to influence late endosomal/lysosomal biogenesis.

      Regarding the reviewer’s concern that different penetrance/frequency of defects between rpm-1 mutants and vab-1 mutants means outcomes with vab-1; rpm-1 double mutants cannot be interpreted. We respectfully disagree. An extensive number of published studies have demonstrated that RPM-1 binding proteins have milder phenotypes than rpm-1 mutants and display genetic enhancer effects as double mutants with one another (PMID:17698012, PMID: 22357847, PMID: 25010424, PMID: 24810406). We now make this point much more clearly. While the frequency of axon termination defects in rpm-1 mutants is high it is not completely saturated as the defect is not 100%. Moreover, a major point of the vab-1; rpm-1 double mutants is that they do not have a significant reduction in phenotypic penetrance/frequency. Thus, our system is fully capable of resolving genetic suppression, which did not occur. We now make this point much more carefully and clearly.

      To further address the reviewer’s concern, we have softened language about the VAB-1/Eph receptor functioning in the same pathway as RPM-1 throughout the manuscript. While we think this is still the case, because the frequency of axon termination defects is not fully saturated in rpm-1 mutants and defects could potentially become more severe (i.e. the hook might occur closer to the head of the animal rather than in the midbody). Nonetheless, this is not a critical point and we think it is more important to be clear about the two major goals and objectives of our C. elegans experiments. We hope the reviewer agrees that our rationale, logic and conclusions are more clearly and accurately drawn in the revised paper.

    1. Joint Public Review:

      Summary<br /> This is a very meticulous and precise anatomical description of the external sensory organs (sensillia) in Drosophila larvae. Extending on their previous study (Rist and Thum 2017) that analyzed the anatomy of the terminal organ, a major external taste organ of fruit fly larva, the authors examined the anatomy of the remaining head sensory organs - the dorsal organ, the ventral organ, and the labial organ-also described the sensory organs of the thoracic and abdominal segments. Improved serial electron microscopy and digital modeling are used to the fullest to provide a definitive and clear picture of the sensory organs, the sensillia, and adjacent ganglia, providing an integral and accurate map, which is dearly needed in the field. The authors revise all the data for the abdominal and thoracic segments and describe in detail, for the first time, the head and tail segments and construct a complete structural and neuronal map of the external larval sensilla.

      Strengths<br /> It is a very thorough anatomical description of the external sensory organs of the genetically amenable fruitfly. This study represents a very useful tool for the research community that will definitely use it as a reference paper. In addition to the classification and nomenclature of the different types of sensilla throughout the larval body, the wealth of data presented here will be valuable to the scientific community. It will allow for investigating sensory processing in depth. Serial electron microscopy and digital modeling are used to the fullest to provide a comprehensive, definitive, and clear picture of the sensory organs. The discussion places the anatomical data into a functional and developmental frame. The study offers fundamental anatomical insights, which will be helpful for future functional studies and to understand the sensory strategies of Drosophila larvae in response to the external environment. By analyzing different larval stages (L1 and L3), this work offers some insights into the developmental aspects of the larval sense organs and their corresponding sensory cells.

      Weaknesses<br /> There are no apparent weaknesses, although it is not a complete novel anatomical study. It revisits many data that already existed, adding new information. However, the repetitiveness of some data and prior studies may be avoided for easy readability.

    1. eLife assessment

      Lee and colleagues examined how neural representations are transformed between the olfactory tubercle (OT) and the ventral pallidum (VP) using single neuron calcium imaging in head-fixed animals trained in classical conditioning. They show that the dimensionality of neural responses is lower in the VP than in the OT. The study provides important results, and the data are overall solid although the reviewers thought some of the conclusions are not fully supported by the data and overstated, including the main conclusion that the OT neurons primarily encode odor identity but not value.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This paper presents an innovative decoding approach for brain-computer interfaces (BCIs), introducing a new method named MINT. The authors develop a trajectory-centric approach to decode behaviors across several different datasets, including eight empirical datasets from the Neural Latents Benchmark. Overall, the paper is well written and their method shows impressive performance compared to more traditional decoding approaches that use a simpler approach. While there are some concerns (see below), the paper's strengths, particularly its emphasis on a trajectory-centric approach and the simplicity of MINT, provide a compelling contribution to the field.

      Strengths:<br /> The adoption of a trajectory-centric approach that utilizes statistical constraints presents a substantial shift in methodology, potentially revolutionizing the way BCIs interpret and predict neural behaviour. This is one of the strongest aspects of the paper.

      The thorough evaluation of the method across various datasets serves as an assurance that the superior performance of MINT is not a result of overfitting. The comparative simplicity of the method in contrast to many neural network approaches is refreshing and should facilitate broader applicability.

      Weaknesses:<br /> Scope: Despite the impressive performance of MINT across multiple datasets, it seems predominantly applicable to M1/S1 data. Only one of the eight empirical datasets comes from an area outside the motor/somatosensory cortex. It would be beneficial if the authors could expand further on how the method might perform with other brain regions that do not exhibit low tangling or do not have a clear trial structure (e.g. decoding of position or head direction from hippocampus)

      When comparing methods, the neural trajectories of MINT are based on averaged trials, while the comparison methods are trained on single trials. An additional analysis might help in disentangling the effect of the trial averaging. For this, the authors could average the input across trials for all decoders, establishing a baseline for averaged trials. Note that inference should still be done on single trials. Performance can then be visualized across different values of N, which denotes the number of averaged trials used for training.

    1. Wearing head.

      The poem seems like it is a list of the ways wives perform perfection. This line reminds me of the essence of the phrase coined by RuPaul "you're born naked and the rest is drag" as if wearing a head as a mask.

      mask

    1. Accountability : Accountability means making clear commitments and sticking with them. Individuals and organizations must show they keep their promises and own up to any that they're broken. Everyone involved should be able to verify this and outside experts should be able to do so as well, not passing the buck and no playing in the blame game

  4. lms-via.hypothes.is lms-via.hypothes.is
    1. But only one head looksnatural: the artist may have simply been trying to getitright— something quite normal for an artist to do
      1. I think that this is interesting, i never really thought that a drawing in a cave could be someone just trying to make their artwork perfect. It would make perfect sense if i saw a drawing on paper of someone now but i never really looked at cave drawings or statutes could have been "erased" and redone.
    1. He frowns and nods. She stares past him, stands, thanks him for the tea, puts on her shoes and departs. —Sir? Sir?

      This harsh cut between scenes does an amazing job at demonstrating that he's still thinking about the events of that night and playing the moment through his head while he's somewhere else entirely. It feels like a scene shift out of a movie and it's astounding.

    1. Author Response

      We outline reviewer/editor queries, our responses are indicated below we thank the reviewers for their suggestions that we address below and with minor edits (that do not appreciably change the content such as figure lettering and methods information).

      Reviewer #1 (Public Review):

      The paper by Dongsheng Xiao, Yuhao Yan and Timothy H Murphy presents a timely approach to record neuronal activity at multiple temporal and spatial scales. Such approaches are at the forefront of system neuroscience and a few examples include, among others, fMRI alongside electrophysiology (Logothetis et al, 2021. Nature) or widefield calcium imaging (Lake et al, 2020. Nat Meth) , or functional ultrasound imaging and multi unit recording (Claron et al, 2023 Cell Reports), The method presented here combines "low resolution" (i.e. cortical regions) widefield calcium imaging across most of the dorsal portions of the murine cortex combined with electrical recording of single neurons in specific cortical and subcortical locations (as a matter of fact, this later components can be used everywhere in the murine brain).

      The method presented here is straightforward to implement and very well documented. Examples of novel insights that this approach can generate are well presented and demonstrate the strength of the presented approach, some aspects of the analysis require clarification.

      For example, the author reveal Spike-Triggered average cortical activation Maps (STMs) linked to the activity of single neurons (Figs 4 and 5) This allows to directly asses the functional connectivity between cortical and sub-cortical areas. It nevertheless unclear what is the stability of the established relationships. The nature of the "recordings" in Fig 4. is unclear. It looks like these are imaging sessions on the same day, the length of these recordings as well as the interval between them is not stated. It will be fundamental to build a metric to compare STMs variability across sessions/recordings/days; a root-mean-square from an average map across all recordings could provide a starting point.

      Our goal was to present a well-documented protocol for implanting electrodes (tetrodes and peripheral nerve) that do not impede cortical mesoscale imaging and support chronic investigation of spike trains. We do provide examples of repeated spiking measurements across days from the same electrodes and animals. Unfortunately, due to the pandemic interrupting data collection and other factors, this dataset does not contain a thorough analysis of response longevity using these electrodes, but we do show examples in the figures. In Figure 1F, G, we showed that the single unit activity was relatively stable during one week, two weeks, and two months of recordings after implantation. In Figure 4B we showed spiking activity in the hippocampus was stable across day 8 and day 9. We also showed that the STM of the hippocampus neuron was consistently associated with the RSP, BCS, and M2 region for 10 recording sessions across days. In Figure 4D, We showed that the STMs of a midbrain neuron were relatively stable over 2 months. The spiking activity of the neuron on different days was consistently correlated with the lower limb, upper limb, and trunk sensorimotor areas on both hemispheres of the cortex.

      Also with respect to the STMs analysis, the data-driven choice of 10 clusters might need a bit more explorations. While the silhouette clustering accuracy peaks at 10 (Fig 5A), this metrics comes without a confidence intervals making it difficult to know if a difference of less than 10% (i.e. 11 or 13 clusters) should be deemed different. Maybe a bootstrapping approach could be used here to build such confidence intervals. Another approach to reach the number of cluster to use could be based on "consensus" between different partitioning algorithms (e.g. Strehl, A. & Ghosh, J. itions. J. Mach. Learn. Res. 3, 583-617 (2001). A much stronger argument should be provided to use the 0.3 correlation cutoff value which seems to be arbitrarily low. The main point here is that the authors should show that their conclusions hold within a range of parameter values (number of clusters and correlation threshold).

      Thank you for the interesting suggestions regarding cluster numbers. We agree that the number (10 clusters) could be taken as an arbitrary value. However, we have done previous work examining cortical connectivity maps in Mohajerani et al. 2013 Nature Neurosci. and found that cortical mesoscale activity has a degree of freedom (number of unique elements) in the range of 10-15. This number is also supported by major structural networks found by the Allen Brain Connectivity Atlas and within functional imaging data. In other work using unsupervised methods Xiao et al. 2021 Nature Comm a similar number of clusters were identified so these numbers are without some basis.

      Reviewer #1 (Recommendations For The Authors):

      I enjoyed very much reading the manuscript!

      Minor comments (aesthetics and typos)

      Please clarify how the hemodynamic correction was performed. The text refers to "substracted". This usually involves the computation of a general of per-pixel weight. Is this correction constant along the longitudinal imaging session (i.e. over weeks)?

      The hemodynamic correction was calculated based on the results of each daily session. Typically these corrections have minimal impact on overall values and are not expected to appreciably change over time.

      In Figure 3, authors might reconsider scaling down the size of panel A and enlarging the data presented in D. Also, with respect to panel D, what does the gray band represent, confidence intervals, standard dev? Please clarify.

      The gray bands correspond to the standard deviation of random trigger average traces.

      Lines in 4E could be made thicker.

      In the caption of fig6, panel D is mentioned twice (should be E).

      Thanks for catching this mistake we have changed the caption in the online version.

      Reviewer #2 (Public Review):

      The article presents 'Mesotrode,' a technique that integrates chronic widefield calcium imaging and electrophysiology recordings using tetrodes in head-fixed mice. This approach allows recording the activity of a few single neurons in multiple cortical/subcortical structures, in which the tetrodes are implanted, in combination with widefield imaging of dorsal cortex activity on the mesoscale level, albeit without cellular resolution. The authors claim that Mesotrode can be used to sample different combinations of cortico-subcortical networks over prolonged periods of time, up to 60 days post-implantation. The results demonstrate that the activity of neurons recorded from distinct cortical and subcortical structures are coupled to diverse but segregated cortical functional maps, suggesting that neurons of different origins participate in distinct cortico-subcortical pathways. The study also extends the capability of Mesotrode by conducting electrophysiological recordings from the facial motor nerve. It demonstrates that facial nerve spiking is functionally associated with several cortical areas( PTA, RSP, and M2), and optogenetic inhibition of the PTA area significantly reduced the facial movement of the mice.

      Studying the relationship between widefield cortical activity patterns and the activity of individual neurons in cortical and subcortical areas is very important, and Murphy's lab has been a pioneer in the field. However, the choice of low-yield recording methods (tetrode) instead of more high-yield recording techniques, such as silicon probes, makes the approach presented in this study somewhat less appealing. Also, the authors claim that a tetrode-based approach can allow chronic recordings of single neural activity over days - a topic that is very controversial. In terms of results, I was under the impression that most of the conclusions presented in the bulk of the paper ( Figures 1-5) are very similar to what previous work from Murphy's lab and other labs has shown using acute preparation. In this respect, the paper can benefit from a more in-depth analysis of the heterogeneity of single-neuron functional coupling. The last part of the facial nerve recording is interesting (Figure 6), but I think it can be integrated better into the rest of the paper.

      Reviewer #2 (Recommendations For The Authors):

      Major Comments:

      1) The methodology described in the paper is based on chronic tetrode recordings combined with widefield calcium imaging. The authors emphasize the advantages of using tetrodes in that they are 1) easy to implant 2) have a small footprint, and 3) allow to record the same neurons over days.

      I agree regarding the first advantage, however, the ability to reliably record the activity of the same neurons over days using electrophysiological recordings is controversial. The authors claim that:

      'We found that the single unit activity was relatively stable, during one week, two weeks, and two months of recordings after implantation (Figure 1F, G)',

      The only 'proof' the authors show for recording stability are waveforms of one neuron on one channel (out of presumably four channels), which seem to differ in amplitude over days. Two-dimensional plots of the neuron waveform for all channel combinations could be a more convincing way to make this claim. But, as I already mentioned - the ability to record from the same neurons chronically with electrophysiological methods is rather controversial, especially with tetrodes that don't allow for laminar profiling of neuronal response to account for a potential drift over time.

      We now make it more clear that examples of mesotrode stability are indicated in the figures. Furthermore, we acknowledge caveats that spike sorting experiments required to more conclusively identify single neurons would be improved with larger format silicon probes. Our work employs compact tetrode electrodes that permit simultaneous resolution of single units and mesoscale GCAMP activity. It is conceivable that improvements in spike sorting fidelity could be made by switching to more densely spaced silicon probes. While this is an obvious advantage, these probes do not have a compact footprint and would interfere with regional imaging.

      2) The authors present little analysis justifying the advantage of conducting chronic electrophysiological recordings instead of acute recordings with their data. In fact, throughout the paper, the authors mention that the results were consistent with their previous work with acute recordings. The only longitudinal analysis in this paper is qualitative and suggests that cortical maps were stable over days. I believe this was also shown in the past already. More in depth analysis of across days dynamics or showcase of an experiment centered on across days dynamics will strengthen the appeal of this approach. Generally speaking, there is very little quantitative analysis of longitudinal maps/functional coupling of single neurons over days. The paper will benefit from at least some quantification of this part.

      To our knowledge data showing the persistence of spike-associated maps longer than an acute experiment is novel. However, due to a low yield of recorded single neurons, we have not been able to follow these maps over a longer period in a population that would permit group statistics. We suggest that future experiments could be done using silicon probes with larger yields which would help to better align electrophysiological features with mesoscale GCAMP maps.

      3) Recording with tetrodes gives very low yields compared to silicon probe recordings. While silicon probes have a larger footprint and may occlude the widefield imaging on the side of the silicon probe implant, it is unclear why not to use denser electrode arrays on one side of the brain and image from the other hemispheres, given that the maps are very correlated across hemispheres

      Taking advantage of mirrored activity in the opposite hemisphere is a great idea. Future studies could include experiments that would take advantage of bilateral symmetry by placing high-resolution silicon probes in one hemisphere and then reading out mesoscale maps in the other.

      4) The advantage of the electrophysiological recordings is in providing access to single-neuron activity at high temporal resolution. The authors could add more quantifications regarding individual neuron functional coupling diversity. For instance, in the per-area distributions in Figure 5D -- did all neurons from a given area participate in the same functional maps, or did different neurons show diversity in the functional coupling. Did simultaneous recordings of neurons from the same tetrode show more similar maps, than recordings of other neurons from the same area conducted on different days/in different animals? Did the map differ when the neurons were bursting/were at specific phases of the LFP, etc.

      Unfortunately the yield of neurons was not enough to investigate some of the interesting state-dependent phenomena the reviewer describes. In previous work we have examined heterogeneity between single neuron responses in more detail Xiao et al. 2027 in acute work.

      5) Facial nerve stimulation. This part feels detached from the rest of the paper and is not explained/discussed in sufficient detail. For example, there is no description of the surgical procedure or the electrode used for facial nerve recordings in the Methods (in the Results section, the authors mention 'micro-wires', but the Method section only contains information about tetrodes).

      Thank you for bringing up the issue of surgical details for facial nerve experiments are now in the methods. This information is also available by contacting the authors and below.

      For facial nerve recordings, peripheral nerve activity was measured by fine wire recording directly from the nerves subserving the whisker. During surgery, mice will be anesthetized and positioned on a warming pad connected to a rectal probe, and the temperature maintained at 37 °C. A skin incision was made, exposing a small part of the buccal branch of the left facial nerve. Magnification of the surgical field with a dissecting microscope allowed a careful dissection of a nerve branch with minimum disruption of the tissues and blood supply surrounding the nerve. The appropriate site of exposure was determined by using two projection lines: a vertical line running downward, posterior from the outer corner of the eye, and a horizontal line running in the caudal direction, starting at the whisker E-row. Then two insulated fine wires (about 25 µm tips) were hooked and placed around the nerve separated about 2 mm from one another. The insulation at the ends of the wires was removed and a knot was made on each wire to prevent it from slipping. The opposite ends of each wire were soldered to a mini connector attached by dental cement to the skull. Finally, 6-0 silk sutures were used to close the skin incisions.

      The functional maps associated with facial nerve spiking show different patterns from the optogenetic stimulation maps that led to significant facial nerve responses. Specifically, the STM maps show responses in the posterior parts of the cortex, but the photostimulation map showed almost an opposite pattern, where the effects were observed in the anterior parts. The authors do not discuss this mismatch in sufficient detail. Further, the authors refer to area PTA but use partitions based on the Allen Institute, which does not indicate this area.

      The posterior parietal area location is based on our previous work Mohajerani et al. 2013 and using the Allen Institute Brain Atlas for guidance.

      Minor comments

      6) The authors mention that "on average, we obtained 3-5 neurons per tetrode implanted, and this yield was consistent across regions (Figure 2C). " -- for how long, on average, could the authors record single-neuron activity from each tetrode?

      The 3-5 neurons obtained per tetrode were recorded 1 week after tetrode implantation.

      7) Figure 4B - it is unclear what the labels "recording 1, ...5, " correspond to. Are these different recording sessions within the same day "day 8"?

      The labels "recording 1, ...5, " correspond to different recording sessions within the same day.

    1. During the lasttwo decades, many guidelines have been proposed to reduce the incidence of VAP. It hasbeen scientifically proven that interventions must be combined in order to be useful

      VAP is very common in ventilated patient, so the intervention that reduces incidence is crucial. It is true that combined interventions that includes, but not limited to frequent hand washing, elevated head to 30-45 degrees, sedation vacation, daily oral care with chlorhexidine, PUD prophylactically etc are scientifically proven that measures to reduce the incidence of VAP. DK

    2. The most common interventions monitored in the care bundles were sedation andweaning protocols, semi-recumbent positioning, oral and hand hygiene, peptic ulcer disease anddeep venus thrombosis prophylaxis, subglottic suctioning, and cuff pressure control. Head-of-bedelevation was implemented by almost all studies, followed by oral hygiene, which was the secondextensively used intervention.

      All of these interventions are important to know as a nurse when taking care of a patient on a ventilator. This allows us to take action and prevent our patient's from acquiring a serious illness.

    3. Ventilator-associated pneumonia (VAP) is one of the main types of infection in criticallyill mechanically ventilated patients, leading to increased mortality, morbidity, hospital stay,economic and psychological costs for patients and their families

      It is important to understand interventions to help prevent VAP. This includes oral care with chlorhexidine, suctioning, and having the head of the bed elevated. If the patient does get VAP, it is important to know the signs and symptoms such as purulent tracheal discharge, fever, respiratory distress. A chest radiograph can also help diagnose a new or progressive infiltrate.

      KP + AB

    4. The most common interventions monitored in the care bundles were sedation andweaning protocols, semi-recumbent positioning, oral and hand hygiene, peptic ulcer disease anddeep venus thrombosis prophylaxis, subglottic suctioning, and cuff pressure control. Head-of-bedelevation was implemented by almost all studies, followed by oral hygiene, which was the secondextensively used intervention.

      Interventions proven to reduce VAP include: - sedation and weaning protocols - semi-recumbent positioning - oral and hand hygiene - prophylaxis for peptic ulcer disease and DVT - subglottic suctioning - cuff pressure control EC

    5. Head-of-Bed elevation, with a range of 30◦ to 45◦, wasimplemented by all the reviewed studies, except one

      Just like hand hygiene, raising the HOB is one of the easiest interventions we can implement to prevent VAP. It also has other benefits, such as giving the patient an easier work of breathing. -NW & MB

    6. Head-of-Bed elevation, with a range of 30◦ to 45◦, wasimplemented by all the reviewed studies, except one [32]. The second most widely usedintervention was oral hygiene using chlorhexidine 0.12%. Only one study [3] used sodiumbicarbonate and another one [33] sponges and mouthwashes, albeit without a particularchange in VAP reduction. Six studies did not adopt the measure of oral care
      • Head-of-Bed elevation (30° to 45°) was widely adopted in all studies except one.
      • The second most common intervention was oral hygiene with chlorhexidine 0.12%.
      • Some studies used alternatives like sodium bicarbonate and sponges/mouthwashes, but these didn't significantly reduce VAP.
      • Six studies didn't include oral care in their VAP prevention measures.
    7. (3) peptic ulcer disease (PUD) prophylaxis and (4) deep venus thrombosis (DVT)prophylaxis [ 9 ]. In 2010, IHI added a fifth intervention: (5) daily oral care with chlorhexi-dine. In 2016, the Intensive Care Society proposed a bundle called “Recommended bundleof Interventions for the prevention of VAP”, including elevation of head of bed, daily seda-tion vacation and assessment of readiness to extubate, use of subglottic secretion drainage,avoidance of scheduled ventilator circuit changes, oral hygiene without chlorhexidine andPUD prophylaxis (only for high-risk patients), without mentioning DVT prophylaxis
      • Elevation of the head of the bed (HOB) to 30°–45°: Raising the head of the bed to prevent aspiration in ventilated patients.
      • Daily "sedation vacation" and readiness assessment for extubation: Temporary reduction of sedation to assess if the patient is ready to have the breathing tube removed.
      • Peptic ulcer disease (PUD) prophylaxis: Preventing peptic ulcers, often due to stress or medications.
      • Deep venous thrombosis (DVT) prophylaxis: Preventing dangerous blood clots in deep veins.
      • Daily oral care with chlorhexidine: Maintaining oral hygiene with an antiseptic.

      These are all super important interventions not only for VAP but other preventable conditions!

    8. sedation andweaning protocols, semi-recumbent positioning, oral and hand hygiene, peptic ulcer disease anddeep venus thrombosis prophylaxis, subglottic suctioning, and cuff pressure control. Head-of-bedelevation was implemented by almost all studies, followed by oral hygiene,

      These components are critical to implement for these ventilated patients. In clinical, I have provided oral care and suctioning to patients on the ventilator. Seeing what the vent can do to their oral cavity shows how much and how easily bacteria could spread. VT

    9. The most common interventions monitored in the care bundles were sedation andweaning protocols, semi-recumbent positioning, oral and hand hygiene, peptic ulcer disease anddeep venus thrombosis prophylaxis, subglottic suctioning, and cuff pressure control. Head-of-bedelevation was implemented by almost all studies, followed by oral hygiene, which was the secondextensively used intervention

      These interventions used can decrease the risk of catching VAP. By doing these interventions, it decreases the risk of mortality and can decrease time on the ventilator, length of stay, and cost of care. AS & ML

    10. he most common interventions monitored in the care bundles were sedation andweaning protocols, semi-recumbent positioning, oral and hand hygiene, peptic ulcer disease anddeep venus thrombosis prophylaxis, subglottic suctioning, and cuff pressure control. Head-of-bedelevation was implemented by almost all studies, followed by oral hygiene, which was the secondextensively used interventio

      Hand hygiene is the easiest and most important way to prevent the spread of infection. It is the number one way to fight infection. JP

    1. We also would like to point out that there are fake bots as well, that is real people pretending their work is the result of a Bot. For example, TikTok user Curt Skelton posted a video claiming that he was actually an AI-generated / deepfake character:

      Nowadays, AI face building has been very popular, and some apps have the function of changing the head. It generates faces that are completely different or similar to each other. Although this feature is very interesting, some unscrupulous people will use it to commit fraud. Therefore, we need to use it carefully.

    1. the main idea, focus on large-scale comprehension, and ignore errors, digressions, or irrelevant information

      Main idea concept feels like it's been drilled into my head since like 3rd grade. However it was hard to ignore erorrs. We actually once found an error in a piece of writing about pacemakers and when I went home I asked my Dad about it since he worked for a pace making company at the time. He concluded the information was in fact incorrect

    1. A rope closely encircled his neck. It was attached to a stout cross-timber above his head and the slack fell to the level of his knees

      Man's imminent execution by hanging.

    1. The constituent that we will see most is the phrase. A phrase consists of a single main word, called the head of the phrase, and other words that modify or give grammatical information about the head.

      Grammatical phrases add meaning to sentences by giving detail about one or more of the parts of speech in use. A grammatical phrase can clarify any part of speech- all a phrase does is provide some detail; it doesn't have the structure to be a clause of its own

    1. Communication Is Integrated into All Parts of Our Lives

      ? How is Communication Integrated into All Parts of Our Lives

      ! Something worth recognizing about communication is its day to day use. from having an in depth discussion about a highly interesting topic with one of your close colleagues, to greeting a stranger in the morning or evening that you don't have any prior connections with. To thinking thoughts inside your head.

      Everything is communication.

    1. In some situations, it is helpful to understand how the brain is processing information without needing information on the actual location of the activity. Electroencephalography (EEG) provides this information by measuring the electrical activity produced by the brain. In EEG recording, electrodes are placed on a person’s head using conductive gel (Figure 3.32a). The signals received by the electrodes are displayed on a computer screen and show how the brain voltage changes over time, with an accuracy within milliseconds (Figure 3.32b). EEG recordings are especially helpful to researchers studying sleep patterns among individuals with sleep disorders and for studies of epilepsy.

      Event-related potentials (ERPs), formerly termed evoked potentials, are event-related voltage changes in the ongoing EEG activity that are time-locked to sensory, motor, and cognitive events.

    2. The temporal lobes are located on each side of the head and are associated with hearing, memory, emotion, and language comprehension. The primary auditory cortex, the first cortical area that processes auditory information, is located within the temporal lobe. Wernicke’s area, which is important for speech comprehension, is located nearby. Whereas individuals with damage to Broca’s area have difficulty producing language, those with damage to Wernicke’s area have difficulty understanding language (Figure 3.25). People with Wernicke’s aphasia can pronounce words. However, what they say does not make sense and is often referred to as word salad.

      They are most commonly associated with processing auditory information and with the encoding of memory. They play an important role in processing affect/emotions, language, and certain aspects of visual perception.

    3. Sensory nerves bring messages into the spinal cord, which are then sent to the brain. The brain also sends messages to the spinal cord, which are conveyed via motor nerves to the muscles, glands, and organs (Figure 3.11b) Figure 3.11a shows the connections between each spinal cord segment and the specific body areas it serves. The cervical segments connect to muscles in the face, head, neck, shoulders, arms and hands, as well as the diaphragm that controls our breathing.

      Its fascinating that the spinal cord connects our brain to your lower back that carries nerve signals from brain to body and vice versa. Its good to know.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary of changes

      I thank the reviewers for their thorough feedback on this paper and providing me with such a detailed list of recommendations. I have been able to incorporate many of their suggestions, which I believe has greatly improved this paper.

      The most important changes:

      • I added comparisons to the lexicon- and rule-based sentiment algorithms TextBlob and VADER to Supplementary Fig. 4. This shows the superiority of ChatGPT in scoring the sentiment of scientific texts compared to existing and already-validated tools for sentiment analysis based on natural language processing. [Suggestion Reviewer 2]

      • I added the measure intra-class correlation to Fig. 3b, emphasizing the inconsistency in sentiment scores across different reviews of the same paper. [Suggestion Reviewer 3]

      • I added Supplementary Fig. 6, in which I directly propose different experiments to test the causes of the observed gender effects on peer review. [Suggestion Reviewer 3]

      • I further studied the issue of variability in responses by ChatGPT (Supplementary Fig. 2), and learned that this has greatly improved in the latest version of ChatGPT (for Version Aug 3, 2023, R2 values of 0.99 (sentiment) and 0.86 (politeness) were reached). I show these findings in Supplementary Fig. 2. [Suggestions Reviewers 1 and 3]

      • Throughout the manuscript (most notably in the Abstract and Discussion), I emphasize that this is a proof-of-concept study, and make suggestions on how to scale this up across journals and fields. I also toned down certain claims given the relatively small sample size of this study, including in the abstract. I also more prominently and elaborately discuss the limitations of the study in the Discussion section. [Suggestions Reviewers 1, 2 and 3]

      • I made many smaller changes to text, figures and references on the basis of the reviewers’ comments. [Suggestions Reviewers 1, 2 and 3]

      Notably, Reviewer 3 has provided me with a very detailed list of recommendations for follow-up experiments. I appreciate their ideas, and I am currently considering different options for future work. Specifically I am looking to team up with a journal to perform the experiments laid out in Supplementary Fig. 6 of the new paper, to study whether I can find evidence of bias across rejected and accepted papers. As suggested by this reviewer, I am also looking into ways to automate data collection using APIs, and by utilizing the rapidly expanding databases for transparent peer review.

      Based on this preprint, I have received messages from academics that are interested in using generative AI to study scientific texts. By revising this manuscript, I hope to provide them with the tools to concurrently expand the analysis of peer review into different scientific disciplines and journals.

      Reviewer #1 (Public review)

      Strengths:

      The innovative method is the biggest strength of this article. Moreover, the method can be implemented across fields and disciplines. I myself would like to see this method implemented in a grander scale. The author invested a lot of effort in data collection and I especially commend that ChatGPT assessed the reviews twice, to ensure greater objectivity.

      I want to thank this reviewer for commending the innovative methodology of this study. I appreciate that this reviewer would like to see this methodology implemented at a grander scale, which is a view that I share. I initially only included Neuroscience papers, because I was uncertain whether I would be able to properly assess the reviews from different scientific disciplines (and thus judge whether ChatGPT was able to provide plausible scores).

      The reviewers have provided me with a list of potential follow-up experiments, and I am currently considering different options for future work. Specifically I am looking to team up with a journal to perform the experiments laid out in (the new) Supplementary Fig. 6 of the new paper, to study whether I can find evidence of bias across rejected and accepted manuscript of a journal. In addition, as suggested by Reviewer #3, I am looking into ways to automate data collection using APIs, and by utilizing the rapidly expanding databases for transparent peer review. Importantly, based on this preprint, I have received messages from academics that are interested in using generative AI to study scientific texts. By revising this manuscript now, I hope to provide them with the tools to concurrently expand the analysis of peer review into different scientific disciplines and journals.

      The comments I received from the different reviewers made me realize that I did not describe the intent of this paper well enough in the original submission. I rewrote much of the Abstract, to emphasize the proof-of-concept nature of this study, and rewrote the Discussion to focus more on the limitations of the study.

      Weaknesses:

      I have several concerns regarding the methodology of the article. The first relates to the fact that the sample is not random. The selection of journal and inclusion and exclusion criteria do not contribute well to the strength of the evidence.

      Indeed, the inclusion of only accepted manuscript from a single journal is the biggest caveat of this paper. I have re-written much of the Abstract to emphasize that this is a proof-of-concept paper, hoping that other researchers concurrently expand this method to larger and more diverse datasets.

      An important methodological fact is that the correlation between the two assessments of peer reviews was actually lower than we would expect (around 0.72 and 0.3 for the different linguistic characteristics). If the ChatGPT gave such different scores based on two assessments, should it not be sound to do even more assessments and then take the average?

      This was a great recommendation by this reviewer, and a point also raised by Reviewer #3. Based on their suggestion, I looked into how each additional iteration of scoring would reduce the variability of scoring for a subset of papers (thus being able to advice users on an optimal number of iterations).

      Interestingly, I observed that ChatGPT has become significantly more reliable in providing sentiment and politeness scores in recent versions. For the latest version (ChatGPT Aug 3, 2023), R2 = 0.992 for sentiment and R2 = 0.859 for politeness were reached for two subsequent iterations of scoring. Unfortunately, OpenAI does not allow access to previous version of ChatGPT, so the current dataset could not be re-scored. Yet, based on these data, there may no longer be a need for people to perform repeated scoring. I show these data in Supplementary Fig. 2, as I believe this is very useful information for people who are interested in using this tool.

      Reviewer #1 (Recommendations to author)

      I had some difficulties reading the article, so it would maybe help to structure the article more (e.g. In the introduction there are three aims stated, so the Statistical Analysis section could be divided in three sections, and instead of the link to figures, the author could state which variables were analysed in a specific manner) to be easier to comprehend the details. Also, I found on one place that the sample consisted of 572 reviews, and on other that it was 558.

      These are very good points. I re-wrote the statistical analysis for clarity (Page 7 of the manuscript). The 558 reviews was a mistake from my part, as I forgot to include the fourth review for the 14 papers that received four reviews in the histograms of Fig. 2b and the accompanying text. This has been updated.

      For figures 1a and 1b it could be considered to enter the table instead of several figures.

      I thank the reviewer for pointing this out. I tried this suggestion, but I found it to reduce the readability of the paper. As an alternative, I now provide an Excel spreadsheet with all the raw data, so people can find all the characteristics of the included papers.

      99.8% of the reviews analysed were assessed as polite. This is, in my opinion, extremely important finding, which shows that reviewers are still holding to certain degree of standards in communication, and it can be mentioned in the abstract.

      I very much agree with this reviewer; this has now been added to the Abstract.

      In results you state that QS World Ranking is "imperfect" measure. When stating that in the results section, it poses the question why it is used in the study, so maybe it is more suitable for the discussion.

      This point is well taken. Even though the QS World Ranking score is imperfect, I still think it can be useful, as a rough proxy of perceived prestige of an institution. I now removed this “imperfect measure” statement from the Results section, and moved it to the Discussion (Page 5).

      In the Results section, instead of using only p values, please add measures of effect (correlations, mean differences), to make it easier to place in the context.

      For the significant effects of Fig. 4, I have added these to the figure legends. Please note that the used statistical tests are non-parametric, so I reported the Hodges-Lehmann differences (which is the median of all possible pairwise differences between observations from the two groups).

      I think the results interpretation should be softened a bit, or the limitations of the study should be placed as the second paragraph in the discussion, since this was only specific journal with specific subfield.

      I agree with this reviewer that the relatively small sample size of this paper demands more careful wording. Throughout the manuscript, I have toned down claims, and emphasized the “proof of concept” nature of this study (for example in the Abstract). I also moved the limitations section to the second paragraph of the Discussion, and elaborate more on the study’s caveats.

      Methods:

      The measure Review time was assessed from submission to acceptance, but this does not need to be review time since it takes a lot of time sometimes to find reviewers. that needs to be stated as the limitation.

      This point is well taken. I changed this to “Paper acceptance time” in Fig. 3 and the accompanying text.

      Gender name determination methods differed between the assessment of the first authors and the last authors, and that needs stronger explanation.

      I appreciate this reviewer raising this point, which has also been raised by Reviewer #3. For this paper, I have carefully weighed the pros and cons of automated versus manual gender determination. Initially, my intention was to rely only on a programmatic method to identify authors' names. However, I came to realize that there were inaccuracies in senior author gender predictions made by ChatGPT/Genderize. This was evident to me due to my personal familiarity with some of these authors, either because they are famous or through personal interactions. It seemed problematic to me to proceed with this analysis knowing that these misclassifications would introduce unnecessary variability to the dataset.

      The advantage of the relatively small sample size in this study was the opportunity to manually perform this task, rather than being fully dependent on algorithms. While I attempted manual gender identification for the first author as well, this was way more challenging due to their limited online presence. The discrepancy in gender identification accuracy between first and senior authors did not go unnoticed, and I acknowledge the issue it presents. I also recognize that, unlike senior authors, reviewers may not necessarily be familiar with the first authors of the papers they evaluate, as indicated in the original submission of this paper. In light of this, I sought input from several PIs who often serve as reviewers. Their feedback confirmed that they typically possess knowledge of senior authors' identities, for example through conferences, whereas the same is not true for first authors. Yet, this may be different for other scientific disciplines, where the pool of reviewers might be bigger.

      Notably, for future studies I may make a different decision, especially when I use larger datasets that require me to automate the process.

      I also realize that my rationale for the different methods of gender determination was not explained well enough in the original submission; I now explain my reasoning more elaborately on Page 7 on the manuscript.

      For sentiment analysis: Please state based on what the GPT made a decision? Which program? (e.g. for gender it used genderize.io)

      This has been added to Page 7.

      Finally, your entire analysis can be made reproducible (since everything is publicly available). You can share ChatGPT chats as online materials with variables entered with the dataset analysed and the code. This would increase the credibility of the findings.

      I will make the entire raw dataset available through the eLife website, including all reviews and their scores.

      Reviewer #2 (Public review)

      Strengths include:

      1) Given the variability in responses from ChatGPT, the author pooled two scores for each review and demonstrated significant correlation between these two iterations. He confirmed also reasonable scoring by manipulating reviews. Finally, he compared a small subset (7 papers) to human scorers and again demonstrated correlation with sentiment and politeness.

      2) The figures are consistently well presented and informative. Figure 2C nicely plots the scores with example reviews. The supplementary data are also thoughtful and include combination of first/last author genders. It is interesting that first author female last author male has the lowest score.

      3) A series of detailed analysis including breaking down reviews by subfield (interesting to see the wide range of reviewer sentiment/politeness scores in computational papers), institution, and author's name and inferred gender using Genderize. The author suggests that peer review to blind the reviewers to authors' gender may be helpful to mitigating the impoliteness seen.

      Thank you.

      Weaknesses include:

      1) This study does not utilize any of the wide range of Natural Language Processing (NLP) sentiment analysis tools. While the author did have a small subset reviewed by human scorers, the paper would be strengthened by examining all the reviews systematically using some of the freely available tools (for example, many resources are available through Hugging Face [https:// huggingface.co/blog/sentiment-analysis-python ]). These methods have been used in previous examinations of review text analysis (Luo et al. 2022. Quantitative Science Studies 2:1271-1295). Why use ChatGPT rather than these older validated methods? How does ChatGPT compare to these established methods? See also: colab.research.google.com/drive/ 1ZzEe1lqsZIwhiSv1IkMZdOtjPTSTlKwB?usp=sharing

      This was a great recommendation by this reviewer, and I have tested ChatGPT against TextBlob and VADER, the two algorithms also used by the Luo et al. study — see Supplementary Fig. 4. Perhaps unsurprisingly, these algorithms performed very poorly at scoring sentiment of the reviews. Please note that I also tested these two algorithms at scoring individual sentences, Tweets and Amazon reviews, which it did very well (i.e., the software package was working correctly). Thus, ChatGPT is better at scoring scientific texts than TextBlob and VADER, likely because these algorithms struggle with finding where in the review the sentiment is conveyed. I now discuss this on Pages 1, 3 and 4 of the manuscript.

      2) The author's claim in the last paragraph that his study is proof of concept for NLP to analyze peer review fails to take into account the array of literature already done in this domain. The statement in the introduction that past reports (only three citations) have been limited to small dataset sizes is untrue (Ghosal et al. 2022. PLoS One 17:e0259238 contains over 1000 peer review documents, including sentiment analysis) and reflects a lack of review on the topic before examining this question.

      I thank this reviewer for pointing me to this very useful study. I regret missing this one in my initial submission; I now discuss this paper in Pages 1 and 5 of the manuscript.

      3) The author acknowledges the limitation that only papers under neuroscience were evaluated. Why not scale this method up to other fields within Nature Communications? Cross-field analysis of the features of interest would examine if these biases are present in other domains.

      I share this reviewer’s opinion that it would be very interesting to expand this analysis to different subfields. I initially only included Neuroscience papers, because I was uncertain whether I would be able to properly assess the reviews from different scientific disciplines (and thus judge whether ChatGPT was able to provide plausible scores). The different reviewers have provide me with a list of potential follow-up experiments, and I am currently considering different options for future work, including expanding into different fields within Nature Communications. Additionally, I am looking to team up with a journal to perform the experiments laid out in (the new) Supplementary Fig. 6 of the new paper, to study whether I can find evidence of bias across rejected and accepted manuscript papers of a journal. I am also looking into ways to automate data collection using APIs, and by utilizing the rapidly expanding databases for transparent peer review. Yet, based on this preprint, I have received messages from academics that are interested in using generative AI to study scientific texts. By revising this manuscript now, I hope to provide them with the tools to concurrently expand the analysis of peer review into different scientific disciplines and journals.

      The comments I received from the different reviewers made me realize that I did not describe the intent of this paper well enough in the original submission. I rewrote much of the Abstract, to emphasize the proof-of-concept nature of this study, and rewrote the Discussion to focus more on the limitations of the study.

      Reviewer #3 (Public review)

      Strengths:

      On the positive side, I thought the use of ChatGPT to score the sentiment of text was novel and interesting, and I was largely convinced by the parts of the methods which illustrate that the AI provides broadly similar sentiment and politeness scores to humans who were asked to rank a sub-set of the reviews. The paper is mostly clear and well-written, and tackles a question of importance and broad interest (i.e. the potential for bias in the peer review process, and the objectivity of peer review).

      Thank you.

      Weaknesses:

      The sample size and scope of the paper are a bit limited, and I have written a long list of recommendations/critiques covering diverse aspects including statistical/inferential issues, missing references, and suggestions for other material that could be included that would greatly increase the usefulness of the paper. A major limitation is that the paper focuses on published papers, and thus is a biased sample of all the reviews that were written, which prevents the paper properly answering the questions that it sets out to answer (e.g. is peer review repeatable, fair and objective).

      I very much appreciate this reviewer taking the time to provide me with such a detailed list of recommendations. Below, I will respond to this list in a point-by-point manner.

      Reviewer #3 (Recommendations to author)

      My main issues with the paper are that it is not very ambitious, and gave me the impression the aim was to write the first paper using ChatGPT to address this question, rather than to conduct the most thorough and informative investigation that would have been feasible (many obvious questions that could be addressed are not tackled, since the sample size is small and restricted). There are also issues with selection bias, and the statistical analysis, that have possibly led to erroneous inferences and greatly limit what conclusions can be drawn from the analysis. I hope my comments of use in further improving the paper.

      The repeatability of ChatGPT when calculating the two linguistic characteristics is low. Taking the average of multiple assessments is one way to deal with this. To verify that taking the average of, say, 5 scores gives a repeatable score, the author could consider calculating 10 scores for a set of 20-30 reviews, calculating two scores for each review using the first 5 and second 5 ChatGPT ratings, and then calculating repeatability across the 20-30 reviews. It is important to demonstrate that ChatGPT is sufficiently repeatable for this new method to be useful.<br /> Also, it might be possible to automate this process a bit to save time - e.g. the author could change the ChatGPT prompt, like "please rate the politeness of this review from -100 to +100, do it 10 times independently, and print your 10 ratings as well as their average". Hopefully the AI is smart enough to provide 10 independently-computed ratings this way, saving the need to copypaste the prompt into the chat box 10 times per review.

      This was a great recommendation by this reviewer, and a point also raised by Reviewer #1. Based on their suggestion, I looked into how each additional iteration of scoring would reduce the variability of scoring for a subset of papers (thus being able to advice users on an optimal number of iterations). I also tested this Reviewer’s suggestion to ask ChatGPT to score many times, and give separate scores for each iteration — this worked very well.

      Interestingly, I observed that ChatGPT has become significantly more reliable in providing sentiment and politeness scores in recent versions. For the latest version (ChatGPT Aug 3, 2023), R2 = 0.992 for sentiment and R2 = 0.859 for politeness were reached for two subsequent iterations of scoring. Unfortunately, OpenAI does not allow access to previous version of ChatGPT, so the current dataset could not be re-scored. Yet, based on these data, there may no longer be a need for people to perform repeated scoring. I show these data in Supplementary Fig. 2, as I believe this is very useful information for people who are interested in using this tool.

      To my mind, the main reason to use an AI instead of one or more human readers to rank the sentiment/politeness of peer reviews is to save time, and thereby allow this study to have a larger sample size than would be feasible using human readers. With this in mind, why did you choose to download only 200 papers, all from the discipline of Neuroscience, and only from Nature Communications? It seems like it would be relatively easy to download papers from many more journals, fields of research, or time periods if using AI-based methods, and in fact it would have been feasible (though fairly laborious) for one person to read and classify the sentiment of the reviews for 200 papers.

      As well as providing more precise estimates of the parameters you are interested in (e.g. the consistency of reviews, and the size of the difference in reviewer sentiment between author genders), expanding the sample beyond this small set of papers would allow you to address other interesting questions. For example, you could ask whether the patterns observed for neuroscience are similar to those in other research disciplines, whether Nature Comms is representative of all journals (given there are other journals with public reviews), and you could test whether the male-female differences have become greater or smaller over time (e.g. by comparing the male-female differences observed in the past to the effect size observed in 2022-23). Additionally, the main analyses in this paper would have higher statistical power - for example, you only include 53 papers with a female senior author, giving you quite low power/ precision to estimate the gender difference in the average sentiment of reviews (given the high variance in sentiment between papers).

      I want to thank this reviewer for taking the time about possible ways to increase the impact of this work. I agree, these are all great suggestions, and there are many possibilities to apply ChatGPTbased natural language processing to scientific peer review. Respectfully, I chose to continue with publishing this work in the form of a proof-of-concept paper, because I currently do not have the resources to perform this (quite labor intensive) study. Below I will explain my reasoning, that I also shared with Reviewers #1 and #2.

      I initially only included Neuroscience papers, because I was uncertain whether I would be able to properly assess the reviews from different scientific disciplines (and thus judge whether ChatGPT was able to provide plausible scores). The different reviewers have provide me with a list of potential follow-up experiments, and I am currently considering different options for future work, including expanding into different fields within Nature Communications. Additionally, I am looking to team up with a journal to perform the experiments laid out in (the new) Supplementary Fig. 6 of the new paper, to study whether I can find evidence of bias across rejected and accepted manuscript papers of a journal. I am also looking into ways to automate data collection using APIs, and by utilizing the rapidly expanding databases for transparent peer review. Yet, based on this preprint, I have received messages from academics that are interested in using generative AI to study scientific texts. By revising this manuscript now, I hope to provide them with the tools to concurrently expand the analysis of peer review into different scientific disciplines and journals. The comments I received from the different reviewers made me realize that I did not describe the intent of this paper well enough in the original submission. I rewrote much of the Abstract, to emphasize the proof-of-concept nature of this study, and rewrote the Discussion to focus more on the limitations of the study.

      Also, if you could include some reviews of papers that were reviewed double-blind, you could test whether the gender-related differences in peer reviews are ameliorated by double-blind reviewing. Nature Comms (and many other journals with open review) do have some double-blinded papers, and there is evidence that that double-blinding is preferentially selected by authors who think they will experience discrimination in the peer review process (DOI: 10.1186/s41073-018-0049-z), and also that double-blinding does ameliorate bias (DOI: 10.1111/1365-2435.14259), so this seems very relevant to the ideas under study here.

      I note that the PLOS journals allow open peer review, and there is an API for PLOS which one can use to download the reviews for a given paper (e.g. try this query to get to the XML file of a paper which has open peer review: http://journals.plos.org/plosone/article/file?id=10.1371/ journal.pone.0239518&type=manuscript). Using an API could allow this project to be scaled up, because you can programmatically search for the papers with open reviews, download those reviews using the API and some code, and then score them using the same ChatGPT-based methods used for Nature Comms. Also, Publons recently merged with Web of Science (Clarivate), and you can now read all the open peer reviews on Web of Science for papers which had open review (e.g. for this paper: https://www-webofscience-com.napier.idm.oclc.org/wos/woscc/fullrecord/WOS:000615934800001). It would be possible to write to Web of Science, request access to their data or search engine, and programmatically download many thousands of papers and their associated reviews, and then use ChatGPT or a similar AI to score them all (especially if you can pass the reviews to ChatGPT for scoring programmatically, instead of manually copy-pasting the reviews into the chat box one at a time as it appears was done in the present study).

      These are great suggestions, and I have different plans for follow-up studies, including the use of APIs to download large batches of peer reviews. The analyses in this paper have been performed in February of this year, even before the ChatGPT API had been released, which did not let me automate the process at that time. As a result, these analyses have been performed manually. I realize that the field is moving rapidly, and that there are now different options to scale this up quickly.

      I plan on using the suggestions from this Reviewer for follow-up experiment in a next paper, and publish this revision as a proof-of-concept paper. In this way, different researchers can optimally use ChatGPT-based sentiment analyses for similar studies without a delay.

      As you acknowledge, there is a selection bias in this study, since you only include papers that were ultimately published in Nature Comms (missing reviews of papers that were rejected). This is a really big limitation on the usefulness of some of your analyses. For example, you found no relationship between author institutional prestige and reviewer sentiment. This could be evidence of a fair and impartial review process (which seems unlikely!), or it could be a direct result of selection bias (specifically a "collider bias", like the famous example involving height and skill among professional basketball players). The likelihood that a paper is published is positively related both to its quality and the prestige held by the authors, we might expect a flatter (or even negative) correlation between prestige and reviewer sentiment among papers that were published than among the whole set of papers (like how the correlation between height and speed/skill is less positive among NBA players than among the general population, since both height and speed/skill provide advantages in basketball).

      I agree with this reviewer that the selection bias is a major limitation of this study. I rewrote much of the Abstract and Discussion to tone down claims, and more prominently discuss the limitations of this study. I also made several suggestions for follow-up experiments.

      In the section "Consistency across reviewers", you write that there was little similarity between review sentiment scores from different reviewers from the same paper, and then write "This surprising result indicates high levels of disagreement between the reviewers' favorability of a paper, suggesting that the peer review process is subjective." However I disagree with this conclusion for three reasons:

      • Firstly, your dataset only includes papers that were published, and thus there is a selection bias against manuscripts where both/all reviewers disliked the paper - the removal of this (probably large) set of reviews will add a (potentially very strong) downward bias to your estimate of how consistent the review process is (since you are missing all those papers where the reviewers agreed). I think that one cannot properly answer the question "are reviewers consistent in their appraisals" without having access to papers that were rejected as well as those that were accepted.

      I agree with this reviewer that there is a selection bias in this study, which I acknowledged throughout the initial submission of this manuscript. Indeed, having access to reviews of rejected papers will greatly increase my confidence in this finding. However, if there is consistency across reviewers in the entire pool of (post-review rejected+accepted) manuscripts, some of that has to trickle down into the pool of accepted papers. The correlation between sentiment scores of the different reviewers is so strikingly low (or even absent) that I simply cannot envision a way in which there is consistency across reviewers in the pre-editioral decision stage. Yet, I realize that this point is debatable. Therefore, I changed the phrasing of the Discussion section, including the following sentence:

      That being said, the extremely low (or even absent) relation between how different reviewers scored the same paper was striking, at least to this author.

      • Secondly, the method used to assess whether the reviews for each paper tend to be similar (shown in Figure 3b) does not fully utilize the information contained in the data and could be replaced with another method. (In the paper 3 univariate regressions compare the sentiment scores for R1 vs R2, R1 vs R3, and R2 vs R3, which needlessly splits up the data in the case of papers with more than 2 reviewers, reducing power.) You could instead calculate the intraclass correlation coefficient (aka 'repeatability'), to determine what proportion of the variance in sentiment scores is between vs within papers (I suggest using the excellent R package rptR for this). Note that the sentiment scores are not normally distributed, and so regular regression (as you used) or one-way ANOVA (which you might be tempted to use for the ICC calculation) are not ideal - consider using a GLM or transformation (the rptR package automates the tricky calculation of repeatability for generalized models).

      I thank this reviewer for pointing me towards this option. I added this analysis to Fig. 3b, which confirmed the inconsistency in sentiment scores for reviews of the same paper (ICC = 0.055). As suggested by this reviewer, I decided to perform the ICC on log-transformed data, as ICC calculation is very sensitive to non-normally distributed data.

      • Thirdly, an alternative and very plausible hypothesis for this lack of similarity (besides peer review being highly subjective) is that ChatGPT is estimating the "true sentiment" of a review (i.e. what the reviewer intended to say) with some amount of error (e.g. due to limitations/biases in the AI, or reviewers struggling to make themselves understood due to issues such as writing in a second language, typos, or writing under time pressure), which dilutes the similarly in the estimated sentiment of the reviews. In other words, if the true sentiment values are strongly correlated, but there is random error in how those values are estimated by ChatGPT, then the correlation between reviewer scores for each paper will tend to zero as the error tends to infinity. Furthermore a nebulous quality like "sentiment" cannot be fully summarised in a single variable running from -100 to +100, and if you had used a more multi-dimensional classification system for the reviews (or qualitative assessment by human readers) you might have found that there is a bit more correspondence (I'm speculating here, but I think you cannot really exclude this and the paper doesn't mention this limitation).

      This point is well taken. I added caveats to the Discussion section on Page 5. Altogether, after taking these caveats into account, I do believe that this analysis convincingly demonstrates subjectivity in the peer review of this subset of papers. That said, I hope that my re-written discussion and additional analysis have added the necessary nuance to this point.

      In Figure 3C, you write "Contribution of paper scores to review time". This strongly implies to the reader that the sentiment scores inferred for the reviews have a causal effect on the review time. This is imprecise writing (since the scores were calculated by you after the papers were published, and thus cannot be causal - you mean that the actual reviews affected the review time, not the scores), but more importantly you cannot infer any causality here since your dataset is observational/correlational. You could fix this by re-phrasing to emphasise this, e.g. "Statistical associations between paper scores and review time".

      This is a very good point raised by this reviewer. I have corrected the phrasing so it no longer implies causality.

      For the analysis shown in Figure 4d and Figure 4e, I am not certain what you mean by "data split per lowest/median/highest sentiment score". This is ambiguous, and I am also not sure what the purpose of this analysis is or what it shows - I suggest re-writing for greater clarity (and ideally providing the code used in all your analyses) and perhaps revising the analysis. Additionally, an important missing piece of information from this analysis (and most analyses in the paper) is the effect size. For example, you don't report what is the difference in politeness score and sentiment score between male and female authors, and what is the SE and 95% CIs for this difference. From eyeballing the figure, it looks like the difference in politeness is about 4 points on your 200point scale - this is small in absolute terms, but might be quite large in relative terms given that "politeness score" usually hovered around a small part of the full 200-point scale. What is this as a standardised effect size (i.e. in terms of standard deviations, as captured by effect sizes like Cohen's d and Hedges' g)? Calculating this (and its 95% CIs) would allow you to say whether the difference between genders is a "big effect", and give an idea of your confidence in your effect size estimate and any inferences drawn from it. You even discuss the effect size in your discussion, so it would help to calculate the standardised effect size. If you're not familiar with effect size and why it's useful, I found this paper very instructive: https://onlinelibrary.wiley.com/ doi/abs/10.1111/j.1469-185X.2007.00027.x

      I agree with this reviewer that this phrasing was ambiguous. I now rephrased this on Page 4 of the manuscript:

      To study whether these more impolite reviews for female first authors were due to an overall lower politeness score, or due to one or some of the reviewers being more impolite, I split the reviews for each paper by its lowest/median/highest politeness score. I observed that the lower politeness scores for first authors with a female name was driven by significantly lower low and median scores (Fig. 4d, bottom panel). Thus, the least polite reviews a paper received were even more impolite for papers with a female first author.

      I also added effect sizes of the significant effects from Fig. 4 to its figure legend. Please note that the used statistical tests are non-parametric, so I reported the Hodges-Lehmann differences (which is the median of all possible pairwise differences between observations from the two groups).

      "Double-blind peer review has been debated before, but has come under scrutiny for various reasons" - this is vague and unhelpful. I think it's worthwhile to properly engage with the debate and the substantial body of evidence in your paper, given your main focus is on potential bias in the review process based on authors' identities (e.g. gender, institutional prestige).

      I thank the reviewer for pointing this out. I rephrased this sentence to indicate that there is evidence that it helps to remove certain forms of bias (Page 5):

      To address this issue, double-blind peer review, where the authors' names are anonymized, could be implemented. Evidence suggests that this is useful in removing certain forms of bias from reviewing8,9, but has thus far not been widely implemented, perhaps because some studies have cast doubt on its merits21,22.

      I have also added a Supplementary Fig. 6 to this paper, in which I lay out how my tool can be used to study bias by applying it to single- and double-blinded reviews (see also my answer to the other question about this topic below).

      On a related note, in the first paragraph, when discussing the potential of single-blind review to allow reviewers to essentially discriminate against papers by women, there is a key missing citation. This year, the first truly experimental test of this hypothesis was published (DOI: 10.1111/1365-2435.14259); a journal conducted a randomised controlled trial in which submitted manuscripts were reviewed either single- or double-blind. They found no effect of author gender on reviewer ratings or editorial decisions (though there was an effect of review type on success rate of authors from different countries). It would be better to cite this instead of reference 6, which as you acknowledge is methodologically flawed. This paper is also worth a read given your focus on Nature journals: DOI: 10.1186/s41073-018-0049-z.

      This point is well taken. I now cite this paper (citation #8) and rephrased this part of the Introduction (Page 1).

      "Another - arguably more simple - solution [compared to double-blind peer review] could be for reviewers to be more mindful of their language use." Here, you seem to be saying that we don't need to blind author names during peer reviewers, because it would simpler if all reviewers were simply nicer! I object to this because A) double-blind review is easy to implement, and greatly reduces the opportunity to tune the review to the author's identity (and there is some experimental evidence that it works in this regard), and B) it seems like wishful thinking to say that we don't need to implement measures that reduce the scope for bias, because all reviewers could instead stop using impolite language.

      This is a very valuable comment. I rephrased this to emphasize that this is an additional measure.

      "reviewers may want to use ChatGPT to extract a politeness score for their review before submitting" Yes, that's an interesting idea, and I can imagine that some (probably small) proportion of reviewers will be interested in doing this. But I think you should think bigger about wholesale changes to the review system that are possible because of AI like ChatGPT. For example, the submission platforms where reviewers submit their reviewers (e.g. ScholarOne, Manuscript Central) could be updated to use AI to pre-screen draft reviews, and issue a warning to reviewers, like "Our AI assistant has indicated that the writing in this review might be impolite (example phrases here) - would you like to edit your review before you submit it?" Also, reviewcredit platforms like Publons could display not only the number of reviews that someone wrote, but an AI-generated assessment of how constructive, detailed, and polite their reviews are (this would help nudge people into writing better reviews, and also give credit where it's due to careful reviewers, which is part of the aim of Publons and similar platforms). This is just off the top of my head - there are many other good ideas about how AI could transform the peer review process. Indeed, AI is already good enough to generate quite useful peer reviews and constructive criticism of draft papers, and will surely get better at this... this surely has lots of implications for science publishing over the coming decades.

      These are great suggestions for implementation of this tool. I now end the first paragraph of the Discussion (Page 4) with the following sentence:

      Such an automated language analysis of peer reviews can be used in different ways, such as afterthe-fact analyses (as has been done here), providing writing support for reviewers (for example by implementation in the journal submission portal), or by helping editors pick the best papers or most constructive reviewers.

      "Further research is required to investigate the reasons behind this effect and to identify in what level of the academic system these differences emerge." Here you could mention what this research would be - I think you'd need the full sample of reviewed papers, not just those that were accepted. Spell out what analyses would be required to test and falsify the various (very plausible and interesting) competing hypotheses that you mention for the male-female difference in sentiment scores.

      Great point. I added a Supplementary Fig. 6, in which I show a visual depiction of the experiments that can be performed to answer these questions.

      "areas of concern were discovered within the academic publishing system that require immediate attention. One such area is the inconsistency between the reviews of the same paper, highlighting the need for greater standardization in the peer review process." I disagree here. I think it is natural for there to sometimes be differences in how two or more reviewers rate the quality of a paper, even if the peer review process were carefully standardised (e.g. via the use of a detailed "peer review form", which helps guide reviewers to comment on all important aspects of the paper - some journals use these). This is because reviewers differ in their experience, expertise, or interests, and so some reviewers will catch mistakes that others miss, or request stylistic changes that others would not. More broadly, it's often not possible to write a version of the paper that satisfies all possible reviewers.

      I re-phrased part of the Discussion on Page 5 to indicate other sources of inter-reviewer variability. Specifically, I mention that some variability in sentiment can be expected based on the different backgrounds of the reviewers:

      Notably, some level of variability may be expected, for example due to different backgrounds, experiences, and biases of the reviewers. In addition, ChatGPT may not always reliably assess a reviews sentiment, adding some spurious inter-reviewer variability.

      Yet, as also mentioned in my response to one of the previous questions, I still find the the extremely low levels of consistency striking, even after taking these possible sources of interreviewer variability into account.

      "the maximum score an institution could receive was 100 (in 2023 this was Massachusetts Institute of Technology)" - this seems unnecessary information (just mention the score runs from 0-100).

      I agree with this reviewer that this was unnecessary information. This has been removed.

      "reviewers are generally familiar with the senior author of papers they review and thus are likely aware of their gender identity." This seems like a strong assumption, and you don't provide any evidence for it Speaking personally, as a reviewer and journal editor I am often not familiar with the senior author, or I am familiar with the first author - I am not sure how often I know the senior author but not the first author or vice versa. It's also not always the case that the first author is a junior scientist and the last author a senior, famous one, as you imply. I suggest that you use the same approach to score the gender of both author positions, namely inferring their gender programmatically from their name (I agree that generally the important thing for the purposes of this study is the gender that reviewers will infer from the name, not the author's actual gender, and so gender estimation from first names is the correct approach).

      I appreciate this reviewer raising this point, and I have carefully weighed the pros and cons of both approaches. Initially, my intention was to rely only on a programmatic method to identify authors' names. However, I came to realize that there were inaccuracies in senior author gender predictions made by ChatGPT/Genderize. This was evident to me due to my personal familiarity with some of these authors, either because they are famous or through personal interactions. It seemed problematic to me to proceed with this analysis knowing that these misclassifications would introduce unnecessary variability to the dataset.

      The advantage of the relatively small sample size in this study was the opportunity to manually perform this task, rather than being fully dependent on algorithms. While I attempted manual gender identification for the first author as well, this was way more challenging due to their limited online presence. The discrepancy in gender identification accuracy between first and senior authors did not go unnoticed, and I acknowledge the issue it presents. I also recognize that, unlike senior authors, reviewers may not necessarily be familiar with the first authors of the papers they evaluate, as indicated in the original submission of this paper. In light of this, I sought input from several PIs who often serve as reviewers. Their feedback confirmed that they typically possess knowledge of senior authors' identities, for example through conferences, whereas the same is not true for first authors. Yet, this may be different for other scientific disciplines, where the pool of reviewers might be bigger.

      Notably, for future studies I may make a different decision, especially when I use larger datasets that require me to automate the process. I now more elaborately explain why I made this decision on Page 7 of the manuscript.

      In the Abstract, you write "suggesting a gender disparity in academic publishing". This part of the sentence contains no information about what you think is the cause of the male/female difference, and no further interpretation of its ramifications, so I think you can just remove it (because "disparity" just means a difference, so you are effectively saying something redundant like "there was a difference between papers with male and female senior authors, suggesting there is a difference")

      I thank the reviewer for pointing this out. I replaced the latter part of this sentence with “(…) for which I discuss potential causes.”, which I think is better than a short summary of potential causes which may lack the nuance that such a topic deserves.

    1. He had on a tight-fitting parti-striped dress, and his head was surmounted by the conical cap and bells. I was so pleased to see him that I thought I should never have done wringing his hand.

      Poe is always fun to read because of his creative uses of imagery almost in a dark way such as this.

    1. Why tests are not a particularly useful way to assess student learning

      I feel like tests don't really asses student learning for a couple of reasons. One could be that it only makes people nervous more so about their grades rather than learning so they just try to cram everything into their head for the exam. AFterwards they gonna just forget everything so It's not truly learning.

    1. References

      Really good list of references - you have a strong head start on the next assignment. You will want to focus on the finer details of formatting - I have some suggestions below but did not do a thorough review.

    Annotators

    1. Some factors that increase emergence or reemergence of infectious pathogens include: ++ Human and animal demographics and population movement with intrusion into new habitats (particularly tropical forests) Irrigation, especially primitive irrigation systems, which fail to control arthropods and enteric organisms Uncontrolled urbanization, with vector populations breeding in stagnant water Increased international commerce and travel with contact or transport of vectors and pathogens (globalization) Breakdown in public health measures, including sanitation, vector control, immunization programs related to social unrest, civil wars, and major natural disasters Ecological changes, including global climate change and deforestation, with farmers and their animals exposed to new arthropods, floods, and drought Microbial evolution whether related to indiscriminate use of anti-infective ... Your Access profile is currently affiliated with '[InstitutionA]' and is in the process of switching affiliations to '[InstitutionB]'. Please click ‘Continue’ to continue the affiliation switch, otherwise click ‘Cancel’ to cancel signing in. Get Free Access Through Your Institution Learn how to see if your library subscribes to McGraw Hill Medical products. Subscribe: Institutional or Individual Sign In Username Error: Please enter User Name Password Error: Please enter Password Forgot Password? Forgot Username? Sign in via OpenAthens Sign in via Shibboleth Pop-up div Successfully Displayed This div only appears when the trigger link is hovered over. Otherwise it is hidden from view. Please Wait AccessMedicine Books Library Updates Quick Reference Quick Medical Diagnosis & Treatment 2 Minute Medicine® DDx Diagnostic Tests Goodman & Gilman’s : FDA Approvals Huppert's Notes Guidelines — Primary Care Infographics Drugs Multimedia Auscultation Classroom Big Picture Physiology Videos Diagnostic and Imaging Studies Harrison's Pathophysiology Animations Human Anatomy Modules Lectures Patient Interview Patient Safety Modules Pharmacology Physical Exam POCUS Pearls Podcasts Procedural Videos Cases Case Files® - Preview Clinical Neuroanatomy Cases Critical Concept Mastery Series Family Medicine Board Review Fluid/Electrolyte and Acid-Base Cases G&G Pharm Cases Harrison’s Visual Case Challenge Internal Medicine Cases Medical Microbiology Cases Pathophysiology Cases Principles of Rehabilitation Medicine Case-Based Board Review Vanderbilt IM/Peds Curriculum Study Tools Review Questions Clerkship Topics Flashcards Patient Ed About AccessMedicine Advisory Board Hospital Corner For Instructors McGraw Hill Medical Sites AccessAnesthesiology AccessAPN Accessartmed AccessBiomedical Science AccessCardiology AccessDermatologyDxRx AccessEmergency Medicine AccessHemOnc AccessMedicina AccessMedicine AccessNeurology AccessObGyn AccessPediatrics AccessPharmacy AccessPhysiotherapy AccessSurgery Case Files Collection Clinical Sports Medicine Collection F.A. Davis AT Collection F.A. Davis PT Collection JAMAevidence Murtagh Collection OMMBID Pharmacotherapy Principles & Practice Support Training & Support Contact Us Submit Feedback Subscribe Institutional Subscriptions Individual Subscriptions McGraw Hill Apple store Google Play See Terms Copyright © McGraw HillAll rights reserved.Your IP address is 105.161.30.222 Terms of Use   •  Privacy Policy   •  Notice   •  Accessibility   •  Browser Support Silverchair Back To Top .index .dynamic-widget-module.flex-container .text-wrap { padding: 0; } .index .dynamic-widget-module.flex-container > .dynamic-widget-inner-wrap { padding: 1rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap h2 { position: relative; top: 0; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap .item { padding: 0; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssHomeWatch'] h2 { position: absolute; top: -2rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssHomeLearn'] h2 { position: absolute; top: -2rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssExtrabox'] h2 { position: absolute; top: -2rem; } /*MHGEN-8550*/ .cmpl_iframe_div.cadmore-player-wrap { padding-top: 130%; } .pg_umbrella-main .carousel-item { width: auto; } .pg_umbrella-main .carousel-item img { max-height: 350px; } .pg_umbrella-main .widget-instance-ssUmbrellaAccessCards img { max-height: 300px; } .widget-SitesDropdown .site-name { margin-top: .5rem !important; } .widget-SitesDropdown .site-name a, .user-services a { color: #333 !important; font-weight: bold; text-transform: uppercase; } #micrositeHeader_liAccessMedicina a { line-height: 52px; } //Track Audio Only for JE $('.dropdown.audio a').click(function (e) { //DO Tracking DoClientTrackingForMGH($(this), 'https://books.mcgraw-hill.com/podcast/jamaevidence/'); }); $(function () { $("#microsite-footer li.users-guides-to-the-medical-literature a").each(function () { var getContent = $(this).text(); var newString = getContent.replace('to the Medical Literature', '<br />to the Medical Literature'); $(this).html(newString); }); $('.for-librarians').find('a').removeClass().attr('target', '_blank'); }); //<![CDATA[ var Page_Validators = new Array(document.getElementById("micrositeHeader_RequiredFieldValidator1")); //]]> //<![CDATA[ var micrositeHeader_RequiredFieldValidator1 = document.all ? document.all["micrositeHeader_RequiredFieldValidator1"] : document.getElementById("micrositeHeader_RequiredFieldValidator1"); micrositeHeader_RequiredFieldValidator1.controltovalidate = "txtSearchTerm"; micrositeHeader_RequiredFieldValidator1.errormessage = "Please Enter a Search Term"; micrositeHeader_RequiredFieldValidator1.validationGroup = "headersearch"; micrositeHeader_RequiredFieldValidator1.evaluationfunction = "RequiredFieldValidatorEvaluateIsValid"; micrositeHeader_RequiredFieldValidator1.initialvalue = ""; //]]> //<![CDATA[ var Page_ValidationActive = false; if (typeof(ValidatorOnLoad) == "function") { ValidatorOnLoad(); } function ValidatorOnSubmit() { if (Page_ValidationActive) { return ValidatorCommonOnSubmit(); } else { return true; } } document.getElementById('micrositeHeader_RequiredFieldValidator1').dispose = function() { Array.remove(Page_Validators, document.getElementById('micrositeHeader_RequiredFieldValidator1')); } //]]> (function(){function b(){!1===c&&(c=!0,Munchkin.init("303-FKF-702"))}var c=!1,a=document.createElement("script");a.type="text/javascript";a.async=!0;a.src="//munchkin.marketo.net/munchkin.js";a.onreadystatechange=function(){"complete"!=this.readyState&&"loaded"!=this.readyState||b()};a.onload=b;document.getElementsByTagName("head")[0].appendChild(a)})(); !function(b,e,f,g,a,c,d){b.fbq||(a=b.fbq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._fbq||(b._fbq=a),a.push=a,a.loaded=!0,a.version="2.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://connect.facebook.net/en_US/fbevents.js");fbq("init","472393460782729");fbq("track","PageView"); <img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=472393460782729&amp;ev=PageView&amp;noscript=1"> !function(b,e,f,g,a,c,d){b.fbq||(a=b.fbq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._fbq||(b._fbq=a),a.push=a,a.loaded=!0,a.version="2.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://connect.facebook.net/en_US/fbevents.js");fbq("init","491404515608644");fbq("track","PageView"); <img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=491404515608644&amp;ev=PageView&amp;noscript=1"> !function(b,e,f,g,a,c,d){b.saq||(a=b.saq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._saq||(b._saq=a),a.push=a,a.loaded=!0,a.version="1.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://tags.srv.stackadapt.com/events.js");saq("ts","gzdqW7I-rc7jNTBJ8xilNw"); Display.Common.DefaultUpdateTarget("ucDefaultUpdateTarget", asdfasdf) $(function () { // hide right widget column for front matter if (0 == 1) { $('#toolbox-widgets').hide(); } if ($('.emptyBookmarked').length) { $('.view-favorites').css('display', 'none'); $('.no-filtered-favorites').css('display', 'inline'); } else { $('.view-favorites').css('display', 'inline'); $('.no-filtered-favorites').css('display', 'none'); } // expand main content column for guideline book if (0 == 1) { if (String("RyanMedMic8").valueOf() == "guid") { $('.row').addClass("row-fluid").removeClass("row"); $('article').removeClass("span6").addClass("span12").show(); $('#content-navbar').removeClass("span6").addClass("span12").show(); } else { // others, just expand to the right column but leave the section nav to the left $('article').removeClass("span6").addClass("span9").show(); $('#content-navbar').removeClass("span6").addClass("span9").show(); } } if ("False" == "True") { $('.searchTextBook').hide(); } $('article').show(); $('#content-navbar').show(); scrollToHash(); getFavoriteStar(); window.addEventListener("SCM.AddFavorites.Complete", function (e) { $('.widget-AddFavorites').each(function () { $(this).addClass('rs_skip_always'); $(this).addClass('rs_preserve') }); }); $(document).ajaxComplete(function () { var cmeClinicalQuestionElement = $('.widget-CmeClinicalQuestions'); if (cmeClinicalQuestionElement.length) { AssigningToCliniclaQUeries(); } }); }); var sectionID = utility.getUrlParams('sectionid'); addRecentlyViewed(sectionID, "section", false); <div class="loader"> <img src="Images/spinnerLarge.gif" /> </div> {{if d.glossaryTerm }} <div class="glossaryTerm">{{html d.glossaryTerm}}</div> <div class="glossaryDefinition">{{html d.glossaryDefinition}}</div> <div class="bordered-bottom"> <a href="/SearchResults.aspx?q={{html d.glossarySearchTerm}}">Run a search on this term</a> </div> <div>{{html d.glossarySource}}</div> {{else}} <div class="msg_error">No glossary found!</div> {{/if}} { "showHighlights": false } This site uses cookies to provide, maintain and improve your experience. MH Privacy

      Some factors that increase emergence or reemergence of infectious pathogens include:

      Human and animal demographics and population movement with intrusion into new habitats (particularly tropical forests)

      Irrigation, especially primitive irrigation systems, which fail to control arthropods and enteric organisms

      Uncontrolled urbanization, with vector populations breeding in stagnant water

      Increased international commerce and travel with contact or transport of vectors and pathogens (globalization)

      Breakdown in public health measures, including sanitation, vector control, immunization programs related to social unrest, civil wars, and major natural disasters

      Ecological changes, including global climate change and deforestation, with farmers and their animals exposed to new arthropods, floods, and drought

      Microbial evolution whether related to indiscriminate use of anti-infective ...

  5. Sep 2023
    1. rolonged and extensive exposure to a pathogen during previous generations selects for a higher degree of innate genetic immunity in a population. For example, extensive exposure of Western urbanized populations to tuberculosis during the 18th and 19th centuries conferred a degree of resistance greater than that among the progeny of rural or geographically isolated populations. The disease spread rapidly and in severe form, for example, when it was first encountered by Native Americans. An even more dramatic example concerns the resistance to the most serious form of malaria that is conferred on people of West African descent by the sickle cell trait. These instances are clear cases of natural selection—a process that accounts for many differences in immunity in different races and populations. ++ ❋ Immunity in population influences spread ++ Occasionally, an epidemic arises from an agent for which immunity is essentially absent in a population, is of enhanced virulence, or appears to be of enhanced virulence because of the lack of immunity. When such an organism is highly infectious, the disease caused may become pandemic and worldwide. An example is the appearance of a new major antigenic variant of influenza A virus against which there is little, if any, cross-immunity from recent epidemics with other strains. The 1918 to 1919 pandemic of influenza was responsible for more deaths than World War I (>20 million). Subsequent, but less serious, pandemics have occurred periodically owing to the development of strains of influenza virus with major antigenic shifts (see Chapter 9). Another example, human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), illustrates the same principles but also reflects changes in human ecologic and social behavior. ++ ❋ Sudden appearance of “new” agents can result in pandemic spread ++ A major feature of serious epidemic diseases is their frequent association with poverty, malnutrition, disaster, and war. The association is multifactorial and includes overcrowding, contaminated food and water, an increase in arthropod vectors, and the reduced immunity that can accompany severe malnutrition and overwhelming stress. Overcrowding and understaffing in day-care centers or institutions for the mentally impaired, the aged, or the infirmed can similarly be associated with epidemics of infections, such as C difficile and, more recently, COVID-19. ++ Social, ecologic factors determine epidemic aspects ++ In recent years, increasing attention has been given to healthcare-associated infections, including central-line-associated bloodstream infections, catheter-associated urinary tract infections, and ventilator-associated pneumonia that are associated in turn with intravascular catheters and intraurethral or intratracheal tubes. Unusually susceptible institutionalized individuals (whether because of age, chronic disease, or immunosuppressive therapy) are also at increased mortality when exposed to infected individuals from the community. Societal injustices are amplified in the setting of a pandemic, wherein those more susceptible often are also more vulnerable. As an example, non-Hispanic persons of American Indian, Alaska Native, Asian, and African American heritage, as well as Hispanic or Latino persons, have higher rates of infection, hospitalization, and death from COVID-19 compared with White, non-Hispanic Americans. Race and ethnicity are risk markers for multiple underlying conditions that impact health, including socioeconomic status, access to care, and increased exposure due to occupation (eg, frontline, essential, and critical infrastructure workers) or living conditions (crowded with close physical contact). Furthermore, despite scientific evidence, persons in positions of authority across the globe have not uniformly reinforced public health measures. ++ Healthcare-associated infections include nosocomial/hospital-acquired +++ Control of Epidemics ++ The first principle of control is recognition of the existence of an epidemic. This recognition is sometimes immediate because of the high incidence of disease but, often, the evidence is obtained from ongoing surveillance activities, such as routine disease reports to health departments and records of school and work absenteeism. The causative agent must be identified, and studies to determine route of transmission (eg, food poisoning) must be initiated. ++ Surveillance key to recognition of an epidemic ++ Measures must then be adopted to control the spread and development of further infection. These methods include: (1) blocking the route of transmission, if possible (eg, improved food hygiene, arthropod control, or masks/handwashing/physical distancing); (2) identifying, treating, and, if necessary, isolating infected individuals and carriers (quarantine); (3) raising the level of immunity in the uninfected population by immunization when vaccines are available; (4) making selective use of chemoprophylaxis for subjects or populations at particular risk of infection, as in epidemics of meningococcal infection; and (5) correcting conditions such as overcrowding or contaminated water supplies that have led to the epidemic or facilitated transfer. ++ Control measures can vary widely + KEY CONCLUSIONS Download Section PDF Listen +++ ++ KEY CONCLUSIONS Epidemiology, the study of the distribution and determinants of disease, is critical for recognition and control of emerging infectious diseases. Emerging infectious diseases are those that are increasing in incidence, whether due to the appearance of a new agent, pattern of resistance, or geographic spread. Communicable diseases differ from noncommunicable diseases in their propensity to cause both endemic disease and pandemics. Infections may be clinically inapparent or may cause disease. Those with subclinical disease can be important propagators of the infectious agent. Transmission can be vertical (mother to fetus or infant) or horizontal (direct or indirect person to person). Routes of horizontal transmission include respiratory, salivary, eye, skin, genital, fecal-oral, bloodborne, and vector-borne or zoonotic. The propensity for epidemic spread of an infection depends on agent, host, and environmental factors. Surveillance is a key to recognition and thereby to control. ++ Epidemiologic study is essential to identify, characterize, and control infectious diseases. Combating emerging infections requires recognizing new agents and patterns of disease, understanding their nature and spread, and then instituting control measures. The latter may involve prompt treatment of cases, prevention through selective chemoprophylaxis or immunization, implementation of environmental controls, and public education, depending on the specific agent. However, application of epidemiologic principles is essential for the health of both individuals and communities. Pop-up div Successfully Displayed This div only appears when the trigger link is hovered over. Otherwise it is hidden from view. Please Wait (function(){function b(){!1===c&&(c=!0,Munchkin.init("303-FKF-702"))}var c=!1,a=document.createElement("script");a.type="text/javascript";a.async=!0;a.src="//munchkin.marketo.net/munchkin.js";a.onreadystatechange=function(){"complete"!=this.readyState&&"loaded"!=this.readyState||b()};a.onload=b;document.getElementsByTagName("head")[0].appendChild(a)})(); !function(b,e,f,g,a,c,d){b.fbq||(a=b.fbq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._fbq||(b._fbq=a),a.push=a,a.loaded=!0,a.version="2.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://connect.facebook.net/en_US/fbevents.js");fbq("init","472393460782729");fbq("track","PageView"); <img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=472393460782729&amp;ev=PageView&amp;noscript=1"> !function(b,e,f,g,a,c,d){b.fbq||(a=b.fbq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._fbq||(b._fbq=a),a.push=a,a.loaded=!0,a.version="2.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://connect.facebook.net/en_US/fbevents.js");fbq("init","491404515608644");fbq("track","PageView"); <img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=491404515608644&amp;ev=PageView&amp;noscript=1"> !function(b,e,f,g,a,c,d){b.saq||(a=b.saq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._saq||(b._saq=a),a.push=a,a.loaded=!0,a.version="1.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://tags.srv.stackadapt.com/events.js");saq("ts","gzdqW7I-rc7jNTBJ8xilNw"); AccessMedicine Books Library Updates Quick Reference Quick Medical Diagnosis & Treatment 2 Minute Medicine® DDx Diagnostic Tests Goodman & Gilman’s : FDA Approvals Huppert's Notes Guidelines — Primary Care Infographics Drugs Multimedia Auscultation Classroom Big Picture Physiology Videos Diagnostic and Imaging Studies Harrison's Pathophysiology Animations Human Anatomy Modules Lectures Patient Interview Patient Safety Modules Pharmacology Physical Exam POCUS Pearls Podcasts Procedural Videos Cases Case Files® - Preview Clinical Neuroanatomy Cases Critical Concept Mastery Series Family Medicine Board Review Fluid/Electrolyte and Acid-Base Cases G&G Pharm Cases Harrison’s Visual Case Challenge Internal Medicine Cases Medical Microbiology Cases Pathophysiology Cases Principles of Rehabilitation Medicine Case-Based Board Review Vanderbilt IM/Peds Curriculum Study Tools Review Questions Clerkship Topics Flashcards Patient Ed About AccessMedicine Advisory Board Hospital Corner For Instructors McGraw Hill Medical Sites AccessAnesthesiology AccessAPN Accessartmed AccessBiomedical Science AccessCardiology AccessDermatologyDxRx AccessEmergency Medicine AccessHemOnc AccessMedicina AccessMedicine AccessNeurology AccessObGyn AccessPediatrics AccessPharmacy AccessPhysiotherapy AccessSurgery Case Files Collection Clinical Sports Medicine Collection F.A. Davis AT Collection F.A. Davis PT Collection JAMAevidence Murtagh Collection OMMBID Pharmacotherapy Principles & Practice Support Training & Support Contact Us Submit Feedback Subscribe Institutional Subscriptions Individual Subscriptions McGraw Hill Apple store Google Play See Terms Copyright © McGraw HillAll rights reserved.Your IP address is 102.68.77.195 Terms of Use   •  Privacy Policy   •  Notice   •  Accessibility   •  Browser Support Access Provided by: Aga Khan University Silverchair Back To Top .index .dynamic-widget-module.flex-container .text-wrap { padding: 0; } .index .dynamic-widget-module.flex-container > .dynamic-widget-inner-wrap { padding: 1rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap h2 { position: relative; top: 0; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap .item { padding: 0; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssHomeWatch'] h2 { position: absolute; top: -2rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssHomeLearn'] h2 { position: absolute; top: -2rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssExtrabox'] h2 { position: absolute; top: -2rem; } /*MHGEN-8550*/ .cmpl_iframe_div.cadmore-player-wrap { padding-top: 130%; } .pg_umbrella-main .carousel-item { width: auto; } .pg_umbrella-main .carousel-item img { max-height: 350px; } .pg_umbrella-main .widget-instance-ssUmbrellaAccessCards img { max-height: 300px; } .widget-SitesDropdown .site-name { margin-top: .5rem !important; } .widget-SitesDropdown .site-name a, .user-services a { color: #333 !important; font-weight: bold; text-transform: uppercase; } #micrositeHeader_liAccessMedicina a { line-height: 52px; } //Track Audio Only for JE $('.dropdown.audio a').click(function (e) { //DO Tracking DoClientTrackingForMGH($(this), 'https://books.mcgraw-hill.com/podcast/jamaevidence/'); }); $(function () { $("#microsite-footer li.users-guides-to-the-medical-literature a").each(function () { var getContent = $(this).text(); var newString = getContent.replace('to the Medical Literature', '<br />to the Medical Literature'); $(this).html(newString); }); $('.for-librarians').find('a').removeClass().attr('target', '_blank'); }); //<![CDATA[ var Page_Validators = new Array(document.getElementById("micrositeHeader_RequiredFieldValidator1")); //]]> //<![CDATA[ var micrositeHeader_RequiredFieldValidator1 = document.all ? document.all["micrositeHeader_RequiredFieldValidator1"] : document.getElementById("micrositeHeader_RequiredFieldValidator1"); micrositeHeader_RequiredFieldValidator1.controltovalidate = "txtSearchTerm"; micrositeHeader_RequiredFieldValidator1.errormessage = "Please Enter a Search Term"; micrositeHeader_RequiredFieldValidator1.validationGroup = "headersearch"; micrositeHeader_RequiredFieldValidator1.evaluationfunction = "RequiredFieldValidatorEvaluateIsValid"; micrositeHeader_RequiredFieldValidator1.initialvalue = ""; //]]> //<![CDATA[ var Page_ValidationActive = false; if (typeof(ValidatorOnLoad) == "function") { ValidatorOnLoad(); } function ValidatorOnSubmit() { if (Page_ValidationActive) { return ValidatorCommonOnSubmit(); } else { return true; } } document.getElementById('micrositeHeader_RequiredFieldValidator1').dispose = function() { Array.remove(Page_Validators, document.getElementById('micrositeHeader_RequiredFieldValidator1')); } //]]> Display.Common.DefaultUpdateTarget("ucDefaultUpdateTarget", asdfasdf) $(function () { // hide right widget column for front matter if (0 == 1) { $('#toolbox-widgets').hide(); } if ($('.emptyBookmarked').length) { $('.view-favorites').css('display', 'none'); $('.no-filtered-favorites').css('display', 'inline'); } else { $('.view-favorites').css('display', 'inline'); $('.no-filtered-favorites').css('display', 'none'); } // expand main content column for guideline book if (0 == 1) { if (String("RyanMedMic8").valueOf() == "guid") { $('.row').addClass("row-fluid").removeClass("row"); $('article').removeClass("span6").addClass("span12").show(); $('#content-navbar').removeClass("span6").addClass("span12").show(); } else { // others, just expand to the right column but leave the section nav to the left $('article').removeClass("span6").addClass("span9").show(); $('#content-navbar').removeClass("span6").addClass("span9").show(); } } if ("False" == "True") { $('.searchTextBook').hide(); } $('article').show(); $('#content-navbar').show(); scrollToHash(); getFavoriteStar(); window.addEventListener("SCM.AddFavorites.Complete", function (e) { $('.widget-AddFavorites').each(function () { $(this).addClass('rs_skip_always'); $(this).addClass('rs_preserve') }); }); $(document).ajaxComplete(function () { var cmeClinicalQuestionElement = $('.widget-CmeClinicalQuestions'); if (cmeClinicalQuestionElement.length) { AssigningToCliniclaQUeries(); } }); }); var sectionID = utility.getUrlParams('sectionid'); addRecentlyViewed(sectionID, "section", false); <div class="loader"> <img src="Images/spinnerLarge.gif" /> </div> {{if d.glossaryTerm }} <div class="glossaryTerm">{{html d.glossaryTerm}}</div> <div class="glossaryDefinition">{{html d.glossaryDefinition}}</div> <div class="bordered-bottom"> <a href="/SearchResults.aspx?q={{html d.glossarySearchTerm}}">Run a search on this term</a> </div> <div>{{html d.glossarySource}}</div> {{else}} <div class="msg_error">No glossary found!</div> {{/if}} { "showHighlights": false } This site uses cookies to provide, maintain and impro

      The spread of a disease to a population influences immunity.

  6. moodle.lynchburg.edu moodle.lynchburg.edu
    1. “Edgar is gone,” said the mother, with head half bowed,—“gone to work in Nashville;he and his father couldn’t agree.”

      An education cannot stop from needing work

    1. where the glass Held up by standards wrought with fruited vines

      In this section of TWL, the references to glass and fruit made me think of this quote in A Martyred Woman: "the air is dangerous, fatal, where bouquets dying in their glass coffins exhale their final breath." The reference to a glass coffin is firstly, to me, a connection to Sybil. When following the logic of this connection, Sybil is thus compared to a flower, once beautiful, which is slowly dying after having been plucked from the ground and kept in a vase. This is interesting because when one thinks of how a flower withers away when it is not in the ground, the shriveling up and loss of supple body and color parallels her story. When you pick a flower, it is almost an act of selfishness: the beauty of the flower is so intense that you must take it for yourself, but in the very act of wanted preservation, ironically, you are actually shortening the lifespan of its beauty. You could keep the flower forever, yes, but it will just dry up, leaving you with both the "memory" if its former and the longing, the "desire", for it to return to that.

      Death is humiliating when one's coffin is made of glass. A coffin is meant to be a final protector of dignity, but when made of glass, it can not function this way. Later on in Boudelaire's poem, despite being dead, the woman described is still "quite young". Her head has been cut off, but the rest of her body is extremely vulnerable and unprotected, as though it were in a glass coffin. I wonder if there is something to be said about the way flowers are kept in glass vases, essentially acting a their glass coffin, exposing their death and removing them from the cycles of nature, where death and decay would be welcome. What are the glass coffins that humans create for ourselves?

    2. Is there nothing in your head?'

      Strangely, although this is referring to the Drowned Phoenician Sailor tarot card, it reminds me of a line from the Middleton reading—where Ignatius Loyola says:

      Pawns argue but poor spirits and slight preferments, Not worthy of the name of my disciples. If I had stood so nigh, I would have cut That Bishop’s throat but I’d have had his place And told the Queen a love tale in her ear Would make her best pulse dance. There’s no elixir Of brain or spirit amongst ‘em.

      This one snippet of dialogue seems rather denigrating to women, to say the least. Loyola is saying, essentially, that if he were on the chess board, he would attempt to seduce the Queen—who has "no elixir / Of brain or spirit"—even if it meant turning against the pieces on his own team. In my conversation with Quisha in class yesterday, she mentioned the fact that the game of chess has distinct gender roles: the queen, though being the most powerful and versatile piece on the board, is not nearly as venerated as the king—who ultimately decides the fate of the game; this is meant to be a reflection of gender roles in society. In fact, Pound's "The Game of Chess" speaks to a similar dichotomy: he describes the "'x's of queens," which I thought of as referring to the XX chromosomes in the female sex, with little to no descriptors. On the contrary, the "'Y' pawns" were depicted in a more triumphant light: "... cleaving! Embanking! / Whirl! Centripetal! Mate!" Essentially, while the "female" pieces are dispensable—something to be seen as an object of seduction and lust—the "male" pieces are lauded, perhaps beyond their actual abilities. As for the connections to the Drowned Phoenician Sailor, this makes sense: the Phoenician Sailor, for whom one must "Fear death by water," is a reflection of the female torment. Ophelia, for one, drowns herself in a river in Hamlet—the precise "death by water"—due to the nature of gender discrimination.

    1. Starting a blog .t3_16v8tfq._2FCtq-QzlfuN-SwVMUZMM3 { --postTitle-VisitedLinkColor: #9b9b9b; --postTitleLink-VisitedLinkColor: #9b9b9b; --postBodyLink-VisitedLinkColor: #989898; } Hey everyone- I’m still trying to wrap my head on how to organize this.I have my antinet growing and I want to start a blog with the use of one of my notes as a springboard.Do I9 votesWork on the blog and store the index cards after the note that I’m drawing inspiration fromCreate a new blog section in my antinet and place them thereStore them in wherever and create an hub note that points to them

      reply to u/RobThomasBouchard at https://www.reddit.com/r/antinet/comments/16v8tfq/starting_a_blog/

      The answer is:<br /> D: Start a "blog" where you post your notes as status updates and interlink them a bit. When you've got enough, you organize them into a mini thesis and write a longer article/blog post about it.

      Examples: - https://hypothes.is/users/chrisaldrich?q=tag%3A%22thought%20spaces%22 and - https://indieweb.org/commonplace_book#The_IndieWeb_site_as_a_Commonplace_book

      tl;dr: Use your website like a public, online zettelkasten. 🕸️🗃️

    1. esponse generated against a potential pathogen is called an immune response. The first line of defense, which is nonspecific to the invading pathogen, is rapidly mobilized at the initial site of infection but lacks immunologic memory and is called innate immunity. The second defense system is called adaptive immunity. It is specific for the pathogen and confers protective immunity to reinfection with that pathogen. Adaptive immunity can specifically recognize and destroy the pathogen because lymphocytes carry specialized cellular receptors and produce specific antibodies. A protein that is produced in response to a particular pathogen is called the antibody, and the substance that induces the production of antibodies is called the antigen. In summary, the innate immune response is effective and critical in eliminating most pathogens. However, if this initial mechanism fails, the adaptive immune response is induced that specifically confronts the pathogen and establishes immunity to that invading pathogen. Hence, both systems interact and collaborate to achieve the final goal of destroying the pathogen. +++ INNATE IMMUNITY ++ Innate immunity is an immediate response to a pathogen that does not confer long-lasting protective immunity. It is a nonspecific defense system and includes barriers to infectious agents, such as the skin (epithelium) and mucous membranes. It also includes many immune components important in the adaptive immune response, including phagocytic cells, natural killer (NK) cells, toll-like receptors (TLRs), cytokines, and complement. +++ Barrier Functions of Innate Immunity ++ Few microorganisms can penetrate body surfaces. These surfaces have an epithelial cell layer as their barrier, which is present in the skin, airways, gastrointestinal (GI) tract, ... Your Access profile is currently affiliated with '[InstitutionA]' and is in the process of switching affiliations to '[InstitutionB]'. Please click ‘Continue’ to continue the affiliation switch, otherwise click ‘Cancel’ to cancel signing in. Get Free Access Through Your Institution Learn how to see if your library subscribes to McGraw Hill Medical products. Subscribe: Institutional or Individual Sign In Username Error: Please enter User Name Password Error: Please enter Password Forgot Password? Forgot Username? Sign in via OpenAthens Sign in via Shibboleth Pop-up div Successfully Displayed This div only appears when the trigger link is hovered over. Otherwise it is hidden from view. Please Wait AccessMedicine Books Library Updates Quick Reference Quick Medical Diagnosis & Treatment 2 Minute Medicine® DDx Diagnostic Tests Goodman & Gilman’s : FDA Approvals Huppert's Notes Guidelines — Primary Care Infographics Drugs Multimedia Auscultation Classroom Big Picture Physiology Videos Diagnostic and Imaging Studies Harrison's Pathophysiology Animations Human Anatomy Modules Lectures Patient Interview Patient Safety Modules Pharmacology Physical Exam POCUS Pearls Podcasts Procedural Videos Cases Case Files® - Preview Clinical Neuroanatomy Cases Critical Concept Mastery Series Family Medicine Board Review Fluid/Electrolyte and Acid-Base Cases G&G Pharm Cases Harrison’s Visual Case Challenge Internal Medicine Cases Medical Microbiology Cases Pathophysiology Cases Principles of Rehabilitation Medicine Case-Based Board Review Vanderbilt IM/Peds Curriculum Study Tools Review Questions Clerkship Topics Flashcards Patient Ed About AccessMedicine Advisory Board Hospital Corner For Instructors McGraw Hill Medical Sites AccessAnesthesiology AccessAPN Accessartmed AccessBiomedical Science AccessCardiology AccessDermatologyDxRx AccessEmergency Medicine AccessHemOnc AccessMedicina AccessMedicine AccessNeurology AccessObGyn AccessPediatrics AccessPharmacy AccessPhysiotherapy AccessSurgery Case Files Collection Clinical Sports Medicine Collection F.A. Davis AT Collection F.A. Davis PT Collection JAMAevidence Murtagh Collection OMMBID Pharmacotherapy Principles & Practice Support Training & Support Contact Us Submit Feedback Subscribe Institutional Subscriptions Individual Subscriptions McGraw Hill Apple store Google Play See Terms Copyright © McGraw HillAll rights reserved.Your IP address is 102.68.76.231 Terms of Use   •  Privacy Policy   •  Notice   •  Accessibility   •  Browser Support Silverchair Back To Top .index .dynamic-widget-module.flex-container .text-wrap { padding: 0; } .index .dynamic-widget-module.flex-container > .dynamic-widget-inner-wrap { padding: 1rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap h2 { position: relative; top: 0; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap .item { padding: 0; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssHomeWatch'] h2 { position: absolute; top: -2rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssHomeLearn'] h2 { position: absolute; top: -2rem; } .index .dynamic-widget-module.flex-container>.dynamic-widget-inner-wrap [class*='ssExtrabox'] h2 { position: absolute; top: -2rem; } /*MHGEN-8550*/ .cmpl_iframe_div.cadmore-player-wrap { padding-top: 130%; } .pg_umbrella-main .carousel-item { width: auto; } .pg_umbrella-main .carousel-item img { max-height: 350px; } .pg_umbrella-main .widget-instance-ssUmbrellaAccessCards img { max-height: 300px; } .widget-SitesDropdown .site-name { margin-top: .5rem !important; } .widget-SitesDropdown .site-name a, .user-services a { color: #333 !important; font-weight: bold; text-transform: uppercase; } #micrositeHeader_liAccessMedicina a { line-height: 52px; } //Track Audio Only for JE $('.dropdown.audio a').click(function (e) { //DO Tracking DoClientTrackingForMGH($(this), 'https://books.mcgraw-hill.com/podcast/jamaevidence/'); }); $(function () { $("#microsite-footer li.users-guides-to-the-medical-literature a").each(function () { var getContent = $(this).text(); var newString = getContent.replace('to the Medical Literature', '<br />to the Medical Literature'); $(this).html(newString); }); $('.for-librarians').find('a').removeClass().attr('target', '_blank'); }); //<![CDATA[ var Page_Validators = new Array(document.getElementById("micrositeHeader_RequiredFieldValidator1")); //]]> //<![CDATA[ var micrositeHeader_RequiredFieldValidator1 = document.all ? document.all["micrositeHeader_RequiredFieldValidator1"] : document.getElementById("micrositeHeader_RequiredFieldValidator1"); micrositeHeader_RequiredFieldValidator1.controltovalidate = "txtSearchTerm"; micrositeHeader_RequiredFieldValidator1.errormessage = "Please Enter a Search Term"; micrositeHeader_RequiredFieldValidator1.validationGroup = "headersearch"; micrositeHeader_RequiredFieldValidator1.evaluationfunction = "RequiredFieldValidatorEvaluateIsValid"; micrositeHeader_RequiredFieldValidator1.initialvalue = ""; //]]> //<![CDATA[ var Page_ValidationActive = false; if (typeof(ValidatorOnLoad) == "function") { ValidatorOnLoad(); } function ValidatorOnSubmit() { if (Page_ValidationActive) { return ValidatorCommonOnSubmit(); } else { return true; } } document.getElementById('micrositeHeader_RequiredFieldValidator1').dispose = function() { Array.remove(Page_Validators, document.getElementById('micrositeHeader_RequiredFieldValidator1')); } //]]> (function(){function b(){!1===c&&(c=!0,Munchkin.init("303-FKF-702"))}var c=!1,a=document.createElement("script");a.type="text/javascript";a.async=!0;a.src="//munchkin.marketo.net/munchkin.js";a.onreadystatechange=function(){"complete"!=this.readyState&&"loaded"!=this.readyState||b()};a.onload=b;document.getElementsByTagName("head")[0].appendChild(a)})(); !function(b,e,f,g,a,c,d){b.fbq||(a=b.fbq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._fbq||(b._fbq=a),a.push=a,a.loaded=!0,a.version="2.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://connect.facebook.net/en_US/fbevents.js");fbq("init","472393460782729");fbq("track","PageView"); <img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=472393460782729&amp;ev=PageView&amp;noscript=1"> !function(b,e,f,g,a,c,d){b.fbq||(a=b.fbq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._fbq||(b._fbq=a),a.push=a,a.loaded=!0,a.version="2.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://connect.facebook.net/en_US/fbevents.js");fbq("init","491404515608644");fbq("track","PageView"); <img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=491404515608644&amp;ev=PageView&amp;noscript=1"> !function(b,e,f,g,a,c,d){b.saq||(a=b.saq=function(){a.callMethod?a.callMethod.apply(a,arguments):a.queue.push(arguments)},b._saq||(b._saq=a),a.push=a,a.loaded=!0,a.version="1.0",a.queue=[],c=e.createElement(f),c.async=!0,c.src=g,d=e.getElementsByTagName(f)[0],d.parentNode.insertBefore(c,d))}(window,document,"script","https://tags.srv.stackadapt.com/events.js");saq("ts","gzdqW7I-rc7jNTBJ8xilNw"); Display.Common.DefaultUpdateTarget("ucDefaultUpdateTarget", asdfasdf) $(function () { // hide right widget column for front matter if (0 == 1) { $('#toolbox-widgets').hide(); } if ($('.emptyBookmarked').length) { $('.view-favorites').css('display', 'none'); $('.no-filtered-favorites').css('display', 'inline'); } else { $('.view-favorites').css('display', 'inline'); $('.no-filtered-favorites').css('display', 'none'); } // expand main content column for guideline book if (0 == 1) { if (String("RiedMed28").valueOf() == "guid") { $('.row').addClass("row-fluid").removeClass("row"); $('article').removeClass("span6").addClass("span12").show(); $('#content-navbar').removeClass("span6").addClass("span12").show(); } else { // others, just expand to the right column but leave the section nav to the left $('article').removeClass("span6").addClass("span9").show(); $('#content-navbar').removeClass("span6").addClass("span9").show(); } } if ("False" == "True") { $('.searchTextBook').hide(); } $('article').show(); $('#content-navbar').show(); scrollToHash(); getFavoriteStar(); window.addEventListener("SCM.AddFavorites.Complete", function (e) { $('.widget-AddFavorites').each(function () { $(this).addClass('rs_skip_always'); $(this).addClass('rs_preserve') }); }); $(document).ajaxComplete(function () { var cmeClinicalQuestionElement = $('.widget-CmeClinicalQuestions'); if (cmeClinicalQuestionElement.length) { AssigningToCliniclaQUeries(); } }); }); var sectionID = utility.getUrlParams('sectionid'); addRecentlyViewed(sectionID, "section", false); <div class="loader"> <img src="Images/spinnerLarge.gif" /> </div> {{if d.glossaryTerm }} <div class="glossaryTerm">{{html d.glossaryTerm}}</div> <div class="glossaryDefinition">{{html d.glossaryDefinition}}</div> <div class="bordered-bottom"> <a href="/SearchResults.aspx?q={{html d.glossarySearchTerm}}">Run a search on this term</a> </div> <div>{{html d.glossarySource}}</div> {{else}} <div class="msg_error">No glossary found!</div> {{/if}} { "showHighlights": false } This site uses cookies to provide, maintain and improve your experience. MH Privacy Center Close

      Immune response is basically a potential response against a pathogen .A defense mechanism which is non specific to a pathogen is known as innate immunity which the initial defense mechanism. Followed by adaptive immunity which is specific to a pathogen which act as protective immunity to the invading pathogen.

    1. Noise

      Noise is what gets in the way of things.

      I know that personally, somebody could be talking to me about something and they could be doing a very good job at talking to me about that specific something. But than something completely unrelated will pop up in my head and my IAC (Intrapersonal Communication) will start to get in the way of the person trying to tell me about their something.

      The thing that I'm thinking about in my head acts as noise and it gets in the way of me properly decoding what the message is.

    2. Decoding

      Decoding is part of being on the receiving end of information.

      you know when somebody talks to you about something they did today and you imagine being in that scenario in your head? maybe thats just me... but thats Decoding.

      Decoding is taking what somebody or something says and turning it into a thought process that works for specifically your brain. its how we learn new things. without being able to decode information we wouldn't be able to understand what we're reading/hearing.

      Being able to decode something well probably requires a basic concept of the subject at hand. so for example you wouldn't be able to decode trigonometry or calculous unless you've done the prerequisites for them like algebra and geometry

    3. Encoding

      Encoding is turning your thoughts into words.

      Remember that time you wanted to talk about something but you got stuck on a word? its like you can visualize it in your brain but you cant verbalize it out of your mouth? thats related to encoding.

      Encoding is taking your abstract thoughts that only really you can understand and turning them into words that are comprehendible and and process-able for another person.

      Sometimes its hard to get out the words and it can even be frustrating because you understand how something works when you think about it in your head but when you try to talk about it it sounds like a jumbled mess of brain spaghetti.

      being able to Encode well will allow you to avoid this problem

    1. “For auld lang syne.” The weary throat gave out, The last word wavered, and the song was done. He raised again the jug regretfully And shook his head, and was again alone. There was not much that was ahead of him, And there was nothing in the town below– Where strangers would have shut the many doors That many friends had opened long ago.

      The selections from Masters and Robinson all communicate something about the changes that come with age with a before (youth) and after (old age). Although I can appreciate their meaning now, I wonder how I will respond to these poems in old age.

    1. He sauntered across the road swaying his head from side to side. His bulk, his easy pace, and the solid sound of his boots had something of the conqueror in them.

      ID: Action: Proud

    1. Head-of-Bed elevation, with a range of 30◦ to 45◦, wasimplemented by all the reviewed studies, except one [32]. The second most widely usedintervention was oral hygiene using chlorhexidine 0.12%

      the most implemented parameter was elevated HOB and oral hygiene

    2. “Recommended bundleof Interventions for the prevention of VAP”, including elevation of head of bed, daily seda-tion vacation and assessment of readiness to extubate, use of subglottic secretion drainage,avoidance of scheduled ventilator circuit changes, oral hygiene without chlorhexidine andPUD prophylaxis (only for high-risk patients), without mentioning DVT prophylaxis

      These are important to prevent VAP. - Anne D and Malayna C

    3. The most common interventions monitored in the care bundles were sedation andweaning protocols, semi-recumbent positioning, oral and hand hygiene, peptic ulcer disease anddeep venus thrombosis prophylaxis, subglottic suctioning, and cuff pressure control. Head-of-bedelevation was implemented by almost all studies, followed by oral hygiene, which was the secondextensively used intervention.

      For prevention of VAP, it is important to implement weaning, semi-recumbent positioning, oral care, hand hygiene, peptic ulcer disease prevention, deep vein thrombosis prevention, subglottic suctioning, and cuff pressure, and head of bed elevation. - Anne D & Malayna C

    4. CUsshould adopt basic practices that prevent or decrease VAP rates, and as a result, mortality,duration of mechanical ventilation, length of stay, and healthcare costs. Moreover, thestrategies should be multifaceted and supported by a long-term education program byensuring compliance in the care bundle.

      It may take a while to implement these basic practices, however once implemented into the nurse's schedule, it should be shown to significantly decrease a wide range of patients stay in the hospital. Oral care and increasing the HOB are not difficult interventions, that if encouraged by head nurses, could drastically decrease the risk of VAP across ICU floors. - CM

    5. . The studies with the highest VAP reduction adoptedthe “IHI Ventilator Bundle” combined with adequate endotracheal tube cuff pressure and subglotticsuctioning. Multifaced techniques can lead to VAP reduction at a great extent

      Nurses in the ICU need to remember that VAP reduction requires several different components, including endotracheal tube cuff pressure and subglottic suctioning. Other interventions include keeping the head of the bed elevated, providing mouth care every 4 hours, and using proper hand hygiene. - CM

    6. Asa result, there has been a variation in the included interventions of VAP bundles amongICUs and until now there is no common bundle which can be agreed to be implemented bythe communities worldwide [10].

      Each hospital system typically has its own version of ventilator-associated pneumonia (VAP) bundles. These bundles can include interventions such as elevating the head-of-the-bed, early ambulation, frequent oral care, and daily sedation vacations. The lack of a common bundle between hospital systems highlights VAP's multifactorial etiology. - Wesley (WB and EB)

    7. Head-of-bedelevation was implemented by almost all studies, followed by oral hygiene, which was the secondextensively used intervention.

      Elevating the patient's head-of-the-bed is one of the most effective ways in which the nurse can prevent ventilator-associated pneumonia (VAP). Repositioning the patient to semi-Fowler's or high-Fowler's promotes lung expansion, which increases the patient's ability to ventilate. - Wesley (WB & EB)

    8. Head-of-Bed elevation, with a range of 30◦ to 45◦, wasimplemented by all the reviewed studies, except one [32].

      HOB elevation is important in preventing VAP by increasing lung compliance. Multiple different studies have found a correlation between HOB elevation and VAP incidence. CM, KS, CR

    9. Head-of-bedelevation was implemented by almost all studies, followed by oral hygiene, which was the secondextensively used intervention

      All studies implemented head of bed elevation and oral hygiene. Oral hygiene is an important intervention to prevent the spread of bacteria in the mouth. The nurse can frequently do this throughout the day to care for the patient. KS, CM, CR

    10. with three ofthem adopting the rest measures of the “IHI Ventilator Bundle” (daily sedation vacation, dailyassessment of readiness for extubation, head-of-bed elevation and oral care with chlorhexidine).

      Daily sedation vacation is necessary to prevent the negative effects of long-term sedation in patients, such as VAP. These are all measures that are effective for proper care of ICU patients and can prevent other complications as well. - AC, SM

    11. Head-of-bedelevation was implemented by almost all studies

      HOB elevation is an important evidence-based finding that is proven to help the patient breathe easier, encourage lung expansion, and reduce respiratory symptoms. - AC and SM

    1. The American Academy of Pediatrics recommends children be introduced to foods other than breast milk or infant formula when they are about 6 months old. Every child is different. Here are some signs that show that an infant is ready for foods other than breast milk or infant formula: Child can sit with little or no support. Child has good head control. Child opens his or her mouth and leans forward when food is offered.

      I thought I would focus on nutrition this week because it is extremely important toward child growth and development. I selected this passage to annotate because I think it is important to know when infants can eat certain foods, especially solid foods. It is important to note that in order for infants to try new foods that they know how to sit up correctly because that way they will not choke or have a hard time swallowing. Same with the head control. I didn't realize that if food is offered the child will open his or her mouth. I found that pretty interesting because it is like they have an instinct. I believe infants are a lot smarter than we think, especially when it comes to trying new things.

    1. : the category of the head word plays an important role in determining where in the sentence the phrase can go, as well as a variety of grammatical rules such as agreement between subject and verb.

      Depending on the verb a singular or plural verb to match a collective noun depends on if these nouns are acting as a unit, use a singular verb.

    2. The constituent that we will see most is the phrase. A phrase consists of a single main word, called the head of the phrase, and other words that modify or give grammatical information about the head.

      Why do the word or Language have so many different parts?

    1. The L4-S4 roots supply the sacral plexus, which innervates all muscles below the knee as well as the muscles of the lateral and posterior thigh. The sensory supply of the sacral plexus covers the posterior thigh, and the shin, calf, and foot except for the medial shin/foot (supplied by the saphenous nerve from the lumbar plexus). The functions of the sacral plexus include (Table 17–1): ++ Motor: Superior and inferior gluteal nerves: gluteal muscles (superior gluteal nerve: gluteus medius and minimus (hip abduction); inferior gluteal nerve: gluteus maximus [hip extension]) Sciatic nerve: The sciatic nerve is composed of two component nerves that diverge at the level of the knee: the peroneal nerve and the tibial nerve. The sciatic nerve supplies the hamstring muscles, which are responsible for knee flexion (biceps femoris, semitendinosus, semimembranosus; all innervated by tibial division except the short head of the biceps femoris, discussed further below). The peroneal and tibial nerves supply all motor function below the knee, and all sensory function below the knee aside from the saphenous nerve territory (medial shin and foot). Peroneal nerve: muscles of the lateral and anterior compartment of the shin/calf (tibialis anterior, peroneus longus, and brevis: ankle dorsiflexion and eversion; extensors of the toes) Tibial nerve: muscles of the medial and posterior compartment of the shin/calf and intrinsic muscles of the foot (gastrocnemius, soleus, tibialis posterior: ankle plantar flexion and inversion; flexors of the toes) Sensation: Posterior thigh and calf: posterior femoral cutaneous nerve Anterior and lateral shin and foot: peroneal nerve Plantar surface of the foot: tibial nerve branches ++ The overlap of roots and nerves for the main clinically tested lower extremity muscles is shown in Table 17–2. Muscle names in bold also have associated reflexes. The muscles are listed across from the nerve that supplies them and under the most prominent root supply (most muscles receive root supply from 1-3 adjacent nerve roots). This chart can aid in differentiating between nerve and root lesions based on the pattern of weak muscles. ++Table Graphic Jump Location

      Here are structured notes on the given information in Markdown format:

      Motor and Sensory Innervation of the Lower Extremity by the Sacral Plexus

      What are the motor functions of the sacral plexus nerves?

      • Superior and inferior gluteal nerves:
        • Gluteal muscles
          • Superior gluteal: gluteus medius, gluteus minimus (hip abduction)
          • Inferior gluteal: gluteus maximus (hip extension)
      • Sciatic nerve:
        • Composed of tibial and peroneal nerves
        • Supplies hamstring muscles (knee flexion)
          • Tibial division supplies: biceps femoris, semitendinosus, semimembranosus
          • Except short head of biceps femoris supplied by peroneal nerve
      • Below the knee:
        • Peroneal nerve:
          • Lateral/anterior shin/calf muscles
          • Ankle dorsiflexion and eversion
          • Toe extensors
        • Tibial nerve:
          • Medial/posterior shin/calf muscles
          • Ankle plantarflexion and inversion
          • Toe flexors

      What are the sensory functions of the sacral plexus nerves?

      • Posterior thigh and calf: posterior femoral cutaneous nerve
      • Anterior and lateral shin and foot: peroneal nerve
      • Plantar foot: tibial nerve branches

      Key muscles and nerve supply:

      • See table for main clinically tested lower extremity muscles and associated nerve/root supply
      • Can help differentiate nerve vs root lesions
    1. note to self, not happy and the last inter-stampeez moment lost alot of stuff i really wanted to post

      that's not ok

      hashemesh helios sol

      mercury cortana coronatedrillinasada rcida caelus is saturn is cerestada.

      bunch of shit i didn't want to type but it sounded interesting. someone get it back

      yandex rakuten uhhh .... maricopa

      around marislavikrostartanajac-andanolawa-copa

      devon

      cadence; this is real there's a map to other worlds and a map to the bheard of terran reality; its going to be related to the set of stuff we've seen which is like sayfingh we have come from a.d. and we are literally ant like e.c. of the common era we are "supposedly at" i see ap and i see et and i see te and of the terran wherever ...

      ive seen in my head like a series of 9 planets, like a big tick tack toe board; and i think we are close to something that was surely to look like it, and its got this thing here.

      whatever we think this thing is; i think we are the hispazenolagizada is phosphereforus

      cairo africa africairoa continental constellation canecity

    1. There is no right or wrong. Nothing matters.

      I feel like I have always known about this type of ethics in the back of my head but I've never really thought about it that much. Its really crazy to me to imagine people not driven by much morals or ethics that there is no right or wrong, saying that no matter what you do or say it doesn't really impact anything.

      I also learned that Nihilism is almost the rejection of ethics and religious morals, but that doesn't mean that everyone who believes in nihilism is thinking negatively all the time. In this way of thinking nothing matters so that means that there is no pressure and you can try lots of things because it doesn't matter in the long run. But this type of belief can also be very negative, thinking that you can do nothing wrong so you just do anything not caring if it impacts others.

      Another thing about Nihilism that I found interesting when researching a little bit I found that people with depression often fall into nihilism. Also some people think that existential depression is rooted in nihilism though I do not think that everyone who is depressed is nihilistic nor is everyone who believes in nihilism depressed.

    1. As soon as Novik takes a puppet in his hands it comes to life. Every word is accompanied by a corresponding movement of arms, legs, head, and body. Such puppeteers bring their wooden actors to life so completely that not only do they convince their public that the puppets are "living people," but they half believe it themselves. One begins to understand the tales told about old Czech folk puppeteers. For example, a puppeteer was summoned to court and accused of launching political attacks from the stage of the puppet theatre. He appeared in court with Kaipirek in his hands, and announced that he was completely innocent because everything was Kaipirek's faul

    1. When we become more aware of the messages we are sending, we can monitor for nonverbal signals that are incongruent with other messages or may be perceived as such.

      My sister is so shy and she tends to aim her head to the ground to avoid eye contact. I think this makes her feel more comfortable but other people probably think she doesn't want to talk to them.

    1. I group head movements and posture together because they are often both used to acknowledge others and communicate interest or attentiveness.

      I was taught this in my avid class. The class was on how to be successful in college. My teacher taught us to sit in front, we take in more information that way, sit up straight, and nod to show that we understand to the speaker.

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Point-by-point response to reviewers, including our plans for the revision:

      ­­­Review____er #1 (Evidence, reproducibility and clarity (Required)):

      * Summary: In this manuscript by the Sanson group, Lye and colleagues try to definitively answer the question of whether pulling forces from the ventral mesoderm have significant effects on convergent extension in the Drosophila germband (germband extension). While germband extension does occur in mutant embryos lacking mesoderm invagination, it has long been an open question in the field as to whether ventral pulling forces from the mesoderm have significant effects (positive or negative) on cell intercalation during germband extension. To definitely address this question, Lye and colleagues generated high-quality, directly comparable datasets from wild-type and twist mutant embryos, and then systematically assessed nearly all aspects of cell intercalation, myosin recruitment, and tissue elongation over time. They demonstrate that pulling forces from the ventral mesoderm have negligible impacts on the course of germband extension. While there are indeed some interesting differences between wild-type and twist embryos with respect to cell intercalation and myosin recruitment, such differences are relatively minor. They conclude that the events of germband extension neither require nor are strongly affected by external forces from the mesoderm. While this is largely a negative results paper, I believe that it should be published and that it will be an impactful paper within the field. Namely, it will settle once and for all the question of whether mesoderm invagination is required for optimal germband extension in the early Drosophila embryo, and it suggests that tissues are largely autonomous developmental units that are buffered from outside mechanical inputs.*

      • * *Major comments: *

      * It seems to me that the one obvious omission from this paper is a general measure of convergent extension over time. I think it would be useful to the reader to include some measure of change in tissue aspect ratio over time between wild-type and twist embryos. This could be included in Figure 5 or 6. *

      • *

      We are happy to include a graph with what we call “tissue strain rate”, which measures the deformation of the germ-band in the direction of extension (along AP) over time, and propose to add it as a panel in Supplementary Figure 6. Note that in our measures, the “tissue” strain rate is decomposed into contributions from two cell behaviors, the “cell intercalation” strain rate and the “cell shape” strain rate (Blanchard et al., 2009). “Tissue” and “cell shape” strain rate are directly measured, and “cell intercalation” strain rate is what remains when “cell shape” strain rate is removed from “tissue” strain rate. The “cell intercalation” strain rate calculated in that way is a “continuous” measure of cell intercalation, measuring the progressive shearing of cells during convergent extension. We also use a “discrete” measure of cell intercalation, which measures the number of cell neighbor exchanges, also called T1 swaps. We found that both “continuous” and “discrete” measures of cell intercalation are unchanged in twist mutant compared to wild-type embryos (Fig. 6F and 6E, respectively). In contrast, we find that the “cell shape” strain rate is increased in twist mutants (Fig. 5B and Fig. 5S1A). Consistent with this finding, the “tissue” strain rate is also increased in twist mutants (see graph below).

      Otherwise, I have no major comments on the experimental approach or the findings of this manuscript. It seems to me a straightforward and systematic approach for determining whether mesoderm invagination affects germband extension. I do have several minor comments that should be addressed prior to publication (below).

      *Minor comments: *

      *I understand why cells would initially stretch more along the DV axis in wild-type embryos compared with twist embryos, but why do cells become so much more stretched along the AP axis (and become smaller apically) after 10 minutes of GBE in wild type compared with twist (Figure 2C and E). *

      *I think this is an interesting and non-intuitive result that would warrant a bit of explanation/conjecture. *

      This is not what Fig. 2C and E show, and we realize now that our schematics on the graphs might have been confusing. We will work on those to improve their clarity (or remove them), and also review our text.

      Figure 2C shows how cells deform along DV (cell shape strain rate projected onto the DV axis). So the graph does not show that the cells are elongating in AP, as only the DV component of the strain rate is shown in this figure. In the wild type, the DV strain rate is positive (the cells are elongating in DV) at developmental times when the mesoderm invaginate (from about -10 minutes to until 7.5 minutes). The DV strain shows an acceleration until about 5 mins, then decelerates, crossing the x-axis to become negative at 7.5 minutes. From this timepoint and until the end of GBE, the DV strain rate is negative (the cells are contracting along DV). Mirroring the positive section of the curve, the DV contraction of the cells accelerate until about 12 mins and then slows down. The strong rate of DV contraction between 7.5 and 20 mins could in part be due to the endoderm invagination pulling in the orthogonal direction (AP) and helping the cells regaining a more isotropic shape. We could add a mention about this in the discussion.

      In Figure 2E, the rate of change in cell area follows a similar time course in the wild type, showing that the cells are increasing their areas until about 10 mins (positive values) and then reduce their areas again until the end of GBE (negative values). Note that the graph does not show raw (instantaneous) cell areas as suggested by the comment, but rather a rate of change.

      So in wild type, the cells get stretched by the invaginating mesoderm, and once the mesoderm is not pulling anymore, the cells appear to relax back. As there is no stretching in twist mutants, there is no equivalent relaxation of the cells along DV. Note that in twist, there is a milder increase in cell area in the first 15 mins of GBE (Fig. 2E). This could again be caused by the pull from endoderm invagination stretching the cells along AP, which, as we have shown before, increases both cell shape strain rates along AP and cell areas (Butler et al., 2009). So the pull from endoderm invagination (along AP) will have an impact on cell area rates of change and possibly also, indirectly, on DV cell shape strain rates, in both twist and wild type embryos, during most of GBE. Therefore cell area and DV cell shape strain rates are affected by more than one process during GBE. In this paper, we are focusing on the impact of mesoderm invagination, which happens around the start of GBE, so have focused our analysis of the graphs in the results section to this period, and the differences between wildtype and *twist. *

      *I don't understand how you are defining cell orientation in Figure 2G. How are you choosing the cell axis that you are then comparing with the body axis? Is it the long axis, or something more complicated than that? I think you should briefly provide this information in the results section. If it is included in the methods, I wasn't able to locate it. *

      Yes, it is the orientation of the long axis of the cell relative to the antero-posterior embryonic axis. We will clarify this in the text, in particular in the Methods, and also try improve our schematics.

      Figure 2: Since you have the space, it might help the reader if you simply wrote out "strain rate" for panels B, D, and F, rather that used the abbreviation "SR." Thank you for this suggestion, we will reduce use of abbreviations where space permits.

      *Please ensure that all axis labels are fully visible in the final figures. In several figures, the Y-axis labels were cut off (e.g., Fig 2I, 4A, 4D, 6B, 6C). *

      These were visible to us in our submitted version, but of course we will ensure everything is visible on the final version.

      *Where space permits, I would suggest using fewer abbreviations in axis labels to increase readability of the figures (e.g., in Figures 3H or 4D). *

      Thank you for this suggestion, will do.

      * In Figure 7, I would move the wild-type panels to the left and the twist panels to the right. I think it is more conventional to describe the normal wild-type scenarios first, and then contrast the mutant state.*

      Will do.

      To be consistent with the literature, "wildtype" should be hyphenated (wild-type) when used as an adjective, or two separate words (wild type) when used as a noun. Thank you, we will change this.

      Review*er #1 (Significance (Required)): *

      * Advance: The advances in this manuscript are largely methodological, but the experiments and analyses are quite rigorous and allow the authors to make strong conclusions concerning their hypotheses. Their findings are based on a high-quality collection of movies from control and twist mutant embryos expressing a cell membrane marker and knock-in GFP-tagged myosin. Importantly, I think the researchers were correct in choosing to analyze twist single-mutant embryos (as opposed to snail or twist, snail double-mutant embryos), as the overall embryo geometry of these mutants is fairly similar to wild-type embryos, allowing the researchers to directly compare cell behaviors and myosin dynamics during germband extension. This approach also allows them to avoid indirect effects on the germband due to a completely non-internalized mesoderm. *

      *

      Audience: The primary audience for this article will be basic science researchers working in the early Drosophila embryo who are interested in the interplay between the germband and neighboring tissues. Secondary audiences will include developmental biologists more broadly who are interested in biomechanical coupling (or in this case decoupling) of neighboring tissues. *

      *

      Describe your expertise: I have been a Drosophila developmental geneticist for over twenty years, and I have been working directly on Drosophila germband extension for over a decade. I have published numerous papers and reviews in this field, and I am very familiar with the genetic backgrounds and types of experimental analyses used in this manuscript. Therefore, I believe I am highly qualified to serve as a reviewer for this manuscript.*

      ­­

      Review____er #2 (Evidence, reproducibility and clarity (Required)):

      *

      In the present manuscript, Lye et al. describe a highly detailed quantification of cell shape changes during germband extension in Drosophila melanogaster early embryo. During this process, ectodermal tissue contracts along the dorso-ventral axis, simultaneously expanding along the perpendicular antero-posterior direction, migrating from the ventral to the dorsal surface of the embryo as it extends. This important morphogenetic event is preceded by ventral furrow formation when mesodermal tissue (located in the ventral part of the embryo) contracts along the dorso-ventral axis and invaginates into the embryonic interior. The study compares cell shape dynamics in the wildtype Drosophila with that in the twist mutant, which largely lacks mesoderm and does not form ventral furrow. The major motivation of the study is to examine whether cellular behaviors and myosin recruitment in the ectoderm is cell autonomous, or if those cellular behaviors depend on mechanical interactions between mesoderm and ectoderm.*

      • The authors first examine whether transcriptional patterning of key genes involved in germband extension is different between the wildtype and the twist mutant and find no significant difference. Next, the authors thoroughly quantify cellular behaviors and patterns of myosin recruitment in the two genetic backgrounds. A number of different measures are investigated, notably the rate of change in the degree of cellular asymmetry, rate of cell area change, rate of change of cell orientation, differences in myosin recruitment to cell edges of various orientation, as well as the rates of growth, shrinkage, and re-orientation of the various cellular interfaces. It is thoroughly documented how these quantities change as a function of developmental timing and spatial position within the embryo. These data serve basis for quantitative comparison between cellular dynamics in the two genetic backgrounds considered.*

      • Overall, the study shows that cellular behaviors observed in the ectoderm are largely the same during the period of time following ventral furrow formation, as would be expected if those cellular behaviors were predominantly cell autonomous and not dependent on stresses generated in the mesoderm.*

      • The data presented in the manuscript are of excellent quality and presentation is very clear.

      Minor comments: none *

      * Reviewer #2 (Significance (Required)): *

      * I find that the study provides a thorough quantification of cell behaviors in a widely studied important model of morphogenesis. The work may be of particular interest for future model-to-data comparison, perhaps providing a basis for future modeling work. I therefore certainly think that this work warrants publication.*

      • However, the results of the study largely parallel previous findings and do not appear novel or surprising. It is well established that in snail mutant that lack mesoderm entirely, germband extension proceeds largely normally. This well-established fact suggests that since tissue dynamics in complete absence of mesoderm are largely unaffected, behaviors of individual cells are likely to not be affected either*.

      *The work is pretty much entirely observational, and for most part provides a more detailed documentation/quantification of previous findings. I do not think it is appropriate for high profile publication. *

      We are not sure which evidence the reviewer is referring to here specifically. We agree that the single mutants twist or snail, or the double twist snail mutants do extend their germ-band. However, the question we are asking here, is how well do they extend their germband and to answer this question, quantitation is needed. The first quantitation of GBE were performed by (Irvine and Wieschaus, 1994). While they quantified GBE in various mutant contexts, they did not perform quantitation for snail, twist, or twist snail mutants. Instead, they refer to these mutants once in p839, with the following sentence: Additionally, twist and snail mutant embryos, which lack mesoderm, extend their germbands almost normally (Leptin and Grunewald, 1990; Simpson, 1983)*.” *

      Following these earlier qualitative observations, various studies have quantified different aspects of GBE in mesoderm invagination mutants, with contradictory results. For example, some studies, including from our own lab, report a reduction in cell intercalation in the absence of mesoderm invagination (Butler et al., 2009; Wang et al., 2020), but there have also been reports that tissue extension and T1-transistions occur normally (Farrell et al., 2017)(see also introduction of our manuscript). These contradictory results have motivated our present study, and we have implemented rigorous comparison between wild type and mesoderm invagination mutants, being careful i) to check that the regions analyzed were comparable in terms of cell fate, and ii) to control for any confounding effects between experiments (see also response to reviewer 4, main question 2). We have also considered which mesoderm invagination mutants to use. We rejected snail or twist snail mutants because the absence of snail means that the mesodermal cells do not contract and thus stay at the surface of the embryo, which changes the spatial configuration of the embryo considerably and would make a fair quantitative comparison very difficult. Instead, we decided to use twist mutants, as in those, cell contractions still happen so the cells do not take as much space at the surface of the embryo, but the contractions are uncoordinated which means that there is no invagination (and we demonstrate here, no significant pulling on the ectoderm). We note that reviewer 1 highlights the merit of settling the question of the impact of mesoderm invagination on GBE and the pertinence of choosing twist mutants versus the alternatives (see also response to reviewer 4, suggestion 1).

      ­­

      __Review____er #3 (Evidence, reproducibility and clarity (Required)): __

      During morphogenesis, the final shape of the tissue is not only dictated by mechanical forces generated within the tissue but can also be impacted by mechanical contributions from surrounding tissues. The way and extent to which tissue deformation is influenced by tissue-extrinsic forces are not well understood. In this work, Lye et al. investigated the potential influence of Drosophila mesoderm invagination on germband extension (GBE), an epithelial convergent extension process occurring during gastrulation. Drosophila GBE is genetically controlled by the AP patterning system, which determines planar polarized enrichment of non-muscle myosin II along the DV-oriented adherens junctions. Myosin contractions drive shrinking of DV-oriented junctions into 4-way vertices, followed by formation of new, AP-oriented junctions. This process results in cell intercalation, which causes tissue convergence along the DV-axis and extension along the AP-axis. In addition, GBE is facilitated by tissue-extrinsic pulling forces produced by invagination of the posterior endoderm. Interestingly, some recent studies suggest that the invagination of the mesoderm, which occurs immediately prior to GBE, also facilitates GBE. In the proposed mechanism, invaginating mesoderm pulls on the germband tissue along the DV-axis; the resulting strain of the germband cells generates a mechanotransduction effect that promotes myosin II recruitment to the DV-oriented junctions, thereby facilitating cell intercalation. Here, the authors revisited this proposed mechanotransduction effect using quantitative live imaging approaches. By comparing the wildtype embryos with twist mutants that fail to undergo mesoderm invagination, the authors show that although the DV-oriented strain of the germband cells was greatly reduced in the absence of mesoderm pulling, this defect had a negligible impact on junctional myosin density, myosin planar polarity, the rate of junction shrinkage or the rate of cell intercalation during GBE. A mild increase in the rate of new junction extension and a slight defect in cell orientation were observed in twist mutants, but these differences did not cause obvious defects in cell intercalation. The authors conclude that myosin II-mediated cell intercalation during GBE is robust to the extrinsic mechanical forces generated by mesoderm pulling.

      • * *Overall, I found that the results described here are very interesting and of high quality. The data acquisition and analyses were elegantly performed, statistics were appropriately used, and the manuscript was clearly written. However, there are a few points where some further explanation or clarification is necessary, as detailed below: *

      • The main conclusion of the manuscript relies on appropriate quantification of myosin intensity at cell junctions. It is therefore important that the methods of quantification are well justified. Below are a few questions regarding the methods used in the analyses:*
      • -For myosin quantification, the authors state that "Background signal was subtracted by setting pixels of intensities up to 5 percentile set to zero for each timepoint" [Line826]. The rationale for selecting 5 percentile as the threshold for background should be explained. Also, how does this background value change over time? *

      • *

      For our normalization method, we stretched the intensity histogram of images to use the full dynamic range for quantification and enable meaningful comparison of intensities between different movies. The 5th percentile was chosen to set to zero intensity as this removed background signal without removing any structured Myosin signal (i.e., non-uniform, low level fluorescence - this was assessed by eye). We will provide some before and after normalization images at different timepoints to illustrate this (See reviewer 3, minor point 4 below). Since the cytoplasmic signal is uniform, it is difficult to discern from true ‘background’, therefore some cytoplasmic signal might be set to zero with this method, but all medial and junctional Myosin structures will still be visible and have none-zero intensity values. However, since cytoplasm takes up a large majority of pixels in the image, and we only set 5% of pixels to zero, the majority of the cytoplasm will have non-zero pixel values. ‘Background’ changes increases slightly as Myosin II levels increase in general over time, as expected from the embryo accumulating Myosin II as they develop.

      -The authors mention that "Intensities varied slightly between experiments due to differences in laser intensity and therefore histograms of pixel intensities were stretched" [Line828]. The method of intensity justification should be justified. For example, does this normalization result in similar cytoplasmic myosin intensity between control and twist mutant embryos?

      • *

      As stated above, we stretched the intensity histogram of images to enable meaningful comparison of intensities between different movies, as stretching the histograms would bring Myosin II structures of similar intensities into the same pixel value range. We chose to stretch histograms using a reference timepoint (30 minutes, the latest timepoint analyzed), rather than on a per timepoint basis, because we saw a general increase in Myosin II over time, and we wanted to ensure that this increase was preserved in our analysis.

      • *

      Note that we quantify Myosin from 2 µm above to 2 µm below the level of the adherens junctions (see Methods), not throughout the entire cell, and therefore we have no true measure of cytoplasmic Myosin. However, we can plot non-membrane Myosin from this same apicobasal position in the cell. Non-membrane Myosin will include both the cytoplasmic signal and the Myosin II medial web (see above). When plotting these, we find that Myosin II intensities in this pool are similar in wildtype and twist (see graph below, dotted lines show standard deviations), confirming that that we are not inappropriately brightening one set of images compared to the other (e.g., twist versus wildtype).

      Finally, our observations of rate of junction shrinkage and intercalation are consistent with our Myosin II quantification results (see Figures 4A, 4D and 6F). This further validates our methods.

      • *

      • *

      - A previous study demonstrates that the accumulation of junctional myosin is substantially reduced in twist mutant embryos compared to the wild type (Gustafson et al., 2022). In that work, junctional myosin was quantified as (I_junction - I_cytoplasm)/I_cytoplasm. In contrast, the cytoplasmic myosin intensity does not appear to be subtracted from the quantification in this study. How much of the difference in the conclusions of the two studies can be explained by this difference in myosin quantification?

              As explained above, we choose to normalize our data by stretching histograms, rather than subtracting and dividing intensities between different pools of Myosin. The setting pixels of intensities up to 5 percentiles set to zero for each will have a similar effect to subtracting a small fraction of the cytoplasmic pool. We note that the intensity measurements in (Gustafson et al., 2022) are in the apical-top 5µm of the cell, and therefore their ‘cytoplasmic’ signal is likely to also include the apical medial web of Myosin. Also, after subtraction they use division by the cytoplasmic intensity in an attempt to bring pixel intensities between different movies into a comparable range, whereas we do this by stretching the histograms themselves (see above).  We carefully designed our method to preserve the increase in Myosin levels that we see over time in our post-normalization data. This is something that their method of normalization would not be predicted to capture, if their ‘cytoplasmic’ signal increase over time as well as their junctional signal.  Indeed, in FigS6D of their paper, Myosin II levels do not appear to increase over time in these (presumably normalized) images.
      

      Additionally, we note that in (Gustafson et al., 2022), not all Myosin II is fluorescently tagged since they use a sqhGFP transgene located on the balancer chromosome. This means that the line they use will have a pool of exogeneous Myosin tagged with GFP (expressed from the CyO balancer) and a pool of endogenous Myosin (expressed from the sqh gene on the X chromosome. It is not known whether endogenous and exogeneous GFP-tagged Myosin II will be recruited equally to cell junctions when in competition with each other. Therefore, in their genetic background, the ratio of junctional/cytoplasmic sqhGFP might not reflect the true ratio. To avoid this potential caveat, in our study we have used a new knock-in of Myosin, which tags the sqh gene at the endogenous locus (Proag et al., 2019). The line is homozygous viable and thus all the molecules of Myosin II Regulatory Light Chain (encoded by sqh), and thus the Myosin II mini-filaments, are labelled with GFP.

      Additionally, we note that when comparing their images of Myosin II in wildtype and twist (Figure 5D and D’), the overall Myosin signal appears reduced in twist mutants (including in the head and posterior midgut, which is outside the area that they are claiming Myosin II is recruited in response to mesoderm invagination). This suggests that Myosin II is generally reduced in their twist mutants (or images thereof), which is not expected and might indicate issues with their methods.

      Therefore differences in the methods may explain the discrepancies between studies. Importantly, we have quantified junctional shrinkage rates and intercalation, and our analysis of these rates is consistent with our Myosin II quantification results (see above).

      -The authors used the tissue flow data to register the myosin channel and the membrane channel, which were acquired at slightly different times. The accuracy of this channel registration should be demonstrated.

      As stated in our methods: “the channel registration was corrected post-acquisition in order that information on the position of interfaces in the Gap43 channel could be used to locate them in the Myosin channel. Therefore the local flow of cell centroids between successive pairs of time frames in the Gap43 channel is used to give each interface/vertex pixel a predicted flow between frames. A fraction of this flow is applied, equal to the Myosin II to Gap43 channel time offset, divided by the frame interval. Because cells deform as well as flow, the focal cell’s cell shape strain rate is also applied, in the same fractional manner as above.”

      The images in Figure 3C and C’ show the Myosin II, with quantified membrane Myosin superimposed on the image as a color-code. Images in Figure 3B and B’ show the (normalized) Myosin II. Comparison of these images demonstrates that the channel registration is accurate. We will add a reference to these images in the methods.

      • The authors show that cell intercalation is not influenced in twist mutant embryos. However, a previous study demonstrates that the speed of GBE is substantially reduced in twist mutants (Gustafson et al., 2022). It would be interesting to see whether a similar reduction in the speed of GBE was observed in this study. *

      We do not see a reduction in the speed of GBE as reported by (Gustafson et al., 2022), we will add “tissue strain rate” graphs to demonstrate this. On the contrary, we find a slight increase in the “tissue strain rate”, because there is a slight increase in the “cell shape strain rate” contributing to extension (while “cell intercalation strain rate” is unchanged). See also response to Reviewer 1 (major comment) .

      • It has been previously shown that contractions of medioapical myosin in germband cells also contribute to cell intercalation. The authors should explain why medioapical myosin was not included in the comparison between wildtype and twist mutant embryos. *

      • *

      Indeed, it has been shown that there is a flow of medial Myosin towards the junctions (Rauzi et al., 2010). However, and as described in that paper, this flow ‘feeds’ the enrichment of Myosin II at shrinking junctions, and thus the junctional Myosin II can be taken as a readout of polarized Myosin II behavior. Additionally, medial flows are more technically challenging to quantify, especially when quantification is required in a large number of cells as is the case for our study.

      Importantly, our junctional Myosin II and junctional shrinkage rate results are consistent with each other, therefore it is very unlikely that analyzing medial Myosin II would lead us to form a different conclusion. We will add a sentence to explain why we chose to quantify junctional, and not medial, Myosin II.

      *Minor points: *

      1. * Fig. 1-S1 panel C: the number of cyan cells changes non-monotonically. It first decreases from -10 min to 10 min, then increases from 10 min to 20 min. This is confusing since in theory the number of tracked cells should not increase over time if the cells are tracked from the beginning of the movie. *
      2. *

      The cyan cells highlight tracked mesodermal and mesectodermal cells, which are not included in the analysis. The low number of mesodermal cells highlighted at 10mins germband extension is because mesodermal and mesectodermal cells are not always tracked successfully at this time. Note that the legend includes a note that ‘”Unmarked cells are poorly tracked and excluded from the analysis”. Also see Methods: “Note on number of cells in movies, for notes on changes to the number of tracked ectodermal cells throughout the timecourse of the movies.”

      • Fig. 1-S2: the vnd band in panel A appears to be much narrower than in panel B. *

      • *

      These are fixed embryos, therefore this could be (at least partially) due to slight differences in exact developmental age of the embryo. Note that we wanted to check that vnd and ind are expressed in the correct places in the ectoderm. We were motivated to check this because the width of mesoderm is reduced in twist, so we thought it was important to verify that there is not a population of ‘ectodermal’ cells with a strange fate (i.e., negative for both vnd and ind). Our experiments show that vnd abuts the mesoderm/mesectoderm in twist as in wildtype, and that the cells immediately lateral to the vnd cell population express ind as expected.

      It is possible that there is a slight difference in the number of vnd cells in twist mutants compared to wildtype, but we see no differences in Myosin II bipolarity that would coincide with the vnd/ind boundary (Fig3-S1). Therefore, this would not change the interpretation of our results. Counting the number of rows of vnd cells prior to any cell intercalation (the number of rows will reduce as cells intercalate) would be technically challenging as the lateral border of vnd expression is hard to discern at this time due to lower levels of vnd expression laterally within the vnd expression domain.

      • The schematic in Fig. 2J suggests that at the onset of mesoderm pulling the germband cells have a uniform angle of rotation (towards bottom right). Is this the case?*

      • *

      No, this schematic is purely supposed to show that as cells stretch, they also reorient. Note that we will review our schematics in Fig. 2 to increase clarity (see response to reviewer 1, first minor comment).

      • The description of myosin intensity normalization in the Methods section is somewhat difficult to follow [Line 829 - 832]. It would be helpful if the authors can show one or two images before and after intensity normalization as examples. *

      We will add some examples of before and after normalization images to this section. We will also review the Methods to improve the text’s clarity.

      • Line 704: "Z-stacks for each channel were collected sequentially" - the step size in Z-axis should be reported. *

      Thank you for this, the step size was 1µm. We will add this information.

      • Fig. 4C: what are the thin, black lines in the image? *

      This image is a 2D representation of the Gap43Cherry signal at the level of the adherens junctions extracted for tracking, not a simple confocal z-slice. When viewing these representations, you can see lines showing borders between where information from different z-stacks was used for the tracking layer. Unfortunately, our software does not allow us to remove these lines, but they do not affect tracking, quantification etc.

      Reviewer #3 (Significance (Required)):

      While most previous work on tissue mechanics and morphogenesis focuses on tissue-intrinsic mechanical input, recent studies have started to emphasize the contribution of tissue-extrinsic forces. An important challenge in understanding the function of tissue-extrinsic forces lies in the difficulties in properly comparing the wild type and the mutant samples that disrupt extrinsic forces, in particular when cell fate specification is altered in the mutants. In this work, the authors addressed this challenge by employing a number of approaches to warrant a parallel comparison between genotypes, including examining the AP- and DV-patterning of the tissue, selecting sample regions with comparable cell fate for analysis, and carefully aligning the stage of the movies. With these approaches, the authors provide compelling evidence to support their main conclusions. By teasing apart the role of the intrinsic genetic program and the extrinsic tissue forces, the work provides important clarifications on the function of mesoderm pulling in GBE and adds new insights into this well-studied tissue morphogenetic process. This work should be of interest to the broad audience of epithelial morphogenesis, tissue mechanics and myosin mechanobiology.

      • *

      Review____er #4 (Evidence, reproducibility and clarity (Required)):

      *Lye and colleagues investigate the impact of tissue-tissue interactions on morphogenesis. Specifically, they ask how disrupting mesoderm internalization affects convergence and extension of the ectoderm (germband) in Drosophila embryos. Using twi mutants in which mesoderm invagination fails, the authors find that the invagination of the mesoderm deforms germband cells, but does not significantly contribute to patterning, cell alignment, myosin polarization and cell-cell contact disassembly (which drive germband convergence). The authors find modest effects of mesoderm invagination on new junction formation and orientation (which drive extension), but these changes do not have a significant effect on germband elongation. The authors conclude that germband extension is robust to external forces from the invagination of the mesoderm. *

      *MAIN 1. The authors clearly show that myosin density is not different in wild-type and twi mutant embryos, and subsequently argue that the pulling force from the mesoderm does not elicit a mechanosensitive response in early germband extension. But if the cell density is constant, doesn't that mean that the longer, DV-oriented interfaces in the wild type accumulate more total myosin than their shorter counterparts in twi mutants? Assuming that the total number of myosin molecules per cell is not greater in the wild type, wouldn't increased total myosin at the membrane suggest a response to the increased deformation? Certainly the cells are able to maintain the same cell density despite the pulling force from the mesoderm, so can the authors rule out a mechanosensing mechanism? *

      • *

      We do not rule out a mechanosensing mechanism. We agree the total Myosin at stretched interfaces is higher than at unstretched interfaces and proposed a homeostatic mechanism to maintain Myosin II density on the cortex upon rapid stretching (summarized in Fig. 7). Indeed it is possible that this mechanism could itself be due to mechanosensitive recruitment of Myosin II (though there are also other possibilities). We have tried to address this in our discussion (under “Mechanisms regulating Myosin II density at the cortex and consequences for cell intercalation” and “Restoration of DV cell length after being stretched by mesoderm invagination”), but we will amend the wording the make the possibility of mechanosensitive recruitment of Myosin II to maintain cortical density more explicit.

      *What happens to the Gap43mCherry signal? From Figure 2A, it seem to be diluted ventrally in the wild type as compared to twi mutants? Comparing myosin and Gap43 dynamics may shed light on whether myosin accumulates more or less than one would expect simply on the basis of having longer contacts. *

      We quantify the density of Myosin, rather than the total amount. Therefore, the length of the contact should not matter. The suggestion of comparing Myosin density to Gap43Cherry density is in principle a good one, as it would allow us to compare a protein which is not diluted as cell contact length increases (Myosin) to one which appears to be (Gap43). However, it is not essential for the conclusions that we make. However, in practice quantifying the Gap43Cherry signal would not be straightforward on our existing movies due to the imaging parameters used. We capture the Gap43Cherry channel (but not the Myosin channel) with a ‘spot noise reducer’ tuned on in the camera software, due to very occasional bright spot noise, which confuses the tracking software. Therefore, our Gap43Cherry signal is manipulated during acquisition and to quantify from these images would not be appropriate. Therefore, we would have to acquire, track and quantify some new movies, which is not possible within the timeframe of a revision.

      In summary, we think that we have sufficient evidence from our analysis that Myosin II is not diluted upon junctional stretching without comparing to quantification of Gap43Cherry, and the time investment required to quantify the Gap43Cherry would not be worthwhile as it would require more data to be acquired and processed.

      • The authors previously argued that mesoderm invagination was required for the fast phase of cell intercalation [Butler et al., 2009]. However, here the authors interpret that loss of twi does not significantly slow down interface contraction, but accelerates the elongation of junctions and cells along the AP axis, which overall would mean that mesoderm invagination is (slightly) detrimental for axis elongation. The discrepancy between their previous and current results should be discussed. *

      We are happy to add more information about these discrepancies in the discussion. In a nutshell, we think that these discrepancies arise from the challenges of comparing wildtype and twist mutant embryos relative to each other, and as a consequence we have made various improvements to our methods since (Butler et al., 2009). These improvements included using markers that would be expressed at the same levels in wildtype and twist embryos. Additionally, we did not use overexpressed cadherin-FPs (namely, the ubi-CadGFP transgene), which may have confounding effects, and we used a knock-in sqhGFP to ensure we could all Myosin II molecules were labelled by GFP. We also carefully controlled the temperature at which we acquired the movies, standardized the level at which to track cells and quantify Myosin between movies, as well as improving the accuracy of our image segmentation and cell type identification since our previous study (Butler et al., 2009). See also response to reviewer 2.

      • Related to the previous point, it is surprising that the differences shown in Figure 4A-B are not significant. This is particularly troubling when in Figure 5B the authors claim a significant difference in cell elongation rate, which is higher in twi mutants (but only in very short time intervals and actually switches sign at the end of germband extension). These are just two examples, but I think the analysis of significance on a per-time point basis is problematic. *

      *Have the authors considered analyzing their results as time series rather than comparing individual time points? Or perhaps integrating the different metrics over the duration of germband extension (e.g. using areas under the curve)? That way they would not have to arbitrarily decide if significant differences in a few time points should or not be interpreted as significant overall differences. *

      • *

      For graphs plotted against time of germband extension, we do not think it is appropriate to analyze as a time series rather than comparing individual time points, since different developmental events (such as mesoderm invagination) occur at different times. For graphs plotted against time to/from cell neighbor swap, these can also change over time (e.g., ctrd-ctrd orientation, Fig6D). Therefore we do not feel that it appropriate to run statistical analyses as a timeseries for these comparisons either. Statistically cut-offs are by their nature arbitrary. We have tried to highlight non-significant trends throughout the text (including for Fig4A&B), in addition to stating where we see significant differences to highlight where there may be minor (but not significant) differences.


      • While the number of cells analyzed is impressive, the number of embryos is relatively low, particularly for the wild type (only four embryos analyzed). If I understood correctly (if not, please clarify) the authors ran their statistics using cells and not embryos as their measurement unit. But I could not find any evidence that cells from the same embryo can be considered as independent measurements. This could be easily done by demonstrating that the variance of any of the measurements (e.g. elongation, area change rate, etc.) for cells in an embryo is comparable to that calculated when mixing cells from different embryos. *

      • *

      We do not simply use the number of cells as an n for our experiments. We use a mixed effects model for our statistics as previously (Butler et al., 2009; Finegan et al., 2019; Lye et al., 2015; Sharrock et al., 2022; Tetley et al., 2016). This estimates the P value associated with a fixed effect of differences between genotypes, allowing for random effects contributed by differences between embryos within a given genotype. We will make sure that this is clear in the Methods.

      MINOR 1. Figure 4D: the authors show no difference in the proportion of neighbor swaps per minute between wild-type and twi- mutant embryos. But how about the absolute number of neighbour swaps per minute? Does that change in twi mutants (and if so, why?).

      The number of interfaces involved in a T1 swap are expressed as a proportion of the total number of DV-oriented interfaces for all tracked ectodermal germband cells, to take account of differences in the number of tracked cells between different timepoints and different movies. Presenting the absolute number of swaps per minute could lead to misleading interpretations.

      • I was a bit confused about the reason why in Figure 4A the authors measure the rate of interface contraction in units of “proportion/min”, but in Figure 5A they measure interface elongation in units of “um/min”. Unless there is a good reason not to, these two metrics should be reported using the same units. Is there a difference in the rate of interface contraction when measured in absolute units (um/min)? *

      Thank you, we will amend so that both measures are expressed in the same units.

      • The discussion of previous work on cell deformation within the mesoderm (page 16, first paragraph) should probably include recent work from Adam Martin's lab (e.g. [Heer et al., 2017]; or [Denk-Lobnig et al., 2021]). *

      Thank you, and apologies for this oversight, we will add these references__.__

      SUGGESTIONS 1. While I appreciate the arguments that the authors provide to use twi mutants rather than sna mutants or twi sna double mutants, as the authors indicate, in twi mutants there is still contractility in the mesoderm (albeit not ratcheted). Therefore, it is possible that contractile pulses from the mesoderm in twi mutants could still facilitate cell alignment and polarization of myosin in the germband. Given the previous results from the Zallen lab using twi sna double mutants (see above) this is unlikely to be the case, but the findings in this manuscript would be significantly stronger if they included similar analysis in the double mutants.

      We had concerns about using sna or twi sna double mutants due to the large amount of space the un-internalized mesoderm takes up on the exterior of the embryo. This concern is also shared by reviewer 1 “Importantly, I think the researchers were correct in choosing to analyze twist single-mutant embryos (as opposed to snail or twist, snail double-mutant embryos), as the overall embryo geometry of these mutants is fairly similar to wild-type embryos, allowing the researchers to directly compare cell behaviors and myosin dynamics during germband extension. This approach also allows them to avoid indirect effects on the germband due to a completely non-internalized mesoderm.” * In addition to this concern, imaging of snail or twist snail* embryos by confocal imaging to include the ventral midline (which is required to define embryonic axes) is problematic as the un-constricted mesodermal cells occupy virtually all the field of view, leaving very few ectodermal cells to analyze.

      Whilst we acknowledge that there are some (un-ratcheted) contractions of mesodermal cells in twist mutants, we have clearly shown that there is no DV stretch and very little reorientation of cells. Therefore, any residual contractile activity in the mesodermal cells of twist mutants does not appear to have a mechanical impact on the ectoderm. We cannot exclude the possibility that there is some transmission of forces between contracting cells of the mesoderm and the ectoderm in twist mutants. However, our evidence suggests that the large tissue scale force that transmits to the ectoderm from the invaginating mesoderm is missing in twist mutants, and it was the effects of that force that we wished to investigate (See also response to reviewer 2).

      Review*er #4 (Significance (Required)): *

      *This is an interesting study, with careful quantitative analysis of cellular and subcellular dynamics. The results follow previous findings from Jennifer Zallen and the authors themselves. The Zallen lab showed that cell alignment, myosin polarization and germband extension are normal in sna twi mutants [Fernandez-Gonzalez et al., 2009], a result that the authors fail to cite. The results in the present manuscript are similar, but the analysis is much more in depth here, so the findings by Lye and colleagues certainly warrant publication. *

      We did not specifically cite this result from (Fernandez-Gonzalez et al., 2009), because the subject of their study is the formation of multicellular rosettes, not whether a pull from mesoderm affects Myosin II polarity and cell intercalation. The formation of multicellular rosettes occurs later in germband extension, and therefore these results are not directly relevant to our study. Additionally, their measures of alignment are defined as linkage to other approximately DV oriented interfaces, rather than directly measuring orientation compared to the embryonic axes as we do here, as a different question is being addressed. Specifically, the quoted sna twi experiment is interpreted as extrinsic forces from the mesoderm not being required for linkage of Myosin enriched DV-oriented interfaces together. Myosin II quantification is more rudimentary with edges being assigned as Myosin positive or Myosin negative, as opposed to quantifying the density of Myosin on each interface and we cannot see any comparison of Myosin II quantification between wildtype and twist embryos.­

      So, although the results are consistent with each other, they are not directly comparable due to methods used and we are happy that the reviewer acknowledges that our analysis is more in depth, which was necessary to address the specific questions that we investigate in our study.

              In general, there have been inconsistencies in results between previous studies, leading reviewer one to recognize that *“…it should be published and that it will be an impactful paper within the field. Namely, it will settle once and for all the question of whether mesoderm invagination is required for optimal germband extension in the early Drosophila embryo.”  *The high amount of conflicting information in the literature led us to not exhaustively describe individual findings, but we will ensure the results from the Zallen lab are appropriately cited.
      

      However, there are a number of experimental points that I think need to be addressed to solidify the manuscript, particularly in terms of statistical analysis.

      Please see more details above (main points 3 and 4) regarding specific concerns about experimental points and statistics. Additionally, we note that reviewer 3 states “statistics were appropriately used”, and our statistical methods are the same as we have used in previous studies comparing live imaging data (Butler et al., 2009; Finegan et al., 2019; Lye et al., 2015; Sharrock et al., 2022; Tetley et al., 2016).

      • *

      __REFERENCES

      __

      Blanchard, G. B., Kabla, A. J., Schultz, N. L., Butler, L. C., Sanson, B., Gorfinkiel, N., Mahadevan, L. and Adams, R. J. (2009). Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nat Methods 6, 458-464.

      Butler, L. C., Blanchard, G. B., Kabla, A. J., Lawrence, N. J., Welchman, D. P., Mahadevan, L., Adams, R. J. and Sanson, B. (2009). Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension. Nat Cell Biol 11, 859-864.

      Farrell, D. L., Weitz, O., Magnasco, M. O. and Zallen, J. A. (2017). SEGGA: a toolset for rapid automated analysis of epithelial cell polarity and dynamics. Development 144, 1725-1734.

      Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J. C., Eaton, S. and Zallen, J. A. (2009). Myosin II dynamics are regulated by tension in intercalating cells. Dev Cell 17, 736-743.

      Finegan, T. M., Hervieux, N., Nestor-Bergmann, A., Fletcher, A. G., Blanchard, G. B. and Sanson, B. (2019). The tricellular vertex-specific adhesion molecule Sidekick facilitates polarised cell intercalation during Drosophila axis extension. PLoS Biol 17, e3000522.

      Gustafson, H. J., Claussen, N., De Renzis, S. and Streichan, S. J. (2022). Patterned mechanical feedback establishes a global myosin gradient. Nat Commun 13, 7050.

      Irvine, K. D. and Wieschaus, E. (1994). Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120, 827-841.

      Leptin, M. and Grunewald, B. (1990). Cell shape changes during gastrulation in Drosophila. Development 110, 73-84.

      Lye, C. M., Blanchard, G. B., Naylor, H. W., Muresan, L., Huisken, J., Adams, R. J. and Sanson, B. (2015). Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila. PLoS Biol 13, e1002292.

      Proag, A., Monier, B. and Suzanne, M. (2019). Physical and functional cell-matrix uncoupling in a developing tissue under tension. Development 146.

      Rauzi, M., Lenne, P. F. and Lecuit, T. (2010). Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468, 1110-1114.

      Sharrock, T. E., Evans, J., Blanchard, G. B. and Sanson, B. (2022). Different temporal requirements for tartan and wingless in the formation of contractile interfaces at compartmental boundaries. Development 149.

      Simpson, P. (1983). Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics 105, 615-632.

      Tetley, R. J., Blanchard, G. B., Fletcher, A. G., Adams, R. J. and Sanson, B. (2016). Unipolar distributions of junctional Myosin II identify cell stripe boundaries that drive cell intercalation throughout Drosophila axis extension. Elife 5.

      Wang, X., Merkel, M., Sutter, L. B., Erdemci-Tandogan, G., Manning, M. L. and Kasza, K. E. (2020). Anisotropy links cell shapes to tissue flow during convergent extension. Proc Natl Acad Sci U S A 117, 13541-13551.

    1. In observational studies of infants and young children and lesioned animals (decerebration experiments), righting and equilibrium reactions comprise the postural reflex mechanism. Automatic righting reactions (RR) orient the head in space (optical RR, labyrinthine RR, body-on-head RR) and the body in relation to the head and support surface (neck-on-body RR, body-on-body RR). Equilibrium reactions include tilting reactions and parachute or protective reactions. In normal adults, however, postural adjustments are far more complex and demonstrate a high degree of adaptability in response to both task and environmental context demands. Postural adjustments vary from the simple stretch reflex responses to the activation of specific movement strategies (synergistic patterns). Muscles closest to the BOS are particularly important to the maintenance of balance. As the LOS is reached with a COM disturbance, the magnitude of the postural response is increased

      Slide 22 in PPT

    1. Anna: When you think of home right now, what does that make you think of? Norma: Three things: My childhood, that was home. Where | am now, that's home. Wherever we get together, we create home, even if it's virtually on the Zoom. My sisters and |, we share what's going on with our lives, we share jokes, what's the latest movie or the latest book or x whatever you want to share. And that creates home.

      Norma say's that the bonding and the connection between her sister and her is what creates a home and I agree with that. You can have a place to live but not everyone will consider it a home. For me, my home is my family and if they didn’t live with me I don’t think I’d consider calling it a home. It’ll just be a roof over my head.

    1. nd reverberated by the angry echoes. If ever I should wish for a retreat whither I might steal from the world and its distractions, and dream quietly away the remnant of a troubled life, I know of none more promising than this little valley

      The valley he was hunting in was especially quiet , it’s a good place to clear his head.

    1. User Encoder

      The User Encoder uses a multi-head attention layer and an attention pooling layer to learn a user representation from the obtained news embeddings of the user's reading history.

    2. INTRODUCTION

      News Recommendation (NR) is the process of recommending news articles to users by optimizing the accuracy of predicting their relevancy. This type of recommendation is challenging due to its dynamic nature: timeliness, novelty, rapidly change the relevancy of news articles. Content-based recommendations employing NLP and ML methods to extract user interests have proven effective here. They typically use previously read news article data to locate new articles to recommend.

      Deep learning approaches have gained popularity due to their ability to deal with unstructured text like news content and titles. Research on modeling user preferences and graph-based methods have both seen increases in popularity as well.

      These methods mainly focus on individual users and lack a global context. Implementing data from other users can uncover more implicit hidden user behaviors, ash shown in Figure 1. The real challenge is how to properly incorporate this global context into the recommendation system.

      They proposed GLORY, or Global-LOcal news Recommendation sYstem, to address these issues. It incorporates historical news interaction data for more in depth relational information than that of solely semantic relationships via a global-aware historic news encoder (providing global perspectives via global news graphs). Likewise, it uses a global-aware candidate news news encoder to help address data sparsity issues, using a global entity graph to provide better associations for candidate news. (Candidate news refers to a set of news articles or items that can be recommended to a user).

      They then talked about using "the multi-head self-attention mechanism to extract user interests from historical news." I had to break this down to understand. Multi-head self-attention mechanism is a technique used in deep learning models, particularly in the Transformer architecture, to capture complex relationships within a sequence of data. It works by allowing the model to weigh and attend to different parts of the input sequence, capturing dependencies and interactions between different elements. The authors use this to analyze the historical news articles that a user has interacted with or read. By doing so, they can identify patterns and relationships in the user's reading habits, thereby extracting their interests.

      From all of this they calculated a matching score from a combination of user and candidate news vectors.

    1. Despite the lack of structural changes seen on standard neuroimaging, advances in neuroimaging techniques have helped to identify short and long-term region-specific morphologic changes.

      The article has previously stated that human research on the brain post concussion and other head injuries is limited. However, advancements in neuroimaging have helped identify structural changes following injury. I wonder as these advancements become more readily available to the public if the way we prevent, diagnose, and treat concussions will evolve?

    1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02111

      Corresponding author(s): Moira O’Bryan

      1. General Statements

      We thank the Review Commons editor and the three reviewers for their overall positive responses in assessing this manuscript. Further, we appreciate and would like to reiterate the similarities across our three reviewers’ comments regarding the significance of this work, where our examination of epsilon tubulin (TUBE1) during mammalian spermatogenesis will be valuable for both microtubule/cytoskeletal and developmental/ reproductive fields. Below, we have made point-by-point responses to the reviewers’ comments, and outlined by the revisions we plan to make, or have made. All line numbers refer to the transferred manuscript file with tracked changes.

      2. Description of the planned revisions

      Reviewer 1:* The authors claim that because the TUBE1 knockout mouse have abnormal centrosome numbers during meiosis, there is a role for TUBE1 in suppressing supernumerary centriole formation. While this is one possibility, it's also possible that abnormal centrosome numbers arose as a result of cell division defects, especially because binucleate cells are present in mutants. The authors should edit the text to state that abnormal centrosome numbers may arise from either supernumerary centriole formation (by the templated or de novo pathways) or from failure to complete cell division. *

      *OPTIONAL: to test these possibilities, the authors may choose to 1) count the number of centrioles in meiosis with two different centriole markers 2) stain for markers of mature centrioles, such as Cep164, to determine the number of parental centrioles. *

      Response: This is a good point. Published data indicates that the Stra8-cre is active within a subset of undifferentiated spermatogonia, and in differentiated spermatogonia through to pre-leptotene spermatocytes (Sadate-Ngatchou et al., 2008). This raises the possibility that the increase in centriole numbers could be due to a failure to complete cell division if cre is active in mitotically active spermatogonia populations. The text has been appropriately modified in lines 207-209 and 352 to reflect these insights. We appreciate the Reviewer’s optional suggestion to perform additional immunolabeling experiments and intend to examine the number of parental centrioles in spermatocytes during meiotic division using a marker of the distal or subdistal appendages. This data will be included in the final revised document.

      Reviewer 2:* Considering the suggested non-canonical function of Epsilon tubulin outside the centriole in mice sperm, it is critical to know the localization of the protein in spermatocytes during meiosis and spermatids during differentiation. *

      Response: We agree with Reviewer 2 that determining the localization of TUBE1 in spermatocytes and spermatids would be desirable. However, we are yet to find an appropriate available antibody for this. We have previously assessed the specificity of a TUBE1 antibody (PA5-56917, Invitrogen), however, this antibody was not suitable for use in our mouse model. This aside, we have recently acquired a new TUBE1 antibody which we plan to evaluate its specificity during this revision period. If it appears to bind specifically to TUBE1, we will perform the requested localization experiments.

      For clarification we have previously defined the location of TUBE1 in spermatids to the manchette and basal body in elongating spermatids (lines 72-74) (Dunleavy et al., 2017). Unfortunately, the antibody used in this study is now discontinued. The phenotypes observed as a consequence of TUBE1 loss of function in this study are, however, consistent with these patterns of localization.

      Reviewer 2:* Localization of Epsilon tubulin is needed to distinguish between mutant sperm cells and those that are not Epsilon tubulin mutants in the Tube1GCKO/GCKO mice. E.g., are the 28.07% of Tube1GCKO/GCKO tubules that showed a Sertoli cell only (SCO) phenotype the one where all the cells are mutants? *

      Response: As per our response to Reviewer 2’s comment above, we plan to test a new TUBE1 antibody to determine TUBE1 localization in this model. Outlined in our response to Reviewer 2 below, we also plan to sequence DNA from mature epididymal sperm from our mutant mice to further confirm the deletion of Tube1 exon 3.

      Reviewer 2:* The generated conditional germ cell-specific mutants are demonstrated by mRNA expression spermatocytes. It would help if DNA sequencing, western, and Immunohistochemical staining were used to show the gene and protein are affected. *

      Response: We thank Reviewer 2 for their suggestions. Should we successfully validate an appropriate TUBE1 antibody for use in our model, we will perform immunohistochemical staining during the revision process. Our qPCR results from purified spermatocytes however, strongly suggest that the Tube1 gene is deleted in our model, noting that such purifications are on average 81% pure with the major contaminants being Sertoli cells and spermatids (Dunleavy et al., 2019). To further confirm the deletion of Tube1 exon 3, we plan to sequence DNA from mature epididymal sperm from our mutant mice.

      Reviewer 2:* "Suggesting a core TUBE1 function that can be supplemented by either z-tubulin or TUBD1." Can you test what happens to mice Z and D tubulin isoforms in the mutant? Did their level increase in the centrioles? This is informative since there is no clear centriolar phenotype (other than centriole number that may be due to cell division failure) in mice spermatogenesis and the paper's central hypothesis in the introduction. *

      Response: We appreciate this question by Reviewer 2. Zeta tubulin is not present in the mouse genome as outlined in our introduction (lines 38-39). We do acknowledge that exploring Tubd1 will be informative in our mutant and thereby plan to examine its expression in round spermatids.

      Reviewer 2: The authors looked at the Metaphase stage cells to assess meiosis. It would be more interesting to look at the meiosis prophase I. Since the Stra8 acts very early leptotene stage, it would be interesting to see if meiosis is defective from the very beginning. Also, some suggest that the manchette is nucleated at the pachytene stage. Is the manchette defective from the very early stage of nucleation?

      Response: We thank Reviewer 2 for this suggestion. To this end, we plan to examine juvenile mouse testes at days 10 and 17 post-partum where leptotene and pachytene spermatocytes are the most mature germ cells respectively.

      In regard to the Reviewer’s comment of the manchette being nucleated in pachytene stage spermatocytes, we acknowledge that the precise mechanism of manchette nucleation has not been confirmed. We are aware of the alternative hypothesis introduced by Moreno and Schatten (2000), which postulates manchette microtubules may be nucleated prior to pachytene period, through their examination of bovine male germ cells. This hasn’t, however, been supported by evidence and with more recent data, others have suggested that the manchette is nucleated at the centrosomal adjunct (Lehti and Sironen, 2016). Indeed, our unpublished data suggests this is the case (another study). Regardless, the origin of the microtubule seeds that ultimately extend to form the manchette is not relevant to the hypothesis we have proposed. As we note that in our manuscript and mouse model, manchettes appear to assemble normally in step 8 spermatids. Rather, their movement and disassembly is abnormal i.e. TUBE1 serves critical roles more manchette movement and disassembly rather than manchette formation.

      Reviewer 2:* Is the acetylation of manchette microtubules affected in the absence of TUBE1? *

      Response: Reviewer 2 raises an interesting question, which we plan to answer through immunolabeling of testis sections for acetylated tubulin in our control and mutant groups.

      Reviewer 3: *Minor points, a substantial percentage of sperm produced had a normal head shape in the KO (Figure 1I), which undermine the function of tube1 in nuclear shaping, the author should address this point in their manuscript. It is also curious whether there are phenotype in other tissues, can the authors comment on that? *

      Response: We thank Reviewer 3 for highlighting this point. As reported in Fig. 1I, 28.5% of sperm from Tube1GCKO/GCKO epididymides have abnormal nuclear shape. This is a 4.4-fold increase over that seen in wild type sperm. These data clearly highlight the role of TUBE1 in defining nuclear morphology. Variations between cells does not undermine this conclusion. It appears that prior to sperm release from the testis, the majority of TUBE1 null spermatids heads are abnormally shaped. However, in the epididymis there appears to be an increase in the proportion of normally shaped heads. We thus hypothesize that the high rates of spermiation failure in the TUBE1 null mice reflect the preferential removal of abnormally shaped sperm by Sertoli cells, thus enriching for normally shaped heads that are released. During the revision process, we will quantify the percentage of spermatids with normal versus abnormally shaped heads prior to spermiation in testis sections. All Tube1 null mice were sterile.

      To Reviewer 3’s second point - we have not examined other tissues in this conditional male germ cell knockout mouse model, as the cre used in this manuscript is only expressed in the testis (Sadate-Ngatchou et al., 2008). Consistent with the specificity of the deletion, null male mice are overtly healthy, with the exception of male fertility, and exhibit normal body weight as detailed on line 123 and in Fig S1D.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer 1:* In figure 5, based on quantification of fluorescence intensity, the authors conclude that loss of epsilon-tubulin results in an increase in the levels of KATNAL1, KATNAL2, and KATNB1. Given the inherent variability in immunofluorescence staining, the authors should at a minimum normalize their intensity measurements to those of an unrelated control protein stained in the same cell (ex: alpha-tubulin). It would be more convincing to quantify the levels of these proteins by Western blot (again, normalized to a control protein or to total cellular protein), which should be feasible given that the authors can isolate elongating spermatids. *

      Response: We thank Reviewer 1 for this suggestion to better account for any potential variability between immunofluorescence staining in cells. In this instance, alpha-tubulin would be a related protein in our model, making it unsuitable for normalization - the longer manchette phenotypes in our mutant spermatids indicate more tubulin present in mutant cells. We have therefore normalized the fluorescence intensity in our cells to DNA content (DAPI staining). This has provided comparable results to our initial analysis, and we have edited our text accordingly at lines 303, 307-310, 563-564, 845, 850 and Fig. 5. We respectfully disagree that western blotting would be informative, as the point is that katanin proteins are accumulating abnormally on the elongating sperm manchette. This does not necessarily mean that overall katanin levels will be increased. This aside, given the low numbers of elongating spermatids in the Tube1GCKO/GCKO mice, obtaining sufficient materials of western blotting is prohibitive. With the severity of germ cell loss indicated by our daily sperm production calculations, we predict the isolated spermatids of up to 5 Tube1GCKO/GCKO animals would be required to make up one biological replicate. It would not be feasible to collect the large number of animals required for at least three biological replicates in the revision timeframe.

      Reviewer 1:* A major claim of the paper is that epsilon-tubulin plays a different role within mammalian germ cells (abstract, line 22; p9, lines 167-168; p15 lines 315-316), because the Tube1GCKO/GCKO mice can form some sperm with relatively normal ciliary ultrastructure, whereas ciliates lacking epsilon-tubulin fail to form cilia. However, it's unclear whether the centrioles that templated these normal cilia were formed before or after epsilon-tubulin loss. Given that centrioles are inherited from one generation to the next, it's possible that the few normal cilia may be templated by relatively normal parental centrioles. These parental centrioles would have been present in spermatogonia prior to Cre expression/epsilon-tubulin deletion, and inherited by a fraction of sperm after the mitotic and meiotic divisions, resulting in sperm with normal ciliary ultrastructure. Other spermatocytes may have inherited centrioles formed in the absence of epsilon-tubulin, resulting in aberrant centrioles similar to those reported in human somatic cells, but these would not form any sperm flagella due to a loss of cell viability, as has been reported for acentriolar cells in a p53+ background. Underscoring this point, Chlamydomonas and human somatic mutant cells constitutively lack epsilon-tubulin. In these systems, the parental centrioles were diluted from the population over many cell divisions, and phenotypic analysis would only include the centrioles that formed in the absence of epsilon-tubulin. To make their major claim, the authors need to demonstrate that the basal bodies of sperm flagella with normal ultrastructure were formed in the absence of epsilon-tubulin, and were not normal parental centrioles. Given the difficulty of this experiment, the authors may instead choose to remove their claim that epsilon-tubulin plays a different role within mammalian germ cells. *

      Response: The authors thank Reviewer 1 for their detailed input regarding TUBE1’s centriolar importance across species. From their feedback, we recognize the need to modulate our interpretation of this result. We have also added a line to our manuscript highlighting that the normal axonemal structure observed may be due to the inheritance of normal centrioles (lines 328-329). We note however, that sperm produced within the null animals were immotile and that motility could not be recovered by the addition of exogenous ATP thus revealing that TUBE1 is required to form functional sperm tails.

      Reviewer 2:* It will help if the introduction summarizes the knowledge on Epsilon tubulin in spermatogenesis with emesis on its localization and the method used to find the localization. *

      Response: We have modified the introduction accordingly in lines 72-73.

      Reviewer 2:* How many independent mutant animals were studied, and what was the elfishness of generating mutants with a complete mutant testis? From Fig s1c, it appears all mutants generated were total mutations in almost all cells - is this correct? *

      Response: We have updated the number of animals studied as per the comment below. Regarding the mutant status of our mouse model, we used Stra8-Cre which is active between early (postnatal day 3) spermatogonia to pre-leptotene spermatocytes (Sadate-Ngatchou et al., 2008) thus all spermatocytes, spermatids, and sperm will carry the deletion. As shown in Fig. S1C we measured a 90.1% reduction in Tube1 mRNA expression from purified spermatocytes. As mentioned above, we note that the purified germ cells always contain a low percentage of contaminating cells. Using our optimized Staput method we obtain isolated germ cell populations of high purity, where in spermatocyte populations we calculate 19% contamination with other testicular cell types (e.g. somatic Sertoli/interstitial cells, spermatogonia, spermatids) (Dunleavy et al., 2019). We therefore believe the 9.9% Tube1 mRNA expression detected in our Tube1GCKO/GCKO group are the origin of that residual mRNA. We have included this information in the materials and methods section (lines 491-493).

      Reviewer 2:* Add a definition to "ZED-tubulins." *

      Response: A definition to the ZED-tubulins can be found on line 32.

      Reviewer 2:* From the paper, it is unclear if Epsilon tubulin is dispensable for centriole function only in sperm cells or if the same is true in mice somatic cells in vivo. *

      Response: In this study we have used a conditional male germ cell knockout mouse model to examine TUBE1’s function specifically in male germ cells. As mentioned in our introduction, the function of TUBE1 has not been examined in murine somatic cells in vivo (lines 68-70). To avoid confusion, we have reiterated this point in lines 356-358 of our discussion.

      Reviewer 2:* Fig. S1 and other figures: "n {greater than or equal to} 3 samples/genotype" - this is unclear - please indicate the number of independent animals tested. *

      Response: We have modified the figure legends accordingly in lines 11-13 and 33-35 of the transferred supplementary information file and lines 787-788 and 810-811 of the transferred manuscript file.

      Reviewer 2:* "suppressing supernumerary centriole formation" is this due to access centriole formation or failed mitosis? *

      Response: We acknowledge Reviewer 2’s comment is similar to the comment made by Reviewer 1 above and note we have modified the associated text in lines 207-209 in response to the above comment.

      Reviewer 2:* The KATNAL1, KATNAL2, and KATNB1 staining in Fig 5 show multiple foci in the nucleus. Are these foci-specific staining or nonspecific? It is surprising to see such a large complex. *

      Response: As outlined in the materials and methods and the Fig. 5 legend, Fig. 5 displays three-dimensional (3D) z-stack images of whole elongating spermatids presented as 2D maximum intensity projections. The katanin subunit staining is around the nucleus rather than inside of it, however the flattening of the image from 3D to 2D make the foci appear inside the nucleus. To clarify this, we have modified the Fig. 5 legend in lines 845 and 848.

      Reviewer 2:* How the staging of spermatids was performed needs to be explained in the method. *

      Response: We have included additional explanation the materials and methods section (lines 513-514).

      Reviewer 3: The experimental part is of the highest quality and the manuscript is very well written. My only reservation with the manuscript is concerning the model proposed for manchette migration in the Discussion section (Figure 6). I find the proposed model highly speculative and pre-mature, not supported enough by data, as even admitted by the authors (lines 415-427). Having it as a figure and concluding remark gives it too match weight, my suggestion would be to remove figure 6 and tone down the discussion.

      Response: The authors thank Reviewer 3 for their complimentary overview of our manuscript. We agree that some unanswered questions remain in our proposed model of manchette migration. This study has however, added several critical missing pieces. With respect, we prefer to keep Figure 6 in the manuscript as explaining manchette function to non-experts is very difficult without a visual aide. To ensure transparency with the audience that our model is indeed hypothetical, we have edited our discussion and Figure 6 legend to reflect this (lines 406, 417, 428, 435, 463, 860, 863, 869).

      4. Description of analyses that authors prefer not to carry out

      None

      References

      DUNLEAVY, J. E., GRAFFEO, M., WOZNIAK, K., O’CONNOR, A. E., MERRINER, D. J., NGUYEN, J., SCHITTENHELM, R. B., HOUSTON, B. J. & O’BRYAN, M. K. 2022. Male mammalian meiosis and spermiogenesis is critically dependent on the shared functions of the katanins KATNA1 and KATNAL1. bioRxiv, 2022.11.11.516072.

      DUNLEAVY, J. E. M., O’CONNOR, A. E. & O’BRYAN, M. K. 2019. An optimised STAPUT method for the purification of mouse spermatocyte and spermatid populations. Molecular Human Reproduction.

      DUNLEAVY, J. E. M., OKUDA, H., O’CONNOR, A. E., MERRINER, D. J., O’DONNELL, L., JAMSAI, D., BERGMANN, M. & O’BRYAN, M. K. 2017. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLOS Genetics, 13.

      LEHTI, M. S. & SIRONEN, A. 2016. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction, 151__,__ R43-54.

      MORENO, R. D. & SCHATTEN, G. 2000. Microtubule configurations and post-translational alpha-tubulin modifications during mammalian spermatogenesis. Cell Motil Cytoskeleton, 46__,__ 235-46.

      SADATE-NGATCHOU, P. I., PAYNE, C. J., DEARTH, A. T. & BRAUN, R. E. 2008. Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice. Genesis, 46__,__ 738-42.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this study Stathatos et al looked at the function of epsilon tubulin (tube1), specifically in male germ cells. Previous work showed that tube1 is an important member of the tubulin family but its function is more enigmatic compared to alpha, beta and gamma tubulin. The authors produced a mouse KO line of tube1 and the data presented in this manuscript concerns the effects on spermatogenesis. They found that tube1 is essential for multiple microtubule dependent functions, including meiosis, nuclear shaping and sperm motility.

      The experimental part is of the highest quality and the manuscript is very well written. My only reservation with the manuscript is concerning the model proposed for manchette migration in the Discussion section (Figure 6). I find the proposed model highly speculative and pre-mature, not supported enough by data, as even admitted by the authors (lines 415-427). Having it as a figure and concluding remark gives it too match weight, my suggestion would be to remove figure 6 and tone down the discussion. Minor points, a substantial percentage of sperm produced had a normal head shape in the KO (Figure 1I), which undermine the function of tube1 in nuclear shaping, the author should address this point in their manuscript. It is also curious whether there are phenotype in other tissues, can the authors comment on that?

      Significance

      The observations reported are novel and will be highly valuable specifically for the sperm biology field but also very interesting to the microtubule field in general.

    1. . The female in "Middle Passage," as the apparently smaller physical mass, occupies"less room" in a directly translatable money econo

      This connects to the idea of traditional family roles (the white man is the head of the household) and how the mother is the head of African American families according to the Moynihan report. Usually females as this sentence states, occupy "less room" such as in the economy women make less. In traditional families males are considered to be at the head of the household.

    1. Reviewer #1 (Public Review):

      This study seeks to understand how selective mRNA translation informs cellular identity using the Drosophila brain as a model. Using drivers specific for either neurons or glia, the authors express a tagged large ribosomal subunit protein, which they then use as a handle for isolating total mRNA and ribosome footprints. Throughout the study, they compare these data sets to transcriptional and ribosome profiles from the whole fly head, which contains multiple cell types including fat tissue, pigment cells, and others, in addition to neurons and glia. Using GO term analyses, they demonstrate the specificity of their cell-type-based ribosome profiling: known glial mRNAs are efficiently translated in glia and likewise in neurons as well. In further examining their RNAseq data set, they find that "neuronal" mRNAs, such as ion channels, are expressed in both neurons and glia, but are translated at higher rates in neurons. Based on this, they hypothesize that neuronal mRNAs are actively suppressed in glia, and next seek to determine the underlying mechanism. By meta-analysis of all mapped ribosome footprints, they find that glia have higher ribosome occupancies in the 5' leader of neuronal mRNAs. This is corroborated by individual ribosome occupancy profiles for several neuronal mRNAs. In 5'leaders containing upstream AUG codons, they find that the glial data sets show enrichment of ribosomes at these upstream start sites. They thus conclude that 5' leaders containing upstream AUGs confer translational suppression in glia.

      Overall, the sequencing data sets generated in this study and their subsequent bioinformatic analyses seem robust and reliable. Their data echo the trends of cell-type specific translational profiles seen in previous studies (e.g. 27380875, 30650354), and making their data sets and analyses accessible to the broader scientific community would be quite helpful. The findings are presented in a logical and methodical manner, and the data are depicted clearly. The authors' results that 5' leaders facilitate translation suppression is well-supported in literature. However, they overinterpret their data by claiming that such suppression is key for maintaining glial/neuronal identity (it is even featured in their title), but do not present any evidence that loss of such regulation has any impact on cellular identity. In many places, the authors do not acknowledge possible biases in their analytical methods, or consider alternate explanations for their data. These weaken the manuscript in its current form, but many of these issues which I describe below, are rectifiable with modest effort.

      1. The authors' data in Fig. 2-S1A-B shows substantial cell-to-cell variation in RpL3::FLAG expression. The authors do not consider that this variation may cause certain neuronal/glial types to be overrepresented in their datasets. A related point is that the authors do not discuss whether RpL3::FLAG is only present in the cell body or if it is also trafficked to the neuronal/glial processes where localized translation is known to occur (reviewed in 31270476).

      2. The RNA-seq data set that they use to calculate translation efficiency (TE) only represents mRNAs associated with RpL3::FLAG, which is part of the large ribosome subunit. As the authors are likely aware, there are mRNAs on which the full ribosome moiety does not assemble and these are effectively excluded from this data set. Ideally, a more complete picture of the mRNA landscape can be obtained by 40S subunit profiling but I appreciate that this is technically very challenging. At a minimum, this caveat needs to be acknowledged.

      How does the TPM of differentially regulated transcripts (such as those in Fig. 2H) compare between whole heads, neurons, and glia? Since the whole head RNA-seq data was not from an enriched sample, this might serve as a decent proxy for showing that the neuron/glia RNA-seq data sets are representative of RNA abundance.

      3. The analysis in Fig. 2F shows that low abundance mRNAs in glia are further translationally suppressed, which the authors point out in lines 151-152. However, this data also shows that mRNAs with a 1:1 ratio in neuron:glia (which fall in the 0.5-1 and 1-2 bin) have a TE1; this suggests that on average, mRNAs that are equally abundant are translated equally efficiently. This is the opposite of the thesis presented in Fig. 2G-H where many mRNAs of equal abundance in neurons and glia are actually poorly translated in glia. How do the authors reconcile these observations?<br /> It is also unclear from the manuscript whether all mRNAs were considered for the analysis in Fig. 2F or if some cutoff was employed.

      4. Throughout the manuscript the authors favor a "translation suppression" model wherein glia (for example) actively suppress neuronal mRNAs, and this is substantiated in Fig. 3C showing higher ribosome occupancy on 5' leaders than in coding regions. However, they show no evidence that glial mRNAs (such as those indicated in Fig. 2B and 2-S2B) present a different pattern, say that of higher ribosome occupancy in CDS vs. 5' leaders. This type of positive control is a glaring omission from many of their analyses, including ribosome occupancy at upstream AUG codons (Fig. 4).<br /> In order to make a broad case (as they do in the title) that differential translation regulation specifies multiple cell types, it is necessary to show the corollary: that glial mRNAs (repo, bnb, pnt, etc) are suppressed in neurons. There is an inkling of this evidence in Fig. 3-S1 where fat body mRNAs in neurons are shown to have low ribosome occupancy in the CDS regions and enhanced occupancy in the 5' leader region. This data is not quantified, nor is a control neuron mRNA shown as a reference for what the ribosome occupancy profile of an actively translated mRNA looks like in a neuron.

      5. The cell-type specific ribosome profiling data sets in the manuscript are from mRNAs associated with 80s subunits that have been treated with cycloheximide during sample preparation. Cycloheximide, and many other translation inhibitors, are known to non-uniformly bias reads towards start codons (PMID: 22056041,22927429). This important caveat and its implications on the start-codon occupancy analysis in Fig. 4 are not acknowledged in the manuscript.<br /> Again, the ideal resolution would be a ribosome profiling data set from 40S footprinting or harringtonine-treated samples (PMIDs: 32589966, 27487212, 32589964) to show the true accumulation of ribosomes at AUG codons. In the absence of such a data set, a comparative meta-analysis of the ribosome distribution around upstream and initiation AUG codons of differentially translated transcripts from neurons would be a useful control.

      6. The authors chose Rhodopsin 1 (Rh1) as a model mRNA which is translated efficiently in neurons but suppressed in glia. Though the data in Fig. 2-S3B shows higher TE for Rh1 in neurons, the data in 5A show lower ribosome occupancy in the Rh1 CDS in neuron samples (at least in the fragment of the CDS visible). These data are somewhat contradictory.<br /> Further, given that the neuron data are from all nsyb-positive cells but that Rh1 is expressed only in R1-R6 photoreceptors, it is unclear what motivated them to choose Rh1 as opposed to an mRNA that is more broadly expressed in neurons.

      7. Similar to the heterogeneity in nsyb- and repo-GAL4 expression in Fig. 2-S1A-B, Fig. 5C shows substantial variation in the expression of the UAS-GFP reporter driven by tub-GAL4. This variable GAL4 activity makes the mRNA abundance data difficult to interpret. Also, since the authors presume that Rh1 mRNA is expressed in glia (it is not annotated in the RNA-seq analysis in Fig. 2-S2B), would Rh1-GAL4 not be a more apt driver?<br /> These issues are further compounded by the lack of a cellular compartment marker (repo marks glial nuclei) which makes it impossible to determine which cell the mRNA signal is in. There are also no negative controls presented for the mRNA probes.<br /> Most confoundingly though, the control reporter itself seems to show variable translation efficiencies from one cell to another, with high-GFP protein cells showing lower GFP mRNA and vice versa.<br /> The mRNA:protein ratio may be easier to examine by using repo-GAL4 to specifically drive the Rh1-reporter expression in glia (such as in Fig. 5-S1A) rather than simultaneous expression in both neurons and glia using tub-GAL4.

    1. Reviewer #2 (Public Review):

      The manuscript investigates the function of basal forebrain cholinergic axons in mouse primary visual cortex (V1) during locomotion using two-photon calcium imaging in head-fixed mice. Cholinergic modulation has previously been proposed to mediate the effects of locomotion on V1 responses. The manuscript concludes that the activity of basal forebrain cholinergic axons in visual cortex provides a signal which is more correlated with binary locomotion state than locomotion velocity of the animal. Cholinergic axons did not seem to respond to grating stimuli or visuomotor prediction error. Optogenetic stimulation of these axons increased the amplitude of responses to visual stimuli and decreased the response latency of layer 5 excitatory neurons, but not layer 2/3 neurons. Moreover, optogenetic or chemogenetic stimulation of cholinergic inputs reduced pairwise correlation of neuronal responses. These results provide insight into the role of cholinergic modulation to visual cortex and demonstrate that it affects different layers of visual cortex in a distinct manner. The experiments are well executed and the data appear to be of high quality. However, further analyses are required to fully support several of the study's conclusions.

      1) In experiments analysing the activity of V1 neurons, GCaMP6f was expressed using a ubiquitous Ef1a promoter, which is active in all neuronal cell types as well as potentially non-neuronal cells. The manuscript specifically refers to responses of excitatory neurons but it is unclear how excitatory neuron somata were identified and distinguished from that of inhibitory neurons or other cell types.

      2) The manuscript concludes that cholinergic axons convey a binary locomotion signal and are not tuned to running speed. The average running velocity of mice in this study is very slow - slower than 15 cm/s in the example trace in Figure 1D and speeds <6 cm/s were quantified in Figure 2E. However, mice can run at much faster speeds both under head-fixed and freely moving conditions (see e.g. Jordan and Keller, 2020, where example running speeds are ~35 cm/s). Given that the data in the present manuscript cover such a narrow range of running speeds, it is not possible to determine whether cholinergic axons are tuned to running speed or convey a binary locomotion signal.

      3) The analyses in Figure 4 only consider the average response to all grating orientations and directions. Without further analysing responses to individual grating directions it is unclear how stimulation of cholinergic inputs affects visual responses. Previous work (e.g. Datarlat and Stryker, 2017) has shown that locomotion can have both additive and multiplicative effects and it would be valuable to determine the type of modulation provided by cholinergic stimulation.

      4) The difference between the effects of locomotion and optogenetic stimulation of cholinergic axons in Figure 5 may be confounded by differences in the visual stimulus. These experiments are carried out under open-loop conditions, where mice may adapt their locomotion based on the speed of the visual stimulus. Consequently, locomotion onsets are likely to occur during periods of higher visual flow. Since optogenetic stimulation is presented randomly, it is likely to occur during periods of lower visual flow speed. Consequently, the difference between the effect of locomotion and optogenetic stimulation may be explained by differences in visual flow speed and it is important to exclude this possibility.

      5) It is unclear why chemogenetic manipulations of cholinergic inputs had no effect on pairwise correlations of L2/3 neuronal responses while optogenetic stimulation did.

      6) The effects of locomotion and optogenetic stimulation on the latency of L5 responses in Figure 7 are very large - ~100 ms. Indeed, typical latencies in mouse V1 measured using electrophysiology are themselves shorter than 100 ms (see e.g. Durand et al., 2016). Visual response latencies in stationary conditions or without optogenetic stimulation appear surprisingly long - much longer than reported in previous studies even under anaesthesia. Such large and surprising results require careful analysis to ensure they are not confounded by artefacts. However, as in Figure 4, this analysis is based only on average responses across all gratings and no individual examples are shown.

    1. except subsections (b), (d)(2), (g), and (r) of section 2015

      N/A

      §2015. Eligibility disqualifications

      (b) Fraud and misrepresentation; disqualification penalties; ineligibility period; applicable procedures (1) Any person who has been found by any State or Federal court or administrative agency to have intentionally (A) made a false or misleading statement, or misrepresented, concealed or withheld facts, or (B) committed any act that constitutes a violation of this chapter, the regulations issued thereunder, or any State statute, for the purpose of using, presenting, transferring, acquiring, receiving, or possessing program benefits shall, immediately upon the rendering of such determination, become ineligible for further participation in the program—

      (i) for a period of 1 year upon the first occasion of any such determination;

      (ii) for a period of 2 years upon—

      (I) the second occasion of any such determination; or

      (II) the first occasion of a finding by a Federal, State, or local court of the trading of a controlled substance (as defined in section 802 of title 21) for benefits; and

      (iii) permanently upon—

      (I) the third occasion of any such determination;

      (II) the second occasion of a finding by a Federal, State, or local court of the trading of a controlled substance (as defined in section 802 of title 21) for benefits;

      (III) the first occasion of a finding by a Federal, State, or local court of the trading of firearms, ammunition, or explosives for benefits; or

      (IV) a conviction of an offense under subsection (b) or (c) of section 2024 of this title involving an item covered by subsection (b) or (c) of section 2024 of this title having a value of $500 or more.

      During the period of such ineligibility, no household shall receive increased benefits under this chapter as the result of a member of such household having been disqualified under this subsection.

      (2) Each State agency shall proceed against an individual alleged to have engaged in such activity either by way of administrative hearings, after notice and an opportunity for a hearing at the State level, or by referring such matters to appropriate authorities for civil or criminal action in a court of law.

      (3) Such periods of ineligibility as are provided for in paragraph (1) of this subsection shall remain in effect, without possibility of administrative stay, unless and until the finding upon which the ineligibility is based is subsequently reversed by a court of appropriate jurisdiction, but in no event shall the period of ineligibility be subject to review.

      (4) The Secretary shall prescribe such regulations as the Secretary may deem appropriate to ensure that information concerning any such determination with respect to a specific individual is forwarded to the Office of the Secretary by any appropriate State or Federal entity for the use of the Secretary in administering the provisions of this section. No State shall withhold such information from the Secretary or the Secretary's designee for any reason whatsoever.

      (d) Conditions of participation (1) Work requirements.— (2) A person who otherwise would be required to comply with the requirements of paragraph (1) of this subsection shall be exempt from such requirements if he or she is (A) currently subject to and complying with a work registration requirement under title IV of the Social Security Act, as amended (42 U.S.C. 602), or the Federal-State unemployment compensation system, in which case, failure by such person to comply with any work requirement to which such person is subject shall be the same as failure to comply with that requirement of paragraph (1); (B) a parent or other member of a household with responsibility for the care of a dependent child under age six or of an incapacitated person; (C) a bona fide student enrolled at least half time in any recognized school, training program, or institution of higher education (except that any such person enrolled in an institution of higher education shall be ineligible to participate in the supplemental nutrition assistance program unless he or she meets the requirements of subsection (e) of this section); (D) a regular participant in a drug addiction or alcoholic treatment and rehabilitation program; (E) employed a minimum of thirty hours per week or receiving weekly earnings which equal the minimum hourly rate under the Fair Labor Standards Act of 1938, as amended (29 U.S.C. 206(a)(1)), multiplied by thirty hours; or (F) a person between the ages of sixteen and eighteen who is not a head of a household or who is attending school, or enrolled in an employment training program, on at least a half-time basis. A State that requested a waiver to lower the age specified in subparagraph (B) and had the waiver denied by the Secretary as of August 1, 1996, may, for a period of not more than 3 years, lower the age of a dependent child that qualifies a parent or other member of a household for an exemption under subparagraph (B) to between 1 and 6 years of age.

      (g) Residents of States which provide State supplementary payments

      (r) Disqualification for certain convicted felons

    1. You notice that your room is a mess and that it smells like ass and that you’ve become so accustomed to its smell and its mess that from the space inside your head, behind your eyes, the space in which your first-person P.O.V. is rooted, you—

      Here, we see the teen realizes he is a mess, but does not really do much about it. He seems lazy almost, and maybe this is why his father is not nice to him.

    1. Once, paging together through pictures of dresses, she became so frustrated with me that she disappeared into the bathroom for almost an hour. Finally I knocked on the door. "Mommy? I left it open to the one I like." I heard water running, and when she came out she caught me around the shoulders and held me against her, my face nuzzling her stomach. "That's my good girl," she whispered above my head. [End Page 24] One afternoon was spent sewing, another polishing silver. The cooking lessons took on new vigor, and she had me reducing wine-based sauces, braising meats, and chopping fresh herbs for most of the day. Dad would come home, see everything that had been set out on the table and everything that still simmered on the stove and roasted in the oven, throw his hands up in the air and say, "I don't know how you expect us to consume all this, Donna. Maybe you could lay off her a bit." But then he'd sit down and attack the food with an appetite that had the air of duty, sighing and unbuttoning his pants for dessert.

      Both of these situations make it seem as though both parents are prepared to go through with the marriage, were happy to have her engaged, and yet seem very displeased with what is required to prepare their nine year old daughter for marriage, as if they hadn't thought of that.

  7. muse.jhu.edu muse.jhu.edu
    1. the final, excruciating despair, when he actually considered putting a pistol to his own head, the taking of one's life seeming the only honorable option left to a good soldier

      It's strange how this is simply highlighted over. It seems to be in full contrast to the emotions he felt in his adolescence and much more important than everything stated beforehand, but the description of the bowl he dropped previously got much more detail and care

    1. It’s over,I'd think, calmly. I’m not going to be able to get the magicto work this time. I’m ruined. I’m through. ’m toast. Maybe,I'd think, 1 can get my old job back as a clerk-typist. Butprobably not. I'd get up and study my teeth in the mirror fora while. Then I’d stop, remember to breathe, make a fewphone calls, hit the kitchen and chow down. Eventually I'dgo back and sit down at my desk, and sigh for the next tenminutes. Finally I would pick up my one-inch picture frame,stare into it as if for the answer, and every time the answerwould come: all | had to do was to write a really shitty firstdraft of, say, the opening paragraph. And no one was goingto see it.

      They way this person makes this picture I can imagine it perfectly in my head. The language she uses as well is very human and not like a professional which I love.

    1. artists understandably nervous about their own futures — why would anyone pay for art, they wonder,

      as an artist myself, i thought that the digital art was gonna be a head start for the future and just leave sketching on a book alone ,but when the ai art thing started it made me worry for my job and i can see that here too

    1. 'Have pity on your father's grey head; have pity on your infant son. Offerthe sacrifice for the welfare of the emperors.

      I found this statement moving for the idea of pity, as used by the Governor, for her to finally see the idea that she should see that it is wrong, and she refuses for her faith.

    2. By this time the adjutant who was head of the gaol was himself a Christian

      Did he convert to Christianity because of the prisoners' witnessing to him? Also, how is it that he is imprisoning them for their faith when he has the same faith?

    1. In the end, instead of denying statistics, or ignoring the subject of gender, race and sexuality altogether, we all need to stop making excuses and to face these issues head-on in order to come up with solutions, possibilities, and strategies for addressing these inequities. Mainstream curators need to join the ranks of curatorial activists working worldwide to institute change, and to collectively work towards transforming what is, in the end, an abhorrent situation for Other artists in the art world. Now is the moment for curators to work together to acknowledge the problem, to come to a resolution, so that all peoples and their creative outputs have the opportunity for equal exposure.

      Summary: Reily makes a plea for art organizations to stop excluding artists based on race, gender and sexuality and face the problem head on through curatorial activism. For her, curatorial activism is the development of an ethic of curating that specifically acknowledges the omissions of these people groups in the narratives of art and reverses that pattern through inclusion. She poses questions around how this can be accomplished and how it has come to be. She lists curators who are addressing the issue and spends a large portion of the article presenting data showing that recent exhibitions continue to exclude specific groups of people. Energy is spent addressing the denial of the data by her colleagues as she pushes them to move forward with the work of what she calls “equal exposure” meaning that all creatives and their work should have opportunity to be seen in art exhibitions.

    1. The demand for Equality of Opportunity hasbeen generally perceived by white Americans as a demand for liberty, a demand not to beexcluded from the competitions of life – at the polling place, in the scholarshipexaminations, at the personnel office, on the housing market. Liberty does, of course,demand that everyone be free to try his luck, or test his skill in such matters. But theseopportunities do not necessarily produce equality: on the contrary, to the extent that winnersimply losers, equality of opportunity almost insures inequality of results.

      Black people have fought tirelessly for equality. While some people may argue that Black people now have access to the same opportunities as their white counterparts, these opportunities do not indicate equality. While a Black person may be able to apply for the same job as a white person, there are still racial biases that give the white person a better chance of getting the job. African Americans have been oppressed and denied equal opportunities for the entire history of the United States. The country was built on exploiting their labor. White people have had a several-hundred-year head start to build connections and gain experience. It will take a lot more progress and a change of mindset on the part of non-Blacks to even inch towards equality.

    1. several varieties of blind spots.
      • for: blind spots, science - blind spots, aware spot, Wittgenstein, Nishada Kitaro, Douglas Harding, BEing journey, finger pointing to the moon, the man with no head

      • paraphrase

        • blind spot by vacancy
          • ie. black area in visual field.
          • contrast with the rest of the visual field
          • easy to see
      • further research start
        • pure blind spot
          • I did not understand
      • further research end
        • aware spot
          • Douglas Harding ( Man without a head) exercise
          • Wittgenstein also commented on this
            • Nothing in your visual field leads you to infer that it is seen by an eye
            • BEing journey
              • point finger to objects in your visual field
              • then point to yourself
              • what do you see? There's no object there
              • it is empty but is the source of awareness
          • Nishada Kitaro
            • As soon as you adopt the stance of objective knowledge, the knower doesn't enter the visual field